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Abstract

Using DNA Methylation Data to Understand the Evolutionary Basis of Human Aging
By Chloe Robins

The evolutionary basis of human biological aging is not yet well understood. The evolutionary
theories of 1) mutation accumulation, 2) antagonistic pleiotropy, and 3) disposable soma provide
possible explanations for existence and evolution of aging. These three theories are not mutually
exclusive, and it is likely that all three play some role in explaining how and why humans age. My
dissertation work increases our understanding of human aging by testing predictions of
evolutionary models in new ways. After reviewing the assumptions, predictions, and past empirical
tests of each theory, I suggested the novel use of DNA methylation data to test previously
unexplored theory predictions related to aging as a lifelong process. DNA methylation patterns are
known to be highly dynamic throughout life and have recently been proposed as a biomarker of
aging. Using DNA methylation data, I specifically tested: 1) whether the heritability of DNA
methylation is consistent with disposable soma or mutation accumulation models; and 2) whether
DNA methylation data support a stochastic aging process implied by the disposable soma model.
The results of both tests suggest that most age-related DNA methylation changes are consistent
with the disposable soma model of aging and may result from random environmental insults and
methylation maintenance and repair errors, while a small number of aging-related changes are
consistent with the mutation accumulation model and may be targeted to mediate the deleterious
age-specific effects of aging genes. This indicates that both the mutation accumulation and
disposable soma models play a role in explaining aging and aging-related changes, but that
disposable soma is more important in understanding the age-related changes of DNA methylation.
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Chapter 1: Introduction

The existence of aging remains a fundamental problem in evolutionary biology.
Biological aging, or senescence, is the functional decline of an organism with age [1]. This
familiar process results in decreased fertility and an increased risk of death, and it is associated
with major decreases in Darwinian fitness [1-3]. Basic evolutionary theory suggests that such a
trait should be opposed by natural selection. Yet, aging is universal within many species
including humans. Aging, therefore, poses a paradox. Given the associated decreases in fitness,
why has aging not been effectively selected against? Why is it that all humans age?

Evolutionary theories have proposed both adaptive and non-adaptive explanations for the
existence of human aging. Major theories include: 1) the theory of mutation accumulation [1],
and 2) the theory of antagonistic pleiotropy [4], with the theory of disposable soma as a special
case [5]. These theories differ in the modes of selection and the types of genes proposed to
underlie aging, but they are not mutually exclusive. Past empirical tests using lifespan as the
measure of senescence have provided support for portions of each theory, suggesting that all
three may play some role in explaining the features and existence of aging. However, the relative
importance of each theory is not yet known. Alternative measures of senescence that are more
reflective of aging as a process may provide additional information for such investigations.

DNA methylation is an epigenetic modification has been recently suggested as a
biomarker of aging [6-8]. Epigenetic modifications are chemical additions to DNA that can alter
gene expression without changing DNA sequence. DNA methylation involves the addition of a
methyl group to a single nucleotide base. In humans, this typically occurs at CpG sites, where

cytosine bases sit directly next to guanine bases [9, 10]. Microarrays allow DNA methylation to



be easily measured at thousands of CpG sites across the genome [11]. Using this technology, the
methylome has been found to be dynamic throughout life, with many studies reporting thousands
of age-associated methylation changes across the genome [12-14]. I hypothesize these changes to
be reflective of the aging process, and suggest DNA methylation data as an innovative measure
against which evolutionary theories of aging can be tested.

My dissertation work aims to increase our understanding of the evolutionary basis of
human aging by testing predictions of mutation accumulation and disposable soma using DNA
methylation data. I use longitudinal and familial DNA methylation data to test theory predictions
at sites across the genome. In Chapter 2, I review the assumptions and predictions of
evolutionary theories of aging, and determine which theory predictions are testable with DNA
methylation data. In Chapter 3, I test whether age-related changes in the heritability of DNA
methylation are consistent with the disposable soma or mutation accumulation models. If DNA
methylation helps mediate the aging process, the theory of mutation accumulation suggests that
the heritability of DNA methylation will increase with age, while the theory of disposable soma
suggests that the heritability of DNA methylation will decrease with age. In Chapter 4, I test
whether DNA methylation data support a stochastic aging process implied by the disposable
soma model. The theory of disposable soma predicts aging to result from stochastic damages. If
age-related changes in DNA methylation are consistent with this prediction, DNA methylation
data will fit a stochastic model where the gains and losses of methyl groups occur at random
throughout the genome rather than at targeted genes or CpG sites. These analyses categorize
CpG sites across the genome as consistent or not consistent with the tested evolutionary theories.
In Chapter 5, I discuss the conclusions drawn from this work, including the relative importance

of the theories of mutation accumulation and disposable soma in explaining the aging process.
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Chapter 2: Testing evolutionary models of senescence: traditional approaches
and future directions
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Introduction

Senescence, or commonly “aging,” is the progressive and general deterioration of an
organism, resulting in decreased fertility and an increased risk of death (Kirkwood 2005;
Medawar 1952; Partridge and Barton 1993). From an evolutionary perspective, it is a challenge
to understand how senescence has evolved despite its associated decreases in Darwinian fitness.
According to basic evolutionary theory, selection acts to maximize Darwinian fitness, and
evolution favors those better able to survive and reproduce. Since the process of aging causes
reductions in Darwinian fitness, or the ability to survive and reproduce, why hasn’t it been more
effectively selected against?

The purpose of this paper is three-fold: 1) review prominent evolutionary explanations
for the existence of aging; 2) discuss the assumptions and predictions of these evolutionary
explanations and the methods and results of previous empirical tests; 3) present new
measurements of senescence that could be used to investigate previously under-explored
predictions.

Throughout this text we use senescence interchangeably with the more common term of
“aging.” Both refer to the biological process of age-dependent decline, and stand in contrast to

chronological aging, or the passage of time.

Evolutionary theories of senescence



Mutation Accumulation

P.B. Medawar developed one of the first evolutionary models of senescence in the 1950s
(Charlesworth 2000; Medawar 1952). His model, now termed the theory of mutation
accumulation (MA), was inspired by observations relating mortality and the strength of selection.

Medawar noticed that in most natural populations, the major cause of death is extrinsic
mortality, or death due to external factors such as starvation, accident and predation (Hughes and
Reynolds 2005; Kirkwood 2005; Medawar 1952; Zwaan 1999). As a result of extrinsic mortality,
the probability of survival decreases with time, and fewer individuals survive to higher ages.
This decline in survival causes older ages to matter increasingly less to lifetime reproductive
success, and makes selection at older ages increasingly powerless (Baudisch 2008a). Put more
simply, Medawar observed that the strength of selection declines with age (Medawar 1952).

To better understand this notion, consider two deleterious mutations with age-specific
effects. Assume that one mutation has a negative effect on fitness early in life, while the other
mutation has a negative effect on fitness late in life. The early-acting mutation will greatly
reduce lifetime reproductive success, and will be strongly selected against. The late-acting
mutation, however, will have a much smaller effect on lifetime reproductive success, as carriers
of this mutation will have already reproduced and transmitted their genes to the next generation.
As aresult, the late-acting deleterious mutation will experience weaker selection, and will be less
effectively removed from the population (Gavrilov and Gavrilova 2002). Huntington’s disease
can be seen as an example of such a phenomenon (Medawar 1952). Huntington’s disease is a
dominant lethal mutation with late onset at approximately 30 to 40 years of age. This late-onset

allows carriers to reproduce before any effects are seen. As a result, Huntington’s disease evades



the full force of selection and remains in the population (Haldane 1941; Medawar 1952; Weinert
and Timiras 2003).

According to Medawar, because the effectiveness of selection diminishes with age, any
mutations that arise in the germline with deleterious late-life effects will only be weakly selected
against. These mutations will remain in the gene pool under mutation-selection balance and
accumulate over many successive generations (Figure 1A). It is this load of deleterious late-
acting mutations that Medawar suggested to cause senescence.

Antagonistic Pleiotropy

In 1957 G.C. Williams built upon Medawar’s MA theory (Williams 1957). He suggested
that deleterious late-acting mutations could be favored by selection and actively kept in the
population if they have beneficial pleiotropic effects. His theory, called the theory of antagonistic
pleiotropy (AP), assumes the existence of a special type of pleiotropic gene with opposite, or
antagonistic, effects at different points in life. That is, a single gene may affect traits that are both
beneficial to fitness early in life and detrimental to fitness late in life, or vice versa. For instance,
a mutation that causes the overproduction of sex hormones may beneficially increase
reproductive success early in life, but also cause cancer and decrease survival late in life
(Gavrilov and Gavrilova 2002). Such genes represent a selective trade-off between their early
life benefits and their late life costs. Williams points out that as a result of the declining strength
of selection with age, the early-life advantages conferred by antagonistically pleiotropic genes
can selectively outweigh accompanying late-life costs (Figure 1B). As a consequence, the active
selection of early life benefits of antagonistically pleiotropic genes is suggested to cause the

accumulation of associated harmful late-life effects and lead to senescence.



Disposable Soma

The AP theory put forth by Williams rests on the idea of an evolutionarily optimized
trade-off between early and late life fitness, or more generally, between longevity and
reproduction. In the 1970s T.B.L. Kirkwood further developed this theory by proposing an
alternative trade-off mechanism for senescence, now termed the disposable soma (DS) theory
(Kirkwood 1977). Kirkwood suggested that because resources are finite, organisms face trade-
offs in the allocation of energy between the biological functions of growth, maintenance, and
reproduction. Any energy that is put towards one function becomes unavailable for another.
Given these trade-offs, selection optimizes energy allocation between functions to maximize
fitness. An evolved limit on the energy allocated towards maintenance is suggested to cause
somatic maintenance and repair mechanisms to be imperfect, and cellular and molecular damage
to accumulate over time (Figure 1C). Accumulation of somatic damage over the lifespan of an
individual is what Kirkwood suggests ultimately causes senescence (Kirkwood 2005).

Many different types of molecular and cellular damage are expected to contribute to
senescence. This is because many different somatic maintenance and repair functions are thought
to require significant amounts of energy and to be affected by energy allocation limits. That is, in
addition to genetic damage, other damage such as telomere erosion, mitochondrial dysfunction,
and epigenetic damage are also expected to contribute to senescence (Campisi and Vijg 2009;
Kirkwood 2005).

Like AP, DS considers aging to be the consequence of the evolutionary optimization of a
general trade-off between longevity and reproduction. For this reason, many regard DS to be a

special case of AP. However, here we will treat DS and AP as related but separate theories, and



will discuss the differences in the proposed trade-off mechanisms and underlying causes of

aging.

Testing evolutionary alternatives

The theories of MA, AP, and DS form the foundation of current thinking on the evolution
of senescence (for further review of these theories see Gavrilov and Gavrilova 2002; Kirkwood
2005; Partridge and Barton 1993). Since these theories are not mutually exclusive, it is possible
that all three play a role in the senescent process. Below we summarize the assumptions and
predictions of the three evolutionary models and the results of previous empirical tests. Table 1
provides a summary of the partially contrasting assumptions and predictions discussed.
Heritability and genetic variation

A major assumption underlying all evolutionary theories of aging is that features of the
aging process, such as age-specific fecundity and lifespan, are both heritable and variable, and
can therefore be modified by natural selection. All three theories discussed here subscribe to this
view, but differ in the manner by which genes control the process of aging and the predicted
patterns of genetic variation in aging-related traits.

Under MA, the heritability of lifespan is predicted to be nonlinear, with increased
lifespan heritability for offspring with longer-lived parents (Figure 2A) (Charlesworth 1994;
Gavrilov and Gavrilova 2002). The equilibrium frequency of deleterious mutations is expected to
increase with the age of mutation action due to a declining strength of selection. As a result of
this increase in mutation frequency, genetic variation and heritability of lifespan are also
predicted to increase with age (Figure 2B) (Charlesworth 1994; Gavrilov and Gavrilova 2002;

Medawar 1952; Partridge and Barton 1993). Evidence for a nonlinear heritability of lifespan has



been found in humans using longevity data from European aristocratic families (Gavrilov and
Gavrilova 2001a; Gavrilov and Gavrilova 2001b; Gavrilova et al. 1998). These studies found
that the correlation between offspring and parental lifespan increased with increasing parental
longevity, as predicted by MA. Data from aristocratic families was chosen to minimize social
and environmental heterogeneity, as the same pattern of increasing heritability could be seen if
those with longer-living parents simply live in more similar environments (Gavrilova et al.
1998). Under this alternative environmental hypothesis, the observed phenotypic variance for
longevity is expected to be smaller for those born to longer-lived parents than those born to
shorter-lived parents. No difference was found in longevity variance for offspring born to longer-
lived parents compared to shorter-lived parents, suggesting that the observed patterns for lifespan
heritability cannot be simply explained by differences in environmental variance (Gavrilova et
al. 1998).

An additional prediction of MA is an age-dependent increase in inbreeding depression
and genetic variance of fitness traits (Charlesworth and Hughes 1996; Hughes et al. 2002;
Moorad and Promislow 2009). Since these measures are proportional to equilibrium allele
frequencies, they are similarly expected to increase with age under MA due to a declining
strength of selection (Charlesworth and Hughes 1996). Quantitative genetic experiments
measuring age-specific fecundity in populations of D. melanogaster have found significant age-
dependent increases in inbreeding depression, as well as additive and dominance genetic
variances, as predicted under MA (Charlesworth and Hughes 1996; Hughes et al. 2002). These
results, while initially thought to uniquely distinguish the role of MA, have also been suggested

to be consistent with AP, confounding study conclusions (Moorad and Promislow 2009).



Unlike MA, AP makes no straightforward predictions about genetic variance (Zwaan
1999). Under different assumptions, AP may produce a wide range of patterns of genetic
variation, from virtually non-existent to a pattern of variation resembling that expected under
MA (Moorad and Promislow 2009). For instance, if the inheritance of a single allele with AP
effects is advantageous to lifetime fitness, selection will drive the allele towards fixation, and
extant genetic variation will be maintained only on the basis of mutational pressure.
Alternatively, AP loci could instead maintain genetic variation through balancing selection if two
alleles with opposite AP effects generate marginal overdominance (i.e. a pattern of heterozygote
advantage when fitness is averaged over lifespan). In this case, because the age-related allelic
effects are not necessarily equal, the dominance effects may change with age. An increase in
dominance effects with age will cause inbreeding depression and additive and dominance genetic
variances to increase. These effects will produce a pattern of genetic variation similar to MA
(Moorad and Promislow 2009). Because a range of allelic effects may exist under AP, it is
difficult to distinguish between the role of MA and AP on the basis of quantitative genetic
experiments. Any result consistent with MA may also be consistent with AP.

All three of the evolutionary theories discussed here suggest senescence to be a polygenic
trait (Kirkwood 1996). Genetic components of senescence have been investigated most
frequently through genetic analyses of longevity. Many of these analyses have taken the form of
genome-wide association studies (GWAS) using case-control methodology, where long-lived
individuals are compared to younger individuals. Surprisingly, these studies have consistently
revealed apolipoprotein E, or APOE, as the only genetic association observed at genome-wide
significance (Deelen et al. 2013; Deelen et al. 2011; Nebel et al. 2011; Sebastiani et al. 2012);

(for a detailed review of this topic see Brooks-Wilson 2013). It has been suggested that
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additional genes of smaller effect may be found to achieve significance with larger sample sizes
than have previously been used for GWAS of longevity.

While a relatively large body of literature has explored the heritability and genetic
variation expected under MA and AP, the corresponding predictions under the special case of DS
have been largely undefined and represent an area where further work is needed. Stearns
suggests that genes affecting maintenance and repair processes that are implicated in aging based
on DS may have antagonistically pleiotropic effects (Stearns 1992). Additionally, in a review of
general evolutionary trade-offs, Roff and Fairbairn suggest both mutation-selection balance and
antagonistically pleiotropic genes may play a role in the maintenance of variation in trade-offs
(Roff and Fairbairn 2007).

Trade-offs

AP and DS differ from MA in their shared consideration of the role of trade-offs in
evolution of senescence. Both suggest senescence to be the consequence of the evolutionary
optimization of a general trade-off between longevity and reproduction, but differ in the
proposed trade-off mechanisms. In the case of AP the trade-off is suggested to result from single
genes with opposite effects on early and late life fitness, while with DS the trade-off is suggested
to result from the allocation of finite energy resources between different life-history traits.

Under both AP and DS, the trade-off between longevity and reproduction is predicted to
result in a negative correlation between early and late life fitness traits. Selection for late life
fitness is expected to result in decreased early life fitness and vice versa. These specific trade-off
predictions have been extensively investigated via laboratory selection experiments. Rose and
Charlesworth demonstrated that selection for increased late-life reproduction resulted in

decreased early-life fertility and increased longevity in Drosophila melanogaster, as predicted by
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AP/DS (Rose 1984; Rose and Charlesworth 1980; Rose and Charlesworth 1981a; Rose and
Charlesworth 1981b). These results were corroborated by a similar study examining the lifespan
effects of selection for late vs. early reproduction (Luckinbill et al. 1984) and another study
applying selection directly to longevity (Zwaan et al. 1995).

Other selection experiments on D. melanogaster, however, have been unable to find
evidence supporting the existence of a trade-off. Partridge and Fowler, for instance, found
selection for late life reproduction to result in increased longevity with no associated decrease in
early life fecundity (Partridge and Fowler 1992). This result may be consistent with MA but does
not refute the role of AP. Selection for late-life reproduction may act against late-acting
deleterious mutations that affect both survival and reproduction, and uncover the effects of MA.
However, an AP/DS trade-off may still be present. The negative result simply suggests that if
present, the trade-off does not involve the measured trait of early-life fecundity or cannot be
measured in the laboratory environment.

Other more recent studies have suggested a diminished importance for AP in explaining
the observed life history trade-off between longevity and reproduction (Khazaeli and Curtsinger
2010; Khazaeli and Curtsinger 2013). These studies, conducted by Khazaeli and Curtsinger, used
recombinant inbred lines of D. melanogaster to show lifespan and early life fecundity to be
genetically separable. Recombinant genomes were created from parental lines selected for
longevity via late reproduction and unselected controls. Since pleiotropic effects are unaffected
by recombination, this experimental method allowed the pleiotropic nature of the genes
underlying the trade-off between longevity and reproduction to be tested. If AP genes
significantly mediate the trade-off, a negative correlation between early and late life fitness traits

is expected in both parental and recombinant lines. If, however, the trade-off is dominated by
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non-pleiotropic genes, recombination is expected to create new phenotypes that exhibit a positive
correlation between the early and late life fitness traits that were negatively correlated in parental
lines. Khazaeli and Curtsinger found flies in the recombinant inbred lines that demonstrated both
long lifespan and high early life fecundity. This result indicates that reproduction and longevity
can be genetically separated, and suggests that AP does not fully explain the observed tradeoff
between longevity and reproduction.

The inconclusive results of the discussed selection experiments regarding support for a
specific evolutionary model exemplify the difficulties of devising differentiating tests due to
non-contrasting theory predictions. In the case of the general trade-off between reproduction and
longevity, results that are found to be consistent with AP/DS do not simultaneously discredit the
role of MA in the evolution of senescence and vice versa. MA suggests genes with late-acting
detrimental effects to be neutral in early life, with no implied trade-off or correlation between
early and late life fitness. This indicates that even if MA plays a prominent role in the evolution
of senescence, its role may not be observable through these methods. Furthermore, experimental
results that do not provide support for a trade-off do not dismiss the role of AP/DS in favor of
MA. Rather, such results may suggest that the experimental environment may be inadequate for
the measurement of a particular trade-off or that the measured fitness traits are uninvolved, but
do not disprove the existence of the trade-off (Charlesworth 1990; Stearns 1989).

Demographic studies have shown similarly mixed evidence for the trade-off between
longevity and reproduction in humans. Some have reported significant negative correlations
between number of offspring and postmenopausal longevity (Doblhammer and Oeppen 2003;
Westendorp and Kirkwood 1998), while others have reported positive correlations (Gogele et al.

2011; Le Bourg et al. 1993; Muller et al. 2002). The validity of the results supporting an AP/DS
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trade-off between longevity and reproduction in humans, however, has been criticized due to
data and methodological issues. The data used by Westendorp and Kirkwood, for instance, was
not cross-checked for accuracy, resulting in the analysis of a dataset that contained an
unrealistically high percentage of childless women (Gavrilova and Gavrilov 2005). Additionally,
Doblhammer and Oeppen were unable to find evidence of a trade-off through standard data
analysis. Only after childless women and women with one child were removed from the analysis
was a trade-off between longevity and reproduction observed (Gavrilova and Gavrilov 2005).
Furthermore, examination of the relationship between longevity and infertility, rather than
number of offspring, has been suggested to be less susceptible to confounding by social factors
and more informative for tests of evolutionary theories (Gavrilova and Gavrilov 2005). Studies
comparing the longevity of parents versus non-parents have found either no significant
difference (Gavrilova and Gavrilov 2005; Gavrilova et al. 2004) or increased longevity for
parents over those that are childless (Chereji et al. 2013). These results better support alternative
hypotheses, such as the reproduction potential hypothesis where the presence of a young child
has a life-lengthening effect on a mother (Muller et al. 2002), rather than an AP/DS trade-off
between longevity and reproduction. These results also align with classic Darwinian theory such
that fitter individuals are more likely to contribute more offspring to the next generation.

In addition to empirical testing, a large body of theoretical work has investigated the role
of trade-offs in senescence. In particular, mathematical optimization models have been
extensively used to understand the conditions under which senescence exists as an evolutionarily
optimal life history trait given particular trade-off constraints. The trade-offs investigated using
these models are generally of the type suggested by DS — an energy allocation trade-off between

the life-history traits of growth, reproduction, and maintenance. Numerous optimization models
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have been used to confirm and clarify predictions and assumptions of DS. Many have
demonstrated that senescence, often defined as an age-dependent increase in mortality and
decrease in fertility, is indeed a possible byproduct of the evolutionary optimization of the DS
suggested trade-off between maintenance and reproduction (Abrams and Ludwig 1995; Baudisch
2008b; Cichon 1997; Cichon 2001; Cichon and Kozlowski 2000; Kozlowski 1996). In general,
optimization approaches to test theories of senescence create functions to relate energy allocation
trade-offs and extrinsic mortality levels to fertility and mortality rates. These functions are then
optimized to maximize lifetime reproductive success, akin to the action of selection, and to find
optimal resource allocation schemes and resulting age-trajectories of mortality and fertility. This
general method has been used to demonstrate that the evolutionary optimization of trade-offs
between maintenance, growth, and reproduction can, under some conditions, result in senescent
mortality and fertility age-trajectories that are consistent with data. Under alternative conditions,
many of these models have also shown optimization to result in sustenance and negative
senescence, where mortality and fertility rates remain constant or increase with age respectively
(Baudisch 2012; Baudisch and Vaupel 2010; Vaupel et al. 2004). Such results demonstrate the
trade-off assumption of DS to be robust enough to describe a range of age-dependent fertility and
mortality patterns that exist across the tree of life (Jones et al. 2013).

The results of optimization models depend on assumed conditions, such as level of
extrinsic mortality and available resources, as well as the specific functional formulation of the
trade-off. Models with different trade-off assumptions have been shown to result in different
conclusions about the qualitative patterns of aging (Baudisch 2009; Baudisch 2012). Key
assumptions include linear vs. nonlinear trade-offs and constraints on the shape of mortality and

fertility curves (Baudisch 2012). Little is known about the exact biological nature of these trade-
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offs, and, as a result, many functions are created on the basis of mathematical convenience rather
than biological realism. Conclusions of optimization models should therefore be carefully
examined with respect to the specific trade-off functions and biological assumptions.

The concept of a resource allocation trade-off between longevity and reproduction, as
proposed by DS, has been challenged by the results of calorie restriction experiments. As
discussed, DS assumes that senescence results from the allocation of finite energy resources
between the biological functions of growth, reproduction, and maintenance and repair. Logically,
if the total amount of energy available for allocation decreases, the amount of energy allocated
towards somatic maintenance and repair should too, and senescence should be more rapid.
However, calorie restriction experiments have shown the opposite to be true in a number of
species, including rats, mice, flies and worms (Merry 2002). A large body of data now shows
that a reduction in calories leads to an increase in longevity (Heilbronn and Ravussin 2003).
Some theorists have explained this result as a shift in the relative fitness values of immediate
reproduction and long-term survival. Limited food may signify a decreased probability for
offspring survival, and a fitness advantage to delayed reproduction. This may translate to an
increased investment in maintenance and repair when resources are scarce, compared to the
optimal investment during times of plenty (Mitteldorf 2001; Shanley and Kirkwood 2000).
Extrinsic mortality

All three models suggest the evolution of aging to be driven by extrinsic mortality
(Kirkwood 1977; Kirkwood 2005; Medawar 1952; Williams 1957). Populations facing high
extrinsic mortality are predicted to age more rapidly than those experiencing low levels of
extrinsic mortality. In the case of MA and AP, increased extrinsic mortality means fewer

individuals survive to reproduce at later ages, resulting in a faster declining strength of selection,
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accumulation of earlier-acting deleterious age-specific mutations, and ultimately more rapid
senescence within the species. In the case of DS, high extrinsic mortality shifts the optimal
energy allocation scheme. In an environment with high extrinsic mortality it becomes optimal to
invest in reproduction over maintenance to maximize reproductive success during the organism’s
expectedly short lifespan. This decreased investment in somatic maintenance is predicted to
cause somatic damage to accumulate at a faster rate and to translate to more rapid aging. Stearns
and colleagues tested this prediction in populations of D. melanogaster (Stearns et al. 2000).
Replicate populations subjected to different adult extrinsic mortality rates evolved lifespan
differences in line with predictions. Populations with high adult mortality evolved shorter
lifespans than populations with low adult mortality. Additionally, optimization models of Cichon
and Kozlowski have shown levels of extrinsic mortality to directly affect the optimal energy
allocation strategy (Cichon 1997; Cichon 2001; Cichon and Kozlowski 2000). When extrinsic
mortality is low, increased allocation toward maintenance repair is optimal, slowing aging.
However, Reznick and colleagues tested this prediction on wild populations of Trinidadian
guppies, and found results contrary to prediction (Reznick et al. 2004). Populations of guppies
experiencing high extrinsic mortality rates were found to exhibit longer lifespans in the
laboratory than populations from low mortality environments. These unexpected results have
been suggested to be artifacts of unanticipated selection for increased vitality due to extrinsic
mortality caused by predation (Bronikowski and Promislow 2005). This exemplifies that both the
existence of extrinsic mortality and the actual sources of extrinsic mortality may influence the

evolution of senescence.
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Heterogeneity in aging

Under DS, the diverse cellular and molecular damage that contributes to senescence is
predicted to be stochastic, as it results from random failure events of somatic maintenance and
repair mechanisms (Kirkwood 2005). This DS prediction of an inherently stochastic process of
aging differentiates it from both AP and MA. Unrepaired damage due to both extrinsic and
intrinsic factors is expected to accumulate stochastically within an individual, and to contribute
to inter-individual variation, or heterogeneity, in aging. Here, we use the term heterogeneity in
aging to refer to the idea that individuals in a population differ with respect to exactly how they
age (e.g. pattern, rate, etc.), in addition to when they die.

Many of the investigations into heterogeneity and stochasticity in human aging have
come from the field of demography (Steinsaltz et al. 2012; Yashin et al. 2000). Several analyses
of demographic mortality data have incorporated notions of heterogeneity in aging, and have
provided a framework for the consideration of mechanisms controlling inter-individual
differences in aging and longevity (Li and Anderson 2009; Steinsaltz et al. 2012; Vaupel et al.
1979; Yashin et al. 2000). These models have been built on two different concepts of individual
heterogeneity within a population. The first considers heterogeneity in lifespan to be caused by
innate differences between individuals (Vaupel et al. 1979). In contrast, the second considers
heterogeneity in lifespan to be caused by stochastically acquired differences in mortality risk
(Gavrilov and Gavrilova 1990). These concepts have not yet been explicitly considered with
respect to evolutionary models, but may provide a framework for the investigation of the
evolution of heterogeneity in aging in the future. The first concept of heterogeneity in lifespan is
potentially consistent with all three evolutionary models, while the second concept is uniquely

consistent with DS.

18



DS predicts the pattern of inter-individual heterogeneity in aging to result from the
stochastic accumulation of both genetic and non-genetic damage over the lifespans of
individuals. Heterogeneity in rate of damage accumulation, and consequently lifespan, is likely
dependent on both genetic and environmental factors, but the relative impact of each is unknown.
DS may therefore be consistent with the first concept of heterogeneity if genetic differences
between individuals impact mechanisms of maintenance and repair and lead to differences in the
rate of damage accumulation and ultimately lifespan. Additionally, DS is uniquely consistent
with the second concept of heterogeneity. This concept assumes differences in longevity to be
mainly caused by the stochastic acquisition of different environmental or internal damage
between individuals.

In general, evolutionary investigations into the stochastic nature of aging have been
limited. A recent paper by Le Cunff et al. investigates the evolution of inter-individual
differences in aging under the influence of a DS-type trade-off between longevity and
reproduction (Le Cunff et al. 2013). This work relies on assumptions of the DS evolutionary
model of senescence, but does not explicitly test its biological predictions. To our knowledge,
the DS prediction of stochastic individual age-dependent accumulation of cellular and molecular
damage has not yet been explicitly tested and provides a line of inquiry for future research.
Statistical models combined with stochastic processes may provide a relatively straightforward
method of testing this prediction if longitudinal data on damage contributing to senescence are
available. Familial data may also provide additional insight into genetic vs. environmental

sources of heterogeneity.
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Species variation in aging

Wide variations in patterns of aging have been observed across the tree of life (Jones et
al. 2013). Humans, for instance, experience age-dependent declines in fertility and increases in
mortality with age (senescence), but species such as hydra experience constant mortality and
fertility over all ages (sustenance) (Martinez 1998). Furthermore, other species, like mangrove
trees, exhibit increasing fertility and declining mortality with age (negative senescence) (Jones et
al. 2013). This variation is not directly predicted by the evolutionary theories of aging, as they
were originally formulated to explain the anthropocentric pattern of senescence. MA and AP
both assume a declining strength of selection with age. Under MA this causes the accumulation
of a deleterious mutational load and inevitable senescence. Under AP, this causes
antagonistically pleiotropic genes with early-life benefits and late-life costs to be selected for and
the genes with the opposite effects to be selected against. Genes with AP effects will therefore
only able to explain senescence and not other life history patterns. Of the three theories described
here, DS is the most able to explain great variation in life histories. Under DS, different species
may experience different trade-off functions and constraints, which may result in different
optimal energy allocation strategies and different age-dependent patterns of fertility and
mortality. At this point, little is known to explain why some species have evolved senescent life
histories while others have not. In the future, comparative studies concentrating on the
relationships between differences in the environmental pressures experienced by different
species and differences in species fertility and mortality curves for a wide range of taxa may help

to unravel what conditions lead to the evolution of senescence (Jones et al. 2013).
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Methods of testing evolutionary alternatives: past approaches and future directions

A variety of methods have been used to test between the MA, AP, and DS models of
senescence. Many of the previous attempts to distinguish between these alternatives have been
largely inconclusive due to various non-contrasting model predictions. Here we summarize the
conclusions drawn in the previous section in terms of the methods used to distinguish between
evolutionary models of senescence.

Analysis of genetic variance: The measurement of age-specific genetic variance in aging-
related fitness traits, such as age-specific fecundity and lifespan, has been proposed as a method
for differentiating between MA and AP evolutionary models of senescence. MA clearly predicts
an increase in inbreeding depression and additive and dominance genetic variances as a result of
increasing equilibrium allele frequencies with age. AP, however, does not make clear predictions
about genetic variation, and can been seen to be consistent with a wide range of patterns. For this
reason, it is difficult to differentiate between the theories of MA and AP on the basis of analysis
of genetic variance. Experimental analyses observing variation in fitness traits consistent with
MA may also be consistent with AP (Moorad and Promislow 2009).

Selection experiments: Laboratory selection experiments have demonstrated responses to
selection and the existence of trade-offs between early and late life fitness traits in accordance
with predictions of MA, AP, and DS evolutionary models of senescence. As discussed above,
these experiments have been shown to be capable of testing specific evolutionary predictions and
providing support for individual models, but they are unable to exclude or distinguish between
the alternatives. Taken together, the body of literature provides evidence in support of both MA
and AP/DS models of senescence. These experiments have exclusively relied on observations of

fecundity and lifespan to quantify and measure a manipulation’s effect on senescence. In the
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future it may be beneficial to complement selection experiments with other genetic analyses to
better understand the genetic basis of evolutionary change related to senescence (Flatt and
Schmidt 2009).

Mathematical models: Mathematical optimization models have been developed to
demonstrate how MA and DS trade-offs can shape fertility and mortality curves and result in
senescence. Typically, these models define and quantify senescence as an age-associated decline
in fertility and increase in mortality. Assumptions of MA and DS are often analyzed using
quantitative genetics and optimization models, respectively. To our knowledge, there have only
been two cases where these adaptive and non-adaptive processes have been placed together into
a single model (Charlesworth 1990; Danko et al. 2012). Charlesworth incorporated trade-offs
into a quantitative genetics model, while Danko and colleagues added MA into a trade-off
framework. Charlesworth’s model demonstrated genetic correlations, or trade-offs, to be largely
unaffected by MA, while the model of Danko and colleagues showed MA to play only a minor
role in shaping life histories. Further extension of models combining assumptions of alternative
evolutionary theories may help to understand the relative importance of each process in
explaining senescence.

Statistical models and demographic data: Statistical models using demographic
mortality and reproduction data have been used to test and provide support to predictions of
heritability under MA and to test for trade-offs between longevity and reproduction under
AP/DS. Additionally, statistical models have been used to assess heterogeneity in aging and
investigate the importance of genetic and environmental factors in determining mortality (Yashin
et al. 1994). These models have not yet been used to investigate evolutionary theories of aging,

but may offer a framework for testing differing predictions surrounding patterns of phenotypic

22



heterogeneity in aging in the future. DS, for instance, may be differentiated from MA and AP if
heterogeneity in aging can be better described by stochastic processes of damage accumulation
over the lifetimes of individuals than by innate genetic differences between individuals. Several
statistical models have been extended to include longitudinal data of many types in addition to
survival data (Tan et al. 2013; Yashin et al. 2007). Mortality data describes only the ultimate
outcome of aging, and does not adequately describe the process of aging occurring within
individuals. The inclusion of longitudinal data on other measures of senescence would help to
better describe aging as a process, and the addition of familial data could help elucidate the
relative importance of the different heterogeneity-producing mechanisms proposed by

evolutionary theory.

Beyond mortality: other useful measures of senescence for demographic studies

The methods for testing evolutionary theories of aging in humans have generally relied
heavily on lifespan and mortality data (Nusbaum et al. 1996). Death is the ultimate result of
aging, and lifespan is often assumed to represent a good quantitative estimate of senescence
(Baudisch 2008a; Tartar 2001). However mortality data provides an incomplete measurement of
senescence that may not be ideal to investigate all aspects and predictions of evolutionary
models.

Lifespan acts as a single proxy measurement for an individual’s rate of senescence, but
provides no information on an individual’s senescent state or “biological age” throughout life.
Without such measures, investigations into intra- and inter-individual heterogeneity in aging
become difficult. For instance, the specific DS prediction of stochastic damage accumulation

over an individual’s lifespan is not directly testable with only mortality data, but stochastic
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models of change and other predictions involving individual rates of senescence can be tested if
repeated measures of senescence are available. Furthermore, while familial lifespan data can be
used to deduce the heritability of lifespan and test predictions under MA, without longitudinal
measures of senescence the heritability of rate of aging, as suggested by DS, can only be
inferred. Moreover data for contemporary populations may be incomplete since lifespan can only
be observed for deceased members of a pedigree. Alternative measures of senescence and
“biological age” may offer the necessary data to test these and other predictions of the proposed
evolutionary models.

Biomarkers of aging are quantifiable parameters thought to be reflective of “biological
age”, or an individual’s rate of functional decline (Baker and Sprott 1998; Johnson 2006). The
American Federation for Aging Research suggests that a well-defined biomarker of aging should
do the following: 1) predict the rate of aging and lifespan better than chronological age; 2)
monitor a basic process underlying aging; 3) be repeatedly measureable in humans without
causing harm; 4) work in both humans and laboratory animals for testing and validation (Baker
and Sprott 1998; Johnson 2006). Previously proposed biomarkers of aging have included
telomere length, mtDNA mutations, and levels of oxidative stress and inflammation (Johnson
2006; Simm et al. 2008). These quantitative measures have been suggested as biomarkers of
aging due to their correlation with age, high inter-individual variation, and associations with age-
related disease and mortality (Bekaert et al. 2005; Cawthon et al. 2003; Eshaghian et al. 2006;
Harley et al. 1990; Mather et al. 2011; Trifunovic and Larsson 2008).

To our knowledge, biomarkers of aging have only been loosely connected to evolutionary
models. Kirkwood and Kowald created a network model of cellular aging based on the DS

prediction of multiple mechanistic causes, and they described processes underlying proposed
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biomarkers (Kirkwood and Kowald 1997). Their model included mitochondrial damage, aberrant
proteins, free radicals, and antioxidants. Simulations of this model suggested that it is plausible
that multiple processes interact to collectively cause the overall process of cellular aging.

In future studies, it may be valuable to use data on biomarkers of aging as alternative or
supplementary measures of senescence. This will allow investigations to focus on senescence as
an evolved longitudinal process, rather than as a single mortality event. The use of biomarkers
will facilitate tests of individual-level predictions of evolutionary models that are not feasible
with the population-level measure of death rate. For example, longitudinal data on the senescent
state of individuals will allow for direct modeling of the DS prediction of stochastic senescence-
causing damage accumulation throughout life. Many of the previously used methods for testing
evolutionary models of senescence (e.g., heritability estimates, selection experiments, and
statistical models) can be altered to include biomarkers of aging as alternative or supplementary
measures of senescence. For instance, selection experiments including additional longitudinal
analysis of biomarkers of aging may help elucidate the relationship between AP/DS proposed
trade-offs and the rate of senescent decline or damage accumulation. Such a relationship is
suggested by DS, but its functional form has yet to be unraveled. Furthermore, analysis of
longitudinal data on biomarkers of aging with statistical models can explicitly test the DS
prediction that stochastic damage accumulation underlies intra- and inter-individual
heterogeneity in the process of aging.

A new biomarker of aging: DNA methylation

Recent research on the epigenetics of aging in humans has led to the proposal of DNA

methylation as a new biomarker of senescence (Brocklant et al. 2011; Hannum et al. 2013;

Horvath 2013; Koch and Wagner 2011; Teschendorff et al. 2010; Teschendorff et al. 2013).
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Epigenetics is the study of heritable DNA alterations that do not change DNA sequence. The
most well-known epigenetic modification is DNA methylation, which involves the addition or
removal of a methyl group from the 5-position of a cytosine base. DNA methylation is often
associated with gene expression silencing, and typically occurs at CpG sites, where cytosine
bases sit immediately adjacent to guanine bases (Jaenisch and Bird 2003; Razin and Riggs 1980).
Changes in DNA methylation and chronological age were first reported decades ago
(Wilson and Jones 1983) and due to the recent availability of DNA methylation microarrays, a
large body of literature now describes patterns of both hyper- and hypo-methylation with age
across the human genome (Alisch et al. 2012; Bell et al. 2012; Bjornsson et al. 2008; Bollati et
al. 2009; Christensen et al. 2009; Fraga and Esteller 2007; Hannum et al. 2013; Numata et al.
2012; Rakyan et al. 2010; Teschendorff et al. 2010; Xu and Taylor 2014). Nearly
indistinguishable epigenetic markings of young identical twins have been observed to be
increasingly different as a function of age, based on a cohort study of older vs. younger twins
(Fraga et al. 2005; Martin 2005). The exact mechanisms driving these changes are not yet
understood, but the influence of external environmental factors and internal stochastic events
have been hypothesized (Fraga and Esteller 2007; Hannum et al. 2013). These observations have
led researchers to investigate if DNA methylation patterns can be used as a biologically
meaningful measure of senescence. Recently, two studies have demonstrated that age can be
predicted from genome-wide DNA methylation data with extraordinary accuracy compared to
previous biomarkers (Hannum et al. 2013; Horvath 2013). When tested in independent datasets,
correlation between chronological age and predicted “methylation age” ranged from 0.91 — 0.96,
compared to correlations of -0.52 and -0.74 between chronological age and telomere length in

granulocytes and lymphocytes, respectively (Rufer et al. 1999). Measurements of methylation
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age were strikingly consistent across individual cell and tissue types (Horvath 2013), suggesting
that this predictor does not simply reflect changing cell type proportions with age, and can be
generalized to many tissues. Methylation-based estimates of biological age can be used to
estimate an individual’s rate of aging (i.e. fast or slow) based on the ratio of observed to
expected methylation given chronological age.

DNA methylation may be an appropriate biomarker of aging, as it meets three of the four
published criteria established by The American Federation for Aging Research. Hannum and
collaborators demonstrated that differences in methylation age calculated from whole blood
samples are significantly associated with factors known to be relevant to senescence, such as
gender and genetic variation, satisfying criteria two and three. Horvath similarly demonstrated
observable age-associated methylation changes in human blood samples, and that age-related
methylation changes in chimpanzees are highly correlated with those in humans, satisfying
criterion four. Further work is needed to establish whether the remaining criterion holds: That is,
whether measures of methylation age can predict lifespan and other measures of senescence
better than chronological age (Horvath 2013). Early results suggest that this may be the case, as
mortality risk in 2,100 individuals aged 40 to 92 was estimated to increase by 15% for each five-
year increase in age acceleration (the difference between methylation age and chronological
age), adjusting for chronological age (Chen et al. 2014; Gibbs 2014).

DNA methylation as a quantitative measure of senescence can be usefully applied to
many evolutionary investigations, either through calculation of predicted methylation age or
through site-specific analysis. Since methylation can be readily measured at thousands of CpG
sites across the genome, the use of DNA methylation data uniquely enables evolutionary theories

to be tested at numerous genomic locations. As the theories discussed are not mutually exclusive,
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it is possible that different combinations explain the evolution of senescence in different portions
of the genome. Analysis incorporating DNA methylation data will uniquely be able to assess the
relative contribution of each theory across the whole genome and within specific sections.

Longitudinal DNA methylation data lends itself to the investigation of stochastic
accumulation of damage proposed by DS. The possible stochastic nature of methylation and
aging has never been explicitly modeled in a longitudinal framework in the same individuals.
Such an analysis could help to elucidate the dynamic process of aging, and could be used to
understand the relative importance of DS in evolution of senescence. Statistical analysis of
mortality data alone has been shown to be inadequate to understand underlying factors causing
observable heterogeneity in aging (Yashin et al. 1994). Age-associated methylation changes have
been found to be widespread and reproducible across studies (Alisch et al. 2012; Bollati et al.
2009; Horvath 2013; Teschendorff et al. 2010), suggesting that longitudinal measurements of
both methylation age and methylation at individual CpG sites could provide information useful
for investigating stochastic intra- and inter-individual variation in aging.

Furthermore, familial DNA methylation data could be used to investigate the heritability
of rate of aging. For example treatment of the deviation of methylation age from chronological
age as a measure of biological fitness could be useful in testing the prediction of increasing
heritability of fitness-related traits with age implied by the MA model. Similarly, heritability
studies could be useful for distinguishing between genetic vs. stochastic sources of heterogeneity
in somatic maintenance implied by DS. DS assumes the evolution and therefore heritability of
energy allocation schemes, which generally dictate the level of somatic maintenance. As a result,
the rate of damage accumulation, and therefore the rate of aging, can be expected to be at least

somewhat heritable under DS. However, DS also suggests a potentially large environmental
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component to aging, as environmental factors may also directly impact the type and quality of
damage accumulation. Low heritability or decreasing heritability of fitness-related traits with age
may therefore be characteristic of DS, and may differentiate it from MA and AP, which
explicitly suggest a large genetic basis for senescence. This prediction and the corresponding
predictions under MA and AP have not been formally defined or investigated and offer an

interesting line of inquiry for future research.

Conclusions

Strides have been made in understanding the contributions MA, AP, and DS models
make in explaining the paradox of senescence, but a consensus has not yet been reached. Clear
and non-contrasting predictions are necessary to elucidate the relative importance of each model.
However, because these models are not mutually exclusive, tests capable of simultaneously
distinguishing between the actions and contributions of all these models are difficult to devise.
As aresult, empirical tests of these theories have focused on testing underlying assumptions and
partially contrasting model-specific predictions. A variety of methods and empirical tests have
provided support for portions of each individual model. There are, however, some predictions
and assumptions that have received little or no attention. Such predictions may have been
overlooked in the past due to limitations of defined measurements of senescence. Thus, the
incorporation of longitudinal and/or familial biomarker data into future research as alternative or
supplementary measurements of senescence may facilitate the investigation of previously
neglected aspects of evolutionary models. Specifically, DNA methylation, a newly proposed
measure of biological aging, may be useful in investigating intra- and inter-individual

heterogeneity in the longitudinal process of aging as related to evolutionary models.
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TABLES

Table 1. Assumptions and predictions of the MA, AP, and DS evolutionary models of senescence.

Basic assumptions of each model

Mutation Accumulation

Antagonistic pleiotropy

Disposable Soma

Adaptive vs. non-adaptive

What causes senescence at the
individual level?
What is inherited?

Mutations/ damage causing
senescence are accumulated over...

Non-adaptive: senescence exists because
selection is not strong enough to eradicate it

Numerous late-acting deleterious alleles
Deleterious germline mutations with late-life
effects

Many generations

Predictions: Heritability and genetic variation

Adaptive: senescence is the byproduct of
evolutionary optimization

The deleterious late-life effects of antagonistically
pleiotropic genes

Deleterious germline mutations with
antagonistically pleiotropic effects

Many generations

Adaptive: senescence is the byproduct of evolutionary
optimization

The progressive accumulation of multiple types of
somatic damage

An energy allocation strategy and a level of somatic
maintenance

An individual’s lifespan

Genetic variance

Predictions: Trade-offs

Inbreeding depression and genetic variances of
fitness traits will increase with age due to an
increase in equilibrium frequencies of deleterious
alleles with age

AP genes may produce different patterns of genetic
variance under different assumptions

Genes affecting maintenance and repair processes may
have antagonistically pleiotropic effects and show
similar genetic variation

What trade-off is assumed?

Specific predictions based on
trade-off

Correlation between early- and
late-life fitness

Selection for longevity causes...

Predictions: Extrinsic mortality

None

No trade-off predicted

None

Slowed or delayed senescence with no
accompanying decrease in fitness in youth

Longevity vs. reproduction

Late-life fitness vs. early-life fitness, resulting
from single genes that have opposite effects on
early and late life fitness

Negative correlation

Slowed or delayed senescence with decreased
fitness in youth

Longevity vs. reproduction

Somatic maintenance vs. reproduction, resulting from
finite energy resources. Energy allocation to one life-
history trait necessarily detracts from another

Negative correlation

Slowed or delayed senescence with decreased fitness in
youth

High rates of extrinsic mortality
are predicted to cause high rates of
aging because...

Fewer individuals survive to reproduce at later
ages, resulting in an faster declining force of
selection

Fewer individuals survive to reproduce at later
ages, resulting in an faster declining force of
selection

Early reproduction becomes the optimal strategy. It is
beneficial to invest in reproduction over maintenance
due to decreased chances of survival
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Figure 1. Evolutionary Theories of Aging. (A) Under the Mutation Accumulation theory of
aging, mutations with later ages of action accumulate in the gene pool over many generations
and grow to higher equilibrium frequencies due to declining strength of selection and a constant
mutation rate. The deleterious mutation with age-specific effects at age 20 in the first generation
is lost due to selection. A load of deleterious late-acting mutations collected throughout a
population’s history, shown in the last generation, is suggested to cause senescence. (B) Under
the Antagonistic Pleiotropy theory of aging, the decline in the strength of selection with age
(shown in blue) causes early-life benefits of antagonistically pleiotropic genes (shown in red) to
selectively outweigh associated late-life costs. Active selection for the early-life benefits of

antagonistically pleiotropic genes causes corresponding late-life costs to accumulate within the
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germline, which leads to senescence. (C) Under the Disposable Soma theory of aging, trade-offs

in the allocation of energy between biological functions causes maintenance and repair

mechanisms to be imperfect. As a result, somatic damages accumulate over an individual’s

lifespan and cause senescence. Two energy allocation schemes are shown: (1) and (2).

Allocation scheme (1) gives less energy to maintenance than allocation scheme (2). This causes

somatic damages (in red) to accumulate at a faster rate and individual lifespans to be shorter.

Offspring age at death

20 30 50
Parental age at death

Increasing heritability

70

(A)

Decreasing selection

Increasing Genelic Variability

v

(B)
20
30
50
Age Age-Specific Mutations present
in gene pool

Figure 2. Prediction of Increasing Heritability of Lifespan Under Mutation Accumulation.

(A) The heritability of lifespan is expected to increase with age under the theory of mutation

accumulation (MA), as shown in the illustrative example. (B) According to MA, the genetic

variability of age-specific mutations increases with age of mutation action due to a declining

strength of selection. Mutations with effects at late ages experience only weak selection resulting

in higher frequencies and higher genetic variability. Heritability is proportional to genetic

variance, causing the heritability of lifespan to increase with age.

32



REFERENCES

Abrams PA, Ludwig D (1995) Optimality Theory, Gompertz' Law, and the Disposable Soma
Theory of Senescence. Evolution 49:1055-1066

Alisch RS, Barwick BG, Chopra P, Myrick LK, Satten GA, Conneely KN, Warren ST (2012)
Age-associated DNA methylation in pediatric populations. Genome research 22:623-632
doi:10.1101/gr.125187.111

Baker GT, Sprott RL (1998) Biomarkers of aging. Experimental Gerontology 23:223-239

Baudisch A (2008a) Introduction. In: Inevitable aging? Contributions to evolutionary-
demographic theory. Springer, Berlin, pp 1-16

Baudisch A (2008b) Optimization Models. In: Inevitable aging? Contributions to evolutionary-
demographic theory. Springer, Berlin, pp 49-73

Baudisch A (2009) How Ageing is shaped by Trade-offs. Max Planck Institute for Demographic
Research Working Paper 43:1-12

Baudisch A (2012) Birds do it, bees do it, we do it: contributions of theoretical modelling to
understanding the shape of ageing across the tree of life. Gerontology 58:481-489
doi:10.1159/000341861

Baudisch A, Vaupel J (2010) Senescence vs. sustenance: Evolutionary-demographic models of
aging. Demographic Research 23:655-668 doi:10.4054/DemRes.2010.23.23

Bekaert S, de Meyer T, Van Oostveldt P (2005) Telomere Attrition as Ageing Biomarker.
Anticancer Resarch 25:3011-3022

Bell JT et al. (2012) Epigenome-wide scans identify differentially methylated regions for age and
age-related phenotypes in a healthy ageing population. PLoS genetics 8:€1002629
doi:10.1371/journal .pgen.1002629

Bjornsson HT et al. (2008) Intra-individual change over time in DNA methylation with familial
clustering. JAMA : the journal of the American Medical Association 299:2877-2883
doi:10.1001/jama.299.24 2877

Bollati V et al. (2009) Decline in genomic DNA methylation through aging in a cohort of elderly
subjects. Mechanisms of ageing and development 130:234-239
doi:10.1016/j.mad.2008.12.003

Brocklant S, Lin W, Sehl ME, Sanchez FJ, Sinshelmer JS, Horvath S, Vilain E (2011) Epigenetic
Predictor of Age. PloS one 6 doi:10.1371/

10.1371/journal .pone.0014821.g001

Bronikowski AM, Promislow DE (2005) Testing evolutionary theories of aging in wild
populations. Trends in ecology & evolution 20:271-273 doi:10.1016/j.tree.2005.03.011

Brooks-Wilson AR (2013) Genetics of healthy aging and longevity. Human genetics 132:1323-
1338 doi:10.1007/s00439-013-1342-z

Campisi J, Vijg J (2009) Does damage to DNA and other macromolecules play a role in aging?
If so, how? The journals of gerontology Series A, Biological sciences and medical
sciences 64:175-178 doi:10.1093/gerona/gln065

Cawthon RM, Smith KR, O'Brien E, Sivatchenko A, Kerber RA (2003) Association between
telomere length in blood and mortality in people aged 60 years or older. The Lancet
361:393-395

Charlesworth B (1990) Optimization Models, Quantitative Genetics, and Mutation. Evolution
44:520-538

33



Charlesworth B (1994) Evolution in age-structured populations. vol 2. Cambridge Studies in
Mathematical Biology, 2nd edn. Cambridge University Press, Cambridge

Charlesworth B (2000) Fischer, Medawar, Hamilton and the Evolution of Aging. Genetics
156:927-931

Charlesworth B, Hughes KA (1996) Age-specific inbreeding depression and components of
genetic variance in relation to the evolution of senescence. Proceedings of the National
Academy of Sciences of the United States of America 93:6140-6145

Chen B, Horvath S, Murabito J, Lunetta K, Kiel D, Levy D (2014) DNA Methylation Age
Predicts All-cause Mortality in the Framingham Heart Study. Journal of Gerontology
Biological Science and Medical Sciences

Chereji E, Gatz M, Pedersen NL, Prescott CA (2013) Reexamining the association between
fertility and longevity: testing the disposable soma theory in a modern human sample of
twins. The journals of gerontology Series A, Biological sciences and medical sciences
68:499-509 doi:10.1093/gerona/gls218

Christensen BC et al. (2009) Aging and environmental exposures alter tissue-specific DNA
methylation dependent upon CpG island context. PLoS genetics 5:¢1000602
doi:10.1371/journal .pgen.1000602

Cichon M (1997) Evolution of longevity through optimal resource allocation. Proceedings of the
Royal Society B: Biological Sciences 264:1383-1388 doi:10.1098/rspb.1997.0192

Cichon M (2001) Diversity of age-specific reproductive rates may result from ageing and
optimal resource allocation. Journal of Evolutionary Biology 14:180-185

Cichon M, Kozlowski J (2000) Ageing and typical survivorship curves result from optimal
resource allocation. Evolutionary Ecology Research 2:857-870

Danko MJ, Kozlowski J, Vaupel JW, Baudisch A (2012) Mutation accumulation may be a minor
force in shaping life history traits. PloS one 7:€34146 doi:10.1371/journal .pone.0034146

Deelen J, Beekman M, Capri M, Franceschi C, Slagboom PE (2013) Identifying the genomic
determinants of aging and longevity in human population studies: progress and
challenges. Bioessays 35:386-396 doi:10.1002/bies.201200148

Deelen J et al. (2011) Genome-wide association study identifies a single major locus contributing
to survival into old age; the APOE locus revisited. Aging Cell 10:686-698

Doblhammer G, Oeppen J (2003) Reproduction and longevity among the British peerage: the
effect of frailty and health selection. Proceedings Biological sciences / The Royal Society
270:1541-1547 doi:10.1098/rspb.2003.2400

Eshaghian A, Vleugels RA, Canter JA, McDonald MA, Stasko T, Sligh JE (2006) Mitochondrial
DNA deletions serve as biomarkers of aging in the skin, but are typically absent in
nonmelanoma skin cancers. The Journal of investigative dermatology 126:336-344
doi:10.1038/sj.jid.5700088

Flatt T, Schmidt PS (2009) Integrating evolutionary and molecular genetics of aging. Biochimica
et biophysica acta 1790:951-962 doi:10.1016/j.bbagen.2009.07.010

Fraga MF et al. (2005) Epigenetic differences arise during the lifetime of monozygotic twins.
Proceedings of the National Academy of Sciences of the United States of America
102:10604-10609 doi:10.1073/pnas.0500398102

Fraga MF, Esteller M (2007) Epigenetics and aging: the targets and the marks. Trends in
genetics : TIG 23:413-418 doi:10.1016/j.tig.2007.05.008

Gavrilov LA, Gavrilova NS (1990) The Biology of the Life Span: a Quantiatitive Approach.
Harwood Academic Publishers, London

34



Gavrilov LA, Gavrilova NS (2001a) Biodemographic Study of Familial Determinants of Human
Longevity. Population: An English Selection 13:197-222

Gavrilov LA, Gavrilova NS (2001b) When does Human Longevity Start?: Demarcation of the
Boundaries for Human Longevity. Journal of Anti-Aging Medicine 4:115-124

Gavrilov LA, Gavrilova NS (2002) Evolutionary theories of aging and longevity.
TheScientificWorldJournal 2:339-356 doi:10.1100/tsw.2002.96

Gavrilova NS, Gavrilov LA (2005) Human Longevity and Reproduction. In: Voland E, Chasiotis
A, Schiefenhovel W (eds) Grandmotherhood: The Evolutionary Significane of the
Second Half of Female Life. Rutgers University Press, New Brunswick, New Jersy, pp
59-80

Gavrilova NS et al. (1998) Evolution, Mutations, and Human Longevity: European Royal and
Noble Families. Human Biology 70:799-804

Gavrilova NS, Gavrilov LA, Semyonova VG, Evdokushkina GN (2004) Does exceptional
human longevity come with a high cost of infertility? Testing the evolutionary theories of
aging. Annals of the New York Academy of Sciences 1019:513-517
doi:10.1196/annals.1297.095

Gibbs WW (2014) The clock-watcher. Nature 508:169-170

Gogele M, Pattaro C, Fuchsberger C, Minelli C, Paramstaller PP, Mjst M (2011) Heritability
Analysis of Life Span in a Semi-isolated Population Followed Across Four Centuries
Reveals the Presence of Pleiotropy Between Life Span and Reproduction. The journals of
gerontology Series A, Biological sciences and medical sciences 66A:26-37
doi:10.1093/gerona/glq163

Haldane JBS (1941) New paths in genetics. Allen & Unwin, London

Hannum G et al. (2013) Genome-wide methylation profiles reveal quantitative views of human
aging rates. Molecular cell 49:359-367 doi:10.1016/j.molcel.2012.10.016

Harley CB, Futcher B, Greider CW (1990) Telomeres shorten during ageing of human
fibroblasts. Nature 345:458-460

Heilbronn LK, Ravussin E (2003) Calorie restriction and aging: review of the literature and
implications for studies in humans. Am J Clin Nutr 78:361-369

Horvath S (2013) DNA methylation age of human tissues and cell types. Genome Biology 14:1-
19

Houseman EA et al. (2012) DNA methylation arrays as surrogate measures of cell mixture
distribtuion. BMC Bioinfomatics 12:1-16

Hughes KA, Alipaz JA, Drnevich JM, Reynolds RM (2002) A test of evolutionary theories of
aging. Proceedings of the National Academy of Sciences of the United States of America
99:14286-14291 doi:10.1073/pnas.222326199

Hughes KA, Reynolds RM (2005) Evolutionary and mechanistic theories of aging. Annual
review of entomology 50:421-445 doi:10.1146/annurev.ento.50.071803.130409

Jaenisch R, Bird A (2003) Epigenetic regulation of gene expression: how the genome integrates
intrinsic and environmental signals. Nature genetics 33 Suppl:245-254
doi:10.1038/ng1089

Jaffe AE, Irizarry RA (2014) Accounting for cellular heterogeneity is critical in epigenome-wide
assocation studies. Genome Biology 15:1-9

Johnson TE (2006) Recent results: biomarkers of aging. Exp Gerontol 41:1243-1246
doi:10.1016/j.exger.2006.09.006

35



Jones OR et al. (2013) Diversity of ageing across the tree of life. Nature:1-6
doi:10.1038/nature12789

Khazaeli AA, Curtsinger JW (2010) Life history variation in an artificially selected population of
Drosophila melanogaster: pleiotropy, superflies, and age-specific adaptation. Evolution
64:3409-3416 doi:10.1111/1.1558-5646.2010.01139.x

Khazaeli AA, Curtsinger JW (2013) Pleiotropy and life history evolution in Drosophila
melanogaster: uncoupling life span and early fecundity. The journals of gerontology
Series A, Biological sciences and medical sciences 68:546-553
doi:10.1093/gerona/gls226

Kirkwood TB (1977) Evolution of ageing. Nature 270:301-304

Kirkwood TB (1996) Human senescence. BioEssays 18:1009-1016

Kirkwood TB (2005) Understanding the odd science of aging. Cell 120:437-447
doi:10.1016/j.cell.2005.01.027

Kirkwood TB, Kowald A (1997) Network Theory of Aging. Experimental Gerontology 32:395-
399

Koch CM, Wagner W (2011) Epigenetic-aging signature to determine age in different tissues.
Aging 3:1-10

Kozlowski J (1996) Optimal Allocation of Resources Explains Interspecific Life-History
Patterns in Animals with Indeterminate Growth. Proceedings of the Royal Society B:
Biological Sciences 263:559-566 doi:10.1098/rspb.1996.0084

Le Bourg E, Thon B, Legare J, Desjardins B, Charbonneau H (1993) Reproductive Life of
French-Canadians in the 17-18th Centuries: A Search for a Trade-Off Between Early
Fecundity and Longevity. Experimental Gerontology 28:217-232

Le Cunff Y, Baudisch A, Pakdaman K (2013) How evolving heterogeneity distributions of
resource allocation strategies shape mortality patterns. PLoS computational biology
9:1002825 doi:10.1371/journal .pcbi.1002825

Li T, Anderson JJ (2009) The vitality model: a way to understand population survival and
demographic heterogeneity. Theoretical population biology 76:118-131
doi:10.1016/j.tpb.2009.05.004

Luckinbill LS, Arking R, Clare MJ, Cirocco WC, Buck SA (1984) Selection for Delayed
Senescence in Drosophila melanogaster. Evolution 38:996-1003

Martin GM (2005) Epigenetic drift in aging identical twins. Proceedings of the National
Academy of Sciences of the United States of America 102:10413-10414
doi:10.1073/pnas.0504743102

Martinez DE (1998) Mortality Patterns Suggest Lack of Senescence in Hydra. Experimental
Gerontology 33:217-225

Mather KA, Jorn AF, Parslow RA, Christensen H (2011) Is Telomere Length a Biomarker of
Aging? A Review. The journals of gerontology Series A, Biological sciences and medical
sciences 66:202-213 doi:10.1093/gerona/glq180

Medawar PB (1952) An Unsolved Problem of Biology. HK Lewis, London

Merry BJ (2002) Molecular mechanisms linking calorie restriction and longevity. The
International Jounral of Biochemistry & Cell Biology 34:1340-1354

Mitteldorf J (2001) Can Experiments on Caloric Restriction be Reconciled with the Disposable
Soma Theory for the Evolution of Senecence? Evolution 55:1902-1905

36



Moorad JA, Promislow DE (2009) What can genetic variation tell us about the evolution of
senescence? Proceedings Biological sciences / The Royal Society 276:2271-2278
doi:10.1098/rspb.2009.0183

Muller H-G, Chiou J-M, Carey JR, Wang J-L (2002) Fertility and Life Span: Late Children
Enhance Female Longevity. Journal of Gerontology 57A:B202-B206

Nebel A et al. (2011) A genome-wide association study confirms APOE as the major gene
influencing survival in long-lived individuals. Mechanisms of ageing and development
132:324-330 doi:10.1016/j.mad.2011.06.008

Numata S et al. (2012) DNA methylation signatures in development and aging of the human
prefrontal cortex. American journal of human genetics 90:260-272
doi:10.1016/j.ajhg.2011.12.020

Nusbaum TJ, Mueller LD, Rose MR (1996) Evolutionary Patterns Among Measures of Aging.
Experimental Gerontology 31:507-516

Partridge L, Barton NH (1993) Optimality, mutation and the evolution of ageing. Nature
362:305-311

Partridge L, Fowler K (1992) Direct and Correlated Responses to Selection on Age at
Reproduction in Drosophila. Evolution 46:76-91

Rakyan VK et al. (2010) Human aging-associated DNA hypermethylation occurs preferentially
at bivalent chromatin domains. Genome research 20:434-439 doi:10.1101/gr.103101.109

Razin A, Riggs AD (1980) DNA Methylation and Gene Function. Science 210:604-610

Reznick D, Bryant MJ, Roff DA, Ghalambor CK, Ghalambor DE (2004) Effect of extrinsic
mortality on the evolution of senescence in guppies. Nature 431:1095-1099
doi:10.1038/nature03042

Roff DA, Fairbairn DJ (2007) The evolution of trade-offs: where are we? J Evol Biol 20:433-447
doi:10.1111/3.1420-9101.2006.01255 x

Rose MR (1984) Laboratory Evolution of Postponed Senescence in Drosophila melanogaster.
Evolution 38:1004-1010

Rose MR, Charlesworth B (1980) A test of evolutionary theories of senescence. Nature 287:141-
142

Rose MR, Charlesworth B (1981a) Genetics of Life History in Drosophila melanogaster. I. Sib
Analysis of Adult Females. Genetics 97:173-186

Rose MR, Charlesworth B (1981b) Genetics of Life History in Drosophila menalogaster. II.
Exploratory Selection Experiments. Genetics 97:187-196

Rufer N et al. (1999) Telomere Fluorescence Measurements in Granulocytes and T Lymphocte
Subsets Point to a High Turnover of Hematopoietic Stem Cells and Memory T Cells in
Early Childhood. J Exp Med 190:157-167

Sebastiani P et al. (2012) Genetic signatures of exceptional longevity in humans. PloS one
7:€29848 doi:10.1371/journal .pone.0029848

Shanley DP, Kirkwood TB (2000) Calorie Restriction and Aging: A Life-History Analysis.
Evolution 54:740-750

Simm A, Nass N, Bartling B, Hofmann B, Silber RE, Navarrete Santos A (2008) Potential
biomarkers of ageing. Biological chemistry 389:257-265 doi:10.1515/BC.2008.034

Stearns SC (1989) Trade-Offs in Life-History Evolution. Functional Ecology 3:259-268

Stearns SC (1992) The Evolution of Life Histories. Oxford University Press, New York

37



Stearns SC, Ackermann M, Doebeli M, Kaiser M (2000) Experimental evolution of aging,
growth, and reproduction in fruitflies. Proceedings of the National Academy of Sciences
of the United States of America 97:3309-3313 doi:10.1073/pnas.060289597

Steinsaltz D, Mohan G, Kolb M (2012) Markov models of aging: Theory and practice.
Experimental Gerontology 47:792-802

Tan Q, Jacobsen R, Sorensen M, Christiansen L, Kruse TA, Christensen K (2013) Analyzing
age-specific genetic effects on human extreme age survival in cohort-based longitudinal
studies. European journal of human genetics : EJHG 21:451-454
doi:10.1038/ejhg.2012.182

Tartar M (2001) Senescence. In: Evolutionary Ecology: Concepts and Case Studies. Oxford
University Press, New York, pp 128-141

Teschendorff AE et al. (2010) Age-dependent DNA methylation of genes that are suppressed in
stem cells is a hallmark of cancer. Genome research 20:440-446
doi:10.1101/gr.103606.109

Teschendorff AE, West J, Beck S (2013) Age-associated epigenetic drift: implications, and a
case of epigenetic thrift? Human molecular genetics 22:R7-R15 doi:10.1093/hmg/ddt375

Trifunovic A, Larsson NG (2008) Mitochondrial dysfunction as a cause of ageing. Journal of
internal medicine 263:167-178 doi:10.1111/j.1365-2796.2007.01905 .x

Vaupel JW, Baudisch A, Dolling M, Roach DA, Gampe J (2004) The case for negative
senescence. Theoretical population biology 65:339-351 doi:10.1016/.tpb.2003.12.003

Vaupel JW, Manton KG, Stallard E (1979) The Impact of Heterogeneity in Individual Frailty on
the the Dynamics of Mortality. Demography 16:439-454

Weinert BT, Timiras PS (2003) Invited Review: Theories of aging. J Appl Physiol 95:1706-1716

Westendorp RG, Kirkwood TB (1998) Human longevity at the cost of reproductive success.
Nature 396:743-746

Williams GC (1957) Pleiotropy, Natural Selection, and the Evolution of Senescence. Evolution
11:398-411

Wilson VL, Jones PA (1983) DNA Methylation Decreases in Aging but not in Immortal Cells.
Science 220:1055-1057

Xu Z, Taylor JA (2014) Genome-wide age-related DNA methylation changes in blood and other
tissues relate to histone modification, expression and cancer. Carcinogenesis 35:356-364
doi:10.1093/carcin/bgt391

Yashin Al, Arbeev KG, Akushevich I, Kulminski A, Akushevich L, Ukraintseva SV (2007)
Stochastic Model fr Analysis of Longitudinal Data on Aging and Mortality. Math Biosci
208:538-551

Yashin Al, Iachine IA, Begun AS (2000) Mortality modeling: A review. Mathematical
Population Studies 8:305-332 doi:10.1080/08898480009525489

Yashin AI, Vaupel JW, Iachine IA (1994) A duality in aging: the equivalence of mortality
models based on radically different concepts. Mechanisms of ageing and development
74:1-14

Zwaan B (1999) The evolutionary genetics of ageing and longevity. Heredity 82:589-597

Zwaan B, Bijlsma R, Hoekstra RF (1995) Direct Selection on Life Span in Drosophila
melanogaster. Evolution 49:649-659

38



Chapter 3: Testing two evolutionary theories of human aging with DNA
methylation data

This chapter was published as cited below:
Robins, C., McRae, A F., Powell, J.E., Wiener, HW., Aslibekyan, S., Kennedy, E.M., Absher,
D.M., Arnett, D K., Montgomery, G.W., Visscher, P.M., Cutler, D.J., and Conneely, K.N., 2017.
Testing Two Evolutionary Theories of Human Aging with DNA Methylation
Data. Genetics, 207(4), pp.1547-1560.
INTRODUCTION

Evolutionary theories of aging

Aging is the progressive and general deterioration of an organism, defined by post-
maturation declines in survival and fertility (Medawar 1952; Williams 1957; Hamilton 1966).
Basic evolutionary theory suggests that such a trait should be selected against given its
associated reductions in Darwinian fitness. However, seemingly paradoxically, aging is a
universal feature of human life. The existence of aging remains an evolutionary puzzle.

Evolutionary theories provide possible explanations for the existence of human aging.
Two major theories include: 1) mutation accumulation (MA) (Medawar 1952), and 2)
antagonistic pleiotropy (AP) (Williams 1957), with disposable soma (DS) (Kirkwood 1977;
Kirkwood and Holliday 1979; Kirkwood and Rose 1991) as a special case. Very generally, these
theories suggest aging to occur because of a decline in the strength of selection with age. Even in
the absence of aging, extrinsic mortality, or death due to external factors such as accident or
starvation, causes fewer people to survive to higher ages (Medawar 1952). As a result, older ages
matter increasingly less to lifetime reproductive success, and selection becomes increasingly
ineffective (Hamilton 1966).

More specifically, MA suggests aging to be a non-adaptive consequence of the decline in

the strength of selection with age (Medawar 1952). Mutations with deleterious effects confined
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to late in life have only small impacts on fitness, as carriers likely reproduce before the onset of
mutation action. Such mutations are hidden from the full force of selection and are essentially
neutral. As a result, these mutations can grow to high frequency and accumulate within a
population’s germline over many generations (Hughes and Reynolds 2005). The resulting burden
of late-acting deleterious mutations is suggested to cause aging under MA.

In contrast to MA, AP suggests aging to be an adaptive consequence of an evolutionary
trade-off between survival and reproduction (Williams 1957). AP proposes the existence of a
specific type of pleiotropic gene that has opposite effects on fitness at different ages. These genes
are said to be antagonistically pleiotropic, and present a potential trade-off between early and late
life, or survival and reproduction. Selection of these antagonistically pleiotropic genes depends
both on the magnitude and timing of the opposing effects. Fitness advantages conferred early in
life can easily selectively outweigh accompanying late-life costs due to the weakening strength
of selection with age. AP suggests aging to be caused by the deleterious late-life effects of
antagonistically pleiotropic genes that have accumulated in the population germline through
active selection of their early-life benefits.

A special case of AP is DS (Kirkwood and Holliday 1979). Similar to AP, DS considers
aging to be an adaptive consequence of the evolutionary optimization of a general trade-off
between survival and reproduction (Kirkwood 1977; Kirkwood and Holliday 1979; Kirkwood
and Rose 1991). In particular, DS suggests aging to result from trade-offs in the allocation of
finite energy resources between biological functions such as growth, reproduction, and
maintenance. Selection works to optimize energy allocation strategies to maximize fitness, and
evolves energetic limits for each function. Given the limited amount of energy that can be

allocated toward maintenance, mechanisms for somatic maintenance and repair mechanisms
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cannot be perfect. Imperfect maintenance and repair mechanisms cause unrepaired cellular and
molecular damages to accumulate over the lifetime of an individual. DS suggests aging to be
caused by this accumulation of somatic damages throughout life.

DS is often considered to be a special case of AP due to their shared general trade-off
framework. However, since AP and DS differ in their suggested trade-off mechanisms and
underlying causes of aging (Kirkwood and Rose 1991; Kirkwood and Austad 2000), we consider
them to be related but separate theories and investigate their predictions independently.

The theories of MA, AP, and DS are not mutually exclusive and large bodies of literature
provide support for aspects of each individual theory (Gavrilov and Gavrilova 2002). It is
possible that all three theories play some role in explaining the features and existence of human
aging, but the relative importance of each theory has not yet been well established (Partridge and
Barton 1993). A better understanding of each theory’s contribution will help to clarify the roles
of the environment and different types of genes in the aging process. Many of the methods
previously used to test these theories have been able to provide support for one theory over
another, but have not been able to speak to the size of the contribution each theory makes in
explaining aging (Robins and Conneely 2014). Here, we have devised a unique test using DNA
methylation data that will allow us to better understand the relative importance of MA and DS

evolutionary models of aging.

DNA methylation and aging
DNA methylation is an epigenetic modification that is dynamic with age (Fraga and
Esteller 2007; Bocklandt et al. 2011; Koch and Wagner 2011; Alisch et al. 2012; Hannum et al.

2013; Horvath 2013; Xu and Taylor 2014) and has been shown to be heritable in cross-sectional
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family studies (McRae et al. 2014; Day et al. 2016). It involves the addition of a methyl group to
the 5-position of a cytosine base, and typically occurs at a CpG site, where a cytosine base is
directly followed by a guanine base. Functionally, DNA methylation of gene promoter regions is
often associated with gene expression silencing (Razin and Riggs 1980; Jaenisch and Bird 2003;
Bell et al. 2011).

Robust age-associated changes in DNA methylation occur throughout the genome (Fraga
and Esteller 2007; Bocklandt et al. 2011; Koch and Wagner 2011; Alisch et al. 2012; Hannum et
al. 2013; Horvath 2013; Xu and Taylor 2014). That is, numerous CpG sites consistently show
variation in methylation between young and old ages. Many sites also show heritable patterns of
methylation, where the measured level of methylation is more similar between closely related
than unrelated individuals (Bell et al. 2012; McRae et al. 2014; Day et al. 2016). This suggests
that a genetic component underlies the variation in methylation at these CpG sites.

An environmental or stochastic component to the variation in methylation is also
suggested, as the nearly identical DNA methylation patterns of monozygotic twins at birth have
been observed to diverge with age (Fraga et al. 2005; Martin 2005; Zampieri et al. 2015). This
age-related divergence in the methylation patterns of relatives has been termed epigenetic drift
(Teschendorff et al. 2013; Issa 2014; Sun and Yi 2015). The exact mechanisms driving these
changes are not yet understood, but both external environmental and internal cellular events,
such as imperfect methylation maintenance, have been hypothesized to contribute (Fraga and
Esteller 2007; Hannum et al. 2013). The age-associated DNA methylation changes of epigenetic
drift are suggested to be acquired stochastically (Jones et al. 2015), and align with DS (Kirkwood

2005).
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DNA methylation has been suggested as a biomarker of human aging, or an easily
repeatable measure that is descriptive of biological age (Baker and Sprott 1998). The genome-
wide patterns of methylation have been observed to be dynamic throughout life, with the
methylation at numerous CpG sites shown to have strong associations with age. These age-
associated changes in methylation have been reported at thousands of sites across the genome in
human blood samples (Alisch et al. 2012; Hannum et al. 2013; Horvath 2013; Xu and Taylor
2014). Furthermore, chronological age can be accurately predicted from the methylation
measurements at just a few hundred of these CpG sites (Hannum et al. 2013; Horvath 2013).
DNA methylation at these sites shows consistent changes with age across individuals, as well as
cell and tissue types, and forms an “epigenetic clock™ (Jones et al. 2015). Estimates of biological
age derived from the methylation measurements at the clock-like CpG sites have been found to
predict mortality better than chronological age (Marioni et al. 2015). Together these observations
indicate that DNA methylation changes, both en masse and site-specific, reflect aspects of the
aging process, and can be regarded as a biomarker of aging against which predictions of

evolutionary theories can be tested.

Heritability of DNA methylation

In this study, we test the contrasting heritability predictions of MA and DS against
familial DNA methylation data. We do not test heritability predictions of AP, as AP predicts a
wide range of patterns of genetic variation, including patterns also expected under MA (Moorad
and Promislow 2009). Unlike AP, specific predictions about genetic variation and heritability
can be made for the theories of MA and DS, and these predictions are contrasting (Charlesworth

and Hughes 1996; Kirkwood 2005; Moorad and Promislow 2009).
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MA suggests the heritability of lifespan and other aging-related traits to increase with
age. MA assumes aging to be caused by deleterious late-acting mutations that have accumulated
in a population’s germline over many successive generations due to a decline in strength of
selection with age (Medawar 1952). Because of this weakening selection, the equilibrium
population frequency of deleterious mutations is expected to increase with the age of onset of
mutation action (Charlesworth 1980; Partridge and Barton 1993). Increases in the number of
mutations in the population equate to increases in genetic variation. As a result of this increasing
genetic variation, the heritability of lifespan and other features of aging is also predicted to
increase with age (Charlesworth 1994; Gavrilova et al. 1998; Gavrilov and Gavrilova 2002). In
contrast to MA, DS assumes aging to be caused by random somatic damages that accumulate
over the lifetime of an individual (Kirkwood and Rose 1991). These damages result from random
failure events of somatic maintenance and repair mechanisms and predict an inherently
stochastic process of aging (Kirkwood 2005). This stochasticity under DS is expected to cause
the phenotypic variation of aging-related traits to increase with age, which in turn causes the
heritability of these traits to decrease with age.

If age-associated methylation changes are consistent with MA, we suggest that they
mediate the age-specific effects of deleterious genetic mutations, and that the heritability of DNA
methylation will increase with age. In contrast, if age-associated methylation changes are
consistent with DS, we suggest that they result from stochastic failures in maintenance and repair
mechanisms, and that the heritability of DNA methylation will decrease with age. In this study
we test for increasing and decreasing heritability of DNA methylation at age-differentially

methylated CpG sites. Sites where the heritability of methylation increases with age will be
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considered consistent with MA, while sites where the heritability of methylation decreases with
age will be considered consistent with DS.

The existence of widespread changes in DNA methylation with age is potentially
consistent with both MA and DS. Our novel use of DNA methylation data in testing these
theories allows us to categorize individual CpG sites across the genome as consistent with either
MA or DS, or inconsistent with both theories, and to assess the ability of each theory to explain
the DNA methylation changes observed in aging (Robins and Conneely 2014).

Additionally, we test for the existence of a heritable rate of aging, which is consistent
with both MA and DS. Under DS, genes regulating the accuracy of somatic maintenance and
repair are suggested to dictate the rate of somatic damage accumulation and imply a heritable
rate of aging that is constant throughout life. Under MA, deleterious genes with age-specific
effects are suggested to cause aging, and imply a heritable rate of aging that is potentially
variable throughout life (e.g. slow at young ages, fast at older ages). The prediction of a heritable
rate of aging can be tested using a methylation-derived measure of the aging rate. An
individual’s age can be estimated from DNA methylation levels at 353 CpG sites via a predictive
linear model developed by (Horvath 2013). The difference between an individual’s methylation-
estimated age and chronological age provides a measure called age acceleration that describes
that individual’s rate of aging (i.e. fast or slow). Here we estimate the heritability of age
acceleration using familial DNA methylation data. A significant non-zero heritability of age
acceleration will indicate that changes in DNA methylation across a few hundred CpG sites are
consistent with evolutionary models of aging. This will allow us to see if the patterns observed at

the level of single CpG sites extend to a larger scale across the genome.
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MATERIALS AND METHODS
Overview of hypotheses to be tested
We tested for increasing or decreasing heritability of methylation with age using a

variance components model. At each CpG site we tested three specific hypotheses:

1) Age is a predictor of methylation level;
2) Methylation level has a heritable component;

3) The heritability of methylation has an age-dependent component.

Testing the first and second hypotheses allowed us to define a set of age-differentially-
methylated CpG sites and a set of CpG sites with heritable methylation levels for further
investigation. To test the third hypothesis, we restricted the analyses to sites that are age-
differentially-methylated and have heritable methylation levels. Testing this hypothesis allows us
to directly test for increasing or decreasing heritability of methylation with age, and to determine

which CpG sites have age-associated methylation changes that are consistent with MA or DS.

Familial DNA methylation data

DNA methylation was measured in a sample of 610 individuals from 176 different
families recruited for the Brisbane Systems Genetics Study (BSGS) (Powell et al. 2012). These
families are all of European descent, and are comprised of adolescent MZ and DZ twin pairs,
their siblings, and their parents. The age distribution for these individuals ranges from 10 years

to 75 years, and has a mean age of 21 years (Figure S1).

46



Measuring DNA methylation

DNA methylation was measured from blood samples using the Illumina Infinium
HumanMethylation450 Beadchip (Bibikova et al. 2011). This array interrogates a total of
482,421 CpQG sites and 3,156 non-CpG sites across the genome using a bisulfite DNA treatment
and two sets of site-specific probes binding associated methylated and unmethylated sequences
(Triche et al. 2013). The proportion of DNA strands methylated at any particular site was
estimated as the measured intensity of fluorescent signal from methylated probes relative to the
intensity of fluorescent signal from both methylated and unmethylated probes. This ratio, with
the addition of a stabilizing constant of 100 to the denominator, is referred to as a f-value. Each
individual sample was measured on a randomly assigned chip and at randomly assigned position

within that chip to avoid potential confounding due to family membership (McRae et al. 2014).

DNA methylation data quality control

The measured methylation state of a CpG site can be directly affected by the underlying
DNA sequence. If there is a genetic variant at the cytosine or guanine of a CpG site, for instance,
the site cannot be methylated. Furthermore, a genetic variant in the sequence probed by the array
can impact array binding affinity and bias the measured level of methylation. To minimize the
impact of these direct genetic effects on our estimates of DNA methylation heritability, we
removed CpG sites with SNPs present on the 50-base CpG site probe before performing
heritability analyses. Sites with underlying SNPs were identified based on data from the 1000
Genomes Project phase I release, as annotated by (Barfield et al. 2014). We further cleaned the
data by removing probes annotated as binding to multiple chromosomes, probes without CpG

sites, and probes with more than 11 individuals with missing data or more than 5 individuals
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with detection P-values > 0.001 (McRae et al. 2014). After cleaning, a total of 373,006 probes
remained for testing. A chart illustrating the data cleaning process is provided in the
supplementary information (Figure S4).

Each probe was residualized using a generalized linear model with a logistic link function
similar to that used by (McRae et al. 2014). The covariates in our model included chip, position
on chip, and estimated proportions of the following cell types: CD8-positive T cells; CD4-
positive T cells; natural killer cells; B-cells; monocytes; and granulocytes. The cell type
proportions were estimated from the methylation array data using a method proposed by
(Houseman et al. 2012) and reference data on the methylation signatures of purified cell types
(Reinius et al. 2012). We included these estimated cell type proportions as covariates in the
model to avoid potential confounding due to the heterogeneous and changing cellular
composition of whole blood. After residualizing each probe we removed outlying measurements
more than five interquartile ranges for the nearest quartile. (McRae et al. 2014) found these
outlying data points, likely caused by rare genetic variants or measurement errors, to have a large
influence on heritability estimates. After removing outliers, the residuals from the above model

were used as the phenotype for all heritability analyses.

Modeling changes in the heritability of DNA methylation with age

To identify CpG sites consistent with each evolutionary theory we fit the familial BSGS
data to a model of age and methylation that takes into account family structure and other relevant
covariates.

For each CpG site we modeled methylation as a function of age and sex
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Xit =HU + ﬁaget + ﬁsexmale + €it (1)

where X;; represents the f-value for individual i at age ¢, residualized on chip, position on chip,
and cell type proportions, and €;; is an error term representing genetic and environmental
variation. The covariance matrix for €;, was parameterized similar to Diego ef al. (Diego et al.

2003) with €;; and €;; representing the error terms for relatives i and j at ages ¢ and s.

o2(t)+ oZ(t) i=j o2(t) = e%atVet
Cov(ei, €s) =1, % ’ L YRV )
2¢;j0,(t)ay(s) i+ j o2(t) = e%tve

In this model, o2 (t) is the genetic variance at age ¢, 62(t) is the environmental variance
at age ¢, and ¢;; is the kinship coefficient between individuals i and j. The variance in this model
is partitioned such that baseline heritability is reflected by @, while the dependence of
heritability on age is reflected by y,;. Similarly, the baseline proportion of phenotypic variance
due to environmental variance is reflected by a,, while the dependence of that proportion on age
is reflected by y,.

For each CpG site we implemented this model in SOLAR (Almasy and Blangero 1998), a
statistical genetics software package, and tested our specific hypotheses by adding restrictions to
the general model described above. Each hypothesis was tested using a likelihood ratio test
(LRT), comparing the fit of a full model to the fit of a restricted model. At each CpG site we
tested three specific hypotheses: 1) age is a predictor of methylation level; 2) methylation has a

heritable component; 3) the heritability of methylation has an age-dependent component.
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To test the first two hypotheses, we did not partition the genetic and environmental
variance into baseline and age-dependent terms as shown in the general model above. The full

and restricted models used to test these hypotheses included g/ and oZ with no age-dependence
(i.e., ¥4 and y, set to 0), while the full and restricted models used to test the third hypothesis
included o7 (t) and o (t) with age-dependence as shown in equation (2). To test Hypothesis 1
we tested the restriction that 8,4, = 0. Sites where 8,4, was found to be significantly non-zero

after multiple test correction (FDR<0.05) were defined as age-differentially-methylated. To test

Hypothesis 2 we tested the restriction that o= 0. Sites where g7 was found to be significantly

non-zero after multiple test correction (FDR<0.05) were designated as heritable.

We limited tests of Hypothesis 3 to CpG sites that are both age-differentially-methylated
and moderately heritable, with 422> 0.2. To test Hypothesis 3 we fit two separate restricted
models, with y; and y, independently restricted to zero. These two restrictions allowed us to test
for age-dependent components in both genetic and environmental variance. This is necessary as
heritability depends on both genetic and environmental variance, and age-dependent changes in
either genetic or environmental variance will cause age-dependent changes in heritability.

We performed simulations to estimate the type I error rate and our power to detect age-
dependent changes in genetic and environmental variance (for more information see
Supplementary Methods). Our results indicate that our modeling approach has appropriate levels
of type I error and that our power to detect age-dependent changes is approximately equivalent
for the genetic and environmental variances (that is, power is similar for tests of the restrictions

Yg=0and y, = 0).
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Estimating the heritability of rate of aging using DNA methylation

We used a linear model developed and tested by Horvath to predict age using DNA
methylation data from 353 CpG sites (Horvath 2013). The sites included in the model were
selected using elastic net regression, and have been shown to accurately predict age across many
cell and tissue types. We estimated methylation-derived ages for all 610 BSGS individuals with
Horvath’s model and unresidualized f-values. After estimating methylation age, we calculated
age acceleration, defined as the difference between methylation age and chronological age.
Positive values of age acceleration suggest an increased rate of aging (i.e. fast aging), while
negative values suggest a decreased rate of aging (i.e. slow aging).

To estimate the heritability of rate of aging, we modified the model shown in equations
(1) and (2) to include age acceleration as the outcome. As described earlier, we tested for a

heritable component by restricting g7 to zero and comparing the full and restricted models with a

LRT. The model was implemented in SOLAR (Almasy and Blangero 1998).

Annotation for genomic features

All CpG sites were annotated with respect to the following genomic features: CpG
islands, CpG shores, CpG shelves, strong promoters, weak promoters, poised promoters, strong
enhancers, weak enhancers, insulators, transcription factor binding sites, and CTCF binding sites.
For this annotation we used three data sets downloaded from the UCSC table browser for
GRCh37/hg19 (ENCODE Project Consortium, 2012) (Karolchik et al. 2004): 1) CpG Islands
(Gardiner-Garden and Frommer 1987); 2) Broad ChromHMM for GM 12878 (Ernst and Kellis
2010); 3) Transcription factor ChIP V3 (transcription factor binding sites) (Consortium 2012).

Each CpG site was annotated based on overlaps between the CpG location and the intervals of
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the genomic features provided by the UCSC data sets. We defined CpG island shores to be 1.5kb
out from CpG islands, and CpG island shelves to be 1.5kb out from shores. For all other genomic

features we adopted corresponding ChromHMM category definitions presented in (Ernst et al.

2011).

Replication data

Familial DNA methylation data from the Genetics of Lipid Lowering Drugs and Diet
Network (GOLDN) study, previously described by (Corella et al. 2007; Irvin et al. 2010; Wagner
et al. 2016), were used to replicate the results of our analyses. Families with at least two siblings
were recruited from participants in the National Heart, Lung, and Blood Institute Family Heart
Study in Minneapolis, MN and Salt Lake City, UT (Hidalgo et al. 2014). DNA methylation data
were available for 1050 individuals from 182 families. The age distribution for these individuals
ranges from 18 years to 88 years, and has a mean of 49 years (Figure S5).

DNA methylation was measured from isolated CD4+ T cells using the Illumina Infinium
HumanMethylation450 Beadchip (Bibikova et al. 2011). This chip was also used to measure
DNA methylation from the BSGS blood samples, and is described in more detail in the
‘Measuring DNA methylation’ section above. f-values with a detection P-value > 0.01, samples
with more than 1.5% of probes missing, probes for which more than 10% of the samples had
inadequate intensity, and probes mapped to more than one location or a location not matching the
annotation file were removed prior to analysis (Hidalgo et al. 2014). After these quality control
steps, 991 individuals and 461,281 CpG sites remained. As these data were originally prepared

for another study, the quality control criteria and specific sites considered suitable for analysis
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slightly differ between the GOLDN data and our original BSGS data. Only GOLDN data that

passed the described quality control criteria were available for our replication analyses.

Expression data quality control and annotation

Gene expression levels were measured from the BSGS blood samples using Illumina
HT12-v4.0 bead arrays (Powell et al. 2012; Powell et al. 2013). These arrays contain 47K
probes designed to cover all well-characterized genes, gene candidates, and splice variants
(ITlumina 2011). Expression was measured for all 610 individuals for whom DNA methylation
levels were also measured. Each individual sample was measured on a randomly assigned chip
and at a randomly assigned position to avoid any potential confounding.

Before beginning our analyses, we removed probes where less than 10% of the samples
had a detection P-value < 0.05, as well as probes with overlapping SNPs and probes of low
quality (i.e. probes unlikely to match the target transcript due to sequence mismatches or
sequence matches at multiple locations), as annotated by (Barbosa-Morais et al. 2010). After
cleaning, the expression values of the remaining 13,222 probes were log transformed for
analysis.

Gene information was annotated to each expression probe using Refseq transcript exon
intervals downloaded from the UCSC table browser for hg19. For exons of the same gene with
overlapping intervals, the union of the intervals was taken for consistency. Refseq gene
information was annotated to an expression probe using the R Bioconductor package
GenomicRanges (Lawrence et al. 2013), if there was more than a 25bp overlap between the

probe and exon interval.
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Identifying changes in expression associated with age-related changes in DNA methylation
To test for associations between changes in age-related methylation changes and changes
in expression we modified the model shown in equations (1) and (2) to include log transformed

expression values as the outcome and methylation as a covariate. For each expression probe

E(Ylt) =a+ ﬁaget + ﬁsexmale + ﬁCpGinj (3)

where Y, describes the expression level for individual i at age 7, and X;; describes the

residualized methylation level for individual i at CpG site j. We implemented the model in
SOLAR (Almasy and Blangero 1998), and tested if methylation level was a predictor of

expression level by restricting ﬁCpGjto zero for each CpG site j and comparing the full and
restricted models with a LRT. ﬁCpGj describes the change in gene expression associated with

CpG site j becoming fully methylated from a fully unmethylated state.

Data Availability

Data from BSGS are archived at the Gene Expression Omnibus (GEO;
https://www.ncbi.nlm.nih.gov/geo/), accession numbers GSE56105 (DNA methylation) and
GSES3195 (gene expression). DNA methylation data from GOLDN are archived on the
database of genotypes and phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap), accession

number phs000741.v1.pl.
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RESULTS AND DISCUSSION

Age-differentially-methylated CpG sites

In total, 91,261 CpG sites (24% of CpG sites tested) had significant association
with age after multiple test correction (FDR<0.05). Of these sites, 47% (43,029 CpG sites)
had significant increases in methylation with age, while 53% (48,232 CpG sites) had
significant decreases in methylation with age (Figure 1). The large number of CpG sites
showing age-differential-methylation is consistent with results observed in other
epigenome-wide association studies for age. For example, we tested 600 CpG sites
previously shown to have significant association with age across four independent data sets
(Xu and Taylor 2014). Of these 600 CpG sites, 582 (97%) were age-differentially-
methylated in a concordant direction in our data after multiple test correction. Additionally,
we tested 290 of the 353 CpG sites that were included in the age prediction model of
(Horvath 2013). Of these 290, 144 (~50%) of these sites were significantly age-

differentially-methylated after multiple test correction.

Heritability of DNA methylation

We estimated the average heritability of DNA methylation across all CpG sites to
be 0.177 (Figure 2). A heritability of 0 was estimated at 20% of sites (72,927 sites), and
significant non-zero heritability was estimated at 38% of sites after multiple test correction
(142,169 sites, FDR<0.05). After restricting to age-differentially-methylated CpG sites, the
average estimated heritability of methylation increased to 0.272 (Figure 2). These
heritability estimates are consistent with the results previously reported by (McRae et al.

2014).
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We performed Fisher’s exact tests to test if age-differentially-methylated sites are
more likely than other sites to have heritable methylation levels. Specifically, we examined
the overlap between sets of 1) age-differentially-methylated CpG sites and 2) CpG sites
with heritable methylation, and tested whether this overlap is greater than expected by
chance. These sets were defined after multiple test correction at varying significance levels,
to ensure that results do not depend on a specific a-level (Figure 3). We observed
significant overlap between the sets of age-differentially-methylated sites and sites with
heritable methylation at all significance levels, indicating that age-differentially-methylated
CpG sites are more likely to have heritable methylation than other sites. This observed
enrichment indicates a potential genetic basis for age-related DNA methylation changes.

Our models adjusted for both age and family structure simultaneously, so the
overlap between age-differentially-methylated and heritable sites is unlikely to be due to
confounding between age and family structure. Furthermore, to ensure that this overlap did
not reflect differences in statistical power among CpG sites with high vs. low variability,
we compared the variance of methylation across sites. We observed similar distributions
for the variance of methylation in the following sets of CpG sites: age-differentially-
methylated sites with heritable methylation vs. age-differentially-methylated sites with
non-heritable methylation; and non-age-differentially-methylated sites with heritable
methylation vs. non-age-differentially-methylated sites with non-heritable methylation
(Figure S6). Importantly, sites that were both age-differentially-methylated and heritable
did not appear to have increased variability in methylation. This shows that the overlap
between age-differentially-methylated sites and sites with heritable methylation is not

simply driven by differences in phenotypic variation.
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Changes in the heritability of DNA methylation with age
Under our model, described by equation (2), heritability can be defined as
ellg+}/gt

o2
R 5)
0'5+0'§ e®gtVgltieaetyet

where ¢ represents age. Given this simplifying definition, we consider sites to be consistent with
MA if: 1) y, is positive; and 2) y, is greater than y,. At these sites the increases in genetic
variance with age are greater than the changes in environmental variance, which is suggestive of
increasing heritability of DNA methylation with age. We consider sites to be consistent with DS
if: 1) ye is positive; and 2) y, is greater than y,. At these sites the increases in environmental
variance with age are greater than the changes in genetic variance, which is suggestive of
decreasing heritability of DNA methylation with age. For simplicity and brevity, we will call
sites found to be consistent with MA or DS based on the above criteria MA-consistent or DS-
consistent respectively.

Our confidence in the estimated direction of heritability change with age for each site,
and the resulting theory classification, increases with the significance of the y, and y, terms. We
have increased confidence in the classification of a site as consistent with MA when that site has
a significantly non-zero and positive y; (FDR<0.05). At these sites there are significant increases
in the genetic variation underlying the variation in DNA methylation with age. Similarly, we
have increased confidence in the classification of a site as consistent with DS when that site has a
significantly non-zero and positive y. (FDR<0.05). At these sites there are significant increases
in the environmental variation underlying the variation in DNA methylation with age. We are

most confident in the classification of sites where both vy, and vy, are significant (FDR<0.05), as
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in these cases we are confident in the direction of change for both the genetic and environmental
variation underlying the variation in DNA methylation at those sites.

Because of this, we have divided the sites we found to be consistent with MA and DS
into three different groups on the basis of the significance of the y, and y, terms (Table 1).
Group 1 contains all sites consistent with MA or DS, irrespective of significance. In total, 13,467
sites were found to be consistent with MA, while 30,749 sites were found to be consistent with
DS. Group 2 contains sites that are consistent with MA and have a significant y, term
(FDR<0.05), and sites that are consistent with DS and have a significant y, term (FDR<0.05). A
total of 102 sites found to be consistent with MA have significant y, terms, while a total of 2,266
sites found to be consistent with DS have significant y, terms. Group 3 contains sites that are
consistent with MA or DS and have significant y; and y, terms (FDR<0.05). A total of 70 sites
found to be consistent with MA have significant yg and y, terms, while a total of 203 sites found
to be consistent with DS have significant yg and vy, terms.

Figure 4 compares the significance and sign of y, and y, at each site, and shows the
separation of sites into different groups. In this figure, the dotted lines represent the genome-
wide significance levels for v, and y. These significance levels, along with the axes, divide the
graph into sixteen sections that can be used to visualize the categorization of sites. For instance,
sites with significant positive y, values and significant negative y, values fall into the upper left
section. All these sites are consistent with DS and included in the counts for groups 1, 2, and 3.
Counts for each section have been superimposed on the graph, and each section has been color-
coded to show theory classification and group inclusion. Red denotes sections with sites that are
consistent with MA, while blue denotes sections with sites that are consistent with DS. Group

membership based on significance is designated by color shade and numbered brackets. The
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dashed line represents the y,= v, identity line, and serves to separate counts in sections where

there are sites that are consistent with both MA and DS.

Comparison of sites consistent with MA and DS

To gain a better understanding of what distinguishes MA and DS sites, we analyzed
the locations, genomic features, and gene ontology associated with the CpG sites we found
to be consistent with each theory.

Location: The locations of CpG sites found to be consistent with MA do not
notably differ from the locations of CpG sites found to be consistent with DS. This was
observed for all three significance groups, as shown in Figure 5.

Enrichment for age-methylation or age-demethylation: Fisher’s exact tests were
performed on the sets of sites found to be consistent with MA and DS to test if these sites
are more likely than others to be age-methylated or age-demethylated. To increase the
power of these tests, we compared all sites found to be consistent with MA or DS,
irrespective of significance (Group 1), to the set of all sites tested for age-differential
methylation. We defined age-methylated sites as those with increases in DNA methylation
with age (B,4e > 0), and age-demethylated sites as those with decreases in DNA
methylation with age (Bg4. < 0).

We found MA sites to have significant depletion for age-methylation (OR=0.86,
P=1.03x10"'®), which is equivalent to significant enrichment for age-demethylation. In
contrast, we found DS sites to have significant enrichment for age-methylation (OR=1.16,

P=7.64x107%) (Figure 6a). This means that DS-consistent sites are more likely than other
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sites to be age-methylated, while MA-consistent sites are more likely to be age-
demethylated.

Enrichment for genomic features: To better understand the genomic context of
MA and DS sites, Fisher’s exact tests were performed to test for enrichment of the
following genomic features: CpG islands, CpG island shelves, CpG island shores, strong
promoters, weak promoters, poised promoters, strong enhancers, weak enhancers, and
insulators. We compared all sites found to be consistent with MA or DS irrespective of
significance (Group 1), to the set of all sites tested for changes in heritability of DNA
methylaiton with age. Previous work has shown age-methylated sites to be more likely to
be located within CpG islands, and age-demethylated sites to be more likely to be located
outside CpG islands (Christensen et al. 2009). We found MA sites to be significantly
depleted in CpG islands (OR=0.70, P=1.43x10"), which is consistent with previous work
given our finding that MA sites are enriched for age-demethylation.

The enrichment pattern of MA and DS sites that was observed for CpG islands
extended to CpG shores, defined to be 1.5kb out from CpG islands. We found DS sites to
be significantly enriched in CpG shores (OR=1.33, P=8.81x10#°), and MA sites to be
significantly depleted (OR=0.83, P=6.98x10"!7; Figure 6b). This pattern, however, did not
extend to CpG shelves, defined to be 1.5kb out from CpG shores. We found no notable
difference between MA and DS sites in enrichment for shelves; both sets of sites were
enriched in shelves.

Weak promoters and weak enhancers were found to have similar enrichment

patterns for MA and DS sites. We found MA sites to be significantly depleted in weak
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promoters and weak enhancers (OR=0.81, P=2.47x10% ; OR=0.66, P=3.75x10%), and DS
sites to be slightly enriched (OR=1.13, P=5.74 x10-'%; OR=1.09, P=0.04).

The one genomic feature we found to be significantly enriched in MA sites
(OR=1.53, P=1.21x107'?) and significantly depleted in DS sites (OR=0.79, P=3.54x10"%)
was insulators (Figure 6b). Previous work has suggested that the DNA methylation status
of an insulator affects the binding of the transcriptional repressor CTCF, which may
preferentially bind to unmethylated sequences (Kang et al. 2015). We found MA sites to be
more likely to be located in insulators and to lose methylation with age. These results,
combined with the findings of previously published work, suggest that MA sites may
directly influence changes in transcription with age.

Gene Ontology: Gene ontology analyses were performed to gain a better understanding
of the specific genes or type of genes that are associated with DNA methylation changes at the
CpG sites consistent with MA and DS. We used the GOstats package in R (Falcon and
Gentleman 2007) to assess whether any terms describing biological processes, molecular
functions, or cellular components associate with the sets of genes closest to the CpG sites
consistent with MA or DS. The gene closest to each CpG site was defined based on distance to
transcription start site, as in (Barwick et al. 2016). We analyzed all sites found to be consistent
with MA or DS, irrespective of significance (Group 1). Table S2 shows the top five significant
terms after multiple test correction for the MA and DS sets for each ontology category
(FDR<0.05), as well as the total number of significant terms associated with each set. Overall,
the genes closest to DS sites are enriched for fewer molecular functions (3 vs. 2), cellular
components (2 vs. 0), and biological processes (19 vs. 5) than the genes closest to MA sites. This

is evidenced by fewer significant terms and higher P-values associated with the genes closest to
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DS sites (Table S2). A lack of enrichment for functionality is consistent with stochastic age-
associated DNA methylation changes and the stochastic process of aging that is suggested by

DS.

Replication of results

To assess the generality of our results we tested for changes in the heritability of DNA
methylation with age in an independent data set from the GOLDN study. Our analysis was
restricted to sites found to be consistent with MA or DS in the BSGS data set at the Group 2

level of significance (significant y, for MA sites, significant y, for DS sites). After quality

control, data from the GOLDN study were available for 101 of the 102 MA sites, and 2,164 of
the 2,266 DS sites.

In the GOLDN data, 958 CpG sites were found to be consistent with MA and 1,266 CpG
sites were found to be consistent with DS, irrespective of significance (Group 1). Of these sites,
56 sites were found to be consistent with MA and 1,221 sites were found to be consistent with
DS in both the GOLDN and BSGS data sets. This relates to a 55% replication for MA sites and
56% replication for DS sites.

When we restricted to sites with significant yg or y, values (Group 2), 15 CpG sites were
found to be consistent with MA and 247 sites were found to be consistent with DS. Of these
sites, four sites were found to be consistent with MA and 229 sites were found to be consistent
with DS in both the GOLDN and BSGS data sets.

Across significance groups (i.e. Groups 1 and 2), more sites were found to be consistent
with DS than with MA in both the GOLDN and BSGS data sets. Although this general trend

replicated well, there was little replication at the CpG site level. The low replication rates we

62



observed are likely due to differences in data composition. BSGS measured methylation from
whole blood, while the GOLDN study measured methylation from isolated CD4+ T cells. To
avoid potential confounding due to the heterogeneous cellular composition of whole blood, the
BSGS methylation B-values were residualized on cell type proportions before running analyses.
Since the methylation of a single cell type was measured in the GOLDN study, raw 3-values
were used in analyses. Additionally, the BSGS families are comprised of adolescent twins, their
siblings, and their parents, while the GOLDN study families are comprised of adult siblings. This
results in a bimodal age distribution with a mean age of 21 for the BSGS subjects (Figure S1),
and a unimodal age distribution with a mean age of 49 for the GOLDN subjects (Figure S5).
Replicated MA sites with significant y, and expression analysis: To help deepen our
understanding of what characterizes CpG sites with MA-consistent age-associated DNA
methylation changes, we investigated the attributes of sites found to be consistent with MA in
both the BSGS and GOLDN data sets. Only MA-consistent sites were tested, as we expect the
DNA methylation changes at DS-consistent sites to be stochastic and to associate with a random

set of genes. We limited our investigation to the four MA-consistent sites with significant y,

values in both data sets, as we are the most confident in the theory categorization at these sites.
Table 2 lists the observed direction of change in methylation with age, and the annotated
location, nearest gene, and genomic features and states of these four sites. Notably, half of the
replicated MA sites are located within a transcription factor binding site (TFBS). This indicates
that MA sites may directly influence changes in transcription with age.

MA proposes aging to be caused by deleterious genes with age-specific effects confined
to only late in life. We suggest that the effects of such genes may be influenced by age-

associated changes in DNA methylation, and that these changes may be accompanied by changes
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in gene expression. We tested for associations between gene expression and the methylation
levels at MA-consistent sites. All 13,222 expression probes passing quality control were tested

against the four replicated MA sites with significant y, values. After multiple test correction, 11

genes showed a significant change in expression that was associated with a change in
methylation level at one of three CpG sites (FDR<0.05; Table S3). For ten of these associations,
expression was found to decrease with increasing methylation, indicating that methylation at
these CpG sites may be interfering with transcription. Interestingly, all 11 of the genes with
significant methylation-associated expression changes are located on a different chromosome
from the CpG site. This suggests that the methylation of some MA-consistent CpG sites may
interfere with the transcription of distal genes. Separate chromosomes can physically interact in
the 3D space of the nucleus, and the transcription of some genes have been shown to be
regulated by elements (e.g. enhancers) located on separate chromosomes though such
interactions (Miele and Dekker 2008). The exact role of methylation in long-range expression
control has not yet been well characterized, but it is possible that the associations we observe
result from a physical interruption of interchromosomal interactions by methylation.
Alternatively, the associations we observe could be indirect, such that methylation interferes with
the transcription of a local gene and only influences the expression of distal genes indirectly,

through a common pathway.

Heritability of rate of aging
We observed age acceleration, which describes an individual’s rate of aging, to have a
significant non-zero estimated heritability of 0.63. This result is consistent with both MA and DS

evolutionary models of aging. Horvath found the heritability of age acceleration in twins to be
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100% for newborns and 39% for adults, suggesting that the importance of environmental factors
increases with age (Horvath 2013). Given that the median age of the subjects in the BSGS data
set is 14, our result is in line with these findings. (Marioni et al. 2015) estimated the heritability
of age acceleration to be 0.43 in the BSGS data after standardizing the methylation-age estimates
to correct for differences in the age-prediction ability between adolescents and adults. The
disparity between these results highlights the changing predictive ability of the Horvath model
based on development phase, i.e. childhood vs. adulthood.

A study by (Gentilini et al. 2013) similarly investigated the relationship between
methylation and an individual’s rate of aging by comparing the methylation patterns of the
offspring of centenarians and the offspring of non-long-lived individuals. They found global
methylation levels to decrease with age across all individuals, but found centenarians and their
offspring to have significantly less global methylation loss than the offspring of non-long-lived
individuals. This result suggests that a genetic component underlies the preservation of
methylation patterns and that the rate of biological aging is heritable. This study also identified
217 CpGs sites that are differentially methylated in the offspring of centenarians compared to the
offspring of non-long-lived individuals. We compared these 217 CpG sites to the sites we found
to be consistent with MA or DS irrespective of significance (Group 1); we found 11 of these sites
to be MA-consistent and 38 of these sites to be DS-consistent. This suggests that heritability in
the rate of aging could be the result of both deleterious genes with age-specific effects, as
suggested by MA, and genes regulating the accuracy of somatic maintenance and repair, as
suggested by DS.

Using the familial BSGS data, we were able to test for the existence of a heritable rate of

aging but unable to test for age-related changes in this rate. Methylation changes resulting from
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drift should occur at a constant rate throughout an individual’s life, while targeted methylation
changes should occur at specific times and show age-dependent rates of change. This can be
examined in the future using longitudinal DNA methylation data and can potentially be used to
investigate if the epigenetic clock sites that have underlying changes are targeted and MA-

consistent or stochastic and DS-consistent.

CONCLUSIONS

We observed age-dependent changes in the heritability of methylation at age-
differentially methylated CpG sites consistent with both MA and DS. Both theories play a role
in explaining human aging and the aging-related changes we observe. The number of sites found
to have decreasing heritability of methylation that is consistent with DS was roughly three times
the number of sites found to have increasing heritability of methylation that is consistent with
MA. Decreases in the heritability of methylation with age, where the DNA methylation levels of
relatives diverge with age, have previously been reported and described as epigenetic drift. DS
and epigenetic drift are consistent with each other, and suggest that age-associated DNA
methylation changes are stochastic and may be caused by both internal and external factors.
Increases in the heritability of methylation with age, where the DNA methylation levels of
relatives converge with age, have not previously been reported. The existence of such sites
indicates that not all age-associated DNA methylation changes are stochastic and caused by
epigenetic drift. Age-related methylation changes at these sites may instead be targeted changes
that mediate the effects of deleterious age-specific mutations, as suggested by MA. Enrichment
and expression analyses suggest that methylation changes at MA sites may do this by influencing

transcription. Further work is needed to connect methylation changes at the CpG sites found to

66



be consistent with MA to specific genes or gene networks and to elucidate the role that
epigenetic drift plays in the aging process.

Additionally, we found an individual’s rate of aging to be heritable using a methylation-
derived measure of biological age, which considers the DNA methylation at hundreds of CpG
sites across the genome. A heritable rate of aging is consistent with both MA and DS. This result
indicates a general agreement between the patterns observed at the small single-site scale and the
larger many-site scale.

To validate our results, we repeated our analyses in an independent data set. The number
of sites found to have decreasing heritability of methylation that is consistent with DS was
greater than the number of sites found to have increasing heritability of methylation that is
consistent with MA. Although this general trend of DS-consistent sites outnumbering MA-
consistent sites replicated between studies, little replication was seen between the results at the
CpG site level. This was likely due to differences in data composition between our original and
replication data sets. The original BSGS data we analyzed was from families with adolescent
twins (age range:10-75; mean age: 21), while the replication GOLDN study data was from
families with adult siblings (age range: 18-88 years; mean age: 49).

The age distributions of our original and replication data sets are the main limitations of
our study. However, loci with significant age-associated DNA methylation changes have been
shown to have significant overlap in pediatric and adult populations (Alisch et al. 2012),
indicating that our age-differential methylation results should not be specific to the predominant
age class of the data set analyzed. Nevertheless, having an age distribution with an abundance of
individuals of young ages may have biased our theory classification results against the MA

model. Changes associated with the deleterious age-specific genes suggested by MA occur only

67



late in life, and may be missed in a data set that has predominantly adolescent individuals.
Additionally, since the DS model works throughout an individual’s entire life, associated
changes should be detectable even at young ages. This may inflate our estimate of the relative
contribution of DS in explaining the aging-related methylation changes we observe. In future
work, we hope to identify additional sources of family-based data to test our hypotheses against
more uniform distributions and wider age ranges. Further work using data sets with more ideal
compositions will help us to better understand and differentiate between biological aging- and
development-related DNA methylation changes.

In this paper, we have developed and implemented a novel approach to testing the MA
and DS evolutionary models of aging using DNA methylation data. The availability of genome-
wide DNA methylation data has allowed us to investigate age-related changes at sites across the
genome, and to better understand their connection to the MA and DS evolutionary models of
aging. Our approach, however, restricts our focus and results to only CpG sites with heritable
DNA methylation levels. It is possible that age-related methylation changes at non-heritable CpG
sites are also consistent with the MA and DS evolutionary models, and that the distributions of
MA- and DS-consistent changes at these sites differs from those at sites with heritable
methylation levels. It should also be noted that DNA methylation data differs in its suitability for
testing MA and DS. DS specifically predicts epigenetic changes, such as DNA methylation
changes, to be one of many types of somatic damages that occur throughout an individual’s life.
MA, however, predicts only the existence of germline mutations, and does not predict any
specific epigenetic effects. DNA methylation data, therefore, can only test the hypothesized

epigenetic impact of genes that are directly predicted by MA.
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Taken together, the results of this study suggest a role for both DS and MA in explaining
patterns of epigenetic change with age. We suggest that many of the methylation changes that
we observe with age are acquired stochastically and equivalent to epigenetic drift, but not all.
Some aging-related methylation changes may be targeted. That is, aging-related methylation
changes are likely to be caused by more than one process, and not equivalent throughout the
genome. Furthermore, we believe our work demonstrates the utility of DNA methylation data in
evolutionary investigations of human aging. We believe that the results of this study suggest

DNA methylation data will be useful in future investigations of evolutionary theories of aging.
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TABLES

Table 1. Categorization of heritable CpG sites. Counts of significant sites were determined after multiple test

correction (FDR<0.05).
CONSISTENT WITH MA CONSISTENT WITH DS
Increasing h? with age Decreasing h? with age
GROUP +Vy>7e Yg< T Ve
1 All consistent sites 13,467 30,749
2 Significant y, (if MA) or y, (if DS) 2,266
3 Significant y,; & v, 203

Table 2. Attributes and features of the replicated MA sites with significant y,,.

CPG SITE LOCATION METHYLATION NEAREST GENOMIC FEATURES &
CHANGE WITH
GENE STATES
AGE

cg02914422 Chr 7: 32110145 Age-methylated PDE1C CpG Island

TFBS

Polycomb repressed

CTCEF binding site
cg05691152  Chr 22: 38092978 Age-methylated TRIOBP TFBS

Weak/poised enhancer

CTCEF binding site
cg13672736  Chr 9: 135114066 Age-demethylated NTNG2 CpG shelf

Weakly transcribed
€g25038330 Chr 10: 463561 Age-demethylated DIP2C CpG shelf

Hetrochromatin; low signal
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FIGURES
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Figure 1. Manhattan plot of 8,4, P-values with sign of B/, estimate. Dashed lines represent genome-
wide significance (FDR<0.05). Each point represents one CpG site. CpG sites with significant increases in
methylation with age are colored dark green, while CpG sites with significant decreases in methylation with

age are colored light green.
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Figure 2. Distribution of heritability estimates for DNA methylation levels at age-differentially-
methylated and non-age-differentially-methylated sites. The average estimated heritability of methylation

across all sites is 0.177. The average estimated heritability of methylation at age-differentially-methylated

CpG sites is 0.272.
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1e-01 1e-03 1e-05 1e-07 1e-09

Figure 3. Results of Fisher’s exact tests at varying significance levels. Sets of age-differentially-
methylated CpG sites and heritable CpG sites were defined after multiple test correction. The estimated
enrichment odds ratio is shown in dark blue, with the 95% confidence interval shown in light blue. The

dashed red line represents a = 0.05.
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Figure 4. Scatterplot visualization of categorization of MA- and DS-consistent sites. The significance and sign
of the estimated values of y, (x-axis) are plotted against the significance and sign of the estimated values of y, (y-
axis). Each point represents one CpG site. The dotted lines represent the genome wide significance levels for y, and
Y., and divide the graph into sixteen sections used to visualize the categorization of sites. Counts are superimposed
onto color-coded sections to show theory classification and group inclusion. Red indicates a section with MA-
consistent sites. Blue indicates a section with DS-consistent sites. Group membership based on significance is
indicated by color shade and numbered brackets. The dashed line represents the y,= v, identity line, and serves to

separate counts in sections where there are sites that are consistent with both MA and DS.
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Figure 5. Manhattan plot of y, and y, P-values. Each point represents one CpG site consistent with either MA or

DS. The dashed lines represent genome-wide significance (FDR<0.05). All CpG sites consistent with MA and
belonging to significance groups 2 and 3 are in red. All CpG sites consistent with DS and belonging to significance

groups 2 and 3 are in blue.
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Figure 6. Histogram of enrichment in MA and DS sites. (a) Enrichment for age-methylation. MA sites are
shown in red and DS sites are shown in blue. (b) Enrichment for genomic features. For each feature, MA sites

are shown in red and DS sites are shown in blue.
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Figure S1. Age distribution of BSGS subjects with DNA methylation data.
DNA methylation data was measured in 610 individuals from the Brisbane System Genetics Study. The ages of the

individuals range from 10 to 75 years, with a mean age of 21 years.

Type I Error Rate and Power

To estimate the type I error rate and our power to detect age-dependent changes in genetic
and environmental variance, we performed simulations under the null and alternative hypotheses.
We first estimated type I error by simulating residualized S-values at 10,000 CpG sites under the
null hypothesis, where the genetic and environmental variance are independent of age, or ¥, and
Ye are equal to zero. For each CpG site a residualized B-value, X;;, , was simulated for each
individual 7 at age ¢

X = a + Baget + Psexmale + G; + E; (S

Ltsim
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where G; and E; are generated random variables representing genetic and environmental
contributions respectively. The environmental contributions E; were generated from a normal
distribution with mean zero and variance equal to the environmental variance estimated from the
BSGS data. The genetic contributions G; were generated from a multivariate normal distribution
with mean zero and variance equal to 2¢;;0Z, where ¢;; is the kinship coefficient matrix from
the BSGS subjects and ¢/ is the genetic variance estimated from the BSGS data. This
formulation allows our generated genetic residuals to be correlated between relatives as in the
original data. For each CpG site, the remaining coefficients in this model, a, By ge, and By, take
on values estimated from the BSGS data using equation (1).

At each CpG site, the generated vector X;; . was used as the phenotype to estimate y, and
Ye Via equation (2). At a significance level of a = 0.05, 5.94% of the CpG sites had a y,
significantly different from 0, and 5.82% of CpG sites had a y, significantly different from 0
(Table S1). Figure S2 compares the distributions of y, and y, P-values, and shows nearly
identical distributions at all reasonable levels of significance. These results suggest that our

modeling approach has appropriate levels of type I error.
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Figure S2. A quantile-quantile (Q-Q) plot for type I error simulations of y, and y,. This plot compares the
distribution of y,; p-values to the distribution of y, p-values. Identical distributions will lie along the identity line,

shown here as a dashed line.

To estimate power we simulated normalized f-values at 10,000 CpG sites under the
alternative hypothesis that the genetic and environmental variances are age-dependent, and y,
and Y, are non-zero. To generate these effects, we modified G; and E; in equation (S1) to include
age-dependent terms according to the model in equation (2). The scale of the age dependence for
our simulations was set to the mean of the absolute values of y; and y, estimated from the BSGS

data, such that it took the same value for simulation of both G; and E..

The modified G; and E; with age-dependent effects were used to generate new vectors of

Xit,,. as defined in equation (S1). As before, the generated vector X;; . was used as the
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phenotype to calculate y, and y, via equation (2) for each CpG site. At a significance level of a
=0.05, 44.9% of the CpG sites had a y, that was significantly different from 0, and 51.2% of the
CpG sites had a y,, that was significantly different from 0 (Table S1). Figure S3 compares the
distributions of y; and y, P-values, and shows nearly identical distributions at reasonable levels

of significance. This confirms that we have approximately equivalent power to detect age-

dependent changes in the genetic and environmental variances with y,; and y,.

10

-log(y, P-value)

-log(y, P-value)

Figure S3. A quantile-quantile (Q-Q) plot for power simulations of y, and y,. This plot compares the
distribution of y,; p-values to the distribution of y, p-values. Identical distributions will lie along the identity line,

shown here as a dashed line.

84



Table S1. Type I error rate and power for age-dependent changes in genetic and environmental variance.

TYPE I ERROR POWER
Yg=0,7.=0 Yg#0, 7. #0
Proportion of significant y, 0.0594 0.4492
Proportion of significant y, 0.0582 0.5119

The age-dependence of genetic variance is reflected by y,,.
The age-dependence of environmental variance is reflected by v,.

Probe Cleaning

=

2) Removal of non-CpG probes

: 384,163 probes :

_____ =

| 384,122 probes |

_____ =

with poor hybridization

l

373,006 probes remaining

3) Removal of probes binding to multiple chromosomes

4) Removal of probes with high levels of missing data or probes

Figure S4. Data cleaning process for BSGS DNA methylation data.
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Figure S5. Age distribution of GOLDN subjects with DNA methylation data.
DNA methylation data was measured in 1050 individuals from the GOLDN Study. The ages of the individuals range

from 18 to 88 years, with a mean age of 49 years.
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Figure S6. Boxplots comparing the distribution of methylation variance at CpG sites categorized by aDM and

heritability status.
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Table S2. Gene Ontology Terms. Total counts and the significant terms for MA and DS after multiple test

correction (FDR<0.05).
MA DS
COUNT COUNT

ONTOLOGY TERM | ADJUSTED P-VALUE TERM | ADJUSTED P-VALUE
MOLECULAR 3 2
FUNCTION Sequence-specific DNA 5.88E-7 Sequence-specific 2.23E-8

binding DNA binding

Double-stranded DNA 9.90E-4 Double-stranded DNA  2.39E-2

binding binding

Transcriptional activator 9.98E-3

activity, RNA polymerase 11
core promoter proximal
region sequence-specific

binding
CELLULAR 2 0
COMPONENT  Integral component of plasma  2.07E-4
membrane
Cell junction 1.80E-2
BIOLOGICAL 19 5
PROCESSES Positive regulation of 4.52E-5 Positive regulation of 9.07E-4
nucleobase-containing nucleobase-containing
compound metabolic process compound metabolic
. process
Cardiovascular system 4.52E-5
development Positive regulation of 9.07E-4

transcription from RNA

Positive regulation of RNA 8.44E-5
polymerase II promoter

biosynthetic process
Negative regulation of 9.07E-4

Sensory organ morphogenesis  2.04E-3 transcription from RNA

Multicellular organism 2.04E-3 polymerase II promoter
development Positive regulation of 6.01E-3
Tissue development 3.24E-3 RNA biosynthetic

process
Positive regulation of 3.57E-3 Pattern specification 6.01E-3

transcription from RNA

rocess
polymerase II promoter p

Inner ear morphogenesis 1.13E-2

Embryo development ending 1.13E-2

in birth or egg hatching
Localization 1.22E-2
Negative regulation of 1.56E-2

transcription from RNA
polymerase II promoter

Negative regulation of 1.56E-2
multicellular organismal
process




Embryonic forelimb
morphogenesis

Morphogenesis of a branching
structure

Positive regulation of neuron
differentiation

Regulation of cellular
component movement

1.64E-2

1.84E-2

3.34E-2

4.37E-2

ALL

24

Table S3. Expression analysis of replicated MA sites with significant y ;. Significant expression and

methylation associations after multiple test correction (FDR < 0.05).

ASSOCIATED

ch C(;A§[II](;]£:\I EXPRESSION DAISRSEOCCTIfTI\II 815 P-VALUE  GENE LOCATTSTSN OF
PROBE
¢g02914422 ILMN_1778788 Negative 1.03x105  AMOTL2  Chr 3: 134094259
Chr 7: 32110145 ILMN_3272768 Negative 4.63x10°  LINC00339 Chr 1: 22351683
ILMN 2397199 Negative 9.67x10°  NDEL1  Chr 17: 8339169
ILMN_1786734 Negative 1.06x10° EIFS  Chr 14: 103800338
¢g05691152 ILMN_1684585 Negative 6.07x10°  ACSL1  Chr4: 185747268
Chr 22: 38092978 11 M 1694548 Negative 8,40x10°  ANXA3  Chr 4: 79472741
ILMN_1715068 Negative 1.13x105  AQP9  Chr 15: 58430407
ILMN_ 1694243 Negative 1.53x10°  LILRA6  Chr 19: 54746617
ILMN_1714643 Negative 487x10°  MGAM  Ch7: 141695678
ILMN 2114720 Negative 2.90x10°6 SLPI  Chr 20: 43880879
cg13672736 ILMN 1678535 Positive 7.37x10° ESRI  Chr6: 152011630

Chr 9: 136114066
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Chapter 4: Testing a stochastic model of epigenetic drift against longitudinal
DNA methylation data

To be submitted with the following authors:
Chloe Robins, Lifang Hou , Crystal D Grant, Elizabeth M Kennedy, Andrea A Baccarelli, Eric
A. Whitsel, David J Cutler, Karen N Conneely

INTRODUCTION

Epigenetic modifications are chemical additions to DNA that can regulate transcription
and gene expression without changing DNA sequence. DNA methylation is an epigenetic
modification that involves the addition of a methyl group to a single nucleotide base. In the
human genome, this typically occurs at cytosine bases in a CpG dinucleotide sequence, referred
to as CpG sites. Methylation at CpG sites in or near the promoter of a gene has been associated
with gene expression silencing.

DNA methylation is known to be dynamic throughout life. Changes in methylation level
with age have been observed both globally (i.e. genome-wide) and at thousands of CpG sites
across the genome [1-5]. These age-related changes include patterns of both increasing and
decreasing methylation [6]. DNA methylation has also been observed to increase in variability
with age in populations of both related and unrelated individuals. The global methylation levels
of monozygotic twins, which are nearly indistinguishable at birth, have been shown to grow
increasingly different as a function of age in a cohort study of older vs. younger twins [7, 8].

Many of the observed age-related changes in methylation have been suggested to result
from epigenetic drift, an accumulation of stochastic changes in DNA methylation with age [7, 9].
These stochastic methylation changes are thought to occur for many reasons, including both
external environmental exposures and internal cellular events. At the cellular level, stochastic

gains and losses of methyl groups may result from infidelity in methylation maintenance and
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repair mechanisms. Methyl groups are added to DNA by a class of enzymes called DNA
methyltransferases (DNMTs). The enzyme DNMT 1 maintains methylation during replication by
copying the methylation pattern of a template strand onto a newly synthesized strand, while the
enzymes DNMT3A and DNMT3B add new de novo methylation irrespective of a previously
established pattern [10-12]. Methyl groups can be lost from DNA through inexact copying and
maintenance of methylation patterns by DNMT1, or removal by ten-eleven translocation (TET)
enzymes and base excision repair processes.

Random cellular and molecular damages, such as the methylation changes of epigenetic
drift, are suggested to underlie aging phenotypes by the disposable soma evolutionary theory of
aging. This theory suggests aging to be caused the accumulation of stochastic cellular and
molecular damages throughout the lifetime of an individual due to imperfect maintenance and
repair mechanisms. Under this theory, the age-associated methylation changes we observe are
assumed to result from random failures of methylation maintenance and repair, and to be
stochastic and equivalent to epigenetic drift. Both disposable soma and epigenetic drift predict
increasing variability in DNA methylation with age at the individual and population levels.

While epigenetic drift has been suggested to underlie many of the observed patterns of
age-related methylation change, the stochasticity of these changes has never been directly tested.
Are the DNA methylation changes we observe in aging truly stochastic and the result of
epigenetic drift? Here, we test longitudinal DNA methylation data against a stochastic model of
DNA methylation change with age. We define stochastic methylation changes as gains and
losses of methyl groups that occur at random throughout the genome, and targeted methylation
changes as gains and losses of methyl groups that occur at specific CpG sites, or within specific

regions or genes. If all aging-related methylation changes are random and caused by stochastic
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factors, we expect the rates of methyl group gain and loss to be similar at all sites across the
genome, regardless of location or biological function. To test this hypothesis we developed a
stochastic model of DNA methylation that can be used to estimate per-site rates of methylation
change from longitudinal data. We investigate the stochasticity of aging-related methylation
changes by testing the equivalence of estimated rates of methylation change at thousands of CpG

sites across the genome.

METHODS
Overview of hypotheses to be tested

Our null hypothesis is that the DNA methylation changes we observe with age are
entirely stochastic. If this is true we expect: 1) rates of methyl group gain and loss to be
consistent across the genome, and 2) the direction and magnitude of methylation change at any
particular CpG site to depend only on the initial level of methylation (i.e. the methylation at time
zero). Sites where most DNA strands are initially unmethylated can be expected to have more
opportunities to randomly gain methylation over time, while sites where most DNA strands are
initially methylated can be expected to have more opportunities to randomly lose methylation
over time.

We test our null hypothesis by testing the equivalence of the rate of methylation change
at CpQG sites across the genome. We estimate the rates of methyl group gain and loss from
longitudinal methylation data using maximum likelihood estimation and a stochastic model of
DNA methylation change and age. Rejection of the null hypothesis would suggest that age-
related DNA methylation changes are not purely stochastic and cannot be entirely explained by

drift.
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Modeling stochastic changes in DNA methylation with age

To develop a stochastic model of DNA methylation change with age, we begin by
considering the methylation state of a single CpG site on a single strand of DNA in discrete time.
At any particular moment 7, this CpG site can be either methylated or unmethylated. If the site is
methylated at time 7, we assume there is a probability 4, that it will become unmethylated by
time 7+ /. Similarly, if the site is unmethylated at time ¢, we assume there is a probability 4,, that
it will become methylated by time #+/. These probabilities represent the probability of the site
gaining or losing a methyl group between successive time steps through any mechanism of
methylation or demethylation. Figure 1 illustrates this two-state system and the specific
transition probabilities between states at each time step.

If we consider this system in continuous time, the transition probabilities 1;; and 4,
become instantaneous rates of change. In continuous time, a CpG site in the methylated state will
remain methylated for a random length of time that is exponentially distributed with parameter

Ay. This means the expected length of time the CpG site will stay methylated before losing its

methyl group is % Similarly, a CpG site in the unmethylated state site will remain unmethylated
U

for a random length of time that is exponentially distributed with parameter A,,. This means the

expected length of time the CpG site will stay unmethylated before gaining a methyl group is %
M

The described methylation dynamics of a single CpG site on a single strand of DNA in
continuous time can be modeled as a first-order Markov chain given that: 1) the transition
probabilities or rates of change A;; and 4,, are constant over time, and; 2) the future methylation
state of the CpG site satisfies the Markov property and depends only on the current state and not

the sequence of past states.
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If we expand our focus from a single strand of DNA to a large number of DNA strands,
the methylation state of a CpG site becomes the proportion of DNA strands that are methylated
at that site. Therefore, the methylation state of a CpG site when considering a large number of
DNA strands is continuous and ranges from 0 to 1. The continuous-state approximation of a two-
state Markov chain is an Ornstein-Uhlenbeck (OU) process [13]. An OU process is: 1)
continuous in time and state space; 2) Markovian, and; 3) has Gaussian probability distributions.

The OU process suggests that the proportion of methylated DNA strands at CpG site k for

individual 7 at age 7 (Xj;;) has expectation
E[Xuie) Xio] = Xoe ™% + p (1 — %) (la)

and variance
2
Var[X,] = %(1 — e720kt) (1b)

where X, describes the proportion of methylated DNA strands at birth, g is the diffusion
parameter describing the infinitesimal variance, and the terms 8, and y,, are functions of the
instantaneous rates of methylation change Ay, and A, . The term 8, equals Ay, + Ay, , and is
the drift of the process. In the context of methylation, this represents the overall rate of

/1Mk

AUR-I-AMR

methylation change in either direction. The term p;, equals and represents the long-term

mean of the process.
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2
The limit of the expectation and variance as t — oo are p;, and zaTk respectively. This
k

indicates that after sufficient time, the probability distribution will become time-independent and
have a constant mean and variance. Processes with constant probability distributions are referred
to as stationary, while processes with time-dependent probability distributions are referred to as

transient.

Estimating rates of methylation change

For each CpG site we used a maximum likelihood approach to estimate the OU process
parameters 4 o°, 6, and X, from longitudinal data. Our approach uses a multivariate Gaussian
distribution, as both the stationary and transient probability distributions of an OU process are
Gaussian. At every CpG site k=1, 2, ..., K, methylation measurements X, kit;; Were collected for
each individual i=1, 2,...,N at successive time points j=1, 2, ..., J and ages ¢;.

For J =3, the log-likelihood function for CpG site £ is
L(oy, e, 0x) = X4 _%((lnlzkil) + (X — M) T K — ”ki)T) (2a)

where X;; and my; are vectors of length J =3 that respectively contain the observed and expected
methylation at each time point j for each individual i (expected methylation is based on the OU

process equation 1a), and
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i =

2 2 2
Ik (1 — e~20ktin) Sk (e Ok(tiz=tin) — o=Ok(tiz+tin)) Sk (e Oktiz=tin) — p=Ok(tiz+tin))
26 26 20
2 2 2
I (e Oktiz=tin) — p=Ok(tizt+tin)) Sk (1 — e~20ktiz) Sk (e Oktiz=tiza) — p=Ok(tiz+tia))
20 26 20
2 2 2
I (e Oktiz=tin) — p=Ok(tiz*+tin)) Sk (e Okltis=tiz) — o=Ok(tiz+tiz)) Ik (1 — e~20ktis)
20 26 26
(2b)

is a covariance matrix describing the variance in methylation at each time point and covariance
between each time point for individual i. A derivation of the covariance between the methylation
at two time points at CpG site & for individual i is provided in the supplementary material.

To make optimization of the likelihood function computationally tractable, we chose site-
specific starting values based on the data, and bounded o” and 6. We placed a lower bound of
zero on both ¢° and 6, and an upper bound on & of 0.5. For each CpG site k, we chose site-
specific starting values by first minimizing the squared difference between the observed and
expected correlation between the methylation data at time points two and three with respect to
0. Then, based on the optimized starting value of 8, we calculated a starting value for 67 using
equation 1b and the variance of the methylation data across individuals at CpG site k. Finally, the
starting values for X, and y, were set to the mean methylation level across all individuals at the
first time point and the last time point, respectively.

After estimation of the OU process parameters, values of 1, and 4y, at each CpG site k

were calculated from the estimated ), and y;, as

AM,{ = Ok Ui )

/1Uk = 0,(1— we)
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Simulations were used to validate that this method can accurately estimate OU process
parameters (for more information see the supplementary material). The results of these
simulations showed that & can be accurately estimated using this maximum likelihood approach

across the range of reasonable 6, even with a small sample of 40 individuals.

Testing the equivalence of rates of methylation change

We test our null hypothesis of purely stochastic age-related methylation change by testing
the equivalence of @ across the genome. To do this, we use likelihood ratio tests at each CpG
site to compare the fit of the full model described above to the fit of a restricted model where 8 is
set to a single genome-wide value. We fit the full model for every CpG site before fitting the
restricted model to calculate an appropriate and testable genome-wide value of 8. This value is
calculated as the median full model estimate of 6. Sites where the full model fits the data
significantly better than the restricted model (false discovery rate (FDR) < 0.05) will be
considered to be inconsistent with epigenetic drift. The methylation changes at these sites occur
at a rate that is significantly different from a genome-wide rate of random methylation change,
which suggests methylation changes that may be targeted and depend on site location or
biological function. Sites where the full model does not fit significantly better than the restricted
model (FDR> 0.05) will be considered to be consistent with epigenetic drift. The methylation
changes at these sites are consistent a model where methyl groups are gained and lost entirely
randomly across the genome. For brevity and simplicity we refer to sites found to be consistent
and inconsistent with genome-wide epigenetic drift based on the above criteria as drift-consistent

and drift-inconsistent, respectively.
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Longitudinal data

DNA methylation was measured at three time points in a sub-sample of 43 women from
the Women’s Health Initiative (WHI) Clinical Trials (CT) cohort. WHI is a long-term national
health study focused on investigating strategies for the prevention and control of common causes
of morbidity and mortality in post-menopausal women. The CT was designed as a randomized
controlled study with three different interventions: 1) dietary modifications; 2) hormone therapy;
and 3) calcium and vitamin D supplementation [14]. A total of 68,132 post-menopausal women
between the ages 50 and 79 were enrolled into the CT at 40 clinical centers across the U.S.
between September 1993 and October 1998. After enrollment, participants had a baseline clinical
exam at which blood was collected and stored as buffy coat. The women were then followed
annually for up to nine years. Extensive clinical data, including blood specimens, were collected
during exams three years, six years, and nine years after the baseline exam. DNA methylation
was measured at baseline from stored buffy coat for a random sub-sample of 2,200 CT
participants. Of the 2,200 individuals with DNA methylation measurements at baseline, 43
individuals participating in the ancillary WHI Long Life Study (LLS) also had DNA methylation
measured at two more time points, on average 3.5 years and 15.9 years from baseline. The data
from these 43 individuals with three longitudinal DNA methylation measurements was used in
this study.

The age of the study participants was self-reported in a questionnaire during screening.
We approximated the chronological age of each individual at each time point as the self-reported
age in years at screening plus the number of days between screening and blood sampling divided
by 365.25 days and 0.5 years to increase the accuracy of the self-reported age (on average). The

augmented ages range from 50.5 - 76.5 years at baseline, 54.58 - 79.88 years at the second time
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point, and 67.89 - 91.74 years at the third time point. The age distributions at all three time points

are shown in Figure S2.

Measuring DNA methylation

DNA methylation was measured from buffy coat for each individual at each time point
using the Illumina Infinium HumanMethylation450 Beadchip [15]. This array interrogates a total
of 485,577 sites across the genome, including 482,421 CpG sites and 3,156 non-CpG sites, using
a bisulfite DNA treatment and two sets of site-specific probes binding associated methylated and
unmethylated sequences [16]. For each sample, the proportion of DNA strands methylated at
each site was estimated as the measured intensity of fluorescent signal from the methylated probe
relative to the intensity of fluorescent signal from both methylated and unmethylated probes.
This ratio measures the proportion of methylated DNA strands and is referred to as a f-value.

DNA methylation measurements were performed at the Northwestern University
Genomics Core Facility in two stages. In the first stage, DNA methylation was measured from
the blood collected at both the baseline and the second time point. In the second stage, DNA
methylation was measured from the blood collected at the third time point. The R package
ComBat was used to adjust the measured S-values to remove batch effects caused by
experimental differences in methylation measurement between the two different stages [17].

These ComBat adjusted [-values were used for all analyses.

DNA methylation data filtering and quality control

DNA sequence can have direct effects on the measured methylation level at a CpG site. A

genetic variant in place of either the cytosine or guanine at a CpG site, for instance, directly
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prevents methylation. Furthermore, a genetic variant in the DNA sequence that is probed by the
methylation array can impact binding and can alter the measured methylation level. To minimize
the impact of these direct genetic effects on parameter estimates, we excluded CpG sites with a
SNP present on the 50-base CpG site probe and CpG sites with a multi-modal distribution of
methylation levels from analysis. CpG site probes with SNPs were identified based on data from
the 1000 Genomes Project phase I release, as annotated by [18]. CpG sites with multi-modal
distributions of methylation level were identified using the gaphunter function in R [19]. As
additional quality control measures, we also removed probes with detection p-values >0.01 in
over 10% of samples, probes on the sex chromosomes, probes annotated as binding to multiple
chromosomes, probes without CpG sites, and probes with low correlations (<0.2) between
successive time points. After data filtering and quality control, a total of 185,860 sites remained.
To minimize the impact of outlying methylation measurements on our parameter
estimates, we removed individuals with any measurements more than five interquartile ranges
from the nearest quartile at each CpG site. Outliers beyond this threshold, likely to be caused by

measurement errors, were shown to have large influence on estimates by [20].

Age-differentially-methylated CpG sites

A total of 2,000 of the 185,860 filtered CpG sites were previously found to have
significant changes in methylation with age (FDR<0.05) in a study on the same longitudinal
WHI data used here [21]. This study by Grant ef al. tested for associations between methylation
and age using a linear mixed model that included a random effect for each individual. We

restricted parameter estimation and hypothesis testing to the 2,000 sites with significant age-
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associated methylation changes in our dataset, as our null hypothesis is specific to the

methylation changes we observe with age.

Annotation for genomic context

Each CpG site was annotated with respect to: 1) promoters; 2) enhancers ; 3) insulators;
4) repressed genes; and 5) transcribed genes. For this annotation we downloaded the Broad
ChromHMM data set for GM 12878 lymphoblastoid cells and GRCh37/hg19 from the University
of California, Santa Cruz (UCSC) table browser [22, 23]. Each CpG site was annotated based on
overlaps between the CpG site location and the locations of the chromatin states provided by the
UCSC data. After annotation, we grouped ChromHMM chromatin states describing similar
genomic regions. For example, all ChromHMM promoter chromatin states were grouped into a
single promoter category in our annotation. Throughout this paper we refer to these groupings of

similar chromatin states as genomic contexts.

Cellular composition

The proportions of CD8-positive T cells, CD4-positive T cells, natural killer cells, B-
cells, monocytes, and granulocytes in the whole blood samples were estimated from the
methylation array data using a method developed by Houseman et al. and reference data on the
methylation signatures of purified cell types [24, 25]. To conduct sensitivity analyses, the
methylation data at each CpG site was residualized using a Gaussian generalized linear model
that included the estimated cell type proportions as covariates to remove potential confounding

due to the heterogeneous and changing cellular composition of whole blood.
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RESULTS

Estimated stochastic model parameters

To investigate the stochasticity of age-related methylation changes, we fit a stochastic
model to longitudinal methylation data at 2,000 age-differentially-methylated CpG sites via
maximum likelihood estimation. At each site, we estimated four stochastic model parameters:
Xy, 14 o, and 6. These parameters respectively describe a CpG site’s starting methylation, long-
term mean methylation (i.e. mean methylation once the process has reached stationarity),
instantaneous methylation volatility, and overall rate of methylation change. The distributions of
the estimates for each of these parameters is shown in Figure S3. Across all sites, the average
estimates of Xy, 4 o7, and Qare 0.56, 0.47, 0.0006, and 0.12, respectively. The estimates of &°
and O are positively correlated (0.63), indicating that sites with low volatility of methylation tend
to have low rates of methylation change, and sites with high volatility of methylation tend to
have high rates of methylation change.

For each CpG site, we also calculated the rate of methylation (Am) and demethylation
(Av) from 6 and p as shown in Equation 3. The distribution of Am ranges from 8.2x10” to 0.38
and has a mean of 0.058, and the distribution of Ay ranges from 1.2x10¥to 0.34 and has a mean
of 0.067 (Figure S4). The mean rates of methylation and demethylation indicate that on average
an age-differentially-methylated CpG site would take 17.2 years to go from fully unmethylated
to fully methylated in the absence of processes to remove methyl groups, and 14.9 years to go

from fully methylated to fully unmethylated in the absence of processes to add methyl groups.
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Estimated stochastic model parameters and patterns of age-related methylation change

Estimated values of 6 and o provide information on the age-associated methylation
changes at a CpG site at the both the population and individual levels. The magnitude of o°is
directly related to the size of the observed methylation changes between successive time points
for every individual. At sites with small ¢°, individuals are expected to have small changes in
methylation between successive time points. At sites with large o7, individuals are expected to
have large changes in methylation between successive time points. The magnitude of 0 is
inversely related to the expected length of time it takes methylation to reach an age-independent
distribution (i.e. stationarity). At sites with large 0, the methylation of each individual is
expected to reach stationarity in early life. At sites with small 6, the methylation of each
individual is expected to reach stationarity late in life. When methylation is observed at the
population level, different patterns of age-associated methylation change are expected before and
after stationarity. Methylation observed at a site when it is far from reaching stationarity is
expected to have: 1) linear changes in the population-level mean with age, and 2) increasing
population-level variance with age (See equations 1a and 1b). Methylation observed at a site as it
is transitioning to stationarity is expected to have: 1) non-linear changes in the population-level
mean with age, and 2) increasing then plateauing population-level variance with age.
Methylation observed at a site that has already reached stationarity is expected to have: 1) small
or no linear changes in the population-level mean with age, and 2) small or no changes in the
population-level variance with age.

To illustrate these patterns we split the analyzed CpG sites into six groups based on the
estimated values of 0 and o2 (Table 1). Within each group, CpG sites are expected to transition

to stationarity at a similar time in life, and to show similar patterns of age-associated methylation
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change at the both the population- and individual-level between the ages of 50 and 92 (the age
range of the study population). For each group, the patterns of methylation change observed in
the data closely follow our expectation based on 0 and 2. This indicates that our stochastic
model can accurately capture methylation dynamics from longitudinal data, and that the
estimated values of 0 and 62 can be used to identify and differentiate patterns of age-associated

methylation change.

Equivalence of rates of methylation change across the genome

In total, 1,467 CpG sites (73% of the sites tested) did not fit a model with a site-specific
rate of methylation change significantly better than a model with a genome-wide rate of
methylation change (FDR>0.05). We consider the age-related methylation changes at these sites
to fit a model of random genome-wide methyl group gain and loss, and to be drift-consistent.
Conversely, 533 CpG sites (27% of the sites tested) fit a model with a site-specific rate of
methylation change significantly better than a model with a genome-wide rate of methylation
change (FDR<0.05). We consider the age-related methylation changes at these sites to be
inconsistent with a model of random genome-wide methyl group gain and loss, and to be drift-
inconsistent. The rates of methyl group gain and loss at these sites may depend on site location or
biological function. Of the drift-inconsistent sites, 71% (380 sites) have a site-specific rate of
methylation change that is less than the genome-wide rate of methylation change (0.12), while
29% (153 sites) have a site-specific rate of methylation change that is greater than the genome-
wide rate of methylation change.

Methylation patterns in promoters may be better maintained than in other regions of the

genome to reduce the accumulation of stochastic methylation changes with potentially
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deleterious effects on gene expression. Additionally, non-random targeted methylation changes
in promoters could function as a mediator of age-specific gene expression change. This means
that the drift-inconsistent changes we observe may be a combination of: 1) non-random targeted
methylation changes and 2) stochastic methylation changes happening at a rate based on location
or biological function. However, these two possible types of drift-inconsistent changes cannot be

differentiated based solely on the analysis of estimated rates of overall methylation change.

Equivalence of rates of methylation change within genomic contexts

To investigate the relationship between rate of methylation change and site location and
biological function, we analyzed CpG sites in different five genomic contexts:1) promoters, 2)
enhancers, 3) insulators, 4) transcribed regions, and 5) repressed regions. The set of CpG sites in
each genomic context share both genomic position and biological function. All promoter sites,
for example, are located in the promoter region of a gene, where methylation is expected to be
negatively associated with transcription and gene expression.

We found the distribution of 0 to be significantly different at CpG sites in different
genomic contexts (Kruskal-Wallis test, x> = 27.02 ,p-value = 1.97x10). Specifically, we found
the median 0 in enhancers to be significantly higher than in repressed regions (Nemenyi tests, >
=22.95, FDR = 0.0013, Figure 2a). This indicates that not all age-associated DNA methylation
changes are entirely stochastic, and suggests that the rate of methylation change at some CpG
sites may depend on site location or biological function.

Of the CpG sites in promoters, 29% (144 sites) are drift-inconsistent and fit a model with
a site-specific 8 significantly better than a model with a genome-wide 8 (FDR<0.05). Similarly,

of the CpG sites in enhancers, insulators, repressed regions, and transcribed regions, respectively
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18% (79 sites), 17% (14 sites), 24% (49 sites), and 24% (68 sites) are drift-inconsistent and fit a
model with a site-specific @ significantly better than a model with a genome-wide 6 (FDR<0.05,
Figure 2a). Additionally, Fisher’s exact tests showed drift-inconsistent sites to be significantly
enriched in promoters (OR = 1.54, p-value = 0.012, Figure 2b), and depleted in enhancers (OR =
0.73, p-value = 0.012). This suggests that CpG sites with drift-inconsistent methylation changes
are more likely to be in promoters, while CpG sites with drift-consistent methylation changes are

more likely to be in enhancers.

Sites with increasing and decreasing heritability of methylation with age

The disposable soma (DS) theory predicts increasing variability of methylation with age
at both the individual and population levels due to the accumulation of random methylation
changes equivalent to epigenetic drift. As a result of this increasing variability and stochasticity,
DS predicts decreasing heritability of methylation with age. In contrast to this, another
evolutionary theory of aging, mutation accumulation (MA), predicts aging phenotypes to result
from age-specific genes with deleterious effects confined to late in life. MA suggests that some
age-associated methylation changes may mediate the effects of deleterious age-specific genes,
and predicts increasing heritability of methylation with age. A previous study categorized age-
differentially-methylated CpG sites as consistent with MA or DS based on the observance of
age-related increases or decreases in heritability of methylation level. This study identified
13,467 MA-consistent sites where the heritability of methylation increased with age, and 30,749
DS-consistent CpG sites where the heritability of methylation decreased with age [26]. Given the

predictions of each theory, we expect the methylation changes at sites found to have decreasing
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heritability of methylation with age to be entirely random, and the methylation changes at sites
found to have increasing heritability of methylation with age to be non-random, or targeted.

We tested the stochasticity of the sites with increasing and decreasing heritability of
methylation with age by comparing the rates of methylation change between the two sets of sites
and within each set of sites. Different distributions of rates of methylation change between sets
of sites would indicate a difference in age-related methylation changes. Furthermore, an
equivalence of the rates of methylation change across genomic contexts within each set of sites
would suggest the site-specific age-related methylation changes to be random, and independent
of location and biological function.

Of the 2,000 age-differentially-methylated sites we investigated, the previous study found
233 to have increasing heritability of methylation with age and 848 to have decreasing
heritability of methylation with age. We found that sites with increasing heritability of
methylation with age had a significantly higher median rate of methylation change than sites
with decreasing heritability of methylation with age (Kruskal-Wallis test, x*>=28.17, df=1, p-
value= 1.2x1077, Figure 3). This suggests that the sets of sites with increasing and decreasing
heritability of methylation experience different types of age-related methylation change. Within
the set of sites with decreasing heritability of methylation with age, we found no significant
difference between the median 0 in any genomic context (Kruskal-Wallis test, ¥?=9.17, df=4, p-
value =0.056, Figure 4a). Within the set of sites with increasing heritability of methylation with
age, however, we found a significant difference in the distribution of 0 in at least one genomic
context (y?= 11.25, df=4 , p-value=0.023, Figure 4b). These results suggest that the age-

associated changes in the set of sites with decreasing heritability of methylation with age are
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truly random, while the age-associated changes in the set of sites with increasing heritability of
methylation with age are not entirely random, and may be targeted.

We additionally tested if drift-inconsistent sites are more likely to have increasing or
decreasing heritability of methylation with age. We found drift-inconsistent sites to be
significantly less likely to have increasing heritability of methylation with age (Fisher’s exact
test, OR= 0.58, p-value=0.015). However, within the set of drift-inconsistent sites, sites with
high rates of methylation change (>0.12) were found to be significantly more likely to have
increasing heritability of methylation with age (Fisher’s exact test, OR = 3.93, p-value = 0.0085).
This indicates that drift-inconsistent sites with high rates of methylation change are more likely
to have changes in the heritability of methylation that are consistent with targeted methylation
changes, while drift-inconsistent sites with low rates of methylation change are more likely to
have changes in the heritability of methylation that are consistent with stochastic methylation

change.

DISCUSSION

We found the epigenetic drift model of methylation change to be consistent with most
age-related methylation changes, but not all. Roughly one fourth of the age-related methylation
changes observed here were found to be inconsistent with entirely random gains and losses of
methyl groups across the genome. These drift-inconsistent methylation changes tend to occur at
lower rates than drift-consistent methylation changes, and are more likely to occur within the
promoter of a gene. Drift-inconsistent methylation changes are possible under two models of
non-random change. First, methylation changes at drift-inconsistent sites may be non-random

because the methylation changes themselves are targeted and happen at a specific sites and ages.
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Second, methylation changes at drift-inconsistent sites may also be non-random because the
mechanisms of stochastic methylation change depend on site location or biological function. For
instance, the methylation patterns of promoters may be better maintained than in other regions of
the genome, as the accumulation of stochastic methylation changes in promoters is more likely to
have deleterious effects on gene expression. This means that the drift-inconsistent changes we
observe are likely a combination of: 1) non-random targeted methylation changes and 2)
stochastic methylation changes happening at a rate based on site location or biological function.
The evolutionary theories of DS and MA predict age-related methylation changes to be
stochastic and targeted, respectively. DS suggests age-related DNA methylation changes to result
from random maintenance and repair errors in epigenetic drift, while MA suggests age-related
methylation changes to be targeted and to reflect or possibly mediate the deleterious effects of
age-specific genes. We tested the rates of methylation change at sets of sites previously found to
be consistent with DS and MA on the basis of age-related changes in the heritability of
methylation. The DS-consistent sites were found to have rates of methylation change consistent
with stochastic gains and losses of methyl groups. In contrast, MA-sites were found have rates of
methylation change consistent with non-random gains and losses of methyl groups, suggesting
targeted changes. Furthermore, drift-inconsistent sites with high rates of methylation change
were found to be more likely to occur at MA-consistent sites, while drift-inconsistent sites with
low rates of methylation change were found to be more likely to occur at DS-consistent sites.
This suggests that drift-inconsistent changes with high rates of methylation change tend to be
non-random targeted methylation changes, while drift-inconsistent changes with low rates of
methylation change tend to be stochastic methylation changes happening at a rate that is

dependent on site location or biological function. Further work connecting age-specific
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methylation and gene expression changes is necessary to be able to fully differentiate between
these two types of drift-inconsistent changes.

Four factors should be considered when interpreting the results from our analyses. First,
the methylation data was extracted from whole blood, which is a heterogeneous and changing
collection of cell types with different methylation patterns. Changes in cell type composition
with age could potentially confound our results. However, in sensitivity analyses we found a
high correlation between site-specific rates of methylation change estimated from adjusted and
unadjusted data (a correlation of 0.69, Figure S3), which indicates that our results are not driven
by a changing cellular composition. Second, since the age range of the study population spans
only middle to late-life, the specific types of age-related methylation changes we observe and
their relative contributions may be biased. Additional studies including data from children and
young adults will help to increase our understanding of the full breadth of age-related changes
that happen throughout life. Furthermore, since the study population is composed of post-
menopausal women, the effects of kin selection may be observed and confound our results. The
grandmother hypothesis suggests the post-reproductive period to be adaptive for women as
devoting energy and resources to raising grandchildren increases fitness over continuing to
reproduce [27]. Adaptive mutations that have been selected for via kin selection may not be
differentiable from non-adaptive deleterious mutations that cannot be effectively selected against
as suggested by MA. Finally, our model assumes that the rate of methylation change at every
CpG site to be constant with age. However, it is likely that the rate of methylation change at any
particular CpG site depends on a multitude of factors, both environmental and genetic, that may
change over an individual’s lifetime. For instance, environmental exposures such as diet, air

pollution, and smoking status are known to impact methylation patterns [28], and often change
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throughout an individual’s life. The validity of this model assumption can be tested in future
studies with longitudinal designs and available methylation, gene expression, and environmental
exposure data.

In summary, we have developed a novel stochastic model of methylation and age, and
used our model to test if the age-related DNA methylation changes we observe are entirely
random and caused by epigenetic drift. We found evidence of both random and non-random
methylation changes. Targeted methylation changes exist, but the majority of age-related DNA
methylation changes are acquired stochastically as a result of epigenetic drift. We believe this
work demonstrates the utility of stochastic modeling, and will enable future exploration of both

the random and non-random methylation changes that occur throughout the course of human life.
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TABLES

Table 1. Categorization of age-associated methylation changes based

Group Age at Posulation | N{ethyllaflgnhdynamlf/[s \Vari # of Observed methylation at a
0 value . . opulation level age-related changes in: Mean | Variance . .
o2value stationarity Individual-level age-related changes sites selected site
1 > 104 Linear | Increasing 646
6<0.1
g% < 0.0005 Smooth
2 > 104 Linear | Increasing 129
, 6<0.1 Fluctuating
g% > 0.0005
3 Non-linear | Increasing, then plateauing
0.1<6<0.2 >55,<104 Smooth 415
g% < 0.0005
4 > 55 <104 Non-linear | Increasing, then plateauing 566
(;41<6 <0.2 > Fluctuating
g% > 0.0005
S <55 Negligible | Negligible 46 N
0>0.2 |
52 < 0.0005 Smooth "
6 <55 Negligible | Negligible 198
, 6>0.2 Fluctuating
g% > 0.0005

This table details expected population- and individual-level patterns of methylation change with age for each group
and CpG sites, and illustrates the observed methylation dynamics with an example from the data. In each example,
the three repeated methylation measurements for each individual at a single CpG site are plotted against
chronological age, and connected with a line. Therefore, each line within a plot represents the CpG site-specific
methylation trajectory of a single individual. The calculations for the age at stationarity are provided in the
supplementary material.
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Figure 1. Two-state DNA methylation system with illustrated transition probabilities between
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Figure 2. (a) Site-specific estimates of 6 by genomic context. The distribution of 8 for each
genomic context is shown as a boxplot. The estimate of 8 for each site in a particular genomic
context is shown as a scatterplot. Each drift-consistent site is shown as a colored point, while
every drift-inconsistent site is shown as a black point. (b) Enrichment for drift-inconsistent sites

in five different genomic contexts.
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SUPPLEMENTARY MATERIAL

Derivation of covariance between methylation at time s and ¢ for individual 7 and s<¢
Cov(Xis, Xit) = E[Cov(Xis, Xt | Xi0)]
= E[ E[XisXit] — E[Xi]E[X;] ]
= E[E[ E[XisXit|Xis] 1 — E[Xis E[ E[ X1 Xis] 111
= E[ E[X;s E[Xi|Xis] — E[Xis E[ E[Xi¢1Xis] 11]
= £ | £ [Xis (Xise 2 + (1 = e0@) )] = BN ]E [(Xise ™0 4+ (1 = e700-))
= E[E[X2e79¢9 + X;;u(1 — e 0 9)]| — E[X](E[Xise 0¢ 9] + E[p(1 — e70¢=9)])]
= E[ E[X3]e ) + u(1 — e P 9)E[X;] — u(1 — e 709 E[X;]2e 0]
= E[E[X2]e~0(=9) — E[X;5]2e79(¢=9)]
= E[e 99 (E[X2] — E[X;]?)]

2(1 _ 6_925)
20

— E[e—B(t—s) g

0.2
— % (e—B(t—s) _ e—9(t+s))

Simulation of methylation data and recovery of OU process parameters

We performed a series of simulation studies to assess the accuracy of our maximum
likelihood approach for OU process parameter estimation. In each simulation study, we
simulated the methylation at a single CpG site at age 50, 55, and 65 for N individuals as
independent OU processes with shared parameters. To better understand how our ability to

estimate OU process parameters relates to sample size, we performed simulations with sample
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sizes of 40 and 1000 individuals. For each individual i, the methylation level at age 7, X;¢, was

simulated from a normal distribution with mean

E[Xit|Xis] = Xis x €70 4 (1 - e7009), s <t (Sla)

And variance
Varlxy] =2 (1-e %) (S1b)

For each simulation study the value of 8 took on a value in the set [0.0001, 0.0001, 0.01,
0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.2], which spans the range of meaningful values for 8. A X, of
0.3, 1 0of 0.5, and 62 of 0.0001 was used for every simulation. Simulations at every value of 8
were run ten times for N=40 and five times for N=1,000.

After simulating methylation data with equation S1, we used the maximum likelihood
approach described in “Estimating rates of methylation change” to estimate values of 8, o2, u,
and X,. We analyzed only the accuracy of the estimation of 0, as this is the parameter we use to
test the stochasticity of age-related DNA methylation changes. Figure S1 compares the estimated
and simulated 8 values for each simulation study at each sample size. For both N=40 and
N=1000 the percent error of the estimated € values was less than 20% for every simulated value
of 6 greater than 0.01 (Table 1). This indicates that our maximum likelihood method for

estimating 6 is accurate at most values of 6.
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Table S1. OU process simulation parameter recovery results.

Simulated 68 ‘ Mean estimated 6 ‘ Mean percent error
N=40
0.0001 0.0022 2125.3%
0.001 0.0033 235.8%
0.01 0.013 29.4%
0.02 0.019 2.7%
0.03 0.029 1.6%
0.04 0.034 13.8%
0.05 0.047 5.7%
0.07 0.073 4.5%
0.1 0.108 7.9%
0.2 0.176 12.2%
N=1000
0.0001 0.00025 154.8%
0.001 0.0024 141.6%
0.01 0.011 11.5%
0.02 0.018 8.3%
0.03 0.025 17.4%
0.04 0.036 10.8%
0.05 0.052 3.2%
0.07 0.071 1.5%
0.1 0.098 1.4%
0.2 0.178 10.5%
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Calculations relating 0 to age of transition to stationarity
To calculate the age of a transition to stationarity based on the estimated 6 we assume: 1)
the smallest accurate measureable difference between -values is 0.00001, 2) 0 is constant over

time, and 3) a process is stationary when equation 1a is equal to y and the term X;pe =%t

- 0 (i.e.
no change in the mean over time).

When e~9¢=0.00001 and u and X;, are less than 1, the difference between and X;,e ~%¢
and 0 is smaller or equal to 0.000001 and cannot be accurately measured. We assume this point

to be the point of transition into stationarity. The age at transition to stationarity for a particular 6

is then

In(0.00001)
t=—p—

The age at transition to stationary for a range on estimated 0 values is shown in table S1.
Horizontal lines separate logical grouping of 6 values based on the calculated ages at transition

to stationarity and the age range of our study population.

127



Table S2. Calculated age at stationarity given 6.

Estimated 0 Calculated age
at transition to

stationarity
0.009 1279
0.01 1151
0.011 1046
0.03 383
0.05 230
0.07 164
0.099 116
0.1 115
0.11 104
0.13 88
0.15 76
0.17 68
0.199 58
0.2 57
0.21 55
0.228 50.5
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Chapter 5: Conclusions

The evolutionary theories of mutation accumulation (MA), antagonistic pleiotropy (AP),
and disposable soma (DS) provide possible explanations for the existence of human aging. In
Chapter 2, I reviewed the assumptions and predictions of these theories, and presented the results
of previous empirical tests. Tests of theory predictions relating to the longitudinal process of
aging were found to be absent from the literature. This is likely due to limitations of the
frequently used measures of senescence. Lifespan, for instance, acts only as a proxy measure of
an individual’s overall rate of aging and provides no information about an individual’s senescent
state throughout life. I suggested the novel use of longitudinal and familial DNA methylation
data to test the previously neglected predictions of evolutionary models of aging. DNA
methylation is a newly proposed biomarker of aging that can be easily measured from blood
samples collected throughout life. Furthermore, the use of microarrays to measure DNA
methylation allows theory predictions to be independently tested at thousands of sites across the
genome.

In Chapters 3 and 4, I used DNA methylation data to test predictions of MA and DS
relating to aging as a longitudinal process. In both chapters the relative importance of each
theory was investigated through tests formulated to identify MA- and DS-consistent sites across
the genome. In Chapter 3, familial DNA methylation data was used to test heritability predictions
of MA and DS. Sites with age-differential methylation were predicted to be MA-consistent if
they had increasing heritability of methylation with age, and DS-consistent if they had
decreasing heritability of methylation with age. I observed age-related changes in the heritability
of methylation that were consistent with both MA and DS, suggesting that both theories play a

role in explaining aging. The number of sites observed to have DS-consistent decreases in
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heritability of methylation was roughly three times the number of sites observed to have MA-
consistent increases in the heritability of methylation. This suggests that while the majority of
age-related methylation changes are consistent with DS and randomly acquired molecular and
cellular damages, age-related changes consistent with MA exist and may mediate the deleterious
age-specific effects of aging genes.

In Chapter 4, longitudinal data was used to test if age-related DNA methylation changes
support the stochastic aging process implied by DS. The expected methylation changes under DS
are equivalent to epigenetic drift, or accumulated stochastic methylation changes with age. Both
DS and epigenetic drift suggest the gains and losses of methyl groups to occur at random
throughout the genome rather than at specific genes or CpG sites. I categorized age-
differentially-methylated sites as drift-consistent if the methylation data fit a stochastic model
with a genome-wide rate of methylation change, and drift-inconsistent if the methylation data fit
a stochastic model with a site-specific rate of methylation change. The number of sites observed
to have drift-consistent methylation changes was roughly three times the number of sites
observed to have drift-inconsistent methylation changes. This suggests that the majority of age-
related DNA methylation changes are random and consistent with DS and epigenetic drift, but
that a minority of age-related DNA methylation changes are non-random and potentially
targeted. I also tested the stochasticity of the sets of sites found to be consistent with MA and
DS in Chapter 3. The DS-consistent sites were all found to have similar rates of methylation
change (i.e. homogenous rates of methylation change) which is consistent with entirely
stochastic gains and losses of methyl groups, while the MA-consistent sites were found to have
significantly different rates of methylation change (i.e. heterogeneous rates of methylation

change) which is consistent with non-random or targeted gains and losses of methyl groups.
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Similar conclusions can be drawn from the results of Chapters 3 and 4. The results of
both chapters suggest a majority of aging-related methylation changes to be consistent with DS
and stochastic, and a minority of aging-related changes to be consistent with MA and potentially
targeted. This means that most of the DNA methylation changes we observe with age are random
and the result of environmental insults and/or methylation maintenance and repair errors.
However, a small number of aging-related methylation changes are targeted and may mediate the
deleterious age-specific effects of aging genes. Both MA and DS play a role in explaining aging
and aging-related changes, but DS appears to be more important in understanding the age-related
changes of DNA methylation. Future work connecting changes in methylation to changes in
transcription and gene expression are needed to understand the effects of these stochastic and
targeted changes. The results and methods presented here lay the foundation for future
investigations of evolutionary theories human aging using DNA methylation data and other

biomarkers of aging.
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