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Abstract

Automatic Anomaly Localization in Distributed System
By Tao Zhou

The complexity of a distributed system with large-scale applications poses a great
challenge to diagnose its anomalous behaviors, such as faults, high latency, and oth-
ers. Although many solutions have been proposed to analyze system anomalies, they
all have their limitations. Acknowledging the difficulties to identify root causes of
anomalies, we avoid the common approach that, through either statistics or infer-
ence, attempts to identify root causes. In our thesis, we designed and implemented
a structure that can automatically detect and localize anomalies in a distributed
system, with the help of retrospective sampling, our self-defined attributes, and a
modified Association Algorithm. Our project performs real-time per-triggered-trace
analysis and produces a prioritized list. Every entry is a set that contains informa-
tion about the possible locations of root causes and the higher rank corresponds to a
stronger association with the anomaly. When anomalous symptoms are detected in
the system, the operator is expected to quickly locate the root cause with the help of
the prioritized list.
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Chapter 1

Introduction

Today, many companies embrace the design of the distributed system. What used to

be handled by one or several monolithic machines is now broken down into smaller

microservices (or nodes) that provide fewer and more specialized functionalities.

The microservices architecture offers many benefits as compared to the monolithic

one. And one of the most important advantages is fault tolerance. Previously, if the

machine that holds a service is down for maintenance, all the services held on the

same machine will be available; while the shutdown of service in a microservices

architecture does not necessarily disable other services. For example, the shutdown

of the login service may not prohibit a user from accessing other services, if the user

has acquired a login token before. On the other hand, multiple nodes can handle the

same type of services, managed by a load balancer, to ensure its stability.

It also has many other benefits, including a lower long-term cost, better scalability

and modularity, and also efficiency in team development. However, the increasing

complexity is definitely not one of them.

For a large-scale distributed system, which may contain hundreds of nodes, the

network that connects these nodes forms a complex graph. The failures of machines

are usually unpredictable; now with numerous nodes sitting in a network where ev-
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ery node can potentially fail, we would expect to see more problems arising from a

distributed system. Therefore, it is crucial to design some new techniques to address

the growing problems effectively.

Diagnosing a complex system is undoubtedly difficult. Consider a request handled

by multiple nodes. A wrong output at an earlier node causes the anomaly at a later

node. How does an operator supposed to start from the place where the anomaly is

detected and trace all the way back to the actual culprit, given that the nodes are only

loosely connected through the local network? And within the numerous requests being

processed, how can the operator find out which request contains abnormal symptoms?

All these questions await practical and effective solutions.

The wisdom of the masses is inexhaustible; many new methods are proposed

to answer these tough questions. They can be abbreviated in two steps. First, to

keep track of requests, some important information is collected at local nodes and

centralized. Then, state-of-the-art theories and algorithms provide the fundamental

support for thorough analysis based on the collected information.

If the problems can be perfectly solved, this thesis will merely be a monotonous

survey of the proposed solutions; instead, it turns out that many existing methods

face great limitations.

Take the information analysis part for example. Machine learning is a very hot

topic and undoubtedly numerous relevant techniques have been designed to determine

the root causes when anomalous symptom arises. But machine learning requires the

active training of existing data, which gives little guarantee about its effectiveness

against unexpected failures. Other methods, although quite different from machine

learning, also face their own limitations.

In fact, even the process of categorizing and analyzing all types of failures can be

very difficult; otherwise ”unexpected failure” would seldom become a frequent phrase

in the system. Thus, we are not here to provide an unmatched solution that can
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determine the root cause of anomalies once and for all and challenge the efforts of

other researchers. Instead, we would like to rethink the problem from a different

perspective and propose a less ideal but more practical solution. We make a small

compromise to answer the question of ”where is the root cause” in replace of a ”what”

question.

In this thesis, we present our design and implementation of architecture available

for real-time anomaly localization in a distributed system.
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Chapter 2

Background

A request throughout the system can be modeled as a trace, which contains infor-

mation from all nodes the requests has visited. Figure 2.1 illustrates a simple request

processed by four nodes, where the arrows between nodes represent the remote pro-

cedure calls. The trace consists of data generated at all four nodes and may also

contain additional information such as the order in which nodes process the request.

Traces provide an efficient way to monitor requests throughout the system. And

thus, the anomaly analysis, or the analysis of irregular, detectable symptoms in a

system, involves the analysis based on trace data. When the operators see an anomaly

occurring in the system, they will try to identify the root causes based on the clues

given by the trace data. Due to the potentially huge amount of traces, this process

is usually facilitated or even completely handled by analyzing programs.

In general, the entire diagnosing process can be split into two parts: trace collec-

tion and trace analysis.

2.1 Trace Collection

There are many open-source, well-designed, and widely-used trace collectors in the

industry, including Canopy from Facebook [8], Dapper from Google [15], and many
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Figure 2.1: An example request.

more [2, 3, 4, 7]. Although with different emphasis and design choices, most of

them follow a common structure, with agents deployed on every node to generate

traces and a central place to collect trace data. Usually a trace will carry a unique

identifier throughout the system, so that the collector can keep track of all its data

and reconstruct the trace.

Trace data are generated at tracepoints, usually through the process of instru-

mentation of the source code. There are also other schemes such as pivot tracing,

which allows dynamic instrumentation [12].

Agents usually hold passive roles in the trace collection process. To facilitate the

collection of trace data, it may occupy memory for temporary data storage, and send

data back to the collector in larger data trunks, through the remote procedure calls.

They function like worker bees, following the rules set by the collector. For example,

agents usually do not make decisions about whether collecting or dropping a trace;

they seldom process the collected trace data. As we shall see later, the data collector
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we build our project upon, Hindsight [18], relieves the burden of central collector and

assigns more active roles to the agents.

Most existing trace collectors provide full support of trace aggregation and col-

lection. They provide ways to visualize requests as traces and also the underlying

system as a graph. However, many of them implemented none or only rudimentary

methods for trace analysis; instead, they provide API for customizing the analysis

functions.

2.2 Trace Analysis

In this section, we briefly mention how other researchers use traces to analyze system

anomalies and their respective limitations.

2.2.1 Machine Learning

Many systems use machine learning to perform statistical diagnoses [1, 9, 5]. They

heavily rely on either the normal traces or traces labeled with anomalous symptoms

for data training and then use the learned models to make the subsequent diagnosis.

It has several limitations due to the nature of machine learning.

1. Machine learning might be a useful tool to detect known failures. But when a

new and rare anomaly occurs in the system, its effectiveness is not guaranteed.

In general, we would expect a responsive system toward all types of anomalies,

instead of merely the familiar ones.

2. Because of the complex design of distributed systems. The model trained on

one system may not work as well on another.

3. In practice, healthy traces outnumber abnormal traces. Many medium or small-

sized distributed systems may not generate enough abnormal traces for training.
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2.2.2 Trace Tree & Provenance

Several systems use trace trees [15] and provenance [16, 6, 19] to perform diagnosis.

Although two different methods, both function in a similar way. They acquire de-

tails about a trace’s shape and structure and make inferences based on the known

information. For example, Dapper treats a trace as a tree of spans where every span

represents a node or a service. These spans are linked by span IDs so that when the

trace data are collected at a later point, the complete trace tree can be reconstructed.

However, the method has its own limitations:

1. A data center may have millions of events happening in the system, many of

which could be relevant to the symptoms [17]. The complexity rockets rapidly

as the number of traces the system needs to investigate increases. Moreover,

the many possibilities of anomalies make it hard to predict accurately.

2. In practice, the symptoms of an anomaly may be distant from its actual location.

The inference will be difficult in this case, because the process usually involves

a reasoning beginning at the point where the abnormal symptom is detected.

3. Because trace trees and provenance emphasize more on the order of which nodes

process the requests and make inferences based on the information provided in

a specific trace, it does not fully investigate similarities and differences between

different traces. For example, a cross-trace analysis may quickly discover that all

requests go through Machine X are abnormal while those processed by Machine

Y shows no symptom. However, it may take more efforts to track from the

symptom back to Machine X using trace trees or provenance.

2.2.3 Zeno

To address the second limitation of trace tree and provenance, Zeno introduced the

Temporal Provenance [17], which pays more attention to the sequence of events in
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which the requests are processed at local nodes. It also considers relevant traces that

visited the same node. However, Zeno is restricted to time-related issues only.

2.3 Our Goal

We rephrase our goal in more detail. We aim to design a structure that can auto-

matically detect and localize anomalies occurred in a distributed system, with the

following properties:

2.3.1 Anomaly Localization

To find the root cause of an anomaly, or the true reason behind causing the anomaly,

is seldom easy. An abnormal symptom such as the unusual delay of a response may

be explained by a unstable network, too many requests at some nodes, or even bugs

in some code that prolong the processing speed. In fact, the procedure of root cause

analysis involves eliminating the unfitting explanations and report the more likely

ones.

Because there are so many possibilities of causes of failures and anomalies in a

system, it is already difficult enough to categorize them, not to mention producing

a practical analysis for each of them. Moreover, root cause analysis may not show

the result accurately in case when an unexpected error occurs. Due to its difficulty,

many existing analyzers instead only focus on a subset of possible causes [11, 10, 17],

whose functionalities are limited especially in an industrial setting.

We take a different approach. We do not make direct root cause analysis in the

system. Instead, we shift our focus from diagnosing the problem to providing anomaly

localization. That is, we only output a ”treasure map” that points out the possible

locations of root cause, while the actual work of determining the root cause is left to

the operators and developers.
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Notice that the ”where is the root cause” problem is more like a compromise

of the ”what is the root cause” problem. Given better granularity of trace data,

our solution should be able to give stronger indications of the true root cause. For

example, suppose some problem arises in the system due to a wrongly used variable in

the codes on some node. If the traces only provide general information of the nodes,

our program should be able to locate the problem back to that node; however, if more

information about the codes are collected, our program may locate the problem to

the codes or even the variable directly. However, it is the developer’s job to figure

out why the variable causes the problem.

Moreover, anomaly localization approaches the problem in a way agnostic of the

underlying cause, which allows our program to tackle a wider range of system anoma-

lies. It also allows us to make analysis regardless of the underlying structure of the

distributed system.

2.3.2 Trace Filtering

Unlike many trace collectors which either collect traces unanimously or only provide

simple sampling schemes [15, 8, 2, 3, 18], we expect our program to effectively filter

out irrelevant traces before performing analysis. The sampling we will use is called

retrospective sampling. The next section is devoted to explanations and implemen-

tations of this sampling scheme.

2.3.3 Trace Aggregation

As mentioned earlier, many traditional methods do not take full advantage of the

information across traces. Our program should provide a mechanism for aggregating

traces and making cross-trace comparisons.
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2.3.4 Portability

The flexibility of the structure of distributed system requires a general analyzing

mechanism that does not rely on its structure. Many existing methods, especially

those involving machine learning, require the active training of data in an actual

system. The resulting program, however, may not work as well in other systems due

to the complexity of their structures. To make the program portable, we do not infer

based on the underlying structures of the system and traces; we rely on the trace

data only.

2.3.5 Responsiveness

Whenever an anomaly occurs in the system, the operators and developers need to

identify and solve the problem as soon as possible, to give minimal influences on the

existing and incoming user requests. Some serious problems, such as bugs exploited

by malicious attackers, may put the entire system on risk if no timely actions are

made. Therefore, it is very important to provide analysis results immediately after

an abnormal symptom is detected. More specifically, our we expect our program to

perform real-time analysis for every trace that shows some abnormal symptoms and

output the possible locations of root causes within seconds.

2.3.6 Visualization

The output should be presented in a visualized way to facilitate the subsequent system

diagnosing. A per-trace prioritized list will be printed out, showing operators different

emphasis on several possible localization results.
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Chapter 3

Motivation: Hindsight

3.1 Head-Based Sampling

In practice, healthy traces outnumber abnormal traces. In companies such as Google,

which can potentially collect millions of traces every day, only a small portion of

them will explicitly show symptoms of anomaly [8]. This is the demonstration of

a well-constructed distributed system, but also increases the workload of analyzing

irregular symptoms due to the unbalanced data size.

The truth is that not all traces are relevant to ongoing anomalies. The nature

of distributed system breaks the burden of request handling into smaller pieces of

work handled independently by nodes loosely connected through a local network [14].

What usually happens in a large system is that the machine which experiences a

temporary failure or slowdown only processes a portion of the requests, and many

traces do not provide information about the system.

For instance, traces that represent login requests processed at one node will un-

likely contain information about what causes the unexpected outputs of the multi-

plication operation processed by another node (assume it does not verify the login

token). Only these traces that record the input and output of the similar operations
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will be helpful for investigation.

In practice, we only want to investigate traces showing the symptoms and relevant

traces (for instance requests processed by a different machine with the same copy of

codes), and therefore a sampling scheme to sift out less useful traces are desired.

Moreover, sampling also helps reduce the data size to guarantee memory and time-

efficient analysis.

What we see from the popular data collectors is that most of them only provide

a partial or complete implementation of head-based sampling [8, 15, 3, 2, 7, 4]. In

another word, when we use these collectors, the decision to keep or drop a trace

must be made before the request is processed in the system. This is most evident in

Zipkin’s before-the-fact sampling [3]. While others claim to provide more advanced

sampling schemes, such as Dapper’s adaptive sampling [15], its nature still prohibits

the delay of decision making.

We would like to use in our program a tail-based sampling. That is, we want

to delay the collection of traces to a later point when the request has been partially

processed in the system and we have acquired more evidence about its well-being.

However, traditional tail-based sampling methods have great limitations in case

when there is an enormous amount of trace data generated. It imposes a great work-

load to the backend, which still needs to make independent collection decisions for

every trace, and sometimes the head-based sampling is necessary to mitigate over-

heads. To address this, we borrow the idea of retrospective sampling from Hindsight.

3.2 Retrospective Sampling

Hindsight proposed and implemented its tail-based sampling method, retrospective

sampling [18]. Unlike traditional tail-based sampling methods, Hindsight by default

do not collect any trace data. Every nodes, however, still generate all the trace
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data, but store them temporarily and locally. A signal is then required for the active

collection of a specified trace.

Because our project is built upon Hindsight to take full advantage of retrospective

sampling, it is necessary to elaborate on the details of its underlying architecture.

Later sections will cover our implementation procedures.

3.2.1 Basic Architecture

Its overall architecture is still very similar to Dapper, where node-based agents are

responsible for trace data generation and a central collector can reconstruct the com-

plete trace by requesting data from agents. Unlike Dapper, agents in Hindsight need

to maintain local and temporary storage for trace data using the node’s memory.

Traces are collected in a selective manner: a “trigger” signal, issued either automat-

ically by any agent or manually by the central collector, begins the transmission of

trace data from agents to the collector.

3.2.2 Data Generation

Hindsight allows generating trace data by calling its tracepoint tracepoint func-

tion. Instrumentation of the source code is required to generate trace data. Hindsight

does not define any specific data structures; the input to this function is simply a

byte sequence of arbitrary length. The input will then be copied into the temporary

storage.

3.2.3 Data Storage

Hindsight uses a fixed-size queue of trunks to store trace data, every trunk has an

equal size, typically several megabytes, defined during the initialization process. The

agent only assigns one data trunk to every trace at the beginning of its life; every
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subsequent data generated at any local tracepoint about this trace will be written

into its assigned data trunk. To guarantee the integrity of a trace, a trunk can only

be written by one trace at any time.

A trace can potentially have a large data size. The agent will recursively assign a

new data trunk to the trace if its previous one is full. From a broader view, the agent

maintains a map from every recorded trace to its corresponding data trunks.

When all data trunks are occupied, Hindsight regularly evicts the older traces

and reallocates the trunks to new traces. Therefore, every trace, unless triggered,

will have a limited timespan.

3.2.4 Trigger Mechanism

A trigger signal is required for the collection of trace data. Specifically, Hindsight

provides a trigger function for agents, which can be automatically called through

instrumentation. The local agent will henceforth deliver this signal to the central

collector. Alternatively, the central collector can manually set up a trigger if it knows

the trace IDs.

3.2.5 Trace Collection

The central collector keeps track of the trace using breadcrumbs. Every breadcrumb

takes the address of either the last node visited or the next one. Therefore, by recur-

sively acquiring the breadcrumbs, starting at one known agent, the central collector

can reconstruct the complete trace “tree.” In fact, the actual structure of trace mat-

ters little to our project, but we use these breadcrumbs implicitly to acquire all trace

data.
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3.2.6 Limitations

While the retrospective sampling allows us to sift out irrelevant traces, Hindsight is

far from the ideal architecture to address our goal.

The first issue is that, because a trace’s data are maintained by agents indepen-

dently and only temporarily, the timespan of a complete trace is the minimum time

it stays in any agent. While partial traces still may contain useful information, they

have limited value in diagnosis [7, 15]. Therefore, it is desirable to find methods to

extend the time span of a triggered trace. The rough idea is to reduce the data size

by prohibiting verbose logs and restricting data structures. This gives rise to our

design of the attributes, elaborated in the next section.

The second problem is that Hindsight does not implement any scheme to effectively

group traces. The central collector only knows where the data of a trace come from,

but it does not keep track of which agent is responsible for the generation of which

part of the data. We will also see soon how our self-defined attributes address this

problem through trace aggregation and comparison.
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Chapter 4

Design

This section covers the definition of and reasoning behind our self-designed attributes,

and how to use it in a mathematical way to investigate the problems in a distributed

system.

4.1 Attribute

We define an attribute as a 2-tuple: {key, value}. It is the fundamental unit of trace

data in our design and is also the only data structure involved in trace generation

and aggregation. Broadly speaking, both key and value are information revealing the

details of a distributed system, but they have vastly different emphasis.

An attribute key is a string that represents the information of tracepoint, or

more specifically, what will be collected uniformly from every trace. Examples include

MachineID, ServiceType, and OutputValue. It is a constant tag bind to a tracepoint,

assigned during the process of instrumentation. Every subsequent trace that visits

this tracepoint will be assigned an attribute with this constant key.

An attribute value can be either a string or a Boolean. It represents the trace

specific information with respect to the key. For instance, a key ServiceType may

assign values Business or Personal to different traces, based on the details of that
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Figure 4.1: An example trace with two attributes.

trace. It can also assign a constant value string to every trace, for example a key Ma-

chineID may assign value MachineX to every trace, because the traces are processed

by machine X.

Figure 4.1 gives an example of a trace with attributes. Every circle represents

a node and the arrows tell the flow of the request throughout the system. Two at-

tributes are generated at two different nodes: {ServiceType: Personal}, {MachineID:

MachineX}.

Different tracepoints may assign the same attribute key to traces. Continue from

the MachineID example above, two machines running the same services managed

by a load balancer will assign the same key MachineID to every trace but different

values, MachineX or MachineY, based on which machine handles the request.

There is only one special attribute not assigned by any tracepoints, which we call

the anomaly attribute. It has the constant key string anomaly and a Boolean value

indicating whether some irregular behaviors (unexpected output, delayed response,

etc.) of a trace has been detected by either the automatic trigger system or an

operator manually.
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4.2 Attributes Enable Trace Aggregation

The sole purpose of attributes is to provide an efficient way to collect and aggregate

trace data, while allowing fast and straightforward comparisons across traces.

As mentioned before, there are so many possibilities of failures or anomalies in a

system that there is hardly a way to treat every type equally and provide a general

solution to the problem. However, it does not mean we can have no progress when

a new type of failure comes in. The design of attributes helps change the focus from

determining the actual failure or anomaly to instead providing a practical solution of

localizing the problem. Consider this in a specific example.

Example Scenario. Suppose the same requests go through a load balancer, which

assigns two different machines X and Y to process them. It turns out that machine

X and Y produce different outputs even for the same requests and those requests

handled by machine X are detected to have abnormal symptoms.

What does an operator usually do? Immediately investigate machine X to find out

if its output is irregular and therefore causes the anomaly. The truth is, diagnosing

a complex distributed system is a demanding work and even finding out “there are

output differences between X and Y” will take much effort.

Attributes allow the fast detection of irregular patterns. By defining attributes

indicating the machine ID that process the request for every relevant trace, we

can quickly compare different traces and find out that traces labeled with attribute

{MachineID: MachineX} has a much higher anomaly rate than those with {MachineID:

MachineY}. This allows us to mark Machine X as an interesting place to investigate.

Besides, the granularity of localization depends on the choices of attributes. Gen-

erally speaking, more attributes collected from a distribute system will give us a more

detailed image of the conditions and behaviors of the system. An attribute showing
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that Machine X uses an older version of the code than Machine Y allows us to further

locate the problem to the code on the machine.

Moreover, comparisons need not be made on one attribute only. Instead, we should

think about the localization problem as producing an attribute set. These attributes

together give operators indications about where the problem most likely occurs. Due

to its nature, we require the trace to contain every attribute in the set. In another

word, the resultant attribute set is a subset of all attributes of the analyzed trace, as

illustrated by the following example.

Example. Suppose traces that go through machine X and perform the multiplica-

tion operation have an unusually high abnormal rate. We can produce the comment

above through mathematical investigations of the behaviors of traces labeled with

the attribute set {MachineID: MachineX, Operation: Multiplication}, as compared

to other traces.

It is also important to know which traces should be compared to, rather than taking

all traces into consideration. This will be covered in a later section.

To account for the errors and deviations in producing such a set, we will instead

provide a prioritized list, in which the higher rank represents a stronger association

between the attribute sets and the anomaly. Mathematical tools are desired to gen-

erate such a list. We will discuss our motivations from the Association Rule first.

4.3 Motivation: Association Rule Mining

Ideally, we expect to define a ”level” of connection between a set of attributes and the

existing abnormal symptom. A similar method exists in the market basket analysis,

named Association Rule Mining [13].

For Supermarkets and on-line shops, learning the common shopping behaviors of
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their customers can be very helpful for increasing sales. For example, if two products

are almost purchased together, a store can deliberately place them distantly to ensure

a greater exposure of other products to the customers. It can also produce targeted

advertisements based on customers’ existing shopping behaviors, by suggesting items

purchased by other customers with a similar shopping pattern.

To investigate the strength of association between an existing set of products and

another product, the Association Rule Mining models every transaction as a set,

where the entries are the products in one purchase.

The ”Beer and Diapers” Example. Although it sounds quite counter-intuitive,

researchers find that people buying diapers are more likely to purchase beer [13]. The

problem of determining whether there is a connection between beer and diapers can

be model as finding the association between the set with only one entry, ”beer”, and

the item ”diapers”.

4.4 Interest of Association

The Association Rule defines an interest to reflect the strength of association.

Roughly speaking, given a nonempty set X and item Y , it calculates how much

does the existence of X increase the likelihood of Y . Taking the beer and diapers

example, the association between beer and diapers is quantified by the difference of

likelihood to purchase diapers between a customer who purchased beer and an average

customer. To put it more formally:

Definition. Suppose every transaction is model as a set of purchased items, then

the interest of association between a nonempty set X and item Y (Y /∈ X), written
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as {X} → Y , is defined as

# sets containing X and Y

# sets containing X
− # sets containing Y

# sets

A bigger interest generally represents a stronger association; the interest can also

be negative, which means a very unlikely association. To determine which set X

promotes item Y most, it is necessary to calculate the interest of {X} → Y for all

possible X.

4.5 Interest of Attribute Sets

The reason we mention the association rule is that the method can be used similarly

for attributes. If we represent every trace as a set which contains all its attributes

as set elements, we can turn the question “which attributes of this trace are more

relevant to the anomaly” into “how strongly are the attribute subsets of this trace

associated with the anomaly attribute”.

A similar interest formula can be defined for an attribute subset X (for conve-

nience, we use Y to represent the anomaly attribute):

interest of {X} → Y =
# abnormal sets containing X

# sets containing X
− # abnormal sets

# sets

However, this formula does not work as desired. The second term (after the minus

sign) is a constant for any attribute subset X! And the first part merely tells the

abnormal rate among all traces sharing attributes in X. The example below describes

a scenario where the formula produces unwanted result.

Example Scenario. For convenience we ignore the second constant term. Suppose

a user U sends the same number of requests to machine A and B, where all the requests
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handled by machine B exhibits abnormal symptoms while those go through machine

C are fine. Intuition tells that the problem might be associated with machine A, and

the user U should be as innocent as machine B. But calculations show that interest

of {B} → Y = 0 while {U} → Y = 50%. They have different interests!

The reason behind this phenomenon is that we are making improper comparisons

between different types of attributes. More specifically, instead of asking “is machine

X associated with the anomaly”, we should ask “compared to other machines, is

machine X more associated with the anomaly”. The comparisons should be drawn

between attributes that share the same key and only the extent to which an attribute

outperforms its similar attributes (that is, attributes with the same key) should be

compared across different types of attributes. With this in mind, we introduce the

modified Interest of Attribute Sets.

4.6 Modified Interest of Attribute Sets

We first define a similar attribute set to a set X to be a set that shares the same

attribute keys with X, but possibly different attribute values. Then, the general

question we would like to ask is “compared to other similar attribute sets, to what

extent does the presence of an attribute set increase the likelihood of anomaly.”

This is quantified by the modified interest of an attribute set:

interest of {X} → Y =

# abnormal sets containing X

# sets containing X
− # abnormal sets containing keys of X

# sets containing keys of X

Given a triggered trace, this is the general formula used to calculate the strength

of associations between its attribute subsets and anomaly. A prioritized list of its

subsets will then be generated by ranking the results derived from the formula above.
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The following section will cover the underlying algorithm to implement the prioritized

list.
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Chapter 5

Implementation

In this section, we go through the details of the underlying architecture we choose,

from the generation, temporary storage, and collection of attributes to the calculation

procedures and derivations of the prioritized list. Our current implementation is built

upon the existing Hindsight project for its full support of retrospective sampling. For

convenience, we also modify the other parts of its code to reduce our coding workload.

However, this is not to say that the implementation must be bound to Hindsight.

Neither are the attribute manipulation procedures mandatory. Other implementation

choices may achieve the same effect with a differently designed attributes database

and a distinct algorithm to calculate the interests of associations. We loosely require

the other ways of implementation to contain the following components:

1. Attribute generation and temporary storage,

2. Attribute filtering using retrospective sampling,

3. Per-triggered-trace attribute collection of all relevant traces,

4. Prioritized list generation using the modified interests of associations.
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5.1 Attribute Generation

Hindsight provides a great implementation of tracepoint instrumentation, but with

undefined trace data structures. All data are instead considered as a sequence of

bytes, which are then grouped by fixed-size trunks. To fully take advantage of the

instrumentation methods, while allowing the process of our self-defined attributes,

a new wrap function is designed for writing attributes. It reads in and encodes an

attribute and calls the regular Hindsight function to write encoded attributes to its

data trunks. A decoding function is called subsequently to retrieve the attribute from

the data trunk and store it in a separate attribute database.

5.2 Attribute Database of Agent

Every agent maintains a lightweight database for temporarily storing attributes. It

keeps a hash map of all the attribute keys generated at tracepoints within its duty.

Every key object also contains a hash map for its associated attribute values. To

keep track of all the traces that generate the same attribute, we use a list structure

for every value object. Moreover, to retrieve attributes for one trace fast, another

list is used by every trace to record all its attributes. Be aware that every agent

handles its data independently. Hence it is impossible for a database located at

one node to contain attributes generated at another node. Figure 5.1 simplifies and

visualizes the underlying database structure. Broadly speaking, the database mimics

a doubly linked structure, where attribute keys, values, and traces are treated as

distinct objects, and every line in the graph connecting two objects represents a two-

directional link. The nature of this structure guarantees fast query operations for

both attributes and traces.
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Figure 5.1: A doubly linked structure of attribute database.
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5.3 Database Functions

We developed five functions for the attribute database, listed in Table 5.1.

Table 5.1: Interface for database manipulation.

Function Name Input Output

AddAttr Attribute & Trace ID
RemoveAttrs Trace ID

FindTracesByKey Attribute Key List of Lists of Trace IDs
FindTracesByVal Attribute List of Trace IDs
FindAttrsByTrace Trace ID List of Attributes

The agent calls the AddAttr function automatically to write a newly generated

attribute into the database. The process includes creating the new attribute key,

value, and trace objects if they are nonexistent and updating links between these

objects. This is the most time-costly function and the speed relies heavily on the

efficiency of searching and updating the list structures. It is suggested during the

instrumentation process to generate attributes with keys mapped to only a small

number of possible values. In another word, attribute keys such as “user” and “IP”

are not recommended when there are potentially too many different usernames or

IP addresses. This is not only beneficial in making our database more responsive

to attributes when the number of requests surges, but also helpful for later analysis

to reduce the effect when the sample size of traces under an attribute is significantly

outnumbered by the sample size under the same attribute key but allows other values.

Older traces are less helpful than newer traces in providing a recent view of the

system, therefore we need to set up a timeout for every trace and regularly delete

the outdated traces. We rely on the built-in timeout mechanism of Hindsight, which

ranks traces based on the last time it generated data and removes inactive traces to

maintain a fixed maximum total data size [18]. Because every attribute occupies only

a small amount of data, the database maintains an almost-constant number of traces

at any time. It is possible that the size may drop slightly when several traces have
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too many attributes generated at one node. To delete attributes from the database,

a RemoveAttrs function is regularly called. Given a target trace ID, it removes the

links between the trace and its relevant attributes, deletes the trace object, and also

the attribute value object if it is not used by any other traces. On the other hand, the

attribute key object is never deleted even if no values associated with it are present

in the database.

Three additional query functions are built for the central collector to retrieve data

from agents. They are evident by their name: FindTracesByKey allows querying

for the ID of all traces containing a specific attribute key. The output is a list

of lists in which IDs are grouped by the attribute values. Every trace ID is also

accompanied by a Boolean value representing whether it was triggered before by the

local agent. FindTracesByVal works similarly, only that the input is a complete

attribute rather than merely a key. The third function FindAttrsByTrace performs

a query in a “reversed” direction. After receiving a trace ID, it outputs all the

associated attributes. All the queries are done through the gRPC communication

between agents and the collector.

5.4 Attribute Query by Central Collector

The central collector collects attributes with the help of Hindsight’s underlying struc-

ture. Suppose a local agent issues a trigger about a trace with ID “X” (for convenience

we call it trace X). When the collector receives this trigger, it first uses Hindsight’s

breadcrumb mechanism to find out all the agents that contain information about

trace X. However, unlike Hindsight, we pay no attention to the actual graph shape of

this trace; we use the breadcrumbs only to guarantee that the central collector will

visit every node that processed the request with respect to trace X.

The collector then sends FindAttrsByTrace queries to every agent discovered
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through the breadcrumbs, to collect all attributes of trace X. To prepare for the

subsequent analysis, it further sends FindTracesByKey queries once per attribute to

agents where the attributes reside. If an agent does not generate any attributes about

trace X, it is simply ignored.

To sum up, for a triggered trace X, we use several queries to collect its attributes

and the ID of all traces which share at least one attribute key with trace X. The

process starts when the central collector receives the trigger signal or manually issues

a trigger (this happens when an operator believes a trace is abnormal nonetheless not

signaled by any agents). The collector also keeps track of the recent trigger signal so

that the request with respect to one trigger trace will not be performed twice.

5.5 Attribute Database of Central Collector

The central collector also maintains a database to store attributes received from

queries. Overall, the database has the same structure as the ones implemented at

local agents, only with several differences:

1. The attribute database at the central collector will be larger, as it may receive

attributes through queries from any agent. Unlike local agents, it is desirable

for the collector to hold more attributes and thus perform a thorough analysis

upon larger data size.

2. Every trace is assigned an additional attribute with the key being the constant

string “anomaly” and a Boolean value indicating whether the trace has been

triggered before. A default value of False will be automatically assigned unless

there are indications of trigger either through queries from the agents or man-

ually triggered by the central collector. Databases at agents do not need this

attribute because Hindsight records the trigger information locally for every

trace.



30

3. Although not yet implemented, the database at the central collector will have

its own independent timeout scheme. Recall that we rely on Hindsight’s timeout

when we implement the database at agents. However, Hindsight does not have a

similar mechanism on the collector side. A self-built timeout mechanism is hence

necessary to keep the size of the database at the central collector manageable.

It is also beneficial to allow the customization of timeout so that it is not only

based on the number of traces, as the agent-side database does, but can also

work for other metrics such as the time since the trace was first introduced to

the database.

5.6 Implementing the Interest of Association

After the required attributes for a triggered trace are collected, it is necessary to

calculate the interests of attribute subsets mentioned earlier to produce the prioritized

list. For any subset X, it is sufficient for us to find:

1. number of traces having all attributes in X,

2. number of abnormal (triggered) traces having all attributes in X,

3. number of traces having all attribute keys in X,

4. number of abnormal (triggered) traces having all attribute keys in X.

The interest of X can then be calculated using the formula provided by the mod-

ified association rule in O(1) time.

We start with only the single-item subsets. Because every attribute key has a

map that records values, and every value object contains a list of associated trace

IDs, these four numbers can be derived straightforwardly by counting numbers from

the corresponding lists.
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Interest for a subset with more than one element can be calculated through an

inductive process. Suppose for every (k-1)-element attribute subset X of the given

triggered trace (k ≥ 2), we have built a list including all traces such that their

attribute sets are supersets of X (this means that every trace shares all attributes of

X). We then construct a similar list for every k-element attribute subset Y, by taking

the intersection of lists from some (k-1)-element subset A and a single-item subset B

such that:

1. attributes of Y = attributes of A ∪ attribute of B

2. list of Y = list of A ∩ list of B

It is then straightforward to count the number of (abnormal) traces having all

attributes in any k-element subset of the given triggered trace. To count the numbers

without considering the attribute values, repeat the process above but generate the

list containing all traces sharing the same attribute keys.

Our derivations of interests follow a “layered” order: interests of k-element subsets

will only be calculated after all interests of (k-1)-element subsets are derived. After

we build the lists for all k-element subsets, all previous lists are no longer needed

and hence destroyed. This layered structure is very useful. When the memory of the

central collector is limited or a triggered trace has too many attributes, it is simple

to restrict the calculations to only subsets with fewer elements.

Finally, we construct and output a prioritized list by ranking the interests among

all subsets. The prioritized list will give an operator information about where should

be investigated first when the anomaly happens in the distributed system, based on

the locations that produce the corresponding attributes. It is worth mentioning that

the entire analysis process is trace specific; The central collector will make the same

calculation steps for every triggered trace, based on the order of trigger time.
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Chapter 6

Evaluations

6.1 Sample Output

The example in Figure 6.1 illustrates a sample output of the prioritized list, where

the traces going through “Node X” and “Machine A” are manually set at a 75% error

rate (we manually trigger one of every four such traces). Only the single-element

attribute subsets are calculated. Every entry consists of the elements of the set and

a calculated interest shown in percentage.

Although the largest output 70.5% is very close to the 75% error rate, they

nonetheless have different meanings. The numbers printed for each attribute subset

only represent the relative strength of association between the subset and anomaly.

6.2 Experimentation

Because this research project is still in progress, we have only limited experiments.

We expect to construct an environment that imitates an industrial setting, where its

effectiveness can be thoroughly tested.



33

Figure 6.1: A sample prioritized list.

6.3 Theoretical Analysis of Efficiency

We use the Hindsight framework to generate attributes, the additional encoding and

decoding functions are O(n) in both time and space complexity, where n represents

the total bytes of an attribute.

Data storage may be less efficient compared to Hindsight’s built-in queue struc-

ture, especially when we use maps to store attribute keys and values in every database.

However, in an actual setting, we expect the number of keys and values to be small for

a more effective comparison between different attribute values. That means attribute

keys such as username and IP address, which can potentially assign many different

values to traces, are not recommended. In practice, we should see many traces share

one or more attributes in the database. Therefore, the size of the database should be

manageable. On the other hand, insertion and deletion take at most O(N) time and

query at most O(MN) time, where M is the maximum number of values associated

with one attribute key and N is the size of the largest list associated with attribute

values.

For prioritized list generation, the time is proportional to the number of subsets.

For each subset, a list intersection operation is performed whose time is linear with

respect to the list size. As for the space complexity, we require
(
n
k

)
lists maintained
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for all k-element subsets at any moment. In practice, we expect to see the list size

drop significantly after several intersection operations. Additional measures such as

setting an upper bound for the element number of subsets may be applied to keep

the time and space manageable, with the compromises of granularity of analysis.
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Chapter 7

Limitations & Future Directions

7.1 Compatibility with Hindsight

Our project is implemented upon the basic framework of Hindsight to take full advan-

tage of retrospective sampling and its local timeout mechanism for traces. However,

the ideas behind the project are not dependent on Hindsight. In fact, borrowing the

existing Hindsight framework significantly reduces the coding workload.

However, our current implementation does not work perfectly with Hindsight.

For example, our attributes are stored twice locally, once in our self-defined attribute

database and another time in the queue structure of Hindsight’s agent in the encoded

form. We will continue working to solve the compatibility issues either by modifying

the underlying Hindsight code or building our own data generation and collection

functions.

7.2 Existence of Multiple Anomalies

The occurrence of another anomaly will affect the prioritized list for an existing

anomaly by reducing the calculated strength of association of unrelated attribute

sets. If two triggered traces, each associated with a different anomaly, the order on
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the prioritized for one trace is unaffected by the other, although the strength now is

closer to 0. However, if two anomalies are closely related, the result might be quite

different.

Consider an extreme case: suppose Machine A and Machine B process the same

number of requests, each producing an abnormal output for every request. If Ma-

chineID is the only existing attribute key in the system, the result will only show 0

interest for both machines. Thus, new variables should be introduced to our original

formula to ameliorate such an effect.

The example above tells that there exist cases where the association algorithm

alone is less effective or even insufficient to address the problem. Therefore, we

should put effort into improving the algorithms in the future.

7.3 Compatibility with Other Algorithms

Future efforts should be directed toward making our project more available to other

possible algorithms. As mentioned above, the association algorithm we designed may

be less effective in some cases, and due to the complexity of distributed systems,

we would expect to see an algorithm working better in one system than another.

Therefore, it is necessary for us to set the association algorithm as a default method

while providing API for the implementation of new algorithms.
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Chapter 8

Contributions & Takeaways

My contributions to this project include the design of the attributes and the modified

Association Algorithm and the implementation of the following components:

1. the wrap function to generate and collect attributes upon Hindsight’s raw data

structure,

2. the doubly linked database to store attributes at the agents and the central

collector,

3. the insertion, deletion, and query functions for storing and collecting attributes,

4. communications of query requests through gRPC,

5. the modified Association Algorithm and the prioritized list.

8.1 Beginning: Design of Attributes

Our research project started with the central idea of identifying root causes based on

comparisons between traces, built upon Hindsight.

The key-value pair is nothing new in computer science, it is the basic element of

many structures including maps. It is also widely used in data exchange formats such
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as JSON. The pair itself is a simple but very efficient way of storing data, and when we

can assign similar pairs to different traces, it helps us aggregate and finds similarities

between traces. Thus, defining attributes was actually quite straightforward, as we

needed a method to aggregate traces for ease of comparison.

However, the way we choose to collect attributes was quite different at the be-

ginning. We believed that time is a very important metric for making root cause

inferences. And therefore we were very passionate about collecting time-related data

throughout the system, such as the processing time and the time spent in RPC calls.

It turns out that time, recorded as a decimal number, is not easy to aggregate. Ear-

lier designs include converting it to ”categorical data” by keeping a record of the

most recent 100 time values, and output only their percentile as the attribute values,

instead of the actual time values.

Therefore, unlike our current version where attributes are defined loosely and only

encouraged to have a small set of values (with minimal guarantee of aggregation), the

previous versions give different standards for collecting and storing different types of

data. For instance, we considered binary search tree and heap to update the most

recent records of time and make a quick check of the percentile of time.

We even started categorizing errors into two large categories. Internal errors

include problems that are not caused by user inputs, such as hardware failures and

unstable network connections. This type of error usually has symptoms close to the

root cause (very likely in the same place) and is easily detectable. External errors

are those caused either by typical inputs or the way data is processed (for example,

queue delay caused by too many recent requests).
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8.2 Change of Mind: Anomaly Localization

Our categorizing efforts were not very fruitful. As mentioned earlier, there are simply

too many possibilities of root cause given a single anomaly, and we had great diffi-

culties in categorizing them, not to mention diagnosing every one of them effectively.

We took a compromise: in order to detect all types of anomalies, we identify none

of them. Instead, we decided to provide only localization service, where the actual

diagnosing workload is left to the system designers.

We expected to compare traces in an A-B testing style. It turned out that at-

tributes are very helpful in this case, where we can find out in detail similarities and

differences between traces showing different symptoms. Moreover, the time-related

attributes now became less important, because they instead function as a signal for

us to trigger traces, rather than as an attribute that marks the difference between

traces.

Based on the new approach, we formulated our output as a prioritized list, where

every entry is a set of attributes that provide localization information. What remained

was an algorithm to construct such a list.

8.3 Algorithm: From Bayesian to Association

Our initial choice of the algorithm was derived from the Bayes’ Theorem, which

calculates the probability based on the prior knowledge related to the current event.

The idea seemed to fit our goal nicely: based on the previous knowledge of traces, we

should be able to infer the root causes.

However, after realizing that the Bayesian Approach requires not only information

about traces but also information about previous errors (which sadly is impractical),

and that the mere information of trace attributes was unable to provide a Bayesian

analysis, we decided to adopt a new approach.
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Prof. Vigfusson presented the idea of Frequent Itemsets and the Association Rule,

which gave us hope for a new possible direction. Generally speaking, the thought to

find a connection between attribute sets and an anomaly is very similar to finding the

association between a set and an item. But we need to give more careful definitions

of what an attribute set is and more importantly, how to model itself as an ”item”.

The result is the anomaly attribute. Unlike Hindsight, which treats anomaly merely

as a trigger signal, we give it more emphasis to make it a part of the trace data.

Moreover, unlike the data used in the Association Rule, our attributes are more

structured. Specifically, we can group traces by either the attribute key or value or

even both. Therefore, additional efforts were spent to theorize our modified algorithm

to replace the original one to make it actually work in our case.

8.4 Implementation: Hindsight and More

The decision for implementation upon Hindsight came from the hope to reduce the

coding workload. However, it turned out that Hindsight itself was more complicated

than what was described in its paper. The underlying architecture included more

design details that were not specified and therefore much effort was spent on fully

understanding its code.

Implementation was not easy either. Although the wrap function we wrote for

generating attributes is quite straightforward, other components required more coding

workload. The attribute database borrowed ideas from Prof. Mace’s design of the

doubly linked list; the query functions were written from scratch; the association

algorithm was implemented through a modified a priori algorithm.
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8.5 Takeaways

1. The production of our program arises from repeated group work of deciding the

goals, formulating the theories, implementing the designs, and testing. At first,

we only had vague ideas about what we expected to achieve. As we considered

it more thoroughly in example scenarios of different complexities, we grew more

clear of the future directions.

2. The Bayesian approach theoretically fits our goal but in practice was unlikely

useful given the underlying data structures. Practical feasibility plays an im-

portant role in our choices of theories and algorithms.

3. The design of our program relies on the existing ideas. It was built upon Hind-

sight for its retrospective sampling. It also borrowed ideas from many other

projects and theories and made modifications to fit our case.
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Chapter 9

Conclusion

The increasing complexity of the distributed system poses a great challenge for di-

agnosis when anomalies occur. While there are existing projects making root cause

analysis in the distributed system, they were all limited in some ways. Our project

takes a different approach: we focus on localizing problems rather than identifying

them.

To address the goal of automatically detecting and localizing anomalies that oc-

curred in a distributed system, we build an architecture that uses the attributes as

the underlying data structure to aggregate traces and the modified Association Rule

for analysis It produces a prioritized list for every triggered trace to provide real-time

anomaly localization, without providing the actual root causes.
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