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Abstract 
 

Spatial Distribution of Malaria Prevalence in Ethiopia Based on Village Level 
Environmental, Socio-Economic, and Demographic Parameters 

 
By Marc Cunningham 

 Environmental parameters detectable through remote sensing often correlate 
well with aspects of vector habitat or suitability.  Investigation of these parameters in 
the context of existing malaria interventions provides a clearer understanding of the 
disease distribution.  Specifically, we discovered that the previous two weeks average 
land surface temperature, the previous six months average daily rainfall, the previous 
two weeks average vegetation, and population density were significantly associated 
(positively or negatively) with prevalence of malaria in Ethiopia in 2006.  

 Stratification of risk in Ethiopia has historically been done based on elevation.  
Although altitude serves as a proxy for temperature, we suggest that temperature itself 
is the driving risk factor (Prevalence Ratio: 1.13).  Further, given the role we saw these 
parameters play in disease distribution, we suggest that evaluations of programmatic 
work which fail to account for variations in environment over time may be biased. 

 Based on spatial clustering in the eastern portion of the State of Southern 
Nations, Nationalities and Peoples (SNNP) Region, and poisson regression results, we 
suggest further research into the role higher rural population density or peri-urban 
environments may play in focal transmission.   
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Introduction to Spatial Epidemiology  

 This article discusses the spatial distribution of malaria caused by Plasmodium vivax 

and P. falciparum in Ethiopia.  For those unfamiliar with spatial epidemiology, we first 

outline some tools, techniques, and perspectives of the field.   

 Spatial epidemiology is concerned with understanding spatial determinants of 

transmission and risk, typically for the purposes of better disease control.  It often combines 

case data from field research or surveillance with data on environmental and ecological 

factors by overlaying them in a georeferenced database.  It compares the observed 

distributions with what would have been expected if there were no spatial clustering and if 

there were no association between the factors of interest and the disease. 

 Tobler’s first law of geography states, “Everything is related to everything else, but 

near things are more related than distant things” [1,2].  Based on this axiom, spatial 

epidemiology aims to answer the following questions [3,4]:  

(1) Is there clustering of disease or of intensity of disease transmission? 

(2) If so, where are these ‘hot spots’ (of high disease) and ‘cold spots’ (of low disease)? 

(3) What is unique or similar about these areas that explains the clustering? and   

(4) How does this knowledge translate to improved control and prevention programmes 

through prediction of risk?   

 A few common tools for evaluating clustering are Moran’s I and K-Functions (global 

level clustering) and Local Indicators of Spatial Association (LISA) and Getis Gi*(d) (local 

level clustering).  Moran’s I quantifies the correlation between similarity of outcomes based 
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on proximity [5] [6] [7].  The K-function accounts for intensity of disease in cluster analysis 

and provides insight into the distances at which clustering is occurring [8,9].  The LISA 

detects localized clustering by comparing the similarity of disease intensity around each 

outcome [10].  Getis Gi*(d) estimates local correlation in a defined area around (but not 

including) each outcome, and compares that correlation with the global correlation to find 

areas of high or low clustering [11,12]. As it creates these comparisons for each outcome, the 

test statistic generated must be adjusted to account for multiple comparisons.    

 Vector borne infectious disease patterns, specifically, are driven by both intervention 

programmes and by environmental parameters [3,13,14].  Rainfall, temperature, vegetation, 

elevation, slope, aspect, soil type, soil texture, soil moisture, hydrology, water bodies, 

anthropogenic biomes and/or landcover can often be linked with aspects of vector habitat 

and suitability, or parasite development.  In affecting vector habitat, these parameters shape 

vector distribution, which affects the interaction between vector and the human 

populations, and the resulting case distribution. 

 Satellite remote sensing provides large scale datasets on these parameters [15,16]. 

Imagery has spatial, temporal, and spectral resolution.  In passive sensors, the satellite 

sensors absorb electromagnetic (EM) radiation that has been reflected or emitted from the 

earth.  Spectral resolution refers to the range of the EM radiation that the sensor observes.  

High spectral resolution allows better discrimination of landcover, as the contrast between 

reflected EM radiation in different bands provides more information on environment than a 

single band.  Spatial resolution refers to the amount of area from which EM radiation is 

averaged to create a pixel.  Finer resolution allows better discrimination of 

microenvironments.  Temporal resolution refers to the frequency with which the satellite(s) 
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image the area.  Several high temporal resolution images are often combined into 

composites, which provide more stable and accurate parameter estimates over the time 

period of interest.  Other sources of environmental data, such as weather stations and field 

collection, can be used to improve or validate remote sensed data.  Though good for specific 

locations, these are generally more costly, and are often unfeasible for large areas.   

 Remote sensed indices are created by combining and contrasting different bands of 

EM radiation based on the reflective properties of the environmental parameter of interest.  

Briefly, four commonly calculated remote sensed indices are the Normalized Difference 

Vegetation Index (NDVI) [17] which provides information on vegetation biomass and 

coverage, the Normalized Difference Water Index (NDWI) [18] which provides information 

on vegetation health by measuring vegetation water content, Land Surface Temperature 

(LST) [17,19], and Cold Cloud Duration (CCD) [15] which estimates rainfall.  A fifth 

common remote sensed parameter is elevation.  A Digital Elevation Map (DEM) created by 

the NASA Shuttle Radar Topography Mission (SRTM) [20] provides high spatial resolution 

global estimates. 

 Satellite imagery has become increasing available at finer temporal and spatial 

scales.  Caution is needed, however.  These environmental data cannot replace high quality 

case information, or field ecology work on the vectors [21,22].  Habitat suitability does not 

necessarily correspond with vector density and/or disease presence, nor with opportunities 

for vector and susceptible human host interaction [23,24]. 

 Geographic Information Systems (GIS) allow processing, correcting, and overlaying 

of geographically coordinated data [15].  Satellite data must be pre-processed before being 
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analyzed to remove contamination [15].  Imagery must then be projected, converting a 

mostly spherical world onto a flat map.  The resulting clean, projected environmental 

parameters can be related to georeferenced case information. 

 Associations between risk factors and disease can be examined by overlaying maps, 

and quantitatively through regression [25,26,27].  Regression models can fit a variety of 

outcome distributions, such as: normal [28], binary [29,30], poisson [31] [32], negative 

binomial [33], and zero-inflated poisson [33].  These models are constructed by finding the 

best fit line, often through maximum likelihood estimation techniques.  One assumption in 

typical regression modeling is that the predictors and outcomes are independent between 

different individuals.  As with time-correlated data, spatially correlated data fail to meet this 

assumption. The inclusion of additional spatially dependent regression terms can account 

for this correlation, allowing better insight into both global and local trends [6,34,35,36].     

 When examining the spatial distribution of disease, the concept of scale plays a large 

role in framing research [37,38,39].  Differing temporal and spatial scales relate to different 

pathogen, individual, or population level characteristics [21].  Understanding at one scale 

does not always translate to finer or coarser scales [40].  From a pragmatic perspective, finer 

scales—temporal, spatial, or spectral—have higher costs, and often have a lower signal to 

noise ratio, making long term or regional patterns more difficult to observe [40,41]. At the 

cost of time and computing power, one can always move up scale from fine to coarser data 

by averaging appropriately.   

 The final goal of spatial epidemiology is an enriched understanding of the biological, 

sociological, or environmental parameters which underlay disease distribution and 



 

 

5 

transmission [23,42].  Ideally, these parameters can be used in the formation of a risk map 

[4,21,43,44].  A more complete perspective on disease dynamics provides the foundation for 

more efficient and effective control and prevention programmes, and context for 

programme evaluation.   

 As in all models, there is a trade off in spatial models between generality, precision, 

and realism [45].  Often the better our model explains the minutia of a specific time and 

area, the worse it tends to perform in different contexts.  A risk map, in particular, requires 

validation if extended beyond the original study area or time [37].  When used 

appropriately, however, risk maps provide an example of how spatial epidemiology can be 

translated into public health policy through targeted allocation of resources proportional to 

risks.  
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Background 

Historical Malaria in Ethiopia 

 Malaria offers a significant challenge as a large cause of mortality and morbidity in 

Ethiopia.  In 2009 alone, 3 million suspected cases sought health assistance [46]. There are 

estimates of 9 million cases each year with 70,000 deaths, with over 6 million additional 

cases and 114,000 deaths in epidemic years [47].  Despite recent gains in decreasing 

prevalence, around 68% of the population of the country’s population of 78 million persons 

remain at risk based on estimates from altitude and the current regional extent of disease––

there is potential for resurgence [47,48]. Transmission is both seasonal—with most areas 

experiencing peak transmission between September and December1—and cyclical, with 

widespread epidemics every five to eight years [47]. Widespread epidemics have been 

recorded since the 1950s, including highland epidemics in 1988, 1991, 1998, and the most 

recent in 2003 [46,48]. 

Malaria and Ecology 

 Mosquitoes of the Anopheles gambiae complex are the most common mosquitoes in 

Ethiopia, [50], and are dominated by An. arabiensis [51], which breeds well in temporary, 

often shallow sunlit pools formed in pits, footprints, or tire tracks [52]. Other vectors of 

interest include An. funestus, An. nili and An. pharoensis [47]. Malaria, spread by the 

Anopheles sp., is caused by infection with the Plasmodium sp..  The dominant forms of 

                                                        
1 Specific regions with a second season of rains experience transmission in April to May 49. FMOH (2006) 
National Five Year Malaria Control Plan . 
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malaria in Ethiopia are P. falciparum and P. vivax. The former is more common and accounts 

for roughly 70% of infections [48,53]. 

 In Ethiopia, malaria existing control policies are based on the premise that ecologic 

suitability corresponds with altitude, with seasonal and annual temperatures, and with 

seasonal and annual rainfall.  Transmission has historically been stratified into the following 

zones based on suitability and historical patterns: stable year round, seasonal, unstable, arid 

and dependant on water bodies, and free [47]. Due to the heterogeneous nature of malaria 

transmission in Ethiopia, locations of malaria transmission do not always match these 

historically mapped stratifications. 

 Temperature, habitat suitability, humidity, and rainfall interact to influence vector 

density, longevity, and behaviour, together with human actions which are based on 

perceptions of risk. Temperature also influences the rate of parasite development [54] [55].  

These complex interactions affect host contact with infective mosquitoes, and the resulting 

distribution of malaria prevalence [56,57]. Satellite remote sensed nightly land surface 

temperature (LST) , Normalized Difference Vegetation Index (NDVI), Normalized 

Difference Water Index (NDWI) and precipitation estimated from cold cloud coverage and 

weather stations have been shown to correlate with air temperature; vegetation, larval sites, 

and humidity; and rainfall [26,29,58,59].   

Current Malaria in Ethiopia 

 With the receipt of funding from the Global Fund to Fight AIDS, Tuberculosis and 

Malaria (GFATM) in 2003 (Round 2: 2003 – 2008; $73 million) and in 2005 (Round 5: 2005 – 

2010; $140 million) the Ethiopian Federal Ministry of Health (FMOH) scaled up of malaria 
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prevention and control [47,48], including nationwide distribution of long-lasting insecticidal 

nets (LLINs) and artemether-lumefantrine treatments [49]. One strategic goal for the 

National Malaria Control Program is distribution of insecticide treated nets to 100% of 

households in malarious areas, with the corresponding objective of appropriate net use by 

at least 90% of pregnant women and children under 5 [49].  The Carter Center (TCC) has 

partnered with the FMOH in bednet distribution and education programmes since early 

2006, and have assisted in the distribution of over three million nets in three targeted 

regions of Amhara, Oromiya, and the State of Southern Nations, Nationalities and Peoples 

(SNNP) [60]. The next Malaria Indicator Survey (MIS) is planned for later this year, and will 

provide updated estimates on programmatic success as measured through parasite 

prevalence, anemia, malaria knowledge, net ownership, net quality, and net use. 

Survey Information  

In coordination with the FMOH, The Carter Center conducted a 2006 household 

Baseline Survey (2006 Baseline) in Amhara, Oromia, and SNNP [61,62,63]; and the 2007 

Ethiopia National Malaria Indicator Survey (2007 MIS) in collaboration with the Ethiopia 

MIS study group2 [48,64]. These two surveys provide information on the relationship 

between demographics, behavioral risk factors, socio-economic status and malaria 

prevalence in Ethiopia.  Survey methods for both surveys have been previously discussed 

[60,61,62,64,65].  The 2006 Baseline and 2007 MIS received ethical approval from the Emory 

                                                        
2 Federal Ministry of Health of Ethiopia, The Carter Center, Malaria Control and Evaluation Partnership 
for Africa (a programme at PATH), World Health Organization, United Nations International Children 
Emergency Fund, U.S. Agency for International Development, U.S. Centers for Disease Control and 
Prevention, the Central Statistical Agency, Center for National Health Development in Ethiopia, and 
Malaria Consortium {Jima, 2010 #22} 
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University Institutional Review Board (IRB 1816, 6389), the Ethiopian Regional Health 

Bureaus, the PATH Ethical Committee, and the Ethiopian Science and Technology Agency.  

Briefly, the 2006 Baseline took place from Dec 2006––Feb 2007 and was designed to 

estimate malaria prevalence, net ownership, and net use prior to the scale up in LLIN 

distribution.  5,708 households were sampled in 224 clusters for a total of 27884 participants 

[62].  Clusters were randomly selected from non-urban areas in districts where at least 90% 

of the population lived in malarious areas, as defined by expert knowledge and regional 

criteria [62].  Parasitology was evaluated in every other household, with prevalence and 

type of malaria determined through blood slide microscopy [61]. 

 The 2007 MIS took place from Oct through Dec 2007 and was designed to assess 

progress toward national roll back malaria goals by investigating access, coverage, and use 

of malaria prevention and control interventions. 7,621 households were sampled in 319 

clusters for a total of 32,380 participants [64]. All children under five were tested for malaria 

together with all household members in every fourth house. The three regions of interest 

were oversampled to provide power for comparisons with the 2006 Baseline.  Based on 

microscopy (10,578 slides), the 2007 MIS survey estimates a national age-adjusted 

prevalence of 0.2%.  Overall age adjusted prevalence decreased in the three regions of from 

3.5% to 0.1% [60]. 

 Prior analyses have described individual and household characteristics including 

indoor residual spraying, household net ownership, net usage, and malaria prevalence; and 

have related the latter to routine surveillance data [60,63].  Between 2006 and 2007 the 

ownership and overall use of LLINs significantly increased.  In Amhara, Oromiya, and 
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SNNP, malaria prevalence significantly decreased in all age groups [60].  In the 2006 

Baseline survey, altitude (aOR 0.95 per 100 m), the asset index (aOR 0.79 per quintile), 

rainfall (aOR 1.10 per 10mm) and the number of LLINs per house (aOR 0.60), were 

significantly associated (p<0.05) individual malaria prevalence [62].   In the 2007 MIS 

survey, use of LLINs was significantly associated with malaria knowledge (aOR 2.1), 

altitude (aOR 0.3), and IRS (aOR 4.6) [53].   

Research Hypothesis 

 This research examines the spatial distribution of malaria in the three regions of 

Amhara, Oromiya, and SNNP with respect to ecological and environmental factors while 

controlling for demographics and LLIN coverage/LLIN use at the kebele (village) level.  

Having discussed the methodology and background for both surveys, we analyze the 2006 

Baseline data. 

 We hypothesize that although socio-economic status (SES), and LLIN ownership and 

use are driving factors of malaria prevalence at the individual scale [62], environmental 

factors drive the spatial heterogeneity of malaria in Ethiopia at the village scale.  We 

investigate temperature, rainfall, vegetation, hydrology, proximity to water, landcover, 

population density, and altitude.  With access to cross-sectional information on malaria 

prevalence, the we focus on spatial rather than temporal variation.  

 Substantial research has been done looking into the complex relationship between 

prevalence of malaria, malaria’s ecological niche, and the relationship between remote 

sensed data and that niche [19,23,51,58,59,66,67,68,69,70].  Less research has been done 

examining the interaction and relative importance of these parameters while considering 
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fine scale demographic, behavioural, and programmatic factors.  A recent article by Ashton 

et al. partially fills this gap, but is limited in spatial scale to Oromiya [71]. 
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Methods  

Spatial Analysis of Clustering 

 We tested global clustering using Moran’s I based on inverse distance squared, 

considering presence or absence of malaria at the village level, and then considering 

prevalence.  Following this, we used Local Indicators of Spatial Association (LISA) based on 

presence or absence and then based on prevalence to determine specific hot-spots and cold-

spots, with a test statistic of z > 1.96 considered significant. In considering Moran’s I and 

LISA, we first examined the entire study area, and then examined Amhara alone compared 

with SNNP and Oromiya––we aggregated the regions based on the difference in times 

sampled. 

Regression Variables 

 ArcGIS was used to match kebeles georeference with GPS units to environmental 

covariates. 

 As the prevalence of malaria across kebeles was non-normal, we used weighted 

poisson regression, modeling the number of prevalent cases sampled per village as our 

outcome with an offset of the number of people sampled.  Ordinal logistic regression was 

considered, and rejected based on a failure to satisfy the proportional odds assumption.  

 All individual level characteristics––age, sex, and use of any net or a LLIN the night 

before the survey––were averaged to the village level, accounting for selection probabilities.  
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Household characteristics aggregated to the kebele level include a household socio-

economic status (SES) index, ownership of at least one net, ownership of at least one LLIN, 

number of nets and of LLINs, a ratio of the number of nets and of the number of LLINs to 

the household size, and indoor residual spraying (IRS) within the last 6 months or within 

the last year. Selection probabilities were summed to the kebele level to provide weights.   

 At the kebele level we considered average altitude, average daily rainfall, average 

nighttime land surface temperature (LST), proximity to lakes, rivers, or hydrolines which 

can serve as a proxy for irrigation and mosquito breeding habitat, average vegetation which 

can serve as a proxy for humidity, anthropogenic biomes [72], and human population 

density [73] (See Table 1).   

 The 2006 Baseline survey took place from 12 Dec 2006 to 07 Feb 2007. Sampling of a 

kebele took 1 to 2 days.  We divided the survey into two groups based on the median time-

period (31 Dec 2006).  In linking environmental factors to surveys, we considered all surveys 

in the first half to have been collected on 22 Dec 2006 (Period 1) and in the second half to 

have been collected on 18 Jan 2007 (Period 2).  These time periods were chosen as balance 

between the Period midpoint and the availability of remote sensed data.  All surveys in 

Period 1 were in Amhara, while Period 2 surveys included the eastern edge of Amhara, 

together with the SNNP and Oromiya regions.  We examined all environmental parameter 

means, and then stratified the means by time period sampled. (See Table 1). 

 For LST, vegetation and rainfall we considered various aggregations in time.  For 

LST we looked at a continuous range of degrees Kelvin (K) from composites of 1 to 16 days 

before the survey period (LST1), 17 to 32 days before (LST2), 1 to 32 days before (LST3), and 
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1 to 48 days before (LST4), all of which were averaged over a 1500m radius from the kebele 

centroid.  Temperature estimates were acquired from USGS LandDAAC Modis with a 1km 

spatial resolution, and 8 day composite temporal resolution.  The 1500 meter radius was 

chosen based on mosquito flight range estimates.  To examine vegetation we considered the 

NDVI and NDWI values over the same distance and time periods as LST.  Vegetation 

indexes were acquired from USGS MODIS with 16 day composites and 250 meter spatial 

resolution [17]. Rainfall was estimated from the National Oceanic and Atmospheric 

Administration (NOAA) Famine Early Warning System at 11 km spatial resolution and ten 

day composites [74].  We considered one month (NOAA1), two months (NOAA2), three 

months (NOAA3), six months (NOAA4), and nine months (NOAA5) prior to the survey 

period, extracted directly from the kebele centroids. The International Research Institute for 

Climate and Society3 (IRI) provided the interface used to download these environmental 

parameters at the above mentioned temporal scales. 

 We estimated the kebele altitude as the average altitude for all households sampled 

in the kebele, which was similar to that extracted from the kebele centroid from the NASA 

Shuttle Radar Topographic Mission (SRTM) Digital Elevation Map (DEM) [20]. 

 Proximity to water bodies (rivers and lakes), and proximity hydrolines were based 

on the ERSI Maps v10 with buffers of 500 meters, 1000 meters, 1500, and 3000 meters.  

Landcover [75] and population density [73] were acquired from the Socioeconomic Data and 

Applications Center (SEDAC) at the Center for International Earth Science Information 

Network4 (CIESIN).  We a priori reclassified anthropogenic biomes from 20 classes [75] to 

                                                        
3 http://portal.iri.columbia.edu 
4 http://www.ciesin.columbia.edu 

http://portal.iri.columbia.edu/
http://www.ciesin.columbia.edu/
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five: dense settlements, croplands, rangelands, forested areas, and wildlands.  For the 

purposes of stable estimates, we required at least five kebeles within an environmental 

buffer to include it in analysis.  Thus, proximity to water bodies was excluded from analysis. 

 Manipulation of geospatial data was done in ArcGIS 9.2 (ERSI).  Regression was 

performed using SAS 9.2 (SAS) 

Modeling strategy: 

 Based on the non-normal distribution of the village prevalence values, we used a 

poisson regression model.  Over-dispersion was present (Pearson Deviance / DF ~ 3.8), 

which can lead to inappropriately tight confidence intervals.  We scaled the residuals by the 

square root of the Pearson Deviance divided by its degrees of freedom.    

 Univariate and multivariate poisson regression was done in SAS using the weight 

statement to account for kebele sampling probabilities.  Sampling stratification by region 

was not accounted for, resulting in conservative confidence intervals.  Given that we 

aggregated all data to the primary sampling unit (kebele), it was not necessary to account 

for complex survey design in analysis. 

 We constructed models using a combination of discriminant analysis and stepwise 

regression.  We first used the Akaike information criterion (AIC) [76] to select the best 

environmental variable from each group of temperature, vegetation, and rainfall—we 

considered all possible models with (or without) elevation, reclassified anthropogenic 

biomes and at most one temperature, vegetation, rainfall time period.  The model with the 

lowest AIC was selected as the base environmental model.  Further modeling was done 
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with stepwise regression, reconsidering environmental variables at each step.  We a priori 

selected p<0.15 as criteria for entry, and p>0.20 as criteria for removal. 

 Multi-collinearity was assessed for all variables in the final model.  To avoid multi-

collinearity and time-correlated covariates, only one rainfall, one vegetation, and one 

temperature time frame were included in the final model.  Further, with LST in the model, 

altitude was not included. 
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Results 

Spatial Analysis 

 When considering the entire study region, no clustering was observed.  At a finer 

scale when considering only Oromiya and SNNP, there was significant (p=0.01) global 

clustering for the presence/absence of malaria at the kebele level. 

 Based on LISA for the entire study area, we saw only one area of Hi-Hi clustering, on 

the border of Amhara and Oromiya.  When considering the north and south separately 

(Amhara alone, Oromiya with SNNP), a larger local cluster in eastern SNNP was apparent.     

Table 0: Moran’s I Evaluating Global and Regional Clustering of Malaria in Amhara, 
Oromiya, and SNNP (2006 Baseline)  

 Presence/Absence  Prevalence 
Region Moran's I P-value  Moran's I P-value 
All -0.13 0.54  -0.13 0.53 
Amhara -0.18 0.43  -0.13 0.54 
Oromiya and SNNP 0.54 0.01  0.33 0.08 

 

Descriptive Results 

 Across the study area [60], the average prevalence was 4.1%, varying from 0.9% in 

Oromiya, 4.6% in Amhara, and 5.4% in SNNP.  Prevalence differed significantly between 

Period 1 at 5.4% (95% CI 4.0 – 6.1), and Period 2 at 2.0% (95% CI 1.6 – 3.3).  27.8% of the 

study population used a net the night before the survey, while 15.3% used a LLIN. The 

average number of LLINs per person was 0.3.  Kebele net coverage was assessed as the 
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percentage of households owning at least one LLIN, and was significantly protective 

(p=0.04) in our final model.  Regarding the extent of coverage: 37.0% of households owned 

at least one bednet, and 21.5% owned at least one LLIN. 

 In all time lags considered, the mean of kebele temperatures was similar per period.  

There was more variability amongst kebeles in Period 2 (Std Dev 0.19-0.20) compared with 

Period 1 (Std Dev 0.28).  NDVI and NDWI correlated strongly with each other, and average 

NDVI’s and NDWI’s associations with prevalence were similar in direction and significance 

per period across all time lags.  For Period 1, rainfall averaged over the six months prior to 

the survey (NOAA4) was highest, while for Period 2 rainfall over the 9 months prior to the 

survey (NOAA5) was highest, reflecting differences in rainfall patterns and survey timing.  

On average, rainfall in the first period was higher than in the second.  In the month prior to 

the survey, however, average daily rainfall (NOAA1) was slightly higher in the second 

period at 7.6 mm (95% CI 6.4 - 8.9) than in the first at 8.6 mm (6.3, 10.8).   

 To recap: average LST was similar between the sampling periods, though it varied 

greatly by kebele.  Average rainfall, in comparison, differed by Period for NOAA3, NOAA4, 

and NOAA5, with Period 2 receiving less rainfall. Average rainfall in the month prior to the 

survey, which was marginally associated in univariate analysis with a decrease in 

prevalence, was lower for kebeles in Period 1 (7.6 mm) than in Period 2 (9.2 mm).    

Univariate Associations in Poisson Regression 

 In univariate analysis at the village scale, population density (Prevalence Ration [PR] 

1.16 per 100 people per km2, p=0.03), LST3 (PR 1.08 per 1 K, p=0.05), and LST4 (PR 1.09 per 1 

K, p=0.03) were significantly associated with increased prevalence. Non-significant 
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associations were observed between prevalence and proximity (within 3000 meters) to water 

(PR 1.45, p=0.16); and between prevalence and vegetation in the 16 days prior to the survey 

(NDVI1 PR 0.44, p=0.21).  A 10 mm average daily increase in rainfall in the six months prior 

to the survey (NOAA4) was non-significantly associated with a 3% increase in prevalence.  

Increases of 100 m in altitude were associated with a non-significant 4% decrease in 

prevalence.   

 All LLIN variables serve as a proxy for appropriate LLIN usage, and were 

protective, but not significant in univariate analysis (p=0.10-0.24).  LLIN associations were 

more protective than all net association, which included LLINs and non-treated nets. 
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Table 1: Prevalence, LLIN Coverage, and Remote Sensed Variable Means by Survey Period 
in Amhara, Oromiya, and SNNP (2006 Baseline Survey) 

Variable 

Period 1*^ 
Means  

(N = 128) 

Period 2*^ 
Means 

(N  = 95) 

Mean for 
all kebels 
(N = 223)   

Malaria 
Prevalence^^ 5.0% 2.4% 4.2% Variable description  

LLIN coverage** 16.1% 28.7% 21.5% (% HH with at least one LLIN)  

NDVI from 16 day MODIS composites at 250 meter 
resolution 

 
Avg. Normalized 
Difference Vegetation 
Index. 

Ecological/Biological 
Justification 

NDVI1** 0.43 0.45 0.44 0-16 days prior to survey Humidity 
NDVI2 0.45 0.46 0.45 16-32 days prior to survey Humidity, Larval sites 
NDVI3 0.44 0.45 0.45 0-32 days prior to survey Humidity, Larval sites 
NDVI4 0.47 0.47 0.47 0-48 days prior to survey Humidity, Larval sites 

Night time LST from 8 day MODIS composites at 1 km 
resolution in degrees K 

 
Average night time Land 
Surface Temperature (K).  

LST1 285.3 285.1 285.2 0-16 days prior to survey 
Parasite development, 
Mosquito survival 

LST2 285.5 285.8 285.6 16-32 days prior to survey Larval development 

LST3*,** 285.4 285.5 285.4 0-32 days prior to survey 
Larval development, Parasite 
development, Mos. survival 

LST4* 285.7 285.3 285.6 0-48 days prior to survey 
Larval development, Parasite 
development, Mos. survival 

African Rainfall Climatology from the NOAA Famine Early 
Warning System daily estimates in mm. 

 
Avg daily rainfall from 
the National Oceans and 
Atmospheric Admin.  

NOAA1 7.6 9.2 8.1 Month prior to survey   Humidity, Larval sites 
NOAA2 17.7 13.7 16.4 2 Months prior to survey   Humidity, Larval sites 

NOAA3^^ 22.52 16.82 20.68 3 months prior to survey   

Humidity, Transmission 
during peak season, Larval 
sites 

NOAA4**,^^ 52.60 32.84 46.24 6 months prior to survey   

Transmission during seasonal 
rains and during peak 
transmission season 

NOAA5^^ 42.11 33.64 39.38 9 months prior to survey   Annual suitability 
 

* Significant (p < 0.5) in univariate analysis 
** Remained in final model 
*^ Kebeles surveyed between 12 Dec and 31 Dec 2006 were grouped into Period 1, and were assigned a survey date of 22 
Dec 2006 for comparison with remote sensed variables, while those surveyed between 1 Jan and 7 Feb 2007 were assigned 
a survey data of 18 Jan 2007. 
^^ Significantly different between the two Periods (p<0.05) 
As NDVI and NDWI were highly correlated, only NDVI values are presented. 



 

 

21 

  

Table 2: Univariate Associations in Poisson Regression Comparing Prevalence with Village 
Level Demographic, Behavioural, Malaria Control, and Environmental Factors in Amhara, 
Oromiya, and SNNP (2006 Baseline Survey) 
Parameter OR ** CL P-value* 
    
Survey Period* 
(Period 1 is referent) 0.77 0.65-0.92 0.003 
Sqrt of Population Density  
(per person per km2) 1.02 0.98-1.06 0.32 
Population Density*  
(per person per km2) 1.001 1.000-1.002 0.03 
Average Asset Index per 
kebele 0.94 0.75-1.18 0.57 
Average individual Net use 
last night (per individual) 0.74 0.45-1.21 0.23 
Average individual LLIN use 
last night (per individual) 0.61 0.32-1.14 0.12 
Ratio of Nets to HH members 
(per net) 0.74 0.33-1.63 0.45 
Ratio of LLINs to HH members 
(per net 0.53 0.18-1.52 0.24 
Number of Nets per HH  
(per net) 0.84 0.67-1.06 0.14 
Number of LLINs per HH  
(per net) 0.79 0.59-1.06 0.11 
% of HHs with at least 1 Net 
(per 20% increase) 0.82 0.55-1.21 0.31 
% of HHs with at least 1 LLIN 
(per 20% increase) 0.67 0.41-1.09 0.10 
IRS 12 Months 0.72 0.41-1.28 0.27 
IRS 6 Months 1.20 0.58-2.47 0.62 
Hydoline within 3000m 1.45 0.86-2.45 0.16 
Kebele Altitude (per meter) 1.000 0.999-1.000 0.42 
LST1 (per K) 1.07 1.00-1.16 0.054 
LST2 (per K) 1.06 0.99-1.14 0.12 
LST3 (per K)* 1.08 1.00-1.16 0.049 
LST4 (per K)* 1.09 1.01-1.17 0.03 
NDVI1  0.44 0.12-1.58 0.21 
NDVI2 0.64 0.19-2.15 0.47 
NDVI3 0.53 0.15-1.86 0.32 
NDVI4 0.62 0.18-2.13 0.45 
NOAA1 (per mm) 1.00 0.98-1.01 0.59 
NOAA2 (per mm) 1.00 0.99-1.01 0.56 
NOAA3 (per mm) 1.00 0.99-1.01 0.46 
NOAA4 (per mm) 1.01 1.00-1.02 0.13 
NOAA5 (per mm) 1.00 0.99-1.02 0.59 
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Multivariate Associations in Poisson Regression 

 LST3 was included as the base environmental model from discriminant analysis. 

Population density was included and retained. In multivariate analysis, a positive 

relationship between NOAA4 and prevalence became significant when controlling for 

population density, with a 10 mm increase in average daily rainfall corresponding to a 17% 

increase in risk.  

 A negative relationship between prevalence and NDVI1 became significant when 

controlling for NOAA4.  NDVI1 correlates strongly with rainfall in the month proceeding 

the survey, which was also negatively correlated with prevalence.  

 The average number of LLINs owned per household, the average number of 

households owning at least one LLIN (LLIN coverage), and the proportion of the household 

who used a LLIN the night prior to the survey became significant predictors when 

controlling for temperature and population density.  With the inclusion of rainfall, 

vegetation, and IRS, LLIN coverage remained significantly protective (PR 0.6 per 20% 

increase coverage, p=0.04).   

 Altitude correlates strongly with temperature.  If included in place of temperature in 

our final model, altitude would have been significantly protective (p = 0.003). 

 Despite not meeting the selection criteria, we included indoor residual spraying 

(IRS) within the last 12 months for comparison with previous analysis.  When stratified on 

altitude instead of temperature, IRS is borderline significant (p=0.056). 
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Table 3: Fully Adjusted Associations in Poison Regression Between Malaria Prevalence, 
Demographics, Net Coverage, and Environmental Factors in Amhara, Oromiya, and SNNP 
(2006 Baseline Survey) 

Parameter  
(In the order selected in 
stepwise regression) 

Prevalence  
Ratio CL P-value 

    
LST3** 1.13 1.05 -1.22 0.002 
Population density** 1.002 1.001 -1.003 0.0004 
NOAA4 (per mm)** 1.02 1.01 -1.03 0.005 
NDVI1** 0.15 0.04 -0.60 0.008 
Proportion of HH with at least 
1 LLIN (per 20% increase)* 0.60 0.37 -0.98 0.041 
IRS within last 12 Months 0.67 0.39 -1.18 0.166 
*   Significant (p<0.05) 
** Significant (p<0.01)    
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Discussion 

 Although aggregation by region indicates that Amhara and SNNP have higher 

prevalence than Oromiya, we saw no evidence of global clustering when considering all 

three regions together. The clustering on the eastern border of SNNP was not detected by 

either Moran’s I and LISA 

 This lack of pattern changed when we moved down to a finer scale, where 

significant clustering in Oromiya and SNNP is driven by the large cluster on the eastern 

border of SNNP.  This cluster is found in an area of moderate temperature, high population 

density, high bednet use the night before the survey, and high cloud cover in the month 

leading up to the survey period.  The high net usage in the night prior to the survey is 

surprising, and demonstrates the challenge in identifying the association between 

appropriate bed net use [77] and risk of malaria through a cross-sectional study—increased 

mosquito population due to suitable habitat in the months leading up to the survey and the 

corresponding nuisance biting together with changing perceptions of risk could result in 

both increased prevalence and increased net use.  Investigation into mosquito biting 

patterns, net quality, net hanging techniques, and consistent LLIN use in other areas of high 

prevalence may provide further insight into the effectiveness of LLIN distribution strategies. 

 As this cluster is found in one of the most densely populated areas in our study area, 

we suggest potential micro-environment factors which may be unique to this area—such as 

peri-urban agriculture––may be important to local transmission.  Further, we suggest 

investigation into the role existing immunity together with population movement may play 
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in malaria transmission in more densely populated regions.  Finally, it may be that a certain 

critical population density in a rural environment facilitates transmission, as mosquitoes 

have larger host populations on which to feed, and less distance to travel for next feeding.  

 Investigation of risk factors at the individual level [62] suggested a significant 

association (positive or negative) between the likelihood of a person being infected with 

malaria and: altitude, the asset index, rainfall, and the number of LLINs per house.  

Previous research on ecological factors associated with malaria transmission has included 

altitude {Omumbo, 2005 #178;Graves, 2009 #63;Bodker, 2003 #170;Kulkarni, 2010 #173}, 

urban or rural stratification [68], landcover [75,78,79 ], night time temperature [57,69,80], 

precipitation [57,59,69,70,81,82], vegetation [59,69,78], proximity to water [83], population 

density [24,84,85], and clinic locations [86], and hydrology [24,87].  

 By aggregating to the village level, we have attempted to tease out some of the 

relative importance of malaria control factors and environmental factors in driving the 

spatial heterogeneity of malaria in Ethiopia.   

 LLIN coverage or use in our study are protective when controlling for 

environmental parameters. This findings add to existing evidence [63,88,89,90] on the 

importance of LLINs for malaria control.   

 Regarding the environmental factors, our findings suggest that LST provides a better 

indication of malaria risk than altitude, which has historically been used to prioritize net 

coverage and treatment distributions.  Further research and increasing public access to high 

quality environmental data may support classification of risk based on LST rather than 

altitude.  Altitude serves as a proxy for temperature, which affects both parasite and vector 
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biology.  More research is needed into how annual variation in temperature may shift the 

regions at risk, which could increase or decrease the altitude threshold for programmatic 

implementation for a specific year.   

 Higher rainfall during the peak rains corresponded with increased risk, though 

rainfall in the month prior to the survey corresponded with decreased risk. This may reflect 

heavy rains washing out larval development sites.  Finer temporal scale investigation of 

daily rainfall patterns, specifically maximum daily rainfall, is needed.  These findings 

highlight the complexity of the relationship between rainfall and mosquito habitat, and the 

importance that sustained transmission in the weeks leading up to a survey can have on 

prevalence estimates.   

 There are several possible interpretations for the negative association between NDVI 

and prevalence.  Nearby water tend to lower the average NDVI around a village.  Finally, 

NDVI may serve as a unreliable predicator, as it reflects an aggregate of vegetation, water 

bodies, humidity, rainfall (through vegetation growth), and land use, which may be difficult 

to disentangle.  The tasseled cap transformations discussed in our further research section 

should be more informative. 

 The differences in regional prevalence are unlikely to be due to survey timing––the 

survey’s time frame was short, and the average LST (the strongest predictor) is similar over 

the two periods. 

 The large scale up in net distribution since the 2006 Baseline survey has resulted in 

significant increases in net ownership.  Further research into changes or a lack of change in 
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these environmental parameters may provide stronger evidence supporting the claim that 

the net distribution campaigns have caused the declining prevalence of malaria nationwide.   
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Public Health Implications 

 The 2006 Baseline survey covers the three largest regions containing 80% of the 

country’s population [91].  As such, it provides an estimate of prevalence which can be 

extrapolated nationally.  Our analysis provides a context for evaluating the impact increased 

net coverage has played on decreasing malaria prevalence, while controlling for 

environment. 

 As Ethiopia continues to roll out LLINs for malaria prevention, an updated malaria 

risk map that considers demographics, behaviour, and knowledge about malaria in addition 

to weather and ecology is needed to target further, focused interventions [92].  This cross-

sectional survey provides an important piece of the risk stratification through these three 

regions.  A more complete risk map would require quality longitudinal data on national 

cases.  Longitudinal data tends, however, to be subject to biases from reporting, access to 

care, and quality of treatment, while a survey is not. 

 As the Ethiopian FMOH sees further progress toward the Roll Back Malaria goals, 

we expect malaria transmission to grow more focal.  After validation, the association 

between LST, Rainfall, and NDVI and malaria prevalence at fine scales may help drive 

sentinel surveillance or prioritization of net distribution or redistribution. 

 Lack of clear clustering in Amhara and Oromiya demonstrates the heterogeneity of 

malaria within Ethiopia.  Given the clustering of we saw in SNNP, we emphasize the need 
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examine surveillance data and respond to outbreaks at the zonal and woreda level, as 

region-wide prevalence estimates may fail to identify local areas of high transmission. 

 Currently the FMOH uses altitude to define areas of high and low priority. 

Programmatically, altitude as a proxy for temperature provides a beginning for stratifying 

malaria risk.  Our results indicate that although altitude serves as a proxy for temperature, 

temperature itself is the driving factor, and should be included in programmatic 

considerations—especially for those areas whose classifications are borderline more-

malarious or less-malarious based on altitude.  Better intervention targeting should allow 

health resources to be more efficiently used.  Although temperature (like many other 

environmental parameters) measured through remote sensed satellite imagery can be 

problematic due to contamination from cloud cover, recent collaboration by Ethiopia’s 

National Meteorological Agency, the IRI, and the Tropical Applications of Meteorology 

using Satellite Data (TAMSAT) toward a comprehensive climate database holds great 

promise [93].  

 However, even with the best environmental data available, risk maps will be 

imprecise [69]. As Ethiopia continues to demonstrate progress in malaria control and 

damage to existing nets accumulates, perceptions of benefit from net use maydecrease [77].  

Existing malaria control, net ownership, quality and use, a region’s ability to respond 

rapidly to outbreaks, and its health systems strength should be considered to prioritize net 

re-distribution and education in addition to habitat suitability. 

 As we conclude, it is important to remember that all models are, in some way, 

flawed.  Yet, to the extent that they meet necessary assumptions and provide better 
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understanding of disease distribution and dynamics, they can be helpful in identifying risk 

factors and trends, and in driving efficient use of resources for disease control.  
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Limitations   

 There is heterogeneity of peak transmission seasons between different years and 

regions.  Cross-sectional data, even timed to be during the peak malaria transmission, 

cannot capture this temporal variation.   

 To properly evaluate the causal link between LLIN use and malaria, we would need 

to measure appropriate LLIN use in the week to two weeks (based on parasite incubation) 

prior to evaluating infection.  We proxy this measure by asking about current use and 

current coverage, and assuming that current use is reflective of prior use.  Asking about net 

use in the previous month would be subject to recall bias and would thus be less accurate 

than the existing questions of net ownership and use in the night before the survey. 

 The relationship between malaria and environment is complex and not fully 

understood.  We have attempted to proxy certain environmental components which play 

key roles in malaria transmission through remote sensed data.  There is potential for error 

first in our choice of proxies––precipitation and rainfall do not completely correlate with 

humidity and breeding sites [94].  Proximity to lakes, rivers, or drainage does not 

necessarily indicate suitable breeding sites [83].  Habitats created through wells, stored 

water, irrigation, micro-dams, or puddles from pits and tire tracks play large roles in 

mosquito abundance and corresponding transmisison, and were not detectable through our 

remote sensed covariates [92].  



 

 

32 

Further Research 

 Further research is needed to overcome our limitations regarding habitat 

measurement.  Other remote sensed indexes should be considered, such as the tasseled cap 

transformations which measure landscape brightness and greenness, and soil moisture.  

Aspect, slope, soil moisture, and soil texture may play important roles in formation of larval 

habitat.  Further, non-exponential, linear, and non-linear relationships between remote 

sensed parameters and prevalence should be considered. 

 Due to over-dispersion, zero-inflated poisson or negative binomial regression should 

be considered in further analysis.  Dichotomous logistic regression models based on 

presence or absence of any malaria, and based on low (<3%) and high (>3%) were 

considered, and will be included in further analysis. 

 Potential interactions which may further elucidate patterns of transmission include 

LLIN use and temperature; or rainfall and temperature.   

 Residuals from our final model should be mapped and examined for clusters of poor 

fit, which would indicate spatial autocorrelation.   

 By aggregating to the village level, village estimates are treated as measured values 

rather than as estimates with variability.  This limitation would lead to narrower confidence 

intervals than appropriate.  Hierarchical modeling accounting for survey design would 

allow us to incorporate the variability at the individual and household level with the village 

level environmental factors of interest, but brings with it its own difficulties in interpretation 

[95,96]. 
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 Finally, validation of our results together with more data from additional times, 

together with data from various ranges of malaria control implementation, are necessary to 

support using environmental risk factors such as temperature in addition to elevation to 

target future interventions.   
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