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Abstract

Spatial Latent Process Models to Overcome Preferential Sampling in Disease
Surveillance Systems

By Brian Conroy

Disease surveillance systems are crucial to monitor and predict outbreaks, epidemics
and pandemics, as well as to understand the dynamics and trends of diseases over
space and time. These systems increasingly rely on complex data collection mecha-
nisms which present particular challenges to the statistician, entailing sampling pro-
cesses which often violate key assumptions of standard statistical methods. One such
mechanism is known as preferential sampling, referring to a stochastic dependency be-
tween a spatial process and the locations at which it is observed. While this sampling
strategy can lead to considerably biased spatial predictions, few solutions to confront
preferential sampling have been proposed in the realm of disease surveillance, despite
this potentially deleterious impact. In the first chapter, we propose a novel shared
latent process model to correct for preferential sampling in disease surveillance appli-
cations, and show by simulation that the practical benefits of such development are
reduced bias in parameter estimates and greater accuracy of the estimated disease
risk surface. We apply the model to a disease surveillance dataset targeting plague
in the rodent population of California, obtaining a substantially improved risk map
in comparison to benchmark approaches. In the second chapter, we develop a new
multivariate geostatistical model which corrects for preferential sampling when esti-
mating the risk surfaces of a disease common across multiple host species, one which
improves spatial predictions by sharing information between species in a hierarchical
modeling framework. In the final chapter, we address the dearth of methods to correct
for preferential sampling in temporally referenced data by developing a spatiotempo-
ral preferential sampling model, capable of capturing important temporal trends in
underlying the disease and sampling processes, yielding more accurate disease risk
maps as a result.
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1

Chapter 1

Preferential Sampling in Disease

Surveillance

1.1 Introduction

Disease surveillance systems are crucial to monitor and predict outbreaks, epidemics

and pandemics, as well as to understand the dynamics and trends of diseases over

space and time. These systems increasingly rely on complex or unconventional data

collection mechanisms (Choi et al., 2016; Plowright et al., 2019) which present partic-

ular challenges to the statistician, entailing sampling processes which often violate key

assumptions of standard statistical methods. Several types of sampling issues may

characterize disease surveillance applications, notably opportunistic sampling (Zim-

mer and Lee, 2019), detection error (Tabak et al., 2019), and preferential sampling

(Cecconi et al., 2016). Failing to accurately adjust for these influences in statistical

modeling has the potential to greatly distort parameter estimates and predicted risk

surfaces, the practical consequences of which are, at best, an erroneous understanding
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of the relationship between key covariates and disease risk, and at worst, a mischar-

acterization of areas at risk, thereby harming the ability of the system to optimally

monitor and respond to the disease.

Project 1 considers a particularly challenging application of disease surveillance: the

surveillance of the zoonotic hosts of plague in the American southwest. This applica-

tion motivates the development of novel methods to correct for preferential sampling,

a sampling mechanism in which observation sites tend to be assigned more frequently

to areas at high risk for the disease. We propose a shared latent process model to

address this sampling strategy, and show by simulation that the practical benefits of

such development are reduced bias in parameter estimates and greater quality of the

estimated disease risk surface.

While the primary methodological focus of Project 1 involves novel solutions to correct

for preferential sampling in the context of disease surveillance, preferential sampling

itself arises in several other domains. More generally, preferential sampling is a data

collection strategy in which there is a stochastic dependence between the locations at

which a spatial process is observed and the value of the process itself. Applications

which often rely on preferentially sampled data include air pollution monitoring (Lee

et al., 2011), mineral exploration (Veneziano and Kitanidis, 1982), species distribution

modeling (Gelfand and Shirota, 2019), and real estate pricing (Paci et al., 2019).

Preferential sampling may arise for a variety of reasons. In the context of disease

surveillance, one rationale is to collect a maximum volume of information from areas

of particular concern given the constraint of limited resources, thereby allowing for

a rapid response to outbreaks by monitoring areas at greatest risk. Alternately,

when conducting surveillance on a rare disease, it may be impractical to employ

random sampling, given the low probability that each sample has of containing any

disease positive results. Or, when monitoring a zoonotic disease, the best use of
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limited resources may be to surveil areas of high consequence, where emergence of

the disease would come at a particularly high human or economic cost, in contrast

to areas where the disease may reside in the host species but where transmission to

humans is unlikely. A similar motivation appears in species distribution modeling,

where random sampling is typically too impractical or unlikely to observe the species

of interest to be useful (Gelfand and Shirota, 2019). In the context of air pollution

monitoring, a network of observation sites may be specifically designed to measure

extreme values in order to identify noncompliance with pollution regulations (Chang

et al., 2007). These concerns are largely separate from obtaining an unbiased estimate

of the spatial process of interest over the entirety of the study region. In point of

fact, the downside of preferential sampling is often a negative impact on the quality

of parameter estimates and spatial predictions.

While sampling at high response locations is often the optimal choice from a man-

agerial or budgetary perspective, the drawback is that it may result in a statistically

biased estimation of the spatial process of interest (Diggle et al., 2010; Lee et al.,

2011; Pati et al., 2011; Gelfand et al., 2012; Lee et al., 2015; Gelfand et al., 2019).

This phenomenon is due to the fact that under preferential sampling, the locations

of observation sites, X, are stochastically dependent on Y , the observed response,

whereas conventional geostatistical methods typically assume X to be fixed, allowing

for the joint distribution [Y,X] to be simply factorized as [Y,X] = [Y ][X], where [.]

denotes distribution. However, preferential sampling may be ignored if the associ-

ation between the surface of interest and sampling locations can in fact be entirely

explained by shared spatial covariates, for which one adjusts (Pacifici et al., 2016).

Otherwise, erroneous inferences may result from failing to account for the stochastic

dependence between X and Y . Ultimately, when considering preferential sampling in

disease surveillance, there are two contrasting aims which conflict here: 1) to monitor

most sensitive areas in order to respond quickly to high impact threats, all the while
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using constrained resources, and 2) to estimate an unbiased risk surface over a broad

extent. Preferential sampling lends itself to the former, while possibly impacting the

ability to perform the latter. Thus our goal is to propose a model that can estimate

a statistically unbiased risk surface from preferentially sampled data.

The geostatistical literature contains a rich body of work for addressing preferential

sampling. Essential to these methods is the strategy of building a joint model for

locations and the measured response, wherein the locations are treated as random

quantities, typically realizations of a point process whose intensity is itself related to

the process of interest. Most notable among this body of work is the shared latent

process model of Diggle, Menezes and Su (2010), which inspired several other works

(Pati et al., 2011; Lee et al., 2011; Lee et al., 2015; Pennino et al., 2019). While the

shared latent process model, or variants thereof, have inspired a substantial body of

preferential sampling analyses in the realm of environmental pollutant monitoring,

analyses of preferentially sampled disease surveillance data seldom have attempted to

correct for the sampling process. The few exceptions to this trend arise in the area

of veterinary health monitoring (Rinaldi et al., 2015; Cecconi et al., 2016). To adjust

for preferential sampling in the analysis of parisitological livestock risk, Cecconi et al.

(2016) estimate spatially varying sampling probabilities from the fraction of sampled

farms within each grid cell in a discretization of the study region. These probabilities

are subsequently included as covariates in a geostatistical model of disease risks.

While preferential sampling adjustments have proven successful in veterinary health

surveillance, these applications hinge upon the ability to calculate spatially varying

sampling probabilities, given by the fraction of sampled farms in a region, which

entails knowing the total number of farms in a given area as the denominator. Our

methodological developments in this project focus on a scenario more common in

zoonotic disease surveillance, wherein the denominator of any particular grid cell is

unknown.
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The methods introduced in Project 1 are grounded in the application of plague surveil-

lance in the American southwest. Plague is an infectious disease caused by the Gram-

negative bacterium Yersinia pestis, typically transmitted through the bite of an in-

fected flea, although other forms of transmission occur, including droplet contact,

airborne transmission, or direct or indirect contact with an infected individual (Eisen

et al., 2006). Three main forms of plague exist, namely pneumonic, septicemic, and

bubonic, the last of which is infamous as the causative agent of the “Black Death”

in medieval Europe, estimated to have killed over 20 million people (Byrne 2004).

However, there have been in fact 3 historical outbreaks of bubonic plague reaching

pandemic levels: the plague of Justinian, affecting the Middle East and Mediter-

ranean in the 6th century CE, the Black Death beginning in 1347, spreading from

western Asia throughout the Middle East, Mediterranean, and Europe, as well as

the 1894 bubonic plague originating in Canton and Hong Kong, which subsequently

extended throughout most of Asia and India, spreading via international shipping to

ports as distant as San Francisco and Glasgow (Benedict, 1996). While there has not

been a plague pandemic since the early 20th century, the disease is still prevalent in

over 20 countries (Chanteau et al., 2000), and thus remains a nontrivial public health

concern.

However, due to the present rarity of plague in the human population of the south-

western United States, it is not practical to surveil humans alone for the disease in this

region. A much better target of surveillance consists of the zoonotic hosts of plague,

where prevalence persists at roughly 10% in the coyote (Canis latrans) population

and between 2-5% in the rodent population. Monitoring plague in its zoonotic hosts

is especially important given that many plague outbreaks in the human population

are preceded by epizootics, or outbreaks among animals (Migliani et al., 2006). The

specific plague surveillance system we consider is operated by the California Depart-

ment of Public Health, and monitors plague in the rodent family of squirrels, known
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as Sciuridae or Sciurids, comprising a total of 21 different species. The surveillance

system collects data by conducting a series of sampling events at locations throughout

California. At each sampling location, Sciurids are trapped and subsequently tested

for Yersinia pestis, primarily through F1 antigen tests. The surveillance system pre-

dominantly assigns sampling locations to high risk or high impact areas, where risk

is assessed to be high in what are viewed as plague endemic regions, as determined

by historic cases of plague in humans or recovered Sciurid specimen, and high impact

areas are regions where cases of plague in humans would be particularly damaging,

such as in national parks. In this sense the dataset is preferentially sampled. The

key challenge here is thus to correct for the effects of preferential sampling in order

to obtain improved parameter estimates and predicted risk surfaces.

In Project 1 we propose a shared latent process model to adjust for preferential

sampling when estimating disease risk maps. The model includes two main compo-

nents, one locational, describing the distribution of observation sites, and the other

describing the spatial abundances of observed disease positive and negative speci-

men. The locational component models the distribution of observation sites as an

inhomogeneous point process, whose intensity function is formulated in terms of a la-

tent spatial process. This process is shared with the intensity function of the disease

component, which describes the distribution of cases and controls also in terms of an

inhomogeneous point process. The model we propose in Project 1 is temporally ag-

gregated in the sense that it pools data collected by the surveillance system between

1983 and 2015. The intent here is to develop and assess a baseline model to adjust

for preferential sampling, before considering temporal trends in the third project of

this dissertation.

The following section presents the statistical background underpinning the develop-

ments of Project 1, namely point processes, spatial epidemiology, Gaussian processes,
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spatial process models, preferential sampling models, Hamiltonian Monte Carlo, and

spatial downscaling. We then describe the novel methods introduced by Project 1,

adapting existing preferential sampling methods to the application of disease surveil-

lance. The methods section is then followed by a series of simulation studies, demon-

strating practical benefits of these developments in the form of reduced bias in the

estimates of parameters of scientific interest, as well as improved disease risk surface

estimation compared to benchmark approaches which do not address the sampling

process.

1.2 Methods

1.2.1 Introduction

The basis of geostatistics is to make inferences about some spatial surface from sam-

ples drawn over a limited set of locations. In the context of disease surveillance, our

target is the risk surface of the disease. Traditional geostatistical models assume that

the pattern of sampling locations is not related to the spatial process being measured.

That is, samples are thought to be statistically independent from the response of in-

terest. A problem arises in that uniform random sampling is impractical in many

real world scenarios, especially those pertaining to disease surveillance. Instead, bud-

getary constraints and other considerations may dictate a pattern of sampling which

is in fact related to the spatial process of interest, wherein samples are collected in

areas of high value for the spatial surface of interest. We refer to this sampling scheme

as preferential sampling. Methods to correct for preferential sampling typically rely

on modeling the distribution of observation sites in the framework of point processes,

which we now examine.
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1.2.2 Point Processes

Studies concerned with the spatial distribution of disease risk typically confront out-

comes which are either point referenced, corresponding to a discrete set of locations

at which events are recorded (such as the presentation of a diseased individual), or

areal, that is, aggregated in space, such as the total number of diseased individuals

within a county or other spatial unit (Waller and Gotway, 2004). For our purposes

we first turn our attention to a brief overview of spatial point processes, a key frame-

work on which our developments hinge. Point processes describe random patterns of

observed events in space, with obvious relevance to several natural phenomena across

disciplines, such as the positions of trees in a field, the home locations of infected

patients, the position of stars in outer space, or the locations of human developments

in some region, to name a few. The statistical treatment of point processes begins

with a description of the first-order properties of the process, by way of the intensity

function. The intensity function of a point process describes the expected abundance

of points occurring in any subregion of space.

Definition 1. For location x and N(B) denoting the number of points in any subre-

gion B, the intensity function of a univariate spatial point process is defined as

λ(x) = lim
|dx|→0

(
E[N(dx)]

|dx|

)

From this definition it follows that the expected number of points in any subregion

B is given by N(B) =
∫
B
λ(x)dx. The second-order properties are specified by the

second-order intensity function.

Definition 2. For locations x and y, with N(B) denoting the number of points in
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any subregion B, the second-order intensity function is defined as

λ2(x, y) = lim
|dx|,|dy|→0

(
E[N(dx)N(dy)]

|dx||dy|

)

We now consider two prominent types of point processes: binomial and Poisson pro-

cesses.

Definition 3. Let f be a density function on set B ⊆ S, let n ∈ N. A point process

X consisting of n i.i.d. points with density f is a binomial point process of n points

in B with density f , written X ∼ Binomial(B, n, f).

As a simple example, the binomial point processes specified for distribution function

f = 1/|B| describes a uniform scattering of n points over the study region. The

next class of point processes, Poisson processes, are defined with respect to binomial

processes.

Definition 4. A point process X on S is a Poisson point process with intensity

function λ if: 1) for any B ⊆ S with µ(B) < ∞, N(B) ∼ Poisson(µ(B)), where

µ(B) =
∫
B
λ(s)ds. 2) for any n ∈ N and B ⊆ S with 0 < µ(B) < ∞, conditional

on N(B) = n,XB ∼ Binomial(B, n, f) with f(x) = λ(x)/µ(B). We then write

X ∼ Poisson(λ).

If λ is constant, X is called a homogeneous point process with rate λ, otherwise it is

said to be an inhomogeneous point process (Figure 1.1).
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Figure 1.1: Homogeneous (left) and inhomogeneous (right) point processes. For the
left, λ = 100, and for the right, λ(x, y) = 100exp(5x).

Application to Spatial Epidemiology

The point process framework readily lends itself to the analysis of spatial variation

in risk, as explained by Diggle (2013), who conceptualizes this application as follows.

First let r(x) be the probability an individual at location x ∈ R2 will be a case. The

intensity functions of cases and controls are, respectively,

λ1(x) = r(x)λ(x)

λ2(x) = c(1− r(x))λ(x)

where λ(x) is the intensity of the underlying population and c is a constant. Conse-

quently, the disease odds r(x)/(1− r(x)) can be calculated up to a constant as

c−1
r(x)

1− r(x)
= λ1(x)/λ2(x)

We then solve the above equation for r(x) and plug in estimates of λ1(x) and λ2(x) to

estimate the disease risk surface. A great number of studies have used point processes
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for risk surface estimation in this fashion, including Benes et al. (2005) with tick-

born encephalitis, Diggle et al. (2005) for nonspecific gastroenteric disease in the UK,

Liang et al. (2009) jointly modeling point patterns of different cancer types, Ahn et

al. (2014) modeling case patterns of diarrheal disease within communities spread over

a river network in northwestern Ecuador, or Junior et al. (2015), who incorporated

spatially varying effects of individual covariates into the intensity function of a point

process, applied to the pattern of cerebrovascular deaths in Rio de Janeiro. Point

processes are thus useful tools for the field of spatial epidemiology, with the provision

of certain key caveats. Firstly, as noted by Diggle (2013), confining a specimen to

a particular point in space fails to account for movement, complicating analysis by

the fact that the place in which an individual is recorded may not be representative

of where disease exposure occurred. Another issue, known as the ecological fallacy,

arises when relevant covariates are only available at the aggregate level, such as by

county or other geographic unit, rather than at the point level, in which case an

unbiased estimation of the relationship between disease risk and covariates may not

be recoverable (Wakefield and Shaddick, 2006).

1.2.3 Gaussian Processes

We have seen in the previous section that a key consideration of spatial epidemi-

ology concerns the possibility of spatial variation in risk, and what known factors,

if any, influence this variation. From the perspective of point process modeling,

spatial variation in risk implies inhomogeneity in the ratio of case and control in-

tensity functions, λ1(x)/λ2(x). The key to modeling the point patterns of cases and

controls then becomes how to construct the intensity functions, λ1(x) and λ2(x). In-

tensity functions are commonly modeled to be log-linear in certain covariates, such

as log(λ(x)) = z(x)Tβ, where z(x) are spatial covariates. However, in many cases
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the covariates z(x) are inadequate to capture all variation present in the data. When

unexplained spatial variation is present, it becomes valuable to introduce spatially

structured residuals into the construction of the intensity function to capture this

additional variation. Gaussian processes are one widely used solution in this regard,

although they have application well beyond spatial statistics to several other regres-

sion and modeling problems.

A Gaussian process is a set of random variables such that any finite subset follows a

multivariate normal distribution, whose mean and covariance are specified by known

functions. That is, supposing (Y1, . . . , Yn) are random variables realized from a Gaus-

sian process, then

(Y1, . . . , Yn)T ∼ Normal(µ,Σ[k(., .)])

where µ is the mean function and Σ[k(., .)] is the covariance matrix, which has been

constructed by the covariance function k(., .) of the Gaussian process, which specifies

the covariance between any two random variables in the process. In the context of

spatial statistics we consider subsets of the form (Y1(x), . . . , Yn(x)), where each Yi(x)

is taken at some point x in typically 2 or 3 dimensional space. In this case, the mean

µ of the set of n arbitrary random variables may itself be a function of x. In addition,

the i, j-th element of the covariance matrix is computed by the covariance function,

k(x, x′), which takes as input the locations of the ith and jth points.

Given that each element of the covariance matrix is calculated from the covariance

function k(x, x′), it is clear that certain restrictions must be placed on k(x, x′) such

that the resulting covariance matrix is valid, i.e. symmetric and positive definite. A

commonly used covariance function is the exponential function,
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k(x, x′;σ2, θ) = σ2exp(−||x− x′||/θ)

where ||x − x′|| is the distance between points x and x′, θ the nonnegative range

parameter controlling the scale of the spatial association, and σ2 the marginal vari-

ance, representing the magnitude of covariance as distance shrinks to zero. Another

commonly used covariance function is the squared exponential covariance function,

k(x, x′;φ, θ) = φexp(−||x − x′||2/θ), possessing the property of smoothness, unlike

the exponential function. A third popular option is the Matérn covariance function,

k(d; ν, θ, σ2) = σ2 21−ν

Γ(ν)

(√
2ν
d

θ

)ν
Kν

(√
2ν
d

θ

)

Here, d is the distance between points, Kν the modified Bessell function, and ν and

θ nonnegative parameters, with θ the range parameter and ν controlling smoothness.

An important quality of the Matérn and exponential covariance functions is that of

stationarity. A covariance function is stationary if it depends only on the separation

between the two points, rather than the absolute locations of the points in space. In

addition, a covariance function is isotropic if the distance metric used is Euclidean,

and does not depend on direction. Non-isotropic functions are relevant when the

directionality between points is of significance, as may happen in scenarios such as

monitoring pollutant levels along a river, where the direction of flow influences the

correlation in responses between points along the waterway. We concern ourselves

in this project with stationary, isotropic covariance functions. In the next section

we examine a class of point processes which incorporate Gaussian processes into

their intensity functions, before delving into the central problem of this project: how

preferential sampling influences the predictions made concerning a Gaussian process

at novel locations.
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Log Gaussian Cox Processes

In many applications, particularly epidemiological ones (Diggle et al., 2005; Liang

et al., 2008; Junior et al., 2014), an intensity function constructed from fixed co-

variates alone may be inadequate to explain the observed point patterns of cases

or controls. It is often useful to introduce a stochastic component to the intensity

function, especially when there is unexplained spatial autocorrelation between points.

This reasoning motivates Cox processes.

Definition 5. Suppose that Z = {Z(ξ) : ξ ∈ S} is a nonnegative random field so

that with probability 1, Z(ξ) is locally integrable. If the conditional distribution of X

given Z is a Poisson process on S with intensity function Z, then X is said to be a

Cox process driven by Z.

In short, a Cox process is a Poisson process with a stochastic intensity function. The

family of log Gaussian Cox Processes (LGCP) is a particular type of Cox process

wherein the intensity function is a Gaussian field.

Definition 6. Suppose that X is a Cox process driven by Z = exp(Y ) where Y is a

Gaussian field. Then X is said to be a log Gaussian Cox process (LGCP).

LGCPs are widely used in spatial epidemiology (Benes et al., 2005; Ahn et al., 2014),

as well as in methods to confront preferential sampling, as we shall see shortly. Further

discussion of the theory and application of point processes, particularly LGCPs, has

been provided by Møller and Waagepetersen (2003).
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1.2.4 Spatial Process Models

In the previous section we have seen how Gaussian processes can be incorporated

into the intensity functions of point processes to capture additional spatial variation

beyond what covariates alone may describe. Now, we examine another set of models

derived from Gaussian process, i.e. spatial process models. The preferential sampling

literature focuses on the effects of nonrandom sampling on this class of models. The

conventional spatial process model describes a response Y (s) at location s as the sum

of a deterministic mean function µ(s) and residual component w(s)+ε(s), where w(s)

and ε(s) are spatial and nonspatial residuals, respectively:

Y (s) = µ(s) + w(s) + ε(s)

The deterministic mean µ(s) is typically a function of spatial covariates, µ(s) =

x(s)Tβ, and the w(s) follow a Gaussian process with mean 0 and stationary co-

variance function k(x, x′;σ2, θ), where σ2 is the marginal variance and θ the spatial

range. w(s) is intended to capture additional spatial variation not explained by the

mean component µ(s). Residuals ε(s), are assumed independent with mean zero and

variance τ 2, referred to as the nugget effect. The nonspatial residuals ε(s) are of-

ten interpreted as measurement error or noise accompanying repeat measurements at

a particular location, or as micro-scale variability, i.e. variation in the response at

distances smaller than the distance between sites observed in the data.

We now proceed to an introduction of spatial kriging, the process by which response

values Y (s) of the spatial process model are predicted at new, unobserved locations.

Then, in the subsequent section, we examine how preferential sampling deteriorates

the quality of kriging predictions, a core problem this dissertation seeks to address.
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Kriging

Kriging uses Gaussian field theory to define optimal spatial prediction. We seek to

use observations of a spatial process Y observed at locations (s1, . . . , sn) to find an

optimal linear predictor for the value of Y at any unknown location s0 that minimizes

the mean squared error. That is, we seek a function of the observed data, f(Y ), which

minimizes

E[(Y (s0)− f(Y ))2|Y ]

In their explanation of kriging, Bannerjee et al. (2004) show that this expectation

can be rewritten as

E[(Y (s0)− f(Y ))2|Y ] = E[(Y (s0)− f(Y ) + E[Y (s0)|Y ]− E[Y (s0)|Y ])2|Y ]

= E[(Y (s0)− E[Y (s0)|Y ])2|Y ] + (E[Y (s0)|Y ]− f(y))2

and since (E[Y (s0)|Y ]−f(y))2 is nonnegative, it follows that E[(Y (s0)−f(Y ))2|Y ] ≥

E[(Y (s0) − E[Y (s0)|Y ])2|Y ]. Therefore, the function which minimizes the mean

squared error must be the conditional expectation of Y (s0) given the data, E[Y (s0)|Y ].

In order to estimate this conditional expectation we return to the spatial process

model given in the previous section,

Y (s) = µ(s) + w(s) + ε(s)

which implies that Y = (Y (s1), . . . , Y (sn) ∼ N(Xβ, σ2H(θ) + τ 2I). Here H(θ) has
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i, jth element ρ(xi, xj; θ), where ρ is a valid, positive definite correlation function with

range parameter θ. Multivariate normal theory holds that if

Y1
Y2

 ∼ N
(µ1

µ2

 ,

Ω11 Ω12

Ω21 Ω22

)

then

E[Y1|Y2] = µ1 + Ω12Ω
−1
22 (Y2 − µ2)

V ar[Y1|Y2] = Ω11 − Ω12Ω
−1
22 Ω21

In the context of kriging we let Y1 = Y (s0), the value of the process at unobserved

location s0, and Y2 = Y = (Y (s1), . . . , Y (sn)), as well as Ω11 = σ2 + τ 2, Ω22 =

σ2H(θ) + τ 2I, and Ω12 = γT where γT = (σ2ρ(d01; θ), . . . , σ
2ρ(d0n; θ)), with the

understanding that ρ(d0i; θ) represents the correlation between the ith observed point

and unobserved point s0. Therefore, it follows from the above conditional expectation

and variance formulas that the best linear predictor for Y (s0), and its variance, are

E[Y (s0)|Y ] = xT0 β + γTΣ−1(y −Xβ)

V ar[Y (s0)|Y ] = σ2 + τ 2 − γTΣ−1γ

From a Bayesian perspective, kriging approximates the posterior predictive distribu-

tion of the response value at an unobserved location, p(Y (s0)|Y,X, x0). Collecting

model parameters into a single vector as φ = (β, σ2, θ, τ 2), the predictive distribution
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is given by

p(Y (s0)|Y,X, x0) =

∫
p(Y (s0), φ|Y,X, x0)dφ

=

∫
p(Y (s0), |Y,X, x0)p(φ|y,X)dφ

Here, p(Y (s0), |Y,X, x0) has the conditional normal distribution provided above. If

posterior samples φ(1), . . . , φ(m) are drawn from p(φ|y,X) by Markov Chain Monte

Carlo methods, then the predictive distribution is typically estimated as

p̂(Y (s0), |Y,X, x0) = G−1ΣG
g=1p(y0|Y, φG, x0)

We thus draw kriged samples from the conditional normal distribution where the gth

MCMC sample for φ is plugged in to the conditional mean and variance formula. If

it is of interest to jointly predict the value of the response at multiple locations, then

the same approach as that used to krige for a single location may be used, with the

understanding that Y1 in the conditional multivariate normal formula is now taken

as a vector of response values.

Kriging and Preferential Sampling: Illustrated Example

Under normal circumstances, the distribution of sample sites s is assumed not to

relate to the response. But many real world scenarios, such as mineral exploration,

pollution monitoring, and disease surveillance, to name a few, often conduct mea-

surements predominantly in areas which correspond to high values for the process

of interest. The crux of the problem we investigate in this project is that, under
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such a sampling strategy, kriging typically yields biased predictions (Diggle et al.,

2010; Pati et al., 2011; Lee et al., 2011; Gelfand et al., 2012; Lee et al., 2015). We

can illustrate the effect with the following example. Suppose we discretize the state

of California into a study region containing 405 equally sized square grid cells, and

simulate a stationary, mean zero spatial Gaussian process over the centroids of these

cells, choosing an exponential covariance function k(x, x′;σ2, θ), where σ2 = 12 and

θ = 6. We refer to the simulated spatial random effects as w = (w1, . . . , w405). We

then preferentially sample w by selecting the centroids corresponding to the 50 great-

est values of w as observation sites, collecting the values of w at these sites in a vector

W2 = (w(1), . . . , w(50)). If we let W1 refer to the vector of random effects not observed

in the previous step, then from the conditional expectation of a multivariate normal

random variable it follows that

E[W1|W2] = Ω12Ω
−1
22W2

Here we assume the true values of σ2 and θ are known and can thus be used directly to

calculate Ω12 and Ω22. For comparison, we also randomly sample 50 random effects,

and use the above formula to calculate the conditional mean of the unobserved w

values under random sampling. Taking the conditional means E[W1|W2] to be our

predictions of the Gaussian process, we can plot true versus predicted W1 values for

both sampling strategies, i.e. preferential and random (Figure 1.2). We see that

the predicted values under preferential sampling grossly overestimate the true values,

whereas the distribution of error for random sampling is much more even and of lesser

magnitude.
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Figure 1.2: Comparison of true versus predicted random effect values under A)
preferential sampling and B) random sampling. The red lines are of slope 1, intercept
0.

We now proceed to an overview of the existing solutions in the literature to correct

for the bias-inducing effect of preferential sampling, before introducing our novel

proposed method.

1.2.5 Preferential Sampling

A seminal contribution to the analysis of preferentially sampled data is the shared

latent process model proposed by Diggle, Menezes and Su (2010), hereafter referred to

as the SLP model. The SLP model treats observation sites as stochastic, in particular,

as realizations of a point process with intensity driven by a generalized spatial process.

This spatial process is, in fact, the process of geostatistical interest, thus enabling sites

to be assigned to areas of high response value according to some strength of preference.

We outline this model as follows. Let S denote the unobserved spatially continuous
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process of interest on region A, let X denote a point process on A and let Y be a set

of measured values of S at each point of X. The authors then define a model with

the following 3 assumptions:

1) S is a stationary mean-zero Gaussian process with some known covariance function

k(., .) 2) Conditional on S, X is a log Gaussian Cox process with intensity ξ(x) =

exp(α + βS(x)). 3) Conditional on S and X, Y is a set of mutually independent

Gaussian variates with Yi ∼ N(µ+ S(xi), τ
2). That is,

S ∼ GP(0, k(, ., ))

X|S ∼ LGCP(ξ(x))

ξ(x) = exp(α + βS(x))

Yi|S(xi) ∼ N(µ+ S(xi), τ
2)

The SLP model explicitly captures stochastic dependence between S and X through

the inclusion of S in the intensity function ξ(x). The parameter β controls the strength

of preferential sampling, inducing stronger preference toward high response areas as

β increases. Readers familiar with marked point processes (Ho and Stoyan, 2008)

will note that the SLP model can be viewed as just that, a marked point process

with points described by X and marks given by the measured values Yi at each point.

This structural design, featuring one model component describing the distribution of

observation sites and another capturing the values of the response measured at the

given sites, is a motif which reoccurs throughout the majority of methods to correct

for preferential sampling, including those proposed in this dissertation.

Diggle et al. (2010) then conduct a number of simulations to probe the performance
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of traditional geostatistical methods in analyzing preferentially sampled data. Sub-

stantial bias in the empirical variogram estimate was found when the data were pref-

erentially sampled, as well as large positive bias in the ordinary kriging estimate. For

application, the SLP model was fit via a Monte Carlo maximum likelihood approx-

imation to a data set consisting of heavy metal biomonitoring in Galicia, northern

Spain, in which surveys were conducted more extensively in regions where large gra-

dients in lead concentration were expected. Substantial differences in predicted lead

concentration surfaces were found between the SLP model and standard geostatistical

analysis. This study thus highlights the potential bias in parameter estimates and

model predictions which may result when preferential sampling is ignored.

While the model proposed by Diggle et al. (2010) is the progenitor of much of

the subsequent research efforts confronting preferential sampling, it is not without

drawbacks. As noted in the discussion by Rue at al. (2010), the use of the method

in practice may be hindered by the computationally intensive nature of its Monte

Carlo likelihood approximation. But even more alarming is the objection recently

raised by Dinsdale and Salibian-Barrera (2019), who showed that Diggle’s Monte

Carlo likelihood may in fact not approximate the desired likelihood function at all

under preferential sampling due to previously overlooked implicit conditioning on the

distribution of observation sites in formulating the Monte Carlo likelihood. However,

the proposed model of this dissertation avoids Monte Carlo likelihood approximations

altogether and so cirvumvents this issue.

The methods proposed in Project 1 of this dissertation differ from those of Diggle

et al. in other key respects. First, the SLP model has a spatially constant mean µ,

whereas we propose the local mean to vary with location through covariates, not just

covariation via S(x). Second, the estimated disease risk surface differs from the lead

concentration surface in that it is composed of two additional sub-surfaces, that is,
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case and control surfaces. This distinction calls for a number of structural changes

to be made to the model, in order to capture the separate effects which preferential

sampling will have on cases and controls.

A prominent extension of the SLP model comes from Pati et al. (2011), who offer

a fully Bayesian version of the model, implemented via MCMC rather than Monte

Carlo maximum likelihood, along with other notable structural changes. This model

proceeds as follows. Let S be a Gaussian process with mean zero and known covari-

ance function k(., .), and X the point pattern of observation sites. Then the authors

assume that X|S follows a log Gaussian Cox process with intensity ξ(x), where ξ(x)

is log-linear in z(x)βξ +S(x), for spatial covariates z(x). Then for value Yi measured

at site xi, Yi conditional on xi, ξ(xi) is distributed as N(λ(xi) + αlog(ξ(xi)), σ
2).

S ∼ GP(0, k(, ., ))

X|S ∼ LGCP(ξ(x))

ξ(x) = exp(z(x)βξ + S(x))

Yi|ξ(xi) ∼ N(λ(xi) + αlog(ξ(xi)), σ
2)

λ(x) = exp(z(x)βλ + λr(x))

λr(x) ∼ GP(0, k(, ., ))

Here, unlike the SLP model, the local mean of the response is generalized through

construction as λ(x), a function of spatial covariates z(x) and Gaussian process λr,

which captures unexplained spatial variation in measurement values. αlog(ξ(xi) is

included in the response mean to correct for preferential sampling, with α indicating

the strength of preferential sampling. For instance, α > 0 corresponds to observation
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sites being placed preferentially in regions of high response value.

Additional adaptations and applications of the SLP model abound. For instance,

Lee et al. (2011) modify the calculation of an air quality indicator by controlling

for the preferential sampling process. In brief, air quality indicators are calculated

as aggregates of observed values of various types of pollutions, measured over sev-

eral observation sites, many of which may be assigned to regions with high pollution

levels. Lee et al. fit the SLP model to various pollutant measurements to adjust esti-

mated pollution surfaces for preferential sampling, thus calculating the indicator from

the corrected surfaces. Notably, the authors find a substantial effect of preferential

sampling on the air quality indicator.

A study concerning the impact of preferential sampling on health effect inference

comes from Lee et al. (2015), again in the area of air pollution monitoring. The

essence of the authors’ approach is to model the placement of locations, treated as

random quantities, then exposure given location, and finally health outcome given

exposure. Briefly, the preferential sampling model used in this study is an adaptation

of the SLP model, with a covariate driven mean of the response rather than a constant

mean, among other structural changes to better match the context of air pollution

monitoring. By simulation, the authors probed the exposure model to determine

under what conditions preferential sampling has a substantial impact on the quality

of the health effect estimates.

Gelfand et al. (2012) proposed a simulation based approach to delineate the effect

of preferential sampling on the quality of predictive surfaces. The authors generated

data under both a preferential sampling mechanism as well as a strategy in which ob-

servation sites were selected under complete spatial randomness (CSR). The authors

found that the most accurate predictive surfaces were obtained when sampling was

conducted under CSR, and that predicted surfaces were biased when the geostatisti-
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cal model neglected to include sampling covariates, that is, covariates that influence

the placement of observation sites.

The methods described hitherto have all primarily been developed with respect to the

underlying application of environmental pollution monitoring, but are not, however,

tailored toward most preferentially sampled disease surveillance datasets, which con-

sist of spatially referenced case and control counts from diverse types of observation

sites (e.g., farms, animal traps, etc), rather than a single smooth, normally distributed

continuous response such as air or soil pollutants. Surprisingly, relatively few studies

have developed methods to account for preferential sampling in disease surveillance,

despite the potential for bias induced by this sampling mechanism. The few noted

exceptions arise in veterinary health monitoring (Rinaldi et al., 2015; Cecconi et al.,

2016).

A characteristic and illustrative example is found in Cecconi et al. (2016), who

develop geostatistical model to predict the risk of parasitical infection in livestock.

The authors propose a two-step Bayesian hierarchical model, wherein the adjustment

for preferential sampling relies on incorporating estimated spatial sampling proba-

bilities, obtained from the first step, as covariates into the linear predictor of their

geostatistical model for disease risk in the second step. Formally, if the study region

is partitioned into a grid of equally sized, non-overlapping cells, then the spatially

varying sampling probability is estimated in a Binomial model:

Kj ∼ Binomial(pj, nj)

logit(pj) = κ+ vj + εj
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where Kj are the number of farms sampled in the jth grid cell, nj are the total num-

ber of farms in the jth cell, and pj is the sampling probability for the jth cell. In

addition, pj is logit-linear with intercept κ, along with a spatially structured residual

vj and spatially unstructured random error term εj. The authors choose an improper

conditionally autoregressive (ICAR) prior distribution for vj. To adjust for prefer-

ential sampling, the posterior estimates of the sampling probabilities are included as

covariates in the linear component of the disease risk model, which is given by

Yj ∼ Bernoulli(πj)

logit(πj) = γ + sj + xTj β + αj p̃j

where Yj is an indicator for whether the jth sampled farm has livestock which test

positive for the parasite, γ is an intercept, sj are spatially structured residual terms

arising from a mean zero, stationary Gaussian process, xj are regression covariates,

and p̃j are the posterior mean estimates of the sampling probabilities obtained from

the first step. The use of p̃j as covariates here serve to adjust for preferential sampling,

and were found to yield considerably different predictions of disease risk, as evidenced

by a high observed Kullback-Leibler divergence calculated between risk estimates from

the above model and one without inclusion of the sampling probabilities.

While this adjustment for preferential sampling has proven successful for veterinary

health surveillance datasets, these applications hinge upon the ability to model the

spatially varying sampling probabilities, pj in the above notation, which are estimated

from Kj, the number of sampled farms in a grid cell, and nj, the total number of

farms in the grid cell. However our methodological developments in this project focus

on a scenario more common in zoonotic disease surveillance, wherein observation sites
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aren’t chosen from some fixed set of pre-existing locations (i.e. farms), but rather

from animal specimen recovered via traps or opportunistically (e.g., roadkill). The

quantities nj and Kj from Cecconi et al. no longer have bearing under this mechanism

of data collection. From a more abstract perspective, our proposed method does bear

similarity to the approach by Cecconi et al. insofar as we include information from

the distribution of observation sites into the part of our model describing case and

control abundances. However, the way in which we incorporate this information more

closely resembles the shared latent process model of Diggle et al. (2010).

Aside from the applications of air pollution monitoring and veterinary health, prefer-

ential sampling in species distribution modeling has gained recent attention (Conn et

al., 2017; Gelfand and Shirota, 2019; Pennino et al., 2019). For instance, to address

preferential sampling in this new domain, Pennino et al. (2019) propose a species dis-

tribution model resting upon the marked point process framework which originated

in Diggle et al. (2010). However, to estimate this model the authors utilize the more

computationally efficient approach of Rue et al. (2010) which, rather than relying

on the Monte Carlo likelihood approximation of Diggle et al. (2010), involves infer-

ence by the approach of integrated nested Laplace approximation. A further point

of divergence lies in the fact that Pennino et al. modeled the response of interest,

i.e. observed species counts, as Gamma random variables, unlike the normally dis-

tributed response considered by Diggle et al. Highlighting the bias-inducing impact of

preferential sampling, the authors show that the abundance of fish stock, specifically

blue and red shrimp, is considerably overestimated in certain areas when preferential

sampling goes unaddressed.

Further extending solutions for preferential sampling in the area of species distribution

modeling, Gelfand and Shirota (2019) address a data fusion problem common in

this domain, namely that of combining presence-only and presence-absence data.
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Presence-only data refer to a data type in which only the locations, or presences,

of a species are recorded, where presence-absence data explicitly detail both where

a species was and was not observed. To jointly model presence-only and presence-

absence data the authors propose an extension of the shared latent process framework

of Diggle et al. (2010) and Pati et al. (2011). As in the shared latent process

framework, the authors describe the distribution of presence-absence and presence-

only sample sites with log Gaussian Cox processes:

λPO(s) = wT (s)βPO + ηPO(s)

λPA(s) = wT (s)βPA + ηPA(s)

where λPO(s) is the intensity function of the point process describing the distribution

of presence-only sample sites, and λPA(s) is that of the presence-absence sites, while

ηPO(s) and ηPA(s) are stationary spatial Gaussian processes specific to each data type.

To correct for preferential sampling, ηPO and ηPA are included in the component of

the model describing species presences, Y (s) = I(Z(s) > 0), as

Z(s) = xT (s)α + δPAηPA(s) + δPOηPO(s) + w(s) + ε(s)

with fixed effects xT (s), Gaussian process w(s), and independent errors ε(s). Fitting

their models to data detailing the distribution of invasive species in New England,

the authors find that predictive performance suffers considerably when preferential

sampling is ignored.

Lastly, we review a number of additional works addressing preferential sampling which
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neither resemble the shared latent process model nor the disease surveillence model

of Cecconi et al. Manceur and Kuhn propose a species occupancy model controlling

for preferential sampling, based on the method of Bayesian image restoration, but

one that relies on reliable knowledge of a control (reference) species. Preferential

sampling was found under simulation to have a large impact on predicted species dis-

tributions. Chakraborty et al. (2010) build an areal level Bayesian hierarchical model

for multi-species abundance, adjusting the abundance pattern to account for land use

degradation and measurement error. Their areal level abundance data are in fact

ordinal categorical variables, collected for multiple species. The authors constructed

their degradation model on the latent scale, wherein an areal level spatial regression

model induced correlation between abundances according to space (CAR model) and

environmental covariates. But of the existing preferential sampling methods, Project

1 draws most heavily from the shared latent process model of Diggle et al. (2010)

and its extension by Pati et al. (2011). We now introduce our proposed method, and

show how it modifies these previous contributions to address preferential sampling in

the context disease surveillance.

Proposed Method

Much existing research has focused on how preferential sampling impacts the predic-

tion of spatial surfaces in applications such as air pollution monitoring, or increasingly,

species distribution monitoring. However, a dearth of methodological development

remains in the context of disease surveillance, with the exception of that pertaining

to veterinary health (Cecconi et al., 2016), which, as we have seen, relies on certain

structural assumptions arising from a fixed total number of sampling locations (i.e.

farms). Yet in many real world surveillance systems, the data are in fact preferentially

sampled, given that surveillance systems are often constrained by limited resources
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to monitor for the disease primarily in high risk or high impact locations. The plague

surveillance system undertaken by the California Department of Public Health, ex-

amined in the analysis chapter of this dissertation, is one such example. Given the

impact of preferential sampling on spatial prediction shown in other applications,

there is strong reason to suspect that similar issues may arise from preferentially

sampled disease surveillance data.

The objective of our proposed model is to provide a better, less biased disease risk

map obtained from preferentially sampled disease surveillance data. From a high

level perspective, similar to the shared latent process model, our method has both

locational and disease related components, where the locational component describes

the pattern of observation in terms of a latent spatial process, which is shared with

the component of the model describing the abundances of cases and controls. This

sharing of the latent process serves to control for the effect of preferential sampling.

As in the shared latent process model of Diggle et al. (2010), we wish to describe

the distribution of observation sites in terms of a spatial process. However, instead of

directly working with a log Gaussian Cox process, we model the observation process

in terms of a spatial regression problem. To that end, we begin by discretizing the

study region into K non-overlapping, equally sized grid cells. Let indicator variables

κi ∈ {0, 1}, (i = 1, . . . , K) denote whether the ith grid cell is observed by the disease

surveillance system. We assume that κi, conditional on ξ(xi), is distributed as a

Bernoulli random variable with spatially varying probability of success ξ(xi). Here

we adopt the convention of referring to any spatial point in the study region as x ∈ R2,

and of denoting the centroid of the ith grid cell as xi. Therefore, by ξ(xi), we denote

the value of the spatially varying probability of success, ξ, at the center point of the

ith grid cell. Then, we model logit(ξ(xi)) = w(xi), where w(xi) is the value of a mean-

zero, stationary Gaussian process at the center point of the ith grid cell. We write
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this Gaussian process as w(x) ∼ GP(0, k(., .; θ, φ)) where k is a stationary, isotropic

covariance function with spatial range θ and marginal variance φ. For the analysis

and simulations conducted in this project we specify k to be an exponential covariance

function. The portion of the model given until this point can be conceptualized as the

locational component, describing the pattern of observation sites in the surveillance

system.

Case and control counts of observed cells are denoted by Yim, with i ∈ {h : κh = 1}

indexing grid cell identity and m ∈ {+,−} distinguishing disease positive (+) and

negative (−) status. Conditional on the value of the Gaussian process at point xi, the

Yim are modeled as Poisson random variables with rates λm(xi). The rate function

λm(x) is log-linear in covariates zλ(x)Tβm as well as αm×w(x), where αm,m ∈ {+,−}

is a scalar and w(x) the value of the Gaussian process at point x. Here, for greater

flexibility, we have allowed the covariate relationships βm to vary by disease status.

This model is written as

κi|ξ(xi) ∼ Bernoulli(ξ(xi)) (1.1)

logit(ξ(x)) = w(x)

w(x) ∼ GP(0, k(., .; θ, φ))

Yim|w(xi) ∼ Poisson(λm(xi))

log(λm(x)) = zλ(x)Tβm + αm × w(x)

The inclusion of w(x) in the mean function of Yim induces stochastic dependence

between disease case or control counts and survey location. Similar to the model pro-

posed by Pati et al. (2011), the shared latent process w(x) is multiplied by parameters
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αm,m ∈ {0, 1}, intended to govern the strength of preferential sampling. That is, the

greater the magnitude of αm, the greater the tendency of Yim to take higher values at

observed locations than unobserved ones. However, unlike Pati et al. we here specify

not one but two α parameters, α+ and α−, corresponding to the effects of preferential

sampling on the observed abundances of cases and controls, respectively. These two

parameters are crucial for capturing the tendency of the observation process to focus

on areas of elevated disease risk. To see this, recall that the disease odds at point x

are given by the ratio of case and control intensity functions, λ+(x)/λ−(x), and thus,

disease log odds at point x are equal to

zλ(x)Tβ+ + α+ × w(x)− zλ(x)Tβ− − α− × w(x)

Hence, for fixed values of β+, β−, and w(x), disease log odds, and thus, disease risk,

increase as α+×w(x)−α−×w(x) increases. A further noteworthy distinction of model

(1.1) from the existing preferential sampling methods is the fact that the responses

measured, Yim, are Poisson, rather than normally, distributed. Consequently, the

reliance on Gibbs sampling to update w(x) is no longer feasible here. The next

section details the strategy used to fit model (1.1).

1.2.6 Model Fitting

Model (1.1) is fit by a Markov Chain Monte Carlo solution consisting of separate

Hamiltonian Monte Carlo samplers for α+, α−, β+, β− and spatial random effects w,

along with a Metropolis-Hastings random walk update for the spatial range θ, and

finally with a Gibbs sampling update for the marginal variance φ. The samplers

involved have been implemented from scratch in the R statistical programming lan-
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guage, version 3.4.3, without making use of pre-built MCMC packages due to the

unique nature of the model being fit.

We assign normal priors to α+, α−, β+ and β−. In the analyses and simulations con-

ducted here we assign uninformative priors for β+ and β−, with large prior variances,

as is often the case when estimating slope parameters in Bayesian analysis. The

spatial range parameter θ of the exponential covariance function was estimated via

Metropolis-Hastings random walk. We note that, due to the constraint of θ > 0, the

proposal distribution used to generate a proposed next value for θ was specified as

the log-normal distribution, which has density function

q(x;µ, σ2) =
1

xσ
√

2π
exp
(
− (log(x)− µ)2

2σ2

)

for x > 0. The mean of the proposal distribution was taken to be the log of the

current value of θ. That is, given the gth MCMC sample θ(g), the proposed next

value in the Markov chain was distributed as

θ(g+1) ∼ Log-Normal(log(θ(g)), σ2)

The proposal standard deviation σ2 was manually tuned to yield acceptance rates

close to 0.5. The acceptance probability was calculated as

min
(

1,
`(w(g); θ(g+1))

`(w(g); θ(g))
× p(θ(g+1))

p(θ(g))
× q(θ(g))

q(θ(g+1))

)

where `(w(g); . . . ) is the log likelihood of the spatial random effects w at the gth

MCMC iteration, and p(. . . ) is the prior density of θ, taken here to be the gamma
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distribution, and q(θ(g))

q(θ(g+1))
is the ratio of log-normal densities from the current and

proposed values of θ, which would have cancelled out had the proposal distribution

been symmetric.

We assign an Inverse-Gamma prior distribution to the spatial marginal variance φ, in

order to make use of the fact that the conditional distribution of φ given the random

effects w is also Inverse-Gamma. Specifically,

φ|w ∼ 1/Gamma(N/2 + a, wTH−1w + b)

where N is the number of elements of w, a and b are the shape and scale param-

eters of the prior distribution of φ, and H is the correlation matrix of the random

effects w. Consequently, φ can be updated at each step of the Markov chain by

drawing a sample from φ|w, rather than relying on a more computationally expensive

Metropolis-Hastings or Hamiltonian Monte Carlo sampler.

In contrast, due to the fact that, in the realm of disease surveillance, the measured

responses Yim are Poisson distributed counts, rather than normally distributed real

numbers such as air pollution measurements, the spatial random effects w have no

analytic form for their posterior conditional distribution given Y . Consequently, the

random effect vector w is updated via a Hamiltonian Monte Carlo (HMC) sampler.

This technique was chosen given its effectiveness for updating high dimensional, spa-

tially structured parameters. Briefly, HMC proposes new parameter states by sim-

ulating the dynamics of Hamiltonian physics, which describes the total energy of a

system as the sum of potential and kinetic energies. Here, the potential energy of

the system is taken as the negative log likelihood of the current parameter state,

and a new parameter state is reached by evaluating the gradient of the potential

energy. Thus, by incorporating information from the gradient of the log likelihood in
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its proposal step, HMC is able to explore the parameter space more efficiently and,

crucially, account for spatial correlation between elements of the parameter vector,

a distinction which would not hold if a Metropolis-Hastings random walk updating

strategy were employed here. Hamiltonian Monte Carlo algorithms are parametrized

by a step size parameter, related to the degree of change undertaken in the proposal

step, and length parameter, which controls the number of iterations for which Hamil-

tonian dynamics are simulated in each proposal step. The step size parameter was

automatically tuned by the strategy of dual averaging, presented by Hoffman and

Gelman (2010), which alters the step size after each proposal step based on a convex

optimization algorithm which compares the current acceptance probability with the

desired acceptance rate. The length parameter was manually tuned.

Hamiltonian Monte Carlo samplers were also assigned to separately update α+, α−, β+,

and β−. Despite the fact that these parameters are low dimensional and spatially

uncorrelated, HMC sampling showed less inter-sample correlation than Metropolis-

Hastings random walk and so was ultimately preferred. A more detailed technical

description of HMC along with dual averaging is presented in the next section.

1.2.7 Hamiltonian Monte Carlo

Hamiltonian Monte Carlo (HMC), introduced by Duane et al. (1987), is an improve-

ment over conventional MCMC samplers insofar as its proposals are influenced by the

gradient of the log density of the parameter of interest. Consequently, by avoiding

random walk behavior, HMC more efficiently explores the parameter space, and is

also less sensitive to correlated parameters. For these reasons HMC is particularly

adept at updating high dimensional parameters, which is of key importance in fitting

spatial hierarchical models.
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The following technical description of the traditional Hamiltonian Monte Carlo algo-

rithm is based on the development by Hoffman and Gelman (2014), who also provide

a strategy to adaptively-tune the Hamiltonian Monte Carlo sampler, which we ex-

amine later. First, a momentum variable rd is introduced for each model parameter

θd, solely for the purpose of simulating Hamiltonian dynamics, and is typically drawn

from the standard normal distribution. Let L(θ) be the log density of the parameters

of interest θ. Then the joint density of θ and momentum r is, up to a constant, given

by

p(θ, r) = exp(L(θ)− 0.5r · r)

This model can be interpreted as a Hamiltonian system where θ is the position of a

particle, L is the negative potential energy of the particle, 0.5r ·r is the kinetic energy

of the particle, and logp(θ, r) is the particle’s negative energy. Each iteration of the

sampler describes the change in the position of the particle over time according to

Hamiltonian dynamics. Specifically, updates are carried out according to the Störmer-

Verlet “leapfrog” integrator:

rt+ε/2 = rt + (ε/2)∇θL(θt)

θt+ε = θt + εrt+ε/2

rt+ε = rt+ε/2 + (ε/2)∇θL(θt+ε)

where t indexes the time of the position and momentum of the particle, ∇θ is the

gradient with respect to θ, and ε is the step size specified a priori. For each Hamil-

tonian Monte Carlo sample drawn, first the momentum r variable is sampled from
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a standard multivariate normal distribution. Then, L leapfrog updates are applied

to the position and momentum variables to put forward proposal values for θ and

r, denoted θ̃ and r̃. Lastly, θ̃ and r̃ are accepted or rejected by a Metropolis step

with acceptance probability given by p(θ̃, r̃)/p(θ, r). This Hamiltonian Monte Carlo

algorithm was custom implemented from scratch in R for this dissertation.

While HMC more efficiently explores the parameter space and is less sensitive to

correlated parameters than the Metropolis-Hastings random walk sampler, its more

widespread adoption has been encumbered by the difficulty of setting the simulation

length parameter L and step size ε. Setting ε too high may result in an overly low

acceptance rate, while setting it too low produces the opposite effect. Setting L too

low may result in random walk behavior by generating samples which are too close

together. Likewise, high values of L may achieve the same effect by generating particle

paths which loop back toward their initial states.

Several adaptive MCMC tuning techniques (e.g., Andrieu and Thoms, 2008) lend

themselves to setting the step size parameter ε. To fit model (1.1) by Hamiltonian

Monte Carlo, this dissertation makes use of the dual averaging method proposed

by Hoffman and Gelman (2014), wherein ε is iteratively updated to achieve a target

acceptance rate, recommended to be approximately 0.65. Hoffman and Gelman adapt

the dual averaging scheme proposed by Nesterov (2009), originally as a means for

convex optimization, by letting Ht = αt − δ, where αt is the acceptance probability

of the tth HMC sample and δ is the desired acceptance rate. The problem then is

to update ε such that Et[Ht|ε] = 0. To achieve this end, the following updates are

applied:
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εt+1 ← µ−
√
t

γ

1

t+ t0
Σt
i=1Hi

ε̄t+1 ← ηtεt+1 + (1− ηt)ε̄t

where µ is a point to which values of εt are shrunk, γ > 0 controls the amount

of shrinkage toward µ, and t0 is a stabilizing parameter. For fitting the models in

this dissertation values of µ = log(10 ∗ 0.05), γ = 0.05, and t0 = 10 were chosen,

as suggested by Hoffman and Gelman (2014). The success of the dual averaging

technique is ensured by the fact that the sequence of ε̄t+1 values is guaranteed to

converge to a value such that Et[Ht|ε] = 0 converges to zero. Thus, in practice, ε

values are updated at each iteration of the HMC sampler for a tuning period to allow

for this convergence, typically for a predetermined tuning period, after which the step

size ε is fixed at the final iterate of ε̄t.

Hoffman and Gelman also propose a method to avoid manually setting the length

parameter L, known as the NUTS (No U-turn) sampler. The basic idea is to sim-

ulate Hamiltonian dynamics each iteration for as many steps until the trajectory of

proposed value starts to turn back toward its initial state. However, for the majority

of datasets fit in this dissertation, model (1.1) was fit with values of L set between

8 and 10, due to the fact that the added runtime associated with adaptively tuning

L proved to outweigh the cost of manual tuning, especially at high resolution. Thus,

L was manually set while ε was adaptively tuned for each HMC sampler associated

with model (1.1).
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1.2.8 Spatial Downscaling

Up until this point we have defined our proposed method to adjust for preferential

sampling in estimating disease risk maps, and discussed the model fitting process

using a combination of MCMC techniques, i.e. Hamiltonian Monte Carlo, Metropolis-

Hastings random walk, and Gibbs sampling. However, one very salient consideration

has been omitted hitherto, and that is the problem of efficiently fitting the model

at high resolution. Recall that model (1.1) contains a Gaussian process to explain

the distribution of observation sites as well as additional variation in the observed

abundances of cases and controls. The study region is discretized, so that the pattern

of observation sites is encoded by way of indicator variables representing whether each

discretization cell is observed. Consequently, the Gaussian process realizes as many

random effects as there are grid cells in the study region. For large study regions at

fine levels of discretization, the size of the covariance matrix of the Gaussian process

can become so great as to prohibit its inversion. For instance, a disease surveillance

system wishing to estimate a risk map over the state of California at a 4 km2 resolution

entails a covariance matrix of 25,701 rows, which cannot be efficiently inverted quickly

enough to make fitting model (1.1) feasible in a reasonable period of time.

Fortunately, a rich body of solutions exists for fitting spatial models with Gaussian

processes at low resolutions (e.g. Wikle and Cressie, 1999), and then subsequently

extending the model to higher resolutions, an approach referred to as spatial downscal-

ing. In many approaches, the Gaussian process may be approximated by realizations

of random effects taken at a series of “knots”, or points covering the study region,

which are typically evenly spaced and far enough apart so as to make computation

feasible. The value of the Gaussian process at points between the knots is then inter-

polated by a variety of means. One straightforward approach is to simply krige the

values of the Gaussian process to unobserved points at lower resolution, and in spe-
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cial cases, use a tapered covariance matrix to ease the inversion process (Furrer et al.,

2006). The method of tapering assigns zeros to the covariance matrix for distances

above a certain value, in order to induce sparsity. However, in the analysis portion

of this dissertation, tapering was found to be an inadequate solution given that the

tapered covariance matrix still had over 440,000,000 nonzero elements. Other solu-

tions for downscaling the Gaussian process abound. Reich et al. (2014) develop a

spatial downscaler making use of the spectral representation of Gaussian processes,

while Nychka et al. (2015) develop the method of lattice kriking, using nested ta-

pered bivariate splines to predict values of a Gaussian process at multiple levels of

resolution.

Our approach is to fit model (1.1) at a coarser resolution, assume the covariate re-

lationships zλ(s)
Tβm along with αm × w(s) hold at higher resolutions, and subse-

quently use the known high resolution covariate values of zλ(s) along with values of

the spatial field w(s) downscaled via spline interpolation to predict case and control

abundances at higher resolution. Specifically, let s1, . . . , sn be the center points of the

cells which form the low resolution discretization of the study region, and suppose

β̂m, α̂m,m ∈ (+,−), ŵ(s1), . . . , ŵ(sn), θ̂ and φ̂ are the estimates obtained from fitting

model (1.1) at low resolution. Then, if the high resolution discretization of the study

region contains cell center points s′1, . . . , s
′
h, the estimated intensities for the ith center

point are log(λ̂m(s′i)) = zλ(s
′
i)
T β̂m+ α̂m× w̃(s′i), where w̃ is the estimated value of the

Gaussian process obtained by interpolating ŵ(s1), . . . , ŵ(sn) via thin plate splines.

Spline interpolation was carried out by the tps function of the fields package in R.

The benefit of such an approach is that is makes use of the known high resolution

covariate values in the PRISM dataset, which would have been ignored if a cruder

approach were adopted, such as simply smoothing the estimated risk surface fit at

low resolution. We illustrate the results of our process by the downscaled risk map of

plague in Sciurids (the rodent family of squirrels) in the state of California (Figure
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1.3), with the understanding that we will review these estimates in more detail in the

analysis section below.

Figure 1.3: Low and high resolution plague risk map comparison. A) 426 km2 plague
risk map B) Spatially downscaled 16 km2 plague risk map.

1.3 Simulation 1: Comparative Performance

1.3.1 Introduction

This simulation study assesses performance of the proposed preferential sampling

model in comparison to existing, benchmark methods which do not account for the

sampling process. To form a more complete view of comparative performance under

different real world scenarios, we evaluate our models over simulated datasets en-
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compassing a range of strengths of preferential sampling. The intent is to determine

the circumstances, if any, under which the proposed method outperforms the bench-

marks, as well as to quantify the magnitudes of any gains in performance offered by

the method we have introduced.

Models Compared

In this study our proposed preferential sampling model is compared against bench-

mark methods which do not attempt to account for the sampling process that gave

rise to the data. The reference methods we consider consist of a spatial Poisson model

(1.2) and non-spatial Poisson regression model (1.3).

As described in the methods section, we discretize the study region into l = 1, . . . , L

equally sized, nonoverlapping grid cells, and suppose that i = 1, . . . , h of these cells

have been observed by the surveillance system. The spatial Poisson model (1.2) as-

sumes case and control counts of observed grid cells, denoted Yi+ and Yi−, representing

the count of cases or controls in the ith grid cell, respectively, follow independent Pois-

son distributions Yim ∼ Poisson(λm(xi)) for m ∈ {+,−} and xi ∈ R2 taken to be the

coordinates of the centroid of the ith observed grid cell. The rate functions λm(x)

are log-linear in zλ(x)Tβm +wm(x). Here, zλ(x) are disease related spatial covariates

and βm are parameters distinguished by disease status m ∈ {+,−}. The intensity

functions of cases (m = +) and controls (m = −) also incorporate independent mean

zero Gaussian processes wm(x), whose covariance functions are assumed to be expo-

nential and parametrized by range θm and marginal variance φm, allowing the range

and marginal variance to differ by disease status m. The inclusion of these Gaus-

sian processes is intended to model spatial variation in the responses which cannot

be explained by the deterministic trends zλ(x)Tβm. This spatial Poisson model is

summarized as
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Yim ∼ Poisson(λm(xi)) (1.2)

λm(x) = exp(zλ(x)Tβm + wm(x))

wm(x) ∼ GP(0, k(., .; θm, φm))

Model (1.2) is fit by MCMC using Hamiltonian Monte Carlo samplers for wm and

βm, Gibbs samplers for φm, and Metropolis-Hastings random walks for θm. Having

obtained estimates for βm, θm, φm, and wm at observed sites, it remains to predict the

values of the latent processes wm at unobserved sites, in order to calculate disease risk

over the entire study area. This prediction is formed by Bayesian kriging, the results

of which, along with previously obtained parameter estimates for βm, allow estimation

of case and control intensities, λ̂m, anywhere in the study region. Estimated disease

odds are then obtained as the ratio of intensities, λ̂+/λ̂−.

The next reference method we consider entails non-spatial Poisson regression models

which regress case and control counts on spatial covariates alone (1.3). Here case

(m = +) or control (m = −) counts of the ith observed grid cell follow Poisson

distributions with rate λm(xi), where xi denotes the center point of the ith cell. Rates

λm are log-linear in disease covariates zλ(x)Tβm, where βm are parameters specific to

case or control status. Unlike model (1.2), no spatial processes are included in the

intensity functions, allowing estimation of the disease odds λ+/λ− to be conducted

immediately after estimates for βm are obtained. This model is summarized as
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Yim ∼ Poisson(λm(xi)) (1.3)

λm(x) = exp(zλ(x)Tβm)

Evaluation Metrics

The primary evaluation metric of models (1.1), (1.2), and (1.3) is root mean squared

error in estimated log disease odds. True disease log odds of any cell x are calculated

as oi = log(λ+(x)/λ−(x)), where λ+(x) and λ−(x) are case and control intensities,

respectively, evaluated at the center point of cell x. RMSE is then calculated as

K−1
K∑
i=1

√
(ôi − oi)2

for a study region with K grid cells and estimated log odds ôi = log(λ̂+(x)/λ̂−(x)).

1.3.2 Data

This simulation study evaluates the performance of models (1.1), (1.2), and (1.3)

with respect to a total of 50 datasets, 25 of which were simulated under a low level of

preferential sampling, and 25 of which were simulated under a high level. The level

or strength of preferential sampling was quantified in terms of the average percentage

of the linear predictor of log odds that was constituted by the sampling related terms

of model (1.1), α+w(x) − α−w(x). Specifically, recall that log disease odds for the

grid cell with centroid at point xi ∈ R2 are given by the difference of case and control

log intensities:
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zλ(xi)
Tβ+ + α+w(xi)− zλ(xi)Tβ− − α−w(xi)

We conceptualize two contributions to log odds, one arising from fixed effects, zλ(xi)
Tβ+−

zλ(xi)
Tβ−, and another due to preferential sampling, α+w(xi)−α−w(xi). The percent

contribution attributed to preferential sampling for the ith cell is then

pi =
|α+w(xi)− α−w(xi)|

|α+w(xi)− α−w(xi)|+ |zλ(xi)Tβ+ − zλ(xi)Tβ−|

To to form an overall estimate of the strength of preferential sampling for a given

simulated dataset, we average the percent contributions across all K grid cells of

the study region, p̄ = K−1ΣK
i=1pi. If p̄d is the average percent contribution for the

dth simulated dataset (d = 1, . . . , 25), then to represent a low level of preferential

sampling, simulation parameters βm and αm (m ∈ {+,−}) were chosen so that the

median of the p̄d (d = 1, . . . , 25) fell at 13.22% (mean 14.68%, maximum 29.67%).

Thus, in our construction, a low level of preferential sampling corresponds to a median

preferential sampling contribution of 13.22% over 25 simulated datasets. Similarly, to

represent a high level of preferential sampling, βm and αm (m ∈ {+,−}) were tuned

so that the median preferential sampling contribution was 34.26% (mean 36.28%,

maximum 59.38%). The specific parameterizations giving rise to these percentages

were, for low preferential sampling, α+ = 0.5, α− = 0.3, β+ = (1.00, 0.75, 0.25)T , and

β− = (3.0, 1.0, 0.5)T . High preferential sampling was simulated with α+ = 1, α− =

−0.5, β+ = (−1.50, 0.25, 0.25)T , and β− = (3.5, 1.0, 0.5)T . The vector of spatial ran-

dom effects, w = (w1, . . . , wK), was re-simulated for every dataset from a Gaussian

process with mean zero and exponential covariance function parametrized by a range

θ = 7 and marginal variance φ = 12. Fixed effect covariates zλ(xi)
T were taken as

the first and second principal components of the PRISM climatic dataset, along with
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the inclusion of an intercept (Figure 1.4).

Figure 1.4: A) First and B) second covariate surfaces used to simulate disease
surveillance datasets over a study region discretized into 259 grid cells.

Dataset generation begins with simulation of the spatial random effect vector w =

(w1, . . . , wK) from a multivariate normal distribution. For each dataset the study

region was discretized into K = 259 nonoverlapping grid cells, a granularity reached

by a tradeoff between computational efficiency and breadth of spatial extent. Given

the simulated vector of random effects w, indicators κi were then simulated from

model (1.1), representing the distribution of observation sites generated by the disease

surveillance process. Contingent upon this pattern of observation and the random

effect vector w, case and control counts were then simulated from model (1.1). Thus,

each simulated dataset consists of a different set of observation sites and case/control

counts. Under a low level of preferential sampling there were on average 114.56

observed grid cells (standard deviation: 71.953) (Table 1.1), throughout which an

average disease prevalence of 0.153 (standard deviation: 0.053) persisted. Datasets

with high preferential sampling averaged 136.84 observed cells (standard deviation:

60.55) with an average disease prevalence of 0.255 (standard deviation: 0.293).
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Sampling Quantity Mean SD Q1 Q2
Low Observed Cells 114.56 71.953 47 178
Low Prevalence 0.153 0.053 0.125 0.177
High Observed Cells 136.84 60.55 95 183
High Prevalence 0.255 0.293 0.014 0.362

Table 1.1: Summary of observed cells and disease prevalences for surveillance
datasets simulated under different levels of preferential sampling.

1.3.3 Model Fitting

Model (1.1)

For each of the 50 datasets model (1.1) was fit by the MCMC implementation de-

scribed in the methods section. The length tuning parameters for each Hamiltonian

Monte Carlo sampler were set to 8, while sampler tuning periods were fixed at 2,000,

with target acceptance rates of 0.65 as recommended by Hoffman and Gelman (2014).

The proposal standard deviation of the MHRW sampler was set to 0.15, a value tend-

ing to yield acceptance rates close to 0.50. MCMC initial values were assigned using

the calibrated initialization strategy described in the methods section. Given heuris-

tic estimates α̂+, α̂−, θ̂, and φ̂ obtained from the initialization strategy, the following

priors were specified:

α+ ∼ N(α̂+, 3)

α− ∼ N(α̂−, 3)

θ ∼ Gamma(shape(θ̂), scale(θ̂))

φ ∼ Inverse-Gamma(shape(φ̂), scale(φ̂))

where shape(θ̂) and scale(θ̂) were calculated so as to equate the prior mean to the
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heuristic estimate θ̂ and prior variance to 2. Similarly shape(φ̂) and scale(φ̂) were

calculated so as to result in a prior mean equal to the heuristic estimate φ̂ and prior

variance of 2. Priors for β+ and β− were specified as N(0, 100). Given these prior

distributions and the aforementioned tuning parameters, model (1.1) was fit to each

dataset with a total of 10,000 MCMC samples with a burnin of 3,000.

Model (1.2)

The spatial Poisson model was fit by a custom-built MCMC implementation wherein

the spatial random effect vectors w+(x) and w−(x), along with β+ and β−, were

updated via Hamiltonian Monte Carlo (HMC) samplers, while the spatial range θ

was updated by Metropolis-Hastings random walk and marginal variance φ by Gibbs

sampling. HMC step sizes were algorithmically tuned to yield target acceptance rates

close to 0.65 under a tuning period of 2,000 samples, while the length parameters of

the HMC samplers were fixed at 8, a value chosen based on manual evaluation. To

update θ, the proposal standard deviation for the random walk was set to 0.3. The

following prior distributions were assigned:

βm ∼ N(0, 100),m ∈ {+,−}

θm ∼ Gamma(shape(7), scale(7)),m ∈ {+,−}

φm ∼ Inverse-Gamma(3, 40),m ∈ {+,−}

Here uninformative priors have been specified for β+, β−, φ+ and φ−, while the range

parameters θm have been assigned priors whose shape and scale parameters were

chosen to yield prior means of 7, the true value of θ, and variances of 5. The model
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was fit to each dataset with a total of 10,000 samples and burnin period of 3,000.

Model (1.3)

Model (1.3) was fit by maximum likelihood, as implemented in the glm package of

the R statistical software version 3.4.3.

1.3.4 Results

Under a low level of preferential sampling the proposed model had the lowest average

root mean squared error in estimated log disease odds, at a value of 0.573 (standard

deviation: 1.449), followed by the Poisson model with an average RMSE of 0.706

(standard deviation: 0.436), and lastly by the spatial Poisson model (average RMSE:

0.728, standard deviation: 1.024) (Table 1.2). It is noteworthy that the RMSEs for

the proposed model and model (1.2) inflated to considerably high values under cer-

tain datasets (Figure 1.5A). Further inspection reveals a strong relationship between

RMSE in the proposed model and the number grid cells observed by the sampling pro-

cess for each simulated dataset. In Figure (1.6A) we see that RMSE in the proposed

model spikes up for datasets with roughly fewer than 100 observations, especially so

for datasets simulated under a high degree of preferential sampling. Inspection of

the relationship between RMSE and disease prevalence of the simulated dataset also

shows an increase in RMSE as prevalence decreases (Figure 1.6B). If we restrict our

evaluation to datasets with at least 75 observed grid cells we see that the proposed

model has an average RMSE almost half that of the spatial Poisson model and less

than a third of that of the Poisson model (Table 1.2).

As the strength of preferential sampling increased from a low to high level, the differ-
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ences in RMSEs among the three models increased sharply. Under a high degree of

preferential sampling, when restricted to simulated datasets with at least 75 observed

grid cells, the proposed model still had the lowest average RMSE at 1.061, over 30%

lower than the average RMSE of the spatial Poisson model (mean: 1.645), and con-

siderably lower than the Poisson model (mean: 3.796). Figure (1.5) summarizes the

differences in RMSE of the three models across different levels of preferential sam-

pling, and across differing sample sizes. We see that as the strength of preferential

sampling increases, and as we restrict our evaluation to datasets with a sufficient

number of observed grid cells, the RMSEs in estimated log odds of the reference

models inflate relative to that of the proposed method.

Figure 1.5: Root mean squared errors in estimated log disease odds under low and
high levels of preferential sampling for the preferential sampling model (PS), spatial
Poisson model (SP), and Poisson regression model (PR) when considering A) all
simulated datasets and B) only simulated datasets with at least 75 observed grid
cells.



51

Figure 1.6: Root mean squared errors in estimated log disease of the proposed model
versus A) the number of observed cells and B) the disease prevalence of the simulated
dataset.

Sampling Model Avg RMSE Sd RMSE Avg RMSE (N ≥ 75) Sd RMSE (N ≥ 75)
Low PS 0.573 1.449 0.163 0.057
Low SP 0.728 1.024 0.336 0.069
Low PR 0.706 0.436 0.535 0.156
High PS 2.088 3.469 1.061 0.428
High SP 1.951 0.989 1.645 0.818
High PR 4.08 1.417 3.796 1.323

Table 1.2: Summary of RMSE in estimated log disease odds under low and high
levels of preferential sampling for the proposed model (PS), spatial Poisson model
(SP), and poisson regression model (PR). Avg and Sd RMSE refer to the mean and
standard deviation in RMSE, while (N ≥ 75) denotes restricting the calculation of
RMSE to datasets in which at least 75 grid cells were observed.

While the above comparisons showed that the proposed model tended to have lower

RMSE in estimated log disease odds than the reference approaches, especially under

a high level of preferential sampling, we still wish to take a more detailed view of

the performance of our proposed model by examining biases in individual model

parameters. We begin with α+ and α−, the parameters modulating the effect of

preferential sampling on the abundances of cases and controls, respectively. When
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considering all simulated datasets regardless of the number of observed grid cells,

under low preferential sampling, average biases for α+ and α− were -0.087 and -0.024,

respectively. When only simulated datasets with at least 75 observed grid cells were

considered, the mean biases for α+ and α− under low preferential sampling decreased

to 0.019 and 0.006. For a high level of preferential sampling, mean biases in α+ and

α− were 0.239 and -0.029, but only 0.068 and -0.029 over simulated datasets with at

least 75 observed grid cells. Biases in α+ and α− over differing levels of preferential

sampling and sample size requirements are summarized in Figure (1.7A,B). For both

levels of preferential sampling and both parameters α+ and α−, biases showed a

general trend of rapid decrease as the number of observed grid cells increased (Figure

1.7C, D).
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Figure 1.7: Summary of biases in preferential sampling parameters (α+, α−) for A)
all simulated datasets and B) all simulated datasets with at least 75 observed grid
cells under low and high levels of preferential sampling. C) Bias versus the number
of observed grid cells under a low level of preferential sampling. D) Bias versus the
number of observed grid cells under a high level of preferential sampling.
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Parameters β+ and β− pertaining to the fixed effects zλ(x) of model (1.1) each con-

sist of 3 elements, i.e. an intercept and two slope parameters, which we denote

βm,0, βm,1, βm,2 for m ∈ {+,−}. Under low preferential sampling average biases in

β+,0, β+,1, and β+,2 were -0.386, 0.078 and 0.102 respectively, while those for β−,0, β−,1,

and β−,2 were -0.097, 0.003, and -0.012 (Figure 1.8A). Under high preferential sam-

pling average biases remained close to zero, but with increasing variance, both for β+

(average biases: -0.400, 0.212, and 0.062) and β− (average biases: -0.400, 0.212, and

0.062) (Figure 1.8B). For both low and high levels of preferential sampling, parame-

ter biases decreased as the number of observed grid cells increased (Figure 1.8C, D),

rapidly so for the case of low preferential sampling. Under high preferential sampling

slight volatility in bias remained even for increasing sample sizes, especially for the

intercept parameters β+,0 and β−,0.
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Figure 1.8: Summary of biases in estimated β+ and β− under A) low preferential
sampling and B) high preferential sampling. Biases versus the number of observed
grid cells are shown for low (C) and high (D) preferential sampling.

Lastly, the proposed model estimated the spatial range and marginal variance param-

eters with low bias. Under low preferential sampling, when considering only datasets

with at least 75 observed grid cells, the the spatial range θ had an average bias of

0.275 (standard deviation: 1.753), while the average bias in the marginal variance φ

was -0.511 (standard deviation: 0.652). Average biases in the range and marginal

variance under high preferential sampling were 0.172 (standard deviation: 1.346) and

-0.317 (standard deviation: 1.360), respectively.
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1.3.5 Discussion

This simulation study demonstrated that the proposed method outperformed both

reference approaches, increasingly so for higher levels of preferential sampling and

sample sizes above a certain threshold. Similar to the findings of other research

efforts (Diggle et al., 2010; Gelfand et al., 2012; Lee et al., 2015), this study has

shown that failing to accurately model the preferential sampling mechanism can lead

to biased spatial predictions, with the novelty of our study being to consider the

effects of preferential sampling in the context of a disease surveillance dataset. The

direction of error in our reference models (1.3) and (1.2) was also consistent with what

would be expected from analyzing preferentially sampled data with traditional models

which do not correct for the sampling process. That is, the tendency to overestimate

disease odds naturally arises given that the data tend to be sampled in regions which

are of higher disease odds. Aside from offering this reduced RMSE in estimated log

disease odds, model (1.1) also estimate its individual parameters with low bias for the

datasets generated in this study. Estimating α+ and α− with low bias is especially

important due to the fact that these parameters govern the stochastic dependency

between the observed case/control abundances and the distribution of observation

sites.

This study also raised two significant caveats with respect to the performance of

the proposed model. The first pertains to the necessary extent of spatial coverage

of the study region. Specifically, performance suffered when too few grid cells of

the study area were observed by the simulated surveillance system. The level of

required spatial coverage varied by the level of preferential sampling, with a high

level requiring roughly 75 observed cells (or 29% of all cells) for good performance

and the lower level requiring fewer. In addition to the number of observed grid cells,

disease prevalence also appeared to influence model performance, with considerable
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error arising for prevalences below 0.05. However, we argue that these are reasonable

constraints for several disease surveillance datasets, including that in the analysis

chapter of this dissertation. Provided the dataset offers a coverage of at least 30%

of the study region, and provided that the disease is not of very low prevalence, this

study has lended support for the advantages offered by our proposed model.

1.4 Simulation 2: Parameter Initialization

1.4.1 Introduction

Markov Chain Monte Carlo, the algorithm used to sample from the posterior dis-

tribution of the novel spatial model proposed in this project, entails constructing a

Markov chain designed such that the equilibrium distribution reached by the chain

is the true distribution we wish to estimate. This algorithm requires specification

of the initial values of the Markov chain. In practice, these values may be assigned

randomly or by heuristic, such as the output of simpler statistical models. It is of

crucial importance to ensure that convergence of the Markov chain is not contingent

upon some unknown range of initial values.

The following simulation study probes whether such a dependence on parameter ini-

tialization arises when fitting our proposed method. We evaluate model convergence

under two distinct scenarios for generating initial values: an uncalibrated manner,

where initial values are assigned in an uninformative fashion, and a calibrated strat-

egy, in which initial values are taken as parameter estimates of simpler models. We

consider the model performance of these two scenarios under different prior specifi-

cations for the parameters αm (m ∈ {+,−}) of model (1.1), in particular, normal

and truncated normal priors. This simulation study is thus intended to ascertain the
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effect of initial values on convergence of the proposed model under a variety of prior

specifications.

Simulated Data

For this simulation study, a single preferentially sampled disease surveillance dataset

was simulated from model (1.1). We now detail the covariates used and parameter

values chosen to generate this data. The study region of California was discretized

into 458 square grid cells of area 1090.3km2. Two spatial surfaces derived from the

principal component decomposition of the PRISM climatic dataset were used as the

covariates zλ(x)T of model (1.1). The remaining parameters in model (1.1) were

chosen to result in a disease prevalence of 19%, corresponding to 2,341 cases and

10,194 controls (Table 1.6).

Parameter Value
α+ 1
α− -1
β+ (-0.25, 0.75, -0.5)
β− (3, 1, 0.5)
Range 6
Marginal Variance 12

Table 1.3: Simulation parameters for the MCMC initialization study.

A total of 128 locations (Figure 1.9) of observation sites was simulated from model

(1.1).
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Figure 1.9: Raster of simulated observation sites for the parameter initialization
study. Observed locations are denoted by black circles. Raster cells are colored
according the value of realizations of the Gaussian process w(x) at the centroid of
each cell.

In this simulation study we evaluate the convergence of model (1.1) under a cross

section of two conditions: parameter initialization and prior specification.

Parameter Initialization

We consider two strategies, calibrated and uncalibrated, for choosing initial MCMC

values. The calibrated assignment uses simpler models to provide heuristic estimates

for the parameters in model (1.1). The uncalibrated strategy assigns values at ran-

dom, without reference to the data. We now describe both initialization strategies,

beginning with the calibrated option.

Model (1.1) contains 7 parameters to fit: disease covariate related parameters β+ and
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β−, the vector of spatial random effects w, the spatial range θ and marginal variance

φ, as well as scalar preferential sampling parameters α+ and α−. In the calibrated

initialization strategy, we begin by taking advantage of the fact that model (1.1)

specifies the spatial pattern of observed sampling sites as a set of Bernoulli random

variables with probability of success related to w(x), the latent spatial process of

disease risk. That is, for κi denoting the Bernoulli outcome of whether the ith grid

cell in the study region is observed, we can obtain crude estimates for w, θ and φ by

fitting the following spatial logistic model

κi|ξ(xi) ∼ Bernoulli(ξ(xi)) (1.4)

logit(ξ(g)) = w(x)

w(x) ∼ GP(0, k(., .; θ, φ))

where k(., .; θ, φ) is the exponential covariance function with range and marginal vari-

ance parameters θ and φ. Model (1.4) was fit to the data using an MCMC scheme in

which w was updated by Hamiltonian Monte Carlo, θ by Metropolis-Hastings Ran-

dom Walk, and φ by Gibbs sampling. Initial values of this MCMC scheme were

chosen such that w was assigned to be a vector of independent standard normal ran-

dom samples, θ a random sample from a Uniform(5, 7) distribution, and φ a random

sample from a Uniform(10, 15) distribution. In this way no information from true

parameter values was used to initialize the MCMC. The Markov chain was run for

1000 iterations with a burnin of 200, producing initial estimates of w, θ, and φ (Figure

1.10).
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Figure 1.10: Spatial logistic regression output used for MCMC initialization. A)
True versus estimated spatial random effects. Estimated effects are posterior means.
B) Traceplot of the spatial range parameter θ. The horizontal red line denotes the
true value of θ. C) Traceplot of the spatial marginal variance parameter φ. The
horizontal red line denotes the true value of φ.

Thus, under the calibrated initialization scheme, posterior sample means of w, θ, and

φ obtained from model (1.4) were taken to be initial values of the MCMC routine

used to fit model (1.1). Given these posterior means, initial values for β+ and α+

were taken to be the maximum likelihood estimates obtained by fitting a Poisson

regression model regressing case counts on disease covariates and the initial value of

w obtained from the previous step. Similarly, β− and α− were initialized as estimates

from a Poisson regression model with control counts as the response.

In contrast, the uncalibrated initialization strategy did rely on simpler models to
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assign more informed initial values. Instead, w was initialized as a vector of zeros,

β+ and β− as vectors of independent standard normal random variables, α+ as a

sample from Uniform(2, 3), α− as a sample from Uniform(-3, -2), θ as a sample from

Uniform(9, 10), and φ as a sample from Uniform(6, 8).

Prior Specifications

For each initialization scheme described in the previous section, we fit model (1.1)

under two prior specifications for α+ and α−, i.e. the parameters representing the

strength or degree of preferential sampling with regards to cases and controls, re-

spectively. In the first specification we assume normal priors α+ ∼ N(1, 4) and

α− ∼ N(−1, 4), where prior means have been chosen to equal the true values of α+

and α−. In the second, we assign truncated normal priors to α+ and α−. A truncated

normal random variable has probability density function

f(x;µ, σ, a, b) =
φ((x− µ)/σ)

σ(Φ((b− µ)/σ)− Φ((a− µ)/σ)

for a ≤ x ≤ b, where φ(x) = 1
2π

exp(−1
2
x2) and Φ is the cumulative distribution

function of the standard normal random variable. A truncated normal variable can

be conceptualized as a random variable resulting from bounding the support of a

normal random variable to fall between a and b. In this simulation study we assign

the priors α+ ∼ TruncNorm(µ = 1, σ = 2, a = 0, b = ∞) and α− ∼ TruncNorm(µ =

−1, σ = 2, a = −∞, b = 0). In effect, we constrain α+ to be positive and α− to be

negative, under the rationale that sampling in high risk locations will exert a positive

influence on the abundance of cases and negative influence on that of controls.

Thus, we consider a total of 4 modeling configurations in this study, encompassing
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all possible combinations of initialization strategy with prior specification of α+ and

α−.

1.4.2 Results

Model (1.1) was fit under 4 different modeling configurations which varied MCMC ini-

tial values and prior distributions for α+ and α−. Under each configuration the model

was fit by an MCMC implementation wherein α+, α−, β+, β− and random effects w

were updated according to separate Hamiltonian Monte Carlo samplers. Each sam-

pler was self-tuned by dual averaging to achieve a target acceptance rate near 0.65.

The spatial range parameter θ was updated by Metropolis-Hastings random walk,

and the spatial marginal variance was updated by Gibbs sampling. The primary

evaluation metrics of this simulation study are accuracy of the estimated log disease

odds and bias in estimated parameters. The 4 configurations considered here are

calibrated and uncalibrated initial MCMC values for each of normal and truncated

normal prior distributions for α+ and α−, the parameters which reflect the strength

of preferential sampling.

The truncated normal, calibrated configuration achieved the lowest root mean squared

error of 1.935 in estimated log disease odds (Figure 1.11) (Table 1.4). Second was

the truncated normal, uncalibrated configuration with 2.0135 RMSE, followed by the

normal calibrated configuration at 2.681. The normal uncalibrated setting had the

highest RMSE at 5.569.
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Configuration RMSE
Normal uncalibrated 5.569
Normal calibrated 2.681
Truncated normal uncalibrated 2.015
Truncated normal calibrated 1.935

Table 1.4: Root mean squared error in estimated log disease odds of 4 different
MCMC configurations. The configurations considered are the combination of normal
versus truncated normal priors for α+ and α− with calibrated versus uncalibrated
initial MCMC values.

The distribution of errors in estimated log disease odds also differed greatly by MCMC

configuration (Figure 1.11). The normal, uncalibrated strategy tended to overesti-

mate lower log odds and underestimate higher values. The truncated normal, uncali-

brated configuration also underestimated lower log odds, but to a much lesser extent.

Errors were more evenly distributed about the true values for the normal, calibrated

and truncated normal, calibrated configurations, but with error tending to increase

as true log odds decreased.
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Figure 1.11: Estimated log disease odds under different MCMC configurations. A)
Uncalibrated initial MCMC values with normal priors for α+ and α−. B) Calibrated
initial MCMC values with normal priors for α+ and α−. C) Uncalibrated initial
MCMC values with truncated normal priors for α+ and α−. D) Calibrated initial
MCMC values with truncated normal priors for α+ and α−.

Model Parameter Estimate True Value Bias
Normal uncalibrated α+ 1.463 1 0.463
Normal calibrated α+ 0.999 1 -0.001
Truncated normal uncalibrated α+ 1.288 1 0.288
Truncated normal calibrated α+ 1.13 1 0.13
Normal uncalibrated α− 1.63 -1 2.63
Normal calibrated α− -0.971 -1 0.029
Truncated normal uncalibrated α− -1.2 -1 -0.2
Truncated normal calibrated α− -1.096 -1 -0.096

Table 1.5: Preferential sampling parameter estimates under different MCMC con-
figurations.
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MCMC convergence for each configuration was assessed by traceplots. The number of

MCMC samples drawn and length of burnin periods varied sizably depending on pa-

rameter initialization strategy and prior specification (Table 1.6), with the truncated

normal models having the smallest chain length of 4000 and the normal uncalibrated

model with the greatest length of 14000.

Configuration Samples Burnin
Truncated normal calibrated 4,000 500
Truncated normal uncalibrated 4,000 1,500
Normal calibrated 2,000 500
Normal uncalibrated 14,000 6,000

Table 1.6: Number of MCMC samples and burnin periods for different prior speci-
fications and parameter initialization strategies.

1.4.3 Discussion

The objective of this simulation study is the assess convergence of the proposed prefer-

ential sampling model (1.1) under different prior distributions and MCMC initializa-

tions. Recall that we consider both calibrated and uncalibrated strategies for setting

initial MCMC values, with calibrated initialization taking the form of outputs of sim-

pler models, and uncalibrated initialization simply assigning random initial states.

In either case initial values are not informed by knowledge of the true parameters, a

crucial requirement for the applicability of model (1.1) to real world scenarios. For

each initialization strategy, we fit model (1.1) under normal and truncated normal

prior distributions for both preferential sampling parameters, α+ and α−. We refer

to the 4 MCMC configurations resulting from these different initializations and priors

as: 1) normal, uncalibrated 2) normal, calibrated 3) truncated normal, uncalibrated,

and 4) truncated normal, calibrated.

The truncated normal, calibrated configuration achieved the best root mean squared
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error in predicted log disease odds, followed closely by the truncated normal, un-

calibrated model (Figure 1.11) (Table 1.4). The normal, calibrated configuration

achieved the next lowest RMSE, trailing the preceding two configurations by a mod-

est but not exorbitant margin. However, the normal, uncalibrated strategy had by

far the highest RMSE of any configuration.

All four strategies showed an increasing error in predicted disease log odds as the

true log odds value decreased (Figure 1.11). This error was roughly normally dis-

tributed about the true value for the normal uncalibrated version, slightly positively

skewed for the truncated normal, uncalibrated model, slightly negatively skewed for

the truncated normal calibrated version, and greatly positively skewed for the normal

uncalibrated configuration. Consequently, the uncalibrated normal model resulted

in a substantially higher RMSE than the three contrasting configurations, with a

value of 5.568, over twice the value of the next worst result of 2.681 for the normal,

calibrated model.

The normal uncalibrated model not only fails to accurately predict log disease odds

but also suffers considerable bias in parameter estimation, due to failure of conver-

gence. The MCMC routine under this configuration failed to converge to proper

values of the preferential sampling parameters α−, and showed moderate bias in α+

(Table 1.5). In fact, the estimated value of 1.63 is completely of the wrong sign, with

the true value of α− falling at -1. In contrast, the other three MCMC configurations

estimate α+ and α− within reasonable levels of bias (Table 1.5). Moreover, the failure

of the normal uncalibrated model to converge to the proper value of α− is coupled

with substantial bias in β+ and β−, Thus, the normal uncalibrated model not only

fails to provide quality estimates of disease risk but also suffers considerable bias in

parameter estimation, whereas the other models perform reasonably well in both risk

prediction and parameter estimation.
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This simulation study has yielded key insights regarding the conditions under which

the proposed preferential sampling model performs well, showing that model perfor-

mance depends on both MCMC initialization and prior specification. Model perfor-

mance, as measured by both accuracy in predicted disease risk and statistical bias

in parameter estimation, was greatest for the truncated normal, calibrated modeling

configuration. The next best strategy is arguably the normal, calibrated strategy,

which achieves a similar accuracy to the truncated normal calibrated model but re-

sults in moderately lower bias in parameter estimates. Lastly, and perhaps most

crucially, we have shown that the normal uncalibrated scheme fails to deliver quality

risk predictions and parameter estimates.

This simulation study has shown that using calibrated initial MCMC values, i.e.,

values obtained from fitting simpler models to the data, is a key ingredient to model

success when truncated normal priors are not assigned to α+ and α−, which may not

always be appropriate. One drawback of the calibration process is the fact that a spa-

tial logistic regression model must be fit, demanding extra time and computational

resources. Within the specific context of this simulation this additional model fitting

is largely unproblematic, as convergence is quickly obtained. However, at substan-

tially higher resolutions the additional modeling step may become more burdensome.

Additionally the success of the calibration step hinges on quality estimates of the

spatial random effects w from locational data, which may be infeasible to obtain if

there are too few observed locations. In such cases where model calibration fails the

truncated normal, uncalibrated configuration may suffice.

The appropriateness of the truncated normal prior specification for α+ and α− ulti-

mately rests on the assumption that preferential sampling tends to assign observation

sites in areas with a greater abundance of cases and lesser abundance of controls. The

truncated normal prior distribution does assign non-zero probability to α = 0, i.e.
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a non-preferential sampling scheme, which is crucial to the real world applicability

of the model given the possibility that datasets thought to be preferentially sampled

may in fact possess no or a merely weak relationship between sampling locations and

disease risk. However the lack of support for α+ < 0 may result in positively biased

estimates of α+ when the true value of α+ is low, while the same may hold for α−

but in the opposite direction. But more importantly, it may be inaccurate to assume

that preferential sampling should be not be associated with an increased abundance

of controls, insofar as the increase in controls is matched with an even greater increase

in the abundance of cases so that the overall risk is higher in sampled locations. In

such instances both α+ and α− may be greater than zero, under the condition that

α+ > α−. For example, scenarios may arise where high risk regions for a disease tend

to have greater numbers of both cases and controls compared with low risk areas,

but the increase in the number of cases is greater than that of controls, resulting in

an overall greater risk. For this reason it may be unreasonable to assume α− < 0

in every real world sampling application. Thus, our ultimate recommendation for

fitting model (1.1) is the normal prior specification with calibrated initial values. In

situations where there is clear evidence that the assumption of α− < 0 is valid, such

as those where previous studies show a decreased abundance of controls in high risk

areas, then we would recommend the truncated normal, calibrated scheme, followed

by the truncated normal, uncalibrated option. We do not recommend the normal,

uncalibrated scheme under any circumstance. Future simulation studies and analyses

in this dissertation adopt the normal, calibrated model fitting strategy to allow for

the most realistic flexibility in the range of α− while still preserving quality of model

performance.
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1.5 Analysis

1.5.1 Introduction

This analysis applies the proposed method to a disease surveillance dataset obtained

from the California Department of Public Health (CDPH). The target of surveil-

lance is Yersinia pestis infection, otherwise known as plague, in the rodent family of

squirrels (Sciuridae) within the state of California. The surveillance system collects

data by means of traps laid out to capture rodents at specific locations, from which

recovered rodents are tested for plague. Due to limited resources and managerial

objectives, CDPH tends to assign these sampling locations to areas at high suspected

risk for plague, making the data collection mechanism a case of preferential sampling.

Our objective is thus to determine whether modeling the sampling process can offer

an improved plague risk map over the state of California, or at least, a risk map which

is quantitatively distinct from that obtained by alternative methods which make no

attempt to address preferential sampling.

The CDPH surveillance system targets plague in the rodent family of squirrels, known

as Sciuridae or Sciurids. A total of 21 different species within this family have been

recovered by surveillance, namely the: Antelope Ground Squirrel, Antelope Ground

Squirrel (WhiteTail), Belding’s Ground Squirrel, California Ground Squirrel, Chip-

munk, Least Chipmunk, Long-eared Chipmunk, Lodgepole Chipmunk, Merriam’s

Chipmunk, Panamint Chipmunk, Shadow Chipmunk, Siskiyou Chipmunk, Sonoma

Chipmunk, Uinta Chipmunk, Yellow-pine Chipmunk, Golden-mantled Ground Squir-

rel, Ground Squirrel, Yellow-bellied Marmot, Pine Squirrel, and Squirrel. The surveil-

lance system collects data by conducting a series of sampling events at locations

throughout California. For each sampling event, Sciurids are trapped and subse-

quently tested for Yersinia Pestis. The data contain samples collected between 1983
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and 2015. This analysis aggregates data for all Sciurid species, and for all years

observed. Analyses by species and by specific time intervals are included in future

chapters of this dissertation, with the intent for this initial analysis being to estab-

lish whether there is an observable impact of preferential sampling on the temporally

aggregated data.

The surveillance system predominantly assigns sampling locations to high risk or high

impact areas, where risk is assessed to be high in what are viewed as plague endemic

regions, as determined by by historic cases of plague in humans or recovered Sciurid

specimen, and high impact areas are regions where cases of plague in humans would

be particularly damaging, such as in national parks. This sampling strategy fits the

mold of preferential sampling, given that sampling locations are assigned to areas

thought to be of high value for the response (disease risk) being measured. While

sampling at high risk locations is often sensible from a managerial perspective, the

downside is that it may result in a statistically biased estimation of the underlying

risk surface (Diggle et al., 2010; Lee et al., 2011; Gelfand et al., 2012; Lee et al.,

2015). Ultimately, there are two contrasting aims in disease surveillance that come

in conflict here: 1) to monitor most sensitive areas in order to respond quickly to

threats, all the while using constrained resources, and 2) to estimate an unbiased risk

surface over a broad extent. Preferential sampling lends itself to the former, while

possibly impacting the ability to perform the latter. Thus our goal is to propose

a model that can estimate an improved, less statistically biased, risk surface from

preferentially sampled data.

We compare our proposed model against two alternatives. The first reference model

(1.3) regresses case and control counts through independent Poisson models whose

rates are log-linear in climate related covariates. For a study region discretized into

g = 1, . . . , G grid cells, we suppose that i = 1, . . . , K of these have been observed
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by the surveillance system. We then let Yim denote the count of cases (m = +)

or controls (m = −) for the ith observed cell, and suppose that Yim are Poisson

distributed with rates λm(xi) for xi ∈ R2

Yim ∼ Poisson(λm(xi)) (1.5)

λm(xi) = exp(zλ(xi)
Tβm)

Inclusion of the i subscript in our notation for zλ(xi) is intended to convey that the

rate λm for the ith grid cell is a function of the covariate values at the centroid of the

ith grid cell, denoted xi. For this rate construction to hold we must assume that the

grid cells are of sufficiently small area such that the values of the spatial covariates

zλ(x) are constant throughout any given cell.

The next reference model (1.2) follows a similar design to the first, except that it

includes spatial random effects realized from a Gaussian process in the structural

components of the Poisson models for cases and controls. The inclusion of spatial

random effects w+(x) and w−(x) is intended to capture unexplained spatial varia-

tion in case and control counts, respectively. Both Gaussian processes are modeled

with exponential covariance functions, k(x, x′; θm, φm), where spatial range (θm) and

marginal variance (φm) parameters differ across cases and controls to allow a more

flexible model.
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Yim ∼ Poisson(λm(gi)) (1.6)

λm(x) = exp(zλ(x)Tβm + wm(x))

wm(x) ∼ GP(0, k(., .; θm, φm))

Similarly to our proposed model, this spatial Poisson model is also fit at a lower

resolution (422 km2) due to the inefficiency of inverting the covariance matrices for

both Gaussian processes w+(x) and w−(x). Estimated spatial random effects obtained

from the low resolution model fit are then downscaled to a resolution of 16km2 by

thin plate spline interpolation, allowing for the calculation of high resolution disease

log odds and risk.

1.5.2 Data

Models (1.1), (1.5) and (1.6) were fit to the surveillance data over all recorded years,

1983 - 2015, for all Sciurid species recovered by the surveillance system. A total of

1,401 plague positive specimen were present in this dataset, along with 20,366 plague

negative rodents for an overall prevalence of 6.43%.
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Figure 1.12: Distribution of Sciurid sampling locations between 1983 and 2015 at
a resolution of 426 km2. Grid cells are colored according to the number of distinct
sampling locations therein.

Information derived from the PRISM climatic dataset, maintained by the Oregon

State University, was used as the basis for disease related spatial covariates zλ(x).

The PRISM data used here consist of a variety climatic measurements conducted at

the 16 km2 resolution, known as 30 year average normals. Specifically, mean temper-

ature, maximum temperature, minimum temperature, precipitation, minimum vapor

pressure deficit, maximum vapor pressure deficit, and mean dew point temperature

were considered. However, these values were not directly used as the spatial covari-

ates zλ(x), but rather, were first range standardized and then dimensionally reduced

by principal component analysis. The range standardization was calculated as

rik = (xik −mini)/(maxi −mini) for (i = 1, . . . , 7)

where i indexes the measurement type, k indexes the raster cell in the study region for
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which the measurement was taken, mini is the minimum value of the ith measurement

and maxi is the maximum value of the ith measurement. Principal components of

the 7 range standardized measurements were calculated using the rasterPCA function

of the RStoolbox package, from the R programming language. The first 2 principal

components (Figure 1.13) were then range standardized and scaled transformed before

use as covariates zλ(x). An intercept term was also included in zλ(x). The first

principal component corresponds primarily to the temperature related variables, while

the second is comprised mostly of moisture related variables.

Figure 1.13: The first two PRISM principal components used as covariates for CDPH
Sciurid analysis. Each raster is at a 16 km2 resolution.
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1.5.3 Results

The proposed model (1.1) was fit to the data by MCMC with a total of 10,000 samples

and a burnin period of 2,000, at a resolution of 426 km2, which discretized the study

region into 1,117 grid cells. The results of model fitting were subsequently spatially

downscaled to a resolution of 16 km2 (Figure 1.14).

Figure 1.14: A) 426 km2 Sciurid plague risk map and B) Spatially downscaled 16
km2 Sciurid plague risk map.

The high resolution risk map estimated by the proposed model (1.1) is presented in

Figure (1.15), and again in Figure (1.16) with the inclusion of county lines. In these

risk maps the raster values represent the probability a rodent sampled at a particular

location will be plague positive. Estimated risk ranges in value from 0.008 to 0.115

over the study region. Peak areas of risk fall along the Sierra Nevada mountain range,



77

stretching diagonally from roughly the 40th to 35th latitude towards the eastern

border of the state, as well as thin pockets of elevated risk in the northeastern portion

of the state, in addition to circular regions of elevated risk towards the southwestern

part of the map. The southern and central coastlines also show mild elevation in risk

relative to some of the lower risk regions of the map, such as the San Joaquin Valley,

to the west of the Sierra Nevada mountains, and the Imperial Valley region, in the

southeastern corner.
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Figure 1.15: Sciurid plague risk map over California at high resolution (16 km2), as
calculated by model (1.1).
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Figure 1.16: Sciurid plague risk map over California at high resolution (16 km2), as
calculated by model (1.1), with county lines.
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For a rough visual inspection of the correspondence between the distributions of ob-

served cases and controls with the resulting risk estimates, we overlay juxtapose the

estimated risk map in alongside rasters of observed case and control counts (Figure

1.17). It is apparent that the elevated band in risk running along the Sierra Nevada

mountain range, between the 40th and 36th parallels, coincides with a strong presence

of recovered cases. In addition, the neighborhoods of increased risk in the southwest-

ern portion of the map also contain an abundance of cases. Of note is the fact that

the northeastern most pocket of elevated risk, between roughly the 41st and 42nd

latitude, near the eastern state boundary, evidences plague negative specimens but

not any recovered cases.

Figure 1.17: Overview of A) case counts, B) control counts, and C) the estimated
risk surface for plague in Sciurids between 1982 and 2015.

This last observation, i.e. the small neighborhood of increased risk in the northeastern
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corner, begs the question of why risk can be heightened in places where no cases have

been recovered. To help explain this question and the mechanics behind other areas

of elevated risk in the Sciurid plague map, we separate the contributions to predicted

risk put forward by covariates and random effects. We recall from model (1.1) that

the log disease odds for a particular point in space x are given by the difference of

case and control log rates

zλ(x)Tβ+ + α+ × w(x)− zλ(x)Tβ− + α− × w(x)

We can separate this expression into firstly a covariate contribution, zλ(x)Tβ+ −

zλ(x)Tβ−, due to the PRISM climatic principal components used here as fixed effects

zλ(x)T , and secondly the expression α+×ws(x)−α−×w(x) provided by the spatially

structured random effects w(x). Side by side inspection of these different contribu-

tions helps explain the areas of high risk as either due to covariates, or random effects,

or a mixture of both (Figure 1.18). We see that the northeastern pocket of elevated

risk has high levels of covariate contributions, with a much fainter contribution from

random effects, suggesting that the risk increase here is primarily covariate driven.

Turning our attention toward other areas of the map, we observe the high risk re-

gion along the Sierra Nevada mountains, between the 37th and 35th parallels, to be

underpinned by both high covariate and random effect contributions.
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Figure 1.18: Comparison of A) covariate versus B) random effect influence on es-
timated log disease odds of plague in Sciurids, showing A) the value contributed to
the log odds by covariate effects, zλ(x)Tβ+ − zλ(x)Tβ− and B) that contributed by
random effects, (α+ × w)− (α− × w).

The raster of posterior variances in predicted risk, obtained from the resolution at

which model (1.1) was fit before downscaling, shows an overall low level of posterior

variance, ranging from 3.074×10−6 to 1.614×10−4, with a median value of 2.494×10−5.

A slight east-west gradient of decreasing variance is apparent, with increased posterior

variance arising along the eastern border of the state.
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Figure 1.19: Posterior variance in predicted risk for plague.
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Stark differences in predicted risk arise between our proposed method and the two

reference approaches (Figure 1.20). The Poisson model shows a generally higher level

of estimated risk compared to model (1.1), particularly in the northern area of the

state, but also along those regions which were predicted to be of very low risk by

model (1.1), namely the San Joaquin and Imperial valleys.

Figure 1.20: Comparison of Sciurid plague risk maps over California at 16 km2 reso-
lution. A) Risk map adjusted for preferential sampling by model (1.1). B) Unadjusted
risk map obtained from the reference Poisson regression model (1.5).

While the Poisson model shows notable differences in predicted risk from the pro-

posed method, the spatial Poisson model (1.6) diverges to an even greater degree

(Figure 1.21). Model (1.6) predicts several pockets of substantially high risk, reach-
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ing a maximum value of 0.59, outside of which the predicted risk remains very low.

These areas of elevated risk fall primarily along the Sierra Nevada mountain range,

in addition to key sections of Southern and Northern California.

Figure 1.21: Comparison of Sciurid plague risk maps over California at 16 km2 reso-
lution. A) Unadjusted risk map obtained from the reference spatial Poisson regression
model (1.6). B) Risk map adjusted for preferential sampling by model (1.1).

In addition to these visual comparisons, we also examine the cell by cell differences

in estimated risk between models (1.1) and (1.5) with a scatterplot (Figure 1.22 A),

where the (x, y) coordinates of each point represent the corresponding risk calculated

by models (1.5) and (1.1), respectively, for each grid cell in the study region, and

the red diagonal is a line of slope 1 and intercept 0. Consequently, points falling
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below the red line indicate higher predicted values for the Poisson model than the

proposed method, and points falling above the line signify the opposite. Here, the

reference model generally tends to overestimate risk relative to model (1.1) for the

vast majority of grid cells, while still underestimating some values relative to model

(1.1). We also compare the cell by cell estimated risk differences between model (1.1)

and the spatial Poisson model (1.6) (Figure 1.22 B). The divergence in cell by cell risk

between these two models is far more pronounced than that between model (1.1) and

the Poisson model, with several values falling substantially lower for the proposed

method, but also a large number of values estimated to be higher by model (1.1).

Figure 1.22: Comparison of the estimated plague risk over all discretization cells of
the study region. Each point compares the predicted plague risk from the preferential
sampling model (1.1) against that of the A) Poisson model (1.5) and B) spatial Poisson
model (1.6) for a given grid cell. The red diagonal is of slope 1 with intercept 0.

To re-enforce the per-cell risk differences between model (1.1) and both reference
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models, we observe that on average the mean absolute percent (MAP) difference in

the per-cell risk values between models (1.1) and (1.5) is 47.375%, with a maximum

MAP difference of 80.443%, while the MAP difference relative to model (1.6) is over

696%, with a maximum difference of over 36,000% (Table 1.7).

Model Minimum 1st Quartile Median Mean 3rd Quartile Max
(1.5) 0.021 36.008 49.502 47.375 59.923 80.443
(1.6) 0.007 140.777 396.454 696.135 755.482 36089.364

Table 1.7: Summary of mean absolute percent differences in predicted Sciurid plague
risk by the preferential sampling model (1.1) in comparison to the Poisson (1.1) and
spatial Poisson (1.6) models. The absolute percent difference is calculated on a per-
cell basis, as |(ri,2 − ri,1)|/ri,2, where ri,1 denotes the risk predicted by one of the
reference models for the ith grid cell and ri,2 denotes that of model (1.1).

We emphasize that the previous comparisons do not convey any notion of error with

respect to the true, unknown, risk surface. That is, we cannot say from this data

alone that the reference models (1.5) or (1.6) over- or underestimate the true disease

risk for particular cells, but rather, that they show quantitatively different predictions

of risk compared to our proposed method.

In addition to predicted risk, parameter estimates also differ greatly among the three

models (Table 1.8). The greatest differences in estimates are witnessed for the in-

tercept parameters of cases and controls, β0,+ and β0,−, respectively. The slope pa-

rameters, β1,m and β2,m, corresponding to the first two PRISM principal components,

show modest differences for the Poisson model and proposed model, but are widely

divergent for those in comparison to the spatial Poisson model. For instance, the spa-

tial Poisson model estimates β1,+ to be 1.956, while the preferential sampling model

and Poisson model estimate it to be 0.651 and 0.668, respectively.



88

Parameter Model Estimate Variance
β0,+ Poisson 1.181 0.0012
β0,+ Spatial Poisson -2.852 0.26642
β0,+ Preferential Sampling -1.923 0.036
β1,+ Poisson 0.668 0.00075
β1,+ Spatial Poisson 1.956 0.12131
β1,+ Preferential Sampling 0.651 0.022
β2,+ Poisson 0.557 0.00089
β2,+ Spatial Poisson 0.692 0.13216
β2,+ Preferential Sampling 0.295 0.011
β0,− Poisson 3.998 7e-05
β0,− Spatial Poisson 2.311 0.00384
β0,− Preferential Sampling 1.378 0.027
β1,− Poisson 0.415 5e-05
β1,− Spatial Poisson 0.673 0.00352
β1,− Preferential Sampling 0.314 0.017
β2,− Poisson 0.477 5e-05
β2,− Spatial Poisson 0.315 0.00613
β2,− Preferential Sampling 0.179 0.008

Table 1.8: Comparison of parameter estimates for the CDPH Sciurid analysis. Pois-
son estimates are taken as maximum likelihood estimates from model (1.5). Pref-
erential sampling and spatial Poisson estimates are posterior means obtained from
post-burnin MCMC samples, while variances for these two models are posterior vari-
ances.

Lastly we provide estimates for parameters specific to the proposed model (Table

1.9), namely preferential sampling parameters α+, α− along with the range (θ) and

marginal variance (φ) associated with the covariance function of the Gaussian process.

The preferential sampling parameters are estimated as α+ = 1.429 and α− = 1.297.

The importance of these parameters lies in the way in which they modulate the impact

of the shared latent process in the predicted risk, or in other words, help quantify

the impact of preferential sampling. We also estimate the spatial range range to

be 1.800, with posterior variance 1.757, and marginal variance to be 16.987, with

posterior variance 8.377.
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Parameter Posterior Mean Posterior Median Posterior Variance
α+ 1.429 1.435 0.003
α− 1.297 1.298 0.002
Range 1.8 1.757 0.124
Marginal Variance 16.987 16.642 8.377

Table 1.9: Model (1.1) parameter estimates for the Sciurid plague analysis. Posterior
means, medians and variances are calculated from post-burnin samples. The + and
− subscripts denote disease positive and negative status, respectively.

1.5.4 Discussion

This analysis fit the proposed preferential sampling method and two benchmarks to

the CDPH plague surveillance dataset, with the goal being to determine whether

modeling the sampling process could impact the predicted risk map. In addition, it

was also of interest to determine the degree to which the data are, in fact, preferen-

tially sampled in the strict sense - that is, through stochastic dependence between the

choice of sampling locations and risk for plague - beyond the general sense in which

it is already known that the disease surveillance system tends to sample for plague in

high risk regions. That is, if the tendency to sample for plague in high risk regions can

be accounted for by fixed effect covariates alone, then the methodological innovations

featured in this project would prove unnecessary, at least for this particular dataset.

But on the contrary, the results of this analysis lend support toward the opposite

conclusion, that additional measures are indeed necessary to account for preferential

sampling.

Firstly, the evidence shows that the proposed preferential sampling model does indeed

produce considerably different risk maps in comparison to the reference methods,

i.e., Poisson regression and spatial Poisson regression. The per-cell risk scatterplots

(Figure 1.22A) show that the Poisson model yields higher estimates of risk for most

cells relative to model (1.1), but also predicts lower risk for cells calculated to be

high risk by model (1.1). These discrepancies are readily apparent in Figure 1.20.
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Most notably, the Poisson model tends to show a higher level of disease risk in the

Central Valley region of California as well as in the northeastern portion of the map,

likely due to the fact that the Poisson model estimated a much greater case intercept

β0,+ and lower control intercept β0,− than the preferential sampling model (Table

1.8). This elevated estimation of risk is consistent with what would be expected from

modeling preferentially sampled data with traditional approaches. The fact that the

data are sampled predominantly in high risk regions is expected to result in elevated

predictions of risk at unsampled areas. There are also particular pockets along the

coastline where model (1.5) predicts higher disease risk. But far from it being the

case that model (1.5) predicts higher risk everywhere, the scatterplot of per-cell risk

differences (Figure 1.22A) shows areas where the proposed model predicts higher risk

than model (1.5). Further investigation of these cells showed their locations to be in 4

small pockets along the eastern Sierra Nevada mountains, and 3 pockets in southern

California. These difference are noteworthy because they demonstrate that even

preferential sampling can lead to potentially missing areas of the highest risk, when

the data are analyzed by traditional methods. However we emphasize the adverb

potentially, given that we do not know whether the higher risk regions as predicted

by model (1.1) are truly higher risk, only we note that if model (1.1) is correct, then

the Poisson model would miss these regions.

The proposed method shows even greater divergence in predicted risk when compared

to the spatial Poisson model (1.6). Unlike the Poisson model, which demonstrated

at the very least a general directional trend of agreement in per-cell risk with model

(1.1) (1.22A), the spatial Poisson model calculated both greatly higher and lower

values than model (1.1) (1.22B). Areas of exceptionally predicted high risk (> 0.5)

are apparent in the risk map produced by model (1.6) (Figure 1.22B), which are

completely absent from the map of model (1.1). In addition, the spatial Poisson map

shows much higher risk in clusters along the Sierra Nevada mountain range, in the
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eastern and central portion of the map, compared to model (1.1). Predicted risk

values in excess of 0.5 are so high as to be considered unreasonable model outputs

given the known low prevalence of plague in Sciurids. Hence, it is important to

understand how and why these excessive values arise in model (1.6).

The general tendency of the spatial Poisson model is to predict small areas of sharply

elevated risk, which quickly decline to values near zero. This phenomenon can be

explained by considering the raw disease prevalences and case counts in the cells

predicted to be of highest risk by the spatial Poisson model (Table 1.10). Here,

extremely high raw prevalences (i.e. the number of per-cell cases divided by the total

number of observed specimen), between 0.368 and 1, arise from low overall numbers

of observed specimen, on the order of 1 to 14 total observed rodents. The resulting

spatial random effects are of high positive value, for cases (at most 2.273), and of

near zero or low negative value, for controls (between -0.256 and -3.432). If we let

w+ and w− denote the random effects for cases and controls, respectively, then since

since disease log odds are given by the difference of case and control log intensities,

we can see that the elevated risk predictions are driven by the differences w+ − w−,

which are relatively large for these cells.

Predicted Risk Prevalence Cases w+ w−
0.713 1 2 0.12 -3.432
0.569 1 1 1.062 -3.033
0.511 1 1 -2.717 -4.22
0.489 0.429 3 2.493 -1.37
0.424 0.368 14 2.273 -0.256

Table 1.10: Predicted risks, raw disease prevalences, case counts and random effect
values from the spatial Poisson model for the raster cells with the top 5 greatest
predicted risks. w+ and w− denote the spatial random effects from model (1.6) for
cases and controls, respectively.

In contrast, the proposed model operates under a completely different framework

with regard to spatial random effects, the details of which explain why model (1.1)



92

does not exhibit the same excessive prediction of risk for these cells. We recall that

model (1.1) does not assign case and control specific Gaussian processes to capture

unexplained spatial variation, as does model (1.6). Rather, a single Gaussian process

w is shared among the component of the model describing the distribution of sample

sites and the components of the model describing abundances of cases and controls.

The impact of w is brought about in the case and control intensity functions by means

of the product α+ × w, for cases, and α− × w, for controls. As Table 1.11 shows, for

the cells predicted to have the highest risk by model (1.6), in the framework of model

(1.1), the differences (α+×w)− (α−×w) are in fact relatively minor, resulting in low

predicted risks. Thus, due to the fact that w is shared between cases, controls, and

locational information, there is no opportunity for random effects to inflate in positive

and negative directions in response to high case counts and low control counts, from

which it follows that the predicted risks are kept in check.

Predicted Risk Prevalence Cases α+ × w α− × w (α+ × w)− (α− × w)
0.04 1 2 -3.65 -3.312 -0.338
0.034 1 1 -1.328 -1.205 -0.123
0.026 1 1 -1.511 -1.371 -0.14
0.031 0.429 3 -6.328 -5.742 -0.586
0.019 0.368 14 -5.827 -5.288 -0.539

Table 1.11: Predicted risks, raw disease prevalences, case counts and random effect
values from the proposed model (1.1) for the raster cells from Table 1.10 which the
spatial Poisson model (1.6) predicts to have the highest risk.

We now consider the parameter estimates of β+ and β− obtained from each model (Ta-

ble 1.8). However, it is quite natural to call into question the meaning and usefulness

of attempting to interpret any single value of β+ or β−, given that these parameters do

not directly correspond to actual physical measurements, but rather to the first two

principal components of the dimensionally reduced PRISM climatic variables. The

slope associated with a principal component is arguably of little scientific interest

per se. While that judgment may be so, an examination of these parameters is still
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worthwhile for the purpose of explaining the differences in the predicted risk maps

calculated by each model. Firstly, there are clear and substantial differences in the

parameter estimates from each model. The greatest differences arise in the case and

control intercepts, β0,+ and β0,−. The Poisson model shows notably greater intercepts

than both other models, as would be expected for two primary reasons, firstly, due

to the fact that if samples tend to be conducted in areas at high risk for plague, then

an upward pressure is naturally exerted on the intercept of cases, and if these high

risk areas tend to be where Sciurids are more likely to be found overall, then a similar

pressure would act on the intercept of controls. The differences may also be attributed

to model construction, insofar as models (1.1) and (1.6) both have additional compo-

nents accounting for Sciurid abundances, namely α+×w and α−×w for model (1.1),

or w+ and w− for model (1.6). Intercepts are not the only parameters which show

notable differences across models. The fact that all slope parameters estimated by

model (1.6) are substantially different than those from the other models is perhaps

related to the erratic behavior of the spatial random effects in this model, as previ-

ously observed. While the differences in slopes between the Poisson and preferential

sampling models are much less pronounced, they are nonetheless nontrivial given the

tight variances around these estimates, which may in part explain differences in the

predicted risk maps (Figure 1.20). However, the biggest portion of the variability

in risk maps between these two models is most likely explained by estimates of the

preferential sampling effects, α+ × w and α− × w, which we now discuss.

Estimates of α+ and α− are crucial for the interpretation of this analysis since these

parameters modulate the effect of the spatial random process w on the observed

abundances of cases and controls. The α parameters can be seen as representing the

strength of preferential sampling present in the data through their relationship to w.

For instance, values of α+ = 0, α− = 0 imply that the latent process w has no bearing

on case or control abundances, and hence, there is no stochastic relationship between
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the pattern of observation sites and disease risk, or in other words, that the data

are not preferentially sampled. Alternately, if α+ > 0, α− > 0, and α+ = α−, then

the sampling mechanism corresponds to a scenario wherein observations tend to be

conducted in areas of higher case and control counts, but not in areas of higher disease

risk. But if the data are preferentially sampled then the disease log odds at location

x are calculated by model (1.1) as zλ(x)Tβ+ + α+ × w − zλ(x)Tβ− − α− × w, which

implies that as w increases, in order for disease log odds to increase, α+×w−α−×w

must increase, and consequently, that it must be the case that α+ > α−. The reverse

line of reasoning holds to show that α+ > α− implies that the data are preferentially

sampled, with the degree of preferential sampling increasing as α+ grows larger than

α−. Thus, preferential sampling is evidenced by whether α+ > α−, and the degree or

strength of preferential sampling by the magnitudes of α+ × w − α− × w relative to

the other components of the disease log odds construction, i.e. zλ(x)Tβ+− zλ(x)Tβ−.

Estimates, in the form of posterior means, for α+ and α− are 1.429 and 1.297, re-

spectively (Table 1.9). Given the posterior distributions of each parameter, Bayesian

hypothesis testing easily confirms that α+ > α− at the 95% confidence level. We

interpret this result as evidence for preferential sampling in the dataset. The ques-

tion becomes how to quantify the strength of preferential sampling apparent in this

surveillance system. A good quantification strategy is to calculate what portion of the

linear predictor of log disease odds is comprised by the preferential sampling terms,

α+×w−α−×w. That is, for each grid cell location x in the study region, we calculate

100× |α+ × w(x)− α− × w(x)|
|zλ(x)Tβ+ − zλ(x)Tβ−|+ |α+ × w(x)− α− × w(x)|

where we take absolute values |.| in order to facilitate the calculation of summary

statistics (Table 1.12). The expectation of this quantity over all grid cells can be
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thought of as the expected percent of the linear predictor of log disease odds that

is attributable to the spatial process w. We see that on average, roughly 8% of the

linear predictor log disease odds originates from the preferential sampling component.

While this percentage may seen minor, roughly 25% of cells have over 10% of the linear

predictor comprised by the preferential sampling component. By this metric, and by

the comparison of the per cell risk predictions, we conclude that there is a mild to

moderate effect of preferential sampling on the data.

Minimum 1st Qu. Median Mean 3rd Qu. Maximum
0 4.00 8.00 8.71 13 23

Table 1.12: Summary of estimated percentage of log disease odds attributable to
preferential sampling. Summaries are calculated over per cell log disease odds. 1st
and 3rd Qu. denote the first and third quartiles.

This analysis has provided several key insights into the spatial characteristics of plague

and the dynamics of the sampling mechanism behind the surveillance system, along

with other points of scientific interest. Firstly, under every method considered, there

is notable spatial heterogeneity in the risk of plague. Secondly, there are indeed sig-

nificant relationships between plague and climate which, in part, explain this hetero-

geneity. But the most important conclusions center around the effect of preferential

sampling on the predicted risk of plague. Most importantly, we can conclude that

there is evidence of an impact of preferential sampling on predicted risk, as shown

by the unique features of the predicted risk map generated by the proposed method.

However, a key limitation of this evidence is that the comparisons of estimated risk

between models do not yet account for the posterior variances associated with these

estimates. One obvious concern is that while point estimates of risk may differ on the

surface, such apparent differences may be due to statistical noise. We clearly need to

impose statements of statistical significance around our comparisons. However, to do

so is beyond the capability of the downscaling technique featured in this project. In

particular, our current downscaling method generates merely point estimates of risk
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at high resolution locations, but not arrays of posterior samples at these locations.

Without posterior samples, statements about the statistical significance of differences

in risk at these sites become impossible. A new downscaling approach is needed to

address this issue, which we introduce in Project 3. But for this project, we present

the initial, exploratory evidence that preferential sampling impacts the estimated risk

of plague. More definitive evidence supporting this point is presented in Project 3.

Two additional limitations of this analysis are also apparent. Firstly, the data have

been aggregated across all Sciurid species, which may mask heterogeneity in risk

and sampling dynamics particular to certain species. Secondly, the data have been

aggregated over a large span of time, from 1983 to 2015, which has the potential

to miss temporal trends in the disease and sampling processes. We address these

concerns in future chapters of this dissertation.
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Chapter 2

A Multivariate Framework to

Address Preferential Sampling

2.1 Introduction

A key motivation of multivariate geostatistical modeling is to exploit shared statisti-

cal information between different responses to make better predictions. For instance,

suppose an observation system collects abundant measurements of one response over

a broad spatial extent, but only sparsely gathers data on another type of response. If

the two responses are well correlated, analyzing them as if they are independent would

miss a valuable opportunity to borrow information from the well sampled response

to inform predictions made about the sparsely observed response. In contrast, joint

analysis would take advantage of this correlation to better predict values of both re-

sponse types. In Project 2, we bring the benefits of the multivariate approach to bear

on the focus of our previous project, namely preferential sampling in the surveillance

of zoonotic diseases. Specifically, we develop a new multivariate geostatistical model
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which corrects for preferential sampling when estimating the risk surfaces of a disease

common across multiple species, and which shares information between species in a

hierarchical modeling framework. In this project we conduct two extensive simulation

studies, one comparing the predictive performance of our proposed model relative to

a univariate approach, and another probing the robustness of our model to violations

of a key assumption, namely separability, underpinning the construction of its multi-

variate structure. We conclude with an application to a disease surveillance dataset

monitoring the occurrence of plague in Sciurids (the rodent family of squirrels) and

coyotes across the state of California.

The key innovation of Project 2 consists of a multivariate approach to correct for

preferential sampling. Preferential sampling refers to a scenario in which there is

statistical dependency between the locations at which data are recorded and the

values of response measured at those locations. This mode of sampling typically

arises in applications where observation sites are assigned to areas which are of high

value for the response of interest, such as in environmental health monitoring (Lee et

al., 2011), where the goal may be to monitor pollutant levels in the most damaged

areas, species distribution modeling (Gelfand and Shirota, 2019), in which it is most

practical to search for a species in areas where it is most likely to be found, or disease

surveillance (Cecconi et al., 2016), wherein limited resources are best assigned to

areas at highest risk for a disease.

The core problem addressed in Project 1 was the liability of traditional geostatistical

methods to yield biased statistical predictions of the response when fit to preferentially

sampled data (Diggle et al., 2010; Lee et al., 2011; Gelfand et al., 2012; Lee et al.,

2015). While previous research has proposed solutions to correct for preferentially

sampling (Diggle et al., 2010; Pati et al., 2011; Lee et al., 2011; Lee et al., 2015), few

methods have been developed to accommodate disease surveillance data. Moreover,
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the exceptions to this trend have typically resided in veterinary health monitoring

(Cecconi et al., 2015; Rinaldi et. al., 2014), and as such, have taken advantage of

particular modeling simplifications which may not be available in other applications,

such as cases of disease arising within a known, fixed set of points (i.e. farms). The

primary contribution of Project 1 was thus to correct for preferential sampling in

a more generalized disease surveillance setting. Project 2 extends the framework

of Project 1 to encompass disease surveillance data from multiple species, in effect

sharing information between species in a joint modeling framework.

Our basic strategy in this project is similar to that in Project 1, but generalized to

multiple different species at risk for the disease of interest. As before, we model the

distribution of observation sites along with case and control abundances in terms of

a shared latent spatial process, only in this context, the process is multivariate, con-

sisting of distinct but correlated processes for each species. In this way we can share

information between species through the correlations among these processes, while

still preserving enough flexibility to capture ecological and epidemiological idiosyn-

crasies specific to each species.

This analysis considers a disease surveillance application encompassing multiple species,

with the intent to apply the joint model proposed in the methods section of Project

2. As in Project 1, the disease surveillance system of interest is operated by the

California Department of Public Health (CDPH), targeting plague (infection with

Yersinia pestis) among its animal hosts across the state of California. However, in

this analysis we consider not only data pertaining to Sciurids, the rodent family of

squirrels, but also to coyotes, both of are monitored by preferential sampling mech-

anisms. Taken together, the surveillance data from coyotes and Scurids provide a

much greater spatial coverage of the study region than that from any one species

alone (Figure 2.1), and thus may offer improve estimates of the disease risk surfaces



100

when analyzed together.

Figure 2.1: Distributions of distinct sampling locations for A) rodents and B) coyotes
between 1982 and 2015.

The first species grouping monitored by the CDPH plague surveillance system is the

Sciurid family, encompassing 21 different species in the observed data (i.e. Ante-

lope Ground Squirrel, Antelope Ground Squirrel, Belding’s Ground Squirrel, Califor-

nia Ground Squirrel, Chipmunk, Least Chipmunk, Long-eared Chipmunk, Lodgepole

Chipmunk, Merriam’s Chipmunk, Panamint Chipmunk, Shadow Chipmunk, Siskiyou

Chipmunk, Sonoma Chipmunk, Uinta Chipmunk, Yellow-pine Chipmunk, Golden-

mantled Ground Squirrel, Ground Squirrel, Yellow-bellied Marmot, Pine Squirrel,

and Squirrel). The surveillance system collects data by conducting a series of sam-

pling events at locations throughout California, in which Sciurids are trapped and
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subsequently tested for Yersinia pestis. The data contain samples collected between

1983 and 2015. This analysis aggregates data for all Sciurid species, and for all years

observed. The surveillance system predominantly collects data by a strategy of pref-

erential sampling, assigning sampling locations to high risk or high impact areas.

Here, risk is assessed to be high in what are viewed as plague endemic regions, as

determined by historic cases of plague in humans or recovered Sciurid specimen, and

high impact areas are regions where cases of plague in humans would be particularly

likely and damaging, such as in national parks or areas which are climatically suit-

able for plague and have high human usage, such as the Lake Tahoe area in the north

eastern portion of the state.

The sampling mechanism for coyotes (Canis latrans) follows a different chain of events

than that of the Sciurids but one which nevertheless is an instance of preferential

sampling. In the first step of the sampling process, coyotes are recovered either in

the form of roadkill or in response to reported harassment of livestock. In either

case, blood samples are collected and submitted to the CDPH along with locational

identifiers describing the point of recovery. These identifiers vary in precision from

high quality, such as latitude and longitude coordinates obtained from GPS, to verbal

directions, such as the estimated mileage from a nearby road or other identifier. We

note here the potential for misclassification error in the latter form of description, due

to the fact that some verbal directions may be simply incorrect or notably different

than the true point of recovery. Upon reception of a blood sample, CDPH conducts

F1 antigen blood tests for plague only if the carcass was recovered in what is deemed

to be a plague endemic region. This final step, the conduction of tests conditional on

origination from a plague endemic area, is a form of preferential sampling, as tests

for plague are thus conducted only in at risk areas.

The objective of our analysis is thus to estimate plague risk maps for Sciurids and
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coyotes through a joint modeling framework which adjusts for preferential sampling.

These last two points, joint modeling and preferential sampling, are key areas of

focus in our discussion. Regarding the first, we wish to ascertain the strengths of

correlations estimated between the two species groups, which are good indicators of

how much information can be “shared” between groups, and thus a reflection of any

gain to be acquired by using a joint model as opposed to a univariate approach. We

emphasize that while we will ultimately produce separate risk maps for plague in

coyotes and Sciurids, the map for each species grouping will in principle be open to

statistical influence from information originating in the other species grouping. For

the second point, we wish to characterize the degree or estimated effect of preferential

sampling on the spatial predictions of risk.

Project 2 is organized as follows. In the following methods section, we present the

relevant background on multivariate geostatistical methods and multispecies distribu-

tion models, before introducing our proposed method. We then report the results of 2

simulation studies comparing the performance of the new method to the benchmark

of Project 1, and testing the robustness of the model to violations of the separability

assumption. Lastly, we conclude with an analysis of the coyote and Sciurid data.

2.2 Methods

2.2.1 Introduction

Project 2 extends the previously developed preferential sampling methods of Project

1 to integrate multiple data types in a joint modeling framework. These new devel-

opments are motivated by the same plague surveillance application as in Project 1,

but with the key distinction of creating a hierarchical model to ingest data from mul-
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tiple disease host species. Our simulations consider two host species, corresponding

to rodents and coyotes from the actual dataset, but in principle the modeling frame-

work developed here can be extended to incorporate any number of host species. The

essential novelty of our approach lies in the creation of this flexible joint modeling

framework which corrects for preferential sampling and integrates disease surveillance

data pertaining to multiple species.

2.2.2 Multi-species Distribution Modeling

The literature contains a substantial precedent of enhanced modeling performance

obtained from multi-species analysis. In particular, we now turn our attention to the

domain of species distribution modeling. Species distribution models (SDMs) seek to

characterize the abundance and distribution of animal species over geographic areas

(Elith and Leathwick, 2009). SDMs are fitted to data which typically possess many

of the same complexities and challenges present in disease surveillance applications,

especially when surveillance targets the presence of a disease in the animal population,

such as the Plague surveillance system examined in the analysis chapter of Project 1,

or when systematic surveys are prohibitively expensive, time consuming or logistically

challenging (Rocchini et al., 2017). Convenience or opportunistic sampling (Fithian

et al., 2015), preferential sampling (Michalcova et al., 2011; Pennino et al., 2019),

detection error (Dorazio 2012), observational error (Royle et al., 2007; Cressie et al.,

2009), uncertain absences or false absences (Royle and Link, 2006), and locational

uncertainty (Mitchell et al., 2017) are all common issues complicating the analysis of

species occurrence data.

Of interest to the objectives in Project 2 are those species distribution models which

integrate multiple types of data in a joint modeling framework. A common theme of
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data integration in SDMs is the challenge of combining what are known as presence-

only and presence-absence data (Gelfand and Shirota, 2019). Presence-only data

record only the locations where organisms from some species are observed, but not

those locations at which surveys were conducted but no organisms were present (Ren-

ner et al., 2015). The pitfall of analyses solely reliant on such data is the fact that,

given presences alone, key parameters in species distribution models relating to species

abundance are not estimable (Fithian et al., 2015). In contrast, presence-absence data

record both presences and absences of a species across some set of survey sites, typi-

cally distributed throughout the study region according to a pre-defined survey design.

Presence-absence data solve the problem of estimability which arises in presence-only

analyses. However, presence-absence surveys typically lack the large spatial cover-

age which characterizes presence-only datasets. A solution combining the strengths

of both data types is to formulate a joint model encompassing presence-only and

presence-absence data (Fithian et al., 2015; Gelfand and Shirota, 2019). We now

review several of the key models designed for this purpose.

In a classic example resembling our own application to Plague surveillance, Fithian et

al. (2015) pooled presence-only and presence-absence data from multiple Eucalyptus

tree species in a joint model, finding that the joint analysis offered a superior predicted

species distribution surface than models fit to individual species alone. The basic

scenario addressed consists of a combination of presence-only reportings of species

locations, along with presence-absence surveys conducted for some subset of species.

Complicating the analysis is the fact that the presence-only data are recorded through

a biased collection mechanism known as opportunistic sampling : wherein samples are

more likely to be collected particular areas of the study region, often as a result of

accessibility or convenience. Consequently, the authors model the presence-only data

as a thinned point process. For each species k, the true underlying point process

describing the species’ locations is assumed to be an inhomogeneous Poisson process,
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Sk ∼ IPP(λk), and the observed point process of locations is a thinned inhomogeneous

Poisson process Tk ∼ IPP(λk(s)bk(s)). Intensity functions are assumed log-linear in

spatially varying coefficients x(s) and z(s), summarized as:

Sk ∼ IPP(λk)

Tk ∼ IPP(λk(s)bk(s))

log(λk(s)) = αk + x(s)Tβk

log(bk(s)) = γk + z(s)T δ

Since δ is not indexed by k, it allows for the pooling of information across multi-

ple species. Rewriting the log-intensity function of the observed point process as

λk(s)bk(s) = αk + x(s)Tβk + γk + z(s)T δ, we encounter a problem. From presence-

only data alone the sum αk + γk is identifiable, but not the individual terms αk and

γk. However, presence-absence data may come in the form of abundances of species

k in survey plot i, denoted Nik, or occupancy measures, yik ∈ {0, 1}. For survey

abundance data around small plots Ai with center points si,

Nik ∼ Poisson(|Ai|λk(si))

= Poisson(|Ai|exp(αk + x(si)
Tβk))

Crucial here to addressing sampling bias is the fact that the distribution of Nik does

not depend on the bias process, thus resolving the lack of identifiability of αk and γk

when maximizing the joint log-likelihood of the presence-only and presence absence
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data, written as

`(α, β, γ, δ) = Σk`k,PA(αk, βk) + Σk`k,PO(αk, βk, γk, δ)

where `k,PA and `k,PO are the log-likelihoods of the presence-absence and presence-

only data for the kth species, respectively, which may be combined additively in

the joint log-likelihood due to the fact that the presence-only and presence-absence

data are collected independently, across all species. Through adjusting for sampling

bias by pooling presence-only and presence-absence data, the joint model substan-

tially improved the out of sample predictive performance for 36 eucalypt species in

south-eastern Australia compared to other methods, namely analyzing pooled pres-

ence only/presence-absence data for a single species, and pseudo-absence regression of

the presence-only data alone. Moreover, the bias adjustment worked even for a species

that had no-presence absence data by borrowing information from other species.

Similar examples abound in the literature. Dorazio (2014) developed a hierarchical

point process model which also pooled data from opportunistic and planned surveys,

but one that not only corrected for sampling bias but also for detection error, that

is, failure of the observation process to record true presences of the species of inter-

est. Hooten et al. (2011) combined multiple surveys of forest disease incidence in a

hierarchical model to adjust for sampling bias. Chakraborty et al. (2011) included

(known) sampling effort to offset the intensity function of observed data. Several

other multi-species data integration solutions for reducing bias have been proposed

(Phillips et al., 2009; Fletcher et al., 2016; Giraud et al., 2016), which are thoroughly

reviewed in Hefley and Hooten (2016). Project 2 contributes to this body of work by

integrating multi-species, preferentially sampled disease surveillance data.
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2.2.3 Multivariate Gaussian Processes

A key motivation of multivariate geostatistical modeling is to exploit shared statistical

information between different responses to make better predictions. We now consider

multivariate extensions of the spatial process model introduced in Project 1:

Y (s) = µ(s) + w(s) + ε(s)

which describes a univariate response Y (s) at location s ∈ R2 in terms of a mean

component, µ(s), typically linear in fixed covariates x(s)βT , along with a smooth spa-

tial process w(s) and optionally a spatially unstructured residual term, ε(s), referred

to as the “nugget” effect. In many spatial applications w(s) is taken to be a Gaussian

process with known covariance function k(s, s′).

In the multivariate case, Y (s) is now a p × 1 vector of random variables observed

at location s. Supposing that the process Y (s) is observed at n different locations,

and letting Y = (Y (s1), . . . , Y (sn)), then the cross-covariance matrix, defined as

C(s, s∗) = cov(Y (s), Y (s∗)), gives the covariance matrix between the response vector

at site s and that from some other site s∗. It is required that for any arbitrary number

n of and choice of locations, the resulting np×np covariance matrix for Y , denoted ΣY ,

must be positive definite. In the following three sections we detail alternate strategies

for ensuring the positive definiteness of Y , namely separable models, linear models

of coregionalization, and convolution methods. Model descriptions here are primarily

taken from the extensive summary provided by Banerjee, Carlin and Gelfand (2004),

unless otherwise referenced.
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Separable Models

If ρ is a valid correlation function for a univariate spatial process, then one valid

cross-covariance function takes the form

C(s, s′) = ρ(s, s′) · T

where T is a p × p matrix interpreted as the covariance matrix of Y (s) at a single

point in space, and ρ acts to decrease the association between Y (s) and Y (s′) as their

distance increases (Banerjee, Carlin and Gelfand, 2004). In this case the covariance

matrix of Y is ΣY = H ⊗ T , where Hij = ρ(si, sj) and ⊗ is the Kronecker product of

two matrices. From this expression we know ΣY must be positive definite, given the

fact that the Kronecker product of two positive definite matrices is positive definite,

and H as well as T are both positive definite. This expression for ΣY makes com-

putation more efficient due to the fact that Σ−1Y = H−1 ⊗ T−1 and |ΣY | = |H|p|T |n,

which thus allows the calculation of inverses and determinants of p × p and n × n

matrices, rather than an n× p matrix.

Estimation of the T matrix can be carried out with Gibbs sampling, provided T is

assigned an inverse-Wishart prior distribution (Banerjee, Gelfand, and Polasek, 2000).

It is noteworthy however that this result would not hold if a nugget effect, ε(s), of

independent and identically distributed residuals were included in the spatial process

model. The derivation of the conditional distribution of T given spatial random effects

w, provided by Banerjee, Gelfand and Polasek (2000), is as follows.

Suppose Y (s) = µ(s) +w(s) is the multivariate response of p measurements observed

at location s, that measurements are conducted at a total of n observation sites, and

that U ∼ N(µ,ΣU), where µ = (µ(s1), . . . , µ(sn)) and ΣU = H ⊗ T . That is,
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f(U |φ, T ) ∝ |H ⊗ T |−1/2exp(−0.5(U − µT (H ⊗ T )−1(U − µ)))

.

Furthermore, suppose that T has an inverse-Wishart Distribution IWk(r,Ω) given by

f(T ) ∝ |T |−(r+p+1)/2exp(−0.5× tr(ΩT−1))

Consequently

f(T |U, φ) ∝ |T |−(r+p+1+n)/2exp(−0.5[(U − µ)TH−1 ⊗ T−1(U − µ) + trΩT−1)])

= |T |−(r+p+1+n)/2exp(−0.5[ΣiΣj(H
−1)ij(U(si)− µ(si))

TT−1(U(sj)− µ(sj)) + trΩT−1])

= |T |−(r+p+1+n)/2exp(−0.5[ΣiΣj(H
−1)ijtr(U(sj)− µ(sj))(U(si)− µ(si))

TT−1 + trΩT−1])

Therefore T |U, φ ∼ IW(r+n,ΣiΣj(H
−1
ij (U(sj)−µ(sj))(U(si)−µ(si))

T +Ω). That is,

the conditional distribution of T given U is also an inverse-Wishart distribution, with

r+n degrees of freedom and scale matrix ΣiΣj(H
−1
ij (U(sj)−µ(sj))(U(si)−µ(si))

T+Ω.

Making use of the conditional distribution offers considerable gains in efficiency, as it

is much faster to draw a p× p matrix from this distribution than to perform updates

directly from the np× np covariance matrix ΣY .

While the separable model offers computational efficiency, it suffers from a number

of limitations which limit the complexity of the spatial relationships it may capture.

Firstly, since the cross-covariance function is composed of only one correlation func-

tion ρ, each latent dimension must have the same spatial range. In many practical
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cases this may not be a reasonable assumption. Additionally, separable models re-

strict the correlation between measurements to tend to 1 as distance decreases, which

may not be appropriate in cases where micro-scale variability persists. A nugget may

be introduced to address this concern, but, as previously observed, doing so would

prevent the Gibbs sampling of T . Lastly, the usual limitations associated with the

assumptions of isotropy and stationary may come into play. For instance, in eco-

logical applications it may be unreasonable to assume that the correlation of species

abundances is the same at all regions of the study area, since 2 species may be closely

linked in certain areas but not others.

Coregionalization

Linear models of coregionalization (LMC) offer a popular (Gelfand et al., 2004;

Goulard et al., 1992; Journel et al., 1978; Grzebyk and Wackernagel, 1994; Wack-

ernagel 1998) and more flexible approach to analyzing multivariate spatial responses,

but at the expense of greater difficulty in model fitting. The underlying idea of core-

gionalization is to obtain dependent multivariate processes through transformation of

independent processes. In the intrinsic LMC model introduced by Matheron (1982),

the p×1 measured response Y (s) at a particular location is formulated as the product

of a full rank matrix A and a vector of spatial processes w(s):

Y (s) = Aw(s)

where, in particular, the components of w(s) are independent and identically dis-

tributed spatial processes. If these spatial processes are stationary, of mean zero and

variance 1 with correlation function ρ, then E[Y (s)] = 0 and the cross-covariance

matrix is
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C(s, s′) = ρ(s− s′)AAT

.

Letting AAT = T , it becomes apparent that under these conditions the intrinsic LMC

model is equivalent to the separable model described in the previous section.

A more flexible LMC is given by

Y (s) = Aw(s)

where now, the components of w(s) are independent but not identically distributed

spatial processes. A benefit of this formulation is that it enables each component

of Y (s) to have its own spatial range, an advantage not permitted by the separable

model. If we specify wj(s), jth element of w(s), to have mean µj, variance 1, and cor-

relation function ρj, then E[Y (s)] = Aµ for µ = (µ1, . . . , µp) and the cross-covariance

matrix is

C(s, s′) = Σp
j=1ρj(s− s′)ajaTj = Σp

j=1ρj(s− s′)Tj

where aj is the jth column of A, Tj = aja
T
j , and we denote ΣjTj = T . In practice,

the multivariate spatial process Aw(s) is typically incorporated into a more general

modeling framework of the form

Y (s) = µ(s) + v(s) + ε(s)
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where Y (s) is the p × 1 vector of observed processes, µ(s) = (xT1 (s)β1, . . . , x
T
p (s)) is

a vector of spatially varying fixed effect covariates, v(s) = Aw(s), and ε(s) is the

white noise “nuggett” effect distributed as ε(s) ∼ N(0, D), where D is a diagonal

matrix with elements Djj = τ 2j . For Y (s) measured at an arbitrary n locations, the

distribution of Y = (Y (s1), . . . , Y (sn)) given fixed effects β = (β1, . . . , βp), white noise

variance D, correlation functions ρ = (ρ1, . . . , ρp), and matrix T = Σjaja
T
j is

p(Y |β,D, ρ, T ) ∼ N
(
µ,Σp

j=1(Hj ⊗ Tj) + In×n ⊗D
)

for µ = (µ(s1), . . . , µ(sn)). While the general LMC offers greater modeling flexibility

in comparison to the separable model, fitting the general LMC in a Bayesian frame-

work has been remarked upon in the literature as a difficult and error prone process

(Banerjee, Carlin and Gelfand, 2004). Typically, inverse gamma distributions are as-

signed to the diagonal elements of D, τ 2j , which result in inverse gamma conditional

distributions, thereby permitting D to be updated via Gibbs sampling. However,

full conditional distributions for T and the range parameters of ρ do not fit into in

standard form from any prior specification. Consequently, one typically resorts to the

Metropolis-Hastings algorithm to estimate the parameters of ρ and T , a process far

removed from the ease of fitting the separable model.

The final version of the LMC which we will remark upon is the spatially varying

coregionalization model, written as

Y (s) = A(s)w(s)

where A(s) is now a p × p matrix of spatially variable values, such as parametric

functions of location. In this case, the cross-covariance function becomes
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C(s, s′) = Σρj(s− s′)aj(s)aj(s′)

which we see is dependent upon location, not merely the separation s− s′, and hence

non-stationary. Thus, the spatially varying coregionalization model can be useful to

capture complex spatial relationships, but with additional model fitting obstacles.

Convolution Methods

The last approach we consider relies on the convolutional representation of Gaussian

processes to yield multiple, dependent processes, and has been widely used to de-

scribe multivariate geostatistical responses (Ver Hoef and Barry, 1998; Higdon 1998;

Williams and Rasmussen, 1996). We recall that in the univariate setting, a Gaussian

process can be obtained from the convolution of a white noise process with a kernel,

which acts as a smoothing function (Higdon, 2002). That is,

v(s) =

∫
S

k(s− τ)x(τ)dτ

for white noise process x(s) and kernel k is necessarily a Gaussian process over some

region S (Williams and Rasmussen, 1996). Convolution methods can give rise to

Gaussian processes with correlated outputs. For instance, one multivariate convolu-

tion approach (e.g., Ver Hoef and Barry, 1998; Boyle and Frean, 2005) repeatedly

convolves a spatial process to yield multiple, dependent spatial processes. In this

methodology, Y (s) is a p dimensional multivariate response measured at location s,

and to each component Yj(s) kernel kj is assigned. If the jth component of Y (s) is

defined as Yj(s) =
∫
R2 kj(u)Z(s + u)du for k = 1, . . . , p and for spatial process Z(s)

with correlation function ρ, then the resulting cross-covariance matrix for Y (s) has
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elements

Ck,k′ = σ2

∫
R2

∫
R2

kj(s− s′ + u)kj′(u
′)ρ(u− u′)dudu′

which is a valid cross-covariance matrix. Typically the above integral cannot be

analytically evaluated, hence the necessity to utilize numerical approximations. One

benefit of this approach is that each component of Y (s) is assigned its own kernel,

allowing spatial range to vary among components. Offering even greater flexibility is

the fact that since the convolution kernel may vary over space and time, Gaussian

processes with non-stationary covariances may be obtained, as in Higdon (1998).

Several other approaches have been put forward to address dependence in the outputs

of multiple spatial processes. One method is to pass independent Gaussian process

priors through a softmax function (Williams et al., 1998), probit function (Kim et al.,

2006; Girolami et al., 2006), or multiprobit function for ordinal regression (Chu et

al., 2005). Another is found in Seeger et al. (2005), who propose a semi-parametric

latent factor model with linear mixing for multivariate regression and classification

problems.

Thus, we have reviewed a number of methods to address geostatistical processes with

multiple, correlated outputs, increasing in complexity from the separable model, to

the general linear model of coregionalization, and ultimately to the various convo-

lution models presented above. For the stated objective of Project 2, forming a

multivariate spatial model to correct for preferential sampling in the calculated risk

maps of multiple species, we first adopt the separable multivariate Gaussian process

out of consideration for model simplicity and comparative ease of fitting. We argue

that the wisest approach for developing a new and experimental model such as this

is to begin with the simplest level of complexity, assess where the model breaks, and
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then introduce further extensions in response.

2.2.4 Proposed Method

The objective of Project 2 is to utilize disease surveillance data from multiple species

in a hierarchical modeling framework, which shares information between species in

the hope of offering improved risk maps, compared to what would be obtained by

either estimating risk maps for each species via separate applications of model (1.1),

or by ignoring inter-species differences and analyzing pooled data from all species

with model (1.1).

Our basic strategy here is similar to that in Project 1, but generalized to multiple

different species at risk for the disease of interest. As before, we model the distribu-

tion of observation sites along with case and control abundances in terms of a shared

latent spatial process, only in this context, the process is multivariate, consisting of

separate but correlated processes for each species. Specifically, we replace the uni-

variate Gaussian process of model (1.1), w(x), with a multivariate Gaussian process

w, consisting of a separable covariance matrix intended to capture correlation in the

underlying risk and sampling processes of each species. In this way we can share in-

formation between species through the correlations among these processes, while still

preserving enough flexibility to capture species-specific variation. We opt here for the

separable model due to the relative ease of updating the parameters of its covariance

matrix, H ⊗ T , in particular, relying on the convenience of Gibbs sampling the T

matrix, thus avoiding the difficulties of fitting coregionalization models which have

been remarked upon in the literature (Banerjee, Carlin and Gelfand, 2004).

We begin by discretizing the study region into a grid of equally sized cells, forming

species-specific indicator variables denoting whether each cell contains an observation
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event for each species. For example, Figure (2.2) shows a discretization of the state

of California in which observed cells have been colored green, representing positive

values of the indicator variables, and the true locations of observation sites, marked

by red circles. We then sum case and control counts for each species across these grid

cells, placing probability distributions on the values of the location indicators and

case-control counts.

Figure 2.2: Discretized study region with observation status indicators, in green,
identifying whether each cell contains an observation site for a particular species.
True locations of observation sites are shown by red circles.
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Formally, letting i index the grid cells in the discretization of the study region, k

index the observed grid cells, m identify disease mark or status (+ for cases, − for

controls), s ∈ {1, . . . , S} index species, Ykms denote the count of disease status m in

kth observed grid cell for species s, and κis ∈ {0, 1} identify whether the ith grid cell

gets observed for species s, we propose the following model:

κis|ξs(xi) ∼ Bernoulli(ξs(xi)) (2.1)

logit(ξs(x)) = ws(x)

w = (w1, . . . , ws)
T , w ∼ MVGP(0, H ⊗ T )

Hij = k(xi, xj; θ)

Ykms|ws(xi) ∼ Poisson(λms(xk))

log(λms(x)) = zλ(x)Tβms + αms × ws(x)

Here, w is a multivariate Gaussian process, allowing each species to receive its own

sampling process ws while still capturing inter-species correlation via the separable

covariance matrix H ⊗ T . In this formulation, H is the spatial correlation matrix

formed by correlation function k, with ijth element calculated as Hij = k(xi, xj; θ).

For our simulations and analyses we use the exponential correlation function

k(x, x′; θ) = exp(−||x− x′||/θ)

and use the Euclidean distance ||x − x′|| to measure the separation between points

x and x′. This function is is stationary, i.e. its covariance depends only on the

separation vector between two points, rather than their absolute location in space,
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and isotropic, i.e. the covariance from point A to point B is the same as that from

point B to point A. T is the S × S matrix capturing covariance between ws values

of different species in a single site. For greater flexibility we allow climatic covariate

parameters βms to vary by species, as well as preferential sampling parameters αms.

A number of parallels between the multivariate model (2.1) and the single species

model (1.1) of Project 1 can be drawn. Both models adopt the strategy of using a

shared latent process, w, to correct for preferential sampling. The process is shared

in the sense that it arises in both the locational and disease related components of

the models, where the locational piece describes the distribution of observation sites

and the disease related piece captures the abundances of observed cases and controls.

A key distinction of the multivariate model is that is ascribes different, if dependent,

processes to the pattern of observation sites for each species, namely κis, in contrast

to model (1.1) which considers only a single set of observation indicators κi to encode

the presence or absence of all observation sites in the dataset. The construction of

the case and control log rate functions in both models is also very similar, given by

λm(x) = zλ(x)Tβm+αm×w(x) in the single species model, and zλ(x)Tβms+αms×ws(x)

in the multivariate model. In the latter case, we allow fixed effect covariates βms

and preferential sampling parameters αms to vary by species, along with the species

specific random effects ws. The ultimate goal of the introduced method is to thus

correct for preferential sampling in calculating the risk maps for each species, as well

as exploit inter-species correlations that may be present in the data to achieve better

risk maps than analyzing species separately could provide.

To calculate the separate risk maps from model (2.1) we follow a similar line of

reasoning as that used in Project 1, only in this case extended to yield different risk

maps for each species of interest. Letting rs(x) be the probability an individual of

species s at location x will be disease positive, or in other words, rs(x) be the risk
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of the disease for species s at location x ∈ R2, the intensity functions of cases and

controls for species s are, respectively

λs,+(x) = rs(x)ρs(x)

λs,−(x) = c(1− rs(x))ρs(x)

where ρs(x) is the population density function of species s and c is a constant deter-

mined by the study region. Consequently, the disease odds for species s, rs(x)/(1 −

rs(x) can be calculated up to a constant as

c−1
rs(x)

1− rs(x)
= λs,+(x)/λs,−(x)

Thus, solving the above for rs(x) and plugging in estimates of λs,+(x) and λs,−(x)

yields an estimate the risk surface at point x. We repeat this calculation for each

species s = 1, . . . , S in the dataset to yield a total of S separate risk maps. We

emphasize here that, although the species of interest all must be susceptible to the

same disease, the ultimate output of our analysis is not a single risk map but rather

a set of risk maps specific to each species in the dataset.

2.2.5 Model Fitting

Parameters of the multivariate preferential sampling model (2.1) are estimated in a

Bayesian approach encompassing a number of different sampling strategies, namely

Hamiltonian Monte Carlo, Metropolis-Hastings random walk, and Gibbs sampling.

Hamiltonian Monte Carlo is a Markov chain Monte Carlo technique that updates its

state by simulating the dynamics of Hamiltonian particle physics. More specifically,
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updates are influenced by the derivative of the log likelihood of the target distribution,

which avoids the random walk behavior of the Metropolis-Hastings random walk

algorithm, thereby more efficiently exploring the parameter space and also reducing

correlation between samples. A complete technical description of Hamiltonian Monte

Carlo is provided in the methods section of Project 1.

Here, in fitting model (2.1), independent normal prior distributions were assigned to

βms, αms, with mean zero and relatively high prior variances. Hamiltonian Monte

Carlo samplers are devoted to each of βms, αms, and ws, where s = 1, . . . , S indexes

species identity and m ∈ +,− denotes case (+) or control (-) disease status. For

instance, in the case of S = 2 species, a total of 10 different Hamiltonian Monte

Carlo samples would be at play, 4 for the βms, 4 for the αms, and 2 for the ws. The

two tuning parameters for each sampler, step size ε and simulation length parameter

L, representing the number of iterations to simulate Hamiltonian dynamics for each

update step, were dealt with in separate manners. The step size was self-tuned using

the dual averaging scheme developed by Hoffman and Gelman (2014), a technique

that updates ε after each sample using a convex optimization algorithm to achieve a

target acceptance rate, here set to 0.65 as recommended. The length parameter L

was manually tuned, typically taking values between 8 and 10.

The spatial range parameter θ of the exponential correlation function, used to calcu-

late the H matrix in the covariance matrix of the spatial random effects w in model

(2.1), was estimated via Metropolis-Hastings random walk. We note that, due to the

constraint of θ > 0, the proposal distribution used to generate a proposed next value

for θ was specified as the log-normal distribution, which has density function

q(x;µ, σ2) =
1

xσ
√

2π
exp
(
− (log(x)− µ)2

2σ2

)
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for x > 0. The mean of the proposal distribution was taken to be the log of the

current value of θ. That is, given the gth MCMC sample θ(g), the proposed next

value in the Markov chain was drawn from

θ(g+1) ∼ Log-Normal(log(θ(g)), σ2)

The proposal standard deviation σ2 was manually tuned to yield acceptance rates

close to 0.5. Given the asymmetric nature of the proposal distribution, the acceptance

probability was calculated as

min
(

1,
`(w(g); θ(g+1))

`(w(g); θ(g))
× p(θ(g+1))

p(θ(g))
× q(θ(g))

q(θ(g+1))

)

where `(w(g); . . . ) is the log likelihood of the spatial random effects w at the gth

MCMC iteration, and p(. . . ) is the prior density of θ, taken here to be the gamma

distribution, and q(θ(g))

q(θ(g+1) is the ratio of log-normal densities from the current and

proposed values of θ, which would have cancelled out had the proposal distribution

been symmetric.

The cross-correlation matrix T of the spatial random effects w was assigned an inverse-

Wishart prior distribution, T ∼ Inverse-Wishart(r,Ω), which yields a conjugate pos-

terior distribution given the random effect values. Consequently, T was updated via

Gibbs sampling, drawing from the distribution

T |w ∼ IW
(
r + n,ΣiΣjH

−1
ij w(sj)w(si)

T + Ω
)

where n is the number of grid cells in the study region.
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All MCMC samplers used to fit model (2.1) were implemented from scratch in R

version 3.4.3. For the simulations and analyses in this project computational runtime

is not exorbitant, generally a matter of hours rather than days. However, future

efforts could improve the speed of model fitting by implementing these samplers in

C, C++ or another more performative language.

Parameter Initialization

To facilitate convergence, Markov Chain Monte Carlo initial values for the parame-

ters in model (2.1) were assigned in a special manner, taken as the output of simpler

heuristic models fit to the distribution of observation sites and case-control counts.

Our parameter initialization strategy entailed first fitting a spatial process model to

the spatial pattern of observation sites, thereby obtaining crude estimates of w, θ and

the T matrix, which were subsequently used to initialize these parameters in the real

model fitting process. Case and control counts for each species were then regressed

on the climatic covariates zλ(x) along with the crude estimate of the spatial random

effects w, yielding estimates and initial values of βms and αms. The additional ef-

fort of fitting these heuristic models, rather than the simpler approach of randomly

initializing parameters, was crucial to the success of model (2.1). As was the case

for the single-species preferential sampling model presented in Project 1, convergence

of model (2.1) to the correct parameter values of w and αms hinged upon this ini-

tialization strategy. We now provide specific details of the models fit to yield initial

parameter values.

The following logistic regression model with a structural component logit-linear in

spatially correlated random effects was fit to the observed pattern of sample sites for

each species:
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κis|ξis ∼ Bernoulli(ξis)

logit(ξis) = ws(xi)

w = (w1, . . . , ws)
T , w ∼ MVGP(0, H ⊗ T )

Hij = k(xi, xj; θ)

Here, κis ∈ {0, 1} denotes whether the ith grid cell of the study region contains a

sampling event targeting species s, ws(xi) is the value of a spatial random effect at

the center point of the ith grid cell, xi, for species s. Random effects for each species s

are collected into vectors ws, consisting of as many random effects as there are cells in

the study region. The vector of all species-specific random effects, w = (w1, . . . , ws)
T ,

follows a separable multivariate Gaussian process model. We note here that the model

provided above is simply identical to the first 4 lines of model (2.1), stripped of those

lines which describe case and control counts.

Having obtained crude estimates, and hence, initial values, for w, θ and T from the

above model, case and control counts for each species at observed sites are regressed

on the fixed effect covariates zλ(x) of model (2.1) along with the crude estimate of w,

denoted ŵ, as follows:

Yims|ws(xi) ∼ Poisson(λms(xi))

log(λms(x)) = zλ(x)Tβms + αms × ŵs(x)
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where Yims is the count in the ith observed grid cell for cases or controls, indexed

by m ∈ {−,+}, for species s. That is, each species and disease status receives its

own Poisson regression model, independent from those of other species and disease

statuses. These regression models thus yield estimates and initial values for βms and

αms, allowing model fitting to proceed.

Spatial Downscaling

We recall that model (2.1) entails discretizing the study region into equally sized,

non-overlapping grid cells. Of course, for the practical purpose of producing disease

risk maps is desirable for this resolution to be as fine as possible. However, the

degree of resolution is ultimately limited by the computational burden of fitting the

multivariate Gaussian process, w. For a study region consisting of n grid cells, and

s total species, the covariance matrix of w is calculated as Σw = H ⊗ T , where H is

an n× n matrix containing the spatial decay in associations between grid cells, with

the ijth element calculated as Hij = k(xi, xj; θ) for correlation function k(xi, xj; θ),

and T is the s×s cross-correlation matrix. Consequently, fitting model (2.1) requires

inversion of the n × n spatial decay matrix H, not simply once, but at each draw

of an MCMC sample. This computational burden quickly becomes prohibitive as n

increases. For instance, if the study region considered was the state of California at

a desired resolution of 16 km2 then the covariance matrix would have 25,701 rows, or

660,541,401 elements, an intractable size.

Our strategy here is the same as that in Project 1, relying on the technique of spatial

downscaling via thin plate spline interpolation. First, we fit model (2.1) at a lower

resolution where convergence may be obtained after a reasonable period of time. This

step yields coarse grain estimates of the spatial random effects w = (w1, . . . , ws),

which consists of s different n × n vectors of random effects for each species. We
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then separately interpolate each species-specific vector wi (i = 1, . . . , s) to a high,

fine grained resolution using thin plate splines, denoting the downscaled vectors as

w̃s, and our other low resolution parameter estimates as β̂ms and α̂s. To calculate the

risk surface for species s, we make the assumption that the covariate relationships

βms and αs estimated at low resolution also hold at high resolution. Consequently,

using the values of covariates zλ(x) known at high resolution, we can calculate log

disease odds for point x as

zλ(x)T β̂+,s + α̂+,s × w̃s(x)− zλ(x)T β̂−,s + α̂−,s × w̃s(x)

which then easily yield the risk for that point in space.

2.3 Simulation 1: Comparative Performance

2.3.1 Introduction

A common theme of species distribution modeling is to share information across

species in a joint analysis in order to obtain a better model for each species than

what could be obtained from separate analyses. Key to this approach is the idea of

exploiting correlations between species to correct for observational deficiencies. For

instance, if there are particular areas of the study region where samples have been

conducted for one species, but not another, then, provided there is some stochastic

relationship between the two species, it is helpful to use information from the well

observed species to influence predictions made about the other species in the areas

for which it is sparsely observed. The proposed method of project 2 seeks to extend

this approach to the context of preferential sampling in zoonotic disease surveillance.
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The purpose of this simulation study is to assess the performance of the proposed

multispecies model in comparison to the single species model of Project 1, in terms

of reduced bias or reduced posterior variance in predicted risk.

In this study we consider the hypothetical scenario of a disease surveillance system

targeting disease in two preferentially sampled species over the study region of Cali-

fornia. We compare the proposed method (2.1) against two alternate approaches, one

applying the single species model (1.1) of Project 1 to each species separately, and the

other treating each species as indistinguishable, applying model (1.1) to the pooled

data from both simulated species. We refer to the three approaches compared here as:

1) MVGP, for multivariate Gaussian process, referring to the proposed model (2.1) of

the second project 2) Separate and 3) Pooled. We compare the performance of these

approaches over 3 datasets simulated at different levels of inter-species correlation.

2.3.2 Data

The study region of California was discretized into a grid containing 458 equally sized

cells, at resolution of 1,020 km2. The first 2 principal components of the principal

component decomposition of the 30 year normal PRISM climatic data were used as

covariates zλ(x) of model (2.1), in addition to an intercept.

For this simulation study, 3 datasets were generated at differing values of the T matrix

in model (2.1), intended to represent increasing strengths of inter-species correlation

in terms of the latent processes w1, w2. These values are

T =

8 0

0 9
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T =

8 3

3 9



T =

8 6

6 9


which we refer to as levels of none, medium and high inter-species correlation. Here,

the off diagonal elements represent the marginal covariance in the random effect values

between the species, as distance between measurements approaches zero. At each level

of correlation, case and control counts for a total of S = 2 species were simulated from

model (2.1), with values for the remaining parameters at each level provided in Table

2.1. For all levels of correlation, the range parameter of the exponential correlation

function k(xi, xj; θ) was set to θ = 6.

Correlation Parameter Value (Species 1) Value (Species 2)
none α+ 0.5 1
none α− -0.5 -1
none β+ (-0.25, 0.75, -0.5) (2, 0.8, -0.5)
none β− (3.5, 0.5, 0.5) (2.5, 0.5, 0.5)
medium α+ 0.5 1
medium α− -0.5 -1
medium β+ (1, 0.75, -0.5) (2.25, 0.8, -0.5)
medium β− (3.5, 0.5, 0.5) (2.5, 0.5, 0.5)
high α+ 0.5 1
high α− -0.5 -1
high β+ (1.5, 0.75, -0.25) (0.15, 0.5, -0.5)
high β− (2.5, 0.5, 0.5) (2.75, 0.5, 0.5)

Table 2.1: Parameters used to simulate data from the multispecies model at differing
levels of inter-species correlation. The Correlation column refers to the magnitude of
the off diagonal elements of the T matrix from the multivariate Gaussian process.

Case and control counts, along with prevalences, for each simulated species at each

correlation level are summarized in Table (2.2).
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Correlation Species Cases Controls Prevalence
none 1 1528 4927 0.237
none 2 2114 7989 0.209
medium 1 2319 8372 0.217
medium 2 2645 11862 0.182
high 1 1053 3729 0.220
high 2 1166 3315 0.260

Table 2.2: Case and control counts for each simulated species at each level of inter-
species correlation.

Lastly, the distributions of observation sites for each level of correlation are summa-

rized in figures 2.3, 2.4, and 2.5.

Figure 2.3: Distribution of observation sites under no inter-species correlation for
A) species 1 and B) species 2. Black circles represent the location of an observation
site.
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Figure 2.4: Distribution of observation sites under medium inter-species correlation
for A) species 1 and B) species 2. Black circles represent the location of an observation
site.

Figure 2.5: Distribution of observation sites under high inter-species correlation for
A) species 1 and B) species 2. Black circles represent the location of an observation
site.
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2.3.3 Results

For each of the three simulated datasets a total of three different modeling approaches

are compared, which we refer to as the MVGP (for multivariate Gaussian Process),

separate and pooled approaches. The MVGP approach fits the multispecies model

(2.1) to the surveillance data from both simulated species jointly, while the separate

approach applies the proposed model from Project 1 to the data from each species

separately. The pooled approach treats each species as identical, and applies the

model from Project 1 to the combined data from both species. These three approaches

are compared primarily through the metrics of root mean squared error (RMSE) in

estimated disease log odds, and the magnitude of posterior variance in predicted

disease risk. We first review the comparative RMSEs before delving into posterior

variances on a dataset by dataset basis.

For all three levels of inter-species correlation, and for both simulated species, the

pooled model showed the highest root mean squared error in predicted log disease

odds (Table 2.3). However, the RMSEs of the pooled model decreased as the corre-

lation level increased, dropping from (3.271, 4.000) for (species 1, species 2) under

no correlation, to (2.081, 2.53) under medium correlation, to (1.366, 2.02) under

high correlation. However, despite this drop, the MVGP model maintained a lower

RMSE than the pooled model at all levels of correlation, The MVGP approach yielded

slightly lower RMSEs than the separate model for both species under high correlation,

and slightly lower RMSE under medium correlation for the second species.
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Correlation Species Model RMSE
none 1 MVGP 0.942
none 1 Separate 0.837
none 1 Pooled 3.271
none 2 MVGP 1.883
none 2 Separate 1.709
none 2 Pooled 4.00
medium 1 MVGP 0.758
medium 1 Separate 0.622
medium 1 Pooled 2.081
medium 2 MVGP 1.615
medium 2 Separate 1.744
medium 2 Pooled 2.53
high 1 MVGP 0.661
high 1 Separate 0.831
high 1 Pooled 1.366
high 2 MVGP 1.25
high 2 Separate 1.302
high 2 Pooled 2.02

Table 2.3: Root mean squared error in estimated log disease odds under different
inter-species correlation levels.

We now conduct a deeper inspection of results for each level of correlation sepa-

rately, considering in particular posterior variance in predicted disease risk and the

distribution of errors in predicted disease log odds.

No Correlation

The first result set we further examine pertains to the case of no inter-species corre-

lation, corresponding to the T matrix

T =

8 0

0 9


which gives the covariance between values of the random effects w in model (2.1) for
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each species as distance reduces to zero. Posterior variance in predicted risk showed

moderate differences across the three modeling approaches for both simulated species

(Figure 2.6). When we examine the rasters of posterior variances from each approach,

we first notice that the pooled model tends to reach a lower maximum variance, less

than 0.1, for both species in comparison to the MVGP and Separate approaches,

while the MVGP has overall lower variance than the Separate model. Secondly, for

all three approaches, the first species shows a higher maximum variance, while at

the same time, less overall posterior variance in regions outside those of the highest

variances.

Figure 2.6: Posterior variance in risk, no inter-species correlation. A) species 1,
mvgp model B) species 1, separate model C) species 1, pooled model D) species 2,
mvgp model E) species 2, separate model F) species 2, pooled model

When we consider the distribution of error in predicted log disease odds, in the form of

a scatterplot showing true log odds versus estimated log odds (Figure 2.7) for each cell

in the study region, we see that the MVGP and Separate approaches show generally

good agreement with the true log odds, having errors mostly evenly distributed above
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and below the true log odds. For both approaches slight fanning out of error does

occur as true log odds decrease, especially for the second simulated species, but the

magnitude of this error is overall relatively contained. On the other hand, the pooled

model shows a pronounced overestimation of log odds for several cells in the study

region.

Figure 2.7: Log disease odds scatterplots with no correlation between the Gaussian
processes of the simulated species. The first row corresponds to the estimated disease
log odds of the first simulated species, and the second row to that of the second
species. Within each row, the corresponding models for the scatterplots are, from left
to right: multivariate Gaussian process model, the separate species model, and the
pooled model.

Parameter estimates showed little differences as well between the MVGP and Separate

models, both in terms of slopes and intercepts of β+ and β−, in addition to preferential

sampling parameters α+ and α− (Table 2.4), (Table 2.5). Parameter biases and

posterior variances remained low for these models. In contrast, the Pooled model

showed higher bias, particularly for the first simulated species
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Model Parameter Species Estimate Bias Posterior Variance
MVGP β0,+ 1 -0.328 0.078 0.012
Separate β0,+ 1 -0.316 0.066 0.020
Pooled β0,+ 1 0.202 -0.452 0.011
MVGP β1,+ 1 0.859 -0.109 0.003
Separate β1,+ 1 0.850 -0.100 0.003
Pooled β1,+ 1 0.749 0.001 0.003
MVGP β2,+ 1 -0.527 0.027 0.002
Separate β2,+ 1 -0.543 0.043 0.002
Pooled β2,+ 1 -0.399 -0.101 0.003
MVGP β1,− 1 3.529 -0.029 0.004
Separate β1,− 1 3.501 -0.001 0.006
Pooled β1,− 1 3.858 -0.358 0.005
MVGP β2,− 1 0.383 0.117 0.002
Separate β2,− 1 0.392 0.108 0.002
Pooled β2,− 1 0.559 -0.059 0.002
MVGP β3,− 1 0.497 0.003 0.002
Separate β3,− 1 0.508 -0.008 0.002
Pooled β3,− 1 0.442 0.058 0.002
MVGP α+ 1 0.523 -0.023 0.002
Separate α+ 1 0.563 -0.063 0.003
Pooled α+ 1 0.909 -0.409 0.014
MVGP α− 1 -0.528 0.028 0.001
Separate α− 1 -0.558 0.058 0.002
Pooled α− 1 -0.805 0.305 0.009

Table 2.4: Parameter estimates pertaining to species 1 with no correlation between
the Gaussian processes of the simulated species. Estimates are taken as posterior
means.
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Model Parameter Species Estimate Bias Posterior Variance
MVGP β0,+ 2 2.007 -0.007 0.024
Separate β0,+ 2 1.930 0.07 0.016
Pooled β0,+ 2 0.202 1.798 0.011
MVGP β1,+ 2 0.781 0.019 0.005
Separate β1,+ 2 0.782 0.018 0.007
Pooled β1,+ 2 0.749 0.051 0.003
MVGP β2,+ 2 -0.610 0.110 0.007
Separate β2,+ 2 -0.436 -0.064 0.005
Pooled β2,+ 2 -0.399 -0.101 0.003
MVGP β0,− 2 2.508 -0.008 0.024
Separate β0,− 2 2.601 -0.101 0.015
Pooled β0,− 2 3.858 -1.358 0.005
MVGP β1,− 2 0.535 -0.035 0.003
Separate β1,− 2 0.525 -0.025 0.006
Pooled β1,− 2 0.559 -0.059 0.002
MVGP β2,− 2 0.649 -0.149 0.006
Separate β2,− 2 0.468 0.032 0.005
Pooled β2,− 2 0.442 0.058 0.002
MVGP α+ 2 1.053 -0.553 0.005
Separate α+ 2 0.845 -0.345 0.005
Pooled α+ 2 0.909 -0.409 0.014
MVGP α− 2 -1.090 0.590 0.005
Separate α− 2 -0.868 0.368 0.003
Pooled α− 2 -0.805 0.305 0.009

Table 2.5: Parameter estimates pertaining to species 2 with no correlation between
the Gaussian processes of the simulated species. Estimates are taken as posterior
means.
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Model (2.1) tended to slightly underestimate elements of the T matrix, in particular,

the off-diagonal covariance terms (Table 2.6). Posterior variances for the elements of

T were elevated as well, from 1.225 to 5.637. The spatial range θ was estimated with

minimal bias (-0.935) and posterior variance (1.583).

Correlation Parameter Estimate Bias Posterior Variance
none T (1,1) 7.82 -0.18 5.637
none T (1,2) -2.164 -2.164 1.225
none T (2,1) -2.164 -2.164 1.225
none T (2,2) 6.522 -2.478 3.846
none θ 5.065 -0.935 1.583

Table 2.6: Parameter estimates of T and θ from model (2.1) under no inter-species
correlation.

Medium Correlation

Under medium inter-species correlation, the multispecies model tended to result in

lower per-cell posterior variances in comparison to that obtained from separate appli-

cations of model (1.1). For the first simulated species, both multispecies and separate

approaches resulted in a handful of cells in the mid-central portion of the map with el-

evated posterior variances, slightly above 0.020. However, for the multispecies model,

outside of this region posterior variance tended to drop off to low levels, at or below

0.005, whereas the bottom portion of the map from the separate approach shows

higher posterior variance, close to 0.010, consistently. However, the spatial distri-

bution of posterior risk differs little across the different approaches for the second

simulated species.

The distributions of error in predicted log disease odds show patterns similar to those

observed in the case of no inter-species correlation. For both the multispecies and

separate models, error tends to be distributed evenly when examining the scatterplot

of true versus estimated per-cell log disease odds (Figure 2.9), with error moderately
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Figure 2.8: Posterior variance in estimated risk under medium inter-species corre-
lation. A) species 1, mvgp model B) species 1, separate model C) species 1, pooled
model D) species 2, mvgp model E) species 2, separate model F) species 2, pooled
model

fanning out as true log odds decreases, especially for the second simulated species.
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Figure 2.9: Log disease odds scatterplots with medium correlation between the Gaus-
sian processes of the simulated species. The first row corresponds to the estimated
disease log odds of the first simulated species, and the second row to that of the
second species. Within each row, the corresponding models for the scatterplots are,
from left to right: multivariate Gaussian process model, the separate species model,
and the pooled model.

Parameter estimates remained in tandem for the MVGP and Separate approaches,

in terms of bias and posterior variance. The pooled approach showed slightly greater

bias for both simulated species, but to a lesser extent than witnessed under the case

of no inter-species correlation in the previous section (Table 2.7), (Table 2.8).
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Model Parameter Species Estimate Bias Posterior Variance
MVGP β0,+ 1 0.982 0.018 0.004
Separate β0,+ 1 0.992 0.008 0.007
Pooled β0,+ 1 0.971 0.029 0.008
MVGP β1,+ 1 0.804 -0.054 0.003
Separate β1,+ 1 0.797 -0.047 0.003
Pooled β1,+ 1 0.665 0.085 0.002
MVGP β2,+ 1 -0.521 0.021 0.001
Separate β2,+ 1 -0.515 0.015 0.001
Pooled β2,+ 1 -0.517 0.017 0.003
MVGP β0,− 1 3.495 0.005 0.001
Separate β0,− 1 3.481 0.019 0.006
Pooled β0,− 1 3.900 -0.400 0.003
MVGP β1,− 1 0.468 0.032 0.003
Separate β1,− 1 0.477 0.023 0.003
Pooled β1,− 1 0.549 -0.049 0.001
MVGP β2,− 1 0.542 -0.042 0.002
Separate β2,− 1 0.538 -0.038 0.001
Pooled β2,− 1 0.540 -0.04 0.002
MVGP α+ 1 0.510 -0.010 0.001
Separate α+ 1 0.482 0.018 0.003
Pooled α+ 1 0.690 -0.190 0.002
MVGP α− 1 -0.517 0.017 0.001
Separate α− 1 -0.486 -0.014 0.002
Pooled α− 1 -0.519 0.019 0.001

Table 2.7: Parameter estimates pertaining to species 1 with medium correlation
between the Gaussian processes of the simulated species. Estimates are taken as
posterior means.
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Model Parameter Species Estimate Bias Posterior Variance
MVGP β0,+ 2 2.306 -0.056 0.014
Separate β0,+ 2 1.918 0.332 0.019
Pooled β0,+ 2 0.971 1.279 0.008
MVGP β1,+ 2 0.785 0.015 0.008
Separate β1,+ 2 0.710 0.09 0.009
Pooled β1,+ 2 0.665 0.135 0.002
MVGP β2,+ 2 -0.475 -0.025 0.006
Separate β2,+ 2 -0.552 0.052 0.009
Pooled β2,+ 2 -0.517 0.017 0.003
MVGP β0,− 2 2.453 0.047 0.014
Separate β0,− 2 2.842 -0.342 0.020
Pooled β0,− 2 3.900 -1.400 0.003
MVGP β1,− 2 0.523 -0.023 0.007
Separate β1,− 2 0.601 -0.101 0.009
Pooled β1,− 2 0.549 -0.049 0.001
MVGP β2,− 2 0.469 0.031 0.006
Separate β2,− 2 0.553 -0.053 0.009
Pooled β2,− 2 0.540 -0.040 0.002
MVGP α+ 2 1.154 -0.654 0.010
Separate α+ 2 0.807 -0.307 0.002
Pooled α+ 2 0.690 -0.19 0.002
MVGP α− 2 -1.156 0.656 0.008
Separate α− 2 -0.822 0.322 0.002
Pooled α− 2 -0.519 0.019 0.001

Table 2.8: Parameter estimates pertaining to species 2 with medium correlation
between the Gaussian processes of the simulated species. Estimates are taken as
posterior means.
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Bias in the spatial parameters of model (2.1), i.e. the T matrix and range parameter

θ, was relatively contained but still noteworthy, at worst −4.105 for T [2, 2] (i.e. the

second element on the diagonal of T ) and at best −1.002 for T [1, 2] (Table 2.9).

Posterior variances for the elements of T fell between 0.603 and 1.773.

Correlation Parameter Estimate Bias Posterior Variance
medium T (1,1) 5.078 -2.922 1.773
medium T (1,2) 1.998 -1.002 0.603
medium T (2,1) 1.998 -1.002 0.603
medium T (2,2) 4.895 -4.105 1.829
medium θ 4.044 -1.956 1.466

Table 2.9: Parameter estimates of T and θ from model (2.1) under medium inter-
species correlation.

High Correlation

Under high inter-species correlation the proposed method tended to result in lower

posterior variance of predicted risk, compared to the separate applications of model

(1.1), particularly for the first simulated species (Figure 2.10). For this species, under

model (1.1) the map of posterior variances shows a narrow band of elevated variances

towards the center of the map (Figure 2.10A), a band of much smaller area than the

region of higher variance resulting from model (1.1) (Figure 2.10B), which covers the

majority of the bottom portion of the map. The pooled model shows more extensive

regions of higher variance than model (2.1) for the first species as well. For the second

species, similar to the previous sections, all three modeling approaches tend to have

higher posterior variances. However, the extent of the areas with higher posterior

variance is still lesser for model (2.1) than for the other 2 approaches.
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Figure 2.10: Posterior variance in risk, high inter-species correlation. A) species 1,
mvgp model B) species 1, separate model C) species 1, pooled model D) species 2,
mvgp model E) species 2, separate model F) species 2, pooled model

Scatterplots of true versus estimated log disease odds on for each grid cell in the

study region (Figure 2.11) show good agreement for model (2.1) and the separate

applications of model (1.1), with error for these approaches evenly distributed about

the diagonal and only slightly fanning out as true log odds decreases. The pooled

model showed much greater error, but less so than for the previous cases of no and

medium inter-species correlation.
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Figure 2.11: Log disease odds scatterplots with high correlation between the Gaus-
sian processes of the simulated species. The first row corresponds to the estimated
disease log odds of the first simulated species, and the second row to that of the
second species. Within each row, the corresponding models for the scatterplots are,
from left to right: multivariate Gaussian process model, the separate species model,
and the pooled model.

Parameter estimates for both simulated species showed very contained posterior vari-

ances for all three approaches (Table 2.10), (Table 2.11). Similar estimates were

obtained from the MVGP and separate applications of model (1.1), both of which

had very little bias. The pooled model showed generally greater bias than the other

two approaches, but less so than in the cases of no or medium inter-species correlation.
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Model Parameter Species Estimate Bias Posterior Variance
MVGP β0,+ 1 1.545 -0.045 0.010
Separate β0,+ 1 1.627 -0.127 0.008
Pooled β0,+ 1 0.737 0.763 0.007
MVGP β1,+ 1 0.725 0.025 0.004
Separate β1,+ 1 0.731 0.019 0.005
Pooled β1,+ 1 0.537 0.213 0.005
MVGP β2,+ 1 -0.266 0.016 0.004
Separate β2,+ 1 -0.264 0.014 0.005
Pooled β2,+ 1 -0.265 0.015 0.007
MVGP β0,− 1 2.536 -0.036 0.008
Separate β0,− 1 2.467 0.033 0.007
Pooled β0,− 1 3.476 -0.976 0.005
MVGP β1,− 1 0.508 -0.008 0.003
Separate β1,− 1 0.492 0.008 0.004
Pooled β1,− 1 0.448 0.052 0.006
MVGP β2,− 1 0.511 -0.011 0.003
Separate β2,− 1 0.516 -0.016 0.005
Pooled β2,− 1 0.578 -0.078 0.008
MVGP α+ 1 0.447 0.053 0.002
Separate α+ 1 0.401 0.099 0.002
Pooled α+ 1 0.581 -0.081 0.004
MVGP α− 1 -0.478 -0.022 0.002
Separate α− 1 -0.441 -0.059 0.002
Pooled α− 1 -0.630 0.130 0.003

Table 2.10: Parameter estimates pertaining to species 1 with high correlation be-
tween the Gaussian processes of the simulated species. Estimates are taken as poste-
rior means.
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Model Parameter Species Estimate Bias Posterior Variance
MVGP β0,+ 2 0.362 -0.212 0.012
Separate β0,+ 2 0.316 -0.166 0.012
Pooled β0,+ 2 0.737 -0.587 0.007
MVGP β1,+ 2 0.554 -0.054 0.006
Separate β1,+ 2 0.509 -0.009 0.014
Pooled β1,+ 2 0.537 -0.037 0.005
MVGP β2,+ 2 -0.469 -0.031 0.006
Separate β2,+ 2 -0.472 -0.028 0.005
Pooled β2,+ 2 -0.265 -0.235 0.007
MVGP β0,− 2 2.674 0.076 0.004
Separate β0,− 2 2.746 0.004 0.003
Pooled β0,− 2 3.476 -0.726 0.005
MVGP β1,− 2 0.419 0.081 0.006
Separate β1,− 2 0.467 0.033 0.017
Pooled β1,− 2 0.448 0.052 0.006
MVGP β2,− 2 0.519 -0.019 0.008
Separate β2,− 2 0.524 -0.024 0.005
Pooled β2,− 2 0.578 -0.078 0.008
MVGP α+ 2 0.836 -0.336 0.008
Separate α+ 2 0.758 -0.258 0.004
Pooled α+ 2 0.581 -0.081 0.004
MVGP α− 2 -0.928 0.428 0.006
Separate α− 2 -0.857 0.357 0.003
Pooled α− 2 -0.630 0.130 0.003

Table 2.11: Parameter estimates pertaining to species 2 with high correlation be-
tween the Gaussian processes of the simulated species. Estimates are taken as poste-
rior means.
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Estimates of the spatial parameters from model (2.1), namely the spatial range θ and

T matrix, showed modest degrees of bias, ranging from 2.458 to -1.552 for T and

1.927 for θ (Table 2.12), with moderate but not excessive posterior variances as well.

Correlation Parameter Estimate Bias Posterior Variance
high T (1,1) 5.516 -2.484 4.462
high T (1,2) 4.448 -1.552 2.664
high T (2,1) 4.448 -1.552 2.664
high T (2,2) 6.542 -2.458 4.479
high θ 4.073 -1.927 1.776

Table 2.12: Parameter estimates of T and θ from model (2.1) under high inter-species
correlation.

2.3.4 Discussion

This simulation study shed light on the performance of model (2.1), a hierarchi-

cal model containing a multivariate Gaussian process to capture correlation between

species, relative to two alternative applications of model (1.1), referred to as the

pooled and separate approaches. Model (2.1) and the separate application of model

(1.1) greatly outperformed the pooled approach in terms of RMSE in predicted log

disease odds, for all levels of inter-species correlation examined. The origin of this

elevated error from the pooled approach is easy to pinpoint given that the pooled

model treats each species as identical, whereas the true species specific climatic co-

variate values, β+,s and β−,s, along with preferential sampling parameters α+,s, α−,s,

and the random effects ws differed by species. The pooled model thus amounted to

making an incorrect modeling assumption regarding variability across species. How-

ever, had this assumption been correct and the relationships with climatic covariates

and the sampling process been identical across species, we expect the pooled model

to have performed better. This last point is evidenced by the fact that RMSE in log

odds tended to decrease for the pooled model as inter-species correlation increased,
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for the reason that as inter-species correlation increases, so too does the similarity

between the simulated spatial random effects for each species, w1 and w2. For higher

inter-species correlation levels, the proposed model (2.1) tended to have slightly lower

RMSE than the separately modeled approach. However, the spatial coverage of the

study region for both species is relatively ample (Figure 2.3), (Figure 2.4), (Figure

2.5), and consequently, it may be the case that the multispecies model would result

in much lower error if at least 1 species were more sparsely observed.

In addition to this slight decrease in RMSE, the multispecies model also provided risk

maps with slightly lower overall posterior variances. Generally speaking, compared

to the separate applications of model (1.1), for medium and high levels of interspecies

correlation, model (2.1) resulted in a lower maximum level of posterior variance in

predicted risk, as well as a lesser spatial extent of area with higher posterior variance,

especially for the first simulated species. Compared to the pooled approach the

decrease in posterior variance of model (2.1) was still generally present, but not as

pronounced as that for the separate analyses. However, the fact that the pooled

model had such higher RMSE in predicted log odds than either of the two alternate

approaches does not make the possibility of reduced posterior variance a compelling

reason to use the pooled approach, given the model’s problems with regard to RMSE.

One notable limitation of the proposed model (2.1) lies in the relationship between

inter-species correlation and the spatial distribution of observation sites for each

species. Recall that model (2.1) captures inter-species correlation specifically by way

of correlation between random effect values for each species, denoted ws, and medi-

ated by the T matrix of the multivariate Gaussian process. Crucially, ws values are

shared between the components of the model describing case and control abundances,

as well as those describing the distribution of sample sites. Consequently, as values

of ws become more correlated between different species, so too do the distributions
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of observation sites for each species. This tendency may become problematic given

that it would seem preferable to perform a joint, multispecies analysis when two or

more species cover complementary domains of the study region. In such an instance,

strengths in coverage of one species could be used to balance out the weaknesses in

coverage of the others, and vice versa. However, correlation in ws, and hence, correla-

tion in the pattern of observation sites between species, may hinder model (2.1) from

being applied to such a scenario. An alternate model that would constrain the loca-

tions of species less while still capturing inter-species correlation may be something

akin to the following:

Yims|ws ∼ Poisson(λims)

log(λims) = z(xi)
Tβms + αms × ws(xi) + γs(xi)

ws ∼ GP(0, k(., .; θs, φs))

γ = (γ1, . . . , γs)
T ∼MVGP(0,Σγ)

κis|pis ∼ Bernoulli(pis)

logit(pis) = ws(xi)

Here, instead of a multivariate Gaussian process as the shared latent process account-

ing for the effect of preferential sampling, the ws, s = 1, . . . , S are now independent

Gaussian processes, but the case and control rate functions λims are also defined in

terms of additional random effects as well, γs(xi), which originate from a multivariate

Gaussian process. Here, the γs capture inter-species correlations but do not exert

influence on the spatial distribution of sample sites, thus solving the initial problem.

However there are a number of difficulties which complicate the implementation of

this alternative model in practice. The added computational burden of multiple in-
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dependent Gaussian processes ws along with a multivariate Gaussian process γs is no

small consideration. Moreover, the fact that each species is not necessarily observed

at the same set of points prevents a separable covariance matrix from being specified

for the γs terms, which complicates fitting of the multivariate Gaussian process. We

leave pursuit of this model to future development.

2.4 Simulation 2: Model Robustness

2.4.1 Introduction

The proposed multispecies model of Project 2 hinges upon a key assumption, that of

separability. We recall that model (2.1) attempts to correct for preferential sampling

through the use of shared latent processes. In this framework, a multivariate spatial

Gaussian process w(s) is shared between the component of the model describing the

distribution of sampling locations and that describing the abundance of cases and

controls. In addition to adjusting for preferential sampling, the multivariate process

also captures correlations in disease risk between species by assuming a separable

covariance matrix, H ⊗ T , where, for a discretized study region of n grid cells with

S total species, H is and n × n matrix with elements Hij = k(xi, xj; θ), describing

the spatial decay in correlation between observations by way of parametric function

k(xi, xj; θ), and T is an S × S matrix interpreted as the correlation matrix of the

spatial random effects for all species at a particular point in space.

This assumption of separability, H ⊗ T , constrains the spatial range of the Gaussian

process for each species to be identical, which may be unreasonable in many real

world disease surveillance applications. Thus, the purpose of this simulation study

is to assess the performance of model (2.1) when provided with data which were not
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generated according to a separable multivariate spatial process.

To that effect, when simulating data we replace the separable spatial process w(x)

defined above with a linear model of coregionalization. Linear models of coregion-

alization construct dependent, multivariate spatial processes as linear combinations

of independent, univariate processes. For a full rank matrix A, and vector of inde-

pendent, not necessarily identically distributed, spatial Gaussian processes u(x), the

technique of coregionalization constructs a multivariate spatial process w(x) as

w(x) = Au(x)

u(x) = (u1(x), u2(x))T

us(x) ∼ GP(0, ks(x, x
′; θi, φi)) for s ∈ {1, 2}

where ks(x, x
′; θi, φi) are known covariance functions of the Gaussian processes us(x).

Like the separable model, coregionalization models maintain the property of station-

arity, specifying the correlation between observations solely as a function of their

separation, rather than their absolute positions in space. However, key here is the

ability of the coregionalization model to confer different spatial ranges to the compo-

nent processes of w(x), something not permitted by the separable model. We write

the full, coregionalization based model from which we will simulate data as
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κis|ξs(xi) ∼ Bernoulli(ξs(xi)) (2.2)

logit(ξs(x)) = ws(x)

w(x) = Au(x)

u(x) = (u1(x), u2(x))T

us(x) ∼ GP(0, ks(x, x
′; θi, φi)) for s ∈ {1, 2}

Yims|ws(xi) ∼ Poisson(λms(xi))

log(λms(x)) = zλ(x)Tβms + αms × ws(x)

which is identical to model (2.1) except for the re-definition of w(x) in terms of a

coregionalization model. We will then fit model (2.1) to data simulated from model

(2.2), equivalent to choosing a misspecified model. We shall evaluate the performance

of model (2.1) in terms of the error in predicted log disease odds, along with a close

inspection of the prediction error in the underlying spatial surface w(x).

2.4.2 Data

The multispecies model (2.1) was fit to a total of 6 datasets, each of were simulated

from the linear coregionalization model (2.2) and consisted of disease surveillance

observations for 2 simulated species. These 6 simulated datasets were generated from

a range of differing values for the matrix A, variances φi (i ∈ {1, 2}) and range

parameters θi of model (2.2), with the intent being to evaluate performance of the

proposed method under a wide variety of parameter specifications.

The first three simulated datasets specify the A matrix of the linear coregionalization
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model as

A =

1 −1

1 −0.5


and fix the marginal variance parameters of the Gaussian processes u1(x) and u2(x)

as φ1 = 1, φ2 = 1. Spatial ranges θ1 and θ2 vary by dataset, take values of (θ1, θ2) ∈

{(2, 4), (2, 6), (5, 15)}. The next three datasets fix the A matrix as

A =

0.25 −1

0.25 −0.5


and set greater marginal variances, (φ1, φ2) = (3, 3). Spatial range values increase fol-

lowing the same progression as the first three datasets, i.e. (θ1, θ2) ∈ {(2, 4), (2, 6), (5, 15)}.

For all simulated datasets the exponential covariance function was chosen for func-

tions ks(x, x
′;φ, θ) (s ∈ {1, 2}) of the coregionalization model, which calculates the

covariance between two points as

k(x, x′; θ, φ) = φ× exp(−||x− x′||/θ)

For each specification of coregionalization parameters, model (2.2) was simulated over

the study region of California, which was discretized into 458 non-overlapping grid

cells, at a resolution of 1090.3 km2. The resulting number of observation sites for

each species are summarized in Table (Table 2.13).
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(φ1, φ2) (θ1, θ2) Species Observation Sites
(1, 1) (2, 4) 1 175
(1, 1) (2, 4) 2 192
(1, 1) (2, 6) 1 137
(1, 1) (2, 6) 2 197
(1, 1) (5, 15) 1 96
(1, 1) (5, 15) 2 125
(3, 3) (2, 4) 1 91
(3, 3) (2, 4) 2 142
(3, 3) (2, 6) 1 87
(3, 3) (2, 6) 2 126
(3, 3) (5, 15) 1 52
(3, 3) (5, 15) 2 110

Table 2.13: Numbers of simulated observation sites by species generated from the
coregionalization model.

The first two principal components of the PRISM 30 year normal climatic dataset

were used as covariates zλ(x) of the coregionalization model. For each dataset the

remaining parameters of model (2.2), namely case and control climatic parameters βms

associated with covariates zλ(x), and the preferential sampling parameters αms, were

adjusted so as to yield disease prevalences between 0.13 and 0.23. These simulation

parameters are summarized in Table (2.14), and the resulting disease prevalences in

Table (2.15).

(φ1, φ2) (θ1, θ2) Species β+,s α+,s β−,s α−,s
(1, 1) (2, 4) 1 (1.25, 0.75, -0.5) 0.5 (3.5, 0.5, 0.5) -0.25
(1, 1) (2, 6) 1 (2, 0.75, -0.5) 0.5 (3.5, 0.5, 0.5) -0.25
(1, 1) (5, 15) 1 (2, 0.75, -0.5) 0.5 (3.5, 0.5, 0.5) -0.25
(1, 1) (2, 4) 2 (1.75, 0.8, -0.5) 0.45 (3.5, 0.5, 0.5) 0.15
(1, 1) (2, 6) 2 (1.75, 0.8, -0.5) 0.45 (3.5, 0.5, 0.5) 0.15
(1, 1) (5, 15) 2 (1.75, 0.8, -0.5) 0.45 (3.5, 0.5, 0.5) 0.15
(3, 3) (2, 4) 1 (2.2, 0.75, -0.5) 0.5 (3.5, 0.5, 0.5) -0.25
(3, 3) (2, 6) 1 (2.45, 0.75, -0.5) 0.5 (3.5, 0.5, 0.5) -0.25
(3, 3) (5, 15) 1 (2.65, 0.75, -0.5) 0.5 (3.5, 0.5, 0.5) -0.25
(3, 3) (2, 4) 2 (1.5, 0.8, -0.5) 0.45 (3.5, 0.5, 0.5) 0.15
(3, 3) (2, 6) 2 (1.75, 0.8, -0.5) 0.45 (3.5, 0.5, 0.5) 0.15
(3, 3) (5, 15) 2 (1.75, 0.8, -0.5) 0.45 (3.5, 0.5, 0.5) 0.15

Table 2.14: Additional simulation parameters used for the multispecies model ro-
bustness study.
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(φ1, φ2) (θ1, θ2) Species Case Count Control Count Prevalence
(1, 1) (2, 4) 1 1650 8536 0.16
(1, 1) (2, 4) 2 2843 9721 0.23
(1, 1) (2, 6) 1 1444 7803 0.16
(1, 1) (2, 6) 2 2181 10028 0.18
(1, 1) (5, 15) 1 980 5563 0.15
(1, 1) (5, 15) 2 1410 5427 0.21
(3, 3) (2, 4) 1 1386 8390 0.14
(3, 3) (2, 4) 2 1493 6240 0.19
(3, 3) (2, 6) 1 967 5685 0.15
(3, 3) (2, 6) 2 1007 5939 0.14
(3, 3) (5, 15) 1 553 3638 0.13
(3, 3) (5, 15) 2 770 4542 0.14

Table 2.15: Summary of disease counts and prevalences by species simulated from
the linear coregionalization model.

2.4.3 Results

The separable model (2.1) was fit to the 6 datasets simulated from model (2.2),

a model incorporating linear coregionalization rather than a separable multivariate

Gaussian process. In this section we evaluate model performance with respect to the

error in predicted log disease odds and that in the estimated spatial random effects.

For simplicity of presentation, we examine these results separately according to the

A matrix and variance parameters (φ1, φ2) by which the data were generated. The

first 3 datasets we review arise from specifying (φ1, φ2) = (1, 1) and

A =

1 −1

1 −0.5


while the next 3 datasets set (φ1, φ2) = (3, 3) and

A =

0.25 −1

0.25 −0.5
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For the first grouping, with (φ1, φ2) = (1, 1), root mean squared error in log disease

odds steadily increased as (θ1, θ2) increased, for both species (Table 2.16). Species 1

saw the RMSE take values of 1.18, 0.47, and 0.315 as (θ1, θ2) increased from (2, 4)

to (2, 6) and then to (5, 15). Overall species 2 had lower RMSE in log disease odds,

which dropped from 0.282 to 0.15 to 0.122 as (θ1, θ2) followed that same progression

of values.

(φ1, φ2) (θ1, θ2) Species RMSE
(1, 1) (2, 4) 1 1.18
(1, 1) (2, 6) 1 0.47
(1, 1) (5, 15) 1 0.315
(1, 1) (2, 4) 2 0.282
(1, 1) (2, 6) 2 0.15
(1, 1) (5, 15) 2 0.122

Table 2.16: Root mean squared error in predicted log disease odds by species when
(φ1, φ2) = (1, 1).

The distribution of error in predicted log disease odds (Figure 2.12) shows general

directional agreement between true versus estimated values. Species 2 generally shows

low levels of error at all values of (θ1, θ2), while species 1 shows greater error, especially

as the value of the true log odds decreases. In particular, when (θ1, θ2) = (2, 4), a

notable segment of predicted values seems to underestimate the true log odds falling

between -4 and -2.
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Figure 2.12: True versus estimated log disease odds when (φ1, φ2) = (1, 1). The top
row corresponds to the log odds of species 1, and the bottom to that of species 2.
Values of (θ1, θ2) vary by column, being (2, 4), (2,6), (5,15) from left to right.

Root mean squared errors in estimated spatial random effects are generally higher for

both species than RMSEs in log disease odds, but show a similar pattern of decrease

as values of (θ1, θ2) increase (Table 2.19). RMSE for species 1 falls from 3.089 to

0.643 to 0.476 as (θ1, θ2) progresses from (2, 4) to (2, 6) to (5, 15). Species 2 shows

slightly greater RMSE than species 1 for corresponding levels of (θ1, θ2), i.e. 3.842,

0.704, and 0.548 for (θ1, θ2) at (2, 4), (2, 6) and (5, 15).
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(φ1, φ2) (θ1, θ2) Species RMSE
(1, 1) (2, 4) 1 3.089
(1, 1) (2, 6) 1 0.643
(1, 1) (5, 15) 1 0.476
(1, 1) (2, 4) 2 3.842
(1, 1) (2, 6) 2 0.704
(1, 1) (5, 15) 2 0.548

Table 2.17: Root mean squared error in estimated spatial random effects w(x) by
species when (φ1, φ2) = (1, 1).

The distribution of error in predicted spatial random effects varies considerably by

value of (θ1, θ2) (Figure 2.13). For (θ1, θ2) = (2, 4), both species show a strange

pattern in which greater values of w tend to be overestimated while lesser values

tend to be underestimated. This pattern disappears for (θ1, θ2) = (2, 6) and (5, 15),

for which estimated values tend to be more directionally correct. However, slight

overestimation of greater values and underestimation of lesser values persists for both

species.
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Figure 2.13: True versus estimated spatial random effects when (φ1, φ2) = (1, 1).
The top row corresponds to the log odds of species 1, and the bottom to that of
species 2. Values of (θ1, θ2) vary by column, being (2, 4), (2,6), (5,15) from left to
right.

We now turn our attention toward the final three datasets, which set (φ1, φ2) = (3, 3)

and

A =

0.25 −1

0.25 −0.5


Both species show slightly greater RMSE in predicted log disease odds than for the

previous 3 datasets, where (φ1, φ2) = (1, 1). For species 1, RMSE takes values of

1.188, 1.27, and 0.426 for (θ1, θ2) of (2, 4), (2, 6) and (5, 15) (Table 2.18). RMSEs are
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generally lower for species 2, taking values of 0.492, 0.265 and 0.114.

(φ1, φ2) (θ1, θ2) Species RMSE
(3, 3) (2, 4) 1 1.188
(3, 3) (2, 6) 1 1.27
(3, 3) (5, 15) 1 0.426
(3, 3) (2, 4) 2 0.492
(3, 3) (2, 6) 2 0.265
(3, 3) (5, 15) 2 0.114

Table 2.18: Root mean squared error in predicted log disease odds by species when
(φ1, φ2) = (3, 3).

Rather unusual patterns of error are apparent from an inspection of the scatterplots

showing true versus estimated log disease odds (Figure 2.14). When (θ1, θ2) = (2, 4)

and (2, 6), species 1 shows inflated error for true log odds less than 0, which falls

both below and above the true log odds values, distributed in an unusual, asymmetric

fashion. Species 2 shows a more consistent distribution of error, which tends to slightly

overestimate the true log odds when (θ1, θ2) = (2, 4) and (2, 6). For both species the

distribution of predicted values close in nicely to the true values for (θ1, θ2) = (5, 15).
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Figure 2.14: True versus estimated log disease odds when (φ1, φ2) = (3, 3). The top
row corresponds to the log odds of species 1, and the bottom to that of species 2.
Values of (θ1, θ2) vary by column, being (2, 4), (2,6), (5,15) from left to right.

Root mean squared error in estimated spatial random effects decreased for both

species as (θ1, θ2) increased (Table 2.19), dropping from 1.753 to 1.641 to 0.599 for

species 1 and 1.243 to 1.142 to 0.383 for species 2.
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(φ1, φ2) (θ1, θ2) Species RMSE
(3, 3) (2, 4) 1 1.753
(3, 3) (2, 6) 1 1.641
(3, 3) (5, 15) 1 0.599
(3, 3) (2, 4) 2 1.243
(3, 3) (2, 6) 2 1.142
(3, 3) (5, 15) 2 0.383

Table 2.19: Root mean squared error in estimated spatial random effects w(x) by
species when (φ1, φ2) = (3, 3).

The distributions of error in estimated spatial random effects w showed notably dif-

ferent patterns for these 3 datasets than for the previous 3 which set (φ1, φ2) to (1, 1).

When (θ1, θ2) = (2, 4) and (2, 6), both species showed widely spread errors for both

positive and negative true values of w. However, when (θ1, θ2) = (5, 15), the estimated

values much more closely matched the true values (Figure 2.15).
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Figure 2.15: True versus estimated spatial random effects when (φ1, φ2) = (3, 3).
The top row corresponds to the log odds of species 1, and the bottom to that of
species 2. Values of (θ1, θ2) vary by column, being (2, 4), (2,6), (5,15) from left to
right.

2.4.4 Discussion

The purpose of this simulation study was to assess the performance of model (2.1)

under circumstances where its assumption of separability fails to hold. To that effect,

we simulated 6 datasets from an alternate model (2.2), relying on the technique of

coregionalization to generate a multivariate spatial process, rather than the separable

multivariate Gaussian process used in model (2.1). The results of this simulation

study show that, when separability does not hold, the magnitude and distribution of

error in the predicted log disease odds, as well as in the estimated spatial random
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effects, is dependent upon the spatial ranges and marginal variances incorporated into

the coregionalization model, being of high magnitude for some specifications of range

and variance, and low, almost negligible, magnitude for others.

The first major point of discussion we raise is the fact that non-separability can

result in poor accuracy in predicted log disease odds, and in the estimated spatial

random effects, depending on the spatial processes which were used to construct

the coregionalization model. We recall that coregionalization models a multivariate

spatial process whose response is of dimension 2 as

w(x) = Au(x)

u(x) = (u1(x), u2(x))T

us(x) ∼ GP(0, ks(x, x
′; θi, φi)) for s ∈ {1, 2}

where A is a full rank matrix and us(x) are Gaussian processes. The choice of param-

eters θi, φi in the covariance functions of these processes seemed to have the greatest

impact on the magnitude of error in predicted log odds and estimated values of w. Of

the different values of (θ1, θ2) considered, (θ1, θ2) = (2, 4) resulted in the highest root

mean squared error, both of log odds and w, followed by (θ1, θ2) = (2, 6) and then

(θ1, θ2) = (5, 15). That is, error tended to decrease as the values of the θi increased,

so much so that for (θ1, θ2) = (5, 15) the error was of negligible magnitude. To un-

derstand this decrease, we return to the covariance function of the coregionalization

model

k(x, x′; θ, φ) = φ× exp(−||x− x′||/θ)
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We see that in this covariance function, as θ increases the covariance between two

points x, x′ decreases, and therefore, in general, incorrect estimation of the spatial

structure becomes less consequential because the strengths of spatial associations are

overall of lesser magnitude.

Another observation worthy of discussion is the fact that for most datasets, error in

the log disease odds of species 2, the second simulated species, was moderately lower

than that of species 1. To understand this distinction we re-examine Tables (2.15)

and (2.13), and note that the total number of collected specimen (cases and controls)

for species 2 was always greater than that of species 1, which, taken with the fact

that species 2 also had more simulated locations than species 1, allowed for greater

information in estimating the random effects and covariates for this species.

In conclusion, the simulations conducted in this study give a reasonable summary

of the performance of model (2.1) when separability does not hold, showing that

the error in predicted log disease odds and estimated spatial random effects can

inflate for low values of the spatial range parameters. However, as the scales of the

component processes decrease, the magnitude of this error is by no means catastrophic

or massive, and the distribution of errors show that the predicted log disease odds

are at least generally directionally correct (Figure 2.12, Figure 2.14). Thus, while

not entirely robust to non-separability, the proposed model can still be moderately

or even strongly performative, depending on the spatial properties of the underlying

process.

One prominent limitation of this study is the narrow way in which violations of the

assumption of separability were manifested. To break the assumption of separability

spatial random effects were simulated from a coregionalization model, in which the

spatial ranges of the component Gaussian processes differed. However, the input

processes still were both of mean zero, while it is likely that specifying different,
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nonzero means for these processes may have resulted in greater errors. Moreover, the

resulting spatial process of the coregionalization model still maintained the property

of stationarity, in which correlations between observations at different locations were

a function of the separation of those locations, rather than their absolute locations

in space. In real world disease surveillance applications monitoring multiple species,

circumstances may arise wherein two species are highly correlated in one particular

area of the study region, but not in others. Stationary models would fail to capture

this distinction. To overcome this pitfall future efforts may be devoted to extending

model (2.1) to encompass nonstationary spatial processes.

2.5 Analysis

2.5.1 Introduction

This analysis considers a disease surveillance application encompassing multiple species,

with the intent to apply the joint model proposed in the methods section of Project

2. As in Project 1, the disease surveillance system of interest is operated by the Cali-

fornia Department of Public Health (CDPH), targeting plague (infection by Yersinia

pestis) among its animal hosts across the state of California. However, in this anal-

ysis we consider not only data pertaining to plague in Sciurids, the rodent family of

squirrels, but also to coyotes, both of which are hosts for plague, and are monitored

by preferential sampling mechanisms. The objective of analysis is thus to estimate

plague risk maps for Sciurids and coyotes through a joint modeling framework which

adjusts for preferential sampling. These last two points, joint modeling and preferen-

tial sampling, are key areas of focus in this application. Regarding the first, we wish

to ascertain the strengths of correlations estimated between the two species groups,
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which are good indicators of how much information can be “shared” between groups,

and thus a reflection of any gain to be acquired by using a joint model as opposed to

a single-species model. We emphasize that while we will ultimately produce separate

risk maps for plague in coyotes and Sciurids, the map for each species grouping will

in principle be able to borrow information from data from the other species. For the

second point, we wish to characterize the degree or estimated effect of preferential

sampling on the spatial predictions of risk.

The first species grouping monitored by the CDPH plague surveillance system is

the Sciurid family, encompassing 21 different species of rodents in the observed data

(i.e. Antelope Ground Squirrel, Antelope Ground Squirrel, Belding’s Ground Squir-

rel, California Ground Squirrel, Chipmunk, Least Chipmunk, Long-eared Chipmunk,

Lodgepole Chipmunk, Merriam’s Chipmunk, Panamint Chipmunk, Shadow Chip-

munk, Siskiyou Chipmunk, Sonoma Chipmunk, Uinta Chipmunk, Yellow-pine Chip-

munk, Golden-mantled Ground Squirrel, Ground Squirrel, Yellow-bellied Marmot,

Pine Squirrel, and Squirrel). The surveillance system collects data by conducting a

series of sampling events at locations throughout California, in which Sciurids are

trapped and subsequently tested for Yersinia Pestis. The data contain samples col-

lected between 1983 and 2015. This analysis aggregates data for all Sciurid species,

and for all years observed. The surveillance system predominantly collects data in

a strategy of preferential sampling, assigning sampling locations to high risk or high

impact areas. Here, risk is assessed to be high in what are viewed as plague endemic

regions, as determined by by historic cases of plague in humans or recovered Sciurid

specimens, and high impact areas are regions with high potential for human Sciurid

interactions, such as in national parks or areas which are climatically suitable for

plague and have high human usage, such as the Lake Tahoe area in the northeastern

portion of the state.
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The sampling mechanism for coyotes (Canis latrans) follows a different chain of events

than that of the Sciurids but one which nevertheless can be viewed as a form of

preferential sampling. In the first step of the sampling process, coyotes are recovered

either in the form of roadkill or in response to livestock harassment reports. In either

case, coyote carcasses are collected and submitted to the CDPH along with locational

identifiers describing the point of recovery. These identifiers vary in precision from

high quality, such as latitude and longitude coordinates obtained from GPS, to verbal

directions, such as the estimated mileage from a nearby road or other identifier. We

note here the potential for misclassification error in the latter form of description,

due to the fact that some verbal directions may be incorrect, imprecise or notably

different than the true point of recovery. Upon reception of a carcass, CDPH conducts

F1 antigen blood tests for plague only if the carcass was recovered in what is deemed

to be a plague endemic region. This final step, the conduction of tests conditional

on origin from a plague endemic area, is a form of preferential sampling, as tests for

plague are thus conducted only in at-risk areas. Consequently, the adjustment for

preferential sampling undertaken in the proposed method is warranted when analyzing

the coyote data as well, in addition to the preferentially sampled Sciurids.

To characterize the impact of the joint modeling structure of (2.1), we compare the

Sciurid and coyote risk maps obtained from this model with those produced by the

model introduced in Project 1.

By applying the Project 1 model to the Sciurid and coyote data separately, and

comparing the resulting risk maps with those estimated by model (2.1), we primarily

seek to ascertain whether the joint model produces quantitatively different estimates

of risk compared against this baseline method, as well as whether the joint model

results in risk estimates with lower posterior variance, as a result of “information

sharing” between different species groups.
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2.5.2 Data

For both species groupings, Sciurids and coyotes, the data consist of latitude and

longitude coordinates pertaining to recovered specimens, along with species identifi-

cations, timestamps marking the date of observation and the results, either positive

or negative, of F1 antigens test for plague. As was discussed above, for many of the

recovered coyotes the raw data do not provide the exact geo-coordinates at which the

animal was found, but rather offer verbal directions describing the site of recovery. In

such cases the directions were manually converted to a set of latitude and longitude

values, and a measure of confidence ranging from low to high was also recorded to

indicate faith in these estimated coordinates. The extensive amount of effort involved

in this manual conversion was undertaken by Dr. Ian Buller (2019), to whom we are

deeply indebted. For the purpose of this analysis all recovered coyote observations

whose geocoded confidence was not considered poor were used.

The plague surveillance data for Sciurids contains observations conducted between

1983 and 2015, while that for coyotes covers 1984 through 2015. Data from all

available years were used for each species grouping, despite the 1 year difference in

starting times, which we argue is negligible in comparison to the overall timespan of

observation. The Sciurid data from 1983 were inspected and found not to contain

any extreme outliers in terms of recorded disease prevalence or number of sampling

sites, compared to all subsequent years. From 1983 to 2015 a total of 20,366 Sciurid

specimen were recovered, with an overall disease prevalence of 0.064 (Table 2.20). For

all available years 7,250 coyotes were recovered, 704 of which (8.9%) tested positive

for plague.
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Species Cases Controls Prevalence
Sciurids 1401 20366 0.064
Coyotes 704 7250 0.089

Table 2.20: Summary of plague case and control counts for Sciurids and coyotes.

Sciurids were recovered from a total of 1,751 different observation sites throughout

the state of California. The geo-coordinates of coyotes, either provided in the raw

data or manually estimated from the recorded directions, cover a total of 4,318 dif-

ferent points in space or observation sites. The distributions of observation sites of

both species groupings are plotted in Figure (2.16). We note here that the combined

distribution of both species groupings offers a decisively greater coverage of the study

region than what could be gained from any single grouping alone. Coyote observa-

tions provide better coverage of the coastal region and north eastern corner of the

map, in addition to a small pocket along the southern border of the state near the

Imperial Valley region, while Sciurid observations cover the eastern portion of the

Sierra Nevada mountain range in much greater numbers. Leveraging this compli-

mentary spatial coverage of the study region motivates the use of a joint modeling

approach, in the hope that borrowing information from each species can yield better

spatial predictions.
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Figure 2.16: Distributions of distinct sampling locations for A) rodents and B)
coyotes between 1982 and 2015.

Lastly, for the covariates zλ(x) in model (2.1) the first two principal components of

the PRISM 30-year average climatic normal measurements were used (Figure 2.17).

Specifically, principal components were calculated from 7 original climatic measure-

ments, namely mean, minimum, and maximum temperature, mean dew point tem-

perature, precipitation, and minimum and maximum vapor pressure deficits.
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Figure 2.17: A) First and B) second principal components of the PRISM 30 year
climatic normals used as covariates for the joint coyote-Sciurid analysis, at 16 km2

resolution.

2.5.3 Results

Model (2.1) was fit jointly to the Sciurid and coyote disease surveillance data at

a resolution of 614 km2 via MCMC. Model convergence was ascertained through

inspection of parameter traceplots, with a total of 5,000 MCMC samples drawn and

a burnin of 1000. The estimated multivariate spatial process w was downscaled via

thin plate spline interpolation to a resolution of 16 km2, from which high resolution

risk maps for plague in Sciurids and coyotes were obtained.

The risk map for plague in coyotes (Figure 2.18) shows a lengthy band of elevated risk
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stretching along the Sierra Nevada mountain range, continuing up to the northeastern

corner of the state, reaching a maximum risk value of 0.56. Two additional neigh-

borhoods of elevated risk arise in southern California. In contrast, the San Joaquin

Valley, to the west of the Sierra Nevada mountains, shows a near zero level of risk for

plague in coyotes, while the coastline possesses low, but nonzero, risk.
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Figure 2.18: Coyote risk map at 16 km2 resolution obtained from the multivariate
Gaussian process model.
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For a rough visual inspection of the influence of observed cases and controls on the

resulting risk estimates, we juxtapose the estimated coyote risk map with rasters

depicting the abundances of observed disease positive and negative coyotes (Figure

2.19). We see that in the areas of elevated risk in the northeastern corner of the state

coincide with dense clusters of cases. Interestingly, the high risk areas towards the

central and southern portion of the Sierra Nevada mountain range show few observed

cases or controls. The 2 main pockets of cases in southern California are matched by

a more slight elevation in risk, between 0.10 and 0.20.
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Figure 2.19: Distributions of A) case counts, B) control counts, and C) estimated
risk for plague in coyotes between 1983 and 2015.
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To help explain the areas of elevated risk in the coyote plague map, especially those

in the places with few observed cases (principally the Sierra Nevada mountain range)

we separate the contributions to predicted risk put forward by covariates and random

effects. We recall from model (2.1) that the log disease odds for a particular point in

space x are given by

zλ(x)Tβ+,s + α+,s × ws(x)− zλ(x)Tβ−,s + α−,s × ws(x)

We can separate this expression into firstly a covariate contribution, zλ(x)Tβ+,s −

zλ(x)Tβ−,s, due to the PRISM climatic principal components used here as fixed effects

zλ(x)T , and secondly the expression α+,s × ws(x) − α−,s × ws(x) provided by the

spatially structured random effects ws(x). Side by side inspection of these different

contributions helps explain the areas of high risk as either due to covariates, or random

effects, or a mixture of both (Figure 2.20). From this inspection, we see that the

northeastern portion of the map demonstrating elevated risk has both high covariate

and random effect contributions, while risk in the Sierra Nevada mountains is almost

entirely driven by covariate contributions.
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Figure 2.20: Comparison of A) covariate versus B) random effect influence on esti-
mated log disease odds of plague in coyotes, showing A) the value contributed to the
log odds by covariate effects, zλ(x)Tβ+,coyotes−zλ(x)Tβ−,coyotes and B) that contributed
by random effects, (α+,coyotes × w)− (α−,coyotes × w).
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Posterior variance in predicted risk for coyotes reaches a maximum value of 0.014,

and shows a noticeable west-east gradient of increase, with variance sharply increasing

towards the central and southeastern edge of the map (Figure 2.21). Note that, as

one might expect, the variation in posterior variance roughly corresponds to variation

in observation density. Elsewhere, however, the posterior variance remains low.

Figure 2.21: Posterior variance in predicted risk of plague in coyotes, as calculated
by the multispecies model (2.1).

The risk map for plague in Sciurids obtained from model (2.1) ranges in value from

0.008 to over 0.101, which is, the probability that a Sciurid sampled at a particular
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point will test positive for plague (2.22). Peak areas of risk fall along the Sierra

Nevada mountain range and in the northeastern portion of the state. Additionally,

neighborhoods of increased risk arise in Southern California, while the coastline shows

a more subtly elevated level of risk.
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Figure 2.22: Sciurid risk map at 16 km2 resolution obtained from the multivariate
Gaussian process model.
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We also consider an the distributions of observed cases and controls for Sciurids in

relation to the estimated Sciurid risk map (Figure 2.23). It is apparent that the

elevated band in risk running along the Sierra Nevada mountain range, between the

40th and 36th parallels, coincides with a strong presence of recovered cases.
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Figure 2.23: Distributions of A) case counts, B) control counts, and C) the estimated
risk of plague in Sciurids between 1983 and 2015.



183

As we did for the coyote risk map, we next examine the relative contributions of covari-

ates and random effects to the regions of high risk in the Sciurid plague map. From

plotting rasters of the covariate contribution to log disease odds, zλ(x)Tβ+,sciurid −

zλ(x)Tβ−,sciurid, next to that of the random effect contribution, (α+,sciurid × w) −

(α−,sciurid × w) we observe the high risk region along the Sierra Nevada mountains,

between the 37th and 35th parallels, to be underpinned by both high covariate and

random effect contributions.
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Figure 2.24: Comparison of A) covariate versus B) random effect influence on esti-
mated log disease odds of plague in Sciurids, showing A) the value contributed to the
log odds by covariate effects, zλ(x)Tβ+,sciurid−zλ(x)Tβ−,sciurid and B) that contributed
by random effects, (α+,sciurid × w)− (α−,sciurid × w).
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The posterior variance of predicted risk for plague in Sciurids remains low throughout

the study region, not exceeding 1.176×10−4, and is fairly homogeneously distributed

across space (Figure 2.25), unlike that of coyotes which showed a clear east-west

gradient.

Figure 2.25: Posterior variance in predicted risk of plague in Sciurids, as calculated
by the multispecies model (2.1).

Estimates of αms, the preferential sampling parameters in model (2.1), were found to

be 0.634 and 0.576 for α+, sciurid and α−, sciurid, respectively, while those for α+, coyote
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and α−, coyote were 0.748 and 0.663, all of which had posterior variances at or below

0.002 (Table 2.21).

Parameter Estimate Posterior Variance
α+, sciurid 0.634 < 0.001
α−, sciurid 0.576 < 0.001
α+, coyote 0.748 0.002
α−, coyote 0.663 0.001

Table 2.21: Estimates of preferential sampling parameters for Sciurids and coyotes.

Next, in Table (2.22) we consider estimates of the T matrix from model (2.1), which

we recall is the covariance matrix for the values of the spatial process w from all species

groups at any given point in space. Under this interpretation, the off-diagonal element

of T can be seen as providing the covariance in random effect values between Sciurids

and coyotes, and as such, is one indication of the amount of information that can

be shared between the two species groupings. This off-diagonal element is estimated

as 7.878 with posterior variance 2.715. The first diagonal element, T (1,1) or the

variance of the random effects for Sciurids, is estimated as 51.541 (with posterior

variance 54.242), while that for coyotes is estimated as 12.169 (posterior variance:

5.835).

Parameter Estimate Variance
T (1,1) 51.541 54.242
T (1,2) 7.878 2.715
T (2,2) 12.169 5.835

Table 2.22: Estimates of the cross-correlation T matrix from the multivariate Gaus-
sian process model, which has separable covariance structure H ⊗ T .

We now turn to the portion of the analysis examining the quantitative differences in

predicted risk between the joint model (2.1) and the univariate preferential sampling

model, our benchmark method introduced in Project 1. We fit this model to the

disease surveillance data from Sciurids and coyotes separately, both at a resolution of

614 km2, from which we subsequently downscale the predicted risk to a resolution of
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16 km2. We first summarize the per-cell differences in predicted disease log odds for

each model. Specifically, we calculate the average per-cell difference as

N−1ΣN
i=1(l̂i,mvgp − l̂i,sep)

where N is the number of grid cells in the study region and l̂i,mvgp are the estimated

log disease odds for a given species grouping in the ith grid cell, as estimated by the

multivariate Gaussian process model (2.1), and l̂i,sep is that as estimated by the single-

species model. The multispecies model predicted slightly greater log disease odds for

coyotes compared to the single species model, with the average per-cell difference

between the two models being 0.007, with a maximum difference of 0.422. On the

other hand, model (2.1) predicted slightly lower disease odds for rodents relative to the

single species model (average difference: -0.063, greatest difference, -0.459). Visual

inspection of the per-cell differences in predicted log odds (Figure 2.26) shows that

for coyotes, the overestimation in log odds by model (2.1) relative to the univariate

tends to occur more at the higher end of the spectrum in estimated odds, while for

rodents, the underestimation by model (2.1) also tends to occur to a greater degree

for lower values of log odds.
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Figure 2.26: Comparison of predicted log disease odds for A) Sciurids and B) coy-
otes from 2 different models: a joint hierarchical model sharing information between
the two species (MVGP) and separate analyses of each species (separate). The red
diagonals are of slope 1 and intercept 0.
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Lastly, the resulting differences in per-cell predicted risk between the multivariate and

single species models are also visually summarized (Figure 2.27). Here, the average

difference in predicted risk between model (2.1) and the univariate model was, for

coyotes, 5.116×10−4, with a maximum difference of 0.052, and, for rodents, on average

-0.002, and at most 0.004.

Figure 2.27: Comparison of predicted risk for A) Sciurids and B) coyotes from
2 different models: a joint hierarchical model sharing information between the two
species (MVGP) and separate analyses of each species (separate). The red diagonals
are of slope 1 and intercept 0.
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2.5.4 Discussion

To put this analysis into perspective, we touch back upon Project 1, which applied a

method to correct for preferential sampling in the plague surveillance data pertaining

to Sciurids alone, over a 30 year window. This analysis extends our study of risk

in the zoonotic hosts of plague by applying a newly developed, multispecies model

jointly to both Sciurid and coyote surveillance data. The multivariate analysis not

only updates the risk map for Sciurids, but also provides a risk map for coyotes from

the same model. The intent of the multispecies model behind these risk maps is to

both correct for the potentially biasing effects of preferential sampling on predicted

risk, as well as to improve upon predictions made by the method from Project 1

through a strategy of sharing information between species in a hierarchical modeling

framework. While bias in predicted risk cannot be assessed directly, since the true

risk remains unknown, it is still helpful and possible to at least determine whether the

two models produce quantitatively different estimates of risk. Thus, in this analysis

we have compared models on the basis of the actual values of estimated risk. We

have found that significant covariance exists between the latent spatial risk processes

of each species, and that the two models produce slightly different estimates of risk.

We first turn our discussion towards the findings present in the estimated risk map

for plague in coyotes. As mentioned above, this analysis marks the first instance in

which we have produced a risk map for plague in this species, and as such, the general

characteristics of this map are worthy of consideration. We seek to explain why the

Sierra Nevada mountain range possesses a high level of predicted risk, despite the

lack of samples recovered in this region. We argue that Figure (2.20), displaying

the respective contributions of covariates zλ(x)Tβ+,s− zλ(x)Tβ−,s and random effects

α+,s ×ws(x)− α−,s ×ws(x) to predicted log odds, shows that the climatic covariates

are primarily responsible for this high predicted risk. In other words, this region holds
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a climatic profile conducive to the presence of plague in coyotes, based on climate-risk

associations observed in areas where samples were observed. The lack of recovered

samples arises as a result of the nature in which coyotes are surveilled for plague. We

recall that coyotes are often recovered as a result of livestock harassment responses

or as roadkill. Naturally, the remote, mountainous Sierra Nevadas, with few roads or

livestock, would not give rise to abundant samples in either scenario, despite the fact

that coyotes do indeed inhabit this region. The precise nature of preferential sampling

varies between Sciurids and coyotoes, as noted above, providing an interesting setting

for our multispecies model.

Next consider the impact of preferential sampling as a force influencing the pre-

dicted risk map for plague in coyotes. We recall that preferential sampling refers

to a stochastic dependence between the response being measured, which in this case

refers to the abundances of cases and controls, and the locations of observation. In

addition, the data would not be considered preferentially sampled if any association

between response and location can be explained by covariates alone. For this last

reason, it is valid to question whether these data do in fact show evidence of stochas-

tic dependence between response and location. In the framework of model (2.1) this

dependence arises through the sharing of the latent process w between the portion of

the model describing case and control abundances and that describing the distribution

of observation sites. If we take the response to be case or control abundances, then

the response is independent from location if α+,s = 0 or α−,s = 0, respectively. As

we see from Table (2.21) both are greater than zero with very low posterior variance.

We interpret this to mean that the preferential sampling mechanism coincides with

a preference for areas which tend to have greater abundances of not only cases, but

also controls, for both Sciurids and coyotes. This finding is consistent with the expert

knowledge of the wildlife biologists in CDPH.
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Next, if we consider the response to be disease risk, rather than case or control counts

alone, then preferential sampling would impact predicted risk when the random effect

differential α+,s×ws(x)−α−,s×ws(x) is nonzero. As the raster map of this difference

in Figure (2.20) has shown, a substantial extent of the study region has positive values

for α+,s × ws(x) − α−,s × ws(x). Furthermore, as we have previously remarked, the

elevation of predicted risk in the vicinity of Lake Tahoe seems to be driven primarily

by this difference. Moreover, as is evidenced by Figure (2.20), the values of this

difference can reach high positive values relative to the covariate differences. For

these reasons we characterize the impact or strength of preferential sampling to be

moderate to strong for coyotes. The practical consequences of this phenomenon would

be realized if a model not accounting for preferential sampling were fit to the data, in

which case predictions made at novel, unobserved locations would likely suffer inflated

risk estimates, as was found in the analysis undertaken in Project 1.

The most prominent regions of increased risk fall along the Sierra Nevada mountain

range and in the northeastern sector of the state. The side by side comparison of

covariate versus random effect contributions to log disease odds in Figure (2.24) shows

the increase of risk along the Sierra Nevada mountains, as well as in the northeastern

corner, to be due to both covariates and random effects. The covariate contribution

agrees with the existing knowledge of the CDPH for the climatic conditions necessary

for plague, while the random effect contribution is consistent with the relative increase

of sampling effort in this area compared to other portions of the state. With regard

to the apparent presence of preferential sampling in the dataset, estimates of α+,s and

α−,s for Sciurids are both positive, with low variance. We interpret this to mean that

the sampling process tends to assign observation sites in areas which correspond to a

higher overall abundances of Sciurids, which is consistent with the a priori belief of

CDPH when defining its sampling plan. The contributions of preferential sampling

to predicted log odds and risk are apparent in Figure (Figure 2.24B), showing the
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differential α+,s × ws(x) − α−,s × ws(x). We see widespread presence of moderate,

positive values for this quantity, suggesting a moderate level of stochastic dependence

between the response, risk, and spatial distribution of observation sites.

We now comment on the estimated values of the inter-species covariance matrix, T .

We recall that because a separable model was specified for the multivariate Gaus-

sian process in model (2.1), the covariance matrix for the random effects from both

species at all points in the study is given by H ⊗ T , where H is a matrix of spatial

decay factors whose elements are computed by the correlation function, which was

exponential for this analysis. The T matrix is interpreted as the covariance matrix

of the random effect values for each species at any point in space. Consequently, the

off diagonal element of T is interpreted as the interspecies covariance in random ef-

fects between rodents and Sciurids at any point in space. Nonzero positive covariance

is apparent from this off diagonal element, estimated as 7.878 (posterior variance:

2.715). This estimate is of moderate magnitude relative the the marginal variance

estimates for Sciurids and coyotes, and of much lower variance than either of those

estimates. To place it in perspective, the off diagonal element is 15 and 65 percent of

the variance estimates for Sciurids and coyotes, respectively. Thus, there is evidence

for covariance between random effect values of the two species groupings, which we

interpret ultimately as evidence for positive covariance in the risk for plague between

Sciurids and coyotes. However, one notable a drawback of the separable approach

is the assumption that the spatial correlation structure is the same for both species.

Future work will examine adjustments to allow differing scales of spatial correlation

within each species.

Having discussed the risk maps produced by the proposed model for each species

grouping we now turn our attention toward the comparison of the results of this

model with those estimated from the model developed in Project 1. Comparisons of
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the per-cell predicted log odds between each model, visualized in Figure (2.26A), show

a decrease in log odds predicted by the multivariate model relative to the univariate for

a majority of cells. However, the multivariate model also predicts higher log odds for

a smaller, yet nevertheless sizeable, number of cells. Turning toward the comparison

of the estimated risks in Figure (2.27A), we see that risk estimates are generally quite

close between the two models, with the exception of a number of points for which

the values may differ by as much as over 57%. It is important to emphasize that this

analysis alone does not shed light on which model has bias with regard to the true,

unknown risk. But rather, we have established that there is some apparent difference

in estimated log odds, small though it may be, between the single and multi-species

models, and, for certain grid cells, an even greater difference in predicted risk. These

differences provide fertile ground for further extensions of the models.

One prominent limitation of this study traces its origin to the notably different sam-

pling methods for coyotes and Sciurids. We recall that whereas the recorded geocoor-

dinates of Sciurids correspond precisely to the locations at which those specimen were

trapped, the same does not hold for coyotes. These locational identifiers describing

where coyotes were recovered vary in precision from high quality, such as latitude and

longitude coordinates obtained from GPS, to verbal directions, such as the estimated

mileage from a nearby road or other identifier. In the latter case, verbal directions

were manually mapped to a set of latitude and longitude points. The potential for

incorrect or misleading verbal description is a source of misclassification error which

has been described and examined by Buller (2019), but merits further exploration as

to how best to include such location uncertainty in our model-based framework. The

posterior variances in estimated risk for plague in coyotes are likely lower than they

should be, due to the failure to propagate this uncertainty through the levels of the

hierarchical modeling framework. In addition to misclassification error, the analyses

also fails to take into account location uncertainty, i.e., that the point at which a
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coyote was recovered may not necessarily be near where it was exposed to plague,

given the large ranges of these animals.

Lastly, and as noted briefly above, a key limitation of the proposed method lies in

the separable covariance structure imposed upon the spatial random effects. As the

second simulation of Project 2 has shown, model (2.1) is not always robust to failure

of the separability assumption. To recap, when random effects were simulated from

a linear coregionalization model rather than separable model, the resulting estimates

of risk could be biased when the spatial decay factor and marginal variance of the

coregionalization model were small, or in other words, a situation arose with very

long range spatial interactions present. While the estimate of the spatial range in

this analysis is small (posterior mean: 1.426, posterior variance: 0.053), the marginal

variances of the rodent and coyote spatial processes are quite high, pointing to a

situation in which a non-separable but stationary spatial process may still be mod-

eled without catastrophic error. However, the assumption of stationarity remains a

persistent threat, especially in a real world application, where it is likely that the

associations between species may vary depending on the location in the study region,

rather than mere separation between observations. Future work incorporating a more

flexible, nonstationary covariance structure in the multivariate spatial process w may

provide even better multispecies risk estimates.
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Chapter 3

A Spatiotemporal Preferential

Sampling Model

3.1 Introduction

Our first and second projects have focused on real world disease surveillance datasets

whose sampling methods violate a key assumption of traditional geostatistical meth-

ods, namely that of independence between the response and the locations at which

the response is measured. This phenomenon in which there is a stochastic relation-

ship between where a process is measured and the value of that process is known as

preferential sampling. When preferential sampling goes unaddressed in an analysis,

negative consequences can strongly manifest themselves. An extensive literature (Dig-

gle et al., 2010; Gelfand et al., 2012; Cecconi et al., 2016; Gelfand and Shirota, 2018),

as well as the simulation chapters of Projects 1 and 2, have shown that preferentially

sampling data can yield biased predictions for the response of interest. Intuitively this

bias is not at all surprising, given that if one tends to favorably measure a process in
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places where it is of high value, then extrapolating from such measurements may yield

a positively biased set of predictions. While a rich body of work has been developed

to address the problem of preferential sampling in relatively straightforward applica-

tions characterized by the measurement of a smooth surface over a finite set of points,

such as air or soil pollution monitoring (Pati et al., 2011; Lee et al., 2011; Lee et al.,

2015), few solutions (Cecconi et al., 2016; Rinaldi et al., 2015) are well equipped to

address preferential sampling in a disease surveillance setting. The novelty of Projects

1 and 2 lies thus in extending the existing corrections for preferential sampling to the

realm of disease surveillance, particularly applications concerning zoonotic diseases.

However, the methods proposed in our first two projects are limited in one crucial

respect. They do not account for temporal trends in the disease process or sampling

mechanism.

Disease surveillance datasets often encompass recorded presences of cases (disease

positive specimen) and controls (disease negative specimen) at particular points in

space and time. For instance, the surveillance system operated by the California

Department of Public Health (CDPH) targeting plague in the Sciurid family of squir-

rels, examined in Projects 1 and 2, consists of the locations and record dates of cases

and controls over a 32-year window of time, between 1983 and 2015. However the

methods proposed in the first two projects aggregate this data in time, resulting in

a loss of temporal information which is problematic for several reasons. Firstly, over

such a long count of years the risk of the underlying disease could shift under a va-

riety of influences. In the case of zoonotic diseases, changes in both abiotic or biotic

factors could impact both the distribution of the host species (e.g., Thorson et al.,

2015) or even the dynamics of the disease itself, thereby affecting an expansion or

contraction of the spatial extent of the disease. And secondarily, temporal fluctua-

tions in sampling effort, as measured by the distribution of samples collected during

some interval of time, could result in misleading conceptions of the confidence in our
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estimates of risk. For instance, if the sampling effort decreases over time, resulting in

fewer records being gathered of cases and controls over a smaller spatial extent, then

the posterior variance of estimated risk for more recent years should be expected to

increase, especially in areas where samples have not been conducted. If however the

data are aggregated in time then regions which have not been sampled thoroughly for

up to a matter of decades could still borrow information from the past that would,

misleadingly, be taken as directly relevant to the present time. Indeed, just such an

attenuation in sampling effort over time is apparent in the CDPH plague surveillance

dataset (Figure 3.1). The importance of capturing temporal trends has spurred ex-

tensive development of spatiotemporal models of disease surveillance over the years

(e.g., Waller et al., 1997; Quick et al., 2018). However, the existing body of work

is still largely inadequate to address temporal effects in surveillance datasets that

have been preferentially sampled. On the other hand, while several solutions exist

to correct for preferential sampling in a time-agnostic context, there is a dearth of

spatiotemporal preferential sampling methods. In short, methods exist separately to

accommodate both preferential sampling, as well as spatiotemporal disease processes,

but have not been combined. Our final project seeks to bridge this gap.
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Figure 3.1: Distribution of sampling sites over time from the CDPH surveillance
dataset targeting plague in Sciurids between 1983 and 2015.
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The primary contribution of Project 3 is a discrete time spatiotemporal preferential

sampling model. This new method enhances the model proposed in Project 1 to

acommodate temporal changes in the underlying disease risk and sampling process.

A secondary contribution of this project is the development of what we refer to as

confidence maps, depicting our degree of certainty that the disease risk exceeds some

particular threshold value for each pixel of space within the study region to a high

degree of spatial resolution. Here, our measure of confidence is obtained from the

posterior distribution of disease risk. For each high resolution pixel we calculate the

posterior probability that risk exceeds the threshold value. Calculation of these values

efficiently at high resolution required much experimentation with different spatial

interpolation methods, which we detail in the Methods section of this project. The

utility of these maps is immediately realized. In the previous two projects we had not

combined our presentation of the posterior means of estimated risk with estimated

posterior variances into a single figure. Instead, we separately reported estimated

posterior means and variances. Consequently, it was impossible to directly formulate

statements regarding the statistical significance of observed areas of high or low risk.

The significance maps introduced here resolve this issue, offering clearly interpretable

visualizations regarding the posterior distributions of estimated risk. Furthermore, an

added practical benefit of these maps is their utility for informing sampling design,

particularly by suggesting areas which would be valuable to sample in the future.

These areas are identified to be of potentially elevated risk for disease, but lacking in

sufficient samples to draw conclusions with confidence.

This project also includes an extensive simulation study probing the performance

of the proposed model, as well as comparing it to the time-aggregated preferential

sampling model developed in Project 1. In this study we demonstrate the clear supe-

riority of the proposed method in terms of error in estimated log disease odds when

the data are simulated under increasing, decreasing, and alternating temporal trends
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in disease risk and sampling effort. We follow these simulations with an analysis

section applying the proposed spatiotemporal model to the Sciurid plague surveil-

lance dataset maintained by CDPH. This plague dataset provides fertile grounds for

application of the proposed model due to its preferentially sampled and temporally

referenced nature. In the analysis, we uncover important temporal trends in the un-

derlying disease risk and sampling process that are overlooked by the time-aggregated

approach.

3.2 Methods

3.2.1 Introduction

Throughout this dissertation one of our core objectives has been to model real world

disease surveillance systems as realistically as possible, first by accounting for pref-

erential sampling in the data collection process and then by sharing statistical in-

formation between ecologically related species in a multivariate modeling framework.

However, when a surveillance system covers an extensive temporal range, it may be

deleterious to simply aggregate the data in time, as we have done until this point.

Aside from failing to capture fluctuations in the dynamics of the disease of interest, or

changes in the sampling process by which data are generated, temporal aggregation

becomes especially problematic in the surveillance of zoonotic diseases due to the fact

that species distributions can also change over time in response to changing biotic and

abiotic factors (Thomas and Lennon, 1999; Brommer, 2004; Maclean et al., 2008).

By oversimplifying reality, neglecting the temporal structure of the surveillance data

may pose a threat to the quality of statistical estimates and predictions.

Our primary methodological objective of this third project is to develop a spatiotem-
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poral model for preferentially sampled disease surveillance data, with a motivating

dataset originating from zoonotic disease surveillance in particular. A key ultimate

product of our proposed method is a series of temporally referenced disease risk maps.

Our secondary methodological objective is to introduce what we term significance

maps, which incorporate measures of statistical uncertainty into our presentation

of disease risk, in particular by visually displaying our confidence that disease risk

exceeds a certain pre-determined threshold value over space and time. These develop-

ments are intended to be limited to applications containing disease surveillance data

pertaining to a single species or species grouping (i.e. collection of species assumed

functionally or ecologically equivalent), with the understanding that they could be

extended in the future to a joint analysis of disease risk across multiple species along

the methodological lines presented in Project 2.

We assume our readers are by this time acquainted with preferential sampling, which

we briefly review here. Preferential sampling is a data collection strategy in which

observation sites or samples of some process are deliberately assigned to areas thought

to be of high value for that process. Applications characterized by preferential sam-

pling often include air pollution monitoring (Lee et al., 2011), mineral exploration

(Veneziano and Kitanidis, 1982), species distribution modeling (Gelfand and Shirota,

2019), disease surveillance (Cecconi et al., 2016; Rinaldi et al., 2015), and real estate

pricing (Paci et al., 2019). In many cases, the practical consequences of preferential

sampling manifest themselves in biased spatial predictions (Diggle et al., 2010; Pati et

al., 2011; Lee et al., 2011; Gelfand et al., 2012; Lee et al., 2015), at times considerably

so, when traditional geostatistical models assuming independence between locations

and the response are employed. To mitigate this bias a number of approaches have

been proposed to correct for preferential sampling, the majority of which revolve

around a joint modeling framework in which the distribution of observation sites and

response are stochastically related by way of a common latent spatial process (Dig-



203

gle et al., 2010). Project 1 modified the basic idea of this framework to encompass

disease surveillance data. Project 2 proposed a multivariate extension of Project 1

in which disease surveillance data from multiple different species were combined in

a joint hierarchical model. In Project 3, we now return to the shared latent process

framework of the first project, only now introducing the ability to capture temporal

trends in disease risk and the sampling mechanism.

The spatiotemporal preferential sampling model proposed in this project relies on a

discrete-time, shared latent process framework. In this model a latent spatiotemporal

process describes both the distribution of observation sites over space and time as well

as the abundances of cases and controls at each sampled location. Temporal structure

is captured through fixed effects for time intervals, which may be of arbitrary width,

but were taken to be 5-year windows in our analysis chapter. The temporal nature

of the latent process is intended to model changes in both the underlying disease

risk and sampling process over time. But before providing a more formal description

of this model, we first review the existing solutions for spatiotemporal modeling in

disease surveillance as well as in a closely related domain, namely species distribution

modeling, before showing how this existing literature stops short of spatiotemporal

preferential sampling.

3.2.2 Spatiotemporal Modeling in Disease Surveillance

An abundance of statistical methods have been developed to identify and charac-

terize spatiotemporal trends in disease surveillance data. Here we review the most

prominent of these methods, namely scan statistics, generalized linear mixed models,

process models, disease mapping models, and point process models.
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Scan Statistics

The first class of methods we consider is that of the scan statistics, which primarily

serves to identify areas in space or time that suggest disease clustering, or significant

elevations in the incidence of cases. Originally developed to identify anomalies of

case incidence purely from a temporal perspective (Naus 1965), the concept of the

scan statistic has been extended to incorporate spatial (Openshaw et al., 1987) and

spatiotemporal (Kulldorff, 2001) data with a straightforward but powerful approach.

For instance, the Kulldorf and Nagarwalla (1995) spatial scan statistic identifies clus-

ters of cases by imposing circles of differing radii over the study region to demarcate

areas of differential disease rates. For each possible circle centroid, circles of increas-

ing radii up to some pre-determined limit are formed. For each of these generated

circles Z, case counts inside and outside the perimeter of Z are summed, which are

assumed under the alternate hypothesis to follow Poisson distributions whose rates

differ between the inside and outside of the circle. Under this assumption of differ-

ential rates the likelihood of the data L(Z) may be found, prompting the calculation

of a likelihood ratio

S =
maxZ{L(Z)}

L0

which is taken to be the scan statistic, where L0 is the likelihood of the data under

the null hypothesis, that is, no clustering or equal rates throughout space. P values

for S may be subsequently obtained via Monte Carlo hypothesis testing. The spatial

scan statistic S readily offers inspiration for a spatiotemporal scan statsitic (Kulldorff,

2001), which imposes cylinders, rather than circles, over the study region in such a

way that the vertical height of the cylinder represents its duration in time.
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While scan statistics are integral to the exploration of spatial or spatiotemporal dis-

ease surveillance datasets (Reis et al., 2007), they are are not particularly well suited

to address preferentially sampled data, as traditionally they make no correction for

biased observation processes, but rather analyze the data as observed. In addition,

scan statistics typically do not include covariate information, which may considerably

influence the distribution of cases. A more covariate driven approach is offered by the

next class of spatiotemporal disease surveillance methods, generalized linear mixed

models.

Generalized Linear Mixed Models

Generalized linear mixed models (GLMMs) naturally lend themselves to the analysis

of disease surveillance datasets, being both relatively straightforward and simple to

implement while offering the ability to account for important covariate effects, in

contrast to scan statistics. In disease surveillance settings generalized linear mixed

models typically regress case and, possibly, control counts on covariates along with

temporal or spatial effects. Here, temporal trends are commonly modeled with fixed

effects, such as day of the week, or month, or year, depending on the temporal scale

of the disease of interest, while space is often encoded by random effects for the areal

unit or region in which an observation falls (e.g., Kleinman et al., 2004; Bradley

et al., 2005; Johnson 2008). Of note here is the fact the spatial random effects in

these models are, in fact, not spatially structured in the sense that their correlation is

oftern not a function of distance but rather based on neighborhood structures between

administrative regions. To more directly model correlation as a function of geographic

distance, we turn to the spatiotemporal process models.
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Spatiotemporal Process Models

In Project 1 we examined the spatial process model, which describes a spatially

smooth, normally distributed response Y (s) at location s ∈ R2 as the sum of a

deterministic mean function µ(s) and residual component w(s) + ε(s), where w(s)

and ε(s) are spatially structured and unstructured residuals, respectively:

Y (s) = µ(s) + w(s) + ε(s)

The deterministic mean µ(s) is typically a function of spatial covariates, µ(s) =

x(s)Tβ, and the w(s) follow a Gaussian process with mean 0 and stationary covari-

ance function k(s, s′;σ2, θ), which calculates the covariance between points s and s′

as a function of distance, of the marginal variance σ2, and of the range parameter θ,

which controls the rate of decrease of covariance as distance increases. The intent for

w(s) is to capture additional spatial variation not explained by the mean component

µ(s). Residuals ε(s), are assumed independent with mean zero and variance τ 2, re-

ferred to as the nugget effect. The nonspatial residuals ε(s) are often interpreted as

measurement error or noise accompanying repeat measurements at a particular loca-

tion, or as micro-scale variability, i.e., variation in the response at distances smaller

than the distance between sites observed in the data.

In the following sections we examine spatiotemporal extensions of this modeling struc-

ture. But first we note that while disease surveillance data typically consist of case

and control counts over a series of observation sites, rather than a normally distributed

response over a discrete set of points, the spatiotemporal process model above may

be easily modified to acomodate this new distributional assumption. For instance,

the spatial structure of the residuals, w(s), which is our true concern here, may be
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incorporated into the structural component of a Poisson regression model as

Y (s) ∼ Poisson(λ(s))

log(λ(s)) = x(s)Tβ + w(s)

In the following sections we describe the spatiotemporal process models in terms of

a normally distributed response, with the understanding that the models discussed

could easily be translated into a distributional form more common to disease surveil-

lance applications.

Discrete Time Models

For point-referenced, spatially continuous data whose response is assumed to be nor-

mally distributed, a general space-time model is described by Bannerjee, Carlin and

Gelfand (2014) as

Y (s, t) = µ(s, t) + e(s, t)

where Y (s, t) is the response at location s and time t, µ(s, t) is the mean at s and t, and

e(s, t) is the residual. Often µ(s, t) is chosen to be a linear function (perhaps through

a link function) of spatial and temporal covariates such as µ(s, t) = x(s, t)Tβ, for

covariate vector x(s, t) and parameters β, which may be spatially varying, temporally

varying, or both. In the most general case e(s, t) is written as w(s, t) + ε(s, t), where

w(s, t) is a spatiotemporal process, with mean zero, and ε(s, t) is a Gaussian white

noise process (Bannerjee et al., 2014). Here, ε(s, t) can be thought of as a temporal
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extension of the “nuggett” effect of the spatial process model.

A number of different space-time models can be obtained according to the specifica-

tion of the residual process e(s, t). A key distinction to make in spacetime modeling

is whether time is indexed continuously or discretely. In the former case, measure-

ments are recorded at potentially any point in time, whereas discrete indices provide

measurements only within pre-defined windows of time, such as hours, days, or years.

In the discrete time case, Gelfand et al. (2003) suggest three different formulations

of the residual process.

In the first, e(s, t) = α(t) + w(s) + ε(s, t), where α(t) and w(s) are temporal and

spatial effects, respectively, and ε(s, t) ∼ N(0, σ2
ε ) are independent white noise error

terms. If time were discretized into intervals t = 1, 2, . . . , T , then a number of different

modeling options present themselves. The parameters α(1), . . . , α(T ) could simply

be fixed effects, as in Bailey et al. (1963) or Knight et al (1995). Alternately, an

autoregressive specification would model α(t + 1) = ρα(t) + η(t), with independent

error term η(t) distributed as η(t) ∼ N(0, σ2
α).

The second approach utilizes independent time series at each location. Here, e(s, t) =

αs(t) + ε(s, t), where αs(t) are temporal effects nested within each site, and ε(s, t)

again arise from a Gaussian white noise process. As in the first approach, αs(t) can

be assigned an autoregressive structure, αs(t + 1) = αs(t) + ηs(t), where ηs(t) are

white noise error terms. In the third approach, e(s, t) = wt(s) + ε(s, t), where wt(s)

are spatial random effects nested in time, that is, independent spatial processes for

each time interval.

One salient drawback of discrete time models lies in the pitfalls surrounding the choice

of the width of the time discretization interval. If time is discretized to an overly wide

or narrow extent then the true scale of the spatial process may not align with that of
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the time intervals, and consequently, model predictions and inference may suffer. We

now turn to an alternative modeling approach which avoids the necessity of specifying

a time discretization window.

Continuous Time Models

In continuous time models we assume the residuals e(s, t) to arise from a continu-

ous spatiotemporal process, rather than the sum of independent spatial or temporal

components as in the discrete time case. The challenge in this context becomes how

to specify e(s, t) such that its covariance function is valid. That is, for any finite

set of locations and points in time, S, the covariance matrix of the random effects

realized from e(s, t) over S must be positive definite (Bannerjee et al., 2014). Note

that for this purpose we cannot simply choose a valid covariance function on R3, as

may initially seem an intuitive option, due to the difference in scales on which space

and time operate. Instead a valid covariance function is typically reached through a

combination of spatial and temporal covariance functions.

To obtain a spatiotemporal covariance function that is valid, i.e., symmetric and

positive definite, as well as stationary, depending only on the separation between two

points in space and time, rather than their absolute locations in space or time, a

common (e.g., Mardia and Goodall, 1993) approach is the separable model:

Cov(e(s, t), e(s′, t′)) = σ2ρ(1)(s− s′;φ)ρ(2)(t− t′;ψ)

where e(s, t) and e(s′, t′) are values of the spatiotemporal process at locations s, s′ and

times t, t′, and ρ(1) and ρ(2) are valid two and one dimensional correlation functions,

respectively, which model the spatial and temporal aspects of covariance. In this
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construction the covariance between two points decreases as either their distance in

space or separation in time increase, as modulated by the range parameters φ and ψ,

which control the scale of the spatial and temporal correlation.

While the assumption of separability is appealing from a computational standpoint,

entailing less burden than other continuous-time alternatives, it may be overly re-

strictive for certain spatiotemporal processes. In such cases where greater flexibility

is desired, a nonseparable covariance structure can be employed. For instance, if

e(s, t) = e1(s, t) + e2(s, t), where e1 and e2 are independent spatiotemporal processes

with separable spatiotemporal covariance functions, then the covariance function for

e(s, t) is nonseparable (Bannerjee et al., 2014).

However the greater flexibility of these continuous time models, both separable and

nonseparable, comes at the cost of a greater computational burden than what is re-

quired by discrete time models. For instance, if a dataset consists of measurements

at n points in space each of which have s repeated observations in time, then the

covariance matrix of a separable, continuous time spatiotemporal process is of di-

mension (n× s)2, in contrast to a discrete time model e(s, t) = αt + w(s) with fixed

effects αt, which entails a covariance matrix merely of dimension n×n. Avoiding this

computational cost will inform the design of our proposed model.

Disease Mapping Models

Yet another approach to capture spatial and temporal trends in disease surveillance

data in a more sophisticated fashion than that offered by GLMMs comes in the

form of disease mapping models, specifically, the conditional autoregressive (CAR)

framework. CAR models were developed with respect to areal data, consisting of

measurements gathered over areal units, such as counties or states, in contrast to the
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point-referenced measurements associated with spatial process models. The seminal

CAR application to disease surveillance data was provided by Besag, York and Mollie

in a seminal paper (1991). In this model, the random effect for the kth areal unit in

the study region, denoted ψk, is taken as the sum of a spatially structured random

effect, φk, and a spatially unstructured random effect θk:

ψk = φk + θk

φk|φ−k,W, τ 2 ∼ N
(ΣK

i=1wkiφi
ΣK
i=1wki

,
τ 2

ΣK
i=1wki

)
θk ∼ N(0, σ2)

where the spatially structured random effects φk are conditionally dependent on their

neighbors, whose spatial relationships are encoded in the weight matrix W , with the

typical convention that the kith element wki of W is equal to 1 if the areal units i and

k are adjacent. Several alternative versions of this famous “convolution” or “CAR-

BYM” model have been developed. For instance, Leroux et al. (2000) proposed

a CAR model eliminating the random effects θk and incorporating a parameter ρ

controlling the strength of spatial dependence. Other popular variants of the spatial

CAR model include Lee and Mitchell (2012) and Lee and Sarran (2015). Especially

germane to our discussion of spatiotemporal disease surveillance are the space-time

CAR models proposed by Waller et al. (1997) and Knorr-Held and Besag (1998),

both applied to rates of lung cancer in the state of Ohio. Multivariate extensions of

this space-time model, featuring the ability to jointly model multiple responses over

time, have also been employed Knorr-Held (2000).
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Point Process Models

The last methodology for characterizing spatial and temporal trends which we will

consider is the point process framework, which describes the distribution of random

collections of points. Point processes have been featured extensively in spatiotempo-

ral disease surveillance studies (Brix and Diggle, 2001; Diggle, 2006; Kottas et al.,

2009; Robertson et al., 2010; Li and Guan, 2014), many of which trace their origin

to the spatiotemporal Cox process (Cox 1955). For instance, Diggle et al. (2005)

develop a spatiotemporal model for the analysis of data derived from surveillance of

gastrointestinal infections, as recorded by calls to National Health Service. Letting

X denote the point pattern of cases and R(x, t) a latent spatiotemporal process, the

authors propose the point pattern of cases to be, conditional on the value of the latent

process, and inhomogeneous point process with intensity function λ(x, t)

X ∼ IPP(λ(x, t))

The spatiotemporal intensity function λ(x, t) is decomposed into spatial, temporal,

and spatiotemporal components

λ(x, t) = λ0(x)µ0(t)R(x, t)

Here λ0(x) is a smooth, nonparametric, spatially varying surface while µ0(t) is a

parametric function capturing temporal variation, incorporating day of the week and

seasonal fixed effects, and R(x, t) is a spatiotemporal stochastic process intended to

describe local variation in the presentation of cases, which is modeled as a stationary

log Gaussian Cox process:
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log(R(x, t)) = S(x, t)

S(x, t) = GP(−0.5σ2, ρ(u, v))

where S(x, t) is a Gaussian process with mean −0.5σ2, variance σ2, and correlation

function ρ(u, v) = Corr(S(x, t), S(x − u, t − v)), which the authors assume to have

a separable structure, i.e., ρ(u, v) = ρx(u)ρt(v), where ρx and ρt are valid spatial

and temporal correlation functions, respectively. With this approach, the authors

can identify the normal pattern of spatial and temporal variation in presentation

of cases, and subsequently locate hotspots in space or time constituting departures

from normality, specifically by evaluating the predictive probability Pr(R(x, t) >

c|data until time t), for some pre-defined threshold c. In our proposed method we

adopt elements of both spatiotemporal point processes and spatiotemporal process

models. But first, we round out our review of spatiotemporal modeling approaches

with a discussion of species distribution models, which in many ways shed light on

our modeling efforts with regard to zoonotic diseases.

3.2.3 Spatiotemporal Species Distribution Modeling

Modeling efforts regarding the surveillance of zoonotic diseases may gain insight from

the domain of species distribution models, since both applications are characterized

by many of the same complexities of data collection, such as opportunistic sampling

or preferential sampling. To begin, numerous species distribution models have been

put forward to characterize species distributions from a time-agnostic standpoint,

including both parameteric methods, typically generalized linear models (Royle et

al., 2007; Latimer et al., 2006; Maggini et al., 2006) and non-parametric methods,
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such as the maximum entropy (Maxent) species distribution model (Phillips et al.,

2006). However increasing attention has been devoted to temporal modeling, which is

particularly important for understanding how species will respond to future changes

in habitat, climate, or other perturbations (Walther et al., 2002). Many of the spa-

tiotemporal models applied to species distributions show parallels to those of disease

surveillance. For instance, a common approach is the use of generalized linear mixed

models with fixed effects for units of time and random effects for area of the study

region (e.g., Link and Sauer, 2007; Helser et al., 2004). In fisheries stock assess-

ment, the abundance and distribution of acquatic life is commonly analyzed with a

two step GLMM (Pennington, 1983), which first models the probability of a nonzero

catch, and subsequently models the abundance or density of nonzero catches (Thorson

and Ward, 2013; Ward et al., 2015; Helser et al., 2004). When spatial and tempo-

ral terms are included as fixed or random effects then spatiotemporal interactions

have been modeled by including interaction terms, such as region × year (Thorson

and Ward, 2013). In addition to fixed or random effects, temporal trends have also

been addressed with time series models, such as in (Ward et al., 2015), who utilize

spatiotemporal effects εt(s) ∼ Normal(ρεt−1(s),Σ) with a temporally autoregressive

mean and spatially structured covariance matrix Σ, or Hooten and Wikle (2005), who

feature a vector autoregressive process. Aside from these parametric modeling ap-

proaches, also worthy of note are the nonparamteric, machine learning based models

developed for species distributions, such as the STEM framework (i.e. spatiotemporal

exploratory model) of Fink et al. (2010), which trains an ensemble of base models

(such as decision trees) on restricted spatiotemporal extents, and forms the predicted

value of the species distribution as an aggregation of the outputs of the base model.

Lastly, while recent efforts have addressed preferential sampling in species distribu-

tion modeling (Conn et al., 2017; Pennino et al., 2019), these have not done so in

a spatiotemporal context. In general, methods to address preferential sampling in
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spatiotemporal analyses are scarce, with the few existing efforts avoiding the joint

modeling framework of Diggle et al. (2010) from which the majority of spatial pref-

erential sampling models are derived. For instance, when analyzing preferentially

sampled air pollution monitoring data over time, Yu et al. (2015) correct for pref-

erential sampling by incorporating secondary information into a knowledge synthesis

framework (Bayesian Maximum Entropy), where the secondary information describes

pollutant levels in unsampled regions. While this approach does adjust for preferen-

tial sampling over time the secondary information on which it relies may not always

be obtainable. Shaddick and Zidek (2014) examine evidence for preferential sampling

in an air pollution monitoring network over a 30-year period. The monitoring net-

work of witnessed drop in the number of sites over time as pollution levels fell, while

sites in more polluted areas tended to be retained. By grouping sites according to

length of operation and fitting different spatiotemporal process models to each group,

the authors showed that sites which were retained longer had higher pollutant levels.

However, the focus of their work was to provide evidence that preferential sampling

was present, rather than detailing a specific modeling solution to confront it. Thus,

the area of spatiotemporal preferential sampling remains largely unexplored, which

motivates our modeling efforts here.

3.2.4 Proposed Method

Our proposed method is intended to address a preferentially sampled disease surveil-

lance dataset D of the form D = (X+,X−), where X+ is a set consisting of triples each

of which provides the latitude, longitude, and date of observation of a disease positive

specimen (case). That is, x = (latitude, longitude, date)∀x ∈ X+. Likewise, X− is

a set identically defined except with respect to disease negative specimen (controls).

For the purposes of a general modeling definition, the temporal resolution of the dates
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of observation may be specified at any scale that is not of finer resolution than the

discretization of time chosen for model fitting. To discretize time, we suppose that the

duration of the study, defined as the difference between the maximum and minimum

observation dates in D, is partitioned into T equally sized, non-overlapping windows,

which we index by the variable t = 1, . . . , T .

Our modeling intent now becomes how to describe the distribution of cases and con-

trols within each time interval t. Let Xt+ and Xt− denote the observed point patterns

of cases and controls in the study region during the tth time interval, respectively.

We assume that Xtm, where m ∈ {+,−} denotes the mark or disease status of points,

follow log Gaussian Cox processes with intensity functions λtm(x):

Xtm ∼ LGCP(λtm(x))

Here, we have adopted the notational convention of using the term (x) to identify

that the function λtm(x) varies over space, and we have taken x ∈ R2 to represent

a point in two dimensional space. We model the intensity functions λtm(x) to be

log-linear in spatially varying fixed effects zλ(x, t) along with a spatiotemporal latent

process w(x, t):

log(λtm(x)) = zλ(x, t)
Tβm + αm × w(x, t)

Here we have included the index t in our notation for the fixed effects zλ(x, t) to

emphasize that zλ(x, t) may differ among different time intervals. While a number of

options are available for the specification of the spatiotemporal process w(x, t), here

we choose a simple additive model consisting of a fixed effect ut specific to each time

interval t, and a spatiotemporal, stationary Gaussian process w(x):
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w(x, t) = ut + w(x)

The log-intensity function can thus be written as log(λtm(x)) = zλ(x, t)
Tβm + αm ×

(ut + w(x)). We note that more sophisticated forms for the spatiotemporal process

could be specified, such as the use of an autoregressive time series u(t) to describe

the temporal trend, rather than fixed effect covariates:

w(x, t) = u(t) + w(x)

u(t+ 1) = ρu(t) + η(t)

η(t) ∼ N(0, σ2
η)

w(x) ∼ GP(0, k(., .; θ, φ))

Our choice of the simpler spatiotemporal process, w(x, t) = ut +w(x), was motivated

by the fact that the dataset considered in our analysis chapter suggested a discretiza-

tion of T = 7 time intervals, a number arguably too small for an autoregressive

structure to be profitable. Thus, we proceed with the simpler model ut + w(x), with

the understanding that more complex spatiotemporal processes can be considered in

future efforts.

But rather than directly working with the likelihood of the point processes Xtm,

which would involve a cumbersome numerical approximation of the integrals of the

intensity functions λtm(x), we approximate the point processes as Poisson random

variables over a discretization of the study region. We suppose that the study region

is discretized into K equally sized grid cells, g1, . . . , gK , of sufficiently small area such

that the intensity functions λtm(x) are constant over all gk. Consequently, from the
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definition of log Gaussian point processes, Ykmt, the number of cases (m = +) or

controls (m = −) in any grid gk for a particular time interval t is distributed as

Ykmt|w(xk) ∼ Poisson(

∫
gk

λmt(s, t)ds)

≈ Poisson(|gk|λmt(xk, t))

To correct for preferential sampling in the shared latent process framework of Diggle

et al. (2010) we must now specify the distribution of observation sites in terms of

the spatiotemporal process w(x, t). For this purpose we define indicator variables

κxt ∈ {0, 1}, representing whether the grid cell with centroid at point x is observed

during the tth time interval. We model the indicators as Bernoulli random variables

with probability of success ξ(x, t):

κxt|ξ(x, t) ∼ Bernoulli(ξ(x, t))

logit(ξ(x, t)) = ut + w(x)

The inclusion of w(x, t) in both the components of the model describing the distri-

bution of observation sites and the distributions of observed cases and controls is

intended to correct for the effect of preferential sampling. We thus summarize the fit-

ted model by combining our components describing the distributions of observations,

cases, and controls as follows:
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κxt|ξ(x, t) ∼ Bernoulli(ξ(x, t)) (3.1)

logit(ξ(x, t)) = ut + w(x)

w(x) ∼ GP(0, k(., .; θ, φ))

Yxmt|w(x) ∼ Poisson(λmt(x, t))

log(λm(x, t)) = zλ(x, t)
Tβm + αm × (w(x) + ut)

where Yxmt denotes the count of cases or controls (m ∈ {0, 1}) over the tth time inter-

val in the grid cell with centroid at point x, zλ(x, t)
T are fixed effect covariates, w(x)

is a stationary, mean-zero Gaussian process with covariance function k parametrized

by range θ and marginal variance φ, ut is a fixed effect parameter specific to the tth

time interval, and κxt are indicator variables representing whether the grid cell whose

centroid lies at point x is observed during interval t.

Estimation

Model (3.1) is fit in the Bayesian framework by a Markov Chain Monte Carlo solu-

tion consisting of separate Hamiltonian Monte Carlo samplers for α+, α−, β+, β−, ut

and spatial random effects w, along with a Metropolis-Hastings random walk update

for the spatial range θ, and finally with a Gibbs sampling update for the marginal

variance φ. The samplers involved have been custom implemented in the R statis-

tical programming language, version 3.4.3, without making use of pre-built MCMC

packages due to the unique nature of the model being fit.

To complete our Bayesian specification of model (3.1) we provide the prior distribu-

tions for its parameters. We assign normal priors to ut, α+, α−, β+ and β−. In the
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analyses and simulations conducted here we assign uninformative priors for ut, β+ and

β−, with large prior variances, as is often the case when estimating slope parameters

in Bayesian analysis. For the spatial range parameter θ of the exponential covariance

function, due to the constraint of θ > 0, the chosen proposal distribution was the

log-normal distribution, which has density function

q(x;µ, σ2) =
1

xσ
√

2π
exp
(
− (log(x)− µ)2

2σ2

)

for x > 0. The mean of the proposal distribution was taken to be the log of the

current value of θ. That is, given the gth MCMC sample θ(g), the proposed next

value in the Markov chain was distributed as

θ(g+1) ∼ Log-Normal(log(θ(g)), σ2)

The proposal standard deviation σ2 was manually tuned to yield acceptance rates

close to 0.5. The acceptance probability was calculated as

min
(

1,
`(w(g); θ(g+1))

`(w(g); θ(g))
× p(θ(g+1))

p(θ(g))
× q(θ(g))

q(θ(g+1))

)

where `(w(g); . . . ) is the log likelihood of the spatial random effects w at the gth

MCMC iteration, and p(. . . ) is the prior density of θ, taken here to be the gamma

distribution, and q(θ(g))

q(θ(g+1) is the ratio of log-normal densities from the current and

proposed values of θ, which would have cancelled out had the proposal distribution

been symmetric.

We assign an Inverse-Gamma prior distribution to the spatial marginal variance φ, in
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order to make use of the fact that the conditional distribution of φ given the random

effects w is also Inverse-Gamma. Specifically,

φ|w ∼ 1/Gamma(N/2 + a, wTH−1w + b)

where N is the number of elements of w, a and b are the shape and scale parameters

of the prior distribution of φ, and H is the correlation matrix of the random effects

w. φ can thus be updated at each step of the Markov chain by drawing a sample from

φ|w, rather than relying on a more computationally expensive Metropolis-Hastings

or Hamiltonian Monte Carlo sampler.

Unlike typical spatial process models assuming normally distributed responses, model

(3.1) places a Poisson distribution upon the observed responses of case and control

counts, thereby precluding a closed form conditional distribution for the spatial ran-

dom effects w upon which Gibbs sampling would rely. Consequently, the random

effect vector w is updated via a Hamiltonian Monte Carlo (HMC) sampler. This

technique was chosen given its effectiveness for updating high dimensional, spatially

structured parameters. Briefly, HMC proposes new parameter states by simulating

the dynamics of Hamiltonian physics, which describe the total energy of a system as

the sum of potential and kinetic energies. Here, the potential energy of the system

is taken as the negative log likelihood of the current parameter state, and a new pa-

rameter state is reached by evaluating the gradient of the potential energy. Thus, by

essentially incorporating information from the gradient of the log likelihood in its pro-

posal step, HMC is able to explore the parameter space more efficiently and, crucially,

account for spatial correlation between elements of the parameter vector, a distinc-

tion which would not hold if a Metropolis-Hastings random walk updating strategy

were employed here. Hamiltonian Monte Carlo algorithms are parametrized by a
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step size parameter, related to the degree of change undertaken in the proposal step,

and length parameter, which controls the number of iterations for which Hamiltonian

dynamics are simulated in each proposal. The step size parameter was automatically

tuned by the strategy of dual averaging, presented by Hoffman and Gelman (2010),

which alters the step size after each proposal step based on comparing the current

acceptance probability with the desired acceptance rate. The length parameter was

manually tuned.

Hamiltonian Monte Carlo samplers were also assigned to separately update α+, α−,

β+, β−, and ut (t = 1, . . . , T ). Despite the fact that these parameters are low dimen-

sional and spatially uncorrelated, HMC sampling showed less inter-sample correlation

than Metropolis-Hastings random walk and so was ultimately preferred. A more de-

tailed technical description of HMC and the technique of dual-averaging can be found

in the methods section of Project 1.

3.2.5 Significance Maps

The last ambition of our final project seeks to provide a visual display of our confidence

in identifying above average areas of disease risk from the estimates of model (3.1).

For this purpose we wish to calculate the posterior probability that the risk of any

point x ∈ R2 of the study region exceeds some predetermined threshold c:, given the

observed data D

p(x|D) = Pr(r(x) > c|D)

The intent is to display values of p(x|D) calculated at the centroids of each grid cell

in a high resolution raster of the study region. For simplicity, we color code each grid
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cell according to three levels of confidence, indicating whether the above posterior

probability exceeds 0.95, 0.50, and 0.25, with the understanding that these numbers

are easily configurable. Such a map would identify areas where were are strongly,

moderately, or weakly confident that disease risk exceeds c. The remaining portion of

this section details the calculation of the posterior probability p(x|D) at unobserved

points in space.

We recall that model (3.1) contains realizations of a spatial Gaussian process w(x)

at each centroid of the discretization of the study region. Consequently, if the study

area is discretized into K grid cells then the covariance matrix of w(x) is of dimension

K × K. The computational burden associated with inverting this matrix several

times throughout the MCMC routing involved in fitting model (3.1) precludes an

overly fine discretization. However, a high resolution map of posterior probabilities

is still desired, which presents an obvious challenge. For instance, a raster of the

state of California at 4km2 resolution corresponds to 25,701 grid cells, or a spatial

covariance matrix with 660,541,401 elements. Project 1 addressed this challenge by

interpolating the posterior mean of the random effects realized from w(x). However,

since this procedure was merely applied to the posterior mean of w(x), but not each

MCMC sample, it did not yield posterior samples for each high resolution point in the

study region, and thus, cannot be used to calculate the desired probability p(x|D).

To overcome the shortcomings of the downscaling method from Project 1, we propose

an alternative algorithm to obtain posterior risk samples at high resolution. The basic

idea of this algorithm is to interpolate each posterior sample of w(x) over all high

resolution points in the study region, after which posterior samples of risk may be

generated. For each sample, fast interpolation was performed through nonparametric

regression with kernel smoothing, using estimated values of w(x) at observed points

as the response and the latitudes and longitudes corresponding to those points as pre-
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dictors. The specific nonparametric regression technique used here is that described

by Li and Racine (2004), which relies on a generalized product kernel that takes the

product of univariate kernels applied to each explanatory variable, i.e. latitude and

longitude. The univariate kernel chosen here is a second order Gaussian, given by

k(z) = exp(−z2/2)/
√

2π

for z = (xi − x)/h with h > 0. The bandwidth h was obtained through least squares

cross validation. The R package npreg was used to fit and cross validate the non-

parametric regression model. Our proposed algorithm to efficiently generate posterior

samples is summarized as follows:

Data: Posterior samples (w1, . . . , wG), with wg = (wg1, . . . , w
g
K)∀g ∈ {1, . . . , G}

Posterior samples of all other model parameters Ψ = (ψ1, . . . , ψG),

Geo-coordinates of observed locations C = ((x1, y1), . . . , (xK , yK)),

Geo-coordinates of unobserved locations C∗ = ((x∗1, y
∗
1), . . . , (x∗L, y

∗
L))

Result: array[g × L]

for g ∈ (1, . . . , G) do

Train model regressing wg on C: wgi = f(xi, yi);

Predict w at unobserved locations: ŵ∗gi = f(x∗i , y
∗
i );

Calculate posterior risk sample at unobserved locations: r̂∗gi = risk(ŵ∗gi , ψ
g);

Store sample: array[g,] = (r∗g1 , . . . , r
∗g
L );

end

Algorithm 1: Generation of posterior predicted samples

Since this algorithm re-interpolates values of the spatial random effects for each pos-

terior sample, it captures the most crucial sources of uncertainty, namely those as-

sociated with random effects w and the parameters governing w (marginal variance

and range). The algorithm does omit uncertainty associated with the interpolation
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step, ŵ∗gi = f(x∗i , y
∗
i ), but this uncertainty is small relative to that of w and so we

ignore it for the time being.

The end product of this algorithm is series of posterior samples of risk for points

corresponding to the centroids of a high resolution discretization of the study region.

The posterior probability p(x|D) = Pr(r(x) > c|D) is estimated as the fraction of

posterior samples associated with point x which are above the threshold c:

p̂(x|D) = G−1
G∑
g=1

I(r̂g(x) > c)

where r̂g(x) is the gth posterior sample of risk associated with point x. As an example

of the practical utility of the above algorithm, when implemented in parallel on an

8 core Macbook Pro, roughly 30 minutes were required to interpolate 10,000 MCMC

samples over the state of California at 4km2 resolution.

3.3 Simulations

3.3.1 Introduction

This simulation study assesses performance of the proposed spatiotemporal prefer-

ential sampling model in comparison to benchmark methods which either do not

account for the sampling process giving rise to the data, or do not account for tempo-

ral trends related to disease risk and the sampling process. To garner a broader view

of the comparative performances of these models under different scenarios, we eval-

uate them over simulated datasets encompassing a range of spatiotemporal trends.

The trends we consider are increases, decreases, and alternating fluctuations in the
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disease risk surface over time. To emphasize performance with respect to the tem-

poral nature of the data, evaluation of the models is based upon root mean squared

error in the predicted log disease odds over each time interval of the simulated data.

In addition to probing comparative model performance, this simulation study also

seeks to observe characteristics, such as failure, of convergence in the proposed spa-

tiotemporal model. The impetus for this aim stems from Project 1, which showed

the tendency for correlation to arise between the latent process of the preferential

sampling model and other parameter values. In the spatiotemporal model, with the

introduction of new temporal parameters, it is reasonable to suspect the possibility

of even greater parameter correlation, or even failure of convergence, which we wish

to diagnose.

Models Compared

We compare our proposed spatiotemporal preferential sampling model against two

benchmarks, which either ignore the temporal nature of the data or the preferential

sampling process. The first of these is the preferential sampling method developed in

Project 1. This model is similar in structure to (3.1), only stripped of its temporal

aspects. To fit this model, counts Yxmt and observation indicators κxt are aggregated

across time intervals as Yxm = ΣT
t=1Yxmt and κx = I(ΣT

t=1κxt > 0). This approach,

referred to in the results as the “aggregated preferential sampling model” or “aggre-

gated” model for short, is summarized as
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κx|ξ(x) ∼ Bernoulli(ξ(x))

logit(ξ(x)) = w(x)

w(x) ∼ GP(0, k(., .; θ, φ))

Yxm|w(x) ∼ Poisson(λm(x))

log(λm(x)) = zλ(x)Tβm + αm × w(x)

The second reference model does not account for the preferential sampling process

behind the data but does distinguish data within different time intervals. For a given

disease status m (cases or controls) and within a given time interval t and grid cell

x which has been observed by the disease surveillance system, this model describes

observed abundances Yxmt as Poisson random variables with rates λmt(x), which are

log-linear in fixed effect covariates zλ(x, t). We write this model as

Yxmt ∼ Poisson(λmt(x))

λmt(x) = exp(zλ(x, t)
Tβm)

That is, we fit separate Poisson regression models to the case and control counts

at observed grid cells within each time interval. We refer to this strategy as the

“temporal Poisson” approach.
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Evaluation Metrics

Models are compared on the basis of root mean squared error in estimated log disease

odds over each time interval. Log disease odds are derived from estimates of the

case and control intensity functions, λ+,t and λ−,t, in the following way. Suppose we

let rt(x) be the probability an individual sampled at location x in time interval t is

disease positive. Then the case intensity function is λ+,t(x) = rt(x)pt(x), where pt(x)

is the (unknown) spatial population density of individuals in time t, while the control

intensity is given by λ−,t(x) = [1− rt(x)]pt(x). Consequently the disease odds are the

ratio of intensity functions

rt(x)/[1− rt(x)] = λ+,t(x)/λ−,t(x) (3.2)

and so, log disease odds are given by log(λ+,t(x))−log(λ−,t(x)). Estimated log disease

odds are thus obtained from estimates of the temporal case and control intensity func-

tions for each model. The spatiotemporal model (3.1) and temporal Poisson model

both directly yield estimates for time and mark specific intensities λmt. When con-

sidering the aggregated preferential sampling model, which merely estimates overall

intensities λm (m ∈ {+,−}), we assume λm = λmt for all t, after which we may

proceed with estimating the temporal risk surfaces according to (3.2).

Lastly, to calculate the temporal root mean squared error, for a study region dis-

cretized into K grid cells, letting ot(xk) denote the true disease odds at time t for

grid cell xk, and ôt(x) denote the estimated disease odds, we calculate the root mean

squared error in estimate log odds over the interval as
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√
K−1ΣK

k=1(ot(xk)− ôt(xk))2

Thus, each time interval t will be associated with an RMSE metric.

3.3.2 Data

For this study a total of 75 datasets with differing temporal trends were simulated

from model (3.1). 25 of these datasets were simulated each under and increasing

temporal trend, 25 under a decreasing trend, and 25 under an alternating trend. We

recall from model (3.1) that this latent process is given by ut + w(x), where ut is a

parameter specific to time interval t and w(x) is a realization from a spatial Gaussian

process at point x. In the stochastic framework of model (3.1), with all else held

equal, an increase in the value of ut results in both an increase in the probability

of observation ξ(x, t) for all grid cells x, as well as, assuming α+ 6= α−, a change in

the rate functions λmt(x, t), which may translate to an increase or decrease in disease

risk, depending on the signs of α+ and α−.

Temporal trends in the latent process are thus realized through specification of U =

(u1, . . . , uT ), where we assume there are T total time intervals of consideration in the

analysis. Decreasing trends are brought about through specification of ut < ut+1,

increasing through ut > ut+1, and alternating by ut < ut+1 for even t and ut > ut+1

for odd t. In this study time was discretized into 7 intervals of width 5 years. Thus,

the U value associated with each temporal trend contains 7 elements.

For the increasing trend, U = (−2.5,−2.0,−1.0,−0.5, 0.0, 0.5, 1.0), for the decreas-

ing, U = (1.0, 0.0,−0.5,−1.0,−2.0,−2.5,−3.0), and for the alternating,

U = (−1.50, 0.00,−1.00, 0.5,−1.25, 1.00,−0.60), which are summarized in Table (3.1).
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Trend U
increasing (-2.5, -2.0, -1.0, -0.5, 0.0, 0.5, 1.0)
decreasing (1.0, 0.0, -0.5, -1.0, -2.0, -2.5, -3.0)
alternating (-1.50, 0.00, -1.00, 0.5, -1.25, 1.00, -0.60)

Table 3.1: Parameters ut used for each temporal trend simulated. For each level,
the notational convention adopted here denotes U = (u1, . . . , u7), where ut (t ∈
{1, . . . , 7}) are the temporal parameter values at each time index.

To reflect realistic changes in environmental conditions over time, the fixed effect

covariates zλ(x, t) vary by time interval t. For this simulation study these covariates

were derived from the PRISM climatic dataset.

The PRISM dataset used here consists of a variety climatic measurements conducted

at the 16 km2 resolution averaged over a yearly time window. Specifically, these

measurements consist of mean temperature, maximum temperature, minimum tem-

perature, precipitation, minimum vapor pressure deficit, maximum vapor pressure

deficit, and mean dew point temperature. Yearly averages of these quantities chosen

from the years 1983, 1988, 1993, 1998, 2003, 2008, 2013, which were taken as the

center years of the 7 time intervals (of width 5 years) which form the temporal extent

of the simulations. For simplicity, the PRISM measurements from each center year

were assumed to hold for all data simulated within the corresponding time interval.

For each set of measurements from a given time interval, the PRISM values were not

directly used as the covariates zλ(x, t), but rather, were first range standardized and

then dimensionally reduced by principal component analysis. The range standardiza-

tion was calculated as

rikt = (xikt −minit)/(maxit −minit) for (i = 1, . . . , 7), (t = 1, . . . , 7)

where i indexes the measurement type, k indexes the raster cell in the study region

for which the measurement was taken, t indexes time interval, mini is the mini-
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mum value of the ith measurement at year t and maxi is the maximum value of the

ith measurement at year t. For each time interval, principal components of the 7

range standardized measurements were calculated using the rasterPCA function of

the RStoolbox package, from the R programming language. The first 2 principal

components (Figures 3.2, 3.3) corresponding to each time interval t where then used

as covariates zλ(x, t). An intercept term was also included in zλ(x, t). The first prin-

cipal component corresponds primarily to the temperature related variables, while

the second is comprised mostly of moisture related variables. First (Figure 3.2) and

second (Figure 3.3) principal components show subtle changes over time. Note that

while the below figures show the principal components at a 16 km2 resolution, for the

three simulated datasets these principal components were used at a resolution of 2,458

km2, out of consideration for speed of model fitting, corresponding to a discretization

of the study region into 222 grid cells.
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Figure 3.2: First principal components of the PRISM climatic dataset re-calculated
over 7 different years between 1983 and 2013 at 2,458 km2 resolution.
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Figure 3.3: Second principal components of the PRISM climatic dataset re-calculated
over 7 different years between 1983 and 2013 at 2,458 km2 resolution.
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The remaining parameters of model (3.1) were selected (Table 3.2) so as to yield mean

disease prevalences between 0.081 and 0.449 (Table 3.3) for each temporal trend. For

all datasets simulated, the spatial range θ and marginal variance φ of model (3.1)

were set to (θ, φ) = (7, 12)

Trend β+ β− α+ α−
increasing (0.5, 0.5, 0.5) (4.5, 0.75, 0.75) 1 0.20
decreasing (0.75, 0.50, 0.50) (4.25, 0.75, 0.75) 1 0.20
alternating (0.75, 0.50, 0.50) (3.75, 0.75, 0.75) 0.75 0.20

Table 3.2: Simulation parameters used for each temporal trend. For all trends
simulated, the spatial range θ and marginal variance φ of model (3.1) were set to
(θ, φ) = (7, 12).

Trend 1983 1988 1993 1998 2003 2008 2013
Increasting 0.081 0.104 0.169 0.203 0.252 0.300 0.351
Decreasing 0.449 0.331 0.279 0.233 0.164 0.137 0.110
Alternating 0.151 0.228 0.171 0.254 0.160 0.292 0.189

Table 3.3: Simulated mean disease prevalences per time interval. The second through
final columns of this table refer to the central year around which the time interval
was constructed.

Lastly, the mean numbers of observed grid cells per time interval, for each temporal

trend, range from at least 52.56 to at most 144.04 (Table 3.4).

Trend 1983 1988 1993 1998 2003 2008 2013
Increasing 53.56 63.36 84.00 97.08 109.32 120.52 132.80
Decreasing 144.04 120.00 109.68 96.76 73.20 60.44 52.56
Alternating 75.92 109.36 85.88 120.48 79.80 131.20 96.84

Table 3.4: Mean numbers of simulated observation sites per time interval for each
temporal trend. Each observation site corresponds to a single grid cell in the study
region. For reference, the study area consists of 222 grid cells. The second through
final columns of this table refer to the central year around which the time interval
was constructed.

3.3.3 Results

For each of the 75 simulated datasets, the spatiotemporal model (3.1) was fit via

a combination of Hamiltonian Monte Carlo (HMC) samplers, Metropolis-Hastings
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random walk, and Gibbs sampling, as described in the methods section. The following

prior distributions were specified:

α+ ∼ N(α̂+,initial, 2)

α− ∼ N(α̂−,initial, 2)

β+ ∼ N(0, 100)

β− ∼ N(0, 100)

θ ∼ Gamma(shape, scale|θ̂initial)

φ ∼ Inverse-Gamma(shape, scale|φ̂initial)

ut ∼ N(0, 2) for t = 1, . . . , 7

where α̂+,initial, α̂−,initial, θ̂initial, and φ̂initial were obtained by fitting the modeling

heuristic for parameter initialization described in the methods section of Project 1.

In this case the heuristic model was fit to the temporally aggregated dataset. This

additional step taken for parameter initialization did facilitate model convergence

but was not strictly necessary for convergence to be reached. The shape and scale

parameters pertaining to θ were chosen so that the prior mean of θ was equal to

θ̂initial, ie, the heuristically obtained initial estimate of θ, and the prior variance equal

to 2. Similarly the shape and scale for φ were chosen so that the prior mean of φ

equalled its initial estimate with a prior variance of 2. For each simulated dataset the

MCMC routine of model (3.1) was run for a total of 8,000 iterations, with a burnin

period of 3,000. The tuning periods for each parameter updated by HMC were set to

2,000 iterations, with target acceptance rates of 0.65.

The aggregated preferential sampling model was fit to the data in a nearly identical
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fashion to that of the spatiotemporal model, save for the absence of updating the

vector U of temporal parameters. For this model, parameters were also initialized by

using the output of the simpler heuristic model, consisting of spatial logistic regression

fit to the observational indicators κx in model (1.1). Posterior means of the vector of

spatial random effects w along with θ and φ estimated by this spatial logistic model

were used as initial values. Then, initial values for the remaining parameters were

taken as the maximum likelihood estimates of the case and control data regressed

upon the PRISM climatic principal components and the posterior mean estimate of

w obtained from the previous step. Further details regarding this initialization process

can be found in the methods chapter of Project 1. Lastly, the temporal Poisson model

was fit by maximum likelihood estimation, specifically, using the glm function of the

R programming language.

For all temporal trends, and for every time interval therein, the spatiotemporal model

had lowest average root mean squared error in estimated log disease odds (Table 3.5).

For the following summaries we adopt the notational convention for model reference

which refers to estimates obtained from model (3.1) as “temporal”, those from the

temporal Poisson model as “GLM”, and those from the aggregated preferential sam-

pling model as “pooled”. We see from Table (3.5) that the differences in RMSE can

be quite pronounced. For instance, under the increasing temporal trend for the time

interval with a central year of 1983, the spatiotemporal model had an average RMSE

of 0.466 (standard deviation: 0.327), far below the mean values of 2.148 and 7.917

for the Pooled and GLM models, respectively. In general, the GLM model had the

highest RMSE across all temporal trends and time intervals.
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Trend Model Metric 1983 1988 1993 1998 2003 2008 2013
Inc Temporal Mean 0.466 0.440 0.442 0.436 0.433 0.429 0.428
Inc Temporal SD 0.327 0.279 0.296 0.281 0.282 0.271 0.273
Inc Pooled Mean 2.148 1.866 1.316 1.265 1.175 1.286 1.502
Inc Pooled SD 1.070 1.146 1.251 1.512 1.402 1.409 1.420
Inc GLM Mean 7.917 3.117 5.773 2.512 2.567 2.51 2.367
Inc GLM SD 22.458 1.599 15.693 0.915 0.899 0.917 0.812
Dec Temporal Mean 0.691 0.703 0.696 0.705 0.704 0.719 0.720
Dec Temporal SD 1.132 1.171 1.148 1.158 1.189 1.187 1.218
Dec Pooled Mean 1.543 0.960 0.915 1.080 1.600 2.013 2.464
Dec Pooled SD 0.727 0.643 0.607 0.581 0.518 0.471 0.441
Dec GLM Mean 2.455 2.588 2.600 2.615 3.885 2.936 3.717
Dec GLM SD 0.751 0.846 0.830 0.777 5.566 0.857 3.725
Alt Temporal Mean 0.416 0.409 0.403 0.400 0.411 0.393 0.405
Alt Temporal SD 0.703 0.684 0.675 0.666 0.702 0.646 0.678
Alt Pooled Mean 0.772 0.619 0.656 0.716 0.709 0.893 0.586
Alt Pooled SD 0.213 0.292 0.189 0.308 0.172 0.356 0.203
Alt GLM Mean 1.801 1.674 1.831 1.577 1.740 1.569 1.691
Alt GLM SD 0.598 0.501 0.724 0.443 0.483 0.443 0.496

Table 3.5: Means and standard deviations (SD) of RMSE in estimated log disease
odds for each time interval for simulated increasing (Inc), decreasing (Dec) and alter-
nating (Alt) temporal trends. The fourth through final columns of the table identify
the center year of the time interval over which RMSE was calculated.

Inspection of the patterns in RMSE over time shows striking characteristics. For the

increasing temporal trend, the “pooled” approach witness a general decrease in mean

RMSE of estimated log disease odds over time (Figure 3.4). The spatiotemporal model

maintains very low RMSE for all time intervals, with only a very minute decrease

in RMSE as time increases. Similarly, the RMSE of the “pooled” approach tends to

increase over time for the decreasing temporal trend, while that of the spatiotemporal

model tends to remain low once more. Lastly, RMSE generally showed a slight

alternating trend over time from all models when fit to the dataset with an alternating

temporal trend in risk, with the exception of the spatiotemporal model, which had

consistently low RMSE (Figure 3.4).
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Figure 3.4: Boxplots of root mean squared errors in estimated log disease odds by
year under A) increasing, B) decreasing, and C) alternating temporal trends for each
evaluated model.

When inspecting RMSE in estimated log disease odds for the proposed spatiotemporal

model in relation to the number of observed grid cells in the simulated datasets, we

see that the few outliers in RMSE from this model are associated with datasets in

which the number of observed cells tends to be low, particularly, under 75 (Figure

3.5).
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Figure 3.5: Root mean squared errors in estimated log disease odds of the proposed
spatiotemporal model versus numbers of observed grid cells. Lines are color coded
by the time interval over which RMSE was calculated. Thus, an increase in N for a
given color code corresponds to an increase in the number of observed cells over the
given window.

We now examine the convergence of model (3.1) for certain parameters of special

interest, namely the spatial random effects w and the temporal parameters u1, . . . , u7.

Elevated average root mean squared errors in estimated spatial random effects were

apparent, taking values of 2.446, 2.207, and 2.276 for increasing, decreasing, and

alternating temporal trends, respectively (Table 3.6).
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Figure 3.6: Summary of root mean squared errors in A) estimated spatial random
effects w(x) and B) estimated values of the spatiotemporal process ut + w(x) under
differing temporal trends.

In contrast, average root mean squared errors in the sum ut + w(x) (t = 1, . . . , 7),

remained low for all time intervals and temporal trends in the risk surface, reaching

at most 1.249 for the decreasing trend in the time interval with central year 2013,

and at minimum 0.656 for the alternating trend at the interval centered around 2013

(Table 3.7).

Trend Mean SD Median Q1 Q3
Increasing 2.446 2.668 1.402 0.813 3.216
Decreasing 2.207 2.046 1.539 0.974 2.557
Alternating 2.276 1.84 1.624 0.625 3.599

Table 3.6: Summary of root mean squared errors in estimated spatial random effects
w(x) from the proposed spatiotemporal model for differing temporal trends (SD:
standard deviation, Q1: first quartile, Q3: third quartile).



241

Trend Metric 1983 1988 1993 1998 2003 2008 2013
Increasing Mean 0.687 0.700 0.670 0.671 0.684 0.708 0.718
Increasing SD 0.398 0.449 0.410 0.396 0.423 0.442 0.443
Decreasing Mean 1.194 1.123 1.112 1.116 1.162 1.208 1.249
Decreasing SD 1.910 1.956 1.999 2.011 2.131 2.173 2.218
Alternating Mean 0.764 0.731 0.756 0.749 0.757 0.765 0.741
Alternating SD 0.714 0.659 0.683 0.685 0.683 0.721 0.656

Table 3.7: Summary of mean and standard deviation (SD) in root mean squared
errors of the estimated spatiotemporal process, w(x) + ut, obtained from model (3.1)
for differing temporal trends.

Lastly, we consider biases in the estimates of the spatial and preferential sampling

parameters in model (3.1). Low average biases were observed in the preferential

sampling parameters of cases and controls, α+ and α−, remaining below a magnitude

of 0.15 for all temporal trends. Bias in the spatial range θ also was limited, reaching

at most an average of 1.056 (standard deviation: 4.626) for the decreasing temporal

trend, while that of the marginal variance φ reached a maximum of only 0.393 on

average (Table 3.8).

Trend Metric α+ α− θ φ
Increasing Mean -0.033 -0.005 -0.019 0.079
Increasing SD 0.137 0.027 1.348 0.079
Decreasing Mean -0.128 -0.028 1.056 0.393
Decreasing SD 1.246 0.257 4.626 0.393
Alternating Mean -0.102 -0.039 0.339 -0.239
Alternating SD 0.718 0.256 1.370 0.839

Table 3.8: Summary of means and standard deviations in biases of estimates for
additional parameters in model (3.1). α+ and α− are preferential sampling related
parameters while θ and φ are the range and marginal variance of the latent spatial
process, respectively.

3.3.4 Discussion

This simulation study examined the comparative performance of 3 different modeling

approaches when fit to data simulated under a range of temporal trends in the latent
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risk surface. For all temporal trends considered here, that is, increasing, decreasing,

and alternating, the proposed spatiotemporal model substantially outperformed the

reference methods in terms of root mean squared error in estimated log disease odds.

Interestingly, the Poisson model performed the worst for all temporal trends, despite

the fact that it should have accounted for the temporal changes within the data due to

the fact that it entailed fitting separate Poisson models to the simulated data within

each time interval. This result serves as a warning that accounting for temporal

trends while ignoring the preferential sampling mechanism behind the data can still

lead to deteriorated quality in estimated disease odds.

The change in RMSE of log disease odds over time shows a striking trend worthy

of explanation. When the models were fit to data simulated under an increasing

temporal trend in the latent risk surface, the RMSE tended to decrease on average

as time increased. Under a decreasing temporal trend, the RMSE tended to increase

with time, while under an alternating trend, the RMSE alternated with time. This

observed phenomenon can ultimately be explained by changes in the volume of data

simulated over time. We recall that under our scenario of preferential sampling, the

distribution of observation sites is stochastically related to the risk of the underlying

disease. As disease risk increases over space or over time, so too should the number

of observation sites increase. We see this tendency manifested in Table (3.4), which,

for the increasing trend in disease risk, shows an increase in the average number

of observation sites from the first to last interval. This increase in observation sites

coincides with an increase in the total number of collected specimen on average (cases

+ controls). Consequently, due to this greater volume of data in later years, both in

terms of the numbers observation sites as well as cases and controls, the later time

intervals exert a greater influence on the estimation of the spatial random field w

in model (1.1). Since the true w changes over time (as ut + w(x) in model (3.1)),

the estimated w, assumed constant in the aggregated model, becomes biased towards
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its true value in later years. In this way also, estimates of log disease odds become

biased toward later time intervals, in which they have lower RMSEs, and become

biased away from earlier intervals, where they yield higher RMSEs. The interplay

between underlying disease risk, the number of observation sites, and the direction

of bias works in the opposite fashion when the underlying data possess a decreasing

temporal trend. Similarly, under the alternating trend, estimates become biased

toward years which witness higher disease risk.

We now turn to the estimability of specific parameters in model (3.1), namely the

vector of spatial random effects w and the temporal parameters ut. Despite the failure

of the model to converge to the random effect values w, convergence was achieved for

the sum ut + w(x). From this we conclude that w and ut are not identifiable from

the data, but the sum ut + w(x) is. Given that it is only the spatiotemporal process

ut +w(x) which influences estimation of disease risk, and not the values of ut or w(x)

individually, we view this lack of identifiability as not a serious impediment to the

use of the spatiotemporal model in practice. Regarding the remaining parameters of

model (3.1), we observe that low bias estimates are obtained from our fitting proce-

dure for all temporal trends considered here. Thus, we conclude that the proposed

model substantially outperforms reference methods for reasonable sample sizes and

temporal trends in risk, and adequately models these temporal trends in practice,

even if the specific parameters ut and w are not estimable in isolation.
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3.4 Analysis

3.4.1 Introduction

This analysis applies the proposed spatiotemporal preferential sampling method to a

disease surveillance dataset obtained from the California Department of Public Health

(CDPH), targeting infection with Yersinia pestis, or plague, in the Sciurid population

of California. Sciurids, or the rodent family of squirrels, are susceptible to plague at

a prevalence of roughly 6% in California. This low but persistent prevalence, coupled

with the fact that many human cases of plague are linked to epizootics in the animal

population, make Sciurids an ever-relevant focus of disease surveillance.

We recall that Project 1 of this dissertation provided an analysis of this dataset with

a model to correct for preferential sampling, or the stochastic dependency between

disease risk and the distribution of sampling sites. However, the approach therein was

limited in the sense that it aggregated observations throughout time over a window

between 1983 and 2015. In many real world disease surveillance applications promi-

nent temporal changes in the observed disease risk may arise due to a multitude

of factors, such as fluctuations in climate or other abiotic factors, temporal trends

in the underlying ecology of the host organisms, or budgetary forces impacting the

distribution and extent of surveillance efforts. In short, aggregating data over time

may obscure key dynamics of both the underlying disease as well as the observation

process. To offer a more sophisticated treatment of temporal trends, we now apply a

newly developed spatiotemporal extension of the original preferential sampling model.

Our core objective is thus to determine whether modeling the sampling process over

time can capture meaningful temporal trends in predicted risk that were overlooked

by the time-aggregated approach.
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The CDPH surveillance system targets plague in the rodent family of squirrels,

known as Sciuridae or Sciurids, which in this dataset comprise 21 different species,

namely the: Antelope Ground Squirrel, Antelope Ground Squirrel (WhiteTail), Beld-

ing’s Ground Squirrel, California Ground Squirrel, Chipmunk, Least Chipmunk,

Long-eared Chipmunk, Lodgepole Chipmunk, Merriam’s Chipmunk, Panamint Chip-

munk, Shadow Chipmunk, Siskiyou Chipmunk, Sonoma Chipmunk, Uinta Chipmunk,

Yellow-pine Chipmunk, Golden-mantled Ground Squirrel, Ground Squirrel, Yellow-

bellied Marmot, Pine Squirrel, and Squirrel. The surveillance system collects data

by conducting a series of sampling events at locations throughout California in which

Sciurids are trapped and subsequently tested for Yersinia pestis via F1 antigen tests.

The data contain samples collected between 1983 and 2015. The surveillance system

tends to assign sampling locations to high risk or high impact areas, where risk is

assessed to be high in what are viewed as plague endemic regions, as determined by

historic cases of plague in humans or recovered Sciurid specimen, and high impact

areas are regions where human-Sciurid interactions are particularly likely, such as in

national parks. In this sense the data are preferentially sampled, due to the stochastic

relationship between the distribution of observation sites and the risk of the disease

being surveilled.

In this analysis we fit the proposed model (3.1) against a benchmark, taken to be the

preferential sampling model of Project 1, which aggregates the disease surveillance

data over time. In this model we replace the time specific intervals κxt of model (3.1)

with time-aggregated indicators, κx, which reflect whether the grid cell with center at

point x contains any sampling events between 1983 and 2015. We also replace time

specific counts Yxmt with counts Yxm, which have been aggregated over time. Lastly,

the latent process shared between locational and disease related components of the

model is merely spatial, rather than spatiotemporal.
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As explained in the methods section, log disease odds for each time interval are given

by the differences in the rate functions of cases and controls, log(λ+,t(x))−log(λ−,t(x)).

Disease risk over time, the ultimate quantity of concern for our analysis, relates to log

odds as rt(x)/[1−rt(x)] = λ+,t(x)/λ−,t(x), where we denote the risk for plague in grid

cell x over time interval t as rt(x). Similarly to the spatiotemporal model, the time-

aggregated log disease odds are calculated as the differences of case and control rate

functions, log(λ+(x))−log(λ−(x)) from model (1.1). Consequently, the risk calculated

from model (1.1) relates to log disease odds via r(x)/[1−r(x)] = λ+(x)/λ−(x), where

r(x) is the risk of plague in the grid cell centered at point x averaged over all years

of observation between 1983 and 2015. Fitting both models (3.1) and (1.1) is thus

intended to offer a comparison to illustrate the effect on predicted risk, rt(x) and

r(x) in the above notation, brought about by accounting for temporal changes in the

surveillance data.

3.4.2 Data

The disease surveillance dataset considered in this analysis consists of observations

conducted in the state of California between 1983 and 2015, recording the tested

presence or absence of plague in Sciurids. Observations in this dataset have been

collected continuously on a yearly basis, with no year between 1983 and 2015 failing

to have recorded data. In this study we utilized observations for all 21 species of

Sciurids combined, producing a series of maps indicating the overall risk of plague in

Sciurids as a whole, which we note does not necessarily equate to the risk of plague

in individual species within the Sciuridae family. To fit models (3.1) and (1.1), the

study region was discretized into 584 nonoverlapping grid cells of area 836 km2. The

timespan of the study was discretized into 7 windows of width 5 years, where the

years 1983, 1988, 1993, 1998, 2003, 2008, and 2013 mark the center points of each of
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the 7 time windows.

The temporally varying fixed effects of model (3.1), zλ(x, t), were derived from the

publicly accessible PRISM climatic dataset, maintained by the Oregon State Uni-

versity. The PRISM dataset used here consists of a variety climatic measurements

averaged over yearly time windows. Specifically, these measurements consist of mean

temperature, maximum temperature, minimum temperature, precipitation, minimum

vapor pressure deficit, maximum vapor pressure deficit, and mean dew point temper-

ature. Yearly averages of these quantities for the years 1983, 1988, 1993, 1998, 2003,

2008, and 2013 were obtained. For simplicity, the PRISM measurements from each

of these years were assumed to hold for all surveillance data collected within the cor-

responding time interval. For instance, disease surveillance observations conducted

in the year 1989 were associated with the PRISM yearly averages for 1988, which

marks the center point of the 5 year time window which forms the basic unit of tem-

poral analysis. For each set of climatic measurements from a given time interval, the

PRISM values were not directly used as the covariates zλ(x, t), but rather, were first

range standardized and then dimensionally reduced by principal component analysis.

The range standardization was calculated as

rikt = (xikt −minit)/(maxit −minit) for (i = 1, . . . , 7), (t = 1, . . . , 7)

where i indexes the measurement type, k indexes the raster cell in the study region for

which the measurement was taken, t indexes time interval, mini is the minimum value

of the ith measurement at year t and maxi is the maximum value of the ith measure-

ment at year t. For each time interval, principal components of the 7 range standard-

ized measurements were calculated using the rasterPCA function of the RStoolbox

package, from the R programming language. The first 2 principal components corre-
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sponding to time interval t where then used as covariates zλ(x, t). An intercept term

was also included in zλ(x, t). The first principal component corresponds primarily to

the temperature related variables, while the second is comprised mostly of moisture

related variables. First (Figure 3.7) and second (Figure 3.8) principal components

show subtle changes over time. Note that while the principal components are por-

trayed in (Figure 3.7) and (Figure 3.8) at the 16km2 resolution, the actual MCMC

routine in which model (3.1) was fit used the principal components at an 836 km2

resolution, that is, the resolution to which the study region was discretized. However,

the finer resolution risk map obtained from model (3.1) was spatially downscaled

to resolution of 16km2, yielding the high resolution risk map which is ultimately of

greater concern to our analysis.

In contrast, the time-aggregated reference model did not incorporate the above tem-

porally varying PRISM principal components. Instead, covariates zλ(x) from model

(1.1) were taken to be the first two principal components of the PRISM 30 year aver-

age normals, rather than yearly values, for mean temperature, maximum temperature,

minimum temperature, precipitation, minimum vapor pressure deficit, maximum va-

por pressure deficit, and mean dew point temperature, or the same measurement

types as were used in the construction of the covariates for the temporal model.
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Figure 3.7: First principal components of the PRISM climatic dataset re-calculated
over 7 different years between 1983 and 2013 at 16 km2 resolution.
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Figure 3.8: Second principal components of the PRISM climatic dataset re-calculated
over 7 different years between 1983 and 2013 at 16 km2 resolution.
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The raw prevalence of plague shows notable trends over the 7 time windows of the

study, ranging from a high of 0.11 in the time window centered at 1993 to a low of 0.02

in the window centered at 2003 (Table 3.9). In addition, the number of observed grid

cells varies strongly over time. We recall that model (3.1) encodes the distribution of

observation sites in terms of indicator variables κxt ∈ {0, 1}, which represent whether

the grid cell with center point at location x contains at least 1 plague sampling event

during time window t. Consequently, a decline in the number of observed grid cells

would reflect a decrease in the observed spatial extent of the study region over time.

The sum of κxt, that is, the total number of observed grid cells, declines steadily from

a maximum of 114 in 1983 to a minimum of 64 in 2013 (Table 3.9).

Time Interval Observed Cells Total Specimen Prevalence
1983 114 2513 0.08
1988 108 3931 0.08
1993 113 4119 0.11
1998 87 3311 0.05
2003 81 2947 0.02
2008 83 2499 0.03
2013 64 2447 0.05

Table 3.9: Summary of the total number of observed grid cells, total recorded
specimen (cases + controls), and disease prevalences per time interval for Sciurids.

3.4.3 Results

The proposed spatiotemporal model was fit to the data with a total of 11,000 MCMC

samples, converging after a burnin of 900 samples, while the reference, time-aggregated

model (1.1) was fit with 10,000 MCMC samples and a burnin of 3,000. For both

models, Hamiltonian Monte Carlo step sizes were self-tuned by the scheme of dual

averaging to achieve target acceptance rates of 0.65, as calculated over tuning periods

of 2,000 samples.

The temporally referenced risk maps obtained from model (3.1) are presented in
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(Figure 3.9). In these risk maps the raster values represent the probability a ro-

dent sampled at a particular location within a particular time interval will be plague

positive. At first glance notable temporal trends appear in the estimated risk sur-

face. Over time, the band of elevated risk stretching from roughly the 40th to 36

parallels, corresponding to the Sierra Nevada mountain range, steadily decreases in

size, with an exception for the time interval centered in 1998. In addition, the small

bands of elevated risk in the southwestern portion of the map, near Los Angeles and

San Bernardino counties, appear to shrink as well. However, the overall macroscopic

structure of the risk maps remains fairly consistent. The highest areas of elevated

risk consistently arise in the Sierra Nevada mountains, while the southeastern region

of the map maintains the lowest predicted risk.
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The high resolution risk map estimated by the reference, time-aggregated model (1.1)

is presented for comparison in Figure (3.10). In this risk map, as before, the raster

values represent the probability a rodent sampled at a particular location will be

plague positive, but now over the entire window of time between 1983 and 2015. This

risk map ranges in value from 0.008 to 0.115. As with the spatiotemporal model,

peak areas of risk fall along the Sierra Nevada mountain range, stretching diagonally

from roughly the 40th to 35th latitude towards the eastern border of the state, as

well as within thin pockets of elevated risk in the northeastern portion of the state,

in addition to circular regions of greater risk towards the southwestern part of the

map. The southern and central coastlines also show mild elevation in risk relative to

some of the lower risk regions of the map, such as the San Joaquin Valley, to the west

of the Sierra Nevada mountains, and the Imperial Valley region, in the southeastern

corner.
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Figure 3.10: Risk of plague in Sciurids over all years between 1983 and 2015, at a
resolution of 16km2, as calculated by the reference model (1.1).
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The above maps offered a rough picture of the temporal trend in risk, showing a

general decrease from 1983 to 2015, with the exception of the time intervals centered

at 1998. For a more direct examination of the spatiotemporal trend we consider

changes in ût + ¯̂w over time, where ût are our posterior mean estimates of the time

specific parameters of model (3.1) and ¯̂w is the average of our estimates for the spatial

random effects

¯̂w =
1

584
Σ584
i=1ŵ(xi)

In other words, ût + ¯̂w is the estimated mean of the estimated latent spatiotemporal

process during time interval t. We see that this quantity shows a general increase from

the 1st to 4th time intervals (1983 to 1998), followed by a strong decrease until the 6th

interval (2008), after which a slight increase appears (Figure 3.11A). To ascertain the

driving factors behind this trend we also consider changes in the disease prevalence

and number of observation sites over time (Figure 3.11B, C). In the construction of

model (3.1) we recall that ut + w(x) relates to the distribution of observation sites

as well as the observed abundances of cases and controls, and consequently, disease

risk. Hence, variation in either prevalence or the number of observation sites may be

expected to relate to ut +w(x). Both prevalence and the number of observation sites

show a noted decline starting in the time interval indexed by 1993, which anticipates

the decrease in ût + ¯̂w in the next time interval. The slight uptick in ût + ¯̂w arising

in the last time interval coincides with a slight increase in disease prevalence, but not

the number of observation sites. Thus, a fairly consistent relationship seems apparent

between ût + ¯̂w and disease prevalence, as well as, to a lesser extent, the number of

observation sites, with the exception of the one-interval lag between the decrease in

the former beginning after 1998 and the decreases in the latter occurring after 1993.
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Figure 3.11: Comparison of A) estimated mean of the spatiotemporal process ut +
w(x), with 25th and 75th posterior quantiles shaded B) disease prevalence over each
time interval between 1983 and 2015 and C) the number of observed grid cells over
each interval.
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Returning back to the comparison of the spatiotemporal and time-aggregated models,

we now examine per-cell differences in estimated risk (Figure 3.12). The temporal

model tends to have lower estimated risk than the aggregated model, differing on

average, -0.007, -0.008, -0.009, -0.004, -0.01, -0.013 and -0.014 for the 7 time intervals

centered between 1983 and 2013. We observe that this average difference tends to

increase in magnitude over time.

Figure 3.12: Scatterplots of risk calculated from the spatiotemporal model versus
the time-aggregated model for each time interval of the study. The red lines are of
slope 1 and intercept 0.
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However, it is of greater interest to determine the degree to which the spatiotemporal

and temporal models yield statistically significantly different estimates of risk. To

that end, for each model we calculate the posterior probability of risk exceeding 0.05

over all pixels in the study region, as described in the methods section. Observing

only pixels for which this probability exceeds 0.95, we find that the spatiotemporal

model shows a decrease in areas of significant risk over time (Figure 3.13), similar to

the trend noted when observing the values of estimated risk (Figure 3.9). This spatial

coverage of significant risk is less than that of the time-aggregated model (Figure 3.14).

In particular, the number of all pixels deemed significant by the spatiotemporal model

is always less than that of the time-aggregated model. Fractions of the number of

pixels deemed significant by model (3.1) divided by that deemed significant by model

(1.1) take values of 0.702, 0.554, 0.556, 0.802, 0.459, 0.262 and 0.199 for the time

intervals centered between 1983 and 2013 (Table 3.10).
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Figure 3.14: Plot of the areas (colored green) in which the posterior probability of
the risk of plague exceeding 0.05 is greater than 0.95 over the aggregated timespan,
between 1983 and 2015.
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1983 1988 1993 1998 2003 2008 2013
0.702 0.554 0.556 0.802 0.459 0.262 0.199

Table 3.10: Fractional risk significance of the temporal model compared to aggregate
model. Each column header identifies a time interval, while column values represent
the fraction of the total number of pixels deemed significant in the temporal model
divided by the total number of pixels deemed significant by the time-aggregated
model. E.g., only 80.2% of the pixels calculated to be significant by the aggregate
model were also deemed significant by the spatiotemporal model.

3.4.4 Discussion

In this analysis the proposed model captured important temporal trends overlooked

in our previous analyses (Projects 1 and 2), as evidenced by differences in predicted

risk between values of the proposed model and those of the reference, time-aggregated

model. Both per-cell examinations of these differences (Figure 3.12) as well as a com-

parison of the confidence regions identifying areas of above average risk corroborate

this conclusion (Figure 3.13, 3.14, Table 3.10). However, a number of remaining

questions present themselves to the body of this discussion, namely what underlying

factors explain the divergence between the temporal and aggregate models, what are

the practical implications of the significance maps for sampling strategy, and perhaps

most importantly, what are the limitations of the spatiotemporal structure present in

the proposed model. We now address each of these questions in turn.

Regarding the nature of the difference in predicted risk between the temporal and

aggregate models, we first characterize its direction and trend over time. For this

purpose the scatterplots comparing cell-by-cell estimated risks are conducive. From

Figure (3.12) the apparent trend is for the spatiotemporal method to yield generally

lower risk estimates than the time-aggregated model. Furthermore, this difference

tends to grow larger over time, especially for time intervals centered at or after 2003.

This tendency can ultimately be explained by changes in the volume of data observed

over time. Due to a moderate but consistent decrease in the number of observation
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sites and collected specimen beginning in 2003, the earlier time intervals falling prior

to 2003 exert a greater influence on the estimation of the spatial random field w

in model (1.1). Simply put, if the true spatiotemporal process changes over time,

the estimated random effects w, assumed constant over time in model (1.1), become

biased towards those intervals possessing the most observations, which fall earlier in

time. A similar phenomenon was observed in the simulation chapter of this project,

which witnessed the aggregated model suffering worse root mean squared error in

estimated log disease odds as time increased when the underlying temporal trend in

risk was decreasing, and vice versa for an increasing temporal trend.

However the question remains whether the apparent decrease in estimated risk over

time relates to a true decrease in the risk of the underlying disease, or is merely a result

of attenuated sampling effort over time. To answer that question we must first address

the interpretation of our estimated significance regions, presented in Figures (3.13)

and (3.14). These plots encapsulate our spatially and temporally varying confidence

that the risk of plague in any given pixel exceeds 0.05. Specifically, areas in which the

posterior probability of risk being greater than 0.05 exceeds 0.95 are colored green.

Since the overall prevalence of plague in Sciurids between 1983 and 2015 is roughly

0.05, we can conventiently interpret these maps to be areas in which we are highly

confident that the risk of plague surpasses the average prevalence. We emphasize

under this interpretation that areas deemed “significant” in the above maps need not

necessarily be high risk in any absolute sense, for instance, possessing a risk of truly

high magnitude, such as 0.12. Rather such areas are merely regions in which we have a

high degree of certainty that the risk of plague is not 0.05 or below. Conversely, areas

deemed “not significant” are not necessarily plague free. In reality, such areas could

even possess substantial risk for plague in the Sciurid population, but, hypothetically,

may possibly not register on the significance map due to a high posterior variance in

estimated risk, typically brought about by a small sample size. For this reason, to
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better ascertain whether the decrease over time witnessed in Figure (3.13) is affected

primarily by a decrease in the actual underlying disease risk, or is merely an artifact of

dampened sampling effort, it is helpful to consider an additional type of map depicting

areas in which we are confident that the risk of plague is less than a particular value,

here taken to be 0.05. To that end, Figures (3.15A, B) identify areas in which the

probability that the risk of plague falls below 0.05 exceeds 0.95 for time the time

intervals centered at 1983 and 2013, respectively. We can easily observe an increase

in the coverage of the study region for which this condition holds true, indicating

that our observed decrease in estimated disease risk is not merely due to a decrease

in sampling effort alone, but is, to some extent, reflected in an underlying temporal

change in risk. However, this conclusion does not imply that sampling effort has no

impact on the observed decrease in areas deemed to be of significant (> 0.05) risk.

On the contrary, to see where sampling effort bears particular weight, we turn to our

next point, one which also can be used to inform sampling design.
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Figure 3.15: Positive and negative confidence regions for the risk of plague. In the
top row, places where the probability that the risk of plague falls below 0.05 exceeds
0.95 in A) 1983 and B) 2013 are colored green. In the bottom row, green regions
identify places where the probability of plague risk exceeding 0.05 is greater than
0.95 in C) 1983 and D) 2013.
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An additional benefit of these maps showing areas of confidence for the risk of plague

falling below a certain value, hereafter referred to as negative confidence regions,

is that they can offer practical suggestions for future sampling effort, when viewed

in conjunction with those maps showing areas of confidence for plague risk falling

above that same value, which we denote positive confidence regions. For instance,

the negative confidence regions of Figure (3.15B) identify a continuous band of space

between the 40th and 36th parallel in which we are not confident that the risk of

plague is below 0.05. But the positive confidence regions of Figure (3.15D) show this

band overlapped by two regions in which we are confident that risk exceeds 0.05.

The negative intersection of these regions of interest from Figure (3.15B) and Figure

(3.15D), a narrow strip extending just above and below the 38th parallel (Figure

3.16), calls for special attention. As this region is such that we are neither confident

that the risk of plague falls above or below 0.05, it may warrant further sampling

effort in the future. This strategy of identifying areas in which we are not highly

confident that risk exceeds or falls below the average value may be used to inform

sampling design in general.
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Figure 3.16: Areas suggested for additional sampling. Green pixels identify areas in
which the probability of risk exceeding 0.05 is not above 0.95 and the probability of
risk falling below 0.05 is not above 0.95, for the time interval centered at 2013.

Before discussing general modeling limitations we must present a strong caveat with

regard to the above significance maps, one that relates to the drawbacks inherent

in the concept of a P value. In frequentist statistics, particularly hypothesis test-

ing, a P value is defined as the probability of observing a future test statistic more

extreme than that currently observed if the null hypothesis is true. Specifically,

P = Pr(S(y) > S(y0)|H), where S(y) is the value of a test statistic under any future

replication yielding data y and S(y0) is the value of the statistic given the observed

data y0. Under typical hypothesis testing the null hypothesis is rejected if P < 0.05.

Criticisms of this use of P values abound (e.g., Gelman 2013), most notably, for our

purpose here, the fact that the imposition of the arbitrary 0.05 cutoff does not dis-

criminate between instances when P = 0.051 and when P = 0.049, which can lead to

misleading conclusions. Our calculations of the above significance maps suffer from
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this problematic imposition of an arbitrary cutoff, doubly so, first through the 0.95

posterior probability cutoff meant to identify our confidence, and secondly in the

underlying 0.05 cutoff in estimated disease risk which forms the basis of our probabil-

ity statement. Consequently, our maps could look very different depending on what

posterior probability cutoff and what underlying risk cutoff are used.

To mitigate the impact of the arbitrary imposition of the 0.95 posterior probabil-

ity threshold we can present significance maps with an extended color wheel. For

instance, Figure (3.17) divides regions into 4 color categories depending on the mag-

nitude of their posterior probabilities. Areas where these probabilities exceed 0.25,

0.5, and 0.95 are clearly identified, thus conveying a broader range of confidence lev-

els than that offered by a simple 0.95 cutoff. While this solution is not perfect, our

posterior probability and risk cutoffs ultimately can yield suggestions of practical im-

portance (ex. Figure 3.16), and in general offer results consistent with the domain

expertise of the wildlife biologists who operate the surveillance system.
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Figure 3.17: Areas where the posterior probability of plague risk exceeding 0.05 is
greater than 0.95 (dark green), greater than 0.50 (light green) and 0.25 (brown) for
Sciurids between 1983 and 2015.
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Lastly, several simplifying assumptions behind the proposed model could be dispensed

with to offer a more flexible spatiotemporal structure. Most prominent among these

would be the transition from a discrete time to continuous time framework, under

which the estimated disease risk would no longer be dependent upon the width of the

temporal discretization window. In addition, more sophisticated spatial and tempo-

ral trends could be captured by incorporating spacetime interaction in the modeling

structure, while the fixed effects βm in model (3.1) could also be constructed to vary

with time. Despite the limitations brought about by omitting these more complex

features, this analysis has shown that the proposed model can nevertheless capture

important temporal trends which are overlooked by the time-aggregated, benchmark

approach, all the while remaining computationally tractable. We thus leave the afore-

mentioned enhancements to future development.
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