
Distribution Agreement

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory Uni-
versity, I hereby grant to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis in whole or in part in all forms of media, now or hereafter
now, including display on the World Wide Web. I understand that I may select some access restric-
tions as part of the online submission of this thesis. I retain all ownership rights to the copyright of
the thesis. I also retain the right to use in future works (such as articles or books) all or part of this
thesis.

Sohee Chun April 6, 2021



General relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion and jets

By

Sohee Chun

Dr. Erin Bonning
Advisor

Department of Physics

Dr. Erin Bonning

Advisor

Dr. Alissa Bans

Committee Member

Dr. Davide Fossati

Committee Member

2021



General relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion and jets

By

Sohee Chun

Dr. Erin Bonning

Adviser

An abstract of
a thesis submitted to the Faculty of Emory College of Arts and Sciences

of Emory University in partial fulfillment
of the requirements of the degree of

Bachelor of Science with Honors

Department of Physics

2021



Abstract

General relativistic magnetohydrodynamic (GRMHD) simulations of black hole accretion and jets

By Sohee Chun

Active galaxies with extremely high luminosity at the center have more energy than normal
galaxies do. This central compact region, or active galactic nuclei (AGN), has a supermassive
black hole that powers the AGN to emit such great energy. Some AGN form astrophysical jets that
scale from AU to Mpc with energies ranging from few meters to tera-electronvolts. The formation
of jets depends on the spin of a supermassive black hole as well as the accretion disk, but the exact
mechanism remains unclear. In this project, we investigated how the spin affects the energy output
of a rotating black hole using general relativistic magnetohydrodynamic (GRMHD) simulation,
HARMPI. We simulated the spherically symmetric accretion (Bondi model) and determined the
sonic radius of infalling matter onto a rotating black hole. We also simulated the torus around a
black hole with jets and studied the relationship between the spin of a black hole, accretion rate,
and energy output. Results from the simulation indicate a positive correlation between the black
hole spin and the energy output and between the accretion rate and the energy output. However,
no clear relation has been identified between the black hole spin and the accretion rate. We further
suggest extensive studies on the accretion rate and the energy output as well as varying magnetic
field strengths.
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1. Introduction and background

When a massive star with a mass between 8 to 10 solar masses reaches its later stage of evolution,

it no longer has sufficient internal pressure to remain in equilibrium and therefore undergoes a

gravitational collapse. The star will become a neutron star if the mass of the collapsed remnant

is about 1 − 2 times the mass of the sun. A collapsed remnant greater than 3 − 4 solar masses

is believed to become a black hole [4]. A black hole is classified into a stellar black hole with

a mass up to 100 times the solar mass and a supermassive black hole with a mass of millions to

billions solar masses. A stellar black hole with mass∼ 3−100 solar masses is formed from stellar

collapse, and a supermassive black hole begins as a seed in the early universe and grows through

accretion to 106 − 109 solar masses.

A black hole can be further categorized by its properties: rotation and charge. A static, non-

rotating black hole with no electric charge is called a Schwarzschild black hole. A rotating black

hole with no electric charge is called a Kerr black hole. As the universe is electrically neutral

with an approximately identical number of protons and electrons, astrophysically realistic black

holes do not have an electric charge. Kerr black hole is assumed to be the most common form in

nature as it is formed from a spinning star or interaction with the objects with a non-zero angular

momentum such as mergers.

Supermassive black holes and the galaxies co-evolve, and the supermassive black holes are
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found in the nuclei of their host galaxy [5]. A supermassive black hole grows through a process

of accretion, which refers to the inflow process of the matter towards the center of the mass of

a system or a gravitating object. It is one of the most common processes and is the basis for the

formation of different structures in the universe [6]. While most of the supermassive black holes do

not accrete (quiescent or inactive black holes), some of them do accrete. The most common model

of accretion is the Shakura-Sunyaev model that assumes to have Newtonian mechanics, viscous

fluid, simple radiative transfer, and axisymmetry disk geometry. Another model of accretion is the

Bondi model (or Bondi-Hoyle-Lyttleton accretion model) that assumes Newtonian mechanics but

adiabatic fluid and spherically symmetric accretion. Bondi accretion happens in a radial direction

towards the center without viscosity, which is an unrealistic scenario but allows various properties

to be estimated in a simple, spherically symmetric system. This model is also a useful resource for

the numerical simulation in a case where the region far from the center has insufficient resolution to

be thoroughly investigated [7]. Further explanation and analysis of Bondi accretion are presented

in Section 3.1.

In actively accreting systems, both stellar and supermassive black holes may accrete matter

from the disk and produce an astrophysical jet spanning from few astronomical units to mega-

parsecs in length [8]. Jets are streamed from the stellar, galactic, and extragalactic objects to the

surrounding medium with a wide range of luminosity and a degree of collimation. The mecha-

nisms of how jets are formed and launched have long been a subject of debate, and the theories

focus on a combination of magnetic fields, the rotation of the black hole, and the accretion disk.

One of the theories, the Blandford-Payne (B-P) mechanism, suggests that jets can be driven cen-

trifugally along the poloidal magnetic field line that makes an angle of less than 60°with respect to

the surface of the disk. It further explains that the toroidal component of the magnetic field powers
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and collimates the jets that move perpendicular to the disk and that the flow is driven by the gas

pressure in a region near the center of the disk. The angular momentum is extracted from the mag-

netic forces from the accretion disk, which enables matter to infall and accrete onto the compact

object [9]. Another theory, known as the Blanford-Znajek (B-Z) mechanism, suggests that jets are

powered from the magnetic field in the ergosphere of a rotating black hole. It demonstrates that the

energy and angular momentum will be extracted electromagnetically as the magnetic field lines in

a rotating black hole interact with the currents flowing in the disk and create an electrical potential

difference. It further describes that the observations of both compact radio sources require the

energy that is beamed along the perpendicular direction to the disk [10]. Most jet models contain

some combination of B-P and B-Z mechanisms.

In fact, a black hole is commonly observed to have a strong association with relativistic jets.

The recent observation of M87, an E0 galaxy at the center of the Virgo cluster, is found to have

one of the closest extragalactic jets at its center [11]. Quasars, extremely luminous objects with

supermassive black holes at their center, are also observed with jets, and 3C 273 and 3C 279

are examples of powerful quasars. The mechanism that describes the production of jets and how

their energy from the accreted matter is associated with the power of jets remains the subject of

investigation. This knowledge is important to understand the nature of the accretion process itself

and the galaxy formation with the effect of the supermassive black holes [11]. Several studies

suggest that there is an obvious relation between mass accretion and jet power, which may be a

significant clue in resolving this question. S. W. Allen et al. made an observation of 9 elliptical

galaxies and found a tight, linear relation between the Bondi accretion power and the jet power

from the Chandra X-ray data [7]. The work of S. W. Allen et al. became a motivation for this

project in expanding the observational result that complies with the numerical simulations.

https://arxiv.org/pdf/astro-ph/0602549.pdf
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The goal of this project is to investigate the relationship between mass accretion rate and the

energy with the use of General Relativistic Magnetohydrodynamic (GRMHD) simulation. In this

thesis, we summarize simulations carried out with a 3D version of High Accuracy Relativistic

Magnetohydrodynamic (HARM) code HARMPI to explore the spherical accretion onto a rotating

black hole (Chapter 3) and the magnetized Fishbone-Moncrief torus with jets (Chatper 4). We

simulated these two scenarios and focused on (1) the density, the pressure, and the sonic radius of

infalling matter onto a rotating black hole under the spherically symmetric accretion and (2) the

effect of the black hole spin on the mass accretion and the energy of black holes.

We describe the structure and configuration of HARM code in detail in the following section.

In Section 3, we present the results of the simulation of Bondi accretion flows, including the

convergence study and the calculation of the sonic radius. In Section 4, we demonstrate how the

spin parameter influences the mass accretion and the energy of black holes. Finally, we examine

the application and provide possible directions for the future studies.

sec:SBA
sec:SR
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2. Magnetohydrodynamics (MHD)

2.1 Introduction

Magnetohydrodynamics (MHD) describes the behavior of electrically conducting fluids or flows

under the presence of a magnetic field. Astrophysical objects with high electrical conductivity

and magnetic fields are often explained in terms of magnetohydrodynamic characteristics [12].

Magnetic fields have significant impacts on astrophysical fluids, especially they can induce currents

into a moving fluid and create forces to alter the magnetic field themselves [13]. In describing

MHD, Maxwell’s equations of electromagnetism are coupled with the hydrodynamic equations

that describe the motion of fluids [14]. MHD plays an important role in various fields of physics,

including solar physics where the sunspots or solar flares are generated by a local magnetic field

in the sun, astrophysics, and space plasma physics where plasma is influenced by the galactic

magnetic field, and other plasma physics in general [13]. With its wide range of applications,

MHD became an important branch of physics to solve the differential equations analytically and

numerically with simulations to interpret the behavior of fluids or flows.

MHD equations are a reduced set of equations of fluid dynamics and are coupled with Maxwell’s

equations of electromagnetism. Here, some assumptions are proposed in formulating MHD equa-

tions. It first assumes that plasma behaves like a fluid with well-defined thermodynamic quantities
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such as pressure, density, and velocity, with low fluctuation. Developing a distribution function

with a sufficiently large number of particles allows to establish this assumption and is widely used

in fluid mechanics, thermodynamics, and statistical physics in general. The second assumption

implicates that there must be a relationship between the local electric field and the current density

under any plasma phenomena. The third assumption states that the plasma is electrically neutral as

the astrophysical environment contains unbound positive and negative charges. When it comes to

an ideal MHD, it assumes no resistivity, viscosity, thermal conduction, or radiative transfer so that

the fluid can be treated as a perfect conductor [12].

2.2 General Relativistic MHD (GRMHD)

General relativistic magnetohydrodynamics (GRMHD) describes the flows along with the mag-

netic fields in the region of strong gravity including black holes, neutron stars, and collapsing

stellar cores. One use of GRMHD is for describing the MHD turbulence driven by the magnetoro-

tational instability (MRI) within a rotating disk and by magnetic torques within a black hole disk

[15]. MRI refers to the instability of fluid that has electrical charges and is subject to the magnetic

field. This fluid is affected by the magnetic force and hydrodynamical forces such as pressure

and gravity. If the fluid is in differential rotation around a fixed origin, the angular velocity of

rotation decreases with radial distance, causing unstable radial motion for each differential part

of the fluid. This causes an accretion disk orbiting a central object to be turbulent [16]. In fact,

modern accretion theory suggests that MRI is a likely mechanism of angular momentum transport

and the accretion of the black hole [17]. The theory also connects the physical laws describing the

motion of gas and magnetic fields near the black holes, as well as the observable phenomena of
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astrophysical jets and accretion disks of the black hole systems [15].

GRMHD simulations provide the most accurate and precise physical account for the accretion

flows of the black hole and assist further research on the black hole. It describes behaviors of

objects such as quasars, active galactic nuclei, and core-collapse supernova, which are all powered

by the central black hole’s strong gravity, electromagnetic fields, and rotation. These objects are

usually studied with a numerical approach because of their non-linearity, time-dependency, and

intrinsic multidimensional aspects. Understanding their evolutionary processes and observational

appearances demands the comprehension of a plasma with a relativistic gravitational field, a strong

electromagnetic field, and a radiation field as well. The numerical approach is mostly resolved with

today’s algorithms and computers, but it is still limiting - GRMHD and radiative transfer codes are

typically developed separately because of the limitation of combining both radiative transfer and

MHD simulations. Thus, we study these objects with a non-radiating MHD model as a first step,

because the plasma is treated as a fluid with fewer degrees of freedom and the negligible radiation

field [18].

Another application of GRMHD is for describing how the twisted magnetic fields play an es-

sential role in launching the outflows from rotating objects such as stars and black holes. A rotating

disk with a magnetic field accelerates the outflow, which is also affected by the twisted magnetic

fields and the pressure. These factors also expand the preexisting configuration of the field’s az-

imuthal component. This process further extracts the bipolar jets that are collimated by the strong

magnetic force as shown in Figure 2.1. While the twisted configuration is stabilized due to high

pressure near the base of the jets, the configuration becomes unstable with increasing twist angle as

the distance from the base increases [12]. GRMHD simulations are used to study jet propagation

through the magnetic fields, and a number of schemes for the simulations have been developed
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with consistent research.

(a) Configuration of the outflows (b) Simple illustration

Figure 2.1: Both (a) and (b) show the configuration of the jets. Spinning black holes drag the
magnetic field lines and twist the magnetic fields. Then the bipolar jets are collimated by the
strong magnetic force with increasing azimuthal component of jets with the distance from the
black hole.[1, 2]

2.3 High accuracy relativistic magnetohydrodynamics (HARM)

HARMPI is a parallel 3D version of high accuracy relativistic magnetohydrodynamics (HARM)

with increased speed of the code and new features than HARM. The main difference between

HARMPI and HARM is that HARMPI is parallelized using massage passing interface (MPI) and is

fully operational in 3D. Since two codes share the same schema and follow the convention, here we

explain in terms of HARM, which is also applicable to HARMPI. HARM solves hyperbolic partial

differential equations, i.e., wave equation, using high-resolution shock-capturing technique, i.e.,

computing any shock waves or discontinuities of flows with zero viscosity. It was primarily written

using GRMHD equations, and it can solve almost any set of hyperbolic equations in conservative

https://github.com/atchekho/harmpi
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form:

∂U

∂t
+
∂F (U)

∂xi
= S(U) (2.1)

where U , F , and S each represents conserved variables (mass, momentum, and energy), fluxes, and

the sources, respectively. F can be calculated by solving P (U) = U−1(P ) where U(P ) is a known

set of equations in GRMHD and P is a primitive variable such as velocity and pressure. Most

calculations performed in HARM are driven by calculations of P , i.e., MHD quantities including

fluxes and sources can be derived from P . Similar to the original HARM code, HARMPI enables

the use of non-uniform grids and solves the GRMHD equations to model the accretion disk and

black hole dynamics in Kerr-Schild coordinates, one of the coordinates used to express the Kerr

metric which describes the geometry of empty spacetime around a rotating, uncharged black hole

[19, 20].

HARM is written in a conservative numerical scheme for a hyperbolic system. This choice

guarantees to have the first-order hyperbolic partial differential equation converge towards a solu-

tion of the equations by the Lax-Wendroff theorem. Here, a solution implies a stable and consistent

solution that does not blow up and is well-behaved numerically. Although the scheme is not guar-

anteed to work in the multidimensional flows, HARM assumes that it would be still applicable.

The scheme also guarantees to satisfy the jump conditions at discontinuities in any number of

dimensions, meaning that the code should not break down in examining different boundary con-

ditions. Non-conservative schemes, on the other hand, with artificial viscosity do not guarantee

these points and are also known to have troubles in relativistic shocks.

Many schemes have been adopted for the relativistic fluid dynamics and the simulations. What

has not existed until recently is a scheme that includes magnetic fields, that has been fully verified
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and convergence tested and is stable and capable of integrating a flow over many dynamical times.

We chose HARMPI to simulate the Bondi accretion flows as well as the torus with jets, and the

setups for each simulation is further explained in Chapter 3 and 4. The governing equations and

the essential equations used in the project are described in the following section.

2.3.1 Governing equations

Fundamental equations used in HARM are (1) the particle number conservation equation, (2) the

four energy-momentum equations, (3) the MHD stress-energy tensor equation, and (4) the induc-

tion equation that relates the velocity of conductive fluid and the magnetic field. These hyperbolic

equations are written in a conservation form, i.e., spatially constant or fixed, in order to resolve

any shock or discontinuity inside the equation or solution. We present the equations of GRMHD

in the form used for the numerical integration in this section. In these equations, c = 1 and other

notations follow the conventions. We focus on thermodynamical quantities such as internal en-

ergy, pressure, and density in order to compute certain outputs. This section mainly introduces the

equations for these quantities.

The first set of equations describes the conservation of the particle number:

∇ν(ρ0u
u) = 0 (2.2)

where ρ0 is the rest-mass density, uν is the contravariant 4-velocity, and ρ = ρ0u
t is the lab-frame

mass density.

The second set of equations describes the energy-momentum conservation:

∇νT
u
ν = 0 (2.3)
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where the stress energy tensor T uv includes both matter (M) and electromagnetic (E) terms:

TM
µ

ν = (ρ0 + ug + pg)u
µuν + pgδ

µ
ν (2.4)

TE
µ

ν = b2uµuν + pbδ
µ
ν − bµbnu (2.5)

T µν = TM
µ

ν + TE
µ

ν (2.6)

Here, the matter term (M) can be divided into a particle (P) term: T P µν = ρ0uνu
µ and an enthalpy

(EN) term. Both particle (P) and enthalpy (EN) terms make up for a free thermo-kinetic energy

term (KE), which the matter term (M) can be further reduced to:

TMKEµ

ν = TM
µ

ν − ρ0u
µηµ/α (2.7)

T PKE
µ

ν = (uν − ην/α)ρ0u
µ (2.8)

TEN
µ

ν = (ug + pg)u
µuν + pgδ

µ
ν (2.9)

such that TMKEµ
ν = T PKE

µ
ν +TEN

µ
ν . Here, ug is the internal energy density, and pg = (Γ−1)ug is

the ideal gas pressure with adiabatic index Γ = 4/3 or Γ = 5/3, which depends on the simulation

types. The relation between the internal energy density and the ideal gas pressure is u = p
Γ−1

[21].

These parameters are computed both numerically and analytically for the Bondi accretion flows

simulation and described in Section 3.1.

2.3.2 Implementation

Some details are also provided by HARM in order to complete the implementation. HARM is

written in a conservative scheme with second order in time (two derivatives with respect to time)

by taking a half-step from tn to tn+1/2 or U(tn) to U(tn+1) in computation. HARM also modifies

the energy equation by subtracting an equation of the particle number conservation from the energy
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equation in order to prevent inaccuracy caused by a direct implementation of the energy equation.

HARM further specifies geometric quantities as it would be difficult to accurately encode an-

alytic expressions of all the quantities in every grid zone. It is coded to provide an analytic ex-

pression for gµν , a metric tensor, and all other geometric quantities are calculated numerically at a

high accuracy through numerical differentiation of the metric. This simplicity minimizes the risk

of coding errors when specifying the geometric quantities and makes it relatively easy to change

the coordinate systems according to the problems at hand.

Since negative densities and internal energies are not allowed by the GRMHD equations,

HARM puts floor values for both parameters. HARM also sets up the outflow boundary condi-

tions at the inner and outer radial boundaries in the rotating black hole [18]. Between the two

versions (serial and parallel) available for the code, we chose the parallel version of the simulation

and used Amazon Web Services (AWS). We used an AWS instance c6g.4xlarge with 16 CPUs and

the storage of 30 GB is used for both simulations.
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3. HARMPI simulation of Bondi accretion flows

3.1 Spherical accretion onto black holes

Accretion is the process when the compact objects gravitationally capture the ambient matter.

Accretion of the gas onto compact objects is likely the source of energy for various astrophysical

phenomena such as rapidly varying emission at a high luminosity of the compact regions within

the quasars or the active galactic nuclei. Here, the supermassive black hole at the center of the

object powers the system by accreting matter. When the matter falls through the steep gravitational

potential, a significant fraction of the accreted rest-mass energy may be converted into radiation,

which makes the process observable. Thus, accretion is a considerably more efficient cosmic

energy source than many other commonly involved mechanisms in astrophysics such as nuclear

fusion [22].

Bondi accretion is one of the accretion models, describing the accretion of a uniform fluid, i.e.,

interstellar gas, onto astrophysical objects. The relativistic extension of the model represents the

accretion onto a black hole [23]. The accretion flow in the black hole system with speeds below

the local speed of sound is subsonic at r = ∞ and with speeds above the local speed of sound is

supersonic close to the black hole. Thus, as the radial velocity of the flow increases monotonically

as the flow moves towards the black hole from infinity, the flow should pass a point where the
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radial velocity is equal to the local speed of sound. This is a point where transition between

subsonic and supersonic flow happens, which is known as a critical or sonic radius, rs [24]. In

this chapter, the general relativistic spherical, steady-state, and adiabatic accretion onto a rotating

black hole is investigated. Furthermore, a sonic radius of the flow is determined both numerically

and analytically using the relativistic Bondi equation.

3.2 Problem approach and simulation setups

We investigated a 1D Bondi accretion with HARMPI code. The goal of this investigation is to

examine the changes of density over time as accretion is initiated from a spherical shell around

the black holes and determine the sonic radius. The settings of the simulation and the physical

parameters are described in this section. HARM and HARMPI share the same settings, so the

explanation of the settings of the HARM code is interchangeable with HARMPI.

An analytic solution for Bondi accretion in the Schwarzschild geometry, spacetime that de-

scribes an empty space surrounding any spherical mass, is available and can be compared with

the output of HARM. HARM fixes the sonic point rs = 8GM/c2, mass accretion rate Ṁ =

4πr2ρur, and an adiabatic index γ = 4/3 and integrates in the domain r ∈ (1.9, 20)GM/c2 for

∇t = 100GM/c3. Note that the values here are not in physical units, and the units are going to be

omitted. The coordinate is based on the Kerr-Schild system whose line element of

ds2 = −(1− 2r/ρ2)dt2 + (4r/ρ2)drdt+ (1 + 2r/ρ2)dr2 + ρ2dθ2+

sin2θ(ρ2 + a2(1 + 2r/ρ2)sin2θ)dφ2

− (4arsin2θ/ρ2)dtdφ− 2a(1 + 2r/ρ2)sin2θdrdφ

(3.1)
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and GM = c = 1. In (3.1), ρ2 = r2 + a2cosθ, with a/M = 0 for this problem. Initial conditions

and the physical parameters are listed in Table 3.1 below

Parameter Values
a/M 0.9375
γ 4/3
rin 10
tfinal 200000.0

Table 3.1: Parameters of the Bondi simulation

where a/M , γ, rin, and tfinal each represents the spin parameter of the black hole, the adiabatic

index, the radius of inner edge of the initial density distribution, and the run time of the simulation.

The symbols used for the output variables are defined as v1p for one of the characteristic velocities,

ρ for the density, ug for the internal gas energy density, and pg for the gas thermal pressure.

The problems starts with a uniform density and temperature at r = 10. The density and

pressure inside this radius is very low, and this region should be quickly accreted by the black

hole. It simulates a spherically symmetric accretion from the ambient medium with a uniform

density. Plotting the characteristic velocity would indicate the sonic radius of the infalling matter.

This velocity should be greater than 0 when the flow barely falls inward compared to the fast,

outgoing wave, while it should be less than 0 when the flow starts to fall inward supersonically

near the black hole at the small radii. The radius at which the sign of this characteristic velocity

changes over the time indicates the sonic radius.

3.3 Convergence study

Quantitative accuracy of the simulation result is important to support and consolidate the result

of observational studies. The accuracy depends on both the appropriate physical model and the
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artificial effects from the simulations. Spatial resolution is one of such important factors that

easily vary the accuracy of the simulation results [24]. In this particular simulation, insufficiently

low spatial resolution would lead the accretion flows to become more diffusive and cause the lower

accretion rate and therefore affect the resultant output such as energy. Higher spatial resolution

does not necessarily give a closer result to the exact solution as the solution should depend on

the convergence rate and the accuracy of the physical model. The resolution should give the most

accurate solution with the best efficiency, and the resolution of (256×1×1) is suggested in HARM

documentation for 1D Bondi simulation.

We perform a basic convergence study to demonstrate if a suggested resolution would give

the result that is the closest to the analytical solution, i.e., sonic radius in this problem. A set of

resolutions, (128× 1× 1), (256× 1× 1), and (512× 1× 1), was tested with constant parameters

throughout the test. Calculation and comparison of the sonic radius are extensively done in Section

3.5. In fact, the analytical solution of the sonic radius (all in gravitational radii) is ≈ 190.9 and the

result in (256 × 1 × 1) is ≈ 190.8 while the results in (126 × 1 × 1) and (512 × 1 × 1) are each

≈ 189.9 and ≈ 191.2. Thus, the suggested resolution of (256 × 1 × 1) gave the closest solution

to the analytical solution for the sonic radius. However, further studies should be done with the

higher resolution of (512× 1× 1) because the result is not similar to the analytical solution. This

is further discussed in Chapter 5.

sec:SR
sec:SR
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3.4 Results

This section provides the output and the results of the 1D Bondi problem. The first output is a

1D graph of the density of the ambient matter over the radius from the black hole. At the earlier

times, the region inside r = 10 has ug ≈ 10−5 as the initial density for this region is set to be very

low. Also, the density is shown to be uniform at the radius equal or greater than r = 10, ug ≈ 1.

Over the course of simulation, the region inside r = 10 quickly accretes and becomes denser with

the turnoff radius, where the graph starts diverging, also increasing with the time. This implies

that the closer the region is to the black hole, the ambient matter gets accreted quicker, resulting

in the densest region. Increasing turnoff radius also implies that the density at larger radii starts

increasing as more matter falls in.

Figure 3.1: Density of the ambient matter at specific radii at a different time step
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(a) t = 20 (b) t = 30 (c) t = 32

(d) t = 34 (e) t = 36 (f) t = 40

(g) t = 50 (h) t = 2000 (i) t = 10000

(j) t = 50000 (k) t = 100000 (l) t = 200000

Figure 3.2: The evolution of density throughout the time at specific time steps

Figure 3.2 contains 12 selected time steps to show the sequential behavior of the density. Nar-

rower time steps at early time are chosen, while a larger time steps at later time are chosen because

the rate at which the low density matter accretes at earlier times is much faster than the rate at

which the turnoff point increases at the larger radii. Increase in the turnoff point can be found

explicitly in these figures. Similarly, Figure 3.3 is a 1D graph of the internal gas energy density of
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the matter. It represents the amount of energy stored in a given radius per unit volume. Therefore,

the graphs of energy density are expected to show a similar manner in the graphs of density of

the ambient matter. As mentioned in Section 3.1, there is a relationship between the accreted rest-

(a) t = 20 (b) t = 30 (c) t = 32

(d) t = 34 (e) t = 36 (f) t = 40

(g) t = 50 (h) t = 2000 (i) t = 10000

(j) t = 50000 (k) t = 100000 (l) t = 200000

Figure 3.3: The evolution of the internal gas energy density at specific time steps

mass energy and the radiation. The rest-mass energy increases over time as more ambient matters

accrete. As more ambient matters accrete, the density and energy density increase. Indeed, the

sec:SBA
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Figure 3.3 is analogous to Figure 3.2, showing a faster rate for the inner region being filled out and

an increment in turnoff radius at later times. Figure 3.4 is a 1D graph of the thermal gas pressure

of the matter. The way it is calculated has a factor of the energy density as introduced in Section

2.3.1 and only depends on the adiabatic index, which is kept constant throughout the simulations.

The graphs at chosen time steps are presented in Figure 3.4.

(a) t = 20 (b) t = 30 (c) t = 32

(d) t = 34 (e) t = 36 (f) t = 40

(g) t = 50 (h) t = 2000 (i) t = 10000

(j) t = 50000 (k) t = 100000 (l) t = 200000

Figure 3.4: The evolution of the thermal gas pressure at specific time steps
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3.5 Sonic radius

3.5.1 Analytical solution

The analytical solution of the sonic radius is available. The relativistic equation of the sonic ra-

dius is listed in the Appendix G from the book, Black holes, white dwarfs, and neutron stars: The

physics of compact objects. For the simplicity, we show a derivation of a non-relativistic equa-

tion of the sonic radius below. This equation is taken from the textbook Radiative gas dynamics,

Chapter 8. Spherical accretion.

We start by the equation of momentum conservation (Eqn 3.2) and the equation of mass con-

servation (Eqn 3.3).

u
du

dr
+
a2

ρ

dρ

dr
+
GM

r2
= 0 (3.2)

1

ρ

dρ

dr
= −2

r
− 1

u

du

dr
(3.3)

Combining these two equations, we get an equation called the Bondi equation (Eqn 3.4).

1

2

(
1− a2

u2

)
d

dr
(u2) = −GM

r2

[
1− 2a2r

GM

]
(3.4)

Let us assume that there is a radius rs that makes both right and left terms vanish, which means

that the solutions should be either in a form of Eqn 3.5 or Eqn (3.6).

u(rs)
2 = a(rs)

2 (3.5)

d(u2)

dr
|r=rs = 0 (3.6)

https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527617661.app7
https://onlinelibrary.wiley.com/doi/abs/10.1002/9783527617661.app7
http://www.astronomy.ohio-state.edu/~ryden/ast825/ch8.pdf
http://www.astronomy.ohio-state.edu/~ryden/ast825/ch8.pdf
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There are six types of solutions to the Bondi equation, classified by the behavior of the flow

at rs. The types are shown in Figure 3.5 below. Here, we focus on the solution (1), a transonic

solution where rs is a sonic radius, in order to determine the accretion rate in terms of the mass of

the accreting matter, the density at infinity, and the sound speed at infinity.

Figure 3.5: Solutions of the Bondi equation. We focus on solution type 1.

The equation of momentum conservation (Eqn 3.2) can be integrated and yield (Eqn 3.7),

which is known as the Bernoulli integral.

a(rs)
2

(
1

2
+

1

γ − 1
− 2

)
=

a2
∞

γ − 1
(3.7)

This equation further implies that

rs =
5− 3γ

4

GM

a2
∞

(3.8)

which is a non-relativistic equation for the sonic radius. Since our case of accretion has a relativistic

effect, we use relativistic velocity equation (Eqn 3.9) and sound speed equation (Eqn 3.11) to derive
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a relativistic equation for the sonic radius.

u2
s =

a2
s

q + 3a2
s

=
1

2rs
(3.9)

∴ a2
s =

1

2rs − 3
(3.10)

Then we plug a∞ = (γP∞/ρ∞)1/2 and Eqn 3.10 into Eqn 3.12, which is derived from the rela-

tivistic Bernoulli equation.

(
1 + 3a2

s

)(
1− a2

s

γ − 1

)2

=

(
1− a2

∞
γ − 1

)2

(3.11)(
1 +

3

2rs − 3

)(
1− 1

(2rs − 3)(γ − 1)

)2

=

(
1− a2

∞
γ − 1

)2

(3.12)(
1 +

3

2rs − 3

)(
1− 3

2rs − 3

)2

=

(
1− 1

4× 10−3

)2

(3.13)

The values for ρ∞, P∞, and γ are all given in the previous sections. Assuming that r = 200000 is

enough to approximate these values estimated at infinity, each value corresponds to 100 = 1, 10−3,

and 4/3. The solutions to Eqn 3.13 are rs ≈ −0.9 . . ., rs ≈ 2.4 . . ., and rs ≈ 190.8 . . .. Here, we

discard the first solution with a negative value and the second solution with relatively small value.

The infall of the matter reaches a steady state, implying that the third solution is a sonic radius.

This value is compared with the result of the simulation in the following section.

3.5.2 Numerical solution

The sonic radius from the result of the simulation is estimated by solving the radius where the sign

of the characteristic velocity, v1p, changes. As expected, the sonic radius approaches to a steady

state after a sharp decline. It approaches and starts settling down at rs ≈ 190.8.
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Figure 3.6: Sonic radius measured by the radius at which v1p changes its sign

The discrepancy between the analytical and the numerical solutions may be caused by the

insufficient time range or the radius range to be treated as r∞. We confirmed that the numerical

solution is a reasonable value that falls in the range of accuracy.

3.6 Physical implications

The Bondi model is used to estimate the sonic radius, or accretion radius which the matter starts

to fall supersonically onto the black hole, and the mass accretion rate. It also allows estimating

the mass of the accreted materials onto the black hole through the density and the velocity at the

boundary conditions (at r∞). It is found that a collisionless, weak-interacting fluid such as dark

matter particles or halos also have the sonic radius that is analogous to that of Bondi model, which

lies outside the event horizon [25]. Models of isolated galaxy have been developed by V. Springel



25

et al. (2005) and estimated that the growth of a small seed black hole accelerates at the same rate

estimated by Bondi accretion model [26].
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4. HARMPI simulation of torus and jets

4.1 Spin of a black hole

Astrophysical black holes are classified by two properties, mass and angular momentum, neglect-

ing the charge as the universe is electrically neutral. Black holes that are formed from gravitational

collapse have nonzero angular momentum, or spin, following conservation of angular momentum.

They may gain more angular momentum from other black holes or the accreted materials in gen-

eral [27]. Black hole spin is affected by the dynamics of the initial collapse and the angular profile

of the progenitor star with further details on its mass, metallicity, and the magnetic field [28].

Depending on the spin, energy also can be extracted from rotating black holes via the Penrose

process that describes how the black holes can take up one decayed particle’s negative energy and

momentum and transfer to the other decayed particle leaving the black holes. It specifies that up to

29 percent of such mass-energy can be extracted from a maximally rotating black hole [29]. Such

extracted energy is assumed to be transported to the magnetic field, making a relativistic jet.

The spin is measured from the innermost stable circular orbit (ISCO) as the ISCO radius de-

pends on the direction and the magnitude of the spin (Figure 4.1) [3]. Rotating black holes distort

the spacetime metric around them, known as the frame-dragging effect, and make the nearby mat-

ter and light also rotate around the black holes. This is because the geodesic, or the shortest path
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on the curved spacetime, of the matter and light is forced to follow the rotation of the black hole

[30, 31]. This effect causes the ISCO radius to move either closer to or farther out from the black

holes and therefore allows the measurement of the ISCO radius and the corresponding spin.

Figure 4.1: The relation between the ISCO radius and the black hole spin [3]

The ISCO radius specifically represents the location where the relativistic effects near black

holes destabilize the circular orbit of the matter and light and cause them to spiral into the event

horizon. If a black hole and the accretion disk rotate in a same direction (prograde, positive spin),

ISCO radius moves much closer to the black hole as it has higher spins [30]. For a non-rotating

black hole with a/M = 0, the ISCO radius is at 6M . If a black hole and the accretion disk rotate

in an opposite direction (retrograde, negative spin), ISCO radius moves farther out from the black

hole as it has higher spins in magnitude. In the prograde regime, the accretion efficiency, which

refers to the change of relativistic energy per unit mass of a particle falling from the rest at infinity,

increases as the angular momentum increases, up to 0.42Ṁc2 where Ṁ is the accretion rate onto

a black hole. As the spin decreases to 0, the accretion efficiency drops as well, reaching 0.06Ṁc2,
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as the ISCO locates farther away from the black hole. In the retrograde regime, the accretion

efficiency is lower than that of the zero spin because the ISCO moves much farther outwards [32].

The accretion efficiency can be further converted into the mechanical energy such as winds and

jets or thermal and radiative energy.

The spin is mathematically defined as a dimensionless quantity, a = Jc/GM2 where M is the

mass of a rotating black hole, J is the angular momentum, c is the speed of light, and G is the

gravitational constant, and must range from -1 to 1 [28]. The equation for a black hole’s event

horizon radius is given as re = M + (M2 − a2)1/2, and when a/M = 0, i.e., zero spin, this radius

simply reduces to Schwarzschild radius, i.e., a radius of a non rotating black hole. If a/M > 1,

then there is no horizon, and the rotating black hole hypothetically becomes naked singularity,

meaning the singularity is not surrounded by the horizon [33]. The maximum possible spin is one

of the fundamental questions yet to be solved. Thorne (1974) suggested that a/M = 0.998 is a

maximum spin because the black hole may lose its angular momentum from the negative angular

momentum as the accreted materials may flow back from the black hole to the disk if the magnetic

field is strong. A number of studies have suggested that this maximum limit may be higher or lower

than this value, depending on the type of flow and the geometry [27]. In fact, GRS 1915+105, a

microquasar (a galactic jet source similar to quasar with stellar-scaled jets), has been observed with

a spin of a/M = 0.98± 0.01, and Cygnus X-1, a black hole X-ray binary, has been observed with

a spin of a/M = 0.9985 [34, 35].
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4.2 Problem approach and simulation setups

In this chapter, we simulate a torus around a black hole to investigate the effect of the spin on the

accretion rate and the power output of a magnetized jet. We used GRMHD code HARMPI for the

simulations. HARM and HARMPI use the same parameters and follow the convention.

HARM sets initial conditions to have a rotating torus of fluid held together by gravity, pressure,

and centrifugal forces. The values of mass accretion rate and the energy at the initial boundary

are small because the initial conditions are set to be unstable. The magnetorotational instability

develops after the magnetic field reaches sufficient strength to twist the torus and drop the materials

onto the black hole. Torus becomes turbulent, allowing the black hole to accrete materials at the

steady state [36, 18]. Turbulence and the accretion flow continue throughout the simulation.

HARM simulates a torus in a hydrostatic equilibrium, which is analogous to the stable donut-

shaped plasma that is embedded in vacuum and surrounds a black hole. Centrifugal forces and

pressure support this torus. The simulation is based on the solutions of Fishbone and Moncrief,

a simple model of a magnetized torus, which is developed to keep the solutions analytical [28].

Fishbone-Moncrief torus is a model of ideal fluid disk around the black holes, simply assuming

that the fluid is stationary, axisymmetric, purely azimuthal in an arbitrary, stationary, axisymmetric

gravitational field. We study the structure of those fluid disks around the rotating black holes with

constant angular momentum [37].

The astrophysical problem here is the evolution of a magnetized torus near a rotating black

hole. The simulation contains Fishbone-Moncrief torus with an inner radius at r = 6M and

maximum pressure at r = 12M . Similarly GM = c = 1 applies here. The initial magnetic
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field is purely poloidal, and the magnetic field is derived from a vector potential and is limited to

have a minimum ratio of gas to magnetic pressure of 100. At the inner boundary, the magnetic field

strength is parameterized by b2/ρ, where b is a magnetic field four-vector. The numerical resolution

of (256× 256× 1) has chosen, with the computational domain at rin = 0.8re where re is the event

horizon radius. The inner boundary is inside the event horizon and therefore is isolated from the

rest of the flow. Outer boundary of the computational domain is at rout = 40M . Fiducial tests

suggest that the results are independent from rin and rout, and the outer boundary has negligible

influence on the inner accretion flow [18]. The simulation was run up to t = 10000c3/GM . The

spin parameters of a/M ∈ (0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98) are chosen to

draw a well distributed set of results.

4.3 Results

This section provides results of the torus simulation. The main result is a 2D graph with z-plane

on the y-axis, radius from the black hole on the x-axis, and with the bar on the right side that

represents the density. The 2D graphs from t = 0 to t = 10000 with an interval of t = 200

are created for each spin parameter and are displayed below in Figure 4.2 (a/M = 0.1) and 4.3

(a/M = 0.98). Note that the rest of the graphs are displayed in Appendix A. As expected, the

matter starts to accrete in the faster rate at a higher spin parameter with a decreasing radius of the

event horizon. The range of angles at which the matter enters the black hole also increases at a

faster rate with the higher spin parameter.
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After each simulation, we calculated the total accreted mass and the energy output.

Ṁ =

∫ ∫
Area

uu [1]× ρ (4.1)

E =

∫ ∫
Area

(−gdet ∗ Tud[1, 0]× dx2× dx3) (4.2)

Eqn 4.1 is a mass flow rate equation, where uu[1] is contravariant velocity in the radial direction

and ρ is density. As Ṁ is calculated at each grid (1 × 1), values at each φ direction are summed

over the simulation window to get the total mass accretion rate. Similarly, Eqn 4.2, where gdet is

a square root of the negative of metric determinant and Tud[1, 0] is the energy component of the

stress-energy tensor, computes the energy at each grid. Summing all of these values at φ direction

over the simulation window, we calculated the final energy output. The results are listed in Table

4.1, and note that these values are not in physical units.

Spin Parameter Sum of Mass Accretion Sum of Energy Output
a = 0 -4200 -2100

a = 0.1 -6300 -2900
a = 0.2 -7600 -3200
a = 0.3 -7700 -2700
a = 0.4 -6600 -910
a = 0.5 -6200 560
a = 0.6 -5000 3400
a = 0.7 -7100 3000
a = 0.8 -6900 5200
a = 0.9 -6600 7200

a = 0.95 -8800 8800
a = 0.98 -7400 8800

Table 4.1: Mass accretion rate and the energy output at different spin parameter. Note that the units
are not physical units.
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(a) Accretion rate of a/M = 0.1 over time (b) Accretion rate of a/M = 0.98 over time

Figure 4.2: Accretion rate of the black holes with a/M = 0.1 and a/M = 0.98 over time

(a) Energy output of a/M = 0.1 over time (b) Energy output of a/M = 0.98 over time

Figure 4.3: Energy output of the black holes with a/M = 0.1 and a/M = 0.98 over time

In Figure 4.2, accretion might develop in association with the turbulence driven by the mag-

netorotational instability. This turbulence seems to affect the accretion rate as we would expect

because the turbulence prevents some of the ambient matter to fall into the black hole. The ef-

fect of turbulence is more notable at earlier times and becomes more stable at later times, which

agrees with Figure 4.4 and Figure 4.5. A quasi-periodic signal is shown at later times in Figure

4.3. However, the reason for this signal is unclear (See Chapter 5 for the future works).
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(a) a/M = 0.1 at t = 200 (b) a/M = 0.1 at t = 400 (c) a/M = 0.1 at t = 600

(d) a/M = 0.1 at t = 1000 (e) a/M = 0.1 at t = 2000 (f) a/M = 0.1 at t = 5000

(g) a/M = 0.1 at t = 7000 (h) a/M = 0.1 at t = 9000 (i) a/M = 0.1 at t = 10000

Figure 4.4: Evolution of a torus with a/M = 0.1 over the time. The white contours are magnetic
field lines. The radius of the event horizon is greater and the angle at which the matter accretes is
smaller than the Figure 4.4.
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(a) a/M = 0.98 at t = 200 (b) a/M = 0.98 at t = 400 (c) a/M = 0.98 at t = 600

(d) a/M = 0.98 at t = 1000 (e) a/M = 0.98 at t = 2000 (f) a/M = 0.98 at t = 5000

(g) a/M = 0.98 at t = 7000 (h) a/M = 0.98 at t = 9000 (i) a/M = 0.98 at t = 10000

Figure 4.5: Evolution of a torus with a/M = 0.98 over the time. The white contours are magnetic
field lines. The radius of the event horizon is much smaller, and the angle at which the matter
accretes is greater than the Figure 4.3.
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The results also show the relationships between the spin, mass accretion rate, and the energy.

As shown in Table 4.1 and Figure 4.4, there is a positive trend between the spin and the energy.

However, it does not seem to have any clear trend between the spin and mass accretion rate. Thus,

the energy is correlated to the spin while the mass accretion does not appear to be. From our

results, the mass accretion rate is always negative since the matter flows into the black hole from

larger radii. The energy output increases from negative values at lower spin to the positive values

at higher spin. This implies that the window of the simulation might be too small to compute the

entire energy output at the lower spins. Furthermore, the negative energy outputs might point at a

computational error as we would not expect the energy to be negative. In this scenario, running a

simulation in a finer spatial resolution with a longer time window could be a future study.

Figure 4.6: Sum of the total mass accretion rate and energy output for different spin parameters

Figures at t = 2000, t = 6000, and t = 10000 are further created with the mass accretion

rate on x-axis and the energy output at y-axis for different spins. These figures show that the data
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points randomly move around the plot over time and therefore does not show a clear relationship

between the spin parameters and the mass accretion rates over the course of the simulations.

(a) t = 2000 (b) t = 6000

(c) t = 10000

Figure 4.7: Mass accretion rate and energy output for different spin parameters at certain time
steps

4.4 Comparison to observational studies

One observational study of the galaxies using Chandra X-ray telescope [38] shows a relation be-

tween the Bondi accretion rate and the jet power. As shown in Figure 4.5, they modeled a linear

relationship between the accretion power PBondi with the jet power Pjet. Here, PBondi is a dif-

ferent quantity from any quantity introduced in Chapter 3. They described the correlation with a
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power-law model of the form

log
PBondi

1043ergs−1
= A+Blog

Pjet
1043ergs−1

(4.3)

where A = 0.67 ± 0.07 and B = 0.74 ± 0.08 using χ̃2 fit statistic. They measured the galaxy

velocity dispersion to find the central black hole mass and used X-ray luminosity to estimate the

accretion rates onto the black holes. They also assumed that the Bondi type of accretion was

happening to infer an accretion power from their observations, which turned out to be a reasonable

assummption due to a tight correlation between PBondi and Pjet.

Figure 4.8: The relationship between the Bondi accretion power determined from Chandra X-ray
data and the jet power. The dashed line is the best-fitting linear model.
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5. Discussion

In this project, we studied Bondi accretion onto a rotating black hole and the evolution of the torus

with jets as black hole accretes. We used HARMPI, code for the 3D general relativistic magneto-

hydrodynamic simulations, to understand the dynamics of black holes and jets. The summary of

the simulations and the directions for future study are introduced in this section.

We investigated the dynamic of a black hole through the change of density, pressure, and energy

density of the ambient matter under a spherically symmetric accretion. We ran the simulations over

time up to t = 200, 000 and radius up to 105 gravitational radii. Parameters and the equations used

in the simulations are explained in Section 3.2. We also performed a convergence study for Bondi

1D simulation. Three sets of a resolution are tested, (126 × 1 × 1), (256 × 1 × 1), a resolution

suggested by HARM, and (512× 1× 1). The simulation with a resolution of (256× 1× 1) gave

a solution of the sonic radius that is closest to the analytically calculated value, and therefore we

confirmed the suggestion by HARM. We also determined the sonic radius analytically using the

results of density and pressure from the simulations and the relativistic equations provided by and

Shapiro and Teukolsky. Figure 3.5 is a graph with the sonic radius over time and shows that it

approaches a steady state after a sharp decline. This steady point and the analytical solution are

each ≈ 190.8 and ≈ 190.8, and we concluded that these two solutions reasonably match each

other.
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We suggest to re-perform the convergence tests done by the HARM team as a future work

because the highest resolution tested in our convergence test, (512×1×1), does not provide either

a similar or much diverging result from the actual solution. Also, future work should include a

further investigation of the relationship between different black hole spins and the location of the

sonic radius. The relationship between the metallicity, the adiabatic index, and the sound speed

may be interesting to explore as the metallicity affects the local sound speed, which should affect

the sonic radius.

We also studied the effects of the black hole spin on the mass accretion rate and the energy of

black holes. The HARM-suggested resolution of (256 × 256 × 1) was used to run the simulation

up to t = 10, 000. Spin parameters of 0.0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, and 0.98

were tested. Explanation for the parameters used in these simulations is provided in Section 4.2.

The mass accretion rate and energy were computed for each spin parameter by summing all the

fractional mass accretion rate and energy at each resolution grid over time. Table 4.1 summarizes

the results for each spin parameter. A clear positive trend is found between the energy output and

the spin parameter, i.e., as the spin of the black hole increases the energy released from the black

hole increases. However, the mass accretion rate and the spin parameter do not seem to have a

clear relationship as the mass accretion rate for each spin parameter tends to fluctuate over time.

Previous observational study by S. W. Allen et al. [7] has shown a tight correlation between Bondi

accretion rate and the jet power. Therefore, we suggest that the relationship between the spin

parameter and the accretion rate should be further studied as both seem to be positively correlated

to the energy output.

Note that the map of energy output over time (Figure A.12) shows a possibly periodic signal.

This suggests a further study on the energy of the black holes. Since astrophysical black holes can
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turn on and off the jets, whether the energy outflows have a periodic pattern or are affected by the

periodic oscillation in the variability of the objects remain interesting studies. Another extensive

study would be including the effects of magnetic field strength on both mass accretion rate and the

energy as jet collimation and acceleration depend on the magnetic field around the black hole.

Our results have implications for understanding the nature of accretion and other astrophysical

phenomena. In this study, we explored Bondi accretion onto a Kerr black hole over time, including

tracking the sonic radius, which may help to understand the spherical accretion of black holes

in gas-rich environments such as black hole seeds in the early universe. We also studied disk

accretion and jet production in a magnetized disk around black holes of varying spins. We found

a slight correlation of spin with energy output, and no clear relation between mass accretion rate

and power output. Finally, We suggest to include testing the limits of the simulations, i.e., longer

times and higher or better resolution, and exploring further dependence on magnetic field strength

and retrograde disks as future studies.
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A. Appendix

(a) a/M = 0.2 at t = 200 (b) a/M = 0.2 at t = 400 (c) a/M = 0.2 at t = 600

(d) a/M = 0.2 at t = 1000 (e) a/M = 0.2 at t = 2000 (f) a/M = 0.2 at t = 5000

(g) a/M = 0.2 at t = 7000 (h) a/M = 0.2 at t = 9000 (i) a/M = 0.2 at t = 10000

Figure A.1: Evolution of a torus with a/M = 0 at certain time steps



42

(a) a/M = 0.2 at t = 200 (b) a/M = 0.2 at t = 400 (c) a/M = 0.2 at t = 600

(d) a/M = 0.2 at t = 1000 (e) a/M = 0.2 at t = 2000 (f) a/M = 0.2 at t = 5000

(g) a/M = 0.2 at t = 7000 (h) a/M = 0.2 at t = 9000 (i) a/M = 0.2 at t = 10000

Figure A.2: Evolution of a torus with a/M = 0.2 at certain time steps
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(a) a/M = 0.3 at t = 200 (b) a/M = 0.3 at t = 400 (c) a/M = 0.3 at t = 600

(d) a/M = 0.3 at t = 1000 (e) a/M = 0.3 at t = 2000 (f) a/M = 0.3 at t = 5000

(g) a/M = 0.3 at t = 7000 (h) a/M = 0.3 at t = 9000 (i) a/M = 0.3 at t = 10000

Figure A.3: Evolution of a torus with a/M = 0.3 at certain time steps
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(a) a/M = 0.4 at t = 200 (b) a/M = 0.4 at t = 400 (c) a/M = 0.4 at t = 600

(d) a/M = 0.4 at t = 1000 (e) a/M = 0.4 at t = 2000 (f) a/M = 0.4 at t = 5000

(g) a/M = 0.4 at t = 7000 (h) a/M = 0.4 at t = 9000 (i) a/M = 0.4 at t = 10000

Figure A.4: Evolution of a torus with a/M = 0.4 at certain time steps
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(a) a/M = 0.5 at t = 200 (b) a/M = 0.5 at t = 400 (c) a/M = 0.5 at t = 600

(d) a/M = 0.5 at t = 1000 (e) a/M = 0.5 at t = 2000 (f) a/M = 0.5 at t = 5000

(g) a/M = 0.5 at t = 7000 (h) a/M = 0.5 at t = 9000 (i) a/M = 0.5 at t = 10000

Figure A.5: Evolution of a torus with a/M = 0.5 at certain time steps
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(a) a/M = 0.6 at t = 200 (b) a/M = 0.6 at t = 400 (c) a/M = 0.6 at t = 600

(d) a/M = 0.6 at t = 1000 (e) a/M = 0.6 at t = 2000 (f) a/M = 0.6 at t = 5000

(g) a/M = 0.6 at t = 7000 (h) a/M = 0.6 at t = 9000 (i) a/M = 0.6 at t = 10000

Figure A.6: Evolution of a torus with a/M = 0.6 at certain time steps
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(a) a/M = 0.7 at t = 200 (b) a/M = 0.7 at t = 400 (c) a/M = 0.7 at t = 600

(d) a/M = 0.7 at t = 1000 (e) a/M = 0.7 at t = 2000 (f) a/M = 0.7 at t = 5000

(g) a/M = 0.7 at t = 7000 (h) a/M = 0.7 at t = 9000 (i) a/M = 0.7 at t = 10000

Figure A.7: Evolution of a torus with a/M = 0.7 at certain time steps
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(a) a/M = 0.8 at t = 200 (b) a/M = 0.8 at t = 400 (c) a/M = 0.8 at t = 600

(d) a/M = 0.8 at t = 1000 (e) a/M = 0.8 at t = 2000 (f) a/M = 0.8 at t = 5000

(g) a/M = 0.8 at t = 7000 (h) a/M = 0.8 at t = 9000 (i) a/M = 0.8 at t = 10000

Figure A.8: Evolution of a torus with a/M = 0.8 at certain time steps
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(a) a/M = 0.9 at t = 200 (b) a/M = 0.9 at t = 400 (c) a/M = 0.9 at t = 600

(d) a/M = 0.9 at t = 1000 (e) a/M = 0.9 at t = 2000 (f) a/M = 0.9 at t = 5000

(g) a/M = 0.9 at t = 7000 (h) a/M = 0.9 at t = 9000 (i) a/M = 0.9 at t = 10000

Figure A.9: Evolution of a torus with a/M = 0.9 at certain time steps
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(a) a/M = 0.95 at t = 200 (b) a/M = 0.95 at t = 400 (c) a/M = 0.95 at t = 600

(d) a/M = 0.95 at t = 1000 (e) a/M = 0.95 at t = 2000 (f) a/M = 0.95 at t = 5000

(g) a/M = 0.95 at t = 7000 (h) a/M = 0.95 at t = 9000 (i) a/M = 0.95 at t = 10000

Figure A.10: Evolution of a torus with a/M = 0.95 at certain time steps
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(a) a/M = 0.0 (b) a/M = 0.91 (c) a/M = 0.2

(d) a/M = 0.3 (e) a/M = 0.4 (f) a/M = 0.5

(g) a/M = 0.6 (h) a/M = 0.7 (i) a/M = 0.8

(j) a/M = 0.9 (k) a/M = 0.95 (l) a/M = 0.98

Figure A.11: Accretion rate over time for different spin parameters
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(a) a/M = 0.0 (b) a/M = 0.1 (c) a/M = 0.2

(d) a/M = 0.3 (e) a/M = 0.4 (f) a/M = 0.5

(g) a/M = 0.6 (h) a/M = 0.7 (i) a/M = 0.8

(j) a/M = 0.9 (k) a/M = 0.95 (l) a/M = 0.98

Figure A.12: Energy output over time for different spin parameters
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[25] Sébastien Peirani and José Antonio de Freitas Pacheco. Dark matter accretion into supermas-

sive black holes. Physical Review D, 77(6):064023, 2008.

[26] Volker Springel, Tiziana Di Matteo, and Lars Hernquist. Modelling feedback from stars

and black holes in galaxy mergers. Monthly Notices of the Royal Astronomical Society,

361(3):776–794, 2005.

[27] Andrew J. Benson and Arif Babul. Maximum spin of black holes driving jets. Monthly

Notices of the Royal Astronomical Society, 397(3):1302–1313, 07 2009.

[28] Charles F. Gammie, Stuart L. Shapiro, and Jonathan C. McKinney. Black hole spin evolution.

The Astrophysical Journal, 602(1):312–319, feb 2004.

[29] Leon Heller. On the penrose process for rotating black holes, 2009.

[30] Christopher S. Reynolds. Observing black holes spin. Nature Astronomy, 3(1):41–47, Jan

2019.

[31] GV Kraniotis. Frame dragging and bending of light in kerr and kerr–(anti) de sitter space-

times. Classical and Quantum Gravity, 22(21):4391, 2005.

[32] David Garofalo. Retrograde versus prograde models of accreting black holes. Advances in

Astronomy, 2013:213105, Apr 2013.



57

[33] Parth Bambhaniya, Divyesh N Solanki, Dipanjan Dey, Ashok B Joshi, Pankaj S Joshi,

and Vishwa Patel. Precession of timelike bound orbits in kerr spacetime. arXiv preprint

arXiv:2007.12086, 2020.

[34] JL Blum, JM Miller, AC Fabian, MC Miller, J Homan, M Van Der Klis, EM Cackett, and

RC Reis. Measuring the spin of grs 1915+ 105 with relativistic disk reflection. The Astro-

physical Journal, 706(1):60, 2009.

[35] Xueshan Zhao, Lijun Gou, Yanting Dong, Xueying Zheng, James F Steiner, James CA Miller-

Jones, Arash Bahramian, Jerome A Orosz, and Ye Feng. Re-estimating the spin parameter of

the black hole in cygnus x-1. The Astrophysical Journal, 908(2):117, 2021.

[36] Robert F Penna, Akshay Kulkarni, and Ramesh Narayan. A new equilibrium torus solution

and grmhd initial conditions. Astronomy & Astrophysics, 559:A116, 2013.

[37] Leslie G Fishbone and Vincent Moncrief. Relativistic fluid disks in orbit around kerr black

holes. The Astrophysical Journal, 207:962–976, 1976.

[38] Steven W Allen, RJH Dunn, AC Fabian, GB Taylor, and CS Reynolds. The relation between

accretion rate and jet power in x-ray luminous elliptical galaxies. Monthly Notices of the

Royal Astronomical Society, 372(1):21–30, 2006.


	Introduction and background
	Magnetohydrodynamics (MHD)
	Introduction
	General Relativistic MHD (GRMHD)
	High accuracy relativistic magnetohydrodynamics (HARM)
	Governing equations
	Implementation


	HARMPI simulation of Bondi accretion flows
	Spherical accretion onto black holes
	Problem approach and simulation setups
	Convergence study
	Results
	Sonic radius
	Analytical solution
	Numerical solution

	Physical implications

	HARMPI simulation of torus and jets
	Spin of a black hole
	Problem approach and simulation setups
	Results
	Comparison to observational studies

	Discussion
	Appendix
	References

