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Abstract

STATISTICAL METHODS FOR ANALYZING CORRELATED

MICROBIOME DATA

By

Zhengyi Zhu

Data from studies of the microbiome are accumulating at a rapid rate. The relative ease
of conducting a census of bacteria by sequencing the 16S rRNA gene has led to many studies
that examine the association between microbiome and health states or outcomes. Many mi-
crobiome studies have complex design features (e.g. paired, clustered or longitudinal data)
or complexities that frequently arise in medical studies (e.g. the presence of confounding
covariates). In this dissertation, we propose novel statistical methods for solving three differ-
ent problems in microbiome studies – testing microbiome association on matched-set data,
combining test results on multiple data scales, and estimating variance-covariance matrix
for longitudinal data with missing values.

In the first topic, we address the need for statistical methods for analyzing microbiome
data comprised of matched sets, to test hypotheses against traits of interest that vary between
members of a set. Matched-set data arise frequently in microbiome studies (e.g. pre- and
post-treatment samples from a set of individuals, or data from case participants matched to
one or more control participants using important confounding variables). Existing methods
can not accommodate complex data such as those with unequal sample sizes across sets, con-
founders varying within sets, and continuous traits of interest. By leveraging PERMANOVA,
a commonly used distance-based method for testing hypotheses at the community level, and
the linear decomposition model (LDM) that unifies the community-level and OTU-level tests
into one framework, we present a new strategy for analyzing matched-set data. We propose
to include an indicator variable for each set as covariates, so as to constrain comparisons
between samples within a set, and also permute traits within each set, which can account
for exchangeable sample correlations. The flexible nature of PERMANOVA and the LDM
allows discrete or continuous traits or interactions to be tested, within-set confounders to be
adjusted, and unbalanced data to be fully exploited. We design a wide range of simulations
to compare our proposed strategy to alternative strategies, including the commonly used
one that utilizes restricted permutation only. We also use simulation to explore optimal
designs for matched-set studies. We use our method to analyze data from two real studies
to illustrate its flexibility for a variety of matched-set microbiome data.

In the second topic, we propose an approach to integrative analysis of different micro-
biome data scales using the LDM. Previously, LDM was developed for testing hypotheses
(both the community level and the individual taxon level) about the microbiome on 3 scales
separately - the relative abundance scale, the arcsin-root-transformed relative abundance
scale, the presence-absence scale. LDM also offered an omnibus test (LDM-omni) that com-
bined the results of the relative abundance and arcsin-root-transformed relative abundance
scale. In some scenarios, we have observed that the presence-absence analysis worked better



than the initial omnibus test. This suggests the need to develop a new omnibus test that
combines results from all three data scales. In order for the omnibus global test to use the
best scale at each taxon, we propose an omnibus test based on various p-value combination
methods to combine the taxon-level LDM p-values into a statistic we could add to the global
LDM test, thus offering optimal power across scenarios with different association mecha-
nisms. The omnibus test is available for the wide range of data types and analyses that are
supported by LDM.

In the third topic, we tackle the problem of estimating the variance-covariance matrix of
the longitudinal measurements at each taxon. A major challenge of analyzing longitudinal
measurements is induced by incomplete data. Incomplete data is a result of missing mea-
surements, e.g., patients are followed for a period of time but miss some of the visits. In such
cases, empirical estimation of variance-covariance matrix may not be positive-definite, which
is a key feature of a variance-covariance matrix. Thus, there is a need for statistical methods
for longitudinal data with missing values, to estimate positive-definite variance-covariance
matrix, that accommodate non-normal data distributions, complex missingness patterns and
possible constraints on the data (e.g., centered measurements that sum to 0). We develop an
algorithm based on a non-parametric model that iteratively optimizes variance-covariance
matrix estimation towards the empirical one while parameterizes it in a way such that our
variance-covariance matrix estimation is always positive semi-definite. We use simulations
and data from a real longitudinal microbiome study to illustrate that our proposed algorithm
is robust in a wide range of scenarios.
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1.1 Overview of microbiome data

Microbiome data is generated through 16S rRNA gene sequencing and shotgun metage-

nomic sequencing. The bioinformatics tools include the pipeline QIIME and mothur. For

example, after preprocessing the raw sequences, two ways are available to generate analyz-

able microbiome data. The 16S sequences are either mapped to an existing phylogenetic

tree in a taxonomydependent way or clustered into OTUs (operational taxonomic units)

according to similarity in a taxonomic-independent way. The first way uses the existing phy-

logenetic tree structure to generate microbiome datasets, whereas the second way clusters

sequence reads based on similarity level and then assigns them to different taxonomic levels.

In the second way, the reads from the amplicons are clustered into OTUs, based on sequence

similarity, and then OTUs are hierarchically assigned to a taxonomic tree at the kingdom,

phylum, class, order, family, genus and species ranks using available methods for accurate

taxonomy assignments, including BLAST (Altschul et al., 1990), the online Greengenes (De-

Santis et al., 2006) and RDP (Cole et al., 2003) classifiers, and phylogenetic tree-based and

multimer clustering tree-based methods. The final data produced by taxonomy assignments

are tables of read counts (bacterial taxa) that are assigned to nodes of a known taxonomic

tree. The tables of read counts or relative abundance quantified from the read counts can

be used for analyzing and modeling the microbiome composition (Yinglin Xia, 2018).

1.2 Statistical analysis of microbiome data

There are mainly two themes in the current microbiome studies: (1) to characterize the

relationship between microbiome features and biological, genetic, clinical or experimental

conditions; and (2) to identify potential biological and environmental factors that are asso-

ciated with microbiome composition. The goal of these studies is to understand mechanisms

of host genetic and environmental factors that shape microbiome. Insights gained from the

studies potentially contribute to the development of therapeutic strategies in modulating the
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microbiome composition in human diseases (Yinglin Xia, 2018).

Microbiome communities in an environmental context can be analyzed by multivariate

statistical methods or models. Many statistical models and methods are available for ana-

lyzing the association of microbiome community composition and environmental covariates

and outcomes. Statistical methods for analyzing microbiome data seem to fall into one of

two camps. One camp comprises methods that test the global effect of the microbiome, such

as PERMANOVA (McArdle and Anderson, 2001), MiRKAT (Zhao et al., 2015), aMiSPU

(Wu et al., 2016) and pairNM (Shi and Li, 2017), which can be used to test the hypothesis

that variables of interest (e.g. case–control status) are significantly associated with over-

all microbial compositions. However, these methods do not provide convenient tests of the

effects or contributions of individual operational taxonomic units (OTUs), should a global

microbiome effect be found (here we use ‘OTU’ generically to refer to any feature such as

amplicon sequence variants or any other taxonomic or functional grouping of bacterial se-

quences). The other camp is comprised of OTU-by-OTU tests, often directly using a method

developed for RNA-Seq data such as DESeq2 (Love et al., 2014) and edgeR (Robinson et al.,

2010) or a modification thereof such as MetagenomeSeq (Paulson et al., 2013); some other

methods in this camp have adopted a compositional data approach [such as ANCOM (Kaul

et al., 2017; Mandal et al., 2015) and ALDEx2 (Fernandes et al., 2014)] were developed for

longitudinal data [such as ZIBR (Chen and Li, 2016)], or employed a multi-stage strategy

[such as massMap (Hu et al., 2018)]. While some of these approaches have been widely

applied, they generally do not give a single test of the global null hypothesis. Although test

statistics or Pvalues from OTU-specific tests can of course be combined to give a global test,

the performance of this kind of global test is often poor since many of the OTU-specific

tests only contribute noise. Hu and Satten (2020) developed the linear decomposition model

(LDM) for analyzing microbial count or relative abundance data that are obtained in a 16S

rRNA study or a shotgun metagenomics sequencing study. The LDM gives a unified ap-

proach that allows both global testing of the overall effect of the microbiome on arbitrary
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traits of interest, while also providing OTU-specific tests that correspond to the contribu-

tion of individual OTUs to the global test results. It allows for complex fixed-effects models

such as models that include multiple variables of interest (both continuous and categorical),

their interactions, as well as confounding covariates. It is permutation-based, and so can

accommodate clustered data and maintain validity for small sample sizes and when data

are subject to overdispersion. Because the permutations are based on the Freedman–Lane

approach (Freedman and Lane, 1983), powerful type III or ‘last variable added’ tests like

those used in most linear regression packages (Kleinbaum et al., 2007; Muller and Fetterman,

2012) can be constructed.

1.3 Integrative analysis of microbiome data

Although microbiome data usually comes in tables of read counts, transformation or

normalization needs to be performed before analysis due to differences in read depths. It

is generally accepted that the analysis based on relative abundance data will work best

when associated taxa are abundant, while the analysis based on presence-absence data will

work best when associated taxa are less abundant. Because the association mechanism is not

known a priori, one strategy is to conduct analysis at each taxon scale separately and combine

the results in an omnibus test. For example, PERMANOVA-S (Tang, Chen and Alekseyenko,

2016) and MiRKAT-O (Zhao et al., 2015) provided omnibus tests that combine results from

analyzing multiple distance matrices, such as the weighted and unweighted UniFrac distances

in a phylogenetic-tree-based approach or Bray-Curtis and Jaccard distances in a non-tree-

based approach; note that the weighted UniFrac and Bray-Curtis distances are based on

relative abundance data while the unweighted UniFrac and Jaccard distances are based on

presence-absence data. LDM was initially developed for taxon data at the relative abundance

scale and the arcsin-root-transformed relative abundance scale (which is variance-stabilizing

for Multinomial and Dirichlet-Multinomial count data), and also offered an omnibus test that
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combined the results of the two taxon scales (Hu and Satten, 2020). The LDM applied to the

untransformed data works better when associated taxa are abundant and the LDM applied

to the transformed data works better when associated taxa are less abundant. More recently,

LDM was extended for analyzing data at the presence-absence scale (Hu, Lane and Satten,

2021), which accounted for variability of library size by a rarefaction-based yet non-stochastic

approach that evaluated the expected LDM test statistic over all rarefaction replicates. The

presence-absence analysis performs better than the relative-abundance-based analysis when

associated taxa are more rare. Therefore, we might gain extra power by combining results

from all three taxon data scales, which has not been explored before.

1.4 Matched-set microbiome data

Many studies of the microbiome have matched-pair or matched-set designs, in which data

naturally cluster into sets but the samples within each set vary in the traits of interest (e.g.,

clinical outcomes, environmental factors). Matching allows us to study the association be-

tween the microbiome and the traits of interest by comparing samples within sets, ignoring

the variability in microbiomes between sets. For example, we may collect paired samples

pre and post treatment from a set of subjects to assess the treatment effects on the micro-

biome. We may also collect matched case-control subjects who were matched on important

confounding factors to facilitate case-control comparison. Matching is advantageous when

the signal-to-noise ratio is larger within than between sets. In matched studies, complexities

may occur when the data are unbalanced (e.g., having unequal ratio of case-to-control sam-

ples per set), there exist additional confounders that vary within each set, or some traits of

interest are continuous.

Only two methods have been developed specifically for analyzing matched-set microbiome

data; both are limited to paired data without any within-pair covariates. Shi and Li (2017)

proposed a paired-multinomial distribution that is only applicable when the sample size is
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larger than the number of taxa. Zhao et al. (2018) developed a generalized paired Hotelling’s

test that relaxed the restriction of Shi and Li’s method, but can only provide tests at the com-

munity level. Matched-set data may be also be considered as a special case of longitudinal

data with an exchangeable correlation; as a result, some methods for analyzing longitudinal

data can be used to analyze matched-sets microbiome data. These methods are applied

separately to each OTU (operational taxonomic unit; here we use “OTU” generically to

refer to any feature such as amplicon sequence variants or taxonomic/functional grouping of

microbial sequences). An appealing choice is the linear mixed-effects model (LMM), which

has typically been applied to arcsin-root-transformed relative abundance data to improve

normality (La Rosa et al., 2014; Bokulich et al., 2018; Vatanen et al., 2018). A zero-inflated

Beta regression model with random effects (ZIBR) has also been developed specifically for

modelling (untransformed) relative abundance data (Chen and Li, 2016). Both methods

are based on fully parametric models and so may not fit every OTU well. Some methods

have also been developed specifically for analyzing matched-set microbiome data but are

limited to paired data without any within-pair covariates. Shi and Li (2017) proposed a

paired-multinomial distribution that is only applicable when the sample size is larger than

the number of taxa. Zhao et al. (2018) developed a generalized paired Hotelling’s test that

relaxed the restriction of Shi and Li’s method, but can only provide tests at the community

level. Further, some strategies have been proposed to extend existing tests of the microbiome

to analyzing matched-set data. DESeq2 (Love et al., 2014), originally a method for RNA-

Seq data, has frequently been used for one-OTU-at-a-time analyses of microbiome data.

The manual for the DESeq2 software package recommends that indicators of set member-

ship should be included as terms in the design formula, but DESeq2 does not account for

within-set correlations. PERMANOVA (McArdle and Anderson, 2001) is a commonly used

distance-based method for testing hypotheses at the community level. The documentation

for two implementations of PERMANOVA, adonis2 (R package vegan) and permanovaFL

(R package ldm (Hu and Satten, 2020)) that differ in their permutation schemes, suggest
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that restricted permutation within each set should be performed when analyzing matched-

set data. However, the performance of any of these strategies have not yet been evaluated,

especially in studies with unbalanced data or within-set confounders. Like PERMANOVA,

LDM (Hu and Satten, 2020) is also regression- and permutation-based, making it readily

extendable to analyzing matched-set data while accounting for the aforementioned data com-

plexities. Although only within-cluster permutation was considered in the LDM paper (Hu

and Satten, 2020), that was in a context in which variables of interest could be below the

cluster level. The matched set data was not studied from either a theoretical or numerical

point of view.

1.5 Longitudinal microbiome data

The microbiome is inherently dynamic, driven by interactions with the host and the

environment, and varies over time. Thus, longitudinal microbiome data analysis provides

rich information on the profile of microbiome with host and environment interactions. The

distinguishing feature of longitudinal studies is that the subjects are measured repeatedly

during the study, allowing the direct assessment of changes in response variable over time.

Longitudinal study also captures between-individual differences (heterogeneity among indi-

viduals) and within subject dynamics. It offers the opportunity to study complex biological,

psychological, and behavioral hypotheses, especially those involving changes over time. The

advantage of longitudinal analysis is also suitable for microbiome data. It will enhance our

understanding of short-and long-term trends of microbiome by intervention, such as diet,

and the development and persistence of chronic diseases caused by microbiome (Yinglin Xia,

2018).

The variance-covariance matrix is an essential component of many algorithms in lon-

gitudinal studies. Variance-covariance matrices are real, symmetric positive semi-definite

matrices. They arise in situations where covariance between pairs of random variables are
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computed, and also when pairwise interaction between objects are formed, for example, in

longitudinal studies. Estimation of covariance matrices involves the design and analysis of

statistical procedures for recovering the covariance matrix from data samples. It is common,

in practice, to be faced with an approximate variance-covariance matrix: a matrix that is

supposed to be a variance-covariance matrix but for a variety of possible reasons is not. In

longitudinal microbiome studies, for example, the covariance may be between samples mea-

sured over a period of time for the same patients and missing data (perhaps due to patients

not being available for some of the visits) may compromise the covariance and lead to a non-

positive semi-definite matrix. Again in longitudinal microbiome studies, the sample size can

be so small that there are less subjects with full observations than the number of visits, which

again can destroy the positive-semi-definiteness of the variance-covariance matrix. The use

of empirical variance-covariance estimation in these applications can render the methodology

invalid and lead to negative variances being computed. The prevalence and inevitability of

missing data, along with the importance of covariance matrices in many applications and

algorithms, makes the study of covariance estimation with missing observations of great

importance.

Even though missing data is pervasive, and covariance matrices are utilized by a plethora

of algorithms, studies on covariance estimation with missing data are few and of a narrower

scope than those considering the complete data case. Perhaps because there are many avail-

able estimators, and each of them is designed and analyzed for a different type of missing

data mechanism. Schafer (1997) developed an EM algorithm for incomplete data that as-

sumes multivariate normal distribution. Higham (2002) developed an alternating projections

method that computes the nearest correlation matrix of a symmetric matrix based on the

weighted Frobenius norms, but is more suitable for financial data where a long sequence of

correlated data (e.g. stock price) is presented, compared to microbiome longitudinal studies

where there are usually less than 10 measurements per subject. Among existing methods,

high-dimensionality attracts more attention. Cai and Zhang (2016) proposed a minimax
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rate-optimal estimation of high-dimensional covariance matrices, where sparse and bandable

structures were considered. Lounici (2014) considered both structured (low rank) and un-

structured covariance matrices and proposed a simple procedure computationally tractable

in high-dimension and that does not require imputation of the missing data. These two

works offer error analyses and bounds that match similar ones obtained for complete data.

They studied convergence to the population covariance matrix (consistency) of different es-

timators by deriving finite sample error bounds. They assume that the observations are

independent and identically distributed (i.i.d.) copies of a sub-Gaussian vector, while the

population covariance matrix may be structured or unstructured. More recently, Park and

Lim (2019) considered a non uniform and dependent missing data pattern. This work how-

ever, when simplified to the case studied by Lounici (uniform independent observations),

returns convergence rates that are sub-optimal with respect to the ambient dimension and

the rate of missing entries.
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Chapter 2

Constraining PERMANOVA and

LDM to within-set comparisons by

projection improves the efficiency of

analyses of matched sets of

microbiome data
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2.1 Introduction

In this article, we develop a new strategy for using PERMANOVA and the LDM to

analyze a wide range of matched-set microbiome data, for testing both community-level

hypotheses and individual OTUs whenever applicable. In the methods section, we describe

our strategy and establish a connection with the existing strategy of restricted permutation.

In the results section, we present the simulation studies and the application to two real

microbiome studies with matched-set designs. We conclude with a discussion section.

2.2 Methods

We will refer to each observation as a “sample” and refer to the experimental unit that

contributes one or more observations as a “set”. We allow each set to be comprised of an

arbitrary number of samples. We also allow multiple discrete and/or continuous traits to

be tested and additional sample-level (i.e., within-set) confounding covariates to be adjusted

for. In a common scenario with a binary trait (e.g., a case-control status or a treatment or

exposure variable), each set consists of one case sample and m (m ≥ 1) control samples,

usually referred to as 1:m matched data. We assume that, after all covariates (including the

traits of interest) have been accounted for, the members of each set are exchangeable.

To present our strategy for analyzing matched-set data, we introduce a common notation

to describe both PERMANOVA and the LDM. Both PERMANOVA and the LDM are linear

models for which the effects of covariates (metadata) are summarized in a design matrix X.

The rows of X correspond to samples while the columns of X correspond to the covariates.

We may partition X by columns into K groups (which we call “submodels”) such that

X = (X1, X2, . . . , XK), where each Xk denotes a variable or set of variables we wish to test

(jointly). For example, Xk may consist of indicator variables for levels of a single categorical

variable, or a group of potential confounders that we wish to adjust for simultaneously. Both

PERMANOVA and the LDM make the columns of Xk orthonormal to the columns of Xk′
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for k′ < k using projection (i.e., the Gram-Schmidt process). Thus, we require an ordering

of the submodels, which leads to unambiguous interpretations of p-values, that is, the test

of each submodel is adjusted for the proceding submodels.

For both PERMANOVA and the LDM, test statistics for the kth submodel can be ex-

pressed in terms of the quantity XT
k Y . For PERMANOVA, Y is related to the (squared

and Gower-centered) distance matrix ∆ by ∆ = Y SY T, where S is a diagonal matrix with

diagonal elements equal to 1 or −1 corresponding to positive and negative eigenvalues of ∆,

respectively. For the LDM, Y is the (column-centered) OTU table that has rows for samples

and columns for OTUs; the OTU table typically contains the frequency (i.e., relative abun-

dance) data or arcsin-root transformed frequency data. Since Y in either PERMANOVA or

the LDM is column-centered and treated as the response of a linear model, we also assume

the design matrix X is column-centered.

With no loss of generality, we can write the element of Y in the ith row and jth column

as

Yi,j = Y s(i),j + (Yi,j − Y s(i),j) = Y s(i),j + δi,j,

where s(i) is the set that the ith sample belongs to. Thus Y s(i),j is the set-level average

of Yi,j and δi,j is the deviation of the ith sample from the set-level average. The rationale

of a matched-set design is that we wish to treat Y s(i),j characterizing a set as a nuisance

parameter and focus the testing efforts on δi,js. With this in mind, we note that XT
k Y is a

function of only the δi,js (i.e., not a function of the Y s(i),js) whenever the column values of

Xk sum to zero for each set of samples belonging to the same set. It is clear that this occurs

whenever the columns of Xk are orthogonal to the set of indicator variables corresponding

to the set IDs. Therefore, our proposed strategy for fitting matched-set data is to introduce

an indicator variable for each set to be included in submodel X1 along with any sample-level

confounding covariates that are not matched on. Note that any set-level confounders are

automatically controlled for in this strategy, as they can be written as linear combinations of

the indicator variables generated by the set IDs. Indeed, it is typical of matched-set analyses
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that the effect of variables that have been matched on (i.e., that are constant in each set)

cannot be determined (see e.g., (Breslow et al., 1980)).

To see how this works in practice, consider a simple example with two sets, the first

having two samples and the second having three samples. For clarity, we work with Xks

before orthonormalization and show X1 (which has the indicator variables for the two sets)

and X2 (which has a case-control status) before column centering:

X1 =



1 0

1 0

0 1

0 1

0 1


, X2 =



1

0

1

0

0


.

After column centering (i.e., subtracting column means),X2 = (3/5,−2/5, 3/5,−2/5,−2/5)T.

Note that the values in X2 do not sum to zero within each set. If we constructed a test using

this contrast, the set-specific means Y 1,j and Y 2,j would not be eliminated. However, if we

make X2 (before column centering) orthogonal to the columns of X1 (which automatically

achieves column centering), we find X2 = (1/2,−1/2, 2/3,−1/3,−1/3)T, where we see that

the values in X2 sum to zero within each set.

We identify a condition under which the nuisance parameters disappear even without

projecting off the set ID. We say that a variable in matched-set data is balanced if the sum

of the variable within each set is proportional to the number of its samples (with the same

constant of proportionality). For example, a case-control status is balanced if all sets have

as many case as control samples, or if some sets have two case and four control samples and

the remaining sets have one case and two control samples. For a balanced variable, column

centering alone is sufficient to make the values of that variable sum to zero within each set,

even without projecting off the set ID. Note that adjusting for sample-level covariates can

result in imbalance in a variable, even if it was initially balanced; in this case, projection on
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the set ID is required to restore balance. A simple example with two sets, each contributing

two samples along with a sample-level covariate, shows this. Before column centering (and

orthonormalization), suppose the covariate is X1 = (9, 8, 6, 9)T and the case-control status

is X2 = (1, 0, 1, 0)T. After column centering we have

X1 =



1

0

−2

1


, X2 =



1/2

−1/2

1/2

−1/2


.

In the absence of the covariate, X2 after column centering do sum to zero within each set;

however, after adjusting for the covariate we have X2 = (2/3,−1/2, 1/6,−1/3)T, which does

not eliminate the set-specific means. If we also adjust for the set ID by augmenting X1 with

the column-centered indicator

X1 =



1/2 1

1/2 0

−1/2 −2

−1/2 1


,

we obtain X2 = (3/5,−3/5, 1/5,−1/5)T, in which values do sum to zero within sets. Finally,

note that in this example we have considered a binary case-control trait; it should be clear

that, for a continuous trait, the within-set sum is unlikely to be the same for each set, and

hence the projection on the set ID is required to eliminate the nuisance parameters.

As we have assumed the samples in each set are exchangeable, we propose to perform

restricted permutation among samples from the same set. As permuting residuals of Y

in the Freedman and Lane scheme (Freedman and Lane, 1983) is typically equivalent to

permuting Xks (Hu and Satten, 2020), the restricted permutation refers to permuting the

(orthonormalized) traits of interest within samples from the same set. The same permutation

scheme can be used for testing the interactions between traits of interest or between traits



15

and set-level covariates; the latter allows us to detect whether the associations between the

microbiome and the traits of interest are homogeneous across study groups (which can be

defined by the set-level covariates). As noted previously, when all variables are balanced, the

columns of X (excluding the set ID indicator vectors) will automatically be orthogonal to

the set ID indicator vectors. Since both permanovaFL and the LDM permute the rows of X,

it is also clear that this orthogonality holds for every permutation as long as permutations

are conducted within sets. As a result, the p-values for permanovaFL or the LDM will be

identical with and without adjustment of the set ID in this situation, as long as the restricted

permutation is performed.

2.3 Results

2.3.1 Simulation studies

To generate our simulation data, we used the same motivating dataset as Hu and Satten

(Hu and Satten, 2020), i.e., data on 856 OTUs of the upper-respiratory-tract microbiome

first described by Charlson et al. (Charlson et al., 2010). In most simulations we considered

a binary trait such as case-control status, but we also considered matched sets with a con-

tinuous trait. We defined a “causal” OTU to have frequency that depended on the trait of

interest. We considered on two complementary causal mechanisms: the first mechanism (S1)

assumed that half (428) of the OTUs (after excluding the three most abundant OTUs) were

causal; the second mechanism (S2) assumed the ten most abundant OTUs were causal. In

each scenario, we randomly partitioned the causal OTUs into two equal-size subsets, Strait
−

and Strait
+ , to contain OTUs with decreased and increased frequencies, respectively, in cases

relative to controls. We further partitioned Strait
+ into Strait

+a and Strait
+m comprised of OTUs

whose frequencies are increased in additive and multiplicative manners, respectively. For the

simple situation, with no covariates but the trait of interest, we simulated data for the ith

set using the following steps.
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1. We assigned trait values Xtrait
ij to the jth sample of the ith set. For matched pair

samples, Xtrait
ij = 0 was assigned to control samples and Xtrait

ij = 1 to case samples; for

continuous traits, Xtrait
ij was sampled from the U [0, 1] distribution.

2. We generated the mean OTU frequencies πi for set i from the Dirichlet distribution

Dir(π, θ1), where the mean parameter π and overdispersion parameter θ1 took the

values of the estimated mean and overdispersion (0.02) in the Dirichlet-Multinomial

(DM) model fitted to the upper-respiratory-tract data. Note that π and θ1 characterize

the population mean of OTU frequencies and between-set heterogeneity.

3. Given πi, we generated the baseline OTU frequencies π
(0)
ij for sample j of set i from

the Dirichlet distribution Dir(πi, θ2), where θ2 was set to 0.007, which was the median

of the estimated overdispersion in the DM model that was fitted to data for each set

with three samples in the MsFLASH study (see the section “Analysis of the MsFLASH

data”). Note that θ2 characterizes heterogeneity among samples from the same set,

and π
(0)
ij represents the (true) OTU frequencies we would see when trait Xtrait

ij = 0.

4. We then generated the (true) OTU frequencies that account for a non-zero effect of

trait Xtrait
ij , denoted πtrait

ij , by reducing the frequency of each OTU in Strait
− by a factor

of β, then distributing half of the total reduced frequency evenly to OTUs in Strait
+a

and the other half to OTUs in Strait
+m in proportion to their baseline frequencies in π

(0)
ij .

We then formed the (true) OTU frequency for the jth sample from the ith set using

πij = (1−Xtrait
ij )π

(0)
ij +Xtrait

ij πtrait
ij . Note that β characterizes the effect size of the trait,

i.e. the amount by which OTU frequencies vary at the causal OTUs when the trait

Xtrait
ij = 1.

5. We generated read count data for each sample using the multinomial distribution

MN(πij, Nij), where the total read count Nij was generated from the Poisson distribu-

tion with mean 10000 (and set to 500 if the Poisson sampling resulted in a value less

than 500).
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To induce the effects of additional covariates, we made further modifications to πi and/or

πij that were similar to the modifications made to π
(0)
ij to construct πtrait

ij . For simulations

where we wished to include a main effect of a set-level covariate Xset
i , we first sampled values

of Xset
i from a Bernoulli distribution with parameter 0.5. We then uniformly sampled 428

OTUs to be associated with the covariate, and randomly partitioned them into two equal-

size subsets Sset
− and Sset

+ . We then constructed πset
i by modifying πi, reducing the frequency

of each OTU in Sset
− by a factor of βset = 0.2 and distributing the total reduced frequency

to OTUs in Sset
+ in proportion to their original frequencies in πi. We then replaced πi by

(1−Xset
i )πi +Xset

i πset
i , to be used in Step 3.

To account for a sample-level confounder Xsam
ij , we first sampled Xsam

ij from a Bernoulli

distribution with parameter (0.2 − 0.1Xtrait
ij ). We then uniformly sampled 428 OTUs to be

associated with the covariate, and randomly partitioned them into two equal-size subsets Ssam
−

and Ssam
+ . We then constructed πsam

ij by modifying πij in the same way that πset
i was modified

from πi, but with a factor of βsam = 0.5. We then replaced πij by (1−Xsam
ij )πij +Xsam

ij πsam
ij .

The resulting values were used in Step 5.

Finally, to account for an interaction between a set-level covariate and the trait, we

sampled a third set of OTUs (a random sample of 428 OTUs under S1 and the top 1-5 and

11-15 most abundant OTUs under S2) to be associated with the interaction, and randomly

partitioned them into two equal-size subsets Sint
− and Sint

+ . Then, when both Xset
i = 1 and

Xtrait
ij = 1, we further modified πij by reducing the frequency of OTUs in Sint

− by a factor

βint and then distributing this extra mass to Sint
+ in proportion to the OTU frequencies in

πij. The resulting values of πij were then used in Step 5. Note that whenever we included

an interaction term like this, the main effect of Xset
i (βset = 0.2) and Xtrait

ij (β = 0.5) was

also included as described previously.

We evaluated the performance of different strategies and methods in seven scenarios

of matched-set data: (1) matched-pair data, (2) unbalanced data, (3) matched-pair data

with a sample-level confounder, (4) matched-pair data with a set-level covariate, (5) unbal-
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anced data with a set-level covariate, (6) matched-pair data with a continuous trait, and

(7) matched-pair data with an interaction effect. To facilitate comparison across scenar-

ios, the same sets of causal OTUs (Strait
− , Strait

+ ) and covariate-associated OTUs (Sset
− , Sset

+ ),

(Ssam
− , Ssam

+ ) and (Sint
− , Sint

+ ) (if called for), were used for all scenarios. For each scenario

except (2), (5) and (6), we generated data for 50 1:1 matched pairs (with a binary trait); for

scenarios (2) and (5) with unbalanced data we generated data for 25 1:1 matched pairs and

25 1:2 matched sets (with a binary trait); for scenario (6), we generated data for 50 matched

pairs with a continuous trait.

We also explored various 1:m matched study designs to assess the performance under

varying conditions. First, we compared the design that collected 50 1:1 matched pairs

with the design that collected 50:50 independent case-control samples (first simulating pairs

and then selecting only one sample from each pair), over varying values for the within-set

heterogeneity θ2. Second, we compared different 1:m matched-set designs with a fixed total

of 90 samples. Specifically, we considered m = 1, 2, 4, and 5 and collected 45 1:1 pairs, 30

1:2 sets, 18 1:4 sets, and 15 1:5 sets, respectively, to form each dataset. We also considered

m = 3 and collected 22 of 1:3 sets and 1 pair (to meet the total sample size 90) for the 1:3

design. Lastly, we compared different 1:m (m = 1, 2, 3, 4, 5) designs when fixing the total

number of sets to 50.

We applied PERMANOVA (implemented in both permanovaFL and adonis2) and the

LDM with the proposed strategy (adjusting for the set ID and sample-level covariates if

present, not adjusting for set-level covariates, and performing restricted permutation within

sets). PERMANOVA tests were calculated using the Bray-Curtis distance unless otherwise

noted. We report LDM results for the omnibus test that combines the test results from

raw frequency (relative abundance) data and arcsin-root-transformed frequency data (Hu

and Satten, 2020). For testing individual OTUs, we compared the LDM with the proposed

strategy to the following alternative methods: LDM without adjusting for the set ID; LDM

without performing restricted permutation; DESeq2 (adjusting for set ID); LMM (applied



19

to arcsin-root-transformed relative abundance data); ZIBR when it is applicable (i.e., for

data with equal number of samples in each set); and the Wilcoxon signed-rank test when it

is applicable (i.e., for matched-pair data). We evaluated the type I error and power for the

community-level (global) test of any microbiome effect at nominal significance level 0.05, and

we assessed empirical sensitivity (proportion of truly associated OTUs that were detected)

and empirical FDR for the OTU tests at a nominal FDR of 10%. Results for type I error

were based on 10000 replicates; all other results were based on 1000 replicates. OTUs having

fewer than 5 non-zero entries were removed before analysis.

2.3.2 Simulation results

Results on type I error for the seven scenarios we considered were summarized in Table

2.1. The results of power, sensitivity, and FDR for the seven scenarios were displayed in

Figures 2.1–2.7, respectively. In all scenarios, our proposed strategy, when applied to either

permanovaFL or the LDM, yielded correct type I error and the highest power compared

to alternative strategies; adonis2 with the proposed strategy produced slightly conservative

type I error and slightly lower power compared to permanovaFL. The LDM using the proposed

strategy always controlled the FDR and achieved the highest sensitivity compared to the

LDM using alternative strategies or DESeq2 when it controlled the FDR or Wilcoxon if it is

applicable. The ZIBR method always yielded highly inflated FDRs. With a binary trait, the

LMM always resulted in conservative FDR and diminished sensitivity compared to the LDM

with the proposed strategy; with a continuous trait, conversely, it led to inflated FDRs.

For (1) the matched-pair data, permanovaFL and the LDM not adjusting for the set ID

produced identical results to their counterparts using the proposed strategy as expected.

Note that p-values from adonis2 were not identical with and without adjustment for set ID,

but the type I error and power (Figure 2.1) of the two strategies were very similar. Here

and for all datasets with a binary case-control trait, the strategy of performing unrestricted

permutation led to conservative type I error and FDR and diminished power and sensitivity
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(Figures 2.1–2.5, 2.7) when applied to permanovaFL and the LDM, but inflated type I error

when applied to adonis2.

For (2) the unbalanced data, the LDM not adjusting for the set ID yielded correct

type I error but diminished power and sensitivity relative to its counterpart that using the

proposed strategy (Figure 2.2). The same pattern can be seen in the results of permanovaFL

and adonis2.

For (3) the matched-pair data with a sample-level confounder, permanovaFL, adonis2,

and the LDM not adjusting for the confounder had inflated type I error (0.063 ∼ 0.080),

indicating that we have indeed induced some confounding effect in the data. In the presence

of such a confounding effect, permanovaFL and the LDM not adjusting for the set ID (even

after adjusting for the confounder) had inflated type I error (0.071 ∼ 0.087). In this case, not

adjusting for the set ID did not just affect the power, but also affected the validity. These

methods with inflated type I error were not included in Figure 2.3. In contrast, adonis2 not

adjusting for the set ID had more conservative type I error than that adjusting for the set

ID (both adjusting for the confounder), so the former had reduced power compared to the

latter.

Our proposed strategy was robust to the presence of set-level covariates. For (4) the

matched-pair data with a set-level covariate, whether or not adjusting for the covariate or

the set ID (i.e., the first three strategies in scenario (4) of Table 2.1) all yielded identical

results when applied to permanovaFL or the LDM, as we have analytically shown. Thus

Figure 2.4 only displayed their results for the proposed strategy. When applied to adonis2,

the three strategies led to slightly different type I error and power. For (5) the unbalanced

data with a set-level covariate, the LDM not adjusting for the set ID generated correct type I

error but diminished power and sensitivity compared to its counterpart that adjusted for the

set ID (both not adjusting for the covariate) (Figure 2.5). Adjusting for the covariate but

not the set ID failed to recover any power or sensitivity, which understored the importance

of adjusting for the set ID. The same pattern can be seen in the results of permanovaFL and
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adonis2.

In the presence of a continuous trait, even in (6) the simplest matched-pair data without

any covariates, permanovaFL, adonis2, and the LDM not adjusting for the set ID all yielded

inflated type I error. The strategy of performing unrestricted permutation led to highly

inflated type I error, which is the opposite of its performance in testing a binary trait.

For testing (7) the interaction in matched-pair data, the strategy of performing unre-

stricted permutation yielded extremely conservative type I error. Figure 2.7 confirmed the

lack of power with unrestricted permutation.

The power and sensitivity of various 1:m matched study designs were contrasted in Fig-

ures 2.8–2.10. Figure 2.8 showed that the matched-pair design always gained substantial

efficiency over an analysis of data from an equivalent number of independent cases and con-

trols over a wide range of θ2 values. Figure 2.9 shows that, with a fixed number of total

samples, maximizing the number of distinct sets (i.e., using 1:1 pairs) rather than increasing

the number of controls per set optimized efficiency. In Figure 2.10, we show that adding more

control samples to each set, while keeping the number of sets fixed, has a relatively small

effect on power and sensitivity; the addition of each successive control sample yielded di-

minishing returns. Taken together, Figures 2.8-2.10 suggest that when data have a matched

structure, a matched analysis outperforms an unmatched analysis and, in general, increasing

the number of controls in a 1:m matched study beyond 1:2 may only result in fairly small

improvements in power and sensitivity.

2.3.3 Analysis of the MsFLASH data

The data for our first example were extracted from the study “Menopause Strategies:

Finding Lasting Answers for Symptoms and Health” (MsFLASH) (Mitchell et al., 2017;

Joffe et al., 2014). This double-blinded, randomized trial enrolled women into one of three-

arms: oral estradiol (arm 1), oral venlafaxine (arm 2) (two commonly used drugs to alleviate

menopausal hot flashes) or placebo (arm 3). To examine the effect of these drugs on the
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vaginal microbiome, 113 vaginal swab samples were collected at baseline (before treatment),

and at weeks 4 and 8 post-treatment. 16S rRNA gene sequencing was performed, and the

results were summarized into 171 OTUs. Specifically, 9 sets (women) in the estradiol arm,

10 in the venlafaxine arm, and 18 in the placebo arm have data from swab samples at all

three visits; one woman in the estradiol arm only provided samples at baseline and week

4. Due to the small sample size, we also considered an enlarged “treatment” group that

combined the estradiol and venlafaxine arms. The ordination plot (Figure 2.11) showed that

the samples from the same woman tended to cluster together.

In each arm, we tested whether the composition of the vaginal microbiome changed

between baseline and week 4, baseline and week 8, and weeks 4 and 8; each of these tests

was based on 1:1 paired data. We also tested the microbiome differences pre- and post-

treatment by comparing baseline and post-treatment (both week 4 and week 8) samples

without differentiating between time since treatment using a 1:2 matched-set design; the

estradiol arm was an exception, as one set had only two samples, resulting in unbalanced

data. We applied the LDM (using the omnibus test) and permanovaFL (using the Bray-

Curtis distance) with the proposed strategy. As a comparison, we also applied DESeq2

(adjusting for the set ID) and the Wilcoxon signed-rank test to 1:1 matched data.

We limited our analysis for each arm to OTUs that were present at least 5 times in each of

the four subsets of samples, which resulted in, for example, 31 OTUs in the venlafaxine arm.

All results were summarized in Table 2.2. Only the comparisons within the venlafaxine arm

yielded some significant p-values (< 0.05). In particular, the LDM generated p-value 0.033

for comparing the baseline and week 4 samples, followed by a smaller p-value 0.0042 for the

baseline and week 8 samples, and then the smallest p-value 0.0003 for the baseline and the

combined week 4 and week 8 samples. These p-values suggested an effect of venlafaxine on

the vaginal microbiome, which was strengthened at week 8 relative to week 4. However, the

differences between week 4 and week 8 were not found to be significant (the LDM p-value

= 0.76). The results of permanovaFL corroborated these conclusions. In the comparison of
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the baseline vs. weeks 4 and 8, the LDM detected four OTUs (Campylobacter, Gardnerella

vaginalis, Porphyromonas, and Aerococcus christensenii) to be differentially abundant at the

nominal FDR 20% (we chose a relatively high nominal FDR because of the small number of

sets), whereas DESeq2 detected none and the Wilcoxon test was not applicable.

Motivated by the likely trend of strengthened effect of venlafaxine over time, we reana-

lyzed the data at weeks 0, 4, and 8 in the venlafaxine arm, treating “week” as a quantitative

variable. However, this analysis yielded less significant global p-values (0.043 by the LDM

and 0.096 by permanovaFL), suggesting that the change in OTU frequencies as a function

of time since treatment initiation is probably non-linear. We also tested whether the effect

of venlafaxine is the same for the five white and four black women (excluding one women in

the “other” race category), i.e., we tested the interaction between week (coded as 0 vs. 4 &

8) and race. The global p-values are 0.44 by the LDM and 0.39 by permanovaFL, suggesting

no racial difference in the effect of vanlafaxine. These non-significant p-values may also be

due to the generally low power for testing interactions.

2.3.4 Analysis of the Alzheimer’s disease data

The data for our second example were generated from a pair-matched study comparing

the gut microbiome of 25 patients with Alzheimer’s disease (AD) and their age- and sex-

matched controls (Vogt et al., 2017). A covariate of particular interest was the APOE ϵ4

genotype, which was coded as carriers (one or two ϵ4 alleles) vs. non-carriers (zero ϵ4 alleles).

APOE ϵ4 genotype is a potential confounder of the association between the gut microbiome

and AD, as it is distributed differently in the AD patients than in the controls (AD: 72%

carriers; control: 20% carriers; p-value<0.001) in the study sample, and has been found to

influence the gut microbiome (Tran et al., 2019). Since matching on APOE ϵ4 genotype

was not used in the study design, it should be adjusted for in the association test. The

microbiome data were summarized into 972 OTUs, of which 723 were present at least 5

times in the study sample and included in our analysis. We applied the same methods as
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those for the MsFLASH data, except we do not report results for the Wilcoxon signed-rank

test, which is not applicable in the presence of a within-pair covariate.

The results were summarized in Table 2.3. Without adjustment of the APOE ϵ4 genotype,

the LDM yielded p-value 0.0001 for testing the community-level association and detected 66

OTUs (at nominal FDR 10%) that were differentially abundant between AD patients and

controls. After adjustment for APOE ϵ4 genotype, the LDM yielded p-value 0.0159 and

detected no OTUs. The results of permanovaFL corroborated this conclusion. These results

suggest that much of the association seen without adjusting for APOE ϵ4 genotype is due

to confounding.

2.4 Discussion

We have developed a novel strategy that extends PERMANOVA (implemented in both

adonis2 and permanovaFL) and the LDM for analyzing matched-set microbiome data, that

can account for complex design features such as unbalanced data, sample-level confounding

covariates, and continuous traits of interest. This strategy corresponds to a specific appli-

cation of PERMANOVA and the LDM, without modifying any of their methodologies. Our

simulations show that the proposed strategy was the most efficient among all strategies we

considered, when applied to either PERMANOVA or the LDM. The LDM was also superior

to existing methods, such as DESeq2 and the Wilcoxon signed-rank test, for testing indi-

vidual OTUs with matched-set data. In addition, our simulation studies suggested that the

1:1 matched-pair study is the most efficient design as it maintains a good balance between

sequencing cost and statistical power.

Our results in analysis of the MsFLASH data did not agree with those reported by Zhao

et al. (Zhao et al., 2018), who found significant effects in the “treated” group only (rather

than the venlafaxine arm). Their method was based on log-ratio-transformed frequency data

and used a pseudo count value of 0.01 for zero count data, which essentially resulted in a
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different hypothesis being tested than that used in our methods. Similarly, we found that

much of the association reported by (Vogt et al., 2017) between AD disease status and the

microbiome may be due to confounding by APOE ϵ4 genotype. This finding emphasizes the

need to develop and use microbiome methods, such as those we have reported here, that can

account for complex design features, like matching with within-set confounding covariates,

that are often found in epidemiological studies involving the microbiome.

Hu and Satten (Hu and Satten, 2020) have shown that for independent case-control

samples, the power of the LDM was sensitive to the OTU data scale, i.e. if untransformed

frequency scale or arcsin-root-transformed data were used. We found (Figure A.1) that

these patterns persisted in the analysis of matched-set data. As a result, we reiterate the

recommendation in Hu and Satten (2020) and use the omnibus test for the LDM, which

corresponds to the minimum of the p-values obtained on the frequency and arcsin-root-

transformed scales.

The strategy we have proposed here is applicable to any matched-set microbiome data

as long as model residuals can be assumed to have an exchangeable correlation structure.

In some settings, longitudinal microbiome data that have time-varying traits (i.e., time, an-

tibiotic intake, or infection) can be reasonably assumed to have an exchangeable correlation

structure. The simple within-cluster permutation approach used here is not valid for other

correlation structures such as the autoregressive model. We are currently developing meth-

ods for analysis of clustered or longitudinal microbiome data having an arbitrary residual

correlation structure.

Our simulation studies showed that matched-set sampling, when available, can result in a

substantial increase in power to detect global associations and sensitivity to detect individual

OTUs when our approach is used. This is presumably because the overdispersion parameter

for the matched data is smaller than it is for independent data sampled from the same

population. In the independent data sample, the overdispersion parameter describing each

observation is effectively the sum of the between- and within-set heterogeneity parameters (θ1
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and θ2 in our simulations). In the matched data, the between-set heterogeneity (represented

by θ1 in our simulations) is effectively conditioned out. Thus, we expect the advantage of a

matched analysis over an unmatched analysis to increase as the between-set heterogeneity

increases. Presumably when the within-set heterogeneity is large compared to the between-

set heterogeneity, a matched analysis would have a smaller advantage.

2.5 Conclusions

We proposed a new strategy, i.e., including set indicator variables as covariates and

permuting within sets, that can be used with both PERMANOVA and the LDM for analyzing

matched-set microbiome data. These methods not only have superior performance than

existing methods but can also handle many complex design features in matched-set studies

such as unequal set sizes, within-set confounding covariates, and continuous traits of interest.

Given the availability of proper analytical tools, future microbiome studies should preferably

adopt the matched-set design to enjoy its good power as the large microbiome heterogeneity

as well as most confounding factors between sets (e.g., individuals) are conditioned out.
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Table 2.1: Type I error for testing the community-level hypothesis at level 0.05
Scenario and Analysis Strategy permanovaFL adonis2 LDM

(1) Matched-pair data
Proposed 0.0491 0.0450 0.0479
Not adjusting for ID 0.0491 0.0441 0.0479
Unrestricted permutation 0.0024 0.0855 0.0169

(2) Unbalanced data
Proposed 0.0471 0.0434 0.0505
Not adjusting for ID 0.0501 0.0456 0.0500
Unrestricted permutation 0.0039 0.0732 0.0280

(3) Matched-pair data with a sample-level confounder Xsam

Proposed 0.0452 0.0429 0.0476
Not adjusting for Xsam 0.0688 0.0631 0.0800
Not adjusting for ID 0.0713 0.0328 0.0872
Unrestricted permutation 0.0016 0.0810 0.0163

(4) Matched-pair data with a set-level covariate Xset

Proposed 0.0510 0.0433 0.0481
Not adjusting for ID 0.0510 0.0451 0.0481
Not adjusting for ID, adjusting for Xset 0.0510 0.0450 0.0481
Unrestricted permutation 0.0021 0.0874 0.0162

(5) Unbalanced data with a set-level covariate Xset

Proposed 0.0479 0.0444 0.0480
Not adjusting for ID 0.0496 0.0446 0.0483
Not adjusting for ID, adjusting for Xset 0.0489 0.0445 0.0489
Unrestricted permutation 0.0048 0.0736 0.0257

(6) Matched-pair data with a continuous trait
Proposed 0.0505 0.044 0.0461
Not adjusting for ID 0.0677 0.0612 0.0881
Unrestricted permutation 0.190 0.906 0.994

(7) Matched-pair data with an interaction effect
Proposed 0.0524 0.0295 0.0536
Unrestricted permutation 0 0.0977 0

For each of the seven scenarios, results for three or four analysis strategies are presented.
First in each scenario is the “Proposed” strategy that adjusts for the set ID indicators and
sample-level covariates (if present), does not adjust for set-level covariates (if present), and
performs restricted permutation within sets. Each alternative strategy is described by its
difference from the proposed strategy; for example, “Unrestricted permutation” maintains
all the elements of the proposed strategy except for replacing the recommended within-set
permutation with an unrestricted permutation.
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Table 2.2: Results in analysis of the MsFLASH data
P -values for testing the Number of OTUs

community-level hypothesis detected at FDR 20%
Arm T1 T2 n-set n-sam permanovaFL LDM Wilcoxon DESeq2 LDM
Estradiol 0 4 10 20 0.26 0.25 0 0 0

0 8 10 19 0.32 0.52 0 0 0
0 4 & 8 10 29 0.26 0.32 NA 2 0
4 8 10 19 0.23 0.27 0 0 0

Venlafaxine 0 4 10 20 0.1 0.033 0 0 0
0 8 10 20 0.01 0.0042 0 0 0
0 4 & 8 10 30 0.0022 0.0003 NA 0 4
4 8 10 20 0.72 0.76 0 0 0

Placebo 0 4 18 36 0.99 0.97 0 0 0
0 8 18 36 0.77 0.74 0 0 0
0 4 & 8 18 54 0.96 0.86 NA 1 0
4 8 18 36 0.6 0.59 0 0 0

Treated 0 4 20 40 0.6 0.61 0 0 0
(estradiol+ 0 8 20 39 0.16 0.35 0 0 0
venlafaxine) 0 4 & 8 20 59 0.26 0.31 NA 0 0

4 8 20 39 0.18 0.18 0 0 0

T1 and T2: the time points between which the samples were compared; 0: the baseline; 4
& 8: week 4 and week 8 after treatment. n-set and n-sam: number of sets (women) and
number of samples involved in each analysis. NA: the Wilcoxon test was not applicable.

Table 2.3: Results in analysis of the Alzheimer’s disease (AD) data
P -value for testing the Number of OTUs

communitye-level hypothesis detected at FDR 10%
permanovaFL LDM DESeq2 LDM

Without adjustment of APOE 0.0001 0.0001 168 66
With adjustment of APOE 0.0069 0.0159 66 0
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Figure 2.1: Simulation results for the matched-pair data of scenario (1). “Free” means
unrestricted permutation; “no ID” means not adjusting for the set ID. Because the LDM
and permanovaFL gave identical results with and without adjustment for set ID indicators,
only results using the proposed strategy for these two methods are shown here. adonis2

with unrestricted permutation had inflated type I error in all scenarios we examined and is
therefore not shown in subsequent figures that display power or sensitivity.
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Figure 2.2: Simulation results for the unbalanced data of scenario (2).
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Figure 2.3: Simulation results for the matched-pair data with a sample-level confounding
covariate of scenario (3). “no ID” means not adjusting for the set ID but adjusting for the
confounder in this scenario. The LDM and permanovaFL with the “no ID” strategy had
inflated type I error and thus are not shown.
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Figure 2.4: Simulation results for the matched-pair data with a set-level confounding covari-
ate of scenario (4). “no ID” means not adjusting for the set ID (second strategy in scenario
(4) of Table 2.1); “no ID, cov” means not adjusting for the set ID but adjusting for the
covariate Xset (third strategy). The LDM and permanovaFL with “no ID” or “no ID, cov”
had identical results as their counterparts with the proposed strategy and are thus not shown
here.
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Figure 2.5: Simulation results for the unbalanced data with a set-level covariate of scenario
(5). “no ID” means not adjusting for the set ID (second strategy in scenario (5) of Table 2.1).
The power and sensitivity of methods using the strategy not adjusting for ID but adjusting
for Xset (third strategy) are very similar to the power and sensitivity of their counterparts
using the “no ID” strategy; thus only the latter is shown.
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Figure 2.6: Simulation results for the matched-pair data with a continuous trait of scenario
(6). The other strategies all led to inflated type I error, and are thus not shown here.
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Figure 2.7: Simulation results for scenario (7) testing an interaction between a (set-level)
group variable and a (sample-level) trait variable in matched-pair data.
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Figure 2.8: Comparing the matched-pair design (solid lines) with the independent case-
control design (dashed lines) over varying sample-level heterogeneity θ2. The effect size β
was set to 0.1 (S1, power), 0.25 (S2, power), 0.8 (S1, sensitivity), and 0.6 (S2, sensitivity).
All simulations shown here use between-set heterogeneity parameter θ1 = 0.02.
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Figure 2.9: Comparing various 1:m matched-set designs with a fixed number (90) of total
samples. The effect size β was set to 0.12 (S1, power), 0.22 (S2, power), 0.5 (S1, sensitiv-
ity), and 0.46 (S2, sensitivity). All simulations shown here use between-set heterogeneity
parameter θ1 = 0.02 and within-set heterogeneity parameter θ2 = 0.007.
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Figure 2.11: Ordination plots for the MsFLASH data. The texts above the symbols are the
set IDs. The plot entitled “All sets” show the original ordination. The three plots entitled
“Estradiol”, “Venlafaxine”, and “Placebo” show the stratified ordination by the three arms
for the sake of clarity (using the same coordinates as in the plot entitled “All sets”).
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Chapter 3

Integrative analysis of relative
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3.1 Introduction

LDMwas initially developed for taxon data at the relative abundance scale and the arcsin-

root-transformed relative abundance scale (which is variance-stabilizing for Multinomial and

Dirichlet-Multinomial count data), and also offered an omnibus test that combined the results

of the two taxon scales (Hu and Satten, 2020). We have shown that LDM applied to the

untransformed data worked better when associated taxa were abundant and LDM applied to

the transformed data worked better when associated taxa were less abundant. More recently,

we made an extension of LDM for analyzing data at the presence-absence scale (Hu, Lane

and Satten, 2021), which accounted for variability of library size by a rarefaction-based yet

non-stochastic approach that evaluated the expected LDM test statistic over all rarefaction

replicates. We found that the presence-absence analysis performed better than the relative-

abundance-based analysis when associated taxa were more rare. These results motivated us

to develop a new omnibus test for LDM that combines results from all three taxon scales.

Here, we present such an omnibus test at both the community level and the individual taxon

level.

3.2 Methods

3.2.1 Taxon-level omnibus test

It is straightforward to construct an LDM omnibus test for each taxon. LDM-omni,

the omnibus test in Hu and Satten (2020), used the minimum of the p-values obtained

from analyzing the frequency (i.e., relative abundance) data and the arcsin-root-transformed

data at each taxon as the final test statistic, and used the corresponding minima from the

permutation replicates to simulate the null distribution. Now we expand the test statistic to

include the p-value from the presence-absence analysis in the calculation of the minimum at

each taxon. As in Hu and Satten (2020), we apply Sandve’s (Sandve et al., 2011) sequential
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Monte-Carlo multiple-testing procedure to make discoveries with FDR control. We refer to

the new omnibus test as LDM-omni3 with “3” indicates the “three” taxon scales.

Both LDM-omni and LDM-omni3 combine different scales of data at the p-value level. A

completely different way to combine data would be to combine two separate lists of discover-

ies, each preserving FDR at some level, so that the combined list of discoveries controls the

overall FDR. Kim et al. (2018) gave such a method; thus, we will compare LDM-omni3 to

Kim et al.’s method that combines the discovery lists of LDM-omni and the presence-absence

analysis, each using half of the overall nominal FDR. We denote this test by LDM-omni-Kim.

3.2.2 Community-level omnibus test

A community-level (global) version of LDM-omni3 could easily be constructed in the

same way that LDM-omni combined information across the frequency and arcsin-root scales

(Hu and Satten, 2020), by calculating an overall F -statistic (and corresponding p-value) for

each scale (frequency, arcsin-root and, new for LDM-omni3, presence-absence) and choosing

the scale with the minimum p-value. However, we also want to construct a global test that

allows using the best scale at each taxon. Thus, we consider various p-value combination

methods to combine the taxon-level LDM-omni3 p-values into a statistic we could add to

the global LDM-omni3 test; we initially considered the minimum p-value over taxa, as well

as the Cauchy (Liu and Xie, 2020), Harmonic-mean (HM) (Wilson, 2019a), Fisher’s, and

Stouffer’s methods.

An immediate problem in combining permutation p-values calculated using B replicate

datasets is that the p-values have the minimum achievable value 1/(B + 1) (Besag and Clif-

ford, 1991) and thus cannot well estimate the tail probability of the test statistic (Phipson

and Smyth, 2010). This can greatly diminish the power of most p-value combination meth-

ods, which highly depend on the smallest p-values. To overcome this, we propose to apply

the combination method to the “analytical” p-value, which is the tail probability of the F -

statistic for each taxon compared to the corresponding F distribution. While the F statistics
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for many taxa follow the F distribution, others tend to have smaller empirical variances, in

which case we scale the F statistics to have the expected variance of the F distribution. We

then calculate the taxon-level “analytic” p-value for each scale of data, take the minimum

of the p-values corresponding to the three scales, and combine these minimum “analytic”

p-values across taxa using a p-value combination method. It is important to note here that

the “analytic” p-values are not used as real p-values but rather a transformation of the

taxon-level F -statistic to an appropriate scale for combining. The resulting statistic of a

p-value combination method is assessed for significance using the permutation replicates.

For our new global LDM-omni3 test, we choose to add global tests that are based on the

HM and Fisher’s p-value combination methods; motivation for this choice can be found in

Text S1. Thus, the global LDM-omni3 test statistic is calculated as

Tomni3 = min{ pfreq, parcsin, pPA, pHM, pFisher },

where pfreq, parcsin, and pPA are the permutation p-values of the global F -statistics at the

frequency, arcsin-root and presence-absence scales as described in Hu and Satten (2020); Hu,

Lane and Satten (2021), while pHM and pFisher are the permutation p-values of the HM and

Fisher’s combinations of the “analytic” p-values. The significance of Tomni3 is determined by

permutation. We note that, by adding p-value combination tests to LDM-omni3, we increase

the consistency of the taxon-level and global tests, because the taxon-level LDM-omni test

in Hu and Satten (2020) reports results at the scale having the smallest p-value for that

taxon, while the global LDM-omni test in Hu and Satten (2020), like pfreq, parcsin, and pPA,

is calculated using the same scale at every taxon. Finally, note that any requirement on

independence of p-values when computing p-value combination tests is irrelevant here as

inference is based on permutation.
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3.3 Results

3.3.1 Simulation studies

Our simulations were based on the Dirichlet-Multinomial model and data on 856 taxa

of the upper-respiratory-tract (URT) microbiome (Charlson et al., 2010), both of which

were also used by the LDM paper (Hu and Satten, 2020). We selected five different sets

of taxa to be associated with a binary or continuous trait. Ordering taxa by decreasing

relative abundance, these sets are: (S1) taxa 1-10, (S2) taxa 11–50, (S3) taxa 51–200, (S4)

taxa 3–5 and 11–50, and (S5) taxa 3–5 and 51–200. By design, the taxa in S1, S2, and

S3 were abundant, less abundant, and relatively rare, respectively, and those in S4 and S5

were mixtures of these taxa. For each set of taxa, we considered two models for generating

associations with the trait. Briefly, in Model 1, we assumed a binary trait and used different

frequencies at associated taxa to simulate read count data for samples with different trait

levels; in Model 2, we assumed a continuous trait and related it to associated taxa through a

weighted sum of their frequencies. More detail is provided in Text S2. While Model 1 tended

to create strong associations at a few taxa, Model 2 tended to simulate weak associations

for all associated taxa (although the abundant taxa generally had a higher impact).

For testing individual taxa, we compared LDM-omni3 to LDM-omni and LDM-omni-

Kim at the nominal FDR of 10%. To gain more insights into the relative performance of

the three taxon scales, we considered the results of LDM applied to each single scale of data

and call them LDM-freq, LDM-arcsin, and LDM-PA. For testing the global association,

we again compared LDM-omni3 to LDM-omni. Because LDM-omni3 combined results of

the five global tests, we also considered their results separately and call them LDM-freq,

LDM-arcsin, LDM-PA, LDM-HM, and LDM-Fisher.

Figure 3.1 shows the results of sensitivity of taxon-specific tests and power of the global

test for all methods across all ten scenarios. Note that all methods controlled the FDR or

type I error (Figure B.1). For testing individual taxa, LDM-freq, LDM-arcsin, and LDM-PA
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Figure 3.1: The scaled sensitivity and scaled power values were ratios against the largest
value of all methods in each scenario. All results were based on 1000 replicates of data.
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each performed well in some scenarios but poorly in others, whereas LDM-omni3 achieved

good sensitivity across all scenarios and often tracked the best-performing scale. LDM-omni3

outperformed LDM-omni-Kim in all scenarios. LDM-omni3 yielded higher and sometimes

much higher sensitivity over LDM-omni when the presence-absence analysis worked well

(e.g., S2–S3 in Model 1) and lost only a small amount of sensitivity otherwise. The results

at the global level showed a very similar pattern. The five tests that were components of the

global LDM-omni3 test each performed well in some scenarios but poorly in others, whereas

the global LDM-omni3 test achieved good power across all scenarios. When LDM-omni3

gained power over LDM-omni, the power gain can be as large as 200% (e.g., S3 and S5 in

Model 1); when LDM-omni3 lost power to LDM-omni, the lost was usually small.

3.3.2 Testing Association in the URT microbiome dataset

We tested the association of the URT microbiome with smoking status in the data of

Charlson et al. (Charlson et al., 2010), controlling for potential confounders gender and

antibiotic use. More details on the dataset and the pre-processing procedures used can be

found in Hu and Satten (2020). For testing the global association, LDM-freq, LDM-arcsin,

LDM-PA, LDM-HM, and LDM-Fisher yielded p-values 0.0077, 0.00060, 0.0075, 0.020, and

0.011, respectively. LDM-omni3 yielded the second smallest p-value 0.0018, which tracked

the best-performing LDM-arcsin test. In this case, when LDM-freq and LDM-arcsin worked

exceptionally well, it was not surprising that LDM-omni generated the small p-value of

0.00090.

At the OTU level, LDM-freq, LDM-arcsin, and LDM-PA detected 4, 14, and 3 OTUs,

respectively, that had significant associations with smoking at nominal FDR 10%. LDM-

omni3 yielded 7 detections, which included two novel OTUs compared to the 5 detections

by LDM-omni. One novel OTU (OTU 411) was only detected by LDM-PA. This OTU was

present in 8 smokers only and absent in all others (p = 0.0012 by Fisher’s exact test), con-

firming a strong association of the presence-absence data with smoking status. In contrast,
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the relative abundance data did not show much difference except for two smokers with fairly

high values, although the difference was more pronounced on the arcsin-root scale (Figure

B.2). The other novel OTU, OTU 3954, was detected by both LDM-PA and LDM-arcsin

but the latter q-value was just at the boundary of the FDR threshold. This OTU was

absent in 6 smokers (p = 0.0075 by Fisher’s), also confirming a strong association at the

presence-absence scale.

3.4 Conclusion

We proposed a new omnibus test within the LDM framework. In our simulations, at

both the global and taxon levels, the new omnibus test tended to perform better than the

initial omnibus test that was currently implemented in the LDM, especially in situations

when many rare taxa were strongly associated with the covariate of interest. In the real data

application, the new omnibus test made two novel detections of associated OTUs because

their associations were mostly at the presence-absence scale. In summary, our new omnibus

test improved over the old omnibus test. The proposed test has now been added to the LDM

package, which is available on GitHub at https://github.com/yijuanhu/LDM. It involves

little extra computational cost as the permutation replicates are already available.
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Chapter 4

Estimating a Variance-Covariance

Matrix with Incomplete Data
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4.1 Introduction

In this article, we developed a new non-parametric method to estimate positive semi-

definite variance-covariance for longitudinal data with a wide range of missingness patterns.

In the methods section, we describe our algorithm and its variations in 3 more complex

scenarios. In the results section, we present the simulation studies and a real microbiome

longitudinal dataset that we use to assess the performance of the proposed method. We

conclude with a discussion section.

4.2 Methods

Suppose that for N observations we can observe up to J potentially correlated values, and

wish to calculate the J×J variance-covariance matrix. We assume that when an observation

has incomplete data, we know which of the J possible values are observed. We store the

data in a n× J data matrix Y . The data from the ith cluster are thus in the ith row of Y ,

denoted by the row vector Yi·.

It is possible to construct a version of the variance-covariance matrix element-by-element,

by computing the (j, j′)th element using all pairs of data having both observations j and j′.

This matrix may not be positive semi-definite, so a new solution is required. Further, the

nearest positive semi-definite matrix has as many zeroes as there are negative eigenvalues

in the all-pairs variance-covariance estimator. Thus, we seek an estimator that utilizes the

structure of the missing data problem.

4.2.1 An Estimator for Incomplete Data

Suppose that we observe K patterns of missingness. For example, if some clusters have

5 members and some have 4 members that are all missing observation 3, then there are 2

patterns of missingness. For the kth missingness pattern, let mk denote the number of values

we observe. Let Dk be the mk × J matrix where the rth row has all zero values except for
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a 1 in the column corresponding to the value of j for the rth value. For the example just

described, D1 is the 5× 5 identity matrix, and

D2 =



1 0 0 0 0

0 1 0 0 0

0 0 0 1 0

0 0 0 0 1


.

We let

Σ̂k =
1

Nk

∑
i∈Sk

(
DkY

T
i· − µk

) (
Dk Y

T
i· − µk

)T

=
1

Nk

∑
i∈Sk

(
DkY

T
i· − µk

) (
Yi·DT

k − µT
k

)
,

so that Σ̂k is the mk × mk variance-covariance matrix of observed values calculated using

only observations having the kth missingness pattern. We choose µk to be the means of the

observations in the kth missingness pattern.

Define the L2 matrix loss function

L2(V, {Σ̂k, k = 1, · · · , K}) =
K∑
k=1

wk

∣∣∣∣∣∣Σ̂kV
−1
k − Imk

∣∣∣∣∣∣2
F
, (1)

where V is the J × J variance-covariance matrix for all elements, and

Vk = DkVDT
k ,

is the restriction of V to the elements observed in pattern k, and where wk = Nk

N
. This

choice of wk is an attempt to achieve some efficiency.

We seek to estimate V by minimizing the L2 matrix loss function (1). An alternative

estimator would minimize the Stein loss function that is frequently used for these kinds of
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problems, namely

LS(V, {Σ̂k, k = 1, · · · , K}) =
K∑
k=1

wk

{
Tr

(
Σ̂kV

−1
k

)
− ln

[
det

(
Σ̂kV

−1
k

)]}
, (1a)

where we note this loss function is intimately connected to the Normal.

4.2.2 Parameterization

Even though each Σ̂k is positive semi-definite, the minimizer of (1) is not guaranteed to

be positive semidefinite. Thus, we must constrain the solution to consider only positive

semidefinite matrices. To do this, we parameterize V using the Cholesky factorization, in

which write

V = LLT ,

where L is a lower triangular matrix. For V to be positive definite, the diagonal elements of L

must all be> 0. The elements of L that are in the lower triangle are not constrained. For the

example considered above, with clusters having a maximum size of 5, this parameterization

would be:

L =



x1 0 0 0 0

x6 x2 0 0 0

x7 x10 x3 0 0

x8 x11 x13 x4 0

x9 x12 x14 x15 x5


,

and we optimize (1) w.r.t. x = (x1, · · · , x15).

With this parameterization, it is possible to minimize (1) over positive definite matrices.

We calculate the exact derivatives of (1) w.r.t. the parameters in V to take advantage of the

convexity of the loss functions.
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4.2.3 Convexity

We take advantage of the convexity of the objective functions we want to optimize.

The convexity of L2 or Stein loss functions with respect to parameters are verified both

theoretically and numerically. Firstly, the operations of matrix multiplication, determination

are convex. Then, Nordström (2010) proved convexity for Tr(C−1D) as long as C is positive

definite and D is positive semi-definite, which are the cases for Σ̂k and V −1
k in the Stein loss

function. Since the composition of two convex functions is convex, the convexity of L2/Stein

loss function with respect to each parameter is established.

Leveraging loss function convexity, and manually-calculated loss function derivatives (de-

tails in Appendix), we are able to find global optimum quickly, avoiding the common speed

problem due to large number of iterations before converge.

4.2.4 Different scenarios of rank and constraint

4.2.4.1 Stratum 0 (Full Data Stratum), Constraints, and Choice of Parameters

We first consider stratum 0 (the full data stratum) and consider the possible combina-

tions of (1) the rank of Σ̂0 and (2) the existence of known constraints when choosing our

parameters.

In general, we choose to parameterize Ṽ (the expected variance-covariance matrix given

V ) since this matrix typically has full rank.

If there are no constraints, then V = V0 = V (V is the variance-covariance matrix that

describes the full data, in the absence of any constraints. Not estimable in the presence of

constraints) and we could choose the parameterization V = LLT . However, to handle the

k = 0 case in the same way as the the other strata, as well as to seamlessly allow for presence

of constraints, we parameterize V in the basis U (even when this is not necessary).

Case 1. We consider first the case where Σ̂0 has full rank. Then, we can model Ṽ as

a rank J matrix and write
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Ṽ = LLT .

We then choose vec(L) to be the parameter vector. As usual, we can recover V by writing

V = UṼ UT ,

which also gives our usual equation

Ṽ = UTV U.

These last results are all equivalent as U has full rank (and is square) in this case.

Case 2. If there are no known constraints, but Σ̂0 has rank m0 < J , then we believe the

dimished rank is due to having too few observations in the full-data stratum. The notation

in this case is a bit complex since the ’true’ variance-covariance should have rank J but we

need a rank m0 object to compare to Σ̂0. To be consistent with other cases, we parameterize

a full rank version of Ṽ which we will call Ṽfull

Ṽfull = LLT ,

and choose vec(L) to be the parameter vector. To connect with the quantities we need for

the objective function, we let Ufull be the matrix having all the eigenvectors of Σ̂0 (including

those having eigenvalue 0), and then take

Vfull = UfullṼfullU
T
full,

where V is the full-rank target matrix. We now want the part of Vfull that can be represented

by the columns of U = U0 which we recall is the J×m0matrix that only has the eigenvectors

of Σ̂0 that have nonzero eigenvalue. Thus, we write
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Ṽ = UTVfullU = UTUfullṼfullU
T
fullU.

It is easy to show that if both Ufull and U order their columns by decreasing values of the

corresponding eigenvalues (this is the default) then UTUfull is the m0 × J matrix given by

UTUfull = (Im0×m0 , 0J−m0×J−m0) ,

so that (to borrow notation from R)

Ṽ = Ṽfull[1 : m0, 1 : m0],

i.e., Ṽ is the (1,1) block of Ṽfull comprising the first m0 rows and columns.

Note that in this case, it is possible that estimation of the full-rank target V will not be

possible, given the observed patterns of missingness. In this case, if after estimating V we

find that it is not full rank, we may want to find the eigenvectors of eigenvalue 0, and then

use these to impose constraints so that we only estimate identifiable parameters. We will

have to gain some experience in this situation before making a definitive recommendation.

Case 3. If there are known constraints, but Σ̂0 attains its full rank (subject to con-

straints), we can only estimate

V = (I − C0)V(I − C0)
T .

Thus, we will not be able to estimate the full matrix V in the presence of constraints. Further,

V will not have full rank, and this in this situation we could not use V = LLT since V is

not positive-definite.

However, if we know that Σ̂0 has its maximum rank (i.e., if the rank of Σ̂0 is J−rank(C0))

then we can choose U0 to be the matrix having columns given by the eigenvectors of Σ̂0 that

have non-zero eigenvalue. Then, as before, we write
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Ṽ = UT Σ̂U,

and then write

Ṽ = LLT ,

and choose vec(L) to be the parameter vector.

Case 4. If there are known constrains and Σ̂0 is itself rank-deficient (e.g. due to the

full data stratum having insufficient data to estimate Σ̂0 properly) then we must be careful

when we construct U . In this situation, we must augment U so that it has J−rank(C0)

columns, but we must ensure that none of the columns of U corresponds to a direction that

is prohibited by the constraints.

The easiest way to do this is to let U be the matrix whose columns are the eigenvectors of

Σ̂0 having eigenvalue 0; then form the matrix C = (I−C0)U which projects off the constraints

from the columns of U; then take the SVD of C and then augment the columns of U with the

right singular vectors of C that correspond to nonzero singular values. This will give us an

extra set of columns that are linear combinations of the original eigenvectors with eigenvalue

0, but that have no component in the directions prohibited by the constraints.

4.2.4.2 All Other Strata

In the absence of constraints, previous notes already handle the case when Σ̂k is not full

rank as everything is expressed in terms of the Uks.

In the presence of constraints, all that is needed is to replace Dk by Dk = (I − Ck)Dk,

i.e. to apply the constraints to the expected value matrices Vk.
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4.3 Results

4.3.1 Simulation and real data analysis

To generate our simulation data, we used a motivating dataset collected by Cox et al

(Cox MJ, 2017), i.e., OTU data of the non-cystic fibrosis (CF) bronchiectasis microbiome in

sputum. Specifically, 16S rRNA gene sequencing of the sputum microbiota was successful

for 381 samples from 76 patients, resulting in 352 OTUs. The patients were followed for six

months, with up to 9 measurements in the duration, accompanied with exacerbation con-

ditions. Before analyzing the data, we removed the exacerbation measurements in between

visits, removed the exacerbation measurements if the normal measurements were not missing

for the same visit, resulting in 7 time points. Our goal is to estimate the variance-covariance

matrix of the 7 time points on OTU relative abundance. We focused on analyzing the most

abundant OTU. We also treated 0 OTU abundance as missing, removed samples with only

1 available observation, , resulting in 41 samples, 24 missingness patterns in total.

To simulate data, firstly, we applied our method on log-transformed OTU relative abun-

dance to obtain an variance-covariance matrix estimator Σ̂. This variance-covariance matrix

was then used to generate multivariate normal distribution data with mean 0, and the same

missingness patterns of original data was enforced on this simulated data by removing the

correspondent missing values.

We compared our method to the empirical variance-covariance estimator using pair-wise

available observations, under both scenarios where a constraint on the data was or was

not present. To illustrate the major improvement our method provided compared to the

empirical variance-covariance estimator, we focused on comparing the eigenvalues of the

estimated variance-covariance matrix.

The constraints were added to simulation or original data in different ways. Specifically,

for simulation data, we added the constraint that the vector (1,1,1,1,1,1,1) has eigenvalue

0, i.e. replace Σ̂ by Σ̂constr = (I − 11′/7)Σ̂(1 − 11′/7) where Σ̂ is the estimator we get for
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the full data, and then generate multivariate normal data using this Σ̂constr. These data will

naturally have the constraint that they sum to zero. For the original real data, we centered

each observation by its mean over non-missing values.

The results of estimating variance-covariance matrix for simulation and real data are

summarized in Table 4.1 and Table 4.2. For simulation data, when there is no constraint,

the empirical and augmented estimators yielded the same variance-covariance estimate.

When the constraint is present, the empirical estimate has negative eigenvalue, thus is

not positive-semidefinite; while the augmented estimate has all positive eigenvalues, thus

is positive-definite, but not quite agrees with the true variance-covariance which has a

0 eigenvalue because of the constraint; the constrained augmented estimate yields sat-

isfactory results, which agree well with the true variance-covariance matrix’s eigenvalues

(6.23, 4.00, 2.69, 2.24, 0.75, 0.20, 0). We also calculated the Euclidean distance between the

estimator and the true variance-covariance matrix to measure how close the estimate is from

the truth. The Euclidean distance between the truth and the constrained augmented estima-

tor (3.19) is smaller than that between the truth and the empirical estimator using pair-wise

complete observations (4.11, after converting negative eigenvalues to 0), which confirms the

superiority of the constrained augmented estimator. For the real sputum microbiome data,

the empirical estimate always yields negative eigenvalues whether constraint is present or

not, thus is not a qualified variance-covariance estimator. The augmented estimator al-

ways yields positive-definite variance-covariance estimate, and if constraint is present, the

constrained augmented estimator has the satisfactory characteristic of being rank-deficient

(positive-semidefinite).

4.4 Discussion

We have developed a novel nonparametric variance-covariance estimator that is flexi-

ble enough to handle longitudinal data with various missingness patterns and constraints.
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Table 4.1: Results in analysis of the simulation and sputum microbiome data without con-
straint
Data Estimator eigenvalues of the variance-covariance estimator
Simulation pairwise.complete.obs (11.60, 5.51, 3.62, 2.50, 1.64, 0.55, 0.10)

Augmented (11.60, 5.51, 3.62, 2.50, 1.64, 0.55, 0.10)
Sputum microbiome pairwise.complete.obs (25.20, 6.22, 3.97, 2.65, 2.07, 0.57, -0.19)

Augmented (25.20, 6.22, 3.97, 2.65, 2.07, 0.57, 0.19)

Augmented refers to the proposed method using L2 loss function.

Table 4.2: Results in analysis of the simulation and sputum microbiome data with constraint
Data Estimator eigenvalues of the variance-covariance estimator
Simulation pairwise.complete.obs (5.56, 3.23, 2.92, 1.31, 0.63, 0.17, -0.046)

Augmented (5.56, 3.23, 2.92, 1.31, 0.63, 0.17, 0.046)
Augmented and constrained (5.92, 3.65, 2.91, 1.86, 0.62, 0.31 0)

Sputum microbiome pairwise.complete.obs (5.34, 1.59, 1.30, 0.56, 0.16, -0.026, -0.59)
Augmented (5.34, 1.59, 1.30, 0.59, 0.56, 0.16, 0.026)
Augmented and constrained (5.34, 1.59, 1.29, 0.56, 0.16, 0.12, 0)

Augmented refers to the proposed method using L2 loss function. Augmented and con-
strained refers to the proposed method using L2 loss function while the constraint C0 = 11′

was informed to the algorithm.

We have demonstrated with simulation and real datasets that the proposed estimator is ro-

bust and always yields positive-semidefinite variance-covariance estimate, while the empirical

variance-covariance estimate lacks this characteristic when multiple missingness patterns or

constraint are present.

Due to the nonparametric nature of our proposed estimator, it is widely applicable in

modern longitudinal studies that increasingly collect data with complex missingness patterns

or constraint. The proposed method generally leads to variance-covariance estimate that is

close to the truth. As such, it can greatly facilitate analysis of longitudinal studies and other

research work where estimating positive-semidefinite variance-covariance matrix is necessary.
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Appendix A

Appendix for Chapter 2
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Figure A.1: Simulation results for the matched-pair data of scenario (1). The LDM on
frequency scale (freq), arcsin-root transformed frequency scale (arcsin), and the omnibus
test (omni) are shown. permanovaFL based on the Bray-Curtis (BC), weighted UniFrac
(WU), and Hellinger (H) distances are shown. All methods adopted the proposed strategy.
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Appendix B

Appendix for Chapter 3

B.1 Choosing among p-value combination methods

A new feature of LDM-omni3, compared to LDM-omni given in Hu and Satten (2020), is

the use of statistics that aggregate the taxon-level omnibus p-values using a p-value combina-

tion method. The most commonly used p-value combination methods, namely, the minimum

p-value, Cauchy (Liu and Xie, 2020), Harmonic-mean (HM) (Wilson, 2019a), Fisher’s, and

Stouffer’s methods, have a decreasing emphasis on the smallest p-values and an increasing fo-

cus on the proportion of modest to weak signals (Loughin, 2004; Heard and Rubin-Delanchy,

2018) in the order given here. Thus, different methods suit different scenarios; more detail

is provided in Table B.1.

Since each combination method has its own strength, it is desirable to further combine

their results to form our new, omnibus global test. However, in our simulations, we found

that: the Cauchy method always gave almost identical results as the HM method; the mini-

mum p-value method performed uniformly worse than HM; and Stouffer’s method performed

uniformly worse than Fisher’s; these results were shown in Figure B.3. Stouffer’s method

would work better than Fisher’s method when “all nulls are equally false” (Loughin, 2004),

but this is unrealistic in the microbiome setting. As a results, for our new global LDM-omni3
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test, we chose to add global tests that are based on the HM and Fisher’s p-value combination

methods.

Table B.1: P -value combination methods

P -value combination method Test statistic Suitable scenario

Minimum p-value TminP = minj=1,...,J{pj} One strongest signal

Cauchy TCauchy =
∑J

j=1 tan{(0.5− pj)π} A very few strong signals

Harmonic-mean (HM) THM =
∑J

j=1 p
−1
j A very few strong signals

Fisher’s TFisher = −2
∑J

j=1 log(pj) A few strong to moderate signals

Stouffer’s TStouffer =
∑J

j=1Φ
−1(1− pj/2) A large proportion of weak signals

Note: {p1, p2, . . . , pJ} are individual p-values. THM here is the inverse of the usual HM statistic so

that THM has the property of a usual test statistic that a large value corresponds to a stronger

evidence against the null hypothesis. Φ(·) is the standard normal cumulative distribution function.

B.2 Two models for simulating microbiome-trait asso-

ciations

Model 1 with a binary trait was previously considered in the LDM paper (Hu and Satten,

2020). We let Xi denote the trait of sample i and assumed 50 samples with Xi = 1 and

50 with Xi = 0. We let π0 be the vector of taxon frequencies estimated from the upper-

respiratory-tract microbiome data; we assign π0 to samples for which Xi = 0. We derived a

second set of taxon frequencies π1 by first setting π1 = π0 and then randomly permuting the

frequencies in π1 that belonged to the selected set of taxa associated with the trait, which

ensured the same frequencies in π0 and π1 for taxa not selected. We then defined a sample-

specific frequency vector as π̃(Xi|β) = (1−βXi)π0+βXiπ1, where β can be interpreted as the
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effect size of the trait on the overall community composition. The strengths and directions of

the effects of the trait on individual taxa were heterogeneous because the resulting frequencies

at each taxon were characterized not only by β but also by the differences between π0 and π1,

which varied in magnitude and sign at different taxa. Because the frequency distribution was

highly skewed towards zero, this model tended to create strong associations at only a very

few taxa, leaving the majority weakly associated. Finally, we generated the taxon count data

for each sample using the Dirichlet-Multinomial model with mean π̃(Xi|β), overdispersion

0.02, and library size sampled from N(10000, (10000/3)2) and left-truncated at 500.

Model 2 with a continuous trait is similar to the one considered in the MiRKAT paper

(Zhao et al., 2015). We first generated the taxon count data for 100 samples using the same

Dirichlet-Multinomial model as above except for the mean, which was set to π0 here. Define

Ci =
∑

j∈A δjYij/Y j, where Yij was the observed frequency (taxon count divided by library

size) of the jth taxon in the ith sample, Y j was the average frequency for the jth taxon across

samples, δj was randomly drawn with value 1 or −1 with equal probabilities (and fixed across

replicates of data), and A was the set of associated taxa. Note that the direction parameter

δj had fixed value 1 for all j in the simulations reported in Zhao et al. (2015), but was varied

here to ensure (approximately) no association at taxa not selected into A. In part, this

represented our interest in testing individual taxa, which was not considered by Zhao et al.

(2015). Finally, we simulated the continuous trait as Xi = βscale(Ci)+ϵi, where ϵi ∼ N(0, 1)

and scale(.) standardized the input vector to have mean 0 and standard deviation 1. This

model tended to simulate weak associations for all associated taxa, although the abundant

taxa generally had a higher impact.

Prior to analysis, we filtered out taxa that were present in fewer than 5 samples, which

resulted in ∼460 taxa remaining in each simulated dataset. For evaluating sensitivity of

detecting associated taxa, β was set to 0.5 for S1–S5 in Model 1 and 5 for S1–S5 in Model

2. These values were chosen so that the empirical sensitivity values had reached a plateau.

For evaluating power of the global test, β was set to 0.2, 0.3, 0.3, 0.2, and 0.1 for S1–S5,
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respectively, in Model 1 and 0.5, 1, 5, 1, and 5 for S1–S5, respectively, in Model 2. These

values were chosen so that the empirical power for the most powerful method in a scenario

was between 70% and 90%.
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(a) Model 1
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Figure B.1: The gray dashed lines represent the nominal FDR 10% or the nominal type
I error 0.05. The empirical FDR and type I error results were based on 1000 and 10000
replicates of data, respectively.
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Figure B.2: Distributions of the relative abundance data and the arcsin-root-transformed
data of the two taxa, OTU 411 and OTU 3954, that were detected by LDM-omni3 but not
by LDM-omni in analysis of the upper-respiratory-tract microbiome data.
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(a) Model 1
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Figure B.3: The results of LDM-HM, LDM-Fisher, and LDM-omni3 are the same as those in
Figure 2, except that they were scaled against the largest power of the methods considered
here.
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Appendix C

Appendix for Chapter 4

C.1 Derivatives of the Loss Function

C.1.1 Derivatives of the Stein Loss Function

We use the chain rule, first taking derivatives with respect to V , and then using the fact

that V = LDLT , to obtain derivatives respect to each parameters, details can be found in

Appendix.

∂ L

∂xℓ

=
∑
i,j

∂L

∂Vij

∂Vij

∂xℓ

=
∑
i,j

Uij
∂Vij

∂xℓ

where

∂

∂V

∑
k

wk

{
Tr

(
Σ̂kV

−1
k

)
− ln

(
det

[
Σ̂kV

−1
k

])}

=
∑
k

wk D
T
k V

−1
k

{
Vk − Σ̂k

}
V −1
k Dk := U

For the first n elements of x (the diagonals of V ) we then have
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∂ L

∂xℓ

= Dℓ (L
TULT )ℓℓ , 1 ≤ ℓ ≤ J

The remaining elements can be written as

∂ L

∂xℓ

=
∑
i,j

Uij

{
δ [i = i(ℓ)]Dj(ℓ)Ljj(ℓ) + δ [j = i(ℓ)]Di(ℓ)Lii(ℓ)

}

= 2
[
ULD + (ULD)T

]
i(ℓ),j(ℓ)

, J + 1 ≤ ℓ ≤ M

C.1.2 Derivatives of L2 Loss Function

The derivative of the L2 loss function is nearly identical to that of the Stein loss.

∂ ||Σ̂kV
−1
k − I||2

∂V
=

∂ Tr
(
Σ̂kV

−1
k − I

)(
V −1
k Σ̂k − I

)
∂V

= −DT
k V

−1
k Σ̂k

{
Σ̂kV

−1
k − I

}
V −1
k Dk −DT

k V
−1
k

{
V −1
k Σ̂k − I

}
Σ̂kV

−1
k Dk

which is symmetric (note the 2nd term on the RHS is the transpose of the 1st term on

the RHS).
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Rodŕıguez, J., Hazen, T. C. and Alm, E. J. (2016), ‘A novel analysis method for paired-

sample microbial ecology experiments’, PloS one 11(5), e0154804.

O’Reilly, P. F., Hoggart, C. J., Pomyen, Y., Calboli, F. C., Elliott, P., Jarvelin, M.-R. and

Coin, L. J. (2012), ‘MultiPhen: joint model of multiple phenotypes can increase discovery

in GWAS’, PloS One 7(5).



84

Palarea-Albaladejo, J. and Martin-Fernandez, J. A. (2015), ‘zCompositions–R package

for multivariate imputation of left-censored data under a compositional approach’,

Chemometrics and Intelligent Laboratory Systems 143, 85–96.

Park, S. and Lim, J. (2019), ‘Non-asymptotic rate for high-dimensional covariance estimation

with non-independent missing observations’, Statistics Probability Letters 153, 113–123.

Paulson, J. N., Stine, O. C., Bravo, H. C. and Pop, M. (2013), ‘Differential abundance

analysis for microbial marker-gene surveys’, Nature methods 10(12), 1200–1202.

Phipson, B. and Smyth, G. K. (2010), ‘Permutation p-values should never be zero: calcu-

lating exact p-values when permutations are randomly drawn’, Statistical applications in

genetics and molecular biology 9(1).

Pollock, J., Glendinning, L., Wisedchanwet, T. and Watson, M. (2018), ‘The madness of

microbiome: attempting to find consensus ?best practice? for 16s microbiome studies’,

Appl. Environ. Microbiol. 84(7), e02627–17.

Pope, J. L., Tomkovich, S., Yang, Y. and Jobin, C. (2017), ‘Microbiota as a mediator of

cancer progression and therapy’, Translational Research 179, 139–154.

Potter, D. M. (2005), ‘A permutation test for inference in logistic regression with small-and

moderate-sized data sets’, Statistics in medicine 24(5), 693–708.

Relman, D. A. (2012), ‘The human microbiome: ecosystem resilience and health’, Nutrition

reviews 70(suppl 1), S2–S9.

Robinson, M. D., McCarthy, D. J. and Smyth, G. K. (2010), ‘edgeR: a Bioconductor pack-

age for differential expression analysis of digital gene expression data’, Bioinformatics

26(1), 139–140. PMCID: PMC2796818.

Rune Halvorsen, Ø. (2003), ‘Partitioning the variation in a plot-by-species data matrix that

is related to n sets of explanatory variables’, Journal of Vegetation Science 14(5), 693–700.



85

Sampson, J. N., Boca, S. M., Moore, S. C. and Heller, R. (2018), ‘Fwer and fdr control when

testing multiple mediators’, Bioinformatics 34(14), 2418–2424.

Sandve, G. K., Ferkingstad, E. and Nyg̊ard, S. (2011), ‘Sequential monte carlo multiple

testing’, Bioinformatics 27(23), 3235–3241.

Satten, G. A., Kong, M. and Datta, S. (2018), ‘Multisample adjusted u-statistics that account

for confounding covariates’, Statistics in Medicine 37(2), 3357–3372.

Satten, G. A., Tyx, R. E., Rivera, A. J. and Stanfill, S. (2017), ‘Restoring the duality

between principal components of a distance matrix and linear combinations of predictors,

with application to studies of the microbiome’, PloS one 12(1), e0168131.

Schafer, J. L. (1997), Analysis of Incomplete Multivariate Data, CRC Press.

Schulfer, A. F., Schluter, J., Zhang, Y., Brown, Q., Pathmasiri, W., McRitchie, S., Sumner,

S., Li, H., Xavier, J. B. and Blaser, M. J. (2019), ‘The impact of early-life sub-therapeutic

antibiotic treatment (stat) on excessive weight is robust despite transfer of intestinal mi-

crobes’, The ISME journal 13(5), 1280–1292.

Shade, A., Peter, H., Allison, S. D., Baho, D., Berga, M., Bürgmann, H., Huber, D. H.,

Langenheder, S., Lennon, J. T., Martiny, J. B., Matulich, K. L., Schmidt, T. M. and

Handelsman, J. (2012), ‘Fundamentals of microbial community resistance and resilience’,

Frontiers in microbiology 3, 417. PMCID: PMC3525951.

Shi, P. and Li, H. (2017), ‘A model for paired-multinomial data and its application to analysis

of data on a taxonomic tree’, Biometrics 73(4), 1266–1278.

Sohn, M. B. and Li, H. (2019), ‘Compositional mediation analysis for microbiome studies’,

The Annals of Applied Statistics 13(1), 661–681.

Sohn, M. B., Lu, J. and Li, H. (2021), ‘A compositional mediation model for a binary

outcome: Application to microbiome studies’, Bioinformatics .



86
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