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Abstract

Towards More Robust Methods of Cyberbullying Detection
By Caleb Ziems

Cyberbullying is a pervasive problem in online communities. To identify cyber-
bullying cases in large-scale social networks, content moderators depend on machine
learning classifiers for automatic cyberbullying detection. However, existing models
remain unfit for real-world applications, largely due to a shortage of publicly available
training data and a lack of standard criteria for assigning ground truth labels. In this
study, we address the need for reliable data using an original annotation framework.
Inspired by social sciences research into bullying behavior, we characterize the nu-
anced problem of cyberbullying using five explicit factors to represent its social and
linguistic aspects. We model this behavior using social network and language-based
features, which improves classifier performance. Lastly, we develop a method for in-
ferring the target of aggression in the message thread, and we evaluate this approach
on hand-labeled data. These results demonstrate the importance of representing and
modeling cyberbullying as a social phenomenon.
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Chapter 1

Introduction

Cyberbullying poses a serious threat to the safety of online communities. The Cen-

ters for Disease Control and Prevention (CDC) identify cyberbullying as a “growing

public health problem in need of additional research and prevention efforts” [7]. Cy-

berbullying has been linked to negative mental health outcomes, including depression,

anxiety, and other forms of self-harm, suicidal ideation, suicide attempts, and diffi-

culties with social and emotional processing [18, 24, 29]. Where traditional bullying

was once limited to a specific time and place, cyberbullying can occur at any hour

and from any location on earth [3]. Once the first message has been sent, the attack

can escalate rapidly as harmful content is spread across shared media, compounding

these negative effects [14, 36].

Internet users depend on content moderators to flag abusive text and to ban cyber-

bullies from participating in online communities. However, due to the overwhelming

volume of social media data produced every day, manual human moderation is often

unfeasible. For this reason, social media platforms are beginning to rely instead on

machine learning classifiers for automatic cyberbullying detection [35].

The research community has developed increasingly competitive classifiers to de-

tect harmful or aggressive content in text. Despite significant progress in recent years,



2

however, existing models remain unfit for real-world applications. This is due, in part,

to shortcomings in the training and testing data [12, 27, 28]. Most annotation schemes

have ignored the importance of social context, and researchers have neglected to pro-

vide annotators with objective criteria for distinguishing cyberbullying from other

crude messages.

To address the urgent need for reliable data, we provide an original annotation

framework and an annotated Twitter dataset.1 The key advantages to our labeling

approach are:

• Contextually-informed ground truth. We provide annotators with the

social context surrounding each message, including the contents of the reply

thread and the account information of each user involved.

• Clear labeling criteria. We ask annotators to provide labels for five clear

cyberbullying criteria. These criteria can be combined and adapted for revised

definitions of cyberbullying.

Using our new dataset, we experiment with baseline NLP features and compare re-

sults with a newly-proposed set of features. We designed these features to encode

the dynamic relationship between a potential bully and victim, using comparative

measures from their relative linguistic and social network profiles. Additionally, our

features have low computational complexity, so they can scale to web-scale datasets,

unlike expensive network centrality and clustering measurements.

Results from our experiments suggest that, although baseline models can reli-

ably detect aggressive language in text, they will fall short of the more subtle goal

of cyberbullying detection. With n-grams and dictionary-based features, classifiers

prove unable to detect harmful intent, visibility among peers, power imbalance, or

the repetitive nature of aggression with sufficiently high precision and recall. How-

ever, our proposed feature set improves F1 scores on all four of these social measures.
1https://github.com/cjziems/cyberbullying-representations
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Real-world detection systems can benefit from our proposed approach, incorporating

the social aspects of cyberbullying into existing models and training these models on

socially-informed ground truth labels.

Finally, we propose a rule-based heuristic algorithm for inferring the cyberbullying

target or, more generally, the user account in primary focus given a message in an

existing conversational thread. This form of social role detection is a necessary step

in our approach and an important step in the direction of more robust and socially-

informed cyberbullying detection solutions.
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Chapter 2

Background

Existing approaches to cyberbullying detection generally follow a common workflow.

Data is collected from social networks or other online sources, and ground truth

is established through manual human annotation. Machine learning algorithms are

trained on the labeled data using the message text or hand-selected features. Then

results are typically reported using precision, recall, and F1 scores. Comparison across

studies is difficult, however, because the definition of cyberbullying has not been stan-

dardized. Therefore, an important first step for the field is to establish an objective

definition of cyberbullying.

2.1 Defining Cyberbullying

Some researchers view cyberbullying as an extension of more “traditional” bullying

behaviors [10, 22, 25]. In one widely-cited book, the psychologist Dan Olweus defines

schoolyard bullying in terms of three criteria: repetition, harmful intent, and an

imbalance of power [21]. He then identifies bullies by their intention to “inflict

injury or discomfort” upon a weaker victim through repeated acts of aggression.

Social scientists have extensively studied this form of bullying as it occurs among

adolescents in school [16, 17]. However, experts disagree whether cyberbullying should
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Table 2.1: Definitions of Cyberbullying

Work aggr rep harm peer power
Al-garadi et al. [1] 3 3

Chatzakou et al. [3] 3 3 3 3

Hosseinmardi et al. [11] 3 3 3

Huang et al. [13] 3 3

Reynolds et al. [26] 3 3

Rosa et al. [27] 3 3 3 3

Sugandhi et al. [34] 3 3

Van Hee et al. [35] 3 3

be studied as a form of traditional bullying or a fundamentally different phenomenon

[16, 22]. Some argue that, although cyberbullying might involve repeated acts of

aggression, this condition might not necessarily hold in all cases, since a single message

can be otherwise forwarded and publicly viewed without any repetitive behaviors

from the author [32, 36]. Similarly, the role of power imbalance is uncertain in online

scenarios. Power imbalances of physical strength or numbers may be less relevant,

whereas bully anonymity and the permanence of online messages may be sufficient to

render the victim defenseless [31].

The machine learning community has not reached a unanimous definition of cy-

berbullying either. They have instead echoed the uncertainty of the social scientists.

Moreover, some authors have neglected to publish any objective cyberbullying crite-

ria or even a working definition for their annotators, and among those who do, the

formulation varies. This disagreement has slowed progress in the field, since classifiers

and datasets cannot be as easily compared. Upon review, however, we found that

all available definitions contained a strict subset of the following criteria: aggression

(aggr), repetition (rep), harmful intent (harm), visibility among peers (peer), and

power imbalance (power). The datasets built from these definitions are outlined in

Table 2.1.
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2.2 Existing Cyberbullying Datasets

According to Van Hee et al. [35], data collection is the most restrictive “bottleneck” in

cyberbullying research. Because there are very few publicly available datasets, some

researchers have turned to crowdsourcing using Amazon Mechanical Turk or similar

platforms.

In most studies to date, annotators labeled individual messages instead of message

threads, ignoring social context altogether [1, 13, 20, 26, 30, 34]. Only three of

the papers that we reviewed incorporated social context in the annotation process.

Chatzakou et al. [3] considered batches of time-sorted tweets called sessions, which

were grouped by user accounts, but they did not include message threads or any other

form of context. Van Hee et al. [35] presented “original conversation[s] when possible,”

but they did not explain when this information was available. And Hosseinmardi et al.

[12] was the only study to label full message reply threads as they appeared in the

original online source. This information is summarized in Table 2.2 along with the

size and the cyberbullying class balance for each dataset.

Table 2.2: Existing Cyberbullying Datasets

Work Source Size Balance Context
Al-garadi et al. [1] Twitter 10,007 6.0% 7

Chatzakou et al. [3] Twitter 9,484 - 3

Hosseinmardi et al. [11] Instagram 1,954 29.0% 3

Huang et al. [13] Twitter 4,865 1.9% 7

Reynolds et al. [26] Formspring 3,915 14.2% 7

Rosa et al. [27] Formspring 13,160 19.4% 7

Sugandhi et al. [34] Mixed 3,279 12.0% 7

Van Hee et al. [35] AskFM 113,698 4.7% 3
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2.3 Modeling Cyberbullying Behavior

A large body of work has been published on cyberbullying detection and prediction,

primarily through the use of natural language processing techniques. Most common

approaches have relied on lexical features such as n-grams [12, 35, 37], TF-IDF vectors

[9, 19, 34], word embeddings [40], or phonetic representations of messages [39], as well

as dictionary-based counts on curse words, hateful or derogatory terms, pronouns,

emoticons, and punctuation [1, 6, 26, 30]. Some studies have also used message

sentiment [30, 34, 35] or the age, gender, personality, and psychological state of the

message author according to text from their timelines [1, 6]. These methods have

been reported with appreciable success as shown in Table 2.3.

Table 2.3: State of the Art in Cyberbullying Detection. Here, results are reported on
either the Cyberbullying (CB) class exclusively or on the entire (total) dataset.

Work Model Precision Recall F1 Class
Zhang et al. [39] CNN 99.1% 97.0% 98.0% total
Al-garadi et al.

[1] Random Forest 94.1% 93.9% 93.6% total

Nahar et al. [20] SVM 87.0% 97.0% 92.0% CB
Sugandhi et al.

[34] SVM 91.0% 91.0% 91.0% total

Soni and Singh
[33] Naïve Bayes 80.2% 80.2% 80.2% total

Zhao et al. [40] SVM 76.8% 79.4% 78.0% total
Xu et al. [37] SVM 76.0% 79.0% 77.0% total
Hosseinmardi
et al. [12] Logistic Regression 78.0% 72.0% 75.0% CB

Yao et al. [38] CONcISE 69.5% 79.4% 74.1% CB
Van Hee et al.

[35] SVM 73.3% 57.2% 64.3% total

Singh et al. [30] Proposed 82.0% 53.0% 64.0% CB
Rosa et al. [27] SVM 46.0% - 45.0% CB
Dadvar et al. [6] SVM 31.0% 15.0% 20.0% CB
Huang et al. [13] Dagging 76.3% - - CB

Some researchers argue, however, that lexical features alone may not adequately

represent the nuances of cyberbullying. Hosseinmardi et al. [11] found that in In-
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stagram media sessions containing profane or vulgar content, only 30% were acts of

cyberbullying. They also found that while cyberbullying posts contained a moderate

proportion of negative terms, the most negative posts were not considered cases of

cyberbullying by the annotators. Instead, these negative posts referred to politics,

sports, and other domestic matters between friends [11].

The problem of cyberbullying cuts deeper than merely the exchange of aggressive

language. The meaning and intent of an aggressive post is revealed through conversa-

tion and interaction between peers. Therefore, to properly distinguish cyberbullying

from other uses of aggressive or profane language, future studies should incorporate

key indicators from the social context of each message. Specifically, researchers can

measure the author’s status or social advantage, the author’s harmful intent, the

presence of repeated aggression in the thread, and the visibility of the thread among

peers [11, 27, 28].

Since cyberbullying is an inherently social phenomenon, some studies have nat-

urally considered social network measures for classification tasks. Several features

have been derived from the network representations of the message interactions. The

degree and eigenvector centralities of nodes, the k-core scores, and clustering of com-

munities, as well as the tie strength and betweenness centralities of mention edges

have all been shown to improve text-based models [13, 30]. Additionally, bullies and

victims can be more accurately identified by their relative network positions. For

example, the Jaccard coefficient between neighborhood sets in bully and victim net-

works has been found to be statistically significant [5]. The ratio of all messages sent

and received by each user was also found significant.

These findings show promising directions for future work. Social network features

may provide the information necessary to reliably classify cyberbullying. However,

it may be prohibitively expensive to build out social networks for each user due to

time constraints and the limitations of API calls [38]. For this reason, alternative
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measurements of online social relationships should be considered.

In the present study, we leverage prior work by incorporating linguistic signals

into our classifiers. We extend prior work by developing a dataset that better reflects

the definitions of cyberbullying presented by social scientists, and by proposing and

evaluating a feature set that represents information pertaining to the social processes

that underlie cyberbullying behavior.
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Chapter 3

Data

Here, we provide an original annotation framework and a new dataset for cyberbul-

lying research, built to unify existing methods of ground truth annotation. In this

dataset, we decompose the complex issue of cyberbullying into five key criteria, which

we drew from the social science and machine learning communities. These criteria

can be combined and adapted for revised definitions of cyberbullying.

3.1 Data Collection

We collected a sample of 1.3 million unlabeled tweets from the Twitter Filter API.

Since cyberbullying is a social phenomenon, we chose to filter for tweets containing

at least one “@” mention. To restrict our investigation to original English content, we

removed all non-English posts and retweets (RTs), narrowing the size of our sample

to 280,301 tweets.

Since aggressive language is a key component of cyberbullying [11], we ran the

pre-trained classifier of Davidson et al. [8] over our dataset to identify hate speech and

aggressive language and increase the prevalence of cyberbullying examples 1. This
1Without this step, our positive class balance would be prohibitively small. See Appendix A for

details.
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gave us a filtered set of 9,803 aggressive tweets.

We scraped both the user and timeline data for each author in the aggressive

set, as well as any users who were mentioned in one of the aggressive tweets. In

total, we collected data from 21,329 accounts. For each account, we saved the full

user object, including profile name, description, location, verified status, and creation

date. We also saved a complete list of the user’s friends and followers, and a 6-month

timeline of all their posts and mentions from January 1st through June 10th, 2019.

For author accounts, we extended our crawl to include up to four years of timeline

content. Lastly, we collected metadata for all tweets belonging to the corresponding

message thread for each aggressive message.

3.2 Annotation Task

We presented each tweet in the dataset to three separate annotators as a Human

Intelligence Task (HIT) on Amazon’s Mechanical Turk (MTurk) platform. By the

time of recruitment, 6,897 of the 9,803 aggressive tweets were accessible from the

Twitter web page. The remainder of the tweets had been removed, or the Twitter

account had been locked or suspended.

We asked our annotators to consider the full message thread for each tweet as it

was displayed on Twitter’s web interface. We also gave them a list of up to 15 recent

mentions by the author of the tweet, directed towards any of the other accounts men-

tioned in the original thread. Then we asked annotators to interpret each tweet in

light of this social context, and had them provide us with labels for five key cyberbul-

lying criteria. We defined these criteria in terms of the author account (“who posted

the given tweet?”) and the target (“who was the tweet about?” – not necessarily the

first mention). If the tweet wasn’t “about anyone,” we said, “just put who the tweet

is directed towards.” We also stated that “if the target is not on Twitter or their
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handle cannot be identified” the annotator should “please write OTHER.” With this

framework established, we gave annotators the definitions for our five cyberbullying

criteria as follows.

1. Aggressive language: (aggr) Regardless of the author’s intent, the language

of the tweet could be seen as aggressive. The user either addresses a group or

individual, and the message contains at least one phrase that could be described

as confrontational, derogatory, insulting, threatening, hostile, violent, hateful, or

sexually abusive.

2. Repetition: (rep) The target user has received at least two aggressive messages

in total (either from the author or from another user in the visible thread).

3. Harmful intent: (harm) The tweet was designed to tear down or disadvan-

tage the target user by causing them distress or by harming their public image.

The target does not respond agreeably as to a joke or an otherwise lighthearted

comment.

4. Visibility among peers: (peer) At least one other user besides the target has

liked, retweeted, or responded to at least one of the author’s messages.

5. Power imbalance: (power) Power is derived from authority and perceived social

advantage. Celebrities and public figures are more powerful than common users.

Minorities and disadvantaged groups have less power. Bullies can also derive power

from peer support.

Each of these criteria was represented as a binary label, except for power imbalance,

which was ternary. We asked “Is there strong evidence that the author is more

powerful than the target? Is the target more powerful? Or if there is not any good

evidence, just mark equal.” We recognized that an imbalance of power might arise
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Figure 3.1: Cyberbullying. This thread demonstrates all five cyberbullying criteria.

in a number of different circumstances. Therefore, we did not restrict our definition

to just one form of power, such as follower count or popularity.

For instructional purposes, we provided five sample threads to demonstrate both

positive and negative examples for each of the five criteria. Two of these threads

are shown here. The thread in Figure 3.1 displays bullying behavior that is targeted

against the green user, with all five cyberbullying criteria displayed. The thread

includes repeated use of aggressive language such as “she really fucking tried” and

“she knows she lost.” The bully’s harmful intent is evident in the victim’s defensive

responses. And lastly, the thread is visible among four peers as three gang up against

one, creating a power imbalance.

On the other hand, Figure 3.2 shows the importance of context in the annotation

process. If we read only the last tweet in the thread, we might decide that the post

was cyberbullying, but given the social context here, we can confidently assert that

this post is not an example of cyberbullying. Although it contains the aggressive
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Figure 3.2: Non-cyberbullying. Although this thread contains repeated use of
aggressive language, there is no harmful intent, visibility among peers, or power
imbalance.

phrase “F*** YOU TOO B****”, the author does not intend harm. The message

is part of a joking exchange between two friends or equals, and no other peers have

joined in the conversation or interacted with the thread.

After asking workers to review these examples, we gave them a short 7-question

quiz to test their knowledge. Workers were given only one quiz attempt, and they

were expected to score at least 6 out of 7 questions correctly before they could proceed

to the paid HIT. Workers were then paid $0.12 for each thread that they annotated.

We successfully recruited 170 workers to label all 6,897 available threads in our

dataset. They labeled an average of 121.7 threads and a median of 7 threads each.

They spent an average time of 3 minutes 50 seconds, and a median time of 61 seconds

per thread. For each thread, we collected annotations from three different workers,

and from this data we computed our reliability metrics using Fleiss’s Kappa for inter-

annotator agreement as shown in Table 3.1.

We determined ground truth for our data using a 2 out of 3 majority vote as in

Hosseinmardi et al. [11]. If the message thread was missing or a target user could not
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Table 3.1: Analysis of Labeled Twitter Data

Criterion Positive
Balance

Inter-
annotator
Agreement

Correlation
with

Bullying
aggression 74.8% 0.23 0.22
repetition 6.6% 0.18 0.27

harmful intent 16.1% 0.42 0.68
visibility among peers 30.1% 0.51 0.07

target power 34.3% 0.37 0.11
author power 3.1% 0.10 -0.02
equal power 59.7% 0.22 -0.09

cyberbullying 0.7% 0.18 –

be identified, we removed the entry from the dataset, since later we would need to

draw our features from both the thread and the target profile. After filtering in this

way, we were left with 5,537 labeled tweets.

3.3 Cyberbullying Transcends Cyberaggression

As discussed earlier, some experts have argued that cyberbullying is different from

online aggression [11, 27, 28]. We asked our annotators to weigh in on this issue by

asking them the subjective question for each thread: “Based on your own intuition,

is this tweet an example of cyberbullying?” We did not use the cyberbullying label

as ground truth for training models; we only used this label to better understand

worker perceptions of cyberbullying. Our workers believed cyberbullying depends on

a weighted combination of our five criteria, with the strongest correlate being harmful

intent as shown in Table 3.1.

Furthermore, the annotators decided that our dataset contained 74.8% aggressive

messages as shown in the Positive Balance column of Table 3.1. We found that a large

majority of these aggressive tweets were not labeled as “cyberbullying.” Rather, only

10.5% were labeled by majority vote as cyberbullying, and only 21.5% were considered

harmful. From this data, we propose that cyberbullying and cyberaggression are not

equivalent classes. Instead, cyberbullying transcends cyberaggression.
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Chapter 4

Feature Engineering

We have established that cyberbullying is a complex social phenomenon, different

from the simpler notion of cyberaggression. Standard Bag of Words (BoW) features

based on single sentences, such as n-grams and word embeddings, may thus lead

machine learning algorithms to incorrectly classify friendly or joking behavior as cy-

berbullying [11, 27, 28]. To more reliably capture the nuances of repetition, harmful

intent, visibility among peers, and power imbalance, we designed a new set of features

from the social and linguistic traces of Twitter users. These measures were designed

to encode the dynamic relationship between the message author and target, using net-

work and timeline similarities, expectations from language models, and other signals

taken from the message thread.

For each feature and each cyberbullying criterion, we compared the cumulative

distributions of the positive and negative class using the two-sample Kolmogorov-

Smirnov test. We report the Kolmogorov-Smirnov statistic D (a normalized distance

between the CDF of the positive and negative class) as well as the p-value with

α = 0.05 as our level for statistical significance.
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4.1 Text-based Features

To construct realistic and competitive baseline models, we considered a set of standard

text-based features that have been used widely throughout the literature. Specifically,

we used the NLTK library [2] to construct unigrams, bigrams, and trigrams for each

labeled message. This parallels the work of Hosseinmardi et al. [12], Van Hee et al.

[35], and Xu et al. [37]. Following Zhang et al. [39], we incorporated counts from

the Linguistic Inquiry and Word Count (LIWC) dictionary to measure the linguistic

and psychological processes that are represented in the text [23]. We also used a

modified version of the Flesch-Kincaid Grade Level and Flesch Reading Ease scores

as computed in Davidson et al. [8]. Lastly, we encoded the sentiment scores for each

message using the Valence Aware Dictionary and sEntiment Reasoner (VADER) of

Hutto and Gilbert [15].

4.2 Social Network Features

Network features have been shown to improve text-based models [14, 30], and they can

help classifiers distinguish between bullies and victims [5]. These features may also

capture some of the more social aspects of cyberbullying, such as power imbalance and

visibility among peers. However, many centrality measures and clustering algorithms

require detailed network representations. These features may not be scalable for real-

world applications. We propose a set of low-complexity measurements that can be

used to encode important higher-order relations at scale. Specifically, we measure the

relative positions of the author and target accounts in the directed following network

by computing modified versions of Jaccard’s similarity index as we now explain.
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ua ? ut

(a) Downward overlap

ua ? ut

(b) Upward overlap

ua ? ut

(c) Inward overlap

ua ? ut

(d) Outward overlap

ua ? ut

(e) Bidirectional overlap

Figure 4.1: Graphical representation of the neighborhood overlap measures of
author ua and target ut

4.2.1 Neighborhood Overlap

Let N+(u) be the set of all accounts followed by user u and let N−(u) be the set of

all accounts that follow user u. Then N(u) = N+(u) ∪ N−(u) is the neighborhood

set of u. We consider five related measurements of neighborhood overlap for a given

author ua and target ut, listed here.

down(ua, ut) = |N+(ua)∩N−(ut)|
|N+(ua)∪N−(ut)|

up(ua, ut) = |N−(ua)∩N+(ut)|
|N−(ua)∪N+(ut)|

in(ua, ut) = |N−(ua)∩N−(ut)|
|N−(ut)∪N−(ut)|

out(ua, ut) = |N+(ua)∩N+(ut)|
|N+(ua)∪N+(ut)|

bi(ua, ut) = |N(ua)∩N(ut)|
|N(ua)∪N(ut)|

Downward overlap measures the number of two-hop paths from the author to the

target along following relationships; upward overlap measures two-hop paths in the

opposite direction. Inward overlap measures the similarity between the two users’ fol-

lower sets, and outward overlap measures the similarity between their sets of friends.

Bidirectional overlap then is a more generalized measure of social network similar-

ity. We provide a graphical depiction for each of these features on the right side of

Figure 4.1.

High downward overlap likely indicates that the target is socially relevant to the
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author, as high upward overlap indicates the author is relevant to the target. There-

fore, when the author is more powerful, downward overlap is expected to be lower and

upward overlap is expected be higher. This trend is slight but visible in the cumula-

tive distribution functions of Figure 4.2 (a): downward overlap is indeed lower when

the author is more powerful than when the users are equals (D = 0.143). However,

there is not a significant difference for upward overlap (p = 0.85). We also observe

that, when the target is more powerful, downward and upward overlap are both sig-

nificantly lower (D = 0.516 and D = 0.540 respectively). It is reasonable to assume

that messages can be sent to celebrities and other powerful figures without the need

for common social connections.

Next, we consider inward and outward overlap. When the inward overlap is high,

the author and target could have more common visibility. Similarly, if the outward

overlap is high, then the author and target both follow similar accounts, so they might

have similar interests or belong to the same social circles. Both inward and outward

overlaps are expected to be higher when a post is visible among peers. This is true

of both distributions in Figure 4.2. The difference in outward overlap is significant

(D = 0.04, p = 0.03), and the difference for inward overlap is short of significant

(D = 0.04, p = 0.08).

4.2.2 User-based features

We also use basic user account metrics drawn from the author and target profiles.

Specifically, we count the friends and followers of each user, their verified status,

and the number of tweets posted within six-month snapshots of their timelines, as in

Al-garadi et al. [1], Chatzakou et al. [3], and Hosseinmardi et al. [12].
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(a) Downward Overlap (b) Upward Overlap

(c) Inward Overlap (d) Outward Overlap

Figure 4.2: Cumulative Distribution Functions for neighborhood overlap on rel-
evant features. These measures are shown to be predictive of power imbalance and
visibility among peers.
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4.3 Timeline Features

Here, we consider linguistic features, drawn from both the author and target timelines.

These are intended to capture the social relationship between each user, their common

interests, and the surprise of a given message relative to the author’s timeline history.

4.3.1 Message Behavior

To more clearly represent the social relationship between the author and target users,

we consider the messages sent between them as follows:

- Downward mention count: How many messages has the author sent to the

target?

- Upward mention count: How many messages has the target sent to the author?

- Mention overlap: Let Ma be the set of all accounts mentioned by author a, and

let Mt be the set of all accounts mentioned by target t. We compute the ratio
|Ma∩Mt|
|Ma∪Mt| .

- Multiset mention overlap: Let M̂a be the multiset of all accounts mentioned

by author a (with repeats for each mention), and let M̂t be the multiset of

all accounts mentioned by target t. We measure |M̂a∩∗M̂t|
|M̂a∪M̂t|

where ∩∗ takes the

multiplicity of each element to be the sum of the multiplicity from M̂a and the

multiplicity from M̂b

The direct mention count measures the history of repeated communication between

the author and the target. For harmful messages, downward overlap is higher (D =

0.178) and upward overlap is lower (D = 0.374) than for harmless messages, as shown

in Figure 4.3. This means malicious authors tend to address the target repeatedly

while the target responds with relatively few messages.
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(a) Downward Mentions (b) Upward Mentions

(c) Mention Overlap (d) Multiset Mention Overlap

Figure 4.3: Cumulative Distribution Functions for message behavior on relevant
features. These measures are shown to be indicative of harmful intent and repetition.

Mention overlap is a measure of social similarity that is based on shared conver-

sations between the author and the target. Multiset mention overlap measures the

frequency of communication within this shared space. These features may help pre-

dict visibility among peers, or repeated aggression due to pile-on bullying situations.

We see in Figure 4.3 that repeated aggression is linked to slightly greater mention

overlap (D = 0.07, p = 0.07), but the trend is significant only for multiset mention

overlap (D = 0.08, p = 0.03).

4.3.2 Timeline Similarity

Timeline similarity is used to indicate common interests and shared topics of conver-

sation between the author and target timelines. High similarity scores might reflect

users’ familiarity with one another, or suggest that they occupy similar social posi-
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(a) Timeline Similarity (b) Timeline Similarity

Figure 4.4: Cumulative Distribution Functions for timeline similarity on relevant
features. These measures are shown to be predictive of power imbalance and harmful
intent.

tions. This can be used to distinguish cyberbullying from harmless banter between

friends and associates. To compute this metric, we represent the author and target

timelines as TF-IDF vectors ~A and ~T . We then take the cosine similarity between

the vectors as

cos θ =
~A · ~T
‖ ~A‖‖~T‖

.

A cosine similarity of 1 means that users’ timelines had identical counts across all

weighted terms; a cosine similarity of 0 means that their timelines did not contain any

words in common. We expect higher similarity scores between friends and associates.

In Figure 4.4 (a), we see that the timelines were significantly less similar when the

target was in a position of greater power (D = 0.294). This is not surprising, since

power can be derived from such differences between social groups. We do not observe

the same dissimilarity when the author was more powerful (p = 0.58). What we do

observe is likely caused by noise from extreme class imbalance and low inter-annotator

agreement on labels for author power.

Turning to Figure 4.4 (b), we see that aggressive messages were less likely to harbor

harmful intent if they were sent between users with similar timelines (D = 0.285).

Aggressive banter between friends is generally harmless, so again, this confirms our
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intuitions.

4.3.3 Language Models

Harmful intent is difficult to measure in isolated messages because social context

determines pragmatic meaning. We attempt to approximate the author’s harmful

intent by measuring the linguistic “surprise” of a given message relative to the author’s

timeline history. We do this in two ways: through a simple ratio of new words, and

through the use of language models.

To estimate historical language behavior, we count unigram and bigram frequen-

cies from a 4-year snapshot of the author’s timeline. Then, after removing all URLs,

punctuation, stop words, mentions, and hashtags from the original post, we take the

cardinality of the set unigrams in the post having zero occurrences in the timeline.

Lastly, we divide this count by the length of the processed message to arrive at our

new words ratio. We can also build a language model from the bigram frequencies,

using Kneser-Ney smoothing as implemented in NLTK [2]. From the language model,

we compute the surprise of the original message m according to its cross-entropy,

given by

H(m) = − 1

N

N∑
i=1

logP (bi)

where m is composed of bigrams b1, b2, . . . , bN , and P (bi) is the probability of the ith

bigram from the language model.

We see in Figure 4.5 that harmfully intended messages have a greater density

of new words (D = 0.06). This is intuitive, since attacks may be staged around

new topics of conversation. However, the cross entropy of these harmful messages is

slightly lower than for harmless messages (D = 0.06). This may be due to harmless

jokes, since joking messages might depart more from the standard syntax of the

author’s timeline.
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(a) New Words Ratio (b) Cross Entropy

Figure 4.5: Cumulative Distribution Functions for language models on relevant
features. These measures are shown to be predictive of harmful intent.

4.4 Thread Features

Finally, we turn to the messages of the thread itself to compute measures of visibility

and repeated aggression.

4.4.1 Visibility

To determine the public visibility of the author’s post, we collect basic measurements

from the interactions of other users in the thread. They are as follows.

- Message count : Count the messages posted in the thread

- Reply message count : Count the replies posted in the thread after the author’s

first comment.

- Reply user count : Count the users who posted a reply in the thread after the

author’s first comment.

- Maximum author favorites : The largest number of favorites the author received

on a message in the thread.

- Maximum author retweets : The largest number of retweets the author received

on a message in the thread.
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4.4.2 Aggression

To detect repeated aggression, we again employ the hate speech and offensive language

classifier of Davidson et al. [8]. Each message is given a binary label according to the

classifier-assigned class: aggressive (classified as hate speech or offensive language) or

non-aggressive (classified as neither hate speech nor offensive language). From these

labels, we derive the following features.

- Aggressive message count : Count the messages in the thread classified as ag-

gressive

- Aggressive author message count : Count the author’s messages that were clas-

sified as aggressive

- Aggressive user count : Of the users who posted a reply in the thread after the

author first commented, count how many had a message classified as aggressive
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Chapter 5

Model Evaluation

5.1 Experiments

Using our proposed features from Chapter 4 and ground truth labels from our annota-

tion task in Chapter 3, we trained a separate Logistic Regression classifier for each of

the five cyberbullying criteria, and we report precision, recall, and F1 measures over

each binary label independently. We averaged results using five-fold cross-validation,

with 80% of the data allocated for training and 20% of the data allocated for testing

at each iteration. To account for the class imbalance in the training data, we used the

synthetic minority over-sampling technique (SMOTE) [4]. We did not over-sample

testing sets, however, to ensure that our tests better match the class distributions

obtained as we did by pre-filtering for aggressive directed Twitter messages.

We compare our results across the five different feature combinations given in

Table 5.1. Note that because we do not include thread features in the User set, it can

be used for cyberbullying prediction and early intervention. The Proposed set can

be used for detection, sinct it is a collection of all newly proposed features, including

thread features. The Combined adds these to the baseline text features.
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Table 5.1: Feature Combinations

Feature BoW Text User Proposed Combined
n-grams 3 3 3

LIWC, VADER, Flesch-Kincaid 3 3

Friend/following counts, tweet count, verified 3 3 3

Neighborhood overlap measures 3 3 3

Mention counts and overlaps 3 3 3

Timeline similarity 3 3 3

New words ratio, cross-entropy 3 3 3

Thread visibility features 3 3

Thread aggression features 3 3

5.2 Results

The performance of the different classifiers is summarized in Tables 5.2, 5.3, and

5.4. Here, we see that Bag of Words and text-based methods performed well on the

aggressive language classification task, with an F1 score of 83.5%. This was expected

and the score aligns well with the success of other published results of Table 2.3.

Cyberbullying detection is more complex than simply identifying aggressive text,

however. We find that these same baseline methods fail to reliably detect repetition,

harmful intent, visibility among peers, and power imbalance, as shown by the low

recall scores in Table 5.3. We conclude that our investigation of socially informed

features was justified.

Our proposed set of features beats recall scores for lexically trained baselines in all

but the aggression criterion. We also improve precision scores for repetition, visibility

among peers, and power imbalance. When we combine all features, we see our F1

scores beat baselines for each criterion. This demonstrates the effectiveness of our

approach, using linguistic similarity and community measurements to encode social

characteristics for cyberbullying classification.

Although we achieve moderately competitive scores in most categories, our classi-

fiers are still over-classifying cyberbullying cases. Precision scores are generally much

lower than recall scores across all models. To reduce our misclassification of false
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Table 5.2: Logistic Regression Precision

Criterion BoW Text User Proposed Combined
aggression 82.5% 82.3% 77.1% 78.7% 82.6%
repetition 7.8% 13.4% 7.7% 15.3% 31.7%

harmful intent 29.6% 49.4% 35.8% 34.5% 55.3%
visibility among peers 30.8% 34.3% 34.0% 42.2% 46.8%

author power 1.9% 3.6% 7.6% 9.8% 17.0%
target power 43.5% 51.5% 77.6% 75.2% 77.0%

Table 5.3: Logistic Regression Recall

Criterion BoW Text User Proposed Combined
aggression 77.0% 84.8% 47.8% 51.6% 85.6%
repetition 17.6% 7.3% 49.5% 64.3% 26.2%

harmful intent 40.2% 44.4% 63.4% 67.7% 52.7%
visibility among peers 34.8% 20.4% 47.1% 54.2% 33.7%

author power 6.5% 1.6% 74.1% 80.0% 11.9%
target power 49.4% 43.3% 73.3% 80.8% 71.1%

Table 5.4: Logistic Regression F1 Scores

Criterion BoW Text User Proposed Combined
aggression 79.7% 83.5% 59.0% 62.3% 84.1%
repetition 10.8% 9.4% 13.3% 24.7% 28.7%

harmful intent 34.1% 46.7% 38.7% 45.7% 53.8%
visibility among peers 32.7% 25.5% 39.5% 47.4% 45.5%

author power 2.9% 2.2% 13.7% 17.5% 14.0%
target power 46.2% 47.0% 75.3% 77.9% 73.9%



30

positives and better distinguish between joking or friendly banter and cyberbullying,

it may be necessary to mine for additional social features. Overall, we should work

to increase all F1 scores to above 0.8 before we can consider our classifiers ready for

real-world applications [27].

We obtained similar results by replacing our logistic regression model with any of

a k-nearest neighbors (KNN) model, random forest, support vector machine (SVM),

AdaBoost, or Multilayer Perceptron (MLP). We report all precision, recall, and F1

scores in Appendix 2, Tables B.1-B.15. We chose to highlight logistic regression here

because it can be more easily interpreted. As a result, we can identify the relative

importance of our proposed features. The feature weights are also given Tables 5.5-

5.9. Here we can observe a trend. The aggressive language and repetition criteria

are dominated by lexical features; the harmful intent is split between lexical and

historical communication features; and the visibility among peers and target power

criteria are dominated by our proposed social features.

Table 5.5: Top Absolute Weights for Aggressive Language

Rank Feature Weight
1 affect (LIWC) -1.34
2 sexual (LIWC) 1.07
3 negemo (LIWC) 0.90
4 maximum author retweets 0.86
5 relativ (LIWC) -0.75
6 bio (LIWC) -0.69
7 posemo (LIWC) 0.66
8 num chars -0.64
9 space (LIWC) 0.52
10 upward overlap 0.51
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Table 5.6: Top Absolute Weights for Repetition Features

Rank Feature Weight
1 negemo (LIWC) 1.40
2 author verified status -1.32
3 affect (LIWC) -1.24
4 cogmech (LIWC) -0.96
5 relativ (LIWC) -0.89
6 posemo (LIWC) 0.80
7 social (LIWC) 0.77
8 aggressive user count 0.63
9 upward overlap 0.62
10 number of unique terms 0.61

Table 5.7: Top Absolute Weights for Harmful Intent

Rank Feature Weight
1 number of words -1.70
2 number of unique terms 1.41
3 bio (LIWC) -1.05
4 funct (LIWC) 0.95
5 author follower count -0.90
6 present (LIWC) 0.83
7 you (LIWC) 0.83
8 message count 0.79
9 upward mention count -0.71
10 verb (LIWC) -0.67

Table 5.8: Top Absolute Weights for Visibility Among Peers

Rank Feature Weight
1 author follower count 6.29
2 maximum author retweets -1.63
3 maximum author favorites 1.46
4 aggressive user count -1.36
5 number of words -1.16
6 reply user count 1.03
7 number of unique terms 1.02
8 reply message count -0.91
9 message count 0.77
10 affect (LIWC) -0.67

Table 5.9: Top Absolute Weights for Target Power

Rank Feature Weight
1 target follower count 2.28
2 author follower count -1.67
3 bidirectional overlap -1.22
4 target verified status 1.20
5 upward overlap -1.11
6 downward overlap 1.04
7 relativ (LIWC) 0.76
8 reply user count -0.69
9 space (LIWC) -0.68
10 message count -0.63
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Chapter 6

Inferring The Target User

In Chapter 4, we derived our feature set from the social and linguistic profiles of both

the author and target accounts. Implicitly, we assumed we could reliably identify the

target user’s account. To do so, we used the annotations that were provided to us

by Mechanical Turk workers in Chapter 3. For real-world implementation, however,

our classification system would need to infer the target user automatically before the

drawing the relevant social features from the target profile.

Automatically inferring the target user profile is a challenging NLP task. Here we

formally outline the problem, propose an original strategy, and evaluate the results of

our preliminary approach. In summary, we take a linguistically informed, rule-based

heuristic approach that accounts for pronoun use as well as the reply structure of the

conversational thread.

6.1 Problem Formulation

Formally, we can define a message thread as a 6-tuple

M := (U, T, P,Σ, σ, τ)
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where U is the set of user account names, T is the set of post times, P ⊆ U×P(U)×T

is the set of directed post interactions, and Σ is the set of message strings, while

σ : P → Σ maps posts to message strings, and τ : P → T maps posts to post times.

Here, each post pk ∈ P is a 3-tuple given by (uk, Rk, tk) where uk ∈ U represents

the author user account name, Rk := [ur] gives the ordered list of all recipient user

accounts ur, and tk gives the time that post pk was sent. Therefore τ(pk) = tk.

Now, given a focus post f ∈ P , we consider the ordered sequence of posts S :=

p1, p2, . . . , pn such that p1 = f and τ(pi) < τ(pi+1) ∀i ∈ {1, 2, . . . , n − 1}. From S,

our objective is to identify a user ut ∈ U about whom post f was created primarily.

We call ut the target user.

6.2 Proposed Algorithm

Building on the formulation outlined in the previous subsection, we will now detail

our target identification algorithm Targ(M, f) here as Algorithm 1. We will now give

a basic overview of our heuristic approach along with the motivation for the decisions

we made.

We initialize a variable user_pool to store the list of usernames that are candi-

dates for the potential target. At the start of our algorithm, all users are considered

as candidates except for uf , the author of the message in focus.

Next, we iterate forward in time through the thread, considering each post pi ∈ S.

We use the stanfordnlp library to run a dependency parse of the string σ(pi). Then

we consider each word in the dependency parse in reverse sentence order, scanning

for subject dependencies. We scan the string in reverse order because we intend to

select as subject the more deeply nested phrases, and these phrases are more likely to

appear towards the right of the string. If we find a subject, and the subject is a noun

(NNP, NNPS), we try matching it to one of the known usernames in U and return.
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Algorithm 1: Targ(M, f)
Data: Message thread M := (U, T, P,Σ, σ, τ) with focus message

f := (uf , Rf , tf ) ∈M

Result: Target user ut

1 initialize S := p1, p2, . . . , pn such that p1 = f and τ(pi) < τ(pi+1);

2 user_pool ← U \ {uf};

3 for pi := (uri , Ri, ti) ∈ S do

4 Initialize i_subj, you_subj, has_subj, has_verb to False;

5 for wj ∈ reverse(dep_parse(σ(pi))) do

6 if pos(wj) ∈ [V B, V BZ, V BP, V BD] then

7 has_verb ← True;

8 end

9 else if dep(wj) ∈ [nsubj, nsubjpass, vocative] then

10 has_subj ← True; if pos(wj) ∈ [NNP,NNPS] then

11 return match_string(wj, U);

12 end

13 else if pos(wj) = PRP then

14 if pers(wj) = 1 then

15 i_subj ← True;

16 end

17 else if pers(wj) = 2 then

18 you_subj ← True;

19 end

20 else if pers(wj) = 3 then

21 user_pool ← user_pool \{Ri[0]};

22 end

23 end

24 end

25 end

26 if you_subj or (has_verb and not has_subj) then

27 return Ri[0];

28 end

29 if not you_subj then

30 user_pool ← user_pool \{Ri[0]};

31 end

32 end

33 return user_pool[0] ;
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If, instead, the given word is personal pronoun (PRP), we mark either first person

(i_subj) or second person (you_subj) accordingly. If the pronoun is third person,

we remove the first direct recipient user from the user_pool because the author was

not likely talking about them.

If we have considered each word in the given post pi, we have reached the end of

the inner loop. If the post was found to have a you_subj or an implied second person

subject from the combination of has_verb and NOT has_subj, we just return the

first direct recipient user, since the post was explicitly directed towards them. Instead,

if there was no you_subj, we remove the first direct recipient user from the pool of

target candidates since the thread likely did not, at this time step, directly pertain

to them.

6.3 Results

We evaluate our proposed model for accuracy using two different label sets. The

MTurk Dataset we draw directly from Chapter 3 using labels from the original an-

notation process. The Hand-Annotated Subset represents a subset of the original

MTurk dataset where we hand-annotated 95 randomly sampled threads. We com-

pare our Proposed Algorithm from above with a baseline First Mention classifier that

simply reports the first recipient – that is, the first direct mention – found in message.

Model MTurk Dataset Hand-Annotated Subset
Proposed Algorithm 30.0 68.4
First Mention 91.7 6.3

Table 6.1: Model Accuracy for Target Inference

We see that for the MTurk dataset, the baseline algorithm surprisingly achieves

very high accuracy. This is likely because our annotators defaulted to the first mention

when in cases of uncertainty. However, we also see that our approach far surpasses

first mention guessing on our hand-annotated subset.
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Chapter 7

Conclusion

In this study, we produced an original dataset for cyberbullying detection research.

Our labeling scheme was designed to flexibly accommodate the collection of varied

but related cyberbullying definitions that have been proposed throughout the liter-

ature. In order to accurately represent the nature of cyberbullying, we decomposed

this complex issue into five representative characteristics. Our classes distinguish cy-

berbullying from other related behaviors, such as isolated aggression or crude joking.

To help annotators infer these distinctions, we provided them with the full context of

each message’s reply thread, along with a list of the author’s most recent mentions.

In this way, we secured a set of reliable labels for more unambiguous cyberbullying

representation.

From these ground truth labels, we designed a new set of features to account

for each of the five cyberbullying criteria. Unlike previous text-based or user-based

features, our feature set encodes the relationship between a message author and tar-

get. We show that these features significantly improve the performance of standard

text-based models. These results demonstrate the relevance of social-network and

language-based measurements to account for the nuanced social characteristics of

cyberbullying.
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Despite improvements over baseline, our classifiers have not yet attained the high

levels of precision and recall that should be expected of real-world detection systems.

For this reason, we argue that the challenging task of cyberbullying detection remains

an open research problem. We make our dataset publicly available so that it may be

used to train more reliable cyberbullying detection models.

Lastly, we proposed a new algorithm for inferring the cyberbullying target from

noun and pronoun referents and the structure of the message thread. This step was

necessary for a model like ours, which draws relevant features from both the author

and target profiles as well as the relationship between them.

7.1 Limitations

Our study was focused on the Twitter ecosystem and a small part of its network.

The initial sampling of tweets was based on a machine learning classifier of aggressive

English language with a reported F1 score of 0.90 [8]. Even with this filter, only 0.7%

of tweets were deemed by a majority of MTurk workers as cyberbullying (Table 3.1).

This extreme class imbalance can disadvantage a wide range of machine learning mod-

els. Moreover, the MTurk workers exhibited only moderate inter-annotator agreement

(Table 3.1).

We acknowledge that notions of harmful intent and power imbalance can be sub-

jective, since they may depend on the particular conventions or social structure of a

given community. For these reasons, we recognize that cyberbullying still has not been

unambiguously defined. Moreover, the underlying constructs are difficult to identify.

In this study, we did not train workers to recognize subtle cues for interpersonal

popularity, nor the role of anonymity in creating a power imbalance.

Furthermore, because we lack the authority to define cyberbullying, we cannot as-

sert a two-way implication between cyberbullying and the five criteria outlined here.
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It may be possible for cyberbullying to exist with only one criterion present, such as

harmful intent. Our five criteria also might not span all of the dimensions of cyber-

bullying. However, they are representative of the literature in both the social science

and machine learning communities, and they can be used in weighted combinations

to accommodate new definitions.

The main contribution of our paper is not that we solved the problem of cyber-

bullying detection. Instead, we have exposed the challenge of defining and measuring

cyberbullying activity, which has been historically overlooked in the research commu-

nity. Furthermore, we have proposed a target identification algorithm and a new set

of features that can be used together to augment future efforts towards more robust

and socially-informed methods for cyberbullying detection.

7.2 Future Work

Cyberbullying detection is an increasingly important and yet challenging problem

to tackle. A lack of detailed and appropriate real-world datasets stymies progress

towards more reliable detection methods. With cyberbullying being a systemic issue

across social media platforms, we urge the development of a methodology for data

sharing with researchers that provides adequate access to rich data to improve on the

early detection of cyberbullying while also addressing the sensitive privacy issues that

accompany such instances.

Once the data becomes available, the first major objective for future work is to

increase performance through the use of new features or improved models. New

features could include approximations of higher-order social network measures like

community clustering, edge centrality, or node similarity scores [5]. Other features

might be drawn from related image content [12], including links and profile images.

New models might take a number of different approaches. Previously, Singh et al. [30]
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used a fusion approach to account for inter-dependencies between features, and Soni

and Singh [33] used point processes to represent the temporal dynamics of message

threads. Neural networks might also prove successful, following the results of Zhang

et al. [39].

The second major objective is to achieve and demonstrate computational effi-

ciency. Detection algorithms must be fast in order to scale to real-world systems.

Towards this end, some researchers have considered online algorithms [38] as well as

semi-supervised approaches [20]. Future studies should include detailed estimates on

the run times of their proposed methods, including the time needed to make API

calls.



40

Appendix A

Real-World Class Distribution

To understand the real-world class distribution for the cyberbullying criteria, we

randomly selected 222 directed English tweets from an unbiased sample of drawn

from the Twitter Decahose stream across the entire month of October 2016. Using

the same methodology given in the paper, we had these tweets labeled three times

each on Amazon Mechanical Turk. Again, ground truth was determined using 2

out of 3 majority vote. Upon analysis, we found that the positive class balance was

prohibitively small, especially for repetition, harmful intent, visibility among peers,

and author power, which were all under 5%.

Table A.1: Analysis of Unfiltered Decahose Data

Criterion Positive
Balance

Inter-
annotator
Agreement

Correlation
with

Bullying
aggression 6.3% 0.23 0.68
repetition 0.9% 0.04 0.46

harmful intent 1.4% 0.31 0.75
visibility among peers 0.17% 0.51 0.11

target power 22.5% 0.23 0.11
author power 3.6% 0.04 0.06
equal power 64.7% 0.15 -0.14

cyberbullying 2.7% 0.25 -
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Appendix B

Model Evaluation

For the sake of comparison, we provide precision, recall, and F1 scores for five different

machine learning models: k-nearest neighbors (KNN), random forest, support vector

machine (SVM), AdaBoost, and Multilayer Perceptron (MLP). Then we provide fea-

ture weights for our logistic regression model trained on each of the five cyberbullying

criteria.

Table B.1: KNN Precision

Criterion BoW Text User Proposed Combined
aggression 86.0% 82.7% 74.6% 76.0% 82.6%
repetition 6.9% 7.4% 7.0% 13.3% 8.9%

harmful intent 19.8% 21.2% 29.7% 29.2% 23.4%
visibility among peers 30.8% 31.4% 30.1% 34.7% 32.4%

target power 37.0% 38.2% 64.0% 64.1% 49.1%

Table B.2: Random Forest Precision

Criterion BoW Text User Proposed Combined
aggression 77.6% 80.1% 78.3% 78.7% 79.7%
repetition 6.5% 6.8% 7.7% 16.1% 10.8%

harmful intent 18.4% 28.1% 33.2% 33.4% 43.1%
visibility among peers 28.7% 32.7% 34.8% 42.8% 35.1%

target power 39.3% 43.3% 77.9% 74.5% 69.6%
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Table B.3: SVM Precision

Criterion BoW Text User Proposed Combined
aggression 84.1% 88.1% 77.4% 79.2% 86.6%
repetition 6.7% 7.0% 6.9% 16.7% 20.1%

harmful intent 17.9% 21.7% 33.7% 34.4% 30.5%
visibility among peers 29.8% 30.6% 33.9% 40.2% 40.9%

target power 36.2% 39.8% 75.4% 71.3% 47.8%

Table B.4: AdaBoost Precision

Criterion BoW Text User Proposed Combined
aggression 82.6% 81.6% 77.0% 77.5% 81.6%
repetition 7.8% 9.0% 7.3% 16.6% 25.8%

harmful intent 29.1% 46.4% 34.3% 39.9% 60.0%
visibility among peers 30.5% 32.9% 35.9% 45.8% 46.1%

target power 42.5% 46.5% 78.0% 78.2% 77.9%

Table B.5: MLP Precision

Criterion BoW Text User Proposed Combined
aggression 82.8% 78.8% 76.7% 77.4% 78.3%
repetition 7.7% 8.7% 8.6% 16.9% 19.6%

harmful intent 27.4% 42.8% 37.3% 38.4% 46.8%
visibility among peers 30.1% 34.0% 34.3% 41.6% 38.5%

target power 39.6% 45.2% 74.3% 72.0% 68.6%

Table B.6: KNN Recall

Criterion BoW Text User Proposed Combined
aggression 34.8% 37.8% 58.3% 56.6% 33.5%
repetition 65.5% 63.3% 29.0% 45.2% 70.1%

harmful intent 75.7% 77.2% 56.5% 56.0% 82.5%
visibility among peers 70.6% 74.0% 43.7% 48.4% 78.1%

target power 71.3% 73.7% 72.4% 75.0% 85.0%
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Table B.7: Random Forest Recall

Criterion BoW Text User Proposed Combined
aggression 56.4% 78.5% 43.7% 45.3% 76.2%
repetition 36.2% 24.9% 46.3% 64.7% 29.9%

harmful intent 42.4% 35.1% 78.4% 78.2% 53.5%
visibility among peers 48.1% 30.6% 50.5% 49.9% 32.5%

target power 60.1% 38.0% 79.0% 81.9% 76.7%

Table B.8: SVM Recall

Criterion BoW Text User Proposed Combined
aggression 9.6% 26.0% 50.4% 55.7% 31.2%
repetition 94.0% 83.0% 38.9% 48.5% 52.1%

harmful intent 67.6% 76.7% 70.3% 68.5% 74.3%
visibility among peers 86.8% 94.0% 53.3% 58.1% 33.2%

target power 92.6% 46.0% 72.8% 80.1% 92.7%

Table B.9: AdaBoost Recall

Criterion BoW Text User Proposed Combined
aggression 75.0% 86.4% 65.9% 77.4% 86.3%
repetition 23.8% 4.1% 26.8% 31.2% 17.8%

harmful intent 44.4% 37.8% 57.0% 52.8% 50.8%
visibility among peers 41.0% 15.4% 42.8% 43.1% 32.0%

target power 56.0% 39.4% 81.8% 81.0% 75.6%

Table B.10: MLP Recall

Criterion BoW Text User Proposed Combined
aggression 64.1% 86.5% 65.5% 68.0% 85.6%
repetition 26.8% 6.8% 22.5% 27.1% 12.6%

harmful intent 51.0% 33.3% 57.0% 57.0% 37.2%
visibility among peers 51.6% 23.5% 45.6% 50.2% 26.5%

target power 61.6% 37.5% 76.5% 76.2% 65.6%
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Table B.11: KNN F1

Criterion BoW Text User Proposed Combined
aggression 49.5% 51.9% 65.5% 64.9% 47.6%
repetition 12.5% 13.2% 11.3% 20.5% 15.7%

harmful intent 31.4% 33.3% 38.9% 38.3% 36.5%
visibility among peers 42.8% 44.1% 35.6% 40.4% 45.8%

target power 48.7% 50.3% 67.9% 69.1% 62.2%

Table B.12: Random Forest F1

Criterion BoW Text User Proposed Combined
aggression 65.2% 79.3% 56.0% 57.5% 77.9%
repetition 11.0% 10.6% 13.2% 25.8% 15.8%

harmful intent 25.6% 31.1% 46.6% 46.8% 47.7%
visibility among peers 35.7% 30.8% 41.2% 46.1% 33.6%

target power 47.4% 39.9% 78.4% 78.0% 72.8%

Table B.13: SVM F1

Criterion BoW Text User Proposed Combined
aggression 16.9% 37.7% 60.9% 65.4% 42.1%
repetition 12.6% 13.0% 11.8% 24.8% 28.9%

harmful intent 28.1% 33.8% 45.6% 45.8% 43.3%
visibility among peers 44.3% 46.1% 41.4% 47.4% 28.6%

target power 52.0% 35.8% 74.1% 75.4% 63.1%

Table B.14: AdaBoost F1

Criterion BoW Text User Proposed Combined
aggression 78.6% 83.9% 71.0% 77.5% 83.9%
repetition 11.7% 5.6% 11.5% 21.6% 20.9%

harmful intent 35.1% 41.6% 42.8% 45.4% 55.0%
visibility among peers 34.9% 21.0% 39.1% 44.3% 37.8%

target power 48.3% 42.7% 79.8% 79.6% 76.7%
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Table B.15: MLP F1

Criterion BoW Text User Proposed Combined
aggression 72.2% 82.5% 70.7% 72.4% 81.8%
repetition 12.0% 7.6% 12.4% 20.7% 15.2%

harmful intent 35.7% 37.3% 45.0% 45.8% 41.3%
visibility among peers 38.0% 27.7% 39.2% 45.5% 31.4%

target power 48.2% 41.0% 75.4% 74.0% 67.0%
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Appendix C

Combined Cyberbullying Classifier

Table C.1: F1 Scores for Combinations of Cyberbullying Criteria

Cyberbullying Criteria BoW Text User Proposed Combined
aggr, rep 10.3% 7.8% 13.8% 26.6% 26.5%

aggr, harm 34.5% 47.3% 43.4% 44.4% 54.3%
aggr, peer 25.0% 21.7% 34.0% 38.3% 30.0%

aggr, power 38.3% 39.1% 67.5% 67.8% 65.4%
rep, harm 5.8% 5.2% 7.7% 15.0% 13.8%
rep, peer 1.9% 2.9% 5.2% 10.8% 4.7%

rep, power 2.4% 4.2% 10.3% 9.9% 12.1%
harm, peer 10.5% 13.8% 17.5% 17.9% 20.5%

harm, power 20.6% 37.0% 49.8% 49.4% 55.8%
peer, power 15.2% 10.4% 34.4% 33.2% 23.3%

aggr, rep, harm 5.8% 5.2% 7.7% 15.0% 13.8%
aggr, rep, peer 3.7% 0.9% 5.0% 10.8% 3.5%

aggr, rep, power 5.3% 4.4% 9.6% 9.7% 9.8%
aggr, harm, peer 9.3% 18.3% 18.3% 19.5% 25.5%

aggr, harm, power 23.6% 34.9% 49.8% 49.2% 56.4%
aggr, peer, power 11.1% 11.5% 31.9% 29.7% 19.1%

rep, harm, peer 1.9% 4.8% 3.0% 6.6% 10.0%
rep, harm, power 2.4% 4.0% 10.2% 9.9% 6.8%
rep, peer, power 0.9% 0.0% 4.5% 4.1% 0.0%

harm, peer, power 7.5% 16.8% 16.8% 16.3% 22.4%
aggr, rep, harm, peer 1.9% 4.8% 3.0% 6.6% 10.0%

aggr, rep, harm, power 2.4% 4.0% 10.2% 9.9% 6.8%
aggr, rep, peer, power 0.9% 0.0% 4.5% 4.1% 0.0%

aggr, harm, peer, power 8.2% 15.4% 16.0% 15.7% 20.6%
rep, harm, peer, power 0.0% 0.0% 3.9% 4.7% 0.0%

aggr, rep, harm, peer, power 0.0% 0.0% 3.9% 4.7% 0.0%
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