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Abstract 
 

Machine Learning-based Prediction of the  
Three Drugs Combination Synergy 

By Runyuan Zhang 
 
 
Background: The development of novel drug combination therapy is one of the hot 
research areas to treat complex diseases. However, current drug combination research 
still using relatively inefficient experimental screening methods. Though some 
researchers have already developed in-silico tools for predicting drugs combination 
synergy, they only focused on two drugs combinations. In this study, we tried to 
predict three drugs combination synergy using machine learning approaches, and 
compared models’ performance by different algorithms and datasets. It’s the first 
study to explore predicting the synergy response of three-drug combinations.  
Methods: In our datasets, we included three drugs combination synergy responses, 
drug dosages for 560 combination levels, gene expression and mutation data for 13 
cell lines. We mainly used tree models for feature selection. We tried modern tree 
models, Support Vector Machine, and Deep Neural Network for model selection. We 
also explored whether include extra cell lineage information, gene expression and 
mutation data in the dataset would improve the model’s performance. Furthermore, 
we developed a novel LightGBM-based vote model and compared its performance 
with other models. 
Results: Adding extra cell lineage or gene expression / mutation data would improve 
the model’s performance. The LightGBM model showed best performance among 
traditional models, while our novel vote model beat it and even achieved better results 
according to the cross-validation results.  
Keywords: Drug combination synergy, machine learning, LightGBM, Vote model. 
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1 Introduction 

For complex diseases, such as cancer, multi-drug combination therapy is common to 

be implemented for the treatment [1]. Typically, the drug combination therapy can be 

synergetic, additive, and antagonistic [2]. Successful combination cancer therapy will 

lead to synergy results and reduce the drug toxicity, the likelihood of drug resistance, 

and improve the drug efficacy [3]. However, only a very small part of the drug 

combination will have a good synergistic effect, and undesirable drug combination 

may cause catastrophic consequences and endanger the patient’s life [4]. In the past, 

most choices of drugs and their dosage for combination medications is empirically 

oriented, which makes it very difficult to discover new useful drug combinations in 

this field [5]. Identification of new drug combination requires the approvement of 

experiments, which are time and money consuming. Participants enrolled in immature 

trials will also face greater risks. Therefore, it’s urgent to discover more efficient ways 

to find desirable drug combinations. With the development of the in-silico methods, 

especially the machine learning approaches, the next-generation sequencing, and the 

high-throughput drug screening [6], it’s much easier for researchers to personalize 

treatment for patients and find clinically valuable drug combinations [7]. Precision 

medicine tailored for individuals is gradually becoming possible. Currently, some 

researchers already built models for drug combination synergy prediction, such as 

DeepSynergy [8], SynergyFinder [9], and DrugComb [10]. They combined the drug 

dosage and chemical information with whole genome sequencing, or identified 
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genetic networks, to predict the synergy results by machine learning approaches [11]. 

However, there existed limitations in the previous studies. Though in the treatment we 

may combine more than two type of drugs, previous studies only focused on two drug 

combination synergy prediction. They limited by the available dataset and most of 

them used the same dataset from Merck to build the model [12]. In addition, comparing 

with the single drug effect prediction, the accuracy of drug combination prediction is 

low. Furthermore, some of their cross-validation methods were too optimistic. They 

only tested new drug combinations on existing cell lines, rather than new cell lines, 

resulting in an unrealistic high accuracy rate. The main difficulties in modeling can be 

summarized in three parts. Firstly, the available data of drug combination with 

synergy response is very limited, which made it difficult to train a model with high 

accuracy. For individuals or single laboratories, the cost of using high-throughput 

screening or other methods to obtain large quantities of drug combination and synergy 

response data is too high to be acceptable. Secondly, the factors affecting the synergy 

of drugs have not yet been unified in the biological field, therefore, we do not have a 

standard to tell us what kind of information we need to collect for modeling. Thirdly, 

a large amount of biological information cannot be fully quantified. For example, 

although we can use gene expression or mutation data to represent cell lines, we 

cannot guarantee that the gene can provides all useful information for cell lines. When 

we convert these information, we may ignore some important parts. 

In this study, we innovatively focused on three drug combination synergy prediction. 

To our best knowledge, we are the first to consider three drugs combination synergy 
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prediction. Since there not existed any publicly available three drugs combination 

datasets, we conducted the experiments and collected data in our own laboratory. We 

selected two popular anti-cancer drugs, Methotrexate and Vincristine, along with 

another drug not yet clinically approved, drug X. Total 560 combinations of the three 

drugs were experimented on 13 cell lines, and the corresponding synergy responses 

were calculated. We also collected gene expression and mutation data to represent the 

cell lines. To better determine which data source we should include, we compared 

model performances by microarray or RNA-Seq data. In order to test whether each 

part of the data is useful for modeling, including dosage data, gene expression data, 

mutation data, cell line types indicators, etc., we added them into the model one by 

one and compared the models’ performances. In this part, we obtained our baseline 

models, advanced models, and final models, which included dosage data only, dosage 

data and cell type indicators (one-hot encoding for T cells, B cells, early T cell 

precursors), all data, respectively. We used K-Nearest Neighbors algorithms (KNN) 

for the baseline model and advanced model. For the final models, we also used 

several other machine learning algorithms to build models and do the model selection. 

In previous studies, many researchers found the XGBoost’s superiority when they 

conducted classification tasks [13]. Its gradient boosting framework guaranteed the 

high accuracy. Recently, many similar algorithms appeared and even showed better 

performances than XGBoost, such as LightGBM and CatBoost. Therefore, we 

included all these models to do the model selection. The models included KNN, 

Support Vector Machine (SVM) with RBF kernel, Random Forest, CatBoost, 



 4 

LightGBM, XGBoost, and Multi-layer Perceptron (MLP). KNN, SVM, Random 

Forest, and MLP were implemented through “scikit-learn” package in Python [14]. 

CatBoost, LightGBM, and XGBoost were conducted via their corresponding Python 

packages [15-17]. Considering we had too many features after we included gene 

expression or mutation information in our dataset, I used LightGBM to do the feature 

selection and only selected the top 60 features to avoid overfitting. Since only less 

than 5% of the combinations exhibit the synergy, the dataset is extremely imbalanced. 

We tried different thresholds to split the whole dataset into two, three, or five parts to 

compare the performances of the multi-class classifier. To avoid too optimistic 

accuracy, we applied “Leave One Cell Line Out” (LOCLO) cross validation in the 

training procedure, which means for each training cycle, one cell line’s data will be 

removed from the whole dataset and use for testing, so that the test cell line will be 

new cell line for the model. Furthermore, to better address the imbalanced dataset and 

the scarce data issues, we built both weighted models and unweighted models by each 

algorithm. The weighted model adopted weighted loss function. Moreover, we 

innovatively present LightVote, a LightGBM-based vote model, and compared its 

performances with other models. All models in our study were designed for 

classification, since we were interested in discovering specific drug combinations that 

showed synergy results. Furthermore, we tested our models on novel cell lines, which 

showed three drugs combination synergy prediction was challenging under the data 

and algorithms currently available. 
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2 Materials and methods 

2.1 Datasets 

2.1.1 Three drugs combination synergy experiments 

In this study, we selected two commonly used anti-cancer drugs, Methotrexate and 

Vincristine, and another small molecule drug not yet on the market, drug X. We 

designed ten dose levels for Methotrexate, eight dose levels for Vincristine, and seven 

dose levels for drug X. Hence there are 560 drug combination levels in total in the 

experiments. For cell lines, we selected four T cell lines, seven B cell lines, and two 

Early T cell Precursors (ETP), as showed in Table 1. Synergy scores based on the 

experiments’ responses were collected which vary from -100% to 100%. The negative 

and positive scores indicate antagonistic and synergetic results, respectively, whereas 

zero represent addictive results. We stratify the whole dataset into five groups based 

on synergy score levels: high antagonism - synergy score lower than or equal to -10%; 

low antagonism - synergy score between -10% and -5%; addition - synergy score 

between -5% and 5%; low synergy - synergy score between 5% and 10%; and high 

synergy - synergy score higher than 10%. 
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Table 1 – 13 Cell Lines in the Study 

 

2.1.2 Genomic features and Simple indicators for cell line 

types 

We applied one-hot encoding methods to represent three cell lines types, T cell, B 

cell, and ETP [14]. RNA-seq data of the 13 cell lines are retrieved from CCLE“ (URL: 

https://portals.broadinstitute.org/ccle/data, file name: 

“CCLE_RNAseq_rsem_genes_tpm_20180929.txt.gz”) [18], and the Microarray data 

are retrieved from Sanger (URL: 

ftp://ftp.sanger.ac.uk/pub/project/cancerrxgene/releases/release-

Microarray RNAseq

CCRF-CEM T √

MOLT-4 T √

JURKAT T √ √

DND-41 T √ √ √

NALM-6 B √ √ √

KOPN-8 B √ √ √

697 B √ √ √

UOCB1 B

REH B √ √ √

RS-411 B √ √ √

RCH-ACV B √ √ √

PEER ETP √ √

LOUCY ETP √ √ √

Gene mutation dataCell Line Lineage
Gene expression data
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7.0/sanger1018_brainarray_ensemblgene_rma.txt.gz), mutation data are retrieved 

from  Harmonizome (URL: 

https://maayanlab.cloud/Harmonizome/dataset/CCLE+Cell+Line+Gene+Mutation+Pr

ofiles) [19]. In order to achieve a fair comparison, we only used 17683 genes existed in 

both Microarray and RNA-Seq datasets.  

2.2 Experiments 

2.2.1 Feature selection 

To avoid overfitting, we first applied the Light Gradient Boosting Machine 

(LightGBM) to select features. We chose the average gain of the feature when it is 

used in trees to get the feature importance [16], and selected the top sixty features for 

modeling. 

2.2.2 Machine learning methods comparison 

We tested three models in this study. A detailed performance comparison is conducted 

on these models. 

Baseline model (model 1):  

Only the dosage data and synergy scores were included in the baseline model since 

the dosage data for each cell line were the same, while the synergy scores were 

different.  

𝑦	~	𝑥! + 𝑥" + 𝑥# 

where 𝑦	is the synergy response, 𝑥! is the dose of Methotrexate, 𝑥" is the dose of 
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Vincristine, 𝑥# is the dose of drug X. 

Advanced model (model 2):  

For the advanced model, the second baseline model, we added the cell line types 

indicators into the KNN model.  

𝑦	~	𝑥! + 𝑥" + 𝑥# + 𝑎 

where 𝑎 is the cell line types. 

Full model (model 3): 

The full models included the whole dataset with the feature selection procedure and 

were based on KNN and five other state-of-the-art machine learning methods.  

𝑦	~	𝑥! + 𝑥" + 𝑥# + 𝑎 + 𝑏 

where 𝑏 is the gene expression data by Microarray. 

Considering our dataset was extremely imbalanced, we tried weighted and 

unweighted version for each model for the comparison. In weighted models, the loss 

function includes weights which are based on the distribution of the number of 

observations in each class. Furthermore, we also included Multi-layer Perceptron 

(MLP) for the comparison. All models’ parameters were decided by grid search.  

K-Nearest Neighbors (KNN): in order to fairly compare models’ performances trained 

on different datasets, we kept KNN in our models. The number of neighbors were 

searched to achieve the best accuracy. The model was implemented via scikit-learn 

package in Python. 

Support Vector Machine (SVM): considering we had numerous non-linear features in 

the study, we chose the RBF kernel for SVM modeling since RBF kernel had 
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advantages in non-linear problems with lots of parameters [20]. Because its essence 

was still a linear model, we utilized “selectkbest” package in Python for it to finish 

the feature selection procedure, rather than using LightGBM. In SVM, we used grid 

search for optimistic regularization parameter C and kernel coefficient gamma. The 

model was implemented via scikit-learn package in Python. 

Random Forest (RF): different number of trees, max depths of trees, and criterions 

(‘gini’ and ‘entropy’) were taken into consideration when we conducted the grid 

search. The model was implemented via scikit-learn package in Python.  

XGBoost: XGBoost is well known in data science competitions nowadays. It was 

developed by Tianqi Chen [15]. It contributed valuably novel ideas for traditional 

gradient boosting methods, such as newton boosting, extra parameters for 

randomization, etc. We utilized the XGBoost package it provided in Python to build 

models, and optimized its three parameters, including the number of trees, the max 

depths of trees, and the learning rate. 

CatBoost: CatBoost is a novel open-source library for gradient boosting on decision 

trees. It was developed by Yandex and good at dealing with categorical features [17]. It 

executed fast due to symmetric trees and can order boosting to prevent from 

overfitting [17]. We built the CatBoost model by utilizing its CatBoost package in 

Python, and tried to optimize three parameters, iterations, depth, and learning rate. 

LightGBM: LightGBM is a novel gradient boosting framework based on trees 

developed by Microsoft [16]. It inherited most of the advantages of XGBoost and was 

further optimized, such as sparse optimization, early stopping, etc. Unlike other 
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boosting algorithms, the trees in LightGBM are grown leaf-wisely, rather than based 

on tree depths, because it believes leaf-wisely growth will decrease the loss more 

optimally than other methods. Another major difference in LightGBM is its tree 

learning algorithms. It innovatively chose to use histogram to conduct the tree 

learning procedure, rather than simply searching the best point for splitting [21]. In this 

way, its performance becomes more robust, more efficient, and the memory 

consumption requires much less comparing to XGBoost and CatBoost. In this study, 

the LightGBM was implemented via LightGBM package in Python [16], and we tried 

to optimize four parameters of it by grid search, the number of trees, the max depth of 

trees, its learning rate, and the number of leaves for each trees. 

Multi-layer Perceptron (MLP): we also considered neural networks to build models, 

though our data may not be enough. We used scikit-learn package for modeling and 

considered different hidden layer sizes and initiate learning rate. For MLP, we only 

tried the unweighted models. 

Figure 1 shows the general work flow for modeling.  
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Figure 1 – Flow Chart for the general models 

 

2.2.3 Dataset comparison 

Considering limited amount of data with extensive gene features, we built five 

weighted LightGBM models to compare their performances with various level of 

extra data included in the model. Dosage data and cell types information are 

considered in all models; whereas gene expression data by Microarray are included in 

the first model, gene expression data by RNA-Seq are included in the second model, 

gene mutation data are included in the third model, both gene expression data by 

Microarray and mutation data are included in the fourth model, and both gene 

expression data by RNA-Seq and mutation data are included in the final model. 

2.2.4 Threshold comparison 

Since our dataset contains multi types and extremely imbalanced, we tried multiple 
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strategies to split the dataset and made it more balanced. We used weighted 

LightGBM models with different thresholds and different number of classes and 

compared models’ performances: 5 classes with thresholds -5%, -1%, 1%, 5%; 5 

classes with thresholds -10%, -5%, 5%, 10%; 3 classes with thresholds -5%, 5%; 3 

classes with thresholds -1%, 1%; 3 classes with thresholds larger than 0 and less than 

0.   

2.2.4 A vote model for three drugs combination 

In order to better prevent the overfitting, we built a vote model for the classification. 

First, we clustered negative data into appropriate number of parts so that the number 

of negative data in each part can be roughly equals to the number of positive data. 

Then we built weighted LightGBM model for each negative part with the whole 

positive dataset. We let all models tested the target novel cell lines with drug 

combinations and voted for the final results. Since the dataset for each model was 

small, we only selected the top 30 features to train the model. We believed this 

method can help overcome the overfitting and achieve better accuracy. The flow chart 

is shown in Figure 2. 
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Figure 2 – Vote Model 

 

2.3 Leave one cell line out cross validation 

To avoid obtaining too optimistic cross validation results, we removed one cell line in 

the training procedure and used it for validation in every circle. We called it “Leave 

one cell line out” (LOCLO) cross validation, which can guarantee the cell line used 

for validation would never be “seen” by the model in the training procedure. In this 

study, LOCLO was much more reliable than the traditional cross validation, such as 

5-Fold cross validation. 
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3 Results 

3.1 Synergy scores and datasets 

Based on the experiments results, total 7280 synergy scores (560 drug combinations 

with 13 cell lines) were calculated. The distribution of synergy scores was shown in 

Figure 3. There were 3573 synergy scores between -1% and 1%, and expanded to 

5019 when the taken to -5% and 5%. Among them, most synergy scores (2965 

synergy scores) equaled to 0, which showed additive results. 28.60% of the results 

showed antagonistic results, while only 2.46% showed synergy. Therefore, the dataset 

was extremely imbalanced under the thresholds we set.  

Figure 3 Distribution of Synergy Scores 

 

After we collected gene expression data by both Microarray and RNA-Seq, and 

mutation data, we found that not all 13 cell lines’ related information were available. 

Only 11 of our 13 cell lines owned the gene expression data by Microarray. For gene 

expression data by RNA-Seq and mutation data, there were only ten and nine cell 
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lines available respectively, as showed in Table 1. Therefore, for the later parts, not all 

13 cell lines would appear in the model’s training or testing dataset.  

3.2 Algorithms comparison 

For the algorithms comparison, we used eight criteria to evaluate models, Accuracy 

(ACC), Balanced Accuracy (BACC), precision (PREC), sensitivity (SEN), specificity 

(SPE), F1 Score, kappa, and Matthews correlation coefficient (MCC). Since the tasks 

were multi-class classifications, for precision, sensitivity, specificity, and F1 score, we 

calculated both their micro and macro versions. ‘Micro’ means the related results are 

calculated globally by considering all cases at once, while ‘macro’ means that we 

calculate the results for each class first, then record the unweighted mean of them.  

In this part, we adopted stratified 5-Fold cross validation to calculate the results since 

it’s more convenient, and we believed it’s enough for roughly comparing the models. 

Since the models were 5 classes classifier, the basic accuracy should be 20%. The 

results are shown in Table 2. Apparently, the baseline model’s performance was not 

ideal. The weighted baseline model’s accuracy was only 46.53%, and the unweighted 

model’s accuracy was 73.04%. Their balanced accuracies were even worse and closed 

to 20%. Other evaluation indexes yielded to similar results, as showed in the Table A1 

in the appendix. Therefore, it’s inadequate to include the drug dosage data only in the 

model for prediction. To improve the models’ prediction accuracies, we added the cell 

line types indicators into the advance models (Baseline model 2). Comparing with the 

baseline model 1, both weighted and unweighted KNN models’ accuracy, balanced 
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accuracy, and other evaluation indexes were significantly improved. It was obvious 

that the extra cell lineages information had benefits for models. The advanced KNN 

models may distinguish T cell lines, B cell lines, and ETP. Intuitively, if models can 

recognize every unique cell line, their performances can be improved, again. The 

results confirmed the conjecture. After the gene expression data by Microarray were 

added in the training and testing dataset, the weighted and unweighted KNN models 

achieved 79.12% and 81.31% accuracy, respectively. Since the gene expression data 

provided too many features in the dataset, which may lead to models’ overfitting, we 

utilized LightGBM to select top 60 features. Only these 60 features were included in 

the models. We also built six other models for model selection, SVM, XGBoost, 

LightGBM, CatBoost, Random Forest, and DNN. The results showed that the 

LightGBM achieved highest scores for both accuracy or balanced accuracy, though 

the weighted LightGBM didn’t show its advantage to the unweighted version. 

Overall, tree models performed far better than others. Though LightGBM showed best 

performance, it not significantly exceeded other three tree models, especially 

compared with the XGBoost. The DNN’s accuracy was lack of satisfactory because of 

the data amount limitation. The SVM’s low accuracy may due to the high dimension 

caused by gene expression features.  
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Table 2 – Model Selection Results 

 

 

After we roughly selected our best model, we chose to use and test the original 

weighted LightGBM model by LOCLO cross validation to obtain more reliable 

results since the weighted version of LightGBM was more reasonable for modeling 

for the imbalanced dataset, though there not existed significant difference between the 

performances of weighted LightGBM and unweighted LightGBM. It achieved high 

accuracy (99.29%) while its balanced accuracy was low (50%). By checking the true 

positive (TP), true negative (TN), false positive (FP), and false negative (FN) details, 

we found the model barely detected any positive cases, the synergy results. 

Apparently, the model’s performance was impacted by the extremely imbalanced 

data. 

DNN unweighted 71.80% 23.75%
XGBoost weighted 87.35% 61.60%

unweighted 87.40% 58.50%
LightGBM weighted 87.50% 62.17%

unweighted 88.13% 59.61%
CatBoost weighted 85.84% 61.59%

unweighted 86.69% 54.10%
Random Forest weighted 85.44% 47.56%

unweighted 86.27% 52.32%
SVM (RBF) weighted 43.25% 33.21%

unweighted 72.14% 24.99%
KNN weighted 79.12% 46.80%

unweighted 81.31% 39.41%
Baseline 2 (KNN) weighted 57.81% 33.75%

unweighted 75.49% 29.57%
Baseline 1 (KNN) weighted 46.53% 29.99%

unweighted 73.04% 24.71%

Drug Dosage +
Cell Lineages

Drug  Dosage
Only

Drug Dosage +
Cell Lineages +
Each Cell Line's
Gene Expression
Data by
Microarray

ACC BACC Dataset
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Therefore, we tried to solve the problem by innovatively building the LightGBM-

based vote model, LightVote. The results were shown in the Table 3. Although the 

“cluster and vote” method slightly lower the accuracy of the model, the LightVote 

achieved significantly higher balanced accuracy than the normal weighted LightGBM 

model. The other evaluation criteria also exhibited similar results, as showed in the 

Table A2 in the appendix. As long as the evaluation stressed the balance of the data, 

the LightVote would outshine the normal weighted LightGBM model. 

Table 3 – Weighted LightGBM vs LightVote 

 

Model Cell line for test ACC BACC

Weighted Nalm6 0.99 0.50

LightGBM KOPN8 0.98 0.54

CCRFCEM 0.96 0.50

697 0.96 0.50

MOLT4 0.98 0.71

REH 0.99 0.99

RS411 1.00 0.50

Jurkat 0.98 0.50

DND41 0.99 0.50

RCHACV 0.99 0.50

LOUCY 1.00 1.00

Mean 0.98 0.61

LightVote Nalm6 0.98 0.74

KOPN8 0.82 0.70

CCRFCEM 0.87 0.68

697 0.86 0.54

MOLT4 0.75 0.87

REH 0.86 0.86

RS411 0.89 0.45

Jurkat 0.93 0.72

DND41 0.87 0.68

RCHACV 0.71 0.73

LOUCY 0.87 0.87

Mean 0.86 0.71
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3.3 Dataset comparison 

To further determine whether we should use gene expression data by RNA-Seq or 

include gene mutation information in our model, we compared different datasets to 

train and evaluate the LightGBM model. For the feature selection, we still utilized 

LightGBM to select top 60 features by calculating the average gain of features [16]. In 

order to fairly compare each dataset, only eight cell lines, including DND-41, Nalm-6, 

KOPN-8, 697, REH, RS411, RCH-ACV, and Loucy, appeared in all Microarray, 

RNA-Seq, and mutation datasets were selected in this part. Based on the results 

showed in Table 4, the model trained by the dataset with RNA-Seq performed slightly 

better than the model trained by Microarray or Mutation, while extra mutation data 

added for existing gene expression data barely improved the model’s performances. 

Table 4 – Dataset Comparison Results 

 

3.4 Thresholds comparison 

We set ten groups of thresholds for better dealing with the imbalance issue. The 

dataset can be more balanced if we split fewer classes or set lower thresholds. 3 

classes with thresholds ±0 or ±0.01, and 5 classes with thresholds ±0.01 and ±0.05 

87.75% 58.38%
87.61% 62.49%
87.79% 58.07%
87.81% 58.43%
87.41% 61.60%RNAseq + Mutation

Microarray
RNAseq
Mutation
Microarray + Mutation

ACC BACC
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were more appropriate comparing to the former 5 classes with thresholds ±0.05 and 

±0.1 for both the Microarray dataset of eleven cell lines and RNA-Seq dataset 

containing ten cell lines. We trained weighted LightGBM models based on these 

datasets of different thresholds. We employed leave one cell line out cross validation 

for evaluating models. The results were showed in Table 5. Overall, the results 

produced by LOCLO were worse than 5-Fold cross validation. The results highlighted 

by green color showed significantly better results than others, which were all 

produced by models trained by “more balanced” datasets. The more balanced the 

dataset we split, the better accuracy the model can achieve. As we split the dataset 

into three classes by thresholds ±0, the model achieved the best accuracy, 0.63, and 

best balanced accuracy, 0.63, which both the twice than the random guess accuracy, 

0.33. It’s also worth to point out that the accuracy and balanced accuracy were more 

consistent in LOCLO results than the 5-Fold cross validation, which suggested that 

using LOCLO was more reasonable than 5-Fold cross validation in this study.  
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Table 5 – Thresholds Comparison Results 

 

4 Discussion 

In this study, we came up with the new challenge of predicting three drug 

combination synergy. Unlike the two drugs combination, the three drugs combination 

prediction was more complex and may correlate with more influence factors. We not 

only completed the model selection by utilizing various machine learning approaches, 

but comparing five datasets containing different amount of data, ten groups of 

thresholds used for splitting dataset by the winning model as well.  

Based on the model selection results, tree models in this study performed significantly 

better than others, it may due to the non-linear datasets. Trees models occupied a 

dominant position in non-linear problems. Within the four tree models, gradient 

boosting method showed its great superiority. In addition, the LightGBM algorithm 

Dataset Thresholds ACC BACC

Microarray 3 classes ±0 0.63 0.63

Microarray 3 classes ±0.01 0.60 0.61

Microarray 3 classes ±0.05 0.69 0.50

Microarray 5 classes ±0.01 ±0.05 0.53 0.35

Microarray 5 classes ±0.05 ±0.1 0.66 0.32

RNAseq 3 classes ±0 0.65 0.60

RNAseq 3 classes ±0.01 0.62 0.54

RNAseq 3 classes ±0.05 0.47 0.32

RNAseq 5 classes ±0.01 ±0.05 0.68 0.49

RNAseq 5 classes ±0.05 ±0.1 0.59 0.32
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was the winner and beat XGBoost and CatBoost no matter how to evaluate the model. 

The leaf-wisely growing methods and the histogram-based learning procedure showed 

their absolute advantages, which eased the common overfitting issue in tree models 

and made models more robust. Considering our datasets were extremely imbalanced 

and high dimensioned, we introduced a novel Light-GBM based vote model, 

LightVote, which showed greater prediction ability comparing to other traditional 

models. Various evaluation criteria were used to determine whether models showed 

good performances in the testing part, including both the micro and macro aspects. 

Overall, we may simply focus on accuracy and balanced accuracy as the other 

evaluation criteria were consistent.  

All models in this study required cell lines’ gene expression data by Microarray to 

represent the genome features. There existed more than one thousand cell lines 

information in the CCLE dataset. Since the genome features and cell lines were one to 

one correspondent, the models can be utilized to predict drug combination synergy on 

every cell line in the dataset with the three specific drugs, drug X, Methotrexate and 

Vincristine. They were also available for predicting any two drugs combination of the 

three drugs by setting the third drug dose to zero.  

Though the optimized LightVote showed great improvement on balanced accuracy 

comparing to traditional models, its performance was still not ideal. The main 

limitation in this study was the small dataset. Since there were no public three drugs 

combination synergy dataset available currently, we completed the related 

experiments and created the dataset by ourselves. We only focused on the same three 
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drugs with limited number of cell lines. Generally, only enough data can guarantee the 

machine learning models’ performances. Therefore, all models faced difficulties to 

precisely predict new results. It’s hard to obtain satisfied results only based on models 

without data. Besides, we found that adding mutation data can barely improved the 

model’s performance as the dataset already contained gene expression data, no matter 

the Microarray or RNA-Seq data source. It may due to the high correlation between 

gene expression data and mutation data. It’s also worth to point out that there may 

exist correlation within the gene expression data, which may be another reason why 

tree models dominated in this study – tree models would be less impacted by 

correlation data. In addition, our models were limited by the data amount, so adding 

more features in the dataset may not exhibit any improvement. In the future, creating 

a model targeting the correlation with modified loss function may be a breakthrough 

point.  

We convinced that more researchers would attach importance to this field in the near 

future and contribute more synergy data of different drug combinations. With the 

increasing of the available data, we believed our models would explosively 

improving. In addition, by continuing exploration in biomedical research, the factors 

influencing drug combination synergy can be further discovered and confirmed. With 

more comprehensive dataset including the confirmed factors, the model can be 

improved significantly. Hopefully, we can accurately predict the synergy results as we 

applied combined therapy clinically. We were confident to improve the LightVote 

based on larger dataset and stronger algorithms, and convinced that the methods we 
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used in LightVote would be useful in other scenarios. As pioneers in the three drugs 

combination, though our models existed some limitation, they were useful tools for 

three drugs combination pre-screening, especially the LightVote. 
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Appendix 

Table A1 - All evaluation results for the model selection 

 

 

Table A2 – All evaluation results for Weighted LightGBM vs LightVote 

 

micro macro micro macro micro macro micro macro
DNN unweighted 71.80% 23.75% 71.80% 21.88% 71.80% 23.75% 92.95% 82.42% 71.80% 22.25% 13.99% 18.51%
XGBoost weighted 87.35% 61.60% 87.35% 61.50% 87.35% 61.60% 96.84% 95.01% 87.35% 61.52% 72.04% 72.04%

unweighted 87.40% 58.50% 87.18% 62.46% 87.18% 58.50% 96.79% 94.60% 87.18% 60.22% 71.04% 71.09%
LightGBM weighted 87.50% 62.17% 87.50% 62.45% 87.50% 62.17% 96.88% 95.16% 87.50% 62.30% 72.45% 72.45%

unweighted 88.13% 59.61% 88.13% 64.09% 88.13% 59.61% 97.03% 94.84% 88.13% 61.53% 73.00% 73.10%
CatBoost weighted 85.84% 61.59% 85.84% 58.95% 85.84% 61.59% 96.46% 94.72% 85.84% 60.16% 69.19% 69.20%

unweighted 86.69% 54.10% 86.69% 61.90% 86.69% 54.10% 96.67% 93.75% 86.69% 57.04% 69.02% 69.29%
Random Forest weighted 85.44% 47.56% 85.44% 58.54% 85.44% 47.56% 96.36% 92.47% 85.44% 50.72% 64.76% 65.59%

unweighted 86.27% 52.32% 86.27% 61.97% 86.27% 52.32% 96.57% 93.31% 86.27% 55.74% 67.48% 67.96%
SVM (RBF) weighted 43.25% 33.21% 43.25% 28.44% 43.25% 33.21% 85.81% 83.04% 43.25% 25.96% 11.89% 13.42%

unweighted 72.14% 24.99% 72.14% 22.43% 72.14% 24.99% 93.04% 83.14% 72.14% 23.38% 17.72% 21.92%
KNN weighted 79.12% 46.80% 79.12% 45.68% 79.12% 46.80% 94.78% 92.14% 79.12% 46.22% 54.77% 54.79%

unweighted 81.31% 39.41% 81.31% 51.13% 81.31% 39.41% 95.33% 90.09% 81.31% 41.04% 53.30% 54.66%
Baseline 2 (KNN) weighted 57.81% 33.75% 57.81% 30.28% 57.81% 33.75% 89.45% 85.88% 57.81% 30.97% 22.62% 23.53%

unweighted 75.49% 29.57% 75.49% 41.03% 75.49% 29.57% 93.87% 85.01% 75.49% 29.43% 30.35% 34.65%
Baseline 1 (KNN) weighted 46.53% 29.99% 46.53% 26.37% 46.53% 29.99% 86.63% 84.45% 46.53% 25.42% 13.93% 15.46%

unweighted 73.04% 24.71% 73.04% 37.28% 73.04% 24.71% 93.26% 82.87% 73.04% 23.99% 17.93% 23.09%

Drug Dosage +
Cell Lineages +
Each Cell Line's
Gene Expression
Data by
Microarray

ACC BACC
PREC SEN SPE F1 Score

kappa MCC Dataset

Drug Dosage +
Cell Lineages

Drug  Dosage
Only

Model Cell line for test TP TN FP FN ACC BACC PREC RECALL SPE F1 kappa MCC AUC PR
Weighted Nalm6 0 556 0 4 0.992857 0.5 0 0 1 0 0 0 0.985162 0.430208
LightGBM KOPN8 1 546 2 11 0.976786 0.539842 0.333333 0.083333 0.99635 0.133333 0.125841 0.158075 0.862682 0.253389

CCRFCEM 0 537 0 23 0.958929 0.5 0 0 1 0 0 0 0.860416 0.148152

697 0 536 3 21 0.957143 0.497217 0 0 0.994434 0 -0.00946 -0.01449 0.784654 0.143156

MOLT4 6 545 1 8 0.983929 0.71337 0.857143 0.428571 0.998168 0.571429 0.564165 0.59967 0.976452 0.666422

REH 0 556 4 0 0.992857 0.992857 0 0 0.992857 0 0 0 NA NA

RS411 0 558 0 2 0.996429 0.5 0 0 1 0 0 0 0.787634 0.012277

Jurkat 0 551 1 8 0.983929 0.499094 0 0 0.998188 0 -0.00318 -0.00509 0.894022 0.164024

DND41 0 557 1 2 0.994643 0.499104 0 0 0.998208 0 -0.00239 -0.00253 0.808244 0.014607

RCHACV 0 556 0 4 0.992857 0.5 0 0 1 0 0 0 0.773606 0.033296

LOUCY 0 559 1 0 0.998214 0.998214 0 0 0.998214 0 0 0 NA NA
LightVote Nalm6 2 546 10 2 0.978571 0.741007 0.166667 0.5 0.982014 0.25 0.241877 0.280315 0.997752 0.709524

KOPN8 7 453 95 5 0.821429 0.704988 0.068627 0.583333 0.826642 0.122807 0.087829 0.153818 0.854015 0.125357

CCRFCEM 11 478 59 12 0.873214 0.684196 0.157143 0.478261 0.89013 0.236559 0.186246 0.221062 0.736944 0.088591

697 4 478 61 17 0.860714 0.538652 0.061538 0.190476 0.886827 0.093023 0.038521 0.045851 0.730939 0.092193

MOLT4 14 408 138 0 0.753571 0.873626 0.092105 1 0.747253 0.168675 0.128788 0.262347 0.985348 0.504265

REH 0 483 77 0 0.8625 0.8625 0 0 0.8625 0 0 0 NA NA

RS411 0 500 58 2 0.892857 0.448029 0 0 0.896057 0 -0.00695 -0.02035 0.62052 0.006775

Jurkat 4 516 36 4 0.928571 0.717391 0.1 0.5 0.934783 0.166667 0.146341 0.200334 0.832654 0.081277

DND41 1 485 73 1 0.867857 0.684588 0.013514 0.5 0.869176 0.026316 0.019496 0.065033 0.828853 0.016234

RCHACV 3 397 159 1 0.714286 0.732014 0.018519 0.75 0.714029 0.036145 0.022517 0.086181 0.620953 0.013506

LOUCY 0 487 73 0 0.869643 0.869643 0 0 0.869643 0 0 0 NA NA


