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Abstract 

Convergence of Circle Packings in Euclidean Plane 

By Xinhui Wu 

In this paper, I want to present to the readers some basic knowledge about circle 

packing in the setting of Euclidean plane. Circle packing was introduced by William 

Thurston [8] in his lecture notes. I will establish the background on the discrete 

analytic function, which maps carriers of circle packings to carriers of circle packings 

and preserve the orientation and tangency. Last, I will present the proof of the 

Thurston’s Conjecture on circle packings, which was proved by Burton Rodin and 

Dennis Sullivan [5], and is now called the Rodin-Sullivan Theorem. 
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1. Introduction 

In this thesis, we will focus on proving the Rodin-Sullivan Theorem in the 

Euclidean plane. We will begin with an introduction to circle packings, whichwill help 

the reader build up the background knowledge. Then we will review definitions and 

theorems of conformal and quasiconformal mapping. Before we prove the 

Rodin-Sullivan Theorem, we need to prove some useful lemmas. After assembling all 

the necessary tools, we will prove the main theorem. 
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2. Introduction to Circle Packing 

First, I introduce some basic concepts about circle packing in the 

Euclidean-geometric setting. Throughout the paper, we treat    as the complex 

plane  , with complex arithmetic, Euclidean and spherical metrics. 

Before I list any definitions, I will provide some picture examples of circle 

packing to illustrate this mathematical term intuitively. Those examples include not 

only the circle packing in the plane, but also in the hyperbolic plane and the sphere. 

 

Figure 1: Circle packing in different geometric settings. [7] 
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Figure 2: Circle packing in different geometric settings. [7] 

 

Figure 3: Circle packings for a square. 
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Figure 4: Circle packings for a triangle. 

A circle packing consists of patterns of tangent circles. All the tangencies are 

external and no two circles share any points except the point of tangency. In the 

following figure, figure 5, we observe that tangent circles come in mutually tangent 

triples. A finite sequence of circles from a circle packing is called a chain if each 

circle except the last is tangent to its successor. The chain is a cycle if the first and last 

circles are tangent. Then we can form a flower, with a central circle, surrounded by a 

chain of successively tangent circles, called petal circles. The number of the petal 

circles is defined as the degree of the central circle. Last, the entire circle packing 

consists of interlinked flowers. We usually denote a circle packing with P. 
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Figure 5: a description of components of circle packings. [7] 

Before we study the structure of the circle packings, we need to understand the 

topological term, simplicial complex, for denoting the structures. 

 

Definition 1.1  A simplicial complex   consists of a set     of vertices and a set 

    of finite nonempty subsets     called simplexes such that 

(a) Any set consisting of exactly one vertex is a simplex. 

(b) Any nonempty subset of a simplex is a simplex. 

A simplex   containing exact     vertices is called a  -simplex. We also say that 

the dimension of s is  . We also use the term complex as a shorthand of simplicial 

2-complex in this paper.  
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In figure 6, we obtain a structure called carrier. A carrier is the geometric 

complex formed by connecting the center of the tangent circle with the geodesic 

segment to form edges and faces.  

 

Figure 6: carrier of packings in different geometric surfaces. [7] 

One of the most familiar packings of the complex plane is the Regular Hexagonal 

Packing, which consists of circles with same radius and each interior circle has a 

degree of six, as in the background of figure 7. 

 

Figure 7: circle packings of degree 5, 6, and 7. [7] 
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We notice that a circle packing consists of its combinatorics information, the 

tangencies of circles, and its geometric information, the radii of the circles in the 

packing. We first focus on the combinatoric properties of packing. 

Before we can study the combinatorics of circle packing, we need to find a way to 

represent the combinatorics of a circle packing P. We use the construction of the 

abstract vertices, edges and faces of the carrier. We call this structure the complex for 

P, written as K. K is a simplicial complex, an abstract object without any metric or 

geometry. Then we attach and label R to K which contains a set of positive numbers 

associated with the radius of each circle in the packing. With tangential of the circles 

and their radii, a circle packing is determined in certain domain. 

From the observation of the figures above, we find that carrier consists of a group 

of triangles and with the vertices and edges of those triangles, we can obtain the 

abstract combinatoric information of the circle packing, so we introduce the concept 

of triangulation of the a surface. 

 

Definition 1.2 A triangulation T of a surface S is a locally finite decomposition of S 

into a collection of topological closed triangles,       , so that any two either are 

disjoint, intersect in a single vertex, or intersect in a single complete edge. (Locally 

finite means that every point of S has a neighborhood that intersects at most finitely 

many triangles of T; the collection T itself may be finite or countably infinite) 

 

Every circle packing has its associated carrier, and therefore its own triangulation. 
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The structure for the packing and the triangulation of the domain help us to study the 

relationship of topology and structure between different domains and packings. So our 

next step is to define these terms precisely. 

 

Definition 1.3 The prescribed pattern for a circle will be encoded as an abstract 

simplicial 2-complex (or complex for short) which is a triangulation of an oriented 

topological surface. The notation K will be used both for the complex and for its 

realization as a topological surface. 

 

Definition 1.4   Given a complex K with vertices          , a label R for K in a 

particular geometry consists of a set             of real numbers that qualify as 

radii. We refer to      as a labeled complex. 

 

Definition 1.5  A collection        of circles in   is said to be a circle packing 

for a complex K or K is the complex of P if  

(1)  P has a circle    associated with each vertex v of K,  

(2)  two circles   ,   are externally tangent whenever       is an edge of K, and  

(3)  three circles   ,   ,    form a positively oriented triple in   whenever   

          forms a positively oriented face of K 

 

One important fact about triangulation we will use to prove the main theorem is 

Andreev’s Theorem. It help us to prove the existence of the circle packing in the 
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co-domain. 

 

Theorem 1.1 [1]   (Andreev’s Theorem) 

Any triangulation of the sphere is isomorphic to the triangulation associated to some 

circle packing. The isomorphism can be required to preserve the orientation of the 

sphere and then this circle packing is unique up to Möbius transformations. 

 

Next, we want to study more about a single flower, which is essential to the circle 

packing. We need to introduce the definition of angle sum and packing label. 

 

 

Figure 8: angle of petal circle for circle packing. [7] 

Definition 1.6  Let R be a label for K. Then the angle sum map               

assigns to each vertex     the sum of the angles at   in the faces of   the sum 

of the angles at   in the faces of   to which   belonges: 
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In the Euclidean case,  

                
                    

           
   

 

Definition 1.7  A label R is termed a packing label for   is for every interior 

vertex   of  , then the angle sum of the vertex would be such that         . If, 

we say that R has an unbranch point at  . 

 

In order to form a circle packing, the angle sum of the petal circle in a flower 

should equal to    or multiple of    for branched packing; otherwise, the petal 

circle will not form a closed chain which surrounds the center circle. 

After we grasp the basic understanding of circle packing, I want to introduce 

some further properties. 

 

Theorem 1.2 [7] 

Let K be a simply connected complex with label R. Let 

                                                                                  

, depending on the geometry of R. Then there exists a circle packing P in   with 

       if and only if R is a packing label. The circle packing P is unique up to 

isometries of  . 
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Once we establish the structure and notation of the circle packing, we then want 

to introduce the mappings between circle packing. Therefore, we have to introduce 

the concept of discrete analytic function. 

 

Definition 1.8   A discrete analytic function   from    to   is a continuous 

orientation-preserving simplicial mapping                   . In particular, it 

maps the center of each circle of    to the center of the corresponding circle of  , 

each edge of          one-to-one onto the corresponding edge of        , each 

face of          one-to-one in an orientation-preserving way onto the corresponding 

face of        . The associate ration function    is defined on the vertices of carrier 

of  ,        : if    is a circle of   and    is the corresponding circle of  , then 

at the center    of   ,  
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3. Conformal and Quasiconformal Mappings 

I assume the reader has some fundamental knowledge about the complex 

numbers and complex functions. However, I find a brief introduction on conformal 

and quansiconformal mappings theories would be very helpful to understand this 

paper. 

The basic objects we are focusing on are complex functions      .on the 

domain    . A function is also called a mapping.  

 

A mapping       is said to be analytic at     if it has a complex derivative 

defined as 

         
   

         

   
  

  is analytic on   if F is analytic at each point of  . 

Geometrically, when       is nonzero, the mapping preserves the angle (the 

magnitude and orientation) between any two smooth curves that intersect at   .  

 

Definition 2.1 An analytic function is said to be a conformal mapping at points 

where its derivative does not vanish. Regions      are conformal-equivalent if there 

is a univalent analytic bijection       . 

 

Conformal Mapping is one of the central things we need to understand in order to 

read the proof of the theorem. It is also the mapping we are trying to approximate with 

the circle packings and discrete analytic functions. In the next few paragraphs, we will 
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study some basic theorem about the analytic function. 

 

Definition 2.2  If   is a closed   (continuous first derivative) curve in    and 

       then 

       
 

   
        

 

   

is called the index of   with respects to the point. It is also called the winding 

number of   around a. 

 

Theorem 2.1 [3]  (Cauchy Theorem) 

Let   be an open subset of the plane and       an analytic function. If   is a 

closed rectifiable curve in  , such that the          for all   in    , then for 

  in      , 

           
 

   
 

    

    

    

 

Power series 

Let                
    has a radius of    , then: 

(a) For each     the series 

                           

 

   

 

has radius of convergence R; 

(b) The function is infinitely differentiable on        and furthermore,         is 

given be the formula in part (a), for all     and        ; 
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(c) For    , 

   
 

  
         

If a function is analytic at a point  , we can find a Taylor’s series like above that 

converges to it at point  . 

 

Quasiconformal Mappings 

 

Let       , where                   be a    homeomorphism 

from one region   to another. At a point    , it induces a linear mapping of the 

differentials 

                    

                    

which we also can write in the complex form 

                        

with 

   
 

 
                

 

 
                    

Using this complex notation, we notice that 

   
 

 
          

 

 
                   

    
 

 
        

 

 
                     

This result gives 

    
       

                          

which is the determent of the Jacobian. The Jacobian is positive for orientation 
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preserving and negative for sense reversing mappings. For our interest, we shall only 

consider the sense preserving case. Then           . 

It follows the equation (3) 

                                                

where both limits can be attained. Then we conclude that the ratio of the major to the 

minor axis is  

   
          

          
                

This is called the dilatation at the point  . Sometime it is more convenient to 

consider 

   
     

    
               

which is related to    by 

   
    

    
       

    

    
            

Definition 2.3 The mapping   is said to be quasiconformal if    is bounded. It is 

K-quasiconformal if     . 

 

Figure 9: image of a circle under a quasiconformal mapping. 
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Definition 2.4 For a Euclidean rectangle   with two designated “ends”, the 

modulus is                      (the heights of two ends divided by their 

distance apart). If   is a round annulus, meaning            , for some 

       , then its modulus is                    .  

 

In order to understand the following theorems about quasiconformal mapping, we 

introduce the extended complex plane,         . The Euclidean plane will be 

called the finite plane. Besides the Euclidean metric, I also use the spherical metric in 

the extended complex plane. Two finite points    and    have the spherical distance  

                
     

       
   

where            
 

 
. 

For       

               
 

  
   

 

We now will introduce the theorem that will be used directly or indirectly in the 

proof of the main theorem.  

 

Theorem 2.2 [7]  Suppose        is K-quasiconformal. If          are both 

rectangles, the map   maps the designated ends on to those of the other, or if both 

         are round annuli, the modulus is quasi-invariant: 

 

 
                       

The existence bound on the modulus for a domain comes from the bound of the 
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distortion of the quasiconformal mappings. 

 

Theorem 2.3 [7] There exist no quasiconformal mapping from   to the unit disc. 

 

This theorem is parallel to the version in conformal mapping such that there is no 

conformal mapping from   to the unit disc. Next, we want to focus on the sequence 

of functions. The properties of sequences of functions are crucial to our proof of the 

main theorem. 

 

Definition 2.5  A family   of mappings of a domain   in to the plane is called 

equicontinuous at the point      if to every     there corresponds a 

neighborhood   of    such that  

   
       

                

The family   is equicontinuous in a set     is it is equicontinuous at every point 

of  . 

 

Equicontinuous families have very important properties which we will study 

more. These families are also related to the normal families of quasiconformal 

mappings. 

 

Definition 2.6 Let   be a family of continuous mappings of a domain  . We say 

that   is normal if every sequence of elements of F contains a subsequence which 
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converges uniformly in every compact subset of  . A normal family which contains 

all its limit functions is called closed. 

 

Lemma 2.1 [2] 

Let   ,           be a sequence of mappings, equicontinuous in a domain  , and 

  an everywhere dense subset of  . If the sequence    converges at every point of 

  then it is uniformaly convergent in every compact subset. 

 

Proof: 

Let     and    be a point of  . Since the sequence    is equicontinuous at the 

point   , then we can find a neighborhood of   ,     where                 

 

 
 for all mappings   . Therefore, by the hypothesis, there is a number      such 

that                
 

 
 at a point      . Whenever         . Then we 

have 

              

                                                  

                                    

For     and         . 

Every compact set     can be covered by finitely many neighborhoods    of the 

same type mentioned above. If   represents the largest numbers      , then 

                 for all              . The sequence    is therefore 

converge uniformly in  .                                                
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Theorem 2.4 [2] 

A family   of mapping which is equicontinuous in a domain   is a normal family. 

Proof: 

From the Lemma 2.1, it suffice to show that every sequence of    of mappings 

of   has a subsequence converging in a set  , which is everywhere dense in    We 

can choose   to be a countable set               

Since the extended complex plane is compact, the sequence        has an 

accumulation point. Therefore, the sequence    has a subsequence     such that 

converges at the point   . The sequence     has a further subsequence which 

converges at   . Repeating this process for k times and we obtain the sequence     

which converges at                The diagonal sequence     then will converge 

at all points in  . Then by the previous lemma,    have a subsequence that 

converge uniformly on every compact subset of   and therefore is normal.         

 

The following two theorems are very crucial to our proof, the proofs for both are quite 

long and difficult to read, while has little to do for us understand the circle packings, 

and therefore, I choose not to write them 

 

Theorem 2.5 [2][7] 

Let      be a sequence of K-quasiconformal mappings defined in   and assume that 

the sequence converges to a limit function f. Then f. is either a constant, a mapping of 

  to two points, or a K-quasiconformal mapping of  .  
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 Theorem 2.5 tell us that there are three possible choices for the limit function for 

a sequence of K-quasiconformal mappings if it converges. It also implies that if the 

images of the domain under a sequence of K-quasiconformal mappings converge to a 

set with 3 points or more, the limit function has to be K-quasiconformal. 

 

Theorem 2.6 [2][7]  (Caratheodory Kernel Theorem) 

Assume   is a plane region with at least two boundary points and suppose    is a 

point of  . Let      be a sequence of K-quasiconformal mappings         for 

open set      and suppose that    converge to a homeomorphism      , with 

               . Let   be the kernel of the ranges, defined by  

          

 

   

 

   

 

Then, f is a K-quasiconformal mappings from   to  , where   is the connected 

component of   containing   . 

 

The Caratheodory Kernel Theorem tells us that if the limit function of a sequence 

converges to a K-quasiconformal mapping, then its image will be one of the 

connected component of the kernel of the range. If we can show the kernel of the 

range is connected, then we know the limit function is one-to-one and onto. 

 

Theorem 2.7 [7] 

Simplicial homeomorphisms are K-quasiconformal for K depending only on the 

shapes of the triangles involved. 
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4. Lemmas for the Rodin-Sullivan Theorem 

The Ring Lemma [7] 

 

Figure 10: petal circles surrounding the center circle   . 

For each integer     there exists a constant        such that if F is any 

univalent k-flower of circles in the Euclidean or hyperbolic plane having a central 

circle of radius of   , then the radius of r of each petal satisfies          .  

 

Proof: 

Suppose that                 is a closed univalent k-flower, with some    . 

Without loss of generality, we can assume the radius of the central circle    is 1. 

There exists at least one petal   , such that the radius of    is larger or equal to the 

radius of the petal circles as if all the petal circles are of the same size. We now 

consider   . The smaller the radius of    is, the deeper    lies in the crevasse of 

formed by    and   . If    lies deep inside the crevasse, the radius of the next petal, 

  , is also very small. The univalence implies that    must not overlap with         . 
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If we repeat this reasoning, we find that if the radius of    is too small, then the chain 

of k petals could not reach outside the crevasse or form a closed flower around   . 

Therefore, there exists a lower bound for the radius of   . Now we repeat this 

reasoning for           , we conclude that there is a positive lower bound      for 

all the radii of the petals around   . Hereby, we establish the existence. 

 

Figure 11: A triple consist two petal circles with the same size and the center circle. 

To make the statement more rigorous, we first need to find the radius of   . As in 

figure 10, we have a triple form by the central circle    and two of its neighboring 

petals    and   .    is centered at the origin, O, with assumed radius 1. Two circles 

   and    are of the shape as if all of the k petal circles are of the same size, with 

radius r. We denote the centers of    and    to be points A and B, respectively, and 

their tangent point to be point T. Let angle           . Then OBA form an isosceles 

triangle with      . Since      , line segment      . Therefore, we 

have: 
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We conclude that    
    

 

 
 

      
 

 
 
          . 

Let us think of the extreme case such that the last circle in the petal just escapes 

the crevasse formed by    and   . Then the circle      is tangent to both    and 

   and there is a line tangent to   ,    and     . Then the half plane is the largest 

circle possible could be for   , but it still does not close the petal. Therefore,    

should have a radius larger than the smallest possible in this case. Then we can find 

the radius of     , which tangent to all the circles in the triple   ,    and    with 

Descartes’ Theorem [7] (Descartes Circle Theorem) 

 

     
    

    
    

      
   

    
   

    
   

  

where    
 is the curvature of the circle    for integer      . and    

 
 

   

  

Since    
 and    

 are positive, then      
 is a positive number.  

Then we can trace back down to the radius of the circle   . We then observe that 

the curvature of the     circle in the petal is given by the equation: 

   
    

    
      

      
   

    
     

      
   

                

      

Since each time we plug in a positive finite number as the curvature of      
 and 

iterate it for a finite times,       times, to obtain the curvature of   . Therefore, 

   
 is a finite positive number bounded above and its reciprocal, which is the radius 
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of   , denoted as   
 , is bounded below. 

If    has any radius smaller than   
 , the corresponding chain of circles will be 

more constrain by the crevasse formed by    and    and certainly fail to reach out 

the crevasse or close around   .                                           

 

Furthermore, we actually can compute the value for each     . The values of 

     are given by the following formula: 

     
 

  
     

 
  

    
  

 

  
     

 
  

    
  

 

   

      

Moreover, these constants are all reciprocal integers, 

            
 

 
      

 

  
      

 

  
   

 

Figure 12: fit in the smallest circle possible to preserve the tangency of the petal 

circle.[7] 
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In order to find the      precisely, we can construct the flower as in the figure 

10, such that both    and    have the radius of infinity and therefore are straight 

lines. Then we try to fit in a circle that is tangent to both previous circles and find the 

one with the smallest radius. We can use the Descartes Circle Theorem to find the 

radius and its ratio to the radius of   . 

 

Length-Area Lemma [7] 

Let   be a circle in a circle packing in the unit disk. Let            be   

disjoint chains which separate   from the origin and a point of the boundary of the 

disk. Denote the combinatorial lengths (simply the number of circles in a chain) of 

these chains by             . Then, 

          
 

 
   

     
       

   
    

  

 

Proof: 

Suppose    consists of circles with Euclidean radii    ,       . Therefore, 

by Schwarz inequality, we have 

     
 

 

 

       
 

 

  

Let           be the geometric length of the chain   , then we have   
   

   

     
 

 , and therefore, 

   
   

  

 

      
 

  

    

The last inequality comes from the fact that the disjoint interior circles have a total 
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area less then the unit circle. If we let                  , then 

     
     

 

 

      
     

       
         

Combining the fact that               , we achieve the inequality stated in the 

theorem.                                                              

 

Hexagonal Packing Lemma [7] 

There is a sequence     , decreasing to zero, with the following property. Let    

be a circle in a univalent Euclidean circle packing   in the plane and suppose the 

first n generations of circles about    are combinatorially equivalent to n generations 

of the regular hexagonal packing around one of its circles. Then for any circle     

tangent to   , 

   
         

          
      

 

Proof: 

Suppose that for           we have a circle packing    which is 

combinatorically equivalent to the n-generation of circle packing centered around the 

  . Without loss of generality, we can assume the radius of    is 1. Based on the ring 

lemma, we know that for each   , the radii of circles in generation k in the packing 

  ,       are all uniformly bounded away from zero or infinite. Therefore the 

possible numbers for the radii of circles form a compact set. We can choose a 
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subsequence of    such that the generation one circles converge geometrically. A 

further subsequence can be selected so that generation two circles and so on. 

In this way we can obtain a limit infinite circle packing, which has the 

combinatorics of the regular hexagonal packing. Since the only packing with 

hexagonal pattern in the Euclidean plane is regular hexagonal packing, we could not 

choose a subsequence of    which converge to a limit such that six circles around    

have different radii. Since the radii of circles in each generation are bounded below by 

the constant from the Ring Lemma, we can find a decreasing sequence    , depending 

only on n, decreasing to zero such that 

   
         

          
      

for each nature number n.                                                 
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5. The proof of Rodin-Sullivan Theorem 

 

Riemann Mapping Theorem 

If   is a bounded and simply connected domain in the complex plane and let 

    the Riemann Mapping Theorem states that there exists a conformal mapping 

 :    with 

(a)        and        ; 

(b)   is one-to-one; 

(c)                 . 

 

Then, let us consider the circle packing for the domain  . If   is filled with a 

hexagonal packing    of circles with radius     and defines the discrete analytic 

function          where    is the packing associated with the unit disk. The 

circle packing    shares the same combinatorics with   . For small  , there will be 

distinct vertices          whose flowers in    contain    and   , respectively, 

and one normalizes    to center        at the origin and        on the real positive 

axis. Each function        is a discrete conformal mapping. In fact, each 

mapping is the simplical mappings between Euclidean carriers,             

        . 
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Figure 13: mapping the domain G on the unit disc. [7] 

Rodin-Sullivan Theorem 

Let   be a bounded and simply connected plane region with distinguished points 

         . Assume that the classical conformal mapping       and the discrete 

conformal mappings        are defined and normalized as described above. Then 

the mappings    converge uniformly on compact subsets of   to   as    . 

 

The Proof of Rodin-Sullivan Theorem 

 

Let   be a simply connected bounded region in the complex plane with two 

distinguished points    and   . The map    maps triangles in the        
   to 

corresponding triangles in       in the         . Each packing    is regular 

hexagonal, with circles sharing the same radius    . It is clear that when    , 

the          exhaust the  . Given any compact set    ,            and the 

number of generations of circle between   and the boundary of   goes to infinity as 
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    because the             . 

 

Figure 14: discrete analytic functions map circles packing of G to circle packings 

of the unit disc. [7] 

Consider for small radius  . Let    be a circle whose flower contains   . Form 

all chains            of circles from   , starting with the circle   , such that the 

flowers of the circles in the chain are contained in  . The circles that appear in such 

chains are called inner circles. In other words, inner circles are the circles with 

completed flowers that are contained in   . The set of inner circles is denoted as   .  

The circles in    but not in    are called border circles. Border circles are 

tangent to the inner circles. The set of border circles is denoted as   . The set    

form a cycle called the border. The line segments joining the centers of the border 

circle is a Jordan curve surrounding the inner circles. A Jordan curve is a simple 

closed curve in the plane    is the image   of an injective continuous map of a 

circle into the plane,         The set    and    together form the packing    

for  , with edges of its carrier being the edges of a triangulation   . 

    can be completed to a topological triangulation   
  of the sphere by adding a 
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vertex at   and disjoint Jordan arcs from   to the center of the border circles. A 

Jordan arc in the plane is the image of an injective continuous map of a closed interval 

into the plane. 

By Andreev’s theorem, there exists a circle packing of the sphere with 

triangulation isomorphic to   
  by an isomorphism that preserves the orientation of 

the sphere. This circle packing is unique up to Möbius transformations. We can 

normalize this packing such that the exterior of the unit disk is the disk centered at the 

vertex   in   
 . Then if      and          for      

 , which is the circle 

packing of the unit disk with the triangulation as the part of   
  on the unit disk. We 

can normalize the packing by Möbius transformations so that   
         is centered 

at the origin and   
         is a circle whose flower contains   , is centered on the 

positive real axis. 

Let   be a point in the region  . If   is sufficient small, then we can find   in 

one of the circles   in   . As    , the circle   will be surrounded by more and 

more generations of cycles in   . Since the circle packing   
  for the unit disk   

have the same triangulation as    in  , the image of  ,          will also be 

surrounded by the same number of generations of circles in   
  as   in   . Then the 

Length-Area lemma gives that: 

            
 

 
 

 
  

 
 
  

   
 
  

  

where    is the combinatoric length of the cycle, in this hexagonal packing case 

      for             . Also, each border circle is separated from the origin by 

chains with length          As the    ,     and the radius of the for all 
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                   .    goes to zero uniformly as    . Therefore, the circle 

packing   
  exhausts the unit disk and the discrete analytic function    determines 

the approximate position of the image of  . 

Next, we will show that the approximate map    converges to a conformal map 

from the unit disk to  . 

The circle packing    for   is isomorphic to the circle packing   
  of the unit 

disk. Their associated triangulations are    and   
  and their carriers are denoted as 

   and   , respectively.             is the simplicial mapping that maps vertices 

in    to   
  with orientation preserved. As shown above,    converges to   from 

its construction in the sense that   is the union of    and any compact subset of   

is contained in all    with sufficiently small positive  . In the same sense,    

converges to  . 

The angles of inner triangles in   
  are bounded away from zero independent of 

  because the Ring Lemma provides that the ratio of the three sides of the triangles 

are bounded. The Ring Lemma also shows that the ratio of the radius of the border 

circle and the radii of its tangent circles are bounded, therefore their angles are 

bounded away from zero. Thus, the maps             are uniformly 

K-quasiconformal because they map equilateral triangles to triangles of uniformly 

bounded distortion. 

Since mappings    are K-quasiconformal, they are equicontinuous on any 

compact subset of  . If          are two different elements in  , then as        

 ,                  as    . Since    are equicontinuous, they form a normal 
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family. From the Caratheodory Domain Theorem,    converges to   and    

converges   and the limit function   is K-quasiconformal of   onto   with 

        and        . It is clear that       . Let      and   be a 

subdomain of   with        and      for sufficient small    . Consider 

the restrictions of   
   to   and denote them by   . Then choose         such 

that         and         uniformly on compacta. Then        because 

       . It follows from                    , and the uniform convergence of 

      near      . That            . Therefore       . There for   is 

one-to-one. 

The hexagonal Packing Lemma shows that each simplicial mapping    restricted 

to a fixed compact subset of   maps equilateral triangles to triangles of   
  that are 

arbitrarily close to equilateral. Therefore, the limit function   has to be 

1-quasiconformal and therefore conformal. Since         and        , this 

limit function is the unique Riemann Mapping under the same normalization.       
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