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Abstract 
 

Using DNA Methylation Data to Understand the Evolutionary Basis of Human Aging 
By Chloe Robins 

 
The evolutionary basis of human biological aging is not yet well understood. The evolutionary 
theories of 1) mutation accumulation, 2) antagonistic pleiotropy, and 3) disposable soma provide 
possible explanations for existence and evolution of aging. These three theories are not mutually 
exclusive, and it is likely that all three play some role in explaining how and why humans age. My 
dissertation work increases our understanding of human aging by testing predictions of 
evolutionary models in new ways. After reviewing the assumptions, predictions, and past empirical 
tests of each theory, I suggested the novel use of DNA methylation data to test previously 
unexplored theory predictions related to aging as a lifelong process. DNA methylation patterns are 
known to be highly dynamic throughout life and have recently been proposed as a biomarker of 
aging. Using DNA methylation data, I specifically tested: 1) whether the heritability of DNA 
methylation is consistent with disposable soma or mutation accumulation models; and 2) whether 
DNA methylation data support a stochastic aging process implied by the disposable soma model. 
The results of both tests suggest that most age-related DNA methylation changes are consistent 
with the disposable soma model of aging and may result from random environmental insults and 
methylation maintenance and repair errors, while a small number of aging-related changes are 
consistent with the mutation accumulation model and may be targeted to mediate the deleterious 
age-specific effects of aging genes. This indicates that both the mutation accumulation and 
disposable soma models play a role in explaining aging and aging-related changes, but that 
disposable soma is more important in understanding the age-related changes of DNA methylation. 
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Chapter 1: Introduction    

                                    
 

The existence of aging remains a fundamental problem in evolutionary biology. 

Biological aging, or senescence, is the functional decline of an organism with age [1]. This 

familiar process results in decreased fertility and an increased risk of death, and it is associated 

with major decreases in Darwinian fitness [1-3]. Basic evolutionary theory suggests that such a 

trait should be opposed by natural selection. Yet, aging is universal within many species 

including humans. Aging, therefore, poses a paradox. Given the associated decreases in fitness, 

why has aging not been effectively selected against? Why is it that all humans age? 

Evolutionary theories have proposed both adaptive and non-adaptive explanations for the 

existence of human aging. Major theories include: 1) the theory of mutation accumulation [1], 

and 2) the theory of antagonistic pleiotropy [4], with the theory of disposable soma as a special 

case [5]. These theories differ in the modes of selection and the types of genes proposed to 

underlie aging, but they are not mutually exclusive. Past empirical tests using lifespan as the 

measure of senescence have provided support for portions of each theory, suggesting that all 

three may play some role in explaining the features and existence of aging. However, the relative 

importance of each theory is not yet known. Alternative measures of senescence that are more 

reflective of aging as a process may provide additional information for such investigations. 

DNA methylation is an epigenetic modification has been recently suggested as a 

biomarker of aging [6-8]. Epigenetic modifications are chemical additions to DNA that can alter 

gene expression without changing DNA sequence. DNA methylation involves the addition of a 

methyl group to a single nucleotide base. In humans, this typically occurs at CpG sites, where 

cytosine bases sit directly next to guanine bases [9, 10].  Microarrays allow DNA methylation to 
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be easily measured at thousands of CpG sites across the genome [11]. Using this technology, the 

methylome has been found to be dynamic throughout life, with many studies reporting thousands 

of age-associated methylation changes across the genome [12-14]. I hypothesize these changes to 

be reflective of the aging process, and suggest DNA methylation data as an innovative measure 

against which evolutionary theories of aging can be tested. 

My dissertation work aims to increase our understanding of the evolutionary basis of 

human aging by testing predictions of mutation accumulation and disposable soma using DNA 

methylation data. I use longitudinal and familial DNA methylation data to test theory predictions 

at sites across the genome. In Chapter 2, I review the assumptions and predictions of 

evolutionary theories of aging, and determine which theory predictions are testable with DNA 

methylation data. In Chapter 3, I test whether age-related changes in the heritability of DNA 

methylation are consistent with the disposable soma or mutation accumulation models. If DNA 

methylation helps mediate the aging process, the theory of mutation accumulation suggests that 

the heritability of DNA methylation will increase with age, while the theory of disposable soma 

suggests that the heritability of DNA methylation will decrease with age. In Chapter 4, I test 

whether DNA methylation data support a stochastic aging process implied by the disposable 

soma model. The theory of disposable soma predicts aging to result from stochastic damages. If 

age-related changes in DNA methylation are consistent with this prediction, DNA methylation 

data will fit a stochastic model where the gains and losses of methyl groups occur at random 

throughout the genome rather than at targeted genes or CpG sites. These analyses categorize 

CpG sites across the genome as consistent or not consistent with the tested evolutionary theories. 

In Chapter 5, I discuss the conclusions drawn from this work, including the relative importance 

of the theories of mutation accumulation and disposable soma in explaining the aging process. 



 3 

REFERENCES 
 
1. Medawar, P.B., An Unsolved Problem of Biology. 1952, London: HK Lewis. 
2. Kirkwood, T.B., Understanding the odd science of aging. Cell, 2005. 120(4): p. 437-47. 
3. Hamilton, W.D., The Moulding of Senescence by Natural Selection. Journal of 

Theoretical Biology, 1966. 12: p. 12-45. 
4. Williams, G.C., Pleiotropy, Natural Selection, and the Evolution of Senescence. 

Evolution, 1957. 11(4): p. 398-411. 
5. Kirkwood, T.B., Evolution of ageing. Nature, 1977. 270: p. 301-304. 
6. Horvath, S., DNA methylation age of human tissues and cell types. Genome Biology, 

2013. 14: p. 1-19. 
7. Marioni, R.E., et al., DNA methylation age of blood predicts all-cause mortality in later 

life. Genome Biol, 2015. 16: p. 25. 
8. Baker, G.T. and R.L. Sprott, Biomarkers of aging. Experimental Gerontology, 1998. 23: 

p. 223-239. 
9. Razin, A. and A.D. Riggs, DNA Methylation and Gene Function. Science, 1980. 

210(4470): p. 604-610. 
10. Jaenisch, R. and A. Bird, Epigenetic regulation of gene expression: how the genome 

integrates intrinsic and environmental signals. Nat Genet, 2003. 33 Suppl: p. 245-54. 
11. Bibikova, M., et al., High density DNA methylation array with single CpG site resolution. 

Genomics, 2011. 98(4): p. 288-95. 
12. Alisch, R.S., et al., Age-associated DNA methylation in pediatric populations. Genome 

Res, 2012. 22(4): p. 623-32. 
13. Hannum, G., et al., Genome-wide methylation profiles reveal quantitative views of human 

aging rates. Mol Cell, 2013. 49(2): p. 359-67. 
14. Xu, Z. and J.A. Taylor, Genome-wide age-related DNA methylation changes in blood 

and other tissues relate to histone modification, expression and cancer. Carcinogenesis, 
2014. 35(2): p. 356-64. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



 4 

Chapter 2: Testing evolutionary models of senescence: traditional approaches 
and future directions       
 
This chapter was published as cited below: 
 
Robins, C. and Conneely, K.N., 2014. Testing evolutionary models of senescence: traditional 
approaches and future directions. Human genetics, 133(12), pp.1451-1465. 
                                                                                                                         
 
Introduction 

  Senescence, or commonly “aging,” is the progressive and general deterioration of an 

organism, resulting in decreased fertility and an increased risk of death (Kirkwood 2005; 

Medawar 1952; Partridge and Barton 1993). From an evolutionary perspective, it is a challenge 

to understand how senescence has evolved despite its associated decreases in Darwinian fitness. 

According to basic evolutionary theory, selection acts to maximize Darwinian fitness, and 

evolution favors those better able to survive and reproduce. Since the process of aging causes 

reductions in Darwinian fitness, or the ability to survive and reproduce, why hasn’t it been more 

effectively selected against?  

The purpose of this paper is three-fold: 1) review prominent evolutionary explanations 

for the existence of aging; 2) discuss the assumptions and predictions of these evolutionary 

explanations and the methods and results of previous empirical tests; 3) present new 

measurements of senescence that could be used to investigate previously under-explored 

predictions.  

Throughout this text we use senescence interchangeably with the more common term of 

“aging.” Both refer to the biological process of age-dependent decline, and stand in contrast to 

chronological aging, or the passage of time.  

 

Evolutionary theories of senescence 
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Mutation Accumulation 

P.B. Medawar developed one of the first evolutionary models of senescence in the 1950s 

(Charlesworth 2000; Medawar 1952). His model, now termed the theory of mutation 

accumulation (MA), was inspired by observations relating mortality and the strength of selection.  

 Medawar noticed that in most natural populations, the major cause of death is extrinsic 

mortality, or death due to external factors such as starvation, accident and predation (Hughes and 

Reynolds 2005; Kirkwood 2005; Medawar 1952; Zwaan 1999). As a result of extrinsic mortality, 

the probability of survival decreases with time, and fewer individuals survive to higher ages. 

This decline in survival causes older ages to matter increasingly less to lifetime reproductive 

success, and makes selection at older ages increasingly powerless (Baudisch 2008a). Put more 

simply, Medawar observed that the strength of selection declines with age (Medawar 1952).  

To better understand this notion, consider two deleterious mutations with age-specific 

effects. Assume that one mutation has a negative effect on fitness early in life, while the other 

mutation has a negative effect on fitness late in life. The early-acting mutation will greatly 

reduce lifetime reproductive success, and will be strongly selected against. The late-acting 

mutation, however, will have a much smaller effect on lifetime reproductive success, as carriers 

of this mutation will have already reproduced and transmitted their genes to the next generation. 

As a result, the late-acting deleterious mutation will experience weaker selection, and will be less 

effectively removed from the population (Gavrilov and Gavrilova 2002). Huntington’s disease 

can be seen as an example of such a phenomenon (Medawar 1952). Huntington’s disease is a 

dominant lethal mutation with late onset at approximately 30 to 40 years of age. This late-onset 

allows carriers to reproduce before any effects are seen. As a result, Huntington’s disease evades 
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the full force of selection and remains in the population (Haldane 1941; Medawar 1952; Weinert 

and Timiras 2003). 

 According to Medawar, because the effectiveness of selection diminishes with age, any 

mutations that arise in the germline with deleterious late-life effects will only be weakly selected 

against. These mutations will remain in the gene pool under mutation-selection balance and 

accumulate over many successive generations (Figure 1A). It is this load of deleterious late-

acting mutations that Medawar suggested to cause senescence.   

Antagonistic Pleiotropy 

 In 1957 G.C. Williams built upon Medawar’s MA theory (Williams 1957). He suggested 

that deleterious late-acting mutations could be favored by selection and actively kept in the 

population if they have beneficial pleiotropic effects. His theory, called the theory of antagonistic 

pleiotropy (AP), assumes the existence of a special type of pleiotropic gene with opposite, or 

antagonistic, effects at different points in life. That is, a single gene may affect traits that are both 

beneficial to fitness early in life and detrimental to fitness late in life, or vice versa. For instance, 

a mutation that causes the overproduction of sex hormones may beneficially increase 

reproductive success early in life, but also cause cancer and decrease survival late in life 

(Gavrilov and Gavrilova 2002). Such genes represent a selective trade-off between their early 

life benefits and their late life costs. Williams points out that as a result of the declining strength 

of selection with age, the early-life advantages conferred by antagonistically pleiotropic genes 

can selectively outweigh accompanying late-life costs (Figure 1B). As a consequence, the active 

selection of early life benefits of antagonistically pleiotropic genes is suggested to cause the 

accumulation of associated harmful late-life effects and lead to senescence.  
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Disposable Soma 

 The AP theory put forth by Williams rests on the idea of an evolutionarily optimized 

trade-off between early and late life fitness, or more generally, between longevity and 

reproduction. In the 1970s T.B.L. Kirkwood further developed this theory by proposing an 

alternative trade-off mechanism for senescence, now termed the disposable soma (DS) theory 

(Kirkwood 1977). Kirkwood suggested that because resources are finite, organisms face trade-

offs in the allocation of energy between the biological functions of growth, maintenance, and 

reproduction. Any energy that is put towards one function becomes unavailable for another. 

Given these trade-offs, selection optimizes energy allocation between functions to maximize 

fitness. An evolved limit on the energy allocated towards maintenance is suggested to cause 

somatic maintenance and repair mechanisms to be imperfect, and cellular and molecular damage 

to accumulate over time (Figure 1C). Accumulation of somatic damage over the lifespan of an 

individual is what Kirkwood suggests ultimately causes senescence (Kirkwood 2005).  

Many different types of molecular and cellular damage are expected to contribute to 

senescence. This is because many different somatic maintenance and repair functions are thought 

to require significant amounts of energy and to be affected by energy allocation limits. That is, in 

addition to genetic damage, other damage such as telomere erosion, mitochondrial dysfunction, 

and epigenetic damage are also expected to contribute to senescence (Campisi and Vijg 2009; 

Kirkwood 2005). 

  Like AP, DS considers aging to be the consequence of the evolutionary optimization of a 

general trade-off between longevity and reproduction. For this reason, many regard DS to be a 

special case of AP. However, here we will treat DS and AP as related but separate theories, and 
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will discuss the differences in the proposed trade-off mechanisms and underlying causes of 

aging. 

 

Testing evolutionary alternatives 

The theories of MA, AP, and DS form the foundation of current thinking on the evolution 

of senescence (for further review of these theories see Gavrilov and Gavrilova 2002; Kirkwood 

2005; Partridge and Barton 1993). Since these theories are not mutually exclusive, it is possible 

that all three play a role in the senescent process. Below we summarize the assumptions and 

predictions of the three evolutionary models and the results of previous empirical tests. Table 1 

provides a summary of the partially contrasting assumptions and predictions discussed.  

Heritability and genetic variation 

A major assumption underlying all evolutionary theories of aging is that features of the 

aging process, such as age-specific fecundity and lifespan, are both heritable and variable, and 

can therefore be modified by natural selection. All three theories discussed here subscribe to this 

view, but differ in the manner by which genes control the process of aging and the predicted 

patterns of genetic variation in aging-related traits.  

Under MA, the heritability of lifespan is predicted to be nonlinear, with increased 

lifespan heritability for offspring with longer-lived parents (Figure 2A) (Charlesworth 1994; 

Gavrilov and Gavrilova 2002). The equilibrium frequency of deleterious mutations is expected to 

increase with the age of mutation action due to a declining strength of selection. As a result of 

this increase in mutation frequency, genetic variation and heritability of lifespan are also 

predicted to increase with age (Figure 2B) (Charlesworth 1994; Gavrilov and Gavrilova 2002; 

Medawar 1952; Partridge and Barton 1993). Evidence for a nonlinear heritability of lifespan has 
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been found in humans using longevity data from European aristocratic families (Gavrilov and 

Gavrilova 2001a; Gavrilov and Gavrilova 2001b; Gavrilova et al. 1998). These studies found 

that the correlation between offspring and parental lifespan increased with increasing parental 

longevity, as predicted by MA. Data from aristocratic families was chosen to minimize social 

and environmental heterogeneity, as the same pattern of increasing heritability could be seen if 

those with longer-living parents simply live in more similar environments (Gavrilova et al. 

1998). Under this alternative environmental hypothesis, the observed phenotypic variance for 

longevity is expected to be smaller for those born to longer-lived parents than those born to 

shorter-lived parents. No difference was found in longevity variance for offspring born to longer-

lived parents compared to shorter-lived parents, suggesting that the observed patterns for lifespan 

heritability cannot be simply explained by differences in environmental variance (Gavrilova et 

al. 1998). 

An additional prediction of MA is an age-dependent increase in inbreeding depression 

and genetic variance of fitness traits (Charlesworth and Hughes 1996; Hughes et al. 2002; 

Moorad and Promislow 2009). Since these measures are proportional to equilibrium allele 

frequencies, they are similarly expected to increase with age under MA due to a declining 

strength of selection (Charlesworth and Hughes 1996). Quantitative genetic experiments 

measuring age-specific fecundity in populations of D. melanogaster have found significant age-

dependent increases in inbreeding depression, as well as additive and dominance genetic 

variances, as predicted under MA (Charlesworth and Hughes 1996; Hughes et al. 2002). These 

results, while initially thought to uniquely distinguish the role of MA, have also been suggested 

to be consistent with AP, confounding study conclusions (Moorad and Promislow 2009).   
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Unlike MA, AP makes no straightforward predictions about genetic variance (Zwaan 

1999). Under different assumptions, AP may produce a wide range of patterns of genetic 

variation, from virtually non-existent to a pattern of variation resembling that expected under 

MA (Moorad and Promislow 2009). For instance, if the inheritance of a single allele with AP 

effects is advantageous to lifetime fitness, selection will drive the allele towards fixation, and 

extant genetic variation will be maintained only on the basis of mutational pressure. 

Alternatively, AP loci could instead maintain genetic variation through balancing selection if two 

alleles with opposite AP effects generate marginal overdominance (i.e. a pattern of heterozygote 

advantage when fitness is averaged over lifespan). In this case, because the age-related allelic 

effects are not necessarily equal, the dominance effects may change with age. An increase in 

dominance effects with age will cause inbreeding depression and additive and dominance genetic 

variances to increase. These effects will produce a pattern of genetic variation similar to MA 

(Moorad and Promislow 2009). Because a range of allelic effects may exist under AP, it is 

difficult to distinguish between the role of MA and AP on the basis of quantitative genetic 

experiments. Any result consistent with MA may also be consistent with AP.  

All three of the evolutionary theories discussed here suggest senescence to be a polygenic 

trait (Kirkwood 1996). Genetic components of senescence have been investigated most 

frequently through genetic analyses of longevity. Many of these analyses have taken the form of 

genome-wide association studies (GWAS) using case-control methodology, where long-lived 

individuals are compared to younger individuals. Surprisingly, these studies have consistently 

revealed apolipoprotein E, or APOE, as the only genetic association observed at genome-wide 

significance (Deelen et al. 2013; Deelen et al. 2011; Nebel et al. 2011; Sebastiani et al. 2012); 

(for a detailed review of this topic see Brooks-Wilson 2013). It has been suggested that 
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additional genes of smaller effect may be found to achieve significance with larger sample sizes 

than have previously been used for GWAS of longevity. 

While a relatively large body of literature has explored the heritability and genetic 

variation expected under MA and AP, the corresponding predictions under the special case of DS 

have been largely undefined and represent an area where further work is needed. Stearns 

suggests that genes affecting maintenance and repair processes that are implicated in aging based 

on DS may have antagonistically pleiotropic effects (Stearns 1992). Additionally, in a review of 

general evolutionary trade-offs, Roff and Fairbairn suggest both mutation-selection balance and 

antagonistically pleiotropic genes may play a role in the maintenance of variation in trade-offs 

(Roff and Fairbairn 2007). 

Trade-offs 

 AP and DS differ from MA in their shared consideration of the role of trade-offs in 

evolution of senescence. Both suggest senescence to be the consequence of the evolutionary 

optimization of a general trade-off between longevity and reproduction, but differ in the 

proposed trade-off mechanisms. In the case of AP the trade-off is suggested to result from single 

genes with opposite effects on early and late life fitness, while with DS the trade-off is suggested 

to result from the allocation of finite energy resources between different life-history traits. 

 Under both AP and DS, the trade-off between longevity and reproduction is predicted to 

result in a negative correlation between early and late life fitness traits. Selection for late life 

fitness is expected to result in decreased early life fitness and vice versa. These specific trade-off 

predictions have been extensively investigated via laboratory selection experiments. Rose and 

Charlesworth demonstrated that selection for increased late-life reproduction resulted in 

decreased early-life fertility and increased longevity in Drosophila melanogaster, as predicted by 
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AP/DS (Rose 1984; Rose and Charlesworth 1980; Rose and Charlesworth 1981a; Rose and 

Charlesworth 1981b). These results were corroborated by a similar study examining the lifespan 

effects of selection for late vs. early reproduction (Luckinbill et al. 1984) and another study 

applying selection directly to longevity (Zwaan et al. 1995).  

Other selection experiments on D. melanogaster, however, have been unable to find 

evidence supporting the existence of a trade-off. Partridge and Fowler, for instance, found 

selection for late life reproduction to result in increased longevity with no associated decrease in 

early life fecundity (Partridge and Fowler 1992). This result may be consistent with MA but does 

not refute the role of AP. Selection for late-life reproduction may act against late-acting 

deleterious mutations that affect both survival and reproduction, and uncover the effects of MA. 

However, an AP/DS trade-off may still be present. The negative result simply suggests that if 

present, the trade-off does not involve the measured trait of early-life fecundity or cannot be 

measured in the laboratory environment.   

Other more recent studies have suggested a diminished importance for AP in explaining 

the observed life history trade-off between longevity and reproduction (Khazaeli and Curtsinger 

2010; Khazaeli and Curtsinger 2013). These studies, conducted by Khazaeli and Curtsinger, used 

recombinant inbred lines of D. melanogaster to show lifespan and early life fecundity to be 

genetically separable. Recombinant genomes were created from parental lines selected for 

longevity via late reproduction and unselected controls. Since pleiotropic effects are unaffected 

by recombination, this experimental method allowed the pleiotropic nature of the genes 

underlying the trade-off between longevity and reproduction to be tested. If AP genes 

significantly mediate the trade-off, a negative correlation between early and late life fitness traits 

is expected in both parental and recombinant lines. If, however, the trade-off is dominated by 
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non-pleiotropic genes, recombination is expected to create new phenotypes that exhibit a positive 

correlation between the early and late life fitness traits that were negatively correlated in parental 

lines. Khazaeli and Curtsinger found flies in the recombinant inbred lines that demonstrated both 

long lifespan and high early life fecundity. This result indicates that reproduction and longevity 

can be genetically separated, and suggests that AP does not fully explain the observed tradeoff 

between longevity and reproduction. 

The inconclusive results of the discussed selection experiments regarding support for a 

specific evolutionary model exemplify the difficulties of devising differentiating tests due to 

non-contrasting theory predictions. In the case of the general trade-off between reproduction and 

longevity, results that are found to be consistent with AP/DS do not simultaneously discredit the 

role of MA in the evolution of senescence and vice versa. MA suggests genes with late-acting 

detrimental effects to be neutral in early life, with no implied trade-off or correlation between 

early and late life fitness. This indicates that even if MA plays a prominent role in the evolution 

of senescence, its role may not be observable through these methods. Furthermore, experimental 

results that do not provide support for a trade-off do not dismiss the role of AP/DS in favor of 

MA. Rather, such results may suggest that the experimental environment may be inadequate for 

the measurement of a particular trade-off or that the measured fitness traits are uninvolved, but 

do not disprove the existence of the trade-off (Charlesworth 1990; Stearns 1989). 

Demographic studies have shown similarly mixed evidence for the trade-off between 

longevity and reproduction in humans. Some have reported significant negative correlations 

between number of offspring and postmenopausal longevity (Doblhammer and Oeppen 2003; 

Westendorp and Kirkwood 1998), while others have reported positive correlations (Gogele et al. 

2011; Le Bourg et al. 1993; Muller et al. 2002).  The validity of the results supporting an AP/DS 
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trade-off between longevity and reproduction in humans, however, has been criticized due to 

data and methodological issues. The data used by Westendorp and Kirkwood, for instance, was 

not cross-checked for accuracy, resulting in the analysis of a dataset that contained an 

unrealistically high percentage of childless women (Gavrilova and Gavrilov 2005). Additionally, 

Doblhammer and Oeppen were unable to find evidence of a trade-off through standard data 

analysis. Only after childless women and women with one child were removed from the analysis 

was a trade-off between longevity and reproduction observed (Gavrilova and Gavrilov 2005). 

Furthermore, examination of the relationship between longevity and infertility, rather than 

number of offspring, has been suggested to be less susceptible to confounding by social factors 

and more informative for tests of evolutionary theories (Gavrilova and Gavrilov 2005). Studies 

comparing the longevity of parents versus non-parents have found either no significant 

difference (Gavrilova and Gavrilov 2005; Gavrilova et al. 2004) or increased longevity for 

parents over those that are childless (Chereji et al. 2013). These results better support alternative 

hypotheses, such as the reproduction potential hypothesis where the presence of a young child 

has a life-lengthening effect on a mother (Muller et al. 2002), rather than an AP/DS trade-off 

between longevity and reproduction. These results also align with classic Darwinian theory such 

that fitter individuals are more likely to contribute more offspring to the next generation. 

In addition to empirical testing, a large body of theoretical work has investigated the role 

of trade-offs in senescence. In particular, mathematical optimization models have been 

extensively used to understand the conditions under which senescence exists as an evolutionarily 

optimal life history trait given particular trade-off constraints. The trade-offs investigated using 

these models are generally of the type suggested by DS – an energy allocation trade-off between 

the life-history traits of growth, reproduction, and maintenance. Numerous optimization models 
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have been used to confirm and clarify predictions and assumptions of DS. Many have 

demonstrated that senescence, often defined as an age-dependent increase in mortality and 

decrease in fertility, is indeed a possible byproduct of the evolutionary optimization of the DS 

suggested trade-off between maintenance and reproduction (Abrams and Ludwig 1995; Baudisch 

2008b; Cichon 1997; Cichon 2001; Cichon and Kozlowski 2000; Kozlowski 1996). In general, 

optimization approaches to test theories of senescence create functions to relate energy allocation 

trade-offs and extrinsic mortality levels to fertility and mortality rates. These functions are then 

optimized to maximize lifetime reproductive success, akin to the action of selection, and to find 

optimal resource allocation schemes and resulting age-trajectories of mortality and fertility. This 

general method has been used to demonstrate that the evolutionary optimization of trade-offs 

between maintenance, growth, and reproduction can, under some conditions, result in senescent 

mortality and fertility age-trajectories that are consistent with data. Under alternative conditions, 

many of these models have also shown optimization to result in sustenance and negative 

senescence, where mortality and fertility rates remain constant or increase with age respectively 

(Baudisch 2012; Baudisch and Vaupel 2010; Vaupel et al. 2004). Such results demonstrate the 

trade-off assumption of DS to be robust enough to describe a range of age-dependent fertility and 

mortality patterns that exist across the tree of life (Jones et al. 2013). 

The results of optimization models depend on assumed conditions, such as level of 

extrinsic mortality and available resources, as well as the specific functional formulation of the 

trade-off. Models with different trade-off assumptions have been shown to result in different 

conclusions about the qualitative patterns of aging (Baudisch 2009; Baudisch 2012). Key 

assumptions include linear vs. nonlinear trade-offs and constraints on the shape of mortality and 

fertility curves (Baudisch 2012). Little is known about the exact biological nature of these trade-
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offs, and, as a result, many functions are created on the basis of mathematical convenience rather 

than biological realism. Conclusions of optimization models should therefore be carefully 

examined with respect to the specific trade-off functions and biological assumptions. 

The concept of a resource allocation trade-off between longevity and reproduction, as 

proposed by DS, has been challenged by the results of calorie restriction experiments. As 

discussed, DS assumes that senescence results from the allocation of finite energy resources 

between the biological functions of growth, reproduction, and maintenance and repair. Logically, 

if the total amount of energy available for allocation decreases, the amount of energy allocated 

towards somatic maintenance and repair should too, and senescence should be more rapid. 

However, calorie restriction experiments have shown the opposite to be true in a number of 

species, including rats, mice, flies and worms (Merry 2002). A large body of data now shows 

that a reduction in calories leads to an increase in longevity (Heilbronn and Ravussin 2003). 

Some theorists have explained this result as a shift in the relative fitness values of immediate 

reproduction and long-term survival. Limited food may signify a decreased probability for 

offspring survival, and a fitness advantage to delayed reproduction. This may translate to an 

increased investment in maintenance and repair when resources are scarce, compared to the 

optimal investment during times of plenty (Mitteldorf 2001; Shanley and Kirkwood 2000).  

Extrinsic mortality 

All three models suggest the evolution of aging to be driven by extrinsic mortality 

(Kirkwood 1977; Kirkwood 2005; Medawar 1952; Williams 1957). Populations facing high 

extrinsic mortality are predicted to age more rapidly than those experiencing low levels of 

extrinsic mortality. In the case of MA and AP, increased extrinsic mortality means fewer 

individuals survive to reproduce at later ages, resulting in a faster declining strength of selection, 
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accumulation of earlier-acting deleterious age-specific mutations, and ultimately more rapid 

senescence within the species. In the case of DS, high extrinsic mortality shifts the optimal 

energy allocation scheme. In an environment with high extrinsic mortality it becomes optimal to 

invest in reproduction over maintenance to maximize reproductive success during the organism’s 

expectedly short lifespan. This decreased investment in somatic maintenance is predicted to 

cause somatic damage to accumulate at a faster rate and to translate to more rapid aging. Stearns 

and colleagues tested this prediction in populations of D. melanogaster (Stearns et al. 2000). 

Replicate populations subjected to different adult extrinsic mortality rates evolved lifespan 

differences in line with predictions. Populations with high adult mortality evolved shorter 

lifespans than populations with low adult mortality. Additionally, optimization models of Cichon 

and Kozlowski have shown levels of extrinsic mortality to directly affect the optimal energy 

allocation strategy (Cichon 1997; Cichon 2001; Cichon and Kozlowski 2000). When extrinsic 

mortality is low, increased allocation toward maintenance repair is optimal, slowing aging. 

However, Reznick and colleagues tested this prediction on wild populations of Trinidadian 

guppies, and found results contrary to prediction (Reznick et al. 2004). Populations of guppies 

experiencing high extrinsic mortality rates were found to exhibit longer lifespans in the 

laboratory than populations from low mortality environments. These unexpected results have 

been suggested to be artifacts of unanticipated selection for increased vitality due to extrinsic 

mortality caused by predation (Bronikowski and Promislow 2005). This exemplifies that both the 

existence of extrinsic mortality and the actual sources of extrinsic mortality may influence the 

evolution of senescence. 
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Heterogeneity in aging 

 Under DS, the diverse cellular and molecular damage that contributes to senescence is 

predicted to be stochastic, as it results from random failure events of somatic maintenance and 

repair mechanisms (Kirkwood 2005). This DS prediction of an inherently stochastic process of 

aging differentiates it from both AP and MA. Unrepaired damage due to both extrinsic and 

intrinsic factors is expected to accumulate stochastically within an individual, and to contribute 

to inter-individual variation, or heterogeneity, in aging. Here, we use the term heterogeneity in 

aging to refer to the idea that individuals in a population differ with respect to exactly how they 

age (e.g. pattern, rate, etc.), in addition to when they die.  

Many of the investigations into heterogeneity and stochasticity in human aging have 

come from the field of demography (Steinsaltz et al. 2012; Yashin et al. 2000). Several analyses 

of demographic mortality data have incorporated notions of heterogeneity in aging, and have 

provided a framework for the consideration of mechanisms controlling inter-individual 

differences in aging and longevity (Li and Anderson 2009; Steinsaltz et al. 2012; Vaupel et al. 

1979; Yashin et al. 2000). These models have been built on two different concepts of individual 

heterogeneity within a population. The first considers heterogeneity in lifespan to be caused by 

innate differences between individuals (Vaupel et al. 1979). In contrast, the second considers 

heterogeneity in lifespan to be caused by stochastically acquired differences in mortality risk 

(Gavrilov and Gavrilova 1990). These concepts have not yet been explicitly considered with 

respect to evolutionary models, but may provide a framework for the investigation of the 

evolution of heterogeneity in aging in the future. The first concept of heterogeneity in lifespan is 

potentially consistent with all three evolutionary models, while the second concept is uniquely 

consistent with DS. 
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DS predicts the pattern of inter-individual heterogeneity in aging to result from the 

stochastic accumulation of both genetic and non-genetic damage over the lifespans of 

individuals. Heterogeneity in rate of damage accumulation, and consequently lifespan, is likely 

dependent on both genetic and environmental factors, but the relative impact of each is unknown. 

DS may therefore be consistent with the first concept of heterogeneity if genetic differences 

between individuals impact mechanisms of maintenance and repair and lead to differences in the 

rate of damage accumulation and ultimately lifespan. Additionally, DS is uniquely consistent 

with the second concept of heterogeneity. This concept assumes differences in longevity to be 

mainly caused by the stochastic acquisition of different environmental or internal damage 

between individuals. 

In general, evolutionary investigations into the stochastic nature of aging have been 

limited. A recent paper by Le Cunff et al. investigates the evolution of inter-individual 

differences in aging under the influence of a DS-type trade-off between longevity and 

reproduction (Le Cunff et al. 2013). This work relies on assumptions of the DS evolutionary 

model of senescence, but does not explicitly test its biological predictions. To our knowledge, 

the DS prediction of stochastic individual age-dependent accumulation of cellular and molecular 

damage has not yet been explicitly tested and provides a line of inquiry for future research. 

Statistical models combined with stochastic processes may provide a relatively straightforward 

method of testing this prediction if longitudinal data on damage contributing to senescence are 

available. Familial data may also provide additional insight into genetic vs. environmental 

sources of heterogeneity. 
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Species variation in aging 

Wide variations in patterns of aging have been observed across the tree of life (Jones et 

al. 2013). Humans, for instance, experience age-dependent declines in fertility and increases in 

mortality with age (senescence), but species such as hydra experience constant mortality and 

fertility over all ages (sustenance) (Martinez 1998). Furthermore, other species, like mangrove 

trees, exhibit increasing fertility and declining mortality with age (negative senescence) (Jones et 

al. 2013). This variation is not directly predicted by the evolutionary theories of aging, as they 

were originally formulated to explain the anthropocentric pattern of senescence. MA and AP 

both assume a declining strength of selection with age. Under MA this causes the accumulation 

of a deleterious mutational load and inevitable senescence. Under AP, this causes 

antagonistically pleiotropic genes with early-life benefits and late-life costs to be selected for and 

the genes with the opposite effects to be selected against. Genes with AP effects will therefore 

only able to explain senescence and not other life history patterns. Of the three theories described 

here, DS is the most able to explain great variation in life histories. Under DS, different species 

may experience different trade-off functions and constraints, which may result in different 

optimal energy allocation strategies and different age-dependent patterns of fertility and 

mortality. At this point, little is known to explain why some species have evolved senescent life 

histories while others have not. In the future, comparative studies concentrating on the 

relationships between differences in the environmental pressures experienced by different 

species and differences in species fertility and mortality curves for a wide range of taxa may help 

to unravel what conditions lead to the evolution of senescence (Jones et al. 2013). 

 

 



 21 

Methods of testing evolutionary alternatives: past approaches and future directions 

 A variety of methods have been used to test between the MA, AP, and DS models of 

senescence. Many of the previous attempts to distinguish between these alternatives have been 

largely inconclusive due to various non-contrasting model predictions. Here we summarize the 

conclusions drawn in the previous section in terms of the methods used to distinguish between 

evolutionary models of senescence. 

Analysis of genetic variance: The measurement of age-specific genetic variance in aging-

related fitness traits, such as age-specific fecundity and lifespan, has been proposed as a method 

for differentiating between MA and AP evolutionary models of senescence. MA clearly predicts 

an increase in inbreeding depression and additive and dominance genetic variances as a result of 

increasing equilibrium allele frequencies with age. AP, however, does not make clear predictions 

about genetic variation, and can been seen to be consistent with a wide range of patterns. For this 

reason, it is difficult to differentiate between the theories of MA and AP on the basis of analysis 

of genetic variance. Experimental analyses observing variation in fitness traits consistent with 

MA may also be consistent with AP (Moorad and Promislow 2009).  

Selection experiments: Laboratory selection experiments have demonstrated responses to 

selection and the existence of trade-offs between early and late life fitness traits in accordance 

with predictions of MA, AP, and DS evolutionary models of senescence. As discussed above, 

these experiments have been shown to be capable of testing specific evolutionary predictions and 

providing support for individual models, but they are unable to exclude or distinguish between 

the alternatives. Taken together, the body of literature provides evidence in support of both MA 

and AP/DS models of senescence. These experiments have exclusively relied on observations of 

fecundity and lifespan to quantify and measure a manipulation’s effect on senescence. In the 
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future it may be beneficial to complement selection experiments with other genetic analyses to 

better understand the genetic basis of evolutionary change related to senescence (Flatt and 

Schmidt 2009). 

Mathematical models: Mathematical optimization models have been developed to 

demonstrate how MA and DS trade-offs can shape fertility and mortality curves and result in 

senescence. Typically, these models define and quantify senescence as an age-associated decline 

in fertility and increase in mortality. Assumptions of MA and DS are often analyzed using 

quantitative genetics and optimization models, respectively. To our knowledge, there have only 

been two cases where these adaptive and non-adaptive processes have been placed together into 

a single model (Charlesworth 1990; Danko et al. 2012). Charlesworth incorporated trade-offs 

into a quantitative genetics model, while Danko and colleagues added MA into a trade-off 

framework. Charlesworth’s model demonstrated genetic correlations, or trade-offs, to be largely 

unaffected by MA, while the model of Danko and colleagues showed MA to play only a minor 

role in shaping life histories. Further extension of models combining assumptions of alternative 

evolutionary theories may help to understand the relative importance of each process in 

explaining senescence. 

Statistical models and demographic data:  Statistical models using demographic 

mortality and reproduction data have been used to test and provide support to predictions of 

heritability under MA and to test for trade-offs between longevity and reproduction under 

AP/DS. Additionally, statistical models have been used to assess heterogeneity in aging and 

investigate the importance of genetic and environmental factors in determining mortality (Yashin 

et al. 1994). These models have not yet been used to investigate evolutionary theories of aging, 

but may offer a framework for testing differing predictions surrounding patterns of phenotypic 
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heterogeneity in aging in the future. DS, for instance, may be differentiated from MA and AP if 

heterogeneity in aging can be better described by stochastic processes of damage accumulation 

over the lifetimes of individuals than by innate genetic differences between individuals. Several 

statistical models have been extended to include longitudinal data of many types in addition to 

survival data (Tan et al. 2013; Yashin et al. 2007). Mortality data describes only the ultimate 

outcome of aging, and does not adequately describe the process of aging occurring within 

individuals. The inclusion of longitudinal data on other measures of senescence would help to 

better describe aging as a process, and the addition of familial data could help elucidate the 

relative importance of the different heterogeneity-producing mechanisms proposed by 

evolutionary theory.  

 

Beyond mortality: other useful measures of senescence for demographic studies 

 The methods for testing evolutionary theories of aging in humans have generally relied 

heavily on lifespan and mortality data (Nusbaum et al. 1996). Death is the ultimate result of 

aging, and lifespan is often assumed to represent a good quantitative estimate of senescence 

(Baudisch 2008a; Tartar 2001). However mortality data provides an incomplete measurement of 

senescence that may not be ideal to investigate all aspects and predictions of evolutionary 

models. 

 Lifespan acts as a single proxy measurement for an individual’s rate of senescence, but 

provides no information on an individual’s senescent state or “biological age” throughout life. 

Without such measures, investigations into intra- and inter-individual heterogeneity in aging 

become difficult. For instance, the specific DS prediction of stochastic damage accumulation 

over an individual’s lifespan is not directly testable with only mortality data, but stochastic 
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models of change and other predictions involving individual rates of senescence can be tested if 

repeated measures of senescence are available. Furthermore, while familial lifespan data can be 

used to deduce the heritability of lifespan and test predictions under MA, without longitudinal 

measures of senescence the heritability of rate of aging, as suggested by DS, can only be 

inferred. Moreover data for contemporary populations may be incomplete since lifespan can only 

be observed for deceased members of a pedigree. Alternative measures of senescence and 

“biological age” may offer the necessary data to test these and other predictions of the proposed 

evolutionary models.  

 Biomarkers of aging are quantifiable parameters thought to be reflective of “biological 

age”, or an individual’s rate of functional decline (Baker and Sprott 1998; Johnson 2006). The 

American Federation for Aging Research suggests that a well-defined biomarker of aging should 

do the following: 1) predict the rate of aging and lifespan better than chronological age; 2) 

monitor a basic process underlying aging; 3) be repeatedly measureable in humans without 

causing harm; 4) work in both humans and laboratory animals for testing and validation (Baker 

and Sprott 1998; Johnson 2006). Previously proposed biomarkers of aging have included 

telomere length, mtDNA mutations, and levels of oxidative stress and inflammation (Johnson 

2006; Simm et al. 2008). These quantitative measures have been suggested as biomarkers of 

aging due to their correlation with age, high inter-individual variation, and associations with age-

related disease and mortality (Bekaert et al. 2005; Cawthon et al. 2003; Eshaghian et al. 2006; 

Harley et al. 1990; Mather et al. 2011; Trifunovic and Larsson 2008). 

 To our knowledge, biomarkers of aging have only been loosely connected to evolutionary 

models. Kirkwood and Kowald created a network model of cellular aging based on the DS 

prediction of multiple mechanistic causes, and they described processes underlying proposed 
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biomarkers (Kirkwood and Kowald 1997). Their model included mitochondrial damage, aberrant 

proteins, free radicals, and antioxidants. Simulations of this model suggested that it is plausible 

that multiple processes interact to collectively cause the overall process of cellular aging.  

In future studies, it may be valuable to use data on biomarkers of aging as alternative or 

supplementary measures of senescence. This will allow investigations to focus on senescence as 

an evolved longitudinal process, rather than as a single mortality event. The use of biomarkers 

will facilitate tests of individual-level predictions of evolutionary models that are not feasible 

with the population-level measure of death rate. For example, longitudinal data on the senescent 

state of individuals will allow for direct modeling of the DS prediction of stochastic senescence-

causing damage accumulation throughout life. Many of the previously used methods for testing 

evolutionary models of senescence (e.g., heritability estimates, selection experiments, and 

statistical models) can be altered to include biomarkers of aging as alternative or supplementary 

measures of senescence. For instance, selection experiments including additional longitudinal 

analysis of biomarkers of aging may help elucidate the relationship between AP/DS proposed 

trade-offs and the rate of senescent decline or damage accumulation. Such a relationship is 

suggested by DS, but its functional form has yet to be unraveled. Furthermore, analysis of 

longitudinal data on biomarkers of aging with statistical models can explicitly test the DS 

prediction that stochastic damage accumulation underlies intra- and inter-individual 

heterogeneity in the process of aging. 

A new biomarker of aging: DNA methylation 

 Recent research on the epigenetics of aging in humans has led to the proposal of DNA 

methylation as a new biomarker of senescence (Brocklant et al. 2011; Hannum et al. 2013; 

Horvath 2013; Koch and Wagner 2011; Teschendorff et al. 2010; Teschendorff et al. 2013). 
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Epigenetics is the study of heritable DNA alterations that do not change DNA sequence. The 

most well-known epigenetic modification is DNA methylation, which involves the addition or 

removal of a methyl group from the 5-position of a cytosine base. DNA methylation is often 

associated with gene expression silencing, and typically occurs at CpG sites, where cytosine 

bases sit immediately adjacent to guanine bases (Jaenisch and Bird 2003; Razin and Riggs 1980). 

 Changes in DNA methylation and chronological age were first reported decades ago 

(Wilson and Jones 1983) and due to the recent availability of DNA methylation microarrays, a 

large body of literature now describes patterns of both hyper- and hypo-methylation with age 

across the human genome (Alisch et al. 2012; Bell et al. 2012; Bjornsson et al. 2008; Bollati et 

al. 2009; Christensen et al. 2009; Fraga and Esteller 2007; Hannum et al. 2013; Numata et al. 

2012; Rakyan et al. 2010; Teschendorff et al. 2010; Xu and Taylor 2014). Nearly 

indistinguishable epigenetic markings of young identical twins have been observed to be 

increasingly different as a function of age, based on a cohort study of older vs. younger twins 

(Fraga et al. 2005; Martin 2005). The exact mechanisms driving these changes are not yet 

understood, but the influence of external environmental factors and internal stochastic events 

have been hypothesized (Fraga and Esteller 2007; Hannum et al. 2013). These observations have 

led researchers to investigate if DNA methylation patterns can be used as a biologically 

meaningful measure of senescence. Recently, two studies have demonstrated that age can be 

predicted from genome-wide DNA methylation data with extraordinary accuracy compared to 

previous biomarkers (Hannum et al. 2013; Horvath 2013). When tested in independent datasets, 

correlation between chronological age and predicted “methylation age” ranged from 0.91 – 0.96, 

compared to correlations of -0.52 and -0.74 between chronological age and telomere length in 

granulocytes and lymphocytes, respectively (Rufer et al. 1999). Measurements of methylation 
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age were strikingly consistent across individual cell and tissue types (Horvath 2013), suggesting 

that this predictor does not simply reflect changing cell type proportions with age, and can be 

generalized to many tissues. Methylation-based estimates of biological age can be used to 

estimate an individual’s rate of aging (i.e. fast or slow) based on the ratio of observed to 

expected methylation given chronological age.  

DNA methylation may be an appropriate biomarker of aging, as it meets three of the four 

published criteria established by The American Federation for Aging Research.  Hannum and 

collaborators demonstrated that differences in methylation age calculated from whole blood 

samples are significantly associated with factors known to be relevant to senescence, such as 

gender and genetic variation, satisfying criteria two and three. Horvath similarly demonstrated 

observable age-associated methylation changes in human blood samples, and that age-related 

methylation changes in chimpanzees are highly correlated with those in humans, satisfying 

criterion four. Further work is needed to establish whether the remaining criterion holds: That is, 

whether measures of methylation age can predict lifespan and other measures of senescence 

better than chronological age (Horvath 2013). Early results suggest that this may be the case, as 

mortality risk in 2,100 individuals aged 40 to 92 was estimated to increase by 15% for each five-

year increase in age acceleration (the difference between methylation age and chronological 

age), adjusting for chronological age (Chen et al. 2014; Gibbs 2014).  

 DNA methylation as a quantitative measure of senescence can be usefully applied to 

many evolutionary investigations, either through calculation of predicted methylation age or 

through site-specific analysis. Since methylation can be readily measured at thousands of CpG 

sites across the genome, the use of DNA methylation data uniquely enables evolutionary theories 

to be tested at numerous genomic locations. As the theories discussed are not mutually exclusive, 
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it is possible that different combinations explain the evolution of senescence in different portions 

of the genome. Analysis incorporating DNA methylation data will uniquely be able to assess the 

relative contribution of each theory across the whole genome and within specific sections.  

Longitudinal DNA methylation data lends itself to the investigation of stochastic 

accumulation of damage proposed by DS. The possible stochastic nature of methylation and 

aging has never been explicitly modeled in a longitudinal framework in the same individuals. 

Such an analysis could help to elucidate the dynamic process of aging, and could be used to 

understand the relative importance of DS in evolution of senescence. Statistical analysis of 

mortality data alone has been shown to be inadequate to understand underlying factors causing 

observable heterogeneity in aging (Yashin et al. 1994). Age-associated methylation changes have 

been found to be widespread and reproducible across studies (Alisch et al. 2012; Bollati et al. 

2009; Horvath 2013; Teschendorff et al. 2010), suggesting that longitudinal measurements of 

both methylation age and methylation at individual CpG sites could provide information useful 

for investigating stochastic intra- and inter-individual variation in aging. 

 Furthermore, familial DNA methylation data could be used to investigate the heritability 

of rate of aging. For example treatment of the deviation of methylation age from chronological 

age as a measure of biological fitness could be useful in testing the prediction of increasing 

heritability of fitness-related traits with age implied by the MA model. Similarly, heritability 

studies could be useful for distinguishing between genetic vs. stochastic sources of heterogeneity 

in somatic maintenance implied by DS.  DS assumes the evolution and therefore heritability of 

energy allocation schemes, which generally dictate the level of somatic maintenance. As a result, 

the rate of damage accumulation, and therefore the rate of aging, can be expected to be at least 

somewhat heritable under DS. However, DS also suggests a potentially large environmental 
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component to aging, as environmental factors may also directly impact the type and quality of 

damage accumulation. Low heritability or decreasing heritability of fitness-related traits with age 

may therefore be characteristic of DS, and may differentiate it from MA and AP, which 

explicitly suggest a large genetic basis for senescence. This prediction and the corresponding 

predictions under MA and AP have not been formally defined or investigated and offer an 

interesting line of inquiry for future research.  

   

Conclusions 

 Strides have been made in understanding the contributions MA, AP, and DS models 

make in explaining the paradox of senescence, but a consensus has not yet been reached. Clear 

and non-contrasting predictions are necessary to elucidate the relative importance of each model. 

However, because these models are not mutually exclusive, tests capable of simultaneously 

distinguishing between the actions and contributions of all these models are difficult to devise. 

As a result, empirical tests of these theories have focused on testing underlying assumptions and 

partially contrasting model-specific predictions. A variety of methods and empirical tests have 

provided support for portions of each individual model. There are, however, some predictions 

and assumptions that have received little or no attention. Such predictions may have been 

overlooked in the past due to limitations of defined measurements of senescence. Thus, the 

incorporation of longitudinal and/or familial biomarker data into future research as alternative or 

supplementary measurements of senescence may facilitate the investigation of previously 

neglected aspects of evolutionary models. Specifically, DNA methylation, a newly proposed 

measure of biological aging, may be useful in investigating intra- and inter-individual 

heterogeneity in the longitudinal process of aging as related to evolutionary models.
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TABLES 
 
Table 1. Assumptions and predictions of the MA, AP, and DS evolutionary models of senescence. 
 

 Mutation Accumulation Antagonistic pleiotropy Disposable Soma 
Basic assumptions of each model    
Adaptive vs. non-adaptive Non-adaptive: senescence exists because 

selection is not strong enough to eradicate it  
 

Adaptive: senescence is the byproduct of 
evolutionary optimization 

Adaptive: senescence is the byproduct of evolutionary 
optimization 

What causes senescence at the 
individual level? 

Numerous late-acting deleterious alleles  The deleterious late-life effects of antagonistically 
pleiotropic genes 
 

The progressive accumulation of multiple types of 
somatic damage 

What is inherited? Deleterious germline mutations with late-life 
effects 

Deleterious germline mutations with 
antagonistically pleiotropic effects 
 

An energy allocation strategy and a level of somatic 
maintenance 

Mutations/ damage causing 
senescence are accumulated over… 

Many generations Many generations An individual’s lifespan 

 
Predictions: Heritability and genetic variation 

  

Genetic variance  Inbreeding depression and genetic variances of 
fitness traits will increase with age due to an 
increase in equilibrium frequencies of deleterious 
alleles with age  
 

AP genes may produce different patterns of genetic 
variance under different assumptions 

Genes affecting maintenance and repair processes may 
have antagonistically pleiotropic effects and show 
similar genetic variation 
 

Predictions: Trade-offs    
What trade-off is assumed? 
 
 
 
 
 

None Longevity vs. reproduction Longevity vs. reproduction 

Specific predictions based on 
trade-off 

No trade-off predicted Late-life fitness vs. early-life fitness, resulting 
from single genes that have opposite effects on 
early and late life fitness 

Somatic maintenance vs. reproduction, resulting from 
finite energy resources. Energy allocation to one life-
history trait necessarily detracts from another 
 

Correlation between early- and 
late-life fitness 

None Negative correlation  Negative correlation 

Selection for longevity causes… Slowed or delayed senescence with no 
accompanying decrease in fitness in youth 
 

Slowed or delayed senescence with decreased 
fitness in youth 

Slowed or delayed senescence with decreased fitness in 
youth 

Predictions: Extrinsic mortality    
High rates of extrinsic mortality 
are predicted to cause high rates of 
aging because… 

Fewer individuals survive to reproduce at later 
ages, resulting in an faster declining force of 
selection 

Fewer individuals survive to reproduce at later 
ages, resulting in an faster declining force of 
selection 

Early reproduction becomes the optimal strategy. It is 
beneficial to invest in reproduction over maintenance 
due to decreased chances of survival 
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FIGURES 

 

Figure 1. Evolutionary Theories of Aging.  (A) Under the Mutation Accumulation theory of 

aging, mutations with later ages of action accumulate in the gene pool over many generations 

and grow to higher equilibrium frequencies due to declining strength of selection and a constant 

mutation rate.  The deleterious mutation with age-specific effects at age 20 in the first generation 

is lost due to selection. A load of deleterious late-acting mutations collected throughout a 

population’s history, shown in the last generation, is suggested to cause senescence. (B) Under 

the Antagonistic Pleiotropy theory of aging, the decline in the strength of selection with age 

(shown in blue) causes early-life benefits of antagonistically pleiotropic genes (shown in red) to 

selectively outweigh associated late-life costs. Active selection for the early-life benefits of 

antagonistically pleiotropic genes causes corresponding late-life costs to accumulate within the 
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germline, which leads to senescence. (C) Under the Disposable Soma theory of aging, trade-offs 

in the allocation of energy between biological functions causes maintenance and repair 

mechanisms to be imperfect. As a result, somatic damages accumulate over an individual’s 

lifespan and cause senescence. Two energy allocation schemes are shown:  (1) and (2). 

Allocation scheme (1) gives less energy to maintenance than allocation scheme (2). This causes 

somatic damages (in red) to accumulate at a faster rate and individual lifespans to be shorter. 

 

Figure 2. Prediction of Increasing Heritability of Lifespan Under Mutation Accumulation.  

(A) The heritability of lifespan is expected to increase with age under the theory of mutation 

accumulation (MA), as shown in the illustrative example. (B) According to MA, the genetic 

variability of age-specific mutations increases with age of mutation action due to a declining 

strength of selection. Mutations with effects at late ages experience only weak selection resulting 

in higher frequencies and higher genetic variability. Heritability is proportional to genetic 

variance, causing the heritability of lifespan to increase with age. 
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Chapter 3: Testing two evolutionary theories of human aging with DNA 
methylation data 
 
This chapter was published as cited below: 
 
Robins, C., McRae, A.F., Powell, J.E., Wiener, H.W., Aslibekyan, S., Kennedy, E.M., Absher, 
D.M., Arnett, D.K., Montgomery, G.W., Visscher, P.M., Cutler, D.J., and Conneely, K.N., 2017. 
Testing Two Evolutionary Theories of Human Aging with DNA Methylation 
Data. Genetics, 207(4), pp.1547-1560. 
 
 

INTRODUCTION 

Evolutionary theories of aging 

Aging is the progressive and general deterioration of an organism, defined by post-

maturation declines in survival and fertility (Medawar 1952; Williams 1957; Hamilton 1966). 

Basic evolutionary theory suggests that such a trait should be selected against given its 

associated reductions in Darwinian fitness. However, seemingly paradoxically, aging is a 

universal feature of human life. The existence of aging remains an evolutionary puzzle. 

Evolutionary theories provide possible explanations for the existence of human aging. 

Two major theories include: 1) mutation accumulation (MA) (Medawar 1952), and 2) 

antagonistic pleiotropy (AP) (Williams 1957), with disposable soma (DS) (Kirkwood 1977; 

Kirkwood and Holliday 1979; Kirkwood and Rose 1991) as a special case. Very generally, these 

theories suggest aging to occur because of a decline in the strength of selection with age. Even in 

the absence of aging, extrinsic mortality, or death due to external factors such as accident or 

starvation, causes fewer people to survive to higher ages (Medawar 1952). As a result, older ages 

matter increasingly less to lifetime reproductive success, and selection becomes increasingly 

ineffective (Hamilton 1966).  

More specifically, MA suggests aging to be a non-adaptive consequence of the decline in 

the strength of selection with age (Medawar 1952). Mutations with deleterious effects confined 
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to late in life have only small impacts on fitness, as carriers likely reproduce before the onset of 

mutation action. Such mutations are hidden from the full force of selection and are essentially 

neutral. As a result, these mutations can grow to high frequency and accumulate within a 

population’s germline over many generations (Hughes and Reynolds 2005). The resulting burden 

of late-acting deleterious mutations is suggested to cause aging under MA.  

In contrast to MA, AP suggests aging to be an adaptive consequence of an evolutionary 

trade-off between survival and reproduction (Williams 1957). AP proposes the existence of a 

specific type of pleiotropic gene that has opposite effects on fitness at different ages. These genes 

are said to be antagonistically pleiotropic, and present a potential trade-off between early and late 

life, or survival and reproduction. Selection of these antagonistically pleiotropic genes depends 

both on the magnitude and timing of the opposing effects. Fitness advantages conferred early in 

life can easily selectively outweigh accompanying late-life costs due to the weakening strength 

of selection with age. AP suggests aging to be caused by the deleterious late-life effects of 

antagonistically pleiotropic genes that have accumulated in the population germline through 

active selection of their early-life benefits. 

A special case of AP is DS (Kirkwood and Holliday 1979). Similar to AP, DS considers 

aging to be an adaptive consequence of the evolutionary optimization of a general trade-off 

between survival and reproduction (Kirkwood 1977; Kirkwood and Holliday 1979; Kirkwood 

and Rose 1991). In particular, DS suggests aging to result from trade-offs in the allocation of 

finite energy resources between biological functions such as growth, reproduction, and 

maintenance. Selection works to optimize energy allocation strategies to maximize fitness, and 

evolves energetic limits for each function. Given the limited amount of energy that can be 

allocated toward maintenance, mechanisms for somatic maintenance and repair mechanisms 
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cannot be perfect. Imperfect maintenance and repair mechanisms cause unrepaired cellular and 

molecular damages to accumulate over the lifetime of an individual. DS suggests aging to be 

caused by this accumulation of somatic damages throughout life. 

 DS is often considered to be a special case of AP due to their shared general trade-off 

framework. However, since AP and DS differ in their suggested trade-off mechanisms and 

underlying causes of aging (Kirkwood and Rose 1991; Kirkwood and Austad 2000), we consider 

them to be related but separate theories and investigate their predictions independently. 

The theories of MA, AP, and DS are not mutually exclusive and large bodies of literature 

provide support for aspects of each individual theory (Gavrilov and Gavrilova 2002). It is 

possible that all three theories play some role in explaining the features and existence of human 

aging, but the relative importance of each theory has not yet been well established (Partridge and 

Barton 1993). A better understanding of each theory’s contribution will help to clarify the roles 

of the environment and different types of genes in the aging process. Many of the methods 

previously used to test these theories have been able to provide support for one theory over 

another, but have not been able to speak to the size of the contribution each theory makes in 

explaining aging (Robins and Conneely 2014). Here, we have devised a unique test using DNA 

methylation data that will allow us to better understand the relative importance of MA and DS 

evolutionary models of aging.  

 

DNA methylation and aging 

DNA methylation is an epigenetic modification that is dynamic with age (Fraga and 

Esteller 2007; Bocklandt et al. 2011; Koch and Wagner 2011; Alisch et al. 2012; Hannum et al. 

2013; Horvath 2013; Xu and Taylor 2014) and has been shown to be heritable in cross-sectional 
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family studies (McRae et al. 2014; Day et al. 2016). It involves the addition of a methyl group to 

the 5-position of a cytosine base, and typically occurs at a CpG site, where a cytosine base is 

directly followed by a guanine base. Functionally, DNA methylation of gene promoter regions is 

often associated with gene expression silencing (Razin and Riggs 1980; Jaenisch and Bird 2003; 

Bell et al. 2011).  

Robust age-associated changes in DNA methylation occur throughout the genome (Fraga 

and Esteller 2007; Bocklandt et al. 2011; Koch and Wagner 2011; Alisch et al. 2012; Hannum et 

al. 2013; Horvath 2013; Xu and Taylor 2014). That is, numerous CpG sites consistently show 

variation in methylation between young and old ages. Many sites also show heritable patterns of 

methylation, where the measured level of methylation is more similar between closely related 

than unrelated individuals (Bell et al. 2012; McRae et al. 2014; Day et al. 2016). This suggests 

that a genetic component underlies the variation in methylation at these CpG sites. 

An environmental or stochastic component to the variation in methylation is also 

suggested, as the nearly identical DNA methylation patterns of monozygotic twins at birth have 

been observed to diverge with age (Fraga et al. 2005; Martin 2005; Zampieri et al. 2015). This 

age-related divergence in the methylation patterns of relatives has been termed epigenetic drift 

(Teschendorff et al. 2013; Issa 2014; Sun and Yi 2015). The exact mechanisms driving these 

changes are not yet understood, but both external environmental and internal cellular events, 

such as imperfect methylation maintenance, have been hypothesized to contribute (Fraga and 

Esteller 2007; Hannum et al. 2013). The age-associated DNA methylation changes of epigenetic 

drift are suggested to be acquired stochastically (Jones et al. 2015), and align with DS (Kirkwood 

2005). 
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DNA methylation has been suggested as a biomarker of human aging, or an easily 

repeatable measure that is descriptive of biological age (Baker and Sprott 1998).  The genome-

wide patterns of methylation have been observed to be dynamic throughout life, with the 

methylation at numerous CpG sites shown to have strong associations with age. These age-

associated changes in methylation have been reported at thousands of sites across the genome in 

human blood samples (Alisch et al. 2012; Hannum et al. 2013; Horvath 2013; Xu and Taylor 

2014).  Furthermore, chronological age can be accurately predicted from the methylation 

measurements at just a few hundred of these CpG sites (Hannum et al. 2013; Horvath 2013). 

DNA methylation at these sites shows consistent changes with age across individuals, as well as 

cell and tissue types, and forms an “epigenetic clock” (Jones et al. 2015). Estimates of biological 

age derived from the methylation measurements at the clock-like CpG sites have been found to 

predict mortality better than chronological age (Marioni et al. 2015). Together these observations 

indicate that DNA methylation changes, both en masse and site-specific, reflect aspects of the 

aging process, and can be regarded as a biomarker of aging against which predictions of 

evolutionary theories can be tested.  

 

Heritability of DNA methylation 

 In this study, we test the contrasting heritability predictions of MA and DS against 

familial DNA methylation data. We do not test heritability predictions of AP, as AP predicts a 

wide range of patterns of genetic variation, including patterns also expected under MA (Moorad 

and Promislow 2009). Unlike AP, specific predictions about genetic variation and heritability 

can be made for the theories of MA and DS, and these predictions are contrasting (Charlesworth 

and Hughes 1996; Kirkwood 2005; Moorad and Promislow 2009). 
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MA suggests the heritability of lifespan and other aging-related traits to increase with 

age. MA assumes aging to be caused by deleterious late-acting mutations that have accumulated 

in a population’s germline over many successive generations due to a decline in strength of 

selection with age (Medawar 1952). Because of this weakening selection, the equilibrium 

population frequency of deleterious mutations is expected to increase with the age of onset of 

mutation action (Charlesworth 1980; Partridge and Barton 1993). Increases in the number of 

mutations in the population equate to increases in genetic variation. As a result of this increasing 

genetic variation, the heritability of lifespan and other features of aging is also predicted to 

increase with age (Charlesworth 1994; Gavrilova et al. 1998; Gavrilov and Gavrilova 2002). In 

contrast to MA, DS assumes aging to be caused by random somatic damages that accumulate 

over the lifetime of an individual (Kirkwood and Rose 1991). These damages result from random 

failure events of somatic maintenance and repair mechanisms and predict an inherently 

stochastic process of aging (Kirkwood 2005). This stochasticity under DS is expected to cause 

the phenotypic variation of aging-related traits to increase with age, which in turn causes the 

heritability of these traits to decrease with age.  

If age-associated methylation changes are consistent with MA, we suggest that they 

mediate the age-specific effects of deleterious genetic mutations, and that the heritability of DNA 

methylation will increase with age. In contrast, if age-associated methylation changes are 

consistent with DS, we suggest that they result from stochastic failures in maintenance and repair 

mechanisms, and that the heritability of DNA methylation will decrease with age. In this study 

we test for increasing and decreasing heritability of DNA methylation at age-differentially 

methylated CpG sites. Sites where the heritability of methylation increases with age will be 
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considered consistent with MA, while sites where the heritability of methylation decreases with 

age will be considered consistent with DS.  

The existence of widespread changes in DNA methylation with age is potentially 

consistent with both MA and DS. Our novel use of DNA methylation data in testing these 

theories allows us to categorize individual CpG sites across the genome as consistent with either 

MA or DS, or inconsistent with both theories, and to assess the ability of each theory to explain 

the DNA methylation changes observed in aging (Robins and Conneely 2014).  

Additionally, we test for the existence of a heritable rate of aging, which is consistent 

with both MA and DS. Under DS, genes regulating the accuracy of somatic maintenance and 

repair are suggested to dictate the rate of somatic damage accumulation and imply a heritable 

rate of aging that is constant throughout life. Under MA, deleterious genes with age-specific 

effects are suggested to cause aging, and imply a heritable rate of aging that is potentially 

variable throughout life (e.g. slow at young ages, fast at older ages). The prediction of a heritable 

rate of aging can be tested using a methylation-derived measure of the aging rate. An 

individual’s age can be estimated from DNA methylation levels at 353 CpG sites via a predictive 

linear model developed by (Horvath 2013). The difference between an individual’s methylation-

estimated age and chronological age provides a measure called age acceleration that describes 

that individual’s rate of aging (i.e. fast or slow). Here we estimate the heritability of age 

acceleration using familial DNA methylation data.  A significant non-zero heritability of age 

acceleration will indicate that changes in DNA methylation across a few hundred CpG sites are 

consistent with evolutionary models of aging. This will allow us to see if the patterns observed at 

the level of single CpG sites extend to a larger scale across the genome.  
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MATERIALS AND METHODS 

Overview of hypotheses to be tested 

We tested for increasing or decreasing heritability of methylation with age using a 

variance components model. At each CpG site we tested three specific hypotheses:  

 

1) Age is a predictor of methylation level;  

2) Methylation level has a heritable component;  

3) The heritability of methylation has an age-dependent component.  

 

Testing the first and second hypotheses allowed us to define a set of age-differentially-

methylated CpG sites and a set of CpG sites with heritable methylation levels for further 

investigation. To test the third hypothesis, we restricted the analyses to sites that are age-

differentially-methylated and have heritable methylation levels. Testing this hypothesis allows us 

to directly test for increasing or decreasing heritability of methylation with age, and to determine 

which CpG sites have age-associated methylation changes that are consistent with MA or DS. 

 

Familial DNA methylation data 

DNA methylation was measured in a sample of 610 individuals from 176 different 

families recruited for the Brisbane Systems Genetics Study (BSGS) (Powell et al. 2012). These 

families are all of European descent, and are comprised of adolescent MZ and DZ twin pairs, 

their siblings, and their parents. The age distribution for these individuals ranges from 10 years 

to 75 years, and has a mean age of 21 years (Figure S1). 
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Measuring DNA methylation 

DNA methylation was measured from blood samples using the Illumina Infinium 

HumanMethylation450 Beadchip (Bibikova et al. 2011). This array interrogates a total of 

482,421 CpG sites and 3,156 non-CpG sites across the genome using a bisulfite DNA treatment 

and two sets of site-specific probes binding associated methylated and unmethylated sequences 

(Triche et al. 2013). The proportion of DNA strands methylated at any particular site was 

estimated as the measured intensity of fluorescent signal from methylated probes relative to the 

intensity of fluorescent signal from both methylated and unmethylated probes. This ratio, with 

the addition of a stabilizing constant of 100 to the denominator, is referred to as a !-value.  Each 

individual sample was measured on a randomly assigned chip and at randomly assigned position 

within that chip to avoid potential confounding due to family membership (McRae et al. 2014).  

 

DNA methylation data quality control  

The measured methylation state of a CpG site can be directly affected by the underlying 

DNA sequence. If there is a genetic variant at the cytosine or guanine of a CpG site, for instance, 

the site cannot be methylated. Furthermore, a genetic variant in the sequence probed by the array 

can impact array binding affinity and bias the measured level of methylation. To minimize the 

impact of these direct genetic effects on our estimates of DNA methylation heritability, we 

removed CpG sites with SNPs present on the 50-base CpG site probe before performing 

heritability analyses. Sites with underlying SNPs were identified based on data from the 1000 

Genomes Project phase I release, as annotated by (Barfield et al. 2014). We further cleaned the 

data by removing probes annotated as binding to multiple chromosomes, probes without CpG 

sites, and probes with more than 11 individuals with missing data or more than 5 individuals 
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with detection P-values > 0.001 (McRae et al. 2014). After cleaning, a total of 373,006 probes 

remained for testing. A chart illustrating the data cleaning process is provided in the 

supplementary information (Figure S4). 

Each probe was residualized using a generalized linear model with a logistic link function 

similar to that used by (McRae et al. 2014).  The covariates in our model included chip, position 

on chip, and estimated proportions of the following cell types: CD8-positive T cells; CD4-

positive T cells; natural killer cells; B-cells; monocytes; and granulocytes.  The cell type 

proportions were estimated from the methylation array data using a method proposed by 

(Houseman et al. 2012) and reference data on the methylation signatures of purified cell types 

(Reinius et al. 2012).  We included these estimated cell type proportions as covariates in the 

model to avoid potential confounding due to the heterogeneous and changing cellular 

composition of whole blood. After residualizing each probe we removed outlying measurements 

more than five interquartile ranges for the nearest quartile. (McRae et al. 2014) found these 

outlying data points, likely caused by rare genetic variants or measurement errors, to have a large 

influence on heritability estimates. After removing outliers, the residuals from the above model 

were used as the phenotype for all heritability analyses.  

 

Modeling changes in the heritability of DNA methylation with age 

To identify CpG sites consistent with each evolutionary theory we fit the familial BSGS 

data to a model of age and methylation that takes into account family structure and other relevant 

covariates.  

For each CpG site we modeled methylation as a function of age and sex 
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"!" = $ + !#$%& + !&%''()* + +!" 																											(1)																							  

 

where "!" represents the !-value for individual i at age t, residualized on chip, position on chip, 

and cell type proportions, and +!" is an error term representing genetic and environmental 

variation.  The covariance matrix for +!" 	was parameterized similar to Diego et al. (Diego et al. 

2003) with +!" and +(&  representing the error terms for relatives i and j at ages t and s. 

 

0123+!" , +(&5 = 6
7$)(&) +	7%)(&)				8 = 9
2;!(7$(&)7$(<)				8 ≠ 9	

												
7$)(&) = e*?+,?"

7%)(&) = e*@+,@"
					(2)						 

 

In this model,	7$)(&) is the genetic variance at age t, 7%)(&) is the environmental variance 

at age t, and ;!( is the kinship coefficient between individuals i and j. The variance in this model 

is partitioned such that baseline heritability is reflected by A$, while the dependence of 

heritability on age is reflected by B$ . Similarly, the baseline proportion of phenotypic variance 

due to environmental variance is reflected by A%, while the dependence of that proportion on age 

is reflected by B% .  

For each CpG site we implemented this model in SOLAR (Almasy and Blangero 1998), a 

statistical genetics software package,  and tested our specific hypotheses by adding restrictions to 

the general model described above. Each hypothesis was tested using a likelihood ratio test 

(LRT), comparing the fit of a full model to the fit of a restricted model. At each CpG site we 

tested three specific hypotheses: 1) age is a predictor of methylation level; 2) methylation has a 

heritable component; 3) the heritability of methylation has an age-dependent component.  
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To test the first two hypotheses, we did not partition the genetic and environmental 

variance into baseline and age-dependent terms as shown in the general model above. The full 

and restricted models used to test these hypotheses included 7$) and 7%) with no age-dependence 

(i.e.,	B$  and B%  set to 0), while the full and restricted models used to test the third hypothesis 

included 7$)(&) and 7%)(&) with age-dependence as shown in equation (2). To test Hypothesis 1 

we tested the restriction that !#$%  = 0. Sites where !#$%  was found to be significantly non-zero 

after multiple test correction (FDR<0.05) were defined as age-differentially-methylated. To test 

Hypothesis 2 we tested the restriction that 7$)= 0. Sites where 7$) was found to be significantly 

non-zero after multiple test correction (FDR<0.05) were designated as heritable.  

We limited tests of Hypothesis 3 to CpG sites that are both age-differentially-methylated 

and moderately heritable, with h2 > 0.2. To test Hypothesis 3 we fit two separate restricted 

models, with B$  and B%  independently restricted to zero. These two restrictions allowed us to test 

for age-dependent components in both genetic and environmental variance. This is necessary as 

heritability depends on both genetic and environmental variance, and age-dependent changes in 

either genetic or environmental variance will cause age-dependent changes in heritability.  

We performed simulations to estimate the type I error rate and our power to detect age-

dependent changes in genetic and environmental variance (for more information see 

Supplementary Methods). Our results indicate that our modeling approach has appropriate levels 

of type I error and that our power to detect age-dependent changes is approximately equivalent 

for the genetic and environmental variances (that is, power is similar for tests of the restrictions 

B$= 0 and B%  = 0).  
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Estimating the heritability of rate of aging using DNA methylation 

We used a linear model developed and tested by Horvath to predict age using DNA 

methylation data from 353 CpG sites (Horvath 2013). The sites included in the model were 

selected using elastic net regression, and have been shown to accurately predict age across many 

cell and tissue types. We estimated methylation-derived ages for all 610 BSGS individuals with 

Horvath’s model and unresidualized !-values. After estimating methylation age, we calculated 

age acceleration, defined as the difference between methylation age and chronological age. 

Positive values of age acceleration suggest an increased rate of aging (i.e. fast aging), while 

negative values suggest a decreased rate of aging (i.e. slow aging). 

To estimate the heritability of rate of aging, we modified the model shown in equations 

(1) and (2) to include age acceleration as the outcome. As described earlier, we tested for a 

heritable component by restricting 7$) to zero and comparing the full and restricted models with a 

LRT. The model was implemented in SOLAR (Almasy and Blangero 1998). 

 

Annotation for genomic features 

All CpG sites were annotated with respect to the following genomic features: CpG 

islands, CpG shores, CpG shelves, strong promoters, weak promoters, poised promoters, strong 

enhancers, weak enhancers, insulators, transcription factor binding sites, and CTCF binding sites.  

For this annotation we used three data sets downloaded from the UCSC table browser for 

GRCh37/hg19 (ENCODE Project Consortium, 2012) (Karolchik et al. 2004): 1) CpG Islands 

(Gardiner-Garden and Frommer 1987); 2) Broad ChromHMM for GM12878 (Ernst and Kellis 

2010); 3) Transcription factor ChIP V3 (transcription factor binding sites) (Consortium 2012). 

Each CpG site was annotated based on overlaps between the CpG location and the intervals of 
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the genomic features provided by the UCSC data sets. We defined CpG island shores to be 1.5kb 

out from CpG islands, and CpG island shelves to be 1.5kb out from shores. For all other genomic 

features we adopted corresponding ChromHMM category definitions presented in (Ernst et al. 

2011). 

 

Replication data 

 Familial DNA methylation data from the Genetics of Lipid Lowering Drugs and Diet 

Network (GOLDN) study, previously described by (Corella et al. 2007; Irvin et al. 2010; Wagner 

et al. 2016), were used to replicate the results of our analyses. Families with at least two siblings 

were recruited from participants in the National Heart, Lung, and Blood Institute Family Heart 

Study in Minneapolis, MN and Salt Lake City, UT (Hidalgo et al. 2014). DNA methylation data 

were available for 1050 individuals from 182 families.  The age distribution for these individuals 

ranges from 18 years to 88 years, and has a mean of 49 years (Figure S5). 

DNA methylation was measured from isolated CD4+ T cells using the Illumina Infinium 

HumanMethylation450 Beadchip (Bibikova et al. 2011). This chip was also used to measure 

DNA methylation from the BSGS blood samples, and is described in more detail in the 

‘Measuring DNA methylation’ section above. !-values  with a detection P-value > 0.01, samples 

with more than 1.5% of probes missing, probes for which more than 10% of the samples had 

inadequate intensity, and probes mapped to more than one location or a location not matching the 

annotation file were removed prior to analysis (Hidalgo et al. 2014).  After these quality control 

steps, 991 individuals and 461,281 CpG sites remained. As these data were originally prepared 

for another study, the quality control criteria and specific sites considered suitable for analysis 
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slightly differ between the GOLDN data and our original BSGS data. Only GOLDN data that 

passed the described quality control criteria were available for our replication analyses.  

 

Expression data quality control and annotation 

Gene expression levels were measured from the BSGS blood samples using Illumina 

HT12-v4.0 bead arrays (Powell et al. 2012; Powell et al. 2013).  These arrays contain 47K 

probes designed to cover all well-characterized genes, gene candidates, and splice variants 

(Illumina 2011). Expression was measured for all 610 individuals for whom DNA methylation 

levels were also measured. Each individual sample was measured on a randomly assigned chip 

and at a randomly assigned position to avoid any potential confounding.  

Before beginning our analyses, we removed probes where less than 10% of the samples 

had a detection P-value < 0.05, as well as probes with overlapping SNPs and probes of low 

quality (i.e. probes unlikely to match the target transcript due to sequence mismatches or 

sequence matches at multiple locations), as annotated by (Barbosa-Morais et al. 2010). After 

cleaning, the expression values of the remaining 13,222 probes were log transformed for 

analysis. 

 Gene information was annotated to each expression probe using Refseq transcript exon 

intervals downloaded from the UCSC table browser for hg19. For exons of the same gene with 

overlapping intervals, the union of the intervals was taken for consistency. Refseq gene 

information was annotated to an expression probe using the R Bioconductor package 

GenomicRanges (Lawrence et al. 2013), if there was more than a 25bp overlap between the 

probe and exon interval. 
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Identifying changes in expression associated with age-related changes in DNA methylation 

To test for associations between changes in age-related methylation changes and changes 

in expression we modified the model shown in equations (1) and (2) to include log transformed 

expression values as the outcome and methylation as a covariate. For each expression probe 

 

C(D!") = A + !#$%& + !&%''()* + !-./E"!( 														(3) 

 

where D!" describes the expression level for individual i at age t, and "!( describes the 

residualized methylation level for individual i at CpG site j. We implemented the model in 

SOLAR (Almasy and Blangero 1998), and tested if methylation level was a predictor of 

expression level by restricting !-./Eto zero for each CpG site j and comparing the full and 

restricted models with a LRT. !-./E  describes the change in gene expression associated with 

CpG site j becoming fully methylated from a fully unmethylated state. 

 

Data Availability 

Data from BSGS are archived at the Gene Expression Omnibus (GEO; 

https://www.ncbi.nlm.nih.gov/geo/), accession numbers GSE56105 (DNA methylation) and 

GSE53195 (gene expression).  DNA methylation data from GOLDN are archived on the 

database of genotypes and phenotypes (dbGaP; https://www.ncbi.nlm.nih.gov/gap), accession 

number phs000741.v1.p1. 
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RESULTS AND DISCUSSION 

Age-differentially-methylated CpG sites 

In total, 91,261 CpG sites (24% of CpG sites tested) had significant association 

with age after multiple test correction (FDR<0.05). Of these sites, 47% (43,029 CpG sites) 

had significant increases in methylation with age, while 53% (48,232 CpG sites) had 

significant decreases in methylation with age (Figure 1). The large number of CpG sites 

showing age-differential-methylation is consistent with results observed in other 

epigenome-wide association studies for age. For example, we tested 600 CpG sites 

previously shown to have significant association with age across four independent data sets 

(Xu and Taylor 2014).  Of these 600 CpG sites, 582 (97%) were age-differentially-

methylated in a concordant direction in our data after multiple test correction. Additionally, 

we tested 290 of the 353 CpG sites that were included in the age prediction model of 

(Horvath 2013).  Of these 290, 144 (~50%) of these sites were significantly age-

differentially-methylated after multiple test correction.  

 

Heritability of DNA methylation 

 We estimated the average heritability of DNA methylation across all CpG sites to 

be 0.177 (Figure 2). A heritability of 0 was estimated at 20% of sites (72,927 sites), and 

significant non-zero heritability was estimated at 38% of sites after multiple test correction 

(142,169 sites, FDR<0.05). After restricting to age-differentially-methylated CpG sites, the 

average estimated heritability of methylation increased to 0.272 (Figure 2). These 

heritability estimates are consistent with the results previously reported by (McRae et al. 

2014). 
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We performed Fisher’s exact tests to test if age-differentially-methylated sites are 

more likely than other sites to have heritable methylation levels. Specifically, we examined 

the overlap between sets of 1) age-differentially-methylated CpG sites and 2) CpG sites 

with heritable methylation, and tested whether this overlap is greater than expected by 

chance. These sets were defined after multiple test correction at varying significance levels, 

to ensure that results do not depend on a specific A-level (Figure 3). We observed 

significant overlap between the sets of age-differentially-methylated sites and sites with 

heritable methylation at all significance levels, indicating that age-differentially-methylated 

CpG sites are more likely to have heritable methylation than other sites. This observed 

enrichment indicates a potential genetic basis for age-related DNA methylation changes.   

Our models adjusted for both age and family structure simultaneously, so the 

overlap between age-differentially-methylated and heritable sites is unlikely to be due to 

confounding between age and family structure. Furthermore, to ensure that this overlap did 

not reflect differences in statistical power among CpG sites with high vs. low variability, 

we compared the variance of methylation across sites.  We observed similar distributions 

for the variance of methylation in the following sets of CpG sites: age-differentially-

methylated sites with heritable methylation vs. age-differentially-methylated sites with 

non-heritable methylation; and non-age-differentially-methylated sites with heritable 

methylation vs. non-age-differentially-methylated sites with non-heritable methylation 

(Figure S6).  Importantly, sites that were both age-differentially-methylated and heritable 

did not appear to have increased variability in methylation. This shows that the overlap 

between age-differentially-methylated sites and sites with heritable methylation is not 

simply driven by differences in phenotypic variation.  
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Changes in the heritability of DNA methylation with age  

Under our model, described by equation (2), heritability can be defined as 

 

ℎ) =
0?H

0?H+0@H
= %I?JK?L

%I?JK?L+%I@JK@L
      (5) 

 

where t represents age. Given this simplifying definition, we consider sites to be consistent with 

MA if: 1) γ1 is positive; and 2)	γ1 is greater than γ2. At these sites the increases in genetic 

variance with age are greater than the changes in environmental variance, which is suggestive of 

increasing heritability of DNA methylation with age.  We consider sites to be consistent with DS 

if: 1)	γ2 is positive; and 2) γ2 is greater than γ1. At these sites the increases in environmental 

variance with age are greater than the changes in genetic variance, which is suggestive of 

decreasing heritability of DNA methylation with age. For simplicity and brevity, we will call 

sites found to be consistent with MA or DS based on the above criteria MA-consistent or DS-

consistent respectively.  

Our confidence in the estimated direction of heritability change with age for each site, 

and the resulting theory classification, increases with the significance of the γ1 and γ2 terms.  We 

have increased confidence in the classification of a site as consistent with MA when that site has 

a significantly non-zero and positive γ1 (FDR<0.05). At these sites there are significant increases 

in the genetic variation underlying the variation in DNA methylation with age. Similarly, we 

have increased confidence in the classification of a site as consistent with DS when that site has a 

significantly non-zero and positive γ2 (FDR<0.05). At these sites there are significant increases 

in the environmental variation underlying the variation in DNA methylation with age. We are 

most confident in the classification of sites where both γ1 and γ2 are significant (FDR<0.05), as 
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in these cases we are confident in the direction of change for both the genetic and environmental 

variation underlying the variation in DNA methylation at those sites.  

Because of this, we have divided the sites we found to be consistent with MA and DS 

into three different groups on the basis of the significance of the γ1 and γ2 terms (Table 1). 

Group 1 contains all sites consistent with MA or DS, irrespective of significance. In total, 13,467 

sites were found to be consistent with MA, while 30,749 sites were found to be consistent with 

DS. Group 2 contains sites that are consistent with MA and have a significant γ1 term 

(FDR<0.05), and sites that are consistent with DS and have a significant γ2 term (FDR<0.05).  A 

total of 102 sites found to be consistent with MA have significant γ1 terms, while a total of 2,266 

sites found to be consistent with DS have significant γ2 terms.  Group 3 contains sites that are 

consistent with MA or DS and have significant γ1 and  γ2 terms (FDR<0.05). A total of 70 sites 

found to be consistent with MA have significant γ1 and  γ2 terms, while a total of 203 sites found 

to be consistent with DS have significant γ1 and  γ2 terms. 

Figure 4 compares the significance and sign of γ1 and γ2 at each site, and shows the 

separation of sites into different groups. In this figure, the dotted lines represent the genome-

wide significance levels for γ1 and γ2. These significance levels, along with the axes, divide the 

graph into sixteen sections that can be used to visualize the categorization of sites. For instance, 

sites with significant positive γ2 values and significant negative γ1 values fall into the upper left 

section. All these sites are consistent with DS and included in the counts for groups 1, 2, and 3.  

Counts for each section have been superimposed on the graph, and each section has been color-

coded to show theory classification and group inclusion. Red denotes sections with sites that are 

consistent with MA, while blue denotes sections with sites that are consistent with DS. Group 

membership based on significance is designated by color shade and numbered brackets. The 
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dashed line represents the γ1= γ2 identity line, and serves to separate counts in sections where 

there are sites that are consistent with both MA and DS. 

 

Comparison of sites consistent with MA and DS 

 To gain a better understanding of what distinguishes MA and DS sites, we analyzed 

the locations, genomic features, and gene ontology associated with the CpG sites we found 

to be consistent with each theory. 

Location: The locations of CpG sites found to be consistent with MA do not 

notably differ from the locations of CpG sites found to be consistent with DS. This was 

observed for all three significance groups, as shown in Figure 5. 

Enrichment for age-methylation or age-demethylation: Fisher’s exact tests were 

performed on the sets of sites found to be consistent with MA and DS to test if these sites 

are more likely than others to be age-methylated or age-demethylated. To increase the 

power of these tests, we compared all sites found to be consistent with MA or DS, 

irrespective of significance (Group 1), to the set of all sites tested for age-differential 

methylation. We defined age-methylated sites as those with increases in DNA methylation 

with age (!#$%  > 0), and age-demethylated sites as those with decreases in DNA 

methylation with age (!#$%  < 0). 

 We found MA sites to have significant depletion for age-methylation (OR=0.86, 

P=1.03x10-16), which is equivalent to significant enrichment for age-demethylation. In 

contrast, we found DS sites to have significant enrichment for age-methylation (OR=1.16, 

P=7.64x10-34) (Figure 6a). This means that DS-consistent sites are more likely than other 
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sites to be age-methylated, while MA-consistent sites are more likely to be age-

demethylated. 

Enrichment for genomic features: To better understand the genomic context of 

MA and DS sites, Fisher’s exact tests were performed to test for enrichment of the 

following genomic features: CpG islands, CpG island shelves, CpG island shores, strong 

promoters, weak promoters, poised promoters, strong enhancers, weak enhancers, and 

insulators. We compared all sites found to be consistent with MA or DS irrespective of 

significance (Group 1), to the set of all sites tested for changes in heritability of DNA 

methylaiton with age. Previous work has shown age-methylated sites to be more likely to 

be located within CpG islands, and age-demethylated sites to be more likely to be located 

outside CpG islands (Christensen et al. 2009). We found MA sites to be significantly 

depleted in CpG islands (OR=0.70, P=1.43x10-51), which is consistent with previous work 

given our finding that MA sites are enriched for age-demethylation.  

The enrichment pattern of MA and DS sites that was observed for CpG islands 

extended to CpG shores, defined to be 1.5kb out from CpG islands. We found DS sites to 

be significantly enriched in CpG shores (OR=1.33, P=8.81x10-45), and MA sites to be 

significantly depleted (OR=0.83, P=6.98x10-17; Figure 6b). This pattern, however, did not 

extend to CpG shelves, defined to be 1.5kb out from CpG shores. We found no notable 

difference between MA and DS sites in enrichment for shelves; both sets of sites were 

enriched in shelves. 

Weak promoters and weak enhancers were found to have similar enrichment 

patterns for MA and DS sites. We found MA sites to be significantly depleted in weak 
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promoters and weak enhancers (OR=0.81, P=2.47x10-8 ; OR=0.66, P=3.75x10-18), and DS 

sites to be slightly enriched (OR=1.13, P=5.74 x10-14; OR=1.09, P=0.04). 

The one genomic feature we found to be significantly enriched in MA sites 

(OR=1.53, P=1.21x10-12) and significantly depleted in DS sites (OR=0.79, P=3.54x10-4) 

was insulators (Figure 6b).  Previous work has suggested that the DNA methylation status 

of an insulator affects the binding of the transcriptional repressor CTCF, which may 

preferentially bind to unmethylated sequences (Kang et al. 2015). We found MA sites to be 

more likely to be located in insulators and to lose methylation with age. These results, 

combined with the findings of previously published work, suggest that MA sites may 

directly influence changes in transcription with age. 

Gene Ontology: Gene ontology analyses were performed to gain a better understanding 

of the specific genes or type of genes that are associated with DNA methylation changes at the 

CpG sites consistent with MA and DS. We used the GOstats package in R (Falcon and 

Gentleman 2007) to assess whether any terms describing biological processes, molecular 

functions, or cellular components associate with the sets of genes closest to the CpG sites 

consistent with MA or DS. The gene closest to each CpG site was defined based on distance to 

transcription start site, as in (Barwick et al. 2016). We analyzed all sites found to be consistent 

with MA or DS, irrespective of significance (Group 1). Table S2 shows the top five significant 

terms after multiple test correction for the MA and DS sets for each ontology category 

(FDR<0.05), as well as the total number of significant terms associated with each set. Overall, 

the genes closest to DS sites are enriched for fewer molecular functions (3 vs. 2), cellular 

components (2 vs. 0), and biological processes (19 vs. 5) than the genes closest to MA sites. This 

is evidenced by fewer significant terms and higher P-values associated with the genes closest to 
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DS sites (Table S2).  A lack of enrichment for functionality is consistent with stochastic age-

associated DNA methylation changes and the stochastic process of aging that is suggested by 

DS. 

 

Replication of results 

To assess the generality of our results we tested for changes in the heritability of DNA 

methylation with age in an independent data set from the GOLDN study. Our analysis was 

restricted to sites found to be consistent with MA or DS in the BSGS data set at the Group 2 

level of significance (significant γ1 for MA sites, significant γ2 for DS sites). After quality 

control, data from the GOLDN study were available for 101 of the 102 MA sites, and 2,164 of 

the 2,266 DS sites.  

 In the GOLDN data, 958 CpG sites were found to be consistent with MA and 1,266 CpG 

sites were found to be consistent with DS, irrespective of significance (Group 1). Of these sites, 

56 sites were found to be consistent with MA and 1,221 sites were found to be consistent with 

DS in both the GOLDN and BSGS data sets.  This relates to a 55% replication for MA sites and 

56% replication for DS sites. 

 When we restricted to sites with significant γ1 or  γ2 values (Group 2), 15 CpG sites were 

found to be consistent with MA and 247 sites were found to be consistent with DS. Of these 

sites, four sites were found to be consistent with MA and 229 sites were found to be consistent 

with DS in both the GOLDN and BSGS data sets.  

 Across significance groups (i.e. Groups 1 and 2), more sites were found to be consistent 

with DS than with MA in both the GOLDN and BSGS data sets. Although this general trend 

replicated well, there was little replication at the CpG site level. The low replication rates we 
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observed are likely due to differences in data composition. BSGS measured methylation from 

whole blood, while the GOLDN study measured methylation from isolated CD4+ T cells. To 

avoid potential confounding due to the heterogeneous cellular composition of whole blood, the 

BSGS methylation b-values were residualized on cell type proportions before running analyses. 

Since the methylation of a single cell type was measured in the GOLDN study, raw b-values 

were used in analyses.   Additionally, the BSGS families are comprised of adolescent twins, their 

siblings, and their parents, while the GOLDN study families are comprised of adult siblings. This 

results in a bimodal age distribution with a mean age of 21 for the BSGS subjects (Figure S1), 

and a unimodal age distribution with a mean age of 49 for the GOLDN subjects (Figure S5). 

Replicated MA sites with significant N3 and expression analysis: To help deepen our 

understanding of what characterizes CpG sites with MA-consistent age-associated DNA 

methylation changes, we investigated the attributes of sites found to be consistent with MA in 

both the BSGS and GOLDN data sets. Only MA-consistent sites were tested, as we expect the 

DNA methylation changes at DS-consistent sites to be stochastic and to associate with a random 

set of genes. We limited our investigation to the four MA-consistent sites with significant γ1 

values in both data sets, as we are the most confident in the theory categorization at these sites. 

Table 2 lists the observed direction of change in methylation with age, and the annotated 

location, nearest gene, and genomic features and states of these four sites. Notably, half of the 

replicated MA sites are located within a transcription factor binding site (TFBS). This indicates 

that MA sites may directly influence changes in transcription with age. 

MA proposes aging to be caused by deleterious genes with age-specific effects confined 

to only late in life.  We suggest that the effects of such genes may be influenced by age-

associated changes in DNA methylation, and that these changes may be accompanied by changes 
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in gene expression.  We tested for associations between gene expression and the methylation 

levels at MA-consistent sites. All 13,222 expression probes passing quality control were tested 

against the four replicated MA sites with significant γ1 values. After multiple test correction, 11 

genes showed a significant change in expression that was associated with a change in 

methylation level at one of three CpG sites (FDR<0.05; Table S3). For ten of these associations, 

expression was found to decrease with increasing methylation, indicating that methylation at 

these CpG sites may be interfering with transcription. Interestingly, all 11 of the genes with 

significant methylation-associated expression changes are located on a different chromosome 

from the CpG site. This suggests that the methylation of some MA-consistent CpG sites may 

interfere with the transcription of distal genes.  Separate chromosomes can physically interact in 

the 3D space of the nucleus, and the transcription of some genes have been shown to be 

regulated by elements (e.g. enhancers) located on separate chromosomes though such 

interactions (Miele and Dekker 2008). The exact role of methylation in long-range expression 

control has not yet been well characterized, but it is possible that the associations we observe 

result from a physical interruption of interchromosomal interactions by methylation. 

Alternatively, the associations we observe could be indirect, such that methylation interferes with 

the transcription of a local gene and only influences the expression of distal genes indirectly, 

through a common pathway.  

 

Heritability of rate of aging 

We observed age acceleration, which describes an individual’s rate of aging, to have a 

significant non-zero estimated heritability of 0.63. This result is consistent with both MA and DS 

evolutionary models of aging. Horvath found the heritability of age acceleration in twins to be 
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100% for newborns and 39% for adults, suggesting that the importance of environmental factors 

increases with age (Horvath 2013). Given that the median age of the subjects in the BSGS data 

set is 14, our result is in line with these findings. (Marioni et al. 2015) estimated the heritability 

of age acceleration to be 0.43 in the BSGS data after standardizing the methylation-age estimates 

to correct for differences in the age-prediction ability between adolescents and adults.  The 

disparity between these results highlights the changing predictive ability of the Horvath model 

based on development phase, i.e. childhood vs. adulthood.  

A study by (Gentilini et al. 2013) similarly investigated the relationship between 

methylation and an individual’s rate of aging by comparing the methylation patterns of the 

offspring of centenarians and the offspring of non-long-lived individuals. They found global 

methylation levels to decrease with age across all individuals, but found centenarians and their 

offspring to have significantly less global methylation loss than the offspring of non-long-lived 

individuals. This result suggests that a genetic component underlies the preservation of 

methylation patterns and that the rate of biological aging is heritable. This study also identified 

217 CpGs sites that are differentially methylated in the offspring of centenarians compared to the 

offspring of non-long-lived individuals. We compared these 217 CpG sites to the sites we found 

to be consistent with MA or DS irrespective of significance (Group 1); we found 11 of these sites 

to be MA-consistent and 38 of these sites to be DS-consistent. This suggests that heritability in 

the rate of aging could be the result of both deleterious genes with age-specific effects, as 

suggested by MA, and genes regulating the accuracy of somatic maintenance and repair, as 

suggested by DS.     

Using the familial BSGS data, we were able to test for the existence of a heritable rate of 

aging but unable to test for age-related changes in this rate. Methylation changes resulting from 
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drift should occur at a constant rate throughout an individual’s life, while targeted methylation 

changes should occur at specific times and show age-dependent rates of change. This can be 

examined in the future using longitudinal DNA methylation data and can potentially be used to 

investigate if the epigenetic clock sites that have underlying changes are targeted and MA-

consistent or stochastic and DS-consistent.  

 

CONCLUSIONS 

We observed age-dependent changes in the heritability of methylation at age-

differentially methylated CpG sites consistent with both MA and DS.  Both theories play a role 

in explaining human aging and the aging-related changes we observe. The number of sites found 

to have decreasing heritability of methylation that is consistent with DS was roughly three times 

the number of sites found to have increasing heritability of methylation that is consistent with 

MA. Decreases in the heritability of methylation with age, where the DNA methylation levels of 

relatives diverge with age, have previously been reported and described as epigenetic drift. DS 

and epigenetic drift are consistent with each other, and suggest that age-associated DNA 

methylation changes are stochastic and may be caused by both internal and external factors. 

Increases in the heritability of methylation with age, where the DNA methylation levels of 

relatives converge with age, have not previously been reported. The existence of such sites 

indicates that not all age-associated DNA methylation changes are stochastic and caused by 

epigenetic drift. Age-related methylation changes at these sites may instead be targeted changes 

that mediate the effects of deleterious age-specific mutations, as suggested by MA.  Enrichment 

and expression analyses suggest that methylation changes at MA sites may do this by influencing 

transcription. Further work is needed to connect methylation changes at the CpG sites found to 
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be consistent with MA to specific genes or gene networks and to elucidate the role that 

epigenetic drift plays in the aging process.  

Additionally, we found an individual’s rate of aging to be heritable using a methylation-

derived measure of biological age, which considers the DNA methylation at hundreds of CpG 

sites across the genome. A heritable rate of aging is consistent with both MA and DS. This result 

indicates a general agreement between the patterns observed at the small single-site scale and the 

larger many-site scale. 

To validate our results, we repeated our analyses in an independent data set. The number 

of sites found to have decreasing heritability of methylation that is consistent with DS was 

greater than the number of sites found to have increasing heritability of methylation that is 

consistent with MA. Although this general trend of DS-consistent sites outnumbering MA-

consistent sites replicated between studies, little replication was seen between the results at the 

CpG site level. This was likely due to differences in data composition between our original and 

replication data sets. The original BSGS data we analyzed was from families with adolescent 

twins (age range:10-75; mean age: 21), while the replication GOLDN study data was from 

families with adult siblings (age range: 18-88 years; mean age: 49).  

The age distributions of our original and replication data sets are the main limitations of 

our study. However, loci with significant age-associated DNA methylation changes have been 

shown to have significant overlap in pediatric and adult populations (Alisch et al. 2012), 

indicating that our age-differential methylation results should not be specific to the predominant 

age class of the data set analyzed. Nevertheless, having an age distribution with an abundance of 

individuals of young ages may have biased our theory classification results against the MA 

model. Changes associated with the deleterious age-specific genes suggested by MA occur only 
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late in life, and may be missed in a data set that has predominantly adolescent individuals. 

Additionally, since the DS model works throughout an individual’s entire life, associated 

changes should be detectable even at young ages. This may inflate our estimate of the relative 

contribution of DS in explaining the aging-related methylation changes we observe.  In future 

work, we hope to identify additional sources of family-based data to test our hypotheses against 

more uniform distributions and wider age ranges. Further work using data sets with more ideal 

compositions will help us to better understand and differentiate between biological aging- and 

development-related DNA methylation changes.  

In this paper, we have developed and implemented a novel approach to testing the MA 

and DS evolutionary models of aging using DNA methylation data. The availability of genome-

wide DNA methylation data has allowed us to investigate age-related changes at sites across the 

genome, and to better understand their connection to the MA and DS evolutionary models of 

aging. Our approach, however, restricts our focus and results to only CpG sites with heritable 

DNA methylation levels. It is possible that age-related methylation changes at non-heritable CpG 

sites are also consistent with the MA and DS evolutionary models, and that the distributions of 

MA- and DS-consistent changes at these sites differs from those at sites with heritable 

methylation levels. It should also be noted that DNA methylation data differs in its suitability for 

testing MA and DS. DS specifically predicts epigenetic changes, such as DNA methylation 

changes, to be one of many types of somatic damages that occur throughout an individual’s life. 

MA, however, predicts only the existence of germline mutations, and does not predict any 

specific epigenetic effects. DNA methylation data, therefore, can only test the hypothesized 

epigenetic impact of genes that are directly predicted by MA.  
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Taken together, the results of this study suggest a role for both DS and MA in explaining 

patterns of epigenetic change with age.  We suggest that many of the methylation changes that 

we observe with age are acquired stochastically and equivalent to epigenetic drift, but not all. 

Some aging-related methylation changes may be targeted. That is, aging-related methylation 

changes are likely to be caused by more than one process, and not equivalent throughout the 

genome. Furthermore, we believe our work demonstrates the utility of DNA methylation data in 

evolutionary investigations of human aging.  We believe that the results of this study suggest 

DNA methylation data will be useful in future investigations of evolutionary theories of aging. 
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TABLES 
 

Table 1. Categorization of heritable CpG sites.  Counts of significant sites were determined after multiple test 

correction (FDR<0.05). 

 CONSISTENT WITH MA CONSISTENT WITH DS 
 Increasing ℎO with age Decreasing ℎO with age 
GROUP +	7P > 7Q 7P< +	7Q  

1  All consistent sites 13,467 30,749 

2  Significant 7P (if MA) or 7Q (if DS)  102 2,266 

3  Significant 7P & 7Q  70 203 

 

 

Table 2. Attributes and features of the replicated MA sites with significant 8R. 

CPG SITE LOCATION METHYLATION 
CHANGE WITH 

AGE 

NEAREST 
GENE 

GENOMIC FEATURES & 
STATES 

cg02914422 Chr 7: 32110145 Age-methylated PDE1C CpG Island 
TFBS 
Polycomb repressed 
CTCF binding site 

 

cg05691152 Chr 22: 38092978 Age-methylated TRIOBP TFBS 
Weak/poised enhancer 
CTCF binding site 

 

cg13672736 Chr 9: 135114066 Age-demethylated NTNG2 CpG shelf 
Weakly transcribed 

 

cg25038330 Chr 10: 463561 Age-demethylated DIP2C CpG shelf 
Hetrochromatin; low signal 
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FIGURES 

 

Figure 1. Manhattan plot of 9SRT P-values with sign of 9SRT estimate. Dashed lines represent genome-

wide significance (FDR<0.05). Each point represents one CpG site. CpG sites with significant increases in 

methylation with age are colored dark green, while CpG sites with significant decreases in methylation with 

age are colored light green. 
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Figure 2. Distribution of heritability estimates for DNA methylation levels at age-differentially-

methylated and non-age-differentially-methylated sites. The average estimated heritability of methylation 

across all sites is 0.177. The average estimated heritability of methylation at age-differentially-methylated 

CpG sites is 0.272. 
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Figure 3. Results of Fisher’s exact tests at varying significance levels. Sets of age-differentially-

methylated CpG sites and heritable CpG sites were defined after multiple test correction. The estimated 

enrichment odds ratio is shown in dark blue, with the 95% confidence interval shown in light blue. The 

dashed red line represents α = 0.05. 
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Figure 4. Scatterplot visualization of categorization of MA- and DS-consistent sites. The significance and sign 

of the estimated values of γU (x-axis) are plotted against the significance and sign of the estimated values of γV (y-

axis). Each point represents one CpG site. The dotted lines represent the genome wide significance levels for γU and 

γV, and divide the graph into sixteen sections used to visualize the categorization of sites. Counts are superimposed 

onto color-coded sections to show theory classification and group inclusion. Red indicates a section with MA-

consistent sites. Blue indicates a section with DS-consistent sites. Group membership based on significance is 

indicated by color shade and numbered brackets. The dashed line represents the γU= γV identity line, and serves to 

separate counts in sections where there are sites that are consistent with both MA and DS. 
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Figure 5. Manhattan plot of 8R and 8T P-values. Each point represents one CpG site consistent with either MA or 

DS. The dashed lines represent genome-wide significance (FDR<0.05). All CpG sites consistent with MA and 

belonging to significance groups 2 and 3 are in red. All CpG sites consistent with DS and belonging to significance 

groups 2 and 3 are in blue. 
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Figure 6. Histogram of enrichment in MA and DS sites. (a) Enrichment for age-methylation. MA sites are 

shown in red and DS sites are shown in blue. (b) Enrichment for genomic features. For each feature, MA sites 

are shown in red and DS sites are shown in blue. 
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SUPPLEMENTARY MATERIAL 
 

 

Figure S1. Age distribution of BSGS subjects with DNA methylation data.  

DNA methylation data was measured in 610 individuals from the Brisbane System Genetics Study. The ages of the 

individuals range from 10 to 75 years, with a mean age of 21 years. 

 

Type I Error Rate and Power 

To estimate the type I error rate and our power to detect age-dependent changes in genetic 

and environmental variance, we performed simulations under the null and alternative hypotheses. 

We first estimated type I error by simulating residualized !-values at 10,000 CpG sites under the 

null hypothesis, where the genetic and environmental variance are independent of age, or B$  and 

B%  are equal to zero. For each CpG site a residualized !-value, "!"WXY , was simulated for each 

individual i at age t  

 

"!"WXY = A + !#$%& + !&%''()* + Z! + C! 																([1) 



 82 

 

where Z! and C! are generated random variables representing genetic and environmental 

contributions respectively. The environmental contributions C! were generated from a normal 

distribution with mean zero and variance equal to the environmental variance estimated from the 

BSGS data. The genetic contributions Z! were generated from a multivariate normal distribution 

with mean zero and variance equal to 2;!(7$), where ;!( is the kinship coefficient matrix from 

the BSGS subjects and 7$) is the genetic variance estimated from the BSGS data. This 

formulation allows our generated genetic residuals to be correlated between relatives as in the 

original data. For each CpG site, the remaining coefficients in this model, A, !#$% , and	!&%', take 

on values estimated from the BSGS data using equation (1).   

At each CpG site, the generated vector "!"WXY  was used as the phenotype to estimate B$  and 

B%  via equation (2). At a significance level of A = 0.05, 5.94% of the CpG sites had a B$  

significantly different from 0, and 5.82% of CpG sites had a B%  significantly different from 0 

(Table S1). Figure S2 compares the distributions of B$  and B%  P-values, and shows nearly 

identical distributions at all reasonable levels of significance. These results suggest that our 

modeling approach has appropriate levels of type I error.  
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Figure S2. A quantile-quantile (Q-Q) plot for type I error simulations of 8R and 8T. This plot compares the 

distribution of 7P 	p-values to the distribution of 7Q 	p-values. Identical distributions will lie along the identity line, 

shown here as a dashed line. 

 

 To estimate power we simulated normalized !-values at 10,000 CpG sites under the 

alternative hypothesis that the genetic and environmental variances are age-dependent, and B$  

and B%  are non-zero. To generate these effects, we modified Z! and C! in equation (S1) to include 

age-dependent terms according to the model in equation (2). The scale of the age dependence for 

our simulations was set to the mean of the absolute values of B$  and B%  estimated from the BSGS 

data, such that it took the same value for simulation of both Gi and Ei. 

 The modified Z! and C! with age-dependent effects were used to generate new vectors of 

"!"WXY  as defined in equation (S1). As before, the generated vector "!"WXY  was used as the 
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phenotype to calculate B$  and B%  via equation (2) for each CpG site. At a significance level of A 

= 0.05, 44.9% of the CpG sites had a B$  that was significantly different from 0, and 51.2% of the 

CpG sites had a B%  that was significantly different from 0 (Table S1).  Figure S3 compares the 

distributions of B$  and B%  P-values, and shows nearly identical distributions at reasonable levels 

of significance. This confirms that we have approximately equivalent power to detect age-

dependent changes in the genetic and environmental variances with B$  and B% . 

 

 

 

 

Figure S3. A quantile-quantile (Q-Q) plot for power simulations of 8R and 8T. This plot compares the 

distribution of 7P 	p-values to the distribution of 7Q 	p-values. Identical distributions will lie along the identity line, 

shown here as a dashed line. 
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Table S1. Type I error rate and power for age-dependent changes in genetic and environmental variance.  

 TYPE I ERROR POWER 
 7P = 0	, 7Q = 0 7P ≠ 0, 	7Q ≠ 0 

Proportion of significant 7P 0.0594 0.4492 

Proportion of significant 7Q 0.0582 0.5119 

The age-dependence of genetic variance is reflected by 7P. 
The age-dependence of environmental variance is reflected by 7Q. 

 
 

 

Figure S4. Data cleaning process for BSGS DNA methylation data.  
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Figure S5. Age distribution of GOLDN subjects with DNA methylation data.  

DNA methylation data was measured in 1050 individuals from the GOLDN Study. The ages of the individuals range 

from 18 to 88 years, with a mean age of 49 years. 

 

 

Figure S6. Boxplots comparing the distribution of methylation variance at CpG sites categorized by aDM and 

heritability status.  
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Table S2. Gene Ontology Terms. Total counts and the significant terms for MA and DS after multiple test 

correction (FDR<0.05).  

 MA DS 
 COUNT COUNT 
ONTOLOGY TERM | ADJUSTED P-VALUE TERM | ADJUSTED P-VALUE 
MOLECULAR 
FUNCTION 

                    3  
Sequence-specific DNA 
binding 

5.88E-7 

Double-stranded DNA 
binding 

9.90E-4 

Transcriptional activator 
activity, RNA polymerase II 
core promoter proximal 
region sequence-specific 
binding 

9.98E-3 

 

                             2  
Sequence-specific 
DNA binding 

2.23E-8 

Double-stranded DNA 
binding 

2.39E-2 

  
  
  

 

CELLULAR 
COMPONENT 

                    2  
Integral component of plasma 
membrane 

2.07E-4 

Cell junction 1.80E-2 
 

                 0  
  
  

 

BIOLOGICAL 
PROCESSES 

                    19  
Positive regulation of 
nucleobase-containing 
compound metabolic process 

4.52E-5 

Cardiovascular system 
development 

4.52E-5 

Positive regulation of RNA 
biosynthetic process 

8.44E-5 

Sensory organ morphogenesis 2.04E-3 

Multicellular organism 
development 

2.04E-3 

Tissue development 3.24E-3 
 

Positive regulation of 
transcription from RNA 
polymerase II promoter 

3.57E-3 

Inner ear morphogenesis 1.13E-2 

Embryo development ending 
in birth or egg hatching 

1.13E-2 

Localization 1.22E-2 

Negative regulation of 
transcription from RNA 
polymerase II promoter 

1.56E-2 

Negative regulation of 
multicellular organismal 
process 

1.56E-2 

                   5  
Positive regulation of 
nucleobase-containing 
compound metabolic 
process  

9.07E-4 

Positive regulation of 
transcription from RNA 
polymerase II promoter 

9.07E-4 

Negative regulation of 
transcription from RNA 
polymerase II promoter  

9.07E-4 

Positive regulation of 
RNA biosynthetic 
process  

6.01E-3 

Pattern specification 
process 

6.01E-3 
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Embryonic forelimb 
morphogenesis  

1.64E-2 

Morphogenesis of a branching 
structure 

1.84E-2 

Positive regulation of neuron 
differentiation 

3.34E-2 

Regulation of cellular 
component movement 

4.37E-2 
 

ALL 24 7 
 
 
Table S3. Expression analysis of replicated MA sites with significant 8R.  Significant expression and 

methylation associations after multiple test correction (FDR < 0.05). 

CPG SITE 
LOCATION 

ASSOCIATED 
EXPRESSION 

PROBE 

DIRECTION OF 
ASSOCIATION P-VALUE GENE LOCATION OF 

TSS 

cg02914422 ILMN_1778788 Negative 1.03x10-5 AMOTL2 Chr 3: 134094259 
Chr 7: 32110145 ILMN_3272768 Negative 4.63x10-6 LINC00339 Chr 1: 22351683 

 ILMN_2397199 Negative 9.67x10-6 NDEL1 Chr 17: 8339169 

 ILMN_1786734 Negative 1.06x10-5 EIF5 Chr 14: 103800338  

cg05691152 ILMN_1684585 Negative 6.07x10-6 ACSL1 Chr 4: 185747268 
Chr 22: 38092978 ILMN_1694548 Negative 8,40x10-6 ANXA3 Chr 4: 79472741 

 ILMN_1715068 Negative 1.13x10-5 AQP9 Chr 15: 58430407 

 ILMN_1694243 Negative 1.53x10-6 LILRA6 Chr 19: 54746617 

 ILMN_1714643 Negative 4,87x10-6 MGAM Ch 7: 141695678 

 ILMN_2114720 Negative 2.90x10-6 SLPI Chr 20: 43880879 

cg13672736 ILMN_1678535 Positive 7.37x10-6 ESR1 Chr 6: 152011630  
Chr 9: 136114066      
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Chapter 4: Testing a stochastic model of epigenetic drift against longitudinal 
DNA methylation data                                 

 
To be submitted with the following authors: 
 
Chloe Robins, Lifang Hou , Crystal D Grant, Elizabeth M Kennedy, Andrea A Baccarelli, Eric 
A. Whitsel, David J Cutler, Karen N Conneely 
 
 

INTRODUCTION 
 

Epigenetic modifications are chemical additions to DNA that can regulate transcription 

and gene expression without changing DNA sequence. DNA methylation is an epigenetic 

modification that involves the addition of a methyl group to a single nucleotide base. In the 

human genome, this typically occurs at cytosine bases in a CpG dinucleotide sequence, referred 

to as CpG sites. Methylation at CpG sites in or near the promoter of a gene has been associated 

with gene expression silencing.  

DNA methylation is known to be dynamic throughout life. Changes in methylation level 

with age have been observed both globally (i.e. genome-wide) and at thousands of CpG sites 

across the genome [1-5]. These age-related changes include patterns of both increasing and 

decreasing methylation [6]. DNA methylation has also been observed to increase in variability 

with age in populations of both related and unrelated individuals. The global methylation levels 

of monozygotic twins, which are nearly indistinguishable at birth, have been shown to grow 

increasingly different as a function of age in a cohort study of older vs. younger twins [7, 8].  

Many of the observed age-related changes in methylation have been suggested to result 

from epigenetic drift, an accumulation of stochastic changes in DNA methylation with age [7, 9]. 

These stochastic methylation changes are thought to occur for many reasons, including both 

external environmental exposures and internal cellular events. At the cellular level, stochastic 

gains and losses of methyl groups may result from infidelity in methylation maintenance and 
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repair mechanisms. Methyl groups are added to DNA by a class of enzymes called DNA 

methyltransferases (DNMTs). The enzyme DNMT1 maintains methylation during replication by 

copying the methylation pattern of a template strand onto a newly synthesized strand, while the 

enzymes DNMT3A and DNMT3B add new de novo methylation irrespective of a previously 

established pattern [10-12]. Methyl groups can be lost from DNA through inexact copying and 

maintenance of methylation patterns by DNMT1, or removal by ten-eleven translocation (TET) 

enzymes and base excision repair processes.  

Random cellular and molecular damages, such as the methylation changes of epigenetic 

drift, are suggested to underlie aging phenotypes by the disposable soma evolutionary theory of 

aging. This theory suggests aging to be caused the accumulation of stochastic cellular and 

molecular damages throughout the lifetime of an individual due to imperfect maintenance and 

repair mechanisms. Under this theory, the age-associated methylation changes we observe are 

assumed to result from random failures of methylation maintenance and repair, and to be 

stochastic and equivalent to epigenetic drift. Both disposable soma and epigenetic drift predict 

increasing variability in DNA methylation with age at the individual and population levels. 

While epigenetic drift has been suggested to underlie many of the observed patterns of 

age-related methylation change, the stochasticity of these changes has never been directly tested. 

Are the DNA methylation changes we observe in aging truly stochastic and the result of 

epigenetic drift? Here, we test longitudinal DNA methylation data against a stochastic model of 

DNA methylation change with age. We define stochastic methylation changes as gains and 

losses of methyl groups that occur at random throughout the genome, and targeted methylation 

changes as gains and losses of methyl groups that occur at specific CpG sites, or within specific 

regions or genes. If all aging-related methylation changes are random and caused by stochastic 
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factors, we expect the rates of methyl group gain and loss to be similar at all sites across the 

genome, regardless of location or biological function. To test this hypothesis we developed a 

stochastic model of DNA methylation that can be used to estimate per-site rates of methylation 

change from longitudinal data. We investigate the stochasticity of aging-related methylation 

changes by testing the equivalence of estimated rates of methylation change at thousands of CpG 

sites across the genome. 

 

METHODS 

Overview of hypotheses to be tested 

Our null hypothesis is that the DNA methylation changes we observe with age are 

entirely stochastic. If this is true we expect: 1) rates of methyl group gain and loss to be 

consistent across the genome, and 2) the direction and magnitude of methylation change at any 

particular CpG site to depend only on the initial level of methylation (i.e. the methylation at time 

zero). Sites where most DNA strands are initially unmethylated can be expected to have more 

opportunities to randomly gain methylation over time, while sites where most DNA strands are 

initially methylated can be expected to have more opportunities to randomly lose methylation 

over time.  

We test our null hypothesis by testing the equivalence of the rate of methylation change 

at CpG sites across the genome. We estimate the rates of methyl group gain and loss from 

longitudinal methylation data using maximum likelihood estimation and a stochastic model of 

DNA methylation change and age. Rejection of the null hypothesis would suggest that age-

related DNA methylation changes are not purely stochastic and cannot be entirely explained by 

drift. 
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Modeling stochastic changes in DNA methylation with age 

To develop a stochastic model of DNA methylation change with age, we begin by 

considering the methylation state of a single CpG site on a single strand of DNA in discrete time. 

At any particular moment t, this CpG site can be either methylated or unmethylated. If the site is 

methylated at time t, we assume there is a probability \? that it will become unmethylated by 

time t+1. Similarly, if the site is unmethylated at time t, we assume there is a probability \@ that 

it will become methylated by time t+1. These probabilities represent the probability of the site 

gaining or losing a methyl group between successive time steps through any mechanism of 

methylation or demethylation. Figure 1 illustrates this two-state system and the specific 

transition probabilities between states at each time step. 

If we consider this system in continuous time, the transition probabilities \? and \@ 

become instantaneous rates of change. In continuous time, a CpG site in the methylated state will 

remain methylated for a random length of time that is exponentially distributed with parameter 

\?. This means the expected length of time the CpG site will stay methylated before losing its 

methyl group is A
B]

. Similarly, a CpG site in the unmethylated state site will remain unmethylated 

for a random length of time that is exponentially distributed with parameter \@. This means the 

expected length of time the CpG site will stay unmethylated before gaining a methyl group is A
B^
. 

The described methylation dynamics of a single CpG site on a single strand of DNA in 

continuous time can be modeled as a first-order Markov chain given that: 1) the transition 

probabilities or rates of change \? and \@ are constant over time, and; 2) the future methylation 

state of the CpG site satisfies the Markov property and depends only on the current state and not 

the sequence of past states.  
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If we expand our focus from a single strand of DNA to a large number of DNA strands, 

the methylation state of a CpG site becomes the proportion of DNA strands that are methylated 

at that site. Therefore, the methylation state of a CpG site when considering a large number of 

DNA strands is continuous and ranges from 0 to 1. The continuous-state approximation of a two-

state Markov chain is an Ornstein-Uhlenbeck (OU) process [13]. An OU process is: 1) 

continuous in time and state space; 2) Markovian, and; 3) has Gaussian probability distributions.  

The OU process suggests that the proportion of methylated DNA strands at CpG site k for 

individual i at age t ("C!") has expectation 

 

C["C!"|	"CD] = "CD*EFc" + $C31 − *EFc"5    (1a) 

 

and variance 

 

e(f["C!"] =
0c
H

)Fc
31 − *E)Fc" 	5     (1b) 

 

where "CD describes the proportion of methylated DNA strands at birth, 7C) is the diffusion 

parameter describing the infinitesimal variance, and the terms gC  and $C  are functions of the 

instantaneous rates of methylation change \?c  and \@c
. The term gC  equals \?c + \@c

, and is 

the drift of the process. In the context of methylation, this represents the overall rate of 

methylation change in either direction. The term $C  equals 
B^c

B]c+B^c
 and represents the long-term 

mean of the process.     
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The limit of the expectation and variance as & → ∞ are $C  and  0c
H

)Fc
 respectively. This 

indicates that after sufficient time, the probability distribution will become time-independent and 

have a constant mean and variance. Processes with constant probability distributions are referred 

to as stationary, while processes with time-dependent probability distributions are referred to as 

transient. 

 

Estimating rates of methylation change 

For each CpG site we used a maximum likelihood approach to estimate the OU process 

parameters µ, s2, q, and "D from longitudinal data. Our approach uses a multivariate Gaussian 

distribution, as both the stationary and transient probability distributions of an OU process are 

Gaussian. At every CpG site k=1, 2,…, K, methylation measurements "C!"XE  were collected for 

each individual i=1, 2,…,N at successive time points j=1, 2, …, J and ages tij.  

For J = 3, the log-likelihood function for CpG site k is 

 

j(7C, $C , gC) = ∑ − A
)
l()m|ΣGH|) + (oIJ −	pIJ)ΣGH

EA(oIJ −pIJ)KqL
!MA    (2a) 

 

where oIJ and pIJ are vectors of length J =3 that respectively contain the observed and expected 

methylation at each time point j for each individual i (expected methylation is based on the OU 

process equation 1a), and  
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ΣGH =

r

r

0c
H

)Fc
(1 − *E)Fc"Xs) 0c

H

)Fc
(*EFc("XHE"Xs) − *EFc("XH+"Xs)) 0c

H

)Fc
(*EFc("XtE"Xs) − *EFc("Xt+"Xs))

0c
H

)Fc
(*EFc("XHE"Xs) − *EFc("XH+"Xs)) 0c

H

)Fc
(1 − *E)Fc"XH) 0c

H

)Fc
(*EFc("XtE"XH) − *EFc("Xt+"XH))

0c
H

)Fc
(*EFc("XtE"Xs) − *EFc("Xt+"Xs)) 0c

H

)Fc
(*EFc("XtE"XH) − *EFc("Xt+"XH)) 0c

H

)Fc
(1 − *E)Fc"Xt)

r

r

 (2b) 

is a covariance matrix describing the variance in methylation at each time point and covariance 

between each time point for individual i. A derivation of the covariance between the methylation 

at two time points at CpG site k for individual i is provided in the supplementary material. 

To make optimization of the likelihood function computationally tractable, we chose site-

specific starting values based on the data, and bounded s2 and q. We placed a lower bound of 

zero on both s2 and q, and an upper bound on q of 0.5. For each CpG site k, we chose site-

specific starting values by first minimizing the squared difference between the observed and 

expected correlation between the methylation data at time points two and three with respect to 

gC . Then, based on the optimized starting value of gC , we calculated a starting value for 7C) using 

equation 1b and the variance of the methylation data across individuals at CpG site k. Finally, the 

starting values for "CD and 	$C  were set to the mean methylation level across all individuals at the 

first time point and the last time point, respectively. 

After estimation of the OU process parameters, values of \@c
 and \?c  at each CpG site k 

were calculated from the estimated gC  and $C  as 

 

                                                           \@c
= 	gC 	$C 	                                                          (3)	

\?c = 	gC(1 −	$C)  
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Simulations were used to validate that this method can accurately estimate OU process 

parameters (for more information see the supplementary material). The results of these 

simulations showed that q  can be accurately estimated using this maximum likelihood approach 

across the range of reasonable g, even with a small sample of 40 individuals.  

 

Testing the equivalence of rates of methylation change 

We test our null hypothesis of purely stochastic age-related methylation change by testing 

the equivalence of 	g across the genome. To do this, we use likelihood ratio tests at each CpG 

site to compare the fit of the full model described above to the fit of a restricted model where g is 

set to a single genome-wide value. We fit the full model for every CpG site before fitting the 

restricted model to calculate an appropriate and testable genome-wide value of g. This value is 

calculated as the median full model estimate of g. Sites where the full model fits the data 

significantly better than the restricted model (false discovery rate (FDR) < 0.05) will be 

considered to be inconsistent with epigenetic drift. The methylation changes at these sites occur 

at a rate that is significantly different from a genome-wide rate of random methylation change, 

which suggests methylation changes that may be targeted and depend on site location or 

biological function. Sites where the full model does not fit significantly better than the restricted 

model (FDR> 0.05) will be considered to be consistent with epigenetic drift. The methylation 

changes at these sites are consistent a model where methyl groups are gained and lost entirely 

randomly across the genome. For brevity and simplicity we refer to sites found to be consistent 

and inconsistent with genome-wide epigenetic drift based on the above criteria as drift-consistent 

and drift-inconsistent, respectively. 
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Longitudinal data 

DNA methylation was measured at three time points in a sub-sample of 43 women from 

the Women’s Health Initiative (WHI) Clinical Trials (CT) cohort. WHI is a long-term national 

health study focused on investigating strategies for the prevention and control of common causes 

of morbidity and mortality in post-menopausal women. The CT was designed as a randomized 

controlled study with three different interventions: 1) dietary modifications; 2) hormone therapy; 

and 3) calcium and vitamin D supplementation [14]. A total of 68,132 post-menopausal women 

between the ages 50 and 79 were enrolled into the CT at 40 clinical centers across the U.S. 

between September 1993 and October 1998. After enrollment, participants had a baseline clinical 

exam at which blood was collected and stored as buffy coat. The women were then followed 

annually for up to nine years. Extensive clinical data, including blood specimens, were collected 

during exams three years, six years, and nine years after the baseline exam. DNA methylation 

was measured at baseline from stored buffy coat for a random sub-sample of 2,200 CT 

participants. Of the 2,200 individuals with DNA methylation measurements at baseline, 43 

individuals participating in the ancillary WHI Long Life Study (LLS) also had DNA methylation 

measured at two more time points, on average 3.5 years and 15.9 years from baseline. The data 

from these 43 individuals with three longitudinal DNA methylation measurements was used in 

this study. 

The age of the study participants was self-reported in a questionnaire during screening. 

We approximated the chronological age of each individual at each time point as the self-reported 

age in years at screening plus the number of days between screening and blood sampling divided 

by 365.25 days  and 0.5 years to increase the accuracy of the self-reported age (on average). The 

augmented ages range from 50.5 - 76.5 years at baseline, 54.58 - 79.88 years at the second time 
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point, and 67.89 - 91.74 years at the third time point. The age distributions at all three time points 

are shown in Figure S2. 

 

Measuring DNA methylation 

DNA methylation was measured from buffy coat for each individual at each time point 

using the Illumina Infinium HumanMethylation450 Beadchip [15]. This array interrogates a total 

of 485,577 sites across the genome, including 482,421 CpG sites and 3,156 non-CpG sites, using 

a bisulfite DNA treatment and two sets of site-specific probes binding associated methylated and 

unmethylated sequences [16]. For each sample, the proportion of DNA strands methylated at 

each site was estimated as the measured intensity of fluorescent signal from the methylated probe 

relative to the intensity of fluorescent signal from both methylated and unmethylated probes. 

This ratio measures the proportion of methylated DNA strands and is referred to as a !-value.  

 DNA methylation measurements were performed at the Northwestern University 

Genomics Core Facility in two stages. In the first stage, DNA methylation was measured from 

the blood collected at both the baseline and the second time point. In the second stage, DNA 

methylation was measured from the blood collected at the third time point. The R package 

ComBat was used to adjust the measured !-values to remove batch effects caused by 

experimental differences in methylation measurement between the two different stages [17]. 

These ComBat adjusted !-values were used for all analyses. 

 

DNA methylation data filtering and quality control 

  DNA sequence can have direct effects on the measured methylation level at a CpG site. A 

genetic variant in place of either the cytosine or guanine at a CpG site, for instance, directly 



 99 

prevents methylation. Furthermore, a genetic variant in the DNA sequence that is probed by the 

methylation array can impact binding and can alter the measured methylation level. To minimize 

the impact of these direct genetic effects on parameter estimates, we excluded CpG sites with a 

SNP present on the 50-base CpG site probe and CpG sites with a multi-modal distribution of 

methylation levels from analysis. CpG site probes with SNPs were identified based on data from 

the 1000 Genomes Project phase I release, as annotated by [18]. CpG sites with multi-modal 

distributions of methylation level were identified using the gaphunter function in R [19].  As 

additional quality control measures, we also removed probes with detection p-values >0.01 in 

over 10% of samples, probes on the sex chromosomes, probes annotated as binding to multiple 

chromosomes, probes without CpG sites, and probes with low correlations (<0.2) between 

successive time points. After data filtering and quality control, a total of 185,860 sites remained.  

To minimize the impact of outlying methylation measurements on our parameter 

estimates, we removed individuals with any measurements more than five interquartile ranges 

from the nearest quartile at each CpG site. Outliers beyond this threshold, likely to be caused by 

measurement errors, were shown to have large influence on estimates by [20]. 

 

Age-differentially-methylated CpG sites 

A total of 2,000 of the 185,860 filtered CpG sites were previously found to have 

significant changes in methylation with age (FDR<0.05) in a study on the same longitudinal 

WHI data used here [21]. This study by Grant et al. tested for associations between methylation 

and age using a linear mixed model that included a random effect for each individual. We 

restricted parameter estimation and hypothesis testing to the 2,000 sites with significant age-
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associated methylation changes in our dataset, as our null hypothesis is specific to the 

methylation changes we observe with age. 

 

Annotation for genomic context  

Each CpG site was annotated with respect to: 1) promoters;  2) enhancers ; 3) insulators; 

4) repressed genes; and 5) transcribed genes. For this annotation we downloaded the Broad 

ChromHMM data set for GM12878 lymphoblastoid cells and GRCh37/hg19 from the University 

of California, Santa Cruz (UCSC) table browser [22, 23]. Each CpG site was annotated based on 

overlaps between the CpG site location and the locations of the chromatin states provided by the 

UCSC data. After annotation, we grouped ChromHMM chromatin states describing similar 

genomic regions. For example, all ChromHMM promoter chromatin states were grouped into a 

single promoter category in our annotation. Throughout this paper we refer to these groupings of 

similar chromatin states as genomic contexts. 

 

Cellular composition  

 The proportions of CD8-positive T cells, CD4-positive T cells, natural killer cells, B-

cells, monocytes, and granulocytes in the whole blood samples were estimated from the 

methylation array data using a method developed by Houseman et al. and reference data on the 

methylation signatures of purified cell types [24, 25]. To conduct sensitivity analyses, the 

methylation data at each CpG site was residualized using a Gaussian generalized linear model 

that included the estimated cell type proportions as covariates to remove potential confounding 

due to the heterogeneous and changing cellular composition of whole blood. 
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RESULTS 

Estimated stochastic model parameters 

To investigate the stochasticity of age-related methylation changes, we fit a stochastic 

model to longitudinal methylation data at 2,000 age-differentially-methylated CpG sites via 

maximum likelihood estimation. At each site, we estimated four stochastic model parameters: 

"D, µ, s2, and q. These parameters respectively describe a CpG site’s starting methylation, long-

term mean methylation (i.e. mean methylation once the process has reached stationarity), 

instantaneous methylation volatility, and overall rate of methylation change. The distributions of 

the estimates for each of these parameters is shown in  Figure S3. Across all sites, the average 

estimates of "D, µ, s2, and q are 0.56, 0.47, 0.0006, and 0.12, respectively. The estimates of s2 

and q are positively correlated (0.63), indicating that sites with low volatility of methylation tend 

to have low rates of methylation change, and sites with high volatility of methylation tend to 

have high rates of methylation change.  

For each CpG site, we also calculated the rate of methylation (lM) and demethylation 

(lU) from q and µ as shown in Equation 3. The distribution of lM ranges from 8.2x10-9 to 0.38 

and has a mean of 0.058, and the distribution of lU ranges from 1.2x10-8 to 0.34 and has a mean 

of 0.067 (Figure S4). The mean rates of methylation and demethylation indicate that on average 

an age-differentially-methylated CpG site would take 17.2 years to go from fully unmethylated 

to fully methylated in the absence of processes to remove methyl groups, and 14.9 years to go 

from fully methylated to fully unmethylated in the absence of processes to add methyl groups. 
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Estimated stochastic model parameters and patterns of age-related methylation change 

Estimated values of q and s2 provide information on the age-associated methylation 

changes at a CpG site at the both the population and individual levels. The magnitude of s2 is 

directly related to the size of the observed methylation changes between successive time points 

for every individual. At sites with small s2, individuals are expected to have small changes in 

methylation between successive time points. At sites with large s2, individuals are expected to 

have large changes in methylation between successive time points. The magnitude of q is 

inversely related to the expected length of time it takes methylation to reach an age-independent 

distribution (i.e. stationarity). At sites with large q, the methylation of each individual is 

expected to reach stationarity in early life. At sites with small q, the methylation of each 

individual is expected to reach stationarity late in life. When methylation is observed at the 

population level, different patterns of age-associated methylation change are expected before and 

after stationarity. Methylation observed at a site when it is far from reaching stationarity is 

expected to have: 1) linear changes in the population-level mean with age, and 2) increasing 

population-level variance with age (See equations 1a and 1b). Methylation observed at a site as it 

is transitioning to stationarity is expected to have: 1) non-linear changes in the population-level 

mean with age, and 2) increasing then plateauing population-level variance with age. 

Methylation observed at a site that has already reached stationarity is expected to have: 1) small 

or no linear changes in the population-level mean with age, and 2) small or no changes in the 

population-level variance with age. 

To illustrate these patterns we split the analyzed CpG sites into six groups based on the 

estimated values of q and 7) (Table 1). Within each group, CpG sites are expected to transition 

to stationarity at a similar time in life, and to show similar patterns of age-associated methylation 
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change at the both the population- and individual-level between the ages of 50 and 92 (the age 

range of the study population). For each group, the patterns of methylation change observed in 

the data closely follow our expectation based on q and 7). This indicates that our stochastic 

model can accurately capture methylation dynamics from longitudinal data, and that the 

estimated values of q and 7) can be used to identify and differentiate patterns of age-associated 

methylation change.  

 

Equivalence of rates of methylation change across the genome 

In total, 1,467 CpG sites (73% of the sites tested) did not fit a model with a site-specific 

rate of methylation change significantly better than a model with a genome-wide rate of 

methylation change (FDR>0.05). We consider the age-related methylation changes at these sites 

to fit a model of random genome-wide methyl group gain and loss, and to be drift-consistent. 

Conversely, 533 CpG sites (27% of the sites tested) fit a model with a site-specific rate of 

methylation change significantly better than a model with a genome-wide rate of methylation 

change (FDR<0.05). We consider the age-related methylation changes at these sites to be 

inconsistent with a model of random genome-wide methyl group gain and loss, and to be drift-

inconsistent. The rates of methyl group gain and loss at these sites may depend on site location or 

biological function. Of the drift-inconsistent sites, 71% (380 sites) have a site-specific rate of 

methylation change that is less than the genome-wide rate of methylation change (0.12), while 

29% (153 sites) have a site-specific rate of methylation change that is greater than the genome-

wide rate of methylation change.  

Methylation patterns in promoters may be better maintained than in other regions of the 

genome to reduce the accumulation of stochastic methylation changes with potentially 
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deleterious effects on gene expression. Additionally, non-random targeted methylation changes 

in promoters could function as a mediator of age-specific gene expression change. This means 

that the drift-inconsistent changes we observe may be a combination of: 1) non-random targeted 

methylation changes and 2) stochastic methylation changes happening at a rate based on location 

or biological function. However, these two possible types of drift-inconsistent changes cannot be 

differentiated based solely on the analysis of estimated rates of overall methylation change.  

 

Equivalence of rates of methylation change within genomic contexts 

To investigate the relationship between rate of methylation change and site location and 

biological function, we analyzed CpG sites in different five genomic contexts:1) promoters, 2) 

enhancers, 3) insulators, 4) transcribed regions, and 5) repressed regions. The set of CpG sites in 

each genomic context share both genomic position and biological function. All promoter sites, 

for example, are located in the promoter region of a gene, where methylation is expected to be 

negatively associated with transcription and gene expression.  

We found the distribution of q to be significantly different at CpG sites in different 

genomic contexts (Kruskal-Wallis test, c2 = 27.02 ,p-value = 1.97x10-5). Specifically, we found 

the median q in enhancers to be significantly higher than in repressed regions (Nemenyi tests, c2 

= 22.95, FDR = 0.0013, Figure 2a). This indicates that not all age-associated DNA methylation 

changes are entirely stochastic, and suggests that the rate of methylation change at some CpG 

sites may depend on site location or biological function. 

Of the CpG sites in promoters, 29% (144 sites) are drift-inconsistent and fit a model with 

a site-specific	g significantly better than a model with a genome-wide g (FDR<0.05). Similarly, 

of the CpG sites in enhancers, insulators, repressed regions, and transcribed regions, respectively 
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18% (79 sites), 17% (14 sites), 24% (49 sites), and 24% (68 sites) are drift-inconsistent and fit a 

model with a site-specific	g significantly better than a model with a genome-wide g (FDR<0.05, 

Figure 2a). Additionally, Fisher’s exact tests showed drift-inconsistent sites to be significantly 

enriched in promoters (OR = 1.54, p-value = 0.012, Figure 2b), and depleted in enhancers (OR = 

0.73, p-value = 0.012). This suggests that CpG sites with drift-inconsistent methylation changes 

are more likely to be in promoters, while CpG sites with drift-consistent methylation changes are 

more likely to be in enhancers. 

 

Sites with increasing and decreasing heritability of methylation with age 

 The disposable soma (DS) theory predicts increasing variability of methylation with age 

at both the individual and population levels due to the accumulation of random methylation 

changes equivalent to epigenetic drift. As a result of this increasing variability and stochasticity, 

DS predicts decreasing heritability of methylation with age. In contrast to this, another 

evolutionary theory of aging, mutation accumulation (MA), predicts aging phenotypes to result 

from age-specific genes with deleterious effects confined to late in life. MA suggests that some 

age-associated methylation changes may mediate the effects of deleterious age-specific genes, 

and predicts increasing heritability of methylation with age. A previous study categorized age-

differentially-methylated CpG sites as consistent with MA or DS based on the observance of 

age-related increases or decreases in heritability of methylation level. This study identified 

13,467 MA-consistent sites where the heritability of methylation increased with age, and 30,749 

DS-consistent CpG sites where the heritability of methylation decreased with age [26]. Given the 

predictions of each theory, we expect the methylation changes at sites found to have decreasing 
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heritability of methylation with age to be entirely random, and the methylation changes at sites 

found to have increasing heritability of methylation with age to be non-random, or targeted.  

We tested the stochasticity of the sites with increasing and decreasing heritability of 

methylation with age by comparing the rates of methylation change between the two sets of sites 

and within each set of sites. Different distributions of rates of methylation change between sets 

of sites would indicate a difference in age-related methylation changes. Furthermore, an 

equivalence of the rates of methylation change across genomic contexts within each set of sites 

would suggest the site-specific age-related methylation changes to be random, and independent 

of location and biological function. 

Of the 2,000 age-differentially-methylated sites we investigated, the previous study found 

233 to have increasing heritability of methylation with age and 848 to have decreasing 

heritability of methylation with age. We found that sites with increasing heritability of 

methylation with age had a significantly higher median rate of methylation change than sites 

with decreasing heritability of methylation with age (Kruskal-Wallis test, c2=28.17, df=1, p-

value= 1.2x10-7, Figure 3). This suggests that the sets of sites with increasing and decreasing 

heritability of methylation experience different types of age-related methylation change. Within 

the set of sites with decreasing heritability of methylation with age, we found no significant 

difference between the median q in any genomic context (Kruskal-Wallis test, c2=9.17, df=4, p-

value =0.056, Figure 4a). Within the set of sites with increasing heritability of methylation with 

age, however, we found a significant difference in the distribution of q in at least one genomic 

context (c2= 11.25, df=4 , p-value=0.023, Figure 4b).  These results suggest that the age-

associated changes in the set of sites with decreasing heritability of methylation with age are 
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truly random, while the age-associated changes in the set of sites with increasing heritability of 

methylation with age are not entirely random, and may be targeted.  

We additionally tested if drift-inconsistent sites are more likely to have increasing or 

decreasing heritability of methylation with age. We found drift-inconsistent sites to be 

significantly less likely to have increasing heritability of methylation with age (Fisher’s exact 

test, OR= 0.58, p-value=0.015). However, within the set of drift-inconsistent sites, sites with 

high rates of methylation change (>0.12) were found to be significantly more likely to have 

increasing heritability of methylation with age (Fisher’s exact test, OR = 3.93, p-value = 0.0085). 

This indicates that drift-inconsistent sites with high rates of methylation change are more likely 

to have changes in the heritability of methylation that are consistent with targeted methylation 

changes, while drift-inconsistent sites with low rates of methylation change are more likely to 

have changes in the heritability of methylation that are consistent with stochastic methylation 

change. 

 

DISCUSSION 

We found the epigenetic drift model of methylation change to be consistent with most 

age-related methylation changes, but not all. Roughly one fourth of the age-related methylation 

changes observed here were found to be inconsistent with entirely random gains and losses of 

methyl groups across the genome. These drift-inconsistent methylation changes tend to occur at 

lower rates than drift-consistent methylation changes, and are more likely to occur within the 

promoter of a gene. Drift-inconsistent methylation changes are possible under two models of 

non-random change. First, methylation changes at drift-inconsistent sites may be non-random 

because the methylation changes themselves are targeted and happen at a specific sites and ages. 
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Second, methylation changes at drift-inconsistent sites may also be non-random because the 

mechanisms of stochastic methylation change depend on site location or biological function. For 

instance, the methylation patterns of promoters may be better maintained than in other regions of 

the genome, as the accumulation of stochastic methylation changes in promoters is more likely to 

have deleterious effects on gene expression. This means that the drift-inconsistent changes we 

observe are likely a combination of: 1) non-random targeted methylation changes and 2) 

stochastic methylation changes happening at a rate based on site location or biological function.  

The evolutionary theories of DS and MA predict age-related methylation changes to be 

stochastic and targeted, respectively. DS suggests age-related DNA methylation changes to result 

from random maintenance and repair errors in epigenetic drift, while MA suggests age-related 

methylation changes to be targeted and to reflect or possibly mediate the deleterious effects of 

age-specific genes. We tested the rates of methylation change at sets of sites previously found to 

be consistent with DS and MA on the basis of age-related changes in the heritability of 

methylation. The DS-consistent sites were found to have rates of methylation change consistent 

with stochastic gains and losses of methyl groups. In contrast, MA-sites were found have rates of 

methylation change consistent with non-random gains and losses of methyl groups, suggesting 

targeted changes. Furthermore, drift-inconsistent sites with high rates of methylation change 

were found to be more likely to occur at MA-consistent sites, while drift-inconsistent sites with 

low rates of methylation change were found to be more likely to occur at DS-consistent sites. 

This suggests that drift-inconsistent changes with high rates of methylation change tend to be 

non-random targeted methylation changes, while drift-inconsistent changes with low rates of 

methylation change tend to be stochastic methylation changes happening at a rate that is 

dependent on site location or biological function. Further work connecting age-specific 
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methylation and gene expression changes is necessary to be able to fully differentiate between 

these two types of drift-inconsistent changes. 

 Four factors should be considered when interpreting the results from our analyses. First, 

the methylation data was extracted from whole blood, which is a heterogeneous and changing 

collection of cell types with different methylation patterns. Changes in cell type composition 

with age could potentially confound our results. However, in sensitivity analyses we found a 

high correlation between site-specific rates of methylation change estimated from adjusted and 

unadjusted data (a correlation of 0.69, Figure S3), which indicates that our results are not driven 

by a changing cellular composition. Second, since the age range of the study population spans 

only middle to late-life, the specific types of age-related methylation changes we observe and 

their relative contributions may be biased.  Additional studies including data from children and 

young adults will help to increase our understanding of the full breadth of age-related changes 

that happen throughout life. Furthermore, since the study population is composed of post-

menopausal women, the effects of kin selection may be observed and confound our results. The 

grandmother hypothesis suggests the post-reproductive period to be adaptive for women as 

devoting energy and resources to raising grandchildren increases fitness over continuing to 

reproduce [27].  Adaptive mutations that have been selected for via kin selection may not be 

differentiable from non-adaptive deleterious mutations that cannot be effectively selected against 

as suggested by MA.  Finally, our model assumes that the rate of methylation change at every 

CpG site to be constant with age. However, it is likely that the rate of methylation change at any 

particular CpG site depends on a multitude of factors, both environmental and genetic, that may 

change over an individual’s lifetime. For instance, environmental exposures such as diet, air 

pollution, and smoking status are known to impact methylation patterns [28], and often change 
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throughout an individual’s life. The validity of this model assumption can be tested in future 

studies with longitudinal designs and available methylation, gene expression, and environmental 

exposure data.  

In summary, we have developed a novel stochastic model of methylation and age, and 

used our model to test if the age-related DNA methylation changes we observe are entirely 

random and caused by epigenetic drift. We found evidence of both random and non-random 

methylation changes. Targeted methylation changes exist, but the majority of age-related DNA 

methylation changes are acquired stochastically as a result of epigenetic drift. We believe this 

work demonstrates the utility of stochastic modeling, and will enable future exploration of both 

the random and non-random methylation changes that occur throughout the course of human life. 
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TABLES 
 
Table 1. Categorization of age-associated methylation changes based  

 
Group 
q value 
POvalue 

 

Age at 
stationarity 

Methylation dynamics 
Population level age-related changes in: Mean | Variance 

Individual-level age-related changes 

# of 
sites 

Observed methylation at a 
selected site 

1 
q <0.1 

PO < 0.0005 
> 104 Linear | Increasing 

Smooth 646 

 

2 
q <0.1 

PO > 0.0005 
> 104 Linear | Increasing 

Fluctuating 129 

 

3 
0.1< q <0.2 
PO < 0.0005 

> 55, < 104 Non-linear | Increasing, then plateauing 
Smooth 415 

 

4 
0.1<q <0.2 
PO > 0.0005 

> 55, < 104 Non-linear | Increasing, then plateauing 
Fluctuating 566 

 

5 
q >0.2 

PO < 0.0005 
< 55 Negligible | Negligible 

Smooth 46 

 

6 
q >0.2 

PO > 0.0005 
< 55 Negligible | Negligible 

Fluctuating 198 

 
This table details expected population- and individual-level patterns of methylation change with age for each group 
and CpG sites, and illustrates the observed methylation dynamics with an example from the data. In each example, 
the three repeated methylation measurements for each individual at a single CpG site are plotted against 
chronological age, and connected with a line. Therefore, each line within a plot represents the CpG site-specific 
methylation trajectory of a single individual. The calculations for the age at stationarity are provided in the 
supplementary material. 
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FIGURES 
 

 

Figure 1. Two-state DNA methylation system with illustrated transition probabilities between  
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Figure 2. (a) Site-specific estimates of  g by genomic context. The distribution of g for each 

genomic context is shown as a boxplot. The estimate of  g for each site in a particular genomic 

context is shown as a scatterplot. Each drift-consistent site is shown as a colored point, while 

every drift-inconsistent site is shown as a black point. (b) Enrichment for drift-inconsistent sites 

in five different genomic contexts. 

 

(a) 

(b) 
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Figure 3. Distribution of estimates of rate of methylation change for sites with decreasing 

heritability of methylation with age (DS-consistent sites) and increasing heritability of 

methylation with age (MA-consistent sites).  
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Figure 4. (a) Distribution of estimates of rate of methylation change. Sites with decreasing 

heritability of methylation with age (DS-consistent sites) (b) Sites with increasing heritability of 

methylation with age (MA-consistent sites) 
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SUPPLEMENTARY MATERIAL 

 

Derivation of covariance between methylation at time s and t for individual i and s<t 

012("!&, "!") = C[012("!& , "!"|"!D)]	

= C[	C["!&"!"] − C["!&]C["!"]	]	

= C[	C[	C["!&"!"|"!&]	] − C["!&	C[	C["!"|"!&]	]	]	]	

= C[	C["!&	C["!"|"!&] − C["!&	C[	C["!"|"!&]	]	]	]	

= C u	C v"!& l"!&*EF("E&) + $31 − *EF("E&)5qw − C["!&]C vl"!&*EF("E&) + $31 − *EF("E&)5qwx	

= Cy	Cy"!&
) *EF("E&) + "!&$31 − *EF("E&)5z − C["!&]3Cy"!&*EF("E&)z + Cy$31 − *EF("E&)5z5z	

= Cy	C["!&
) ]*EF("E&) + $31 − *EF("E&)5C["!&] − $31 − *EF("E&)5C["!&])*EF("E&)z	

= CyC["!&
) ]*EF("E&) − C["!&])*EF("E&)z	

= Cy*EF("E&)(C["!&
) ] − C["!&]))z	

= C[*EF("E&)
7)(1 − *EF)&)

2g
	

=
7)

2g
3*EF("E&) − *EF("+&)5 

 

Simulation of methylation data and recovery of OU process parameters 

We performed a series of simulation studies to assess the accuracy of our maximum 

likelihood approach for OU process parameter estimation. In each simulation study, we 

simulated the methylation at a single CpG site at age 50, 55, and 65 for N individuals as 

independent OU processes with shared parameters. To better understand how our ability to 

estimate OU process parameters relates to sample size, we performed simulations with sample 
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sizes of 40 and 1000 individuals. For each individual i, the methylation level at age t,  "!", was 

simulated from a normal distribution with mean 

 

C["!"|"!&] = "!& ∗ eEF("E&) + $31 − eEF("E&)5,				< < &    (S1a) 

And variance 

 

e(f["!"] =
0H

)F
31 − *E)F" 	5      (S1b) 

 

For each simulation study the value of g took on a value in the set [0.0001, 0.0001, 0.01, 

0.02, 0.03, 0.04, 0.05, 0.07, 0.1, 0.2], which spans the range of meaningful values for g. A "D of 

0.3, $ of 0.5, and 7) of 0.0001 was used for every simulation. Simulations at every value of g 

were run ten times for N=40 and five times for N=1,000. 

After simulating methylation data with equation S1, we used the maximum likelihood 

approach described in “Estimating rates of methylation change” to estimate values of g, 7), $, 

and "D. We analyzed only the accuracy of the estimation of g, as this is the parameter we use to 

test the stochasticity of age-related DNA methylation changes. Figure S1 compares the estimated 

and simulated g values for each simulation study at each sample size. For both N=40 and 

N=1000 the percent error of the estimated g values was less than 20% for every simulated value 

of g greater than 0.01 (Table 1). This indicates that our maximum likelihood method for 

estimating g is accurate at most values of g. 
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Figure S1. (a) Comparison of estimated and simulated values of g for each simulation study at 

N=40 (b) Comparison of estimated and simulated values of g for each simulation study at 

N=1000.  
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Table S1. OU process simulation parameter recovery results. 

Simulated } Mean estimated	} Mean percent error 
N=40 

0.0001 0.0022 2125.3% 
0.001 0.0033 235.8% 
0.01 0.013 29.4% 
0.02 0.019 2.7% 
0.03 0.029 1.6% 
0.04 0.034 13.8% 
0.05 0.047 5.7% 
0.07 0.073 4.5% 
0.1 0.108 7.9% 
0.2 0.176 12.2% 

N=1000 
0.0001 0.00025 154.8% 
0.001 0.0024 141.6% 
0.01 0.011 11.5% 
0.02 0.018 8.3% 
0.03 0.025 17.4% 
0.04 0.036 10.8% 
0.05 0.052 3.2% 
0.07 0.071 1.5% 
0.1 0.098 1.4% 
0.2 0.178 10.5% 
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Figure S2. Age distribution at three time points for a sub-sample of 43 women from the 

Women’s Health Initiative Clinical Trials cohort. 
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Figure S3. Distributions of OU process parameters. 
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Figure S4. Distribution of rate of (a) methylation and (b) demethylaion. 
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Figure S5. Comparison of estimates q from unadjusted and adjusted methylation data. The 

correlation between the estimates is of 0.69.  
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Calculations relating q to age of transition to stationarity 

To calculate the age of a transition to stationarity based on the estimated q we assume: 1) 

the smallest accurate measureable difference between b-values is 0.00001, 2) q is constant over 

time, and 3) a process is stationary when equation 1a is equal to $ and the term "!D*EF" → 0 (i.e. 

no change in the mean over time). 

When *EF"=0.00001 and $  and "!D are less than 1, the difference between and "!D*EF"  

and 0 is smaller or equal to 0.000001 and cannot be accurately measured. We assume this point 

to be the point of transition into stationarity. The age at transition to stationarity for a particular q 

is then 

& =
ln(0.00001)

−g
 

 

The age at transition to stationary for a range on estimated q values is shown in table S1. 

Horizontal lines separate logical grouping of q values based on the calculated ages at transition 

to stationarity and the age range of our study population. 
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Table S2. Calculated age at stationarity given q. 

Estimated q Calculated age 
at transition to 

stationarity 
0.009 1279 
0.01 1151 
0.011 1046 
0.03 383 
0.05 230 
0.07 164 
0.099 116 
0.1 115 

0.11 104 
0.13 88 
0.15 76 
0.17 68 
0.199 58 
0.2 57 

0.21 55 
0.228 50.5 
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Chapter 5: Conclusions 
 
 

The evolutionary theories of mutation accumulation (MA), antagonistic pleiotropy (AP), 

and disposable soma (DS) provide possible explanations for the existence of human aging. In 

Chapter 2, I reviewed the assumptions and predictions of these theories, and presented the results 

of previous empirical tests. Tests of theory predictions relating to the longitudinal process of 

aging were found to be absent from the literature. This is likely due to limitations of the 

frequently used measures of senescence. Lifespan, for instance, acts only as a proxy measure of 

an individual’s overall rate of aging and provides no information about an individual’s senescent 

state throughout life. I suggested the novel use of longitudinal and familial DNA methylation 

data to test the previously neglected predictions of evolutionary models of aging. DNA 

methylation is a newly proposed biomarker of aging that can be easily measured from blood 

samples collected throughout life.  Furthermore, the use of microarrays to measure DNA 

methylation allows theory predictions to be independently tested at thousands of sites across the 

genome.  

In Chapters 3 and 4, I used DNA methylation data to test predictions of MA and DS 

relating to aging as a longitudinal process. In both chapters the relative importance of each 

theory was investigated through tests formulated to identify MA- and DS-consistent sites across 

the genome. In Chapter 3, familial DNA methylation data was used to test heritability predictions 

of MA and DS. Sites with age-differential methylation were predicted to be MA-consistent if 

they had increasing heritability of methylation with age, and DS-consistent if they had 

decreasing heritability of methylation with age. I observed age-related changes in the heritability 

of methylation that were consistent with both MA and DS, suggesting that both theories play a 

role in explaining aging. The number of sites observed to have DS-consistent decreases in 
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heritability of methylation was roughly three times the number of sites observed to have MA-

consistent increases in the heritability of methylation. This suggests that while the majority of 

age-related methylation changes are consistent with DS and randomly acquired molecular and 

cellular damages, age-related changes consistent with MA exist and may mediate the deleterious 

age-specific effects of aging genes.  

In Chapter 4, longitudinal data was used to test if age-related DNA methylation changes 

support the stochastic aging process implied by DS. The expected methylation changes under DS 

are equivalent to epigenetic drift, or accumulated stochastic methylation changes with age. Both 

DS and epigenetic drift suggest the gains and losses of methyl groups to occur at random 

throughout the genome rather than at specific genes or CpG sites. I categorized age-

differentially-methylated sites as drift-consistent if the methylation data fit a stochastic model 

with a genome-wide rate of methylation change, and drift-inconsistent if the methylation data fit 

a stochastic model with a site-specific rate of methylation change. The number of sites observed 

to have drift-consistent methylation changes was roughly three times the number of sites 

observed to have drift-inconsistent methylation changes. This suggests that the majority of age-

related DNA methylation changes are random and consistent with DS and epigenetic drift, but 

that a minority of age-related DNA methylation changes are non-random and potentially 

targeted.  I also tested the stochasticity of the sets of sites found to be consistent with MA and 

DS in Chapter 3. The DS-consistent sites were all found to have similar rates of methylation 

change (i.e. homogenous rates of methylation change) which is consistent with entirely 

stochastic gains and losses of methyl groups, while the MA-consistent sites were found to have 

significantly different rates of methylation change (i.e. heterogeneous rates of methylation 

change) which is consistent with non-random or targeted gains and losses of methyl groups.  
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Similar conclusions can be drawn from the results of Chapters 3 and 4. The results of 

both chapters suggest a majority of aging-related methylation changes to be consistent with DS 

and stochastic, and a minority of aging-related changes to be consistent with MA and potentially 

targeted. This means that most of the DNA methylation changes we observe with age are random 

and the result of environmental insults and/or methylation maintenance and repair errors. 

However, a small number of aging-related methylation changes are targeted and may mediate the 

deleterious age-specific effects of aging genes. Both MA and DS play a role in explaining aging 

and aging-related changes, but DS appears to be more important in understanding the age-related 

changes of DNA methylation. Future work connecting changes in methylation to changes in 

transcription and gene expression are needed to understand the effects of these stochastic and 

targeted changes. The results and methods presented here lay the foundation for future 

investigations of evolutionary theories human aging using DNA methylation data and other 

biomarkers of aging.  

                                              
 
 


