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Abstract

Achieving quantum practicality via resource-efficient simulations of strongly
correlated molecules on quantum computers

By Renke Huang

In this dissertation, we aim to demonstrate practical applications of quan-
tum computers in the quantum simulation of many-body problems. The first
contribution is the development of a multireference selected quantum Krylov
(MRSQK) algorithm. MRSQK generates a target state by constructing a basis
of non-orthogonal Krylov basis states via efficient unitary time evolution using
a set of reference states. This approach eliminates the need for numerical opti-
mization of parameters and addresses the linear dependency problem through
a basis selection procedure. Benchmarks on various systems demonstrate the
feasibility of MRSQK to use compact Krylov bases for predicting both ground
state and excited state energies. The second contribution is the proposal of a
quantum unitary downfolding formalism based on the driven similarity renor-
malization group (QDSRG). The QDSRG is a polynomial-scaling downfold-
ing method that retains the accuracy of classical multireference many-body
theories while avoiding the evaluation of costly higher-order reduced density
matrices. This method effectively reduces the dimensionality of the prob-
lem and minimizes the required quantum resources, which enables resource-
efficient simulations on small-scale quantum computers using large compu-
tational basis sets. We model the bicyclobutane isomerization pathways to
trans-butadiene on IBM quantum devices, demonstrating the viability of QD-
SRG to leverage near-term quantum devices for estimating molecular proper-
ties with chemical accuracy. We then extend the QDSRG method to a state-
averaged formalism (SA-QDSRG) that is capable of treating near-degenerate
states which pose great challenges for many quantum chemical methods. The
SA-QDSRG allows for simulating a conical intersection on the excited-state
energy surfaces of ethylene as well as resolving complex energetics of a non-
radiative photodynamical process on small-scale quantum processors. This
highlights the versatility and potential of the QDSRG downfolding approach.
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Chapter 1

Introduction

1.1 Quantum practicality

The original concept of quantum computing traces its roots back to the

1980s when the legendary physicist, Richard P. Feynman [1, 2] and the

Russian mathematician Yuri Manin [3] independently envisioned the idea of

harnessing quantum mechanical systems for computational purposes. This

revolutionary notion was spurred by the realization that solving the many-

body Schrödinger equation for systems exhibiting strong correlation effects

posed significant challenges [4] for classical computers. These problems arise

from the exponential growth of the Hilbert space dimension of a quantum

mechanical system with respect to the number of particles in this system;

this requires exponential resources (space or time) for exact simulations as

the size of the system increases. Consequently, classical computers face great

difficulty in simulating general quantum systems, such as computing the

ground state—also known as the eigenstate corresponding to the lowest en-
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ergy/eigenvalue—which is a notoriously NP-complete problem [5]. However,

not all quantum mechanical systems are equally demanding to simulate. This

fact lays the physical foundation for the development of quantum computers.

Quantum mechanical systems that are easily controllable and possess com-

putable exact solutions or approximate solutions with arbitrary tight error

bound, can be leveraged to perform the computation or the simulation of

complex quantum systems that are otherwise intractable [6, 7].

With decades of groundbreaking advancements throughout the full

quantum hardware/software stack, the applications of quantum computing

have extended well beyond its initial purpose as a quantum simulator for

other quantum systems. The vast potential of quantum computers is unlocked

through the construction of full-stack quantum computer systems and the ex-

ploration of meaningful applications [8]. A wide range of complex problems

of academic and/or commercial interest have been suggested to potentially

benefit from quantum speedup (the time scaling for a quantum algorithm

grows more slowly with the size of the problem than its classical counterpart),

including cryptanalysis, chemistry, materials science, optimization, big data

processing, machine learning, database search, drug design, protein folding,

fluid dynamics, weather prediction, etc. However, not all applications can

achieve a practical quantum advantage (quantum practicality) in practice

even on a futuristic fault-tolerant quantum device.

In a recent commentary, researchers at Microsoft have suggested multiple

guidelines for achieving quantum practicality and identified problems with

realistic quantum speedup from many proposed applications [9]. The first

consideration, the I/O bottleneck of quantum computers when accessing large
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amounts of classical data, ruled out problems that relied on broad bandwidths

of data input and output. Typical problems include database search and un-

structured linear algebra systems [10]. The second criterion, crossover time,

must be short enough to have the runtime advantage of quantum comput-

ers. The analysis shows that quantum algorithms that only promise quadratic

quantum speedups (those based on Grover’s search algorithm [11, 12]) are

unlikely to show a practical advantage, which requires at least cubic or quartic

speedups [13]. This guideline further eliminates several applications, includ-

ing the utilization of quantum random walks for accelerating Monte Carlo

simulations, employing Grover’s algorithm-based optimization and machine

learning algorithms to enhance protein structure prediction and drug discov-

ery [14].

One particularly promising domain for achieving quantum practicality

is the quantum simulation of quantum problems in chemistry and materi-

als science. These are small-data problems that exhibit exponential quantum

speedup. History goes back to the original proposal of quantum advantage.

By simulating quantum chemical problems on quantum computers, significant

advancements can be made in areas such as the design of new catalysts which

enable more efficient nitrogen fixation or CO2 reduction [15]. These break-

throughs have the potential to revolutionize the field and pave the way for

new strategies and technologies with far-reaching implications.
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1.2 Models of quantum simulation

There are two distinct models for quantum simulations [16]. Feynman’s initial

proposal of a quantum mechanical computer aligns more with analog quan-

tum simulation, where the dynamics of a controlleable quantum simulator

emulates the dynamics of a model quantum system that we are interested in.

For instance, ultracold atoms can be manipulated to simulate electron dynam-

ics by adjusting the interactions between these atoms via adjusting laser light,

switching external electric and magnetic fields [17]. Analog simulators are

typically regarded as more resilient to noise, making them easier to construct

[6, 18].

Various physical implementations of analog quantum simulations have

been successfully demonstrated for practical chemical applications. For

example, simulators based on ultracold atoms and semiconductor quantum

dots are utilized to simulate simple chemical reactions [19, 20]. Photonic

analog simulators are applied to investigate molecular vibronic spectroscopy

[21, 22, 23, 24] and to examine the time dynamics of vibrational excitations

[25]. Trapped ion devices are employed to emulate both molecular vibronic

spectra [26] and the many-body electron-electron Coulomb interaction of an

electron gas [27]. Spin-lattice simulators are used to solve quantum chemical

nuclear dynamics [28]. Superconducting simulators show the capability

to generate generating molecular spectra for both equilibrium and non-

equilibrium states of diatomic molecules [29]. These sophisticated analog

quantum simulations achieved in condensed matter physics [30, 31, 32] and

molecular quantum chemistry [17, 33] may already exceed the capabilities of
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classical simulations.

However, analog quantum simulators always suffer from imperfect con-

trol, as the actual quantum system in the laboratory only provides a rough

approximation of the specific quantum system of interest, no matter how pre-

cise the manipulations are. There is no systematic way to mitigate or correct

such errors in large analog simulations. In another aspect, analog simulation

is highly domain-specific, requiring distinct programs for various systems of

interest. In this model, computations are articulated through technical proto-

cols of experimental operations conducted at the hardware level, as opposed

to an abstract algorithmic procedure commonly employed in classical compu-

tations.

In contrast, the more flexible digital quantum simulation is based on

general-purpose (universal) circuit-based quantum computers that are capa-

ble of simulating any desired real system through appropriate programming,

while also serving various other purposes. Digital quantum simulation maps

the target problem onto a set of gates that can be executed on a quantum com-

puter. Though digital quantum simulations are more sensitive to noise and

device imperfections than analog simulations, systematic protocols have been

established for error correction [34, 35] and error mitigation [36, 37, 38].

Under the framework of universal quantum computers, computations in

quantum chemical simulation utilize the same language as those for solving

algebraic problems [39]. Layers of abstraction similar to classical digital com-

puters make the evaluation of quantum algorithms more straightforward.

In the subsequent sections of this dissertation, we will focus exclusively on

the digital quantum simulation of chemistry problems.
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1.3 Problems in quantum chemistry

1.3.1 The electronic structure problem

The fundamental problem in molecular quantum chemistry is to solve the

time-independent, non-relativistic electronic Schrödinger equation under the

Born-Oppenheimer approximation

Ĥelec(R, r)ψ(R, r) = Eelec(R)ψ(R, r) (1.1)

where we define the collective electronic r = {r⃗i} and nuclear R = {R⃗A}

degrees of freedom, and the electronic Hamiltonian (in atomic units) is given

by

Ĥelec = −1

2

Ne∑
i

∇2
i −

Ne∑
i

Nnuc∑
A

ZA

|r⃗i − R⃗A|
+

1

2

Ne∑
i ̸=j

1

|r⃗i − r⃗j|
(1.2)

where Ne and Nnuc are the number of electrons and nuclei in the system, r⃗i

and R⃗A are the position of electron i, atomic nucleus A, and ZA represents the

charge of nucleus A.

Solving the electronic Schrödinger equation provides the electronic wave-

function and the corresponding energy levels, which yield valuable informa-

tion about the electronic structure and the molecular properties. From a math-

ematical standpoint, the problem is to solve a coupled set of partial differen-

tial equations. To tackle this, the main numerical tool is to introduce a basis

set, which encompasses a set of independent functions. These functions are

utilized to expand the abstract wavefunction vectors either in position space

when Gaussian functions are employed or in momentum space when plane
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wave functions are used [40]. In this way, the electronic Hamiltonian is ex-

pressed as a Hermitian matrix. Resolving the eigenvalue problem associated

with this matrix yields the electronic energy spectrum of the molecule.

For the scope of this dissertation, we work with the electronic Hamiltonian

in the second-quantized formalism

Ĥ =
∑
pq

hpqâ
†
pâq +

1

4

∑
pqrs

⟨pq∥rs⟩ â†pâ†qâsâr (1.3)

where hpq are the one-electron integrals and ⟨pq∥rs⟩ two-electron integrals,

â† and â are creation and annihilation operators, respectively. The first term

represents the kinetic and potential energy of the electrons in the presence

of the molecular field, and the second term accounts for the electron-electron

repulsion.

Slater determinants To solve the electronic Schrödinger equation for

many-electron systems, the Slater determinant basis is a commonly used

mathematical construct. It is particularly well-suited for describing the

electronic wavefunction, because it enforces the correct fermionic symmetry

by ensuring that the wavefunction remains antisymmetric under electron

exchange.

The electronic wavefunction of a system with N electrons can be written

as a product of one-electron wavefunctions, also known as molecular orbitals

(MOs) or spin orbitals (SOs) when spin part is included. The Slater determi-

nant is constructed by antisymmetrizing the product of spin orbitals, ensuring

that the resulting wavefunction is antisymmetric with respect to the exchange

of any two electrons. This antisymmetry is a direct consequence of the Pauli
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exclusion principle and accurately reflects the indistinguishability nature of

electrons. Given a basis that contains M orthonormal spin orbitals {ψi(x)},

where the collective coordinates x represent the spatial coordinates r and the

spin coordinate σ of the electron. A normalized Slater determinant for N

electrons is then given by:

Ψ(x1,x2, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

ϕ1(x1) ϕ2(x1) . . . ϕN(x1)

ϕ1(x2) ϕ2(x2) . . . ϕN(x2)

...
...

...

ϕ1(xN) ϕ2(xN) . . . ϕN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(1.4)

In the second-quantized formalism (in the Fock space), each Slater determi-

nant is represented by an occupation number vector |f⟩ given by

|f⟩ = |f1, f2, . . . , fi, . . . , fM⟩ , fi =


1 ϕi occupied

0 ϕi unoccupied
(1.5)

Therefore, the occupation number fi = 1 if ϕi is present in the determinant

and fi = 0 if it is absent.

Hartree-Fock method There is a full hierarchy of approximative numerical

methods for solving the electronic Schrödinger equation with increasing accu-

racy and cost. The simplest approach, Hartree-Fock (HF) method, provides a

way to obtain the most accurate single Slater determinant approximation for

the system [41]. It is also known as the mean-field approach, since in Hartree-

Fock theory the electrons are treated as if they were moving independently in

an effective field created by the other electrons and the atomic nuclei.
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We start by assuming a set of molecular orbitals (MOs), which are typ-

ically expanded as a linear combination of atomic orbitals (AOs) from the

constituent atoms

ψi =
AO∑
µ

χµCµi (1.6)

where ψi is the i-th molecular orbital, χµ is the µ-th atomic orbital and Cµi =

⟨χµ|ψi⟩ represents the expansion coefficients. The molecular orbitals are en-

forced to be orthonormal and satisfy the condition ⟨ψi|ψj⟩ = δij. The goal of

Hartree-Fock theory is to determine the best set of expansion coefficients Cµi

that minimize the energy. This is done by solving a set of self-consistent field

equations, which are derived by minimizing the electronic energy under the

orthonormality constraint of the molecular orbitals based on the variational

principle [42]. The Hartree-Fock equations can be written as:

F̂ψi = ϵiψi (1.7)

where the Fock operator is given by

F̂ = Ĥcore + Ĵ − K̂ (1.8)

Here, Ĥcore is the one-electron term that describes the motion of electrons

in the field of the atomic nuclei, Ĵ is the Coulomb operator that represents

the classical electron-electron repulsion, and K̂ is the exchange operator that

accounts for exchange interactions.

The Hartree-Fock equations in a finite computational basis (AO basis) {χµ}
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are called Roothan equations [43] and are given by

FC = SCE (1.9)

where F is the Fock matrix, S is the overlap matrix of atomic orbitals, E is a

diagonal matrix containing the molecular orbital energies. Due to the pres-

ence of S, this generalized eigenvalue problem is solved iteratively until the

electronic energy and the density converge.

The set of molecular orbitals obtained from Hartree-Fock equations is usu-

ally a good starting point for more advanced post-Hartree-Fock electronic

structure methods.

Electron correlation The Hartree-Fock energy is only exact for one-

electron systems. For most multi-electron systems, correlation effects that

cannot be adequately captured by the Hartree-Fock (single-determinant)

approximation are by convention classified into two types:

• Dynamic correlation refers to the rapid, non-local fluctuations of elec-

tron positions due to their mutual repulsion. These fluctuations occur

on a very short timescale and involve the exchange of electrons between

different regions of space. Dynamic correlation effects are particularly

important to achieve high accuracy in characterizing transition metal

complexes or molecules with highly delocalized electrons [44].

• Static correlation arises from the possibility of multiple Slater determi-

nants (electronic configurations) with similar energies. In molecules

with near-degenerate electronic states, the wavefunction cannot be ac-

curately described by a single determinant. This is often the case in
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molecules undergoing bond breaking or in photochemical processes that

involve electronic excited states [45]. Static correlation effects require a

proper treatment of the wavefunction to capture the mixing of multiple

determinants.

The Full Configuration Interaction (FCI) method gives the exact solution

to the electronic Schrödinger equation within a given finite orbital basis. FCI

includes all possible determinants, allowing for a complete treatment of elec-

tron correlation

ΨFCI =
∑
I

CIΨI (1.10)

However, the number of determinants in the FCI space grows exponentially

with the number of electrons Ne and the number of correlated spin orbitals

M , making FCI computationally intractable for larger systems.

As a result, approximations and truncations are often employed to balance

accuracy and computational cost. Various truncated CI methods and truncated

coupled-cluster methods are commonly used approaches that include a subset

of determinants based on excitation level. In practice, these methods usually

truncated at double excitation level from the Hartree-Fock determinant [41,

42].

1.3.2 Quantum dynamics

The electronic energy spectra and wave functions obtained from Eqn. 1.1

describe stationary states of the system. Many complex processes in nature

happen at finite temperature or other conditions that have non-trivial

time dynamics of the system. Dynamical properties are encoded in the
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time-dependent Schrödinger equation

i
∂

∂t
Ψ(r, t) = ĤΨ(r, t). (1.11)

When the Hamiltonian is time-independent, which is usually the case for a

large class of dynamical processes that chemists are interested in, the time-

evolved state can be written as

Ψ(r, t) = e−iĤtΨ(r, 0). (1.12)

Expanding Ψ(r, 0) in the eigenstate basis {φJ(r)} of the time-independent

Hamiltonian yields

Ψ(r, t) =
∑
J

CJe
−iEJ tφJ(r) (1.13)

where CJ = ⟨φJ(r)|Ψ(r, 0)⟩ is the expansion coefficient, and EJ is the energy

of eigenstate φJ(r).

Eqn. 1.13 reveals that dynamic problems are considerably more complex

than static problems. This complexity arises from the requirement of knowing

the complete spectrum of the Hamiltonian, as well as the expansion coefficient

of each eigenvector in the initial state, to execute the exact time evolution of

the system. Such an exact solution is only possible for systems with very

few electrons. Consequently, quantum dynamics for medium- to large-sized

molecules becomes a class of problems that cannot be effectively solved using

classical computers.
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1.3.3 Computational complexity

Quantum computers have a considerable advantage for simulating the dy-

namics of how a highly-entangled quantum state evolves with time because

it is intrinsically capable of maintaining the entangled state, which circum-

vents the exponential memory overhead of classical algorithms to store all

the coefficients in the FCI expansion. In the language of computational com-

plexity class, simulating unitary time evolution is a BQP problem [46], while

BQP refers to the set of problems that can be efficiently solved using a quan-

tum computer with polynomial resources and a bounded probability of error.

Other typical BQP problems in quantum chemistry include quantum phase

estimation (QPE)[47] and approximating the time-dependent effective Kohn-

Sham potential in density functional theory [48].

1.4 Quantum computing basics

1.4.1 Quantum building blocks

The qubit [49], also known as quantum bit, serves as the fundamental build-

ing block of quantum information in quantum computing. It is the quantum

analog of the binary bit that is used to represent information in classical com-

puters. In mathematics, a single qubit is a two-level quantum-mechanical

system described by a unit state vector in a two-dimensional complex vector

space V, also known as Hilbert space

|q⟩ = cos
θ

2
|0⟩+ sin

θ

2
eiϕ |1⟩ (1.14)
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Any stable two-state devices could be a potential candidate for the physical

realization of a qubit. Typical two-state quantum systems include the spin-

up and spin-down state of electron spin or atomic spin in optical lattices,

the vertical and horizontal polarization of a single photon, the clockwise and

counterclockwise current of a superconducting Josephson junction, etc [50,

51, 52]. Therefore, the development of quantum hardware has branched to

different physical architectures.

A single qubit has the potential to hold significantly more information than

a classical bit, although it requires multiple preparations and measurements

to extract that information. However, the true power of quantum computing

lies in the exponential growth of the computational space when entangling an

increasing number of qubits. An arbitrary state of an n-qubit system is rep-

resented by a unit vector in the tensor product space of singlet-qubit Hilbert

space.

|Q⟩ = a0 |0 . . . 00⟩+ a1 |0 . . . 01⟩+ · · ·+ a2n−1 |1 . . . 11⟩ (1.15)

where n qubits encode 2n probability amplitudes and computational basis

states that can be exploited to store the information.

A quantum circuit consists of a number of single and two qubit gates that

act on the qubits. These qubit gates are all unitary transformation acting on

the state vector of qubits. The most commonly used are the Pauli gates

X =

 0 1

1 0

 , Y =

 0 −i

i 0

 , Z =

 1 0

0 −1

 , (1.16)
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the Hadamard gate

H =
1√
2

 1 1

1 −1

 (1.17)

which is useful to create a superposition state, for example, H |0⟩ = (|0⟩ +

|1⟩)/
√
2. There are also single qubit rotation gates that contain parameters,

RY (β) =

 cos β
2

− sin β
2

sin β
2

cos β
2

 , RZ(β) =

 e−iβ/2 0

0 eiβ/2

 , (1.18)

which can be used to construct a parametrized variational ansatz. To entan-

gle qubits, the two qubit controlled-NOT (CNOT) gate is required, which is

mathematically written as

CNOTt,c = It ⊗ |0⟩ ⟨0|c +Xt ⊗ |1⟩ ⟨1|c (1.19)

where t denotes the target qubit, c denotes the control qubit.

1.4.2 Encoding fermionic problems on quantum computers

We are interested in simulating chemical systems in the second-quantised rep-

resentation (Eqn. 1.3). To preserve the antisymmetry condition of fermionic

wave functions, the second-quantised creation and annihilation operators

must follow the anticommutation relations

{âp, â†q} = δpq, {âp, âq} = {â†p, â†q} = 0 (1.20)

To encode these fermionic operators acting on indistinguishable fermions
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into qubit operators acting on distinguishable qubits, the most common map-

ping is the Jordan-Wigner transformation [53, 54] given by

âp =
X̂p + iŶp

2
⊗ Ẑp−1 ⊗ . . . Ẑ0

â†p =
X̂p − iŶp

2
⊗ Ẑp−1 ⊗ . . . Ẑ0

(1.21)

The occupation number of a spin orbital is stored in the |0⟩ or |1⟩ state of a

qubit

|fM , . . . , fi, . . . , f1⟩ → |qM , . . . , qi, . . . , q1⟩

qi = fi ∈ {0, 1}
(1.22)

In this way, every Slater determinant in the FCI wavefunction can be written as

one of the computational basis states, so M qubits can efficiently store the FCI

wavefunction in M spin orbitals, surpassing the exponential memory scaling

with respect to the system size. This quantum advantage also holds for any

other second-quantised mappings [55, 54].

1.5 Quantum algorithms for quantum chemistry

In this section, we give an overview of several prototype quantum algorithms

for quantum chemical applications.

1.5.1 Quantum phase estimation

Suppose we have a unitary operator U and one of its eigenvectors |u⟩ with

eigenvalue e2πiφ where φ is unknown. The value of φ can be obtained through

the quantum phase estimation subroutine. A general circuit form of QPE can
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be found in Nielsen and Chuang’s canon [50].

In the case of quantum chemistry, phase estimation can be formulated to

compute the lowest energy eigenstate |E0⟩ of a Hamiltonian [56]. Figure 1.1

shows a pedagogical example of how to construct a circuit for phase estima-

tion using three ancillary qubits. When the ancillary qubits are in the state

|x⟩, a controlled rotation e−2πiHx is applied to the qubit registers that encode

|Ψ⟩. After layers of controlled gates, an inverse quantum Fourier transform is

performed over all ancillary qubits before measuring these qubits in the stan-

dard computational basis. The measurement outputs a bit-string bin(E0) from

the register of ancillary qubits which gives the binary representation of the

eigenvalue/energy of interest. Meanwhile, the |ψ⟩ register is projected into

the corresponding eigenstate |E0⟩.

The application of phase estimation on the near-term quantum devices,

with less than 100 qubits and shallow circuits, are limited in the foreseeable

future, because it requires a large overhead of ancillary qubits to achieve a

acceptable precision, gate with high-fidelity as well as long coherence time to

get a asymptotic approximation of the exact dynamics.

1.5.2 Variational quantum eigensolver

The variational quantum eigensolver (VQE) [57, 58, 59] is a hybrid approach

that combines classical and quantum computation to solve problems in quan-

tum chemistry. It aims to find the lowest energy state (ground state) of a

molecular system. In the VQE scheme, as shown in Fig. 1.2, a variational

ansatz is employed to prepare a quantum state that approximates the ground
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|0⟩a H •

QFT−1|0⟩a H •

|0⟩a H •

|Ψ⟩ e−2πiH20 e−2πiH21 e−2πiH22

Figure 1.1: A circuit diagram for quantum phase estimation using three an-
cillary qubits. The circuit block labelled with QFT−1 executes the inverse
quantum Fourier transformation. When the ancillary qubits are in state |x⟩,
a controlled rotation e−2πiHx is applied to the main register |Ψ⟩. The ancil-
lary qubits output an eigenvalue of H in binary when being measured in the
computational basis; meanwhile the main register |Ψ⟩ collapses to the cor-
responding eigenstate. The circuit diagram is adapted with permission from
Rev. Mod. Phys., 92(1):015003, 2020, DOI:10.1103/revmodphys.92.015003.
Copyright 2020 American Physical Society.

state of the system. This ansatz is represented by a parameterized quantum

circuit, where the parameters are adjusted iteratively to minimize the energy

expectation value given by

E(θ⃗) = ⟨ψref |U †(θ⃗)ĤU(θ⃗)|ψref⟩ . (1.23)

where θ⃗ = (θ1, . . . , θn)
T denotes a vector of independent parameters in the

circuit, and ψref = Uref |0⟩ is usually taken to be a mean-field or multi-reference

state [60, 61, 62, 63, 64, 65] generated by non-parametrised gates on the

initial all-zero state. The Rayleigh-Ritz variational principle guarantees that

E(θ⃗) ⩾ E0 where E0 is the exact ground-state energy. VQE harnesses the

power of classical optimization algorithms to fine-tune the quantum circuit’s

parameters θ⃗, while the energy expectation value is repeatedly measured on a

quantum computer. Classical optimization algorithms, such as gradient-based

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.92.015003
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methods [66], are employed to update the parameters and search for the

optimal configuration that minimizes the energy expectation value.

VQE provides an efficient way to approximate the ground state energy

without the need for complete diagonalization of the Hamiltonian, which is

often computationally expensive for large systems. The main advantage of

VQE is that it can utilize shallow circuits, which leads to less demanding co-

herence time, with the cost of a polynomial overhead of measurements and

classical optimization.

Figure 1.2: Scheme of the variational quantum eigensolver (VQE) using three
qubits. The scheme is reprinted with permission from Rev. Mod. Phys.,
92(1):015003, March 2020, DOI:10.1103/revmodphys.92.015003. Copy-
right 2020 American Physical Society.

1.5.3 Quantum imaginary time evolution

As an alternative scheme to VQE, the quantum imaginary time evolution

(QITE), an ansatz-independent optimization-free method, has been proposed

to determine the eigenstates of a Hamiltonian on quantum computers [67].

https://journals.aps.org/rmp/abstract/10.1103/RevModPhys.92.015003
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Figure 1.3: Schematic of the quantum imaginary time evolution (QITE) algo-
rithm

QITE inherits the advantage of the classical imaginary time evolution method

[68, 69] that allows correlations to build faster than the real-time evolution,

which is limited by Lieb-Robinson bounds on the growth of correlation

functions [70]. Propagating an initial state that has a non-zero overlap

with the ground state in imaginary time, it is possible to converge to the

exact ground state |Ψ⟩ = limβ→∞
|Φ(β)⟩
∥Φ(β)∥ (for ⟨Φ(0)|Ψ⟩ ≠ 0). However, the

imaginary-time propagator is nonunitary. As the basic operations allowed on

quantum computers have to be unitary, the textbook implementation of a

non-unitary operator is to use extra ancillary qubits with an increased number

of measurements [50].

The key idea of QITE, as originally formalized by Motta and coworkers,

is to map the action of the imaginary time evolution on a state to a unitary

operator obtained by least-square fitting [67]. The fitting procedure involves

solving linear equations in which matrix elements can be computed from pro-

jective measurements on the initial state without additional ancillary qubits.

The quantum imaginary time evolution algorithm is not limited to ground-

state computations. Since its first proposal, it has been applied to estimate
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finite temperature properties [71], simulate open quantum systems [72], pre-

pare thermal states [73], and even extended to perform prime factorization

[74] and simulate quantum field theories [75].

The depth of the QITE circuit grows exponentially with the correlation

length of the system and linearly with the number of imaginary time steps. As

for the measurement cost, the number of Pauli terms (same as the dimension

of the linear system to be solved in the fitting) scales exponentially with the

correlation length. Thus, with increasing system size, this rapidly becomes

the bottleneck of the algorithm. For practical implementations, many tech-

niques have been proposed to reduce the circuit complexity and measurement

overhead. Sun et al. introduced circuit optimization by recompiling it using

tensor networks [71]. Several works reported different strategies to com-

bine unitary operators in the state preparation circuit effectively [76, 77, 78].

Some techniques have been developed to reduce the number of Pauli terms

to be measured, such as exploiting Hamiltonian symmetries [71], randomized

compiling [79], or utilizing a compact list of Pauli terms that arises in unitary-

coupled-cluster-type exponential ansatz [76]. Another variant of QITE uses

an adaptive scheme combining the variational ansatz simulation of imaginary

time [80, 81] with the "action fitting" technique in QITE, which yields com-

pact variational ansatz and a polynomial scaling of circuit depth with system

size [82].
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1.6 Outline of the dissertation

In Chapter 2, we propose a novel quantum algorithm for practical chemical

simulations, termed multireference selected quantum Krylov (MRSQK) algo-

rithm, which use the efficient unitary time evolution on quantum computers to

generate compact quantum Krylov subspaces. In Chapter 3, we introduce a hy-

brid quantum-classical unitary downfolding scheme based on the driven simi-

larity renormalization group theory (QDSRG). This method effectively reduces

the dimensionality of the problem and minimizes the required quantum re-

sources, which enables resource-efficient simulations on small-scale quantum

computers using large basis sets. In Chapter 4, we extend the QDSRG scheme

to compute excited states via a state-averaged formalism (SA-QDSRG), specif-

ically targeting the challenging cases of near-degenerate states (i.e. conical

intersections) that play a crucial role in describing photodynamic processes.
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Chapter 2

A multireference quantum Krylov

algorithm for strongly-correlated

electrons

Part of this chapter is reprinted or adapted with permission from Nicholas H.

Stair, Renke Huang, and Francesco A. Evangelista. J. Chem. Theory Com-

put., 16(4):2236–2245, 2020, DOI:10.1021/acs.jctc.9b01125. Copyright 2020

American Chemical Society.

Sec. 2.2, 2.3, 2.4 are mostly reprinted from the above publication; Table 2.3

is updated to show a comparison of energy errors directly. The introduction is

rewritten while the topics covered remain unchanged. Sec. 2.1 is largely rewrit-

ten in a detailed and pedagogical way (hopefully), which is complementary to

the Theory section of the above published paper. Sec. 2.5 and Sec. 2.6 summa-

rize several preliminary results of follow-up works on the method.

Simulating fermions whose interactions display strong correlation effects

on classical computers is plagued by the computational difficulties from the

https://pubs.acs.org/doi/abs/10.1021/acs.jctc.9b01125
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exponential growth of many-body Hilbert space dimension.[4] This problem

motivated the original idea of quantum computing.[1, 3] The past decade

has witnessed the milestone achieved in the hardware development of the

quantum computer,[83] so it has become crucial to realize useful applications

to demonstrate the potential it promises. Current noisy intermediate-scale

quantum (NISQ) devices,[52] characterized by 50 to several hundred qubits

and low gate fidelity, limit the depth and width of quantum circuits that can

be executed with sufficient confidence, which puts many constraints on the

design of algorithms for quantum simulation.

Quantum computers have a prominent advantage for simulating quantum

dynamics, the unitary time evolution of a highly-entangled state.[46] In the

language of complexity class, this is known to be a BQP problem,[84, 46]

which in theory can be efficiently solved by a quantum computer. The quan-

tum algorithm combining unitary evolution and phase estimation, termed

QPE, was the first to manifest the exponential speedup in solving the eigen-

value problem of a local hamiltonian,[85, 86] and adapted for fermionic

simulations.[87, 88] QPE was then demonstrated on small molecules for cal-

culating the ground-state energy,[56] and later extended to compute the com-

plete spectrum on photonic hardware.[65, 89] However, for medium to large

systems of chemical interest, such as FeMoco, the transition metal center in a

nitrogenase enzyme, an estimate of circuit depth and coherence time needed

for QPE is far beyond the reach of NISQ devices.[15] Promising alternatives

tailored for the existing or near-term noisy hardware are hybrid quantum-

classical algorithms. Two major schemes of this type are the variational quan-

tum eigensolver (VQE)[57, 58, 59] and the quantum approximate optimiza-
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tion algorithm (QAOA),[90] both of which are variational. It has been shown

that variational methods are more error/noise resilient than QPE.[91, 84]

The VQE algorithm leverages the quantum computer only for the clas-

sically intractable task, namely, preparing an entangled quantum state by

a parametrized circuit termed the ansatz, and obtaining the energy expec-

tation from statistics of repetitive measurements of the state.[59] Then, a

classical optimizer minimizes the energy and updates parameters iteratively.

In this way, the VQE trades a polynomial overhead of measurements and

classical optimization for a much shorter coherence time and a reduction of

the circuit depth.[92] The most important wavefunction ansatz in the VQE

scheme is the unitary coupled cluster truncated at single and double exci-

tations (UCCSD),[59, 93, 94, 95] which is inspired by efforts in improving

classical coupled cluster theory.[96, 97, 98, 99, 100, 101, 102] Several vari-

ants of UCCSD ansatz have been explored, including k-UpCCGSD approach

which utilizes generalized singles and doubles,[103] qubit UCC constructed

directly from entangler gates[104, 105] with qubit mean-field reference,[106]

Bogoliubov UCC using fermionic Gaussian state reference,[61] an adaptive

compact UCC with gradient-selected unitaries[107] and its hardware efficient

variant.[108] Other alternatives, primarily, hardware-efficient ansatzes that

only use the set of gates easily implementable on NISQ devices[109, 110, 111]

also gain attention because of much shallower circuits. The VQE scheme

has also been extended to compute excited-state properties,[91, 112, 113,

114, 115, 116, 117, 118] or combined with QPE to reduce the measurement

cost.[119, 120] While VQE experiments have been realized on most exist-

ing hardware architectures,[57, 58, 93, 121, 113, 120, 122, 110] multiple
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challenges nonetheless remain in practice − the difficulty of high-dimensional

classical optimization of the energy,[123] a large number of measurements

required for converging the expectation value to high precision[124] and in-

trinsic accuracy limit from the inexact ansatz.[125] Therefore, it is crucial to

improve the VQE further or to develop other hybrid algorithms.

The idea of representing the Hamiltonian in a non-orthogonal

subspace,[41] which has various practices in classical computational

chemistry,[126, 127, 128, 129, 130, 131, 132, 133] has also been adopted

in a class of quantum-classical algorithms referred to as Quantum Subspace

Diagonalization (QSD).[91, 113, 67, 134, 135, 136, 137] The initial proposal

of QSD, named quantum subspace expansion (QSE), aimed at extending

the VQE scheme to compute excited states and mitigate errors.[91] In

this work, the Hamiltonian is expanded in the configuration interactions

singles (CIS) subspace â†i âj ||Ψ⟩, and overlap matrix elements are three- and

four-electron reduced density matrices measured in VQE experiments by

operator averaging.[137] Then solving the generalized eigenvalue problem

yields both the ground and excited states. Nevertheless, the CIS basis only

expands a relatively small, restricted Hilbert space. Diagonalization of the

possible noisy Hamiltonian matrices in this space might lead to systematic

biases.[138] Huggins et al. developed another VQE-based QSD method,

termed the non-orthogonal VQE (NOVQE) approach,[135] which uses

separate VQE experiments to generate and optimize a set of non-orthogonal

k-UpCCGSD type states[103] and diagonalizes the Hamiltonian in this basis.

One motivation of this work is to ameliorate the difficulty of optimization in

the context of VQE.
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While many efforts in the QSD is to extend or augment the VQE

scheme, the general QSD framework is likely to go beyond, specifically

in terms of the great flexibility in the way to form the subspace. Motta

et al. proposed the Quantum Lanczos (QLanczos) algorithm[67] which

fills a Krylov subspace with basis vectors in powers of e−2∆τH such that

K : {|Φ⟩ , e−2∆τH |Φ⟩ , e−4∆τH |Φ⟩ , . . . }. These basis vectors are obtained using

the QITE algorithm,[67] which maps the Trotterized[139] imaginary-time

propagator to a unitary operator scaled by the norm of the evolved state

vector after a single Trotter time step. The matrix elements in the QLanczos

are computed based on the expectations values of those mapped unitaries,

which are available after direct measurements. Note that the QLanczos

algorithm requires no classical optimization, and its convergence is guar-

anteed by properties of the imaginary-time evolution, free of fixed ansatz

errors in its variational variant.[80] These advantages show that the QSD

scheme provides viable solutions to circumvent problems that hinder the VQE

methods.

Inspired by the QLanczos algorithm, we proposed a multireference se-

lected quantum Krylov (MRSQK) method[140] based on real-time dynamics,

and also provided the circuit to evaluate matrix elements efficiently by in-

direct measurements (the Hadamard test),[141] which is distinct from the

expectation value measuring in the situation of both the QSE[91] and the

Qlanczos.[67] QSD methods that generate the non-orthogonal basis from a

single state are likely to suffer from numerical instabilities due to the linear

dependency of basis states.[67, 135] Thus, we initialized the QSD procedure

with a set of orthogonal references. When completing this work, we noticed
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a recent preprint paper by Parrish and McMahon[134] which shares part of

the ideas employed in our work. They theorized a quantum filter diagonaliza-

tion approach (QFD) in which the variational basis is generated by propagat-

ing several reference states approximately in real-time, which is motivated by

classical filter diagonalization[142, 143, 144, 145] and time-grid-propagation

based quantum algorithms.[146, 147, 148, 149] The QFD method is applied

to simulate the spectrum of an 8-qubit ab initio exciton Hamiltonian, where

they started with the zero configuration |00...⟩ and all singly-excited configura-

tions {|10...⟩, |010...⟩,...}, and propagated these references to form a time-grid

subspace.[134]. While we utilized the same strategy to produce basis states

from a single reference, our method has the novelty that real-time dynamics

on the mean-field reference and measurements are also used to automatically

select important configurations with large amplitudes out and add them to

the set of references. The selection procedure preserves symmetries, such as

the particle number, the total spin, the spatial symmetry, making it fit for the

fermionic Hamiltonian, which is generally more complicated than the exciton

model.

2.1 Methods

2.1.1 Basis in MRSQK

The multireference selected quantum Krylov method combined with real-time

dynamics generates a d(s+ 1)-dimensional non-orthogonal Krylov space K in



29

0

1
2

1. Reference selection 2. Basis generation
and diagonalization

B

A

0

1
2

3

4

5
10

11

7

6
9

8

C

Figure 2.1: Schematic illustration of the multireference selected quantum
Krylov (MRSQK) algorithm. (A) An approximate real-time dynamics using
a single Slater determinant reference (Φ0) is used to generate a trial state
(Ψ̃). . (B) Measurements of the determinants that comprise the trial state
are used to determine the probability of hopping (Pµ) to other determinants.
This information is employed to build two new reference states, Φ1 and Φ2.
(C) Finally, three real-time evolutions starting from the references (Φ0,Φ1,Φ2)
generate a set of 12 Krylov states ψα, which are used to diagonalize the Hamil-
tonian and obtain the energy of the state Ψ.

the form:

K : { |Φ0⟩ , e−i∆tĤ |Φ0⟩ , e−i2∆tĤ |Φ0⟩ , ..., e−is∆tĤ |Φ0⟩ ,

|Φ1⟩ , e−i∆tĤ |Φ1⟩ , e−i2∆tĤ |Φ1⟩ , ..., e−is∆tĤ |Φ1⟩ ,

...

|Φd−1⟩ , e−i∆tĤ |Φd−1⟩ , e−i2∆tĤ |Φd−1⟩ , ..., e−is∆tĤ |Φd−1⟩}

(2.1)

This is done in two procedures: reference selection and the basis generation and

diagonalization (see Fig. 2.1).

The reference selection utilizes the real-time evolution of a single Slater de-
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terminant |Φ0⟩ (usually the Hartree–Fock reference) to determine other (d−1)

references. It starts with propagating |Φ0⟩ at fixed intervals in real-time, which

forms a trial time-grid basis {|Φ0⟩ , e−i∆tĤ |Φ0⟩ , e−i2∆tĤ |Φ0⟩ ...} with (s′+1) di-

mension. The ground state of the Hamiltonian in this trial basis is written

as

|Ψ̃0⟩ =
s′∑

k=0

C0k e
−ik∆tĤ |Φ0⟩ =

s′∑
k=0

C0k |k⟩ (2.2)

We use Jordan-Wigner transform[53] to map the fermionic Fock space to the

Hilbert space of qubits.[150] In this mapping, a Slater determinant in the Fock

space is represented by a qubit computational basis state that has the same

binary representation. Note that the algorithm is agnostic to the encoding

method, but in order to give a chemically-intuitive picture, that determinants

(fermionic basis states) and computational basis states are the same in the

Jordan-Wigner encoding, we can conveniently view these two bases equiva-

lently in the following explanation. Each time-grid basis vector |k⟩ can be

written as a linear combination of n-qubit computational basis states (Slater

determinants) |k⟩ =
∑

µCkµ |µ⟩. Then, the trial ground state vector can be

decomposed in the computational basis

|Ψ̃0⟩ =
s′∑

k=0

2n−1∑
µ=0

C0k Ckµ |µ⟩ (2.3)

Based on Eq. 2.3, the probability of measuring the determinant |µ⟩ in the trial

ground state |Ψ̃0⟩ is given by Pµ = |
∑s′

k=0C0kCkµ|2. |Ψ̃0⟩ can also be written in

a compact way as the Hadamard product[151] (element-wise multiplication)

of three vectors |Ψ̃0⟩ =
∑

k C0 ◦ Ck ◦ µ⃗, where µ⃗ comprises all the n-qubit
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computational basis states µ⃗ = (|0⟩ , |1⟩ , ..., |2n − 1⟩).

The coefficient vector C0 = (C00, C01, ..., C0s′) is obtained by solving the

generalized eigenvalue problem,

HC = SCE (2.4)

with matrix elements given by

Sαβ = ⟨Φ0| eiα∆tĤe−iβ∆tĤ |Φ0⟩ , Hαβ = ⟨Φ0| eiα∆tĤĤe−iβ∆tĤ |Φ0⟩ , (2.5)

where α, β ∈ [0, 1, ..., s′]. C0 is the eigenvector corresponding to the lowest

eigenvalue.

Ck is the state vector of the quantum state |k⟩ = e−ik∆tĤ |Φ0⟩ =
∑

µCkµ |µ⟩,

which can be simulated classically (e.g. statevector simulator in the

Qiskit-Aer package). However, in real experiments, the state vector cannot

be directly read out from the quantum computer. Available quantities from

projective measurements on a quantum state are bin(µ), the binary repre-

sentation of the determinant |µ⟩ to which the state collapes after measuring

|k⟩ in the computational basis, and |Ckµ|2, the probability of getting |µ⟩.[51]

While the exact value of any Ckµ, which is complex in general, can not be

determined, we can nonetheless use |Ckµ|2 to upper bound the probability of

sampling the determinant |µ⟩ in the trial ground state |Ψ̃0⟩:

Pµ = |
s′∑

k=0

C0kCkµ|2 ⩽
∑
k

|C0k|2|Ckµ|2 (2.6)

which follows from the Cauchy-Schwarz inequality. The upper bound expres-
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sion is adopted in practice for the probability estimation. To make it more

explicitly, we prepare time-grid basis states {|k⟩} separately on multiple quan-

tum computers. Each quantum computer outputs a probability distribution

{|Cµ|2}µ of determinants. The overall probability of a single |µ⟩ is computed

as the weighted sum over the probability of |µ⟩ in each time-grid basis state.

Note that we only use the value of Pµ to select important states, so a qualita-

tively correct measurement statistics of the time-evolved state is sufficient for

our need, which means not many measurement repetitions are required.

Through finite measurements, we form a coarse aggregate of important de-

terminants and sort them in descending order according to the overall prob-

ability. Next, the set is refined, such that only determinants with the same

particle number as |Φ0⟩ are kept. Then, we enforce the total spin symme-

try by leaving the closed-shell configurations alone as one state, grouping

open-shell configurations with the same spin occupation pattern to zero out

the total spin, summing their weights, and normalizing the obtained multi-

configurational states. Lastly, we select d− 1 largest-weighted states, together

with |Φ0⟩, to form our reference set {|ΦI⟩}d−1
I=0.

We then generate the full basis with the states sampled at fixed intervals

when evolving each reference. Diagonalizing the Hamiltonian in the entire

d(s+1)-dimensional space K requires solving Eq. 2.4 again, with more general

matrix representations of the overlap S and the Hamiltonian H given by

SI(s+1)+α, J(s+1)+β = ⟨ΦI | eiα∆tĤe−iβ∆tĤ |ΦJ⟩ , (2.7)

HI(s+1)+α, J(s+1)+β = ⟨ΦI | eiα∆tĤĤe−iβ∆tĤ |ΦJ⟩ (2.8)
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where α, β ∈ [0, 1, ..., s], I, J ∈ [0, 1, ..., d − 1], indices are consistent with the

basis ordering in Eq. 2.1.

2.1.2 State Preparation

Given a qubit Hamiltonian after the Jordan-Wigner[53] or the Bravyi-Kitaev

encoding, [55, 54] in general, not all Pauli terms (tensor products of Pauli

operators) in the Hamiltonian commute.

Ĥ = E0 +
N∑
l

hl

n⊗
k=1

σ
{I,X,Y,Z}
k (2.9)

One may realize the time evolution operator e−itĤ on a quantum com-

puter following the widely-used first order Lie-Trotter-Suzuki product

approximation[139, 152, 153] or higher-order product formulae[154, 155].

Other more sophisticated methods include truncated Taylor series

expansions,[156, 157] linear combinations of unitaries (LCU),[158]

Chebyshev polynomial approximations,[159] or the recently proposed

qubitization[160, 161] in conjunction with quantum signal processing[162]

methods. In our case, the first-order Lie-Trotter-Suzuki product with m

Trotter steps (numbers) is employed

e−itĤ =

(
N∏
l

e−i
thl
m

⊗
k σk

)m

+O

(
(thl)

2

m

)
(2.10)

The error in approximating e−itĤ using product formula is determined by both

the number of Trotter steps and the Trotter order. In the first-order Trotter-

Suzuki formula, the number of Trotter steps required for a simulation error of
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ϵ scales as m = O((thl)
2/ϵ), so m should be large to suppress approximation

errors.

It has been observed that in practice, the first order Trotter-Suzuki product

gives errors in the ground state energy scaling as 1/m2,[163] same as that of

second-order Trotter-Suzuki approximation. Therefore, considering both the

error scaling and the state preparation cost, the first-order formula that has

much shorter circuits is favorable.

We argue that the MRSQK method is likely to achieve better error scal-

ing than the Trotter error, because it has the variational optimization of the

state when solving the generalized eigenvalue problem in a subspace, while

variational methods are shown to be resilient to errors to some extent.[59, 93]

2.1.3 Quantum Circuits for Measuring Matrix Elements

In order to compute matrix elements on quantum devices, we use a modified

Hadamard test[164, 50] (shown in Fig. 2.2) to measure observables indirectly

with the help of one ancilla qubit. To explain it more detailedly, we reformu-

late Eq. 2.7 and Eq. 2.8, denoting collective indices γ = (I, α), χ = (J, β), and

the l-th tensor product in the qubit Hamiltonian P̂l =
⊗n

k=1 σ
{I,X,Y,Z}
k

Sγχ = ⟨0̄|Û †
I (
∏
l

ei
α∆thl

m
P̂l)m(

∏
l

e−i
β∆thl

m
P̂l)m ÛJ |0̄⟩

= ⟨0̄|Û †
I Û

†
αÛβÛJ |0̄⟩ = ⟨0̄|Û †

γÛχ|0̄⟩
(2.11)
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Hγχ = ⟨0̄|Û †
I (
∏
l

ei
α∆thl

m
P̂l)mĤ(

∏
l

e−i
β∆thl

m
P̂l)m ÛJ |0̄⟩

= E0 ⟨0̄|Û †
γÛχ|0̄⟩+

N∑
l

hl ⟨0̄|Û †
γ P̂l Ûχ|0̄⟩

(2.12)

ÛI , ÛJ are unitary oracles that output reference states. For a single deter-

minant (one computational basis state), Û{I,J} comprises one layer of X gates.

Protocols for constructing multi-determinant states are proposed[63, 62, 165]

with linear scaling in the number of qubits. In the most general case when

matrix elements are between basis states that evolve from different references

|ΦI⟩, |ΦJ⟩, we need to implement the controlled reference oracles c-Û{I,J},

which have two-qubit gates at the same scaling as single-qubit gates in Û{I,J}.

While for matrix elements between states from the same reference |ΦI⟩, we

simplify Eq. 2.11, 2.12 as Sγχ = ⟨ΦI |Û †
αÛβ|ΦI⟩, Hγχ = E0 ⟨ΦI |Û †

αÛβ|ΦI⟩ +∑
l hl ⟨ΦI |Û †

αÛβ|ΦI⟩, where only the series of exponentials of P̂I are included

in the controlled unitaries, with Û{I=J} gulped in the main register state prepa-

ration.

|0̄⟩ Ûγ Ûχ

|0⟩ H X • X • ⟨X + iY ⟩

Figure 2.2: Hadamard test circuit to estimate expectation values of unitary
operators with a general form of ⟨0̄|Û †

γÛχ|0̄⟩. Measuring the X, Y operators
on the ancillary qubit |0⟩, one can obtain the mean value of X + iY = 2 |0⟩ ⟨1|,
which equals to ⟨X + iY ⟩ = ⟨0̄|Û †

γÛχ|0̄⟩

The method to exponentiate tensor products of Pauli gates is described in
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Ref. [54, 163]. The exponential of one P̂l =
⊗

k σk is given by

e−itl⊗kσk =

(
n⊗

k=1

H†
k

)(
n−1∏
i=1

CNOTi,i+1

)
e−itlσ

Z
n

(
1∏

i=n−1

CNOTi,i+1

)(
n⊗

k=1

Hk

)

where Hk gates perform transformations between the eigenbasis of σX or σY

and σZ , i.e. H†
kσ

{X,Y }Hk = σZ , tl = α∆thl/m and e−itlσ
Z
n = Rz(2tl) represents

the Z rotation gate on the qubit with the largest index.

For applying e−itl⊗kσk on the main register controlled by the ancillary qubit,

we only need to replace the Rz(2tl) with a controlled Rz(2tl) on the last qubit,

as illustrated in Fig. 2.3. In this way, l terms in a single Trotter step are

executed sequentially. For larger Trotter number m, we just run m replicas of

l-terms in series.

H1 •

· · · · · ·

• H†
1

H2 • • H†
2

H3 H†
3

Hn−1 • • H†
n−1

Hn Rz(2tl) H†
n

|0⟩a •

|Φ⟩

Figure 2.3: Circuit for applying one controlled−e−itl⊗kσk operator.

To give readers an idea of how to construct such circuits in practice, we

demonstrate an example circuit to compute several matrix elements for a

two-qubit molecular H2 Hamiltonian[93] using the spin symmetry-enforced

Bravyi-Kitaev transformation,[166, 167] at the bond length of 0.75 Å. Coeffi-

cients hl are computed in STO-3G basis given in Table I of the supplementary
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information of Ref. [113].

Ĥq = −0.349833− 0.388748σZ
0 + 0.181771σX

0 σ
X
1 − 0.388748σZ

1 + 0.011177σZ
0 σ

Z
1

Four determinants are mapped to computational basis states explicitly as

|00⟩ = a†0αa
†
0β |vac⟩, |01⟩ = a†0αa

†
1β |vac⟩, |10⟩ = a†1αa

†
0β |vac⟩, |11⟩ = a†1αa

†
1β |vac⟩,

The Hartree–Fock state for this Hamiltonian is |Φ0⟩ = |00⟩. A normalized

spin adapted Krylov basis reference state is given by |Φ1⟩ = (|01⟩ + |10⟩)/
√
2.

The MRSQK parameters used in evaluating one matrix element are set, with

the time grid ∆t = 0.1, the number of Trotter step(s) m = 1. We take two

off-diagonal matrix elements as examples, which are overlaps between Krylov

basis state |Φ1⟩ and e−i∆tĤq |Φ1⟩, e−i∆tĤq |Φ0⟩ and |Φ1⟩. Hadamard test circuits

with one-step Trotter-Suzuki approximation to compute ⟨Φ1|e−i∆tĤq |Φ1⟩ and

⟨Φ0|ei∆tĤq |Φ1⟩ by estimating ⟨X + iY ⟩anc are shown in Fig. 2.4, where the

ancilla qubit is measured to obtain ⟨Y ⟩. Substituting the final U2(π/2,−π/2)

gates with Hadamard gates in two circuits will give ⟨X⟩.

2.1.4 Cost Estimation

The quantum computational cost of the MRSQK method is dominated by the

number of two-qubit gates in the controlled Hamiltonian exponentials, espe-

cially the CNOT gates. Here we present a rough estimate of the gate counts in

measuring matrix elements at the minimal Trotter step (m = 1), summarized

in Table 2.1.

The concept of circuit depth can be interpreted as layers in a circuit.[51]

The layer counting follows the rule that the set of gates that can be executed
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H U1
(0.0349833)

cRz
(-0.07...)

cRz
(-0.07...)

cRz
(0.0022354)

H

H cRz
(0.0363542)

H

H

U2
(pi/2,...)

2

q[0]

q[1]

q[2]

c3

H U1
(-0.03...)

cRz
(0.0777496)

cRz
(0.0777496)

cRz
(-0.00...)

H

H cRz
(-0.03...)

H

H cH

U2
(pi/2,...)

2

q[0]

q[1]

q[2]

c3

Figure 2.4: The circuit to compute ⟨Φ1|e−i∆tĤq |Φ1⟩ (top) and ⟨Φ0|ei∆tĤq |Φ1⟩
(bottom) implemented using Qiskit[168]. q[0], q[1] encode basis states
for the Hamiltonian, while q[2] is the ancillary qubit, with c3 the classical
bit to store the output from measuring q[2]. U2(π/2,−π/2) gate before the
measurement is the Hk gate rotating the state of ancillary qubit into the σY

basis.

Table 2.1: Resource estimates for MRSQK calculations with m = 1 Trotter
step approximation on several hydrogen systems in STO-6G basis at the bond
length R=1.5 Å. Jordan-Wigner transformation is used to encode the Hamil-
tonian for all cases in the table.

H2 H4 (linear) H4 (ring) H6 (linear) H6 (ring) H8 (linear)
Num. of qubits 4 8 8 12 12 16
Num. of Pauli terms 14 184 92 918 702 2912

Num. of H/Rzy (Hk) gates 16 480 224 2832 2240 9664
Num. of one-qubit gate layers 8 296 112 1680 1248 5552

Num. of CNOT gates 36 1328 520 9972 7476 41600
Num. of c-Rz gates 14 184 92 918 702 2912

Num. of total layers 58 1808 724 12570 9426 50064

concurrently in parallel contributes one layer of the circuit. It is clear that in

the c-e−iHt circuit we are interested in, the number of layers of single-qubit

basis change gates Hk are roughly half of the total one-qubit gate counts,

while each two-qubit gate adds one layer to the circuit, because they need to

run sequentially in the time order. Denoting the number of terms (each term
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denotes one tensor product of single-qubit Pauli gates) in the Hamiltonian N ,

the weight of each term wl (the number of non-identity (σI) Pauli gates in

one term), the Trotter number m, a boolean quantity δZl that sets to 1 if at

least one Pauli gate in the tensor product is σX or σY , else sets to 0, we give

estimates of gate counts by

N̄1−q = m

N∑
l

2wl

N̄CNOT = m
N∑
l

2(wl − 1)

N̄Rz = Nm

N̄layer = m
N∑
l

(2wl + 2δZl − 1).

(2.13)

Note that all the numbers in the table serve as upper bounds for the imple-

mentation in practice, because we analyze the case when the number of qubits

is equal to the number of spin orbitals with the active space spanning the

whole molecular orbital space. Also, a direct application of the Jordan-Wigner

transformation retains some redundant degrees of freedom in the qubit Hamil-

tonian. Some advanced encoding techniques enable the quantum simulation

with fewer qubits. For example, Temme et al.[167] described a transform to

remove qubits in the presence of Z2 symmetries. On the other hand, these

circuits can be further compressed and compiled. By carefully choosing the

term order, it is likely to cancel some basis change gates Hk and CNOT gates

between two adjacent term exponentials, because all quantum gates are uni-

tary and reversible. In this way, the number of gates will be much fewer than
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the ones reported in the table.

In short, the depth of these circuits scales at worst O(mK4) where m is

the trotter number and K is the number of molecular orbitals. At the mini-

mal Trotter number level (m = 1), the maximum circuit depth for MRSQK is

comparable to that of UCC with generalized singles and doubles (employng

the same Trotter number), and far shallower than QPE. More importantly, the

circuit depth of MRSQK is independent of size of the Krylov basis one wishes

to generate, allowing for a flexible trade off-between quantum and classical

cost (for a desired level of accuracy). For example, in the NISQ device era, one

may avoid larger circuit depths with MRSQK by employing a modest Trotter

number, but still achieve a high degree of accuracy by building a larger Krylov

space that will be diagonalized classically. In this way MRSQK has both the

advantage of selected CI to exploit wave function sparsity and the classical

compression afforded by its quantum computational subroutines. This flexi-

bility is a feature that distinguishes MRSQK from other QSD methods.

2.2 Computational Details

The MRSQK method was implemented using both an exact second quanti-

zation formalism and a quantum computer simulator using the open-source

package QForte.[169] All calculations used restricted Hartree–Fock (RHF)

orbitals generated with Psi4[170] using a minimal (STO-6G)[171] basis.

Molecular Hamiltonians for the hydrogen and BeH2 systems were translated to

a qubit representation via the Jordan–Wigner transformation as implemented

in OpenFermion[172] with default term ordering. For all calculations, ref-
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erences in MRSQK were selected using initial QK calculations with s0 = 2

evolutions of the Hartree–Fock determinant and a time step of ∆t = 0.25 a.u.

Parameters such as the time time step (∆t), and number of evolutions per

reference (s) used in MRSQK were chosen based on energy accuracy and nu-

merical stability. We also note that we take the Trotter approximation with

m = 100 as a good approximation to the infinite m limit for the potential en-

ergy curves we plot. The generalized eigenvalue problem has been solved us-

ing a canonical orthogonalization where only eigenvalues of S above 1.0×10−7

were considered.

2.3 Results and Discussion

We benchmark the performance and comparative numerical stability of the

MRSQK algorithm with linear chains of six and eight hydrogen atoms, two

well-known models for one-dimensional materials with correlation strength

modulated by bond length.[173, 174, 175, 176] We utilize point-group sym-

metry, which results in a determinant space comprised of 200 and 2468 deter-

minants for H6 and H8, respectively. We first consider H6 at a site-site distance

of 1.50 Å, which exhibits strong electron correlation, as indicated by the large

correlation energy (Ecorr = −0.24681 Eh) and the small weight of the Hartree–

Fock determinant in the FCI expansion (|CHF|2 = 0.634).

In Table 2.2 we show a comparison of the energy and overlap matrix con-

dition number for the single reference version of quantum Krylov (QK), taking

only the HF determinant as a reference, and MRSQK as a function of the total

number of basis states. For H6 we observe that in both the single and multiref-
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Table 2.2: Ground-state energies (in Eh) of H6 and H8 at a site-site distance of
1.5 Å using exact time-evolution. Energy and overlap condition number k(S)
results are given for a single determinant (QK) using N Krylov basis states
and ∆t = 0.5. MRSQK results are given for N = d(s + 1) Krylov basis states
using three steps (s = 3) and ∆t = 0.5 a.u. With N greater than 12 states, the
condition number for QK does not grow larger than 1018. This is likely a result
of limitations of double precision arithmetic.

N EQK k(SQK) EMRSQK k(SMRSQK)

H6 (rHH = 1.5 Å)
4 −3.015510 3.29×105 −3.015510 3.29×105

8 −3.019768 3.60×1011 −3.019301 4.86×105

12 −3.020172 1.61×1017 −3.019696 9.39×105

16 −3.020192 3.19×1017 −3.019835 5.68×106

20 −3.020198 3.86×1017 −3.019929 6.23×106

FCI −3.020198
H8 (rHH = 1.5 Å)

4 −4.017108 1.19×105 −4.017108 1.19×105

8 −4.026563 1.39×1010 −4.024268 1.50×105

12 −4.028000 5.11×1014 −4.025894 2.00×105

16 −4.028096 1.33×1017 −4.026042 2.51×105

20 – – −4.026387 4.27×105

24 – – −4.026457 4.44×105

FCI −4.028152

erence cases, convergence to chemical accuracy (error less than 1 kcal mol−1

= 1.594 mEh) is achieved with only 8 parameters, an order of magnitude

smaller than the size of FCI space. For the case N = 12, MRSQK identifies the
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following three references

|Φ0⟩ = |220200⟩

|Φ1⟩ = |200220⟩

|Φ2⟩ =− 0.302 |2 ↑↑↓↓ 0⟩ − 0.302 |2 ↓↓↑↑ 0⟩

+ 0.275 |2 ↑↓↑↓ 0⟩+ 0.577 |2 ↑↓↓↑ 0⟩

+ 0.577 |2 ↓↑↑↓ 0⟩+ 0.275 |2 ↓↑↓↑ 0⟩

(2.14)

where the orbitals are ordered according to (1ag, 2ag, 3ag, 1b1u, 2b1u, 3b1u)

in the D2h point group. These references are comprised of two closed-shell

and six open-shell determinants. If we perform a computation with a set

of references consisting of eight individual (uncontracted) determinants,

the resulting Krylov space has dimension 32 and the corresponding energy

is −3.019797 Eh, which is only 0.1 mEh lower than the contracted result

(−3.019696). Turning to H8, we find that the single-reference QK energy

converges to chemical accuracy with only 12 parameters, two orders of

magnitude fewer than FCI. For the same example, the MRSQK energy error

is 1.06 kcal mol−1 with 24 parameters, only slightly higher than chemical

accuracy.

The linear dependency of the basis for H6 and H8—as measured by the

condition number of the overlap matrix [k(S)]—is significantly more pro-

nounced in the single reference QK than the MRSQK version. In the case of H6,

even with a small Krylov basis (8 elements), QK is potentially ill-conditioned

[k(S) = 3.60 × 1011]. In the case of 12 (or more) states, the QK eigenvalue

problem is strongly ill-conditioned [k(S) = 1.16 × 1017], while MRSQK dis-
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plays only a modest condition number, [k(S) = 9.39 × 105]. Importantly, QK

becomes ill-conditioned before reaching chemical accuracy, whereas MRSQK

does not, highlighting the importance of multireference approach for practical

applications.

Table 2.3: The energy error (in mEh) of the ground-state (in Eh) of H6 at a
bond distance of 1.5 Å. MRSQK results are given for N = d(s+1) Krylov basis
states using three steps (s = 3) and ∆t = 0.5 a.u. The quantity m indicates
the Trotter number. For each value of N , selected configuration interaction
(sCI) results were obtained using N determinants with the largest absolute
coefficient in the FCI wave function. ADAPT-VQE results show the energy
with N cluster amplitudes selected from the pool of spin-adapted generalized
singles/doubles. All energy errors are computed with respect to the FCI energy
(−3.020198 Eh).

N

Method 4 8 12 16 20

MRSQK (m = ∞) 4.804 0.903 0.51 0.456 0.276

MRSQK (m = 8) 7.762 1.827 1.195 1.047 0.763

MRSQK (m = 4) 12.93 4.031 2.666 2.471 1.645

MRSQK (m = 2) 24.074 9.444 5.963 5.727 3.503

MRSQK (m = 1) 37.329 16.171 9.776 9.297 5.337

sCI 175.196 110.794 93.861 65.611 58.426

ADAPT-VQE 113.474 37.156 24.507 17.853 11.351

Next, we assess the errors introduced by approximating the real-time dy-

namics with a Trotter approximation. Table 2.3 shows the performance of

MRSQK using various levels of Trotter approximation for H6 at a bond dis-

tance of 1.5 Å. We compute the energy errors (in mEh) with respect to the

FCI energy. While using exact time evolution affords the fastest energy con-

vergence with respect to the number of Krylov basis states, we find that chem-

ical accuracy can still be achieved using Trotter approximation. For example,

using a finite Trotter number m = 8, MRSQK gives an error of 1.2 mEh ≈
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0.03 eV using only 12 Krylov states. In Table 2.3 we also show a compari-

son of MRSQK with selected configuration interaction (sCI) and the adaptive

derivative-assembled pseudo-Trotter ansatz variational quantum eigensolver

(ADAPT-VQE).[107] For any Trotter numbers, MRSQK converges significantly

faster than sCI and the ADAPT-VQE method. For example, even with the small-

est Trotter number (m = 1) MRSQK with 20 Krylov states gives an error of

5.4 mEh, while a sCI wave function with 20 determinants yields an error of

58.4 mEh (see Table 2.3 for details of the determinant selection). In com-

parison, an ADAPT-VQE wave function with 20 parameters yields an error of

11.4 mEh. These results demonstrate the ability of MRSQK to parameterize

strongly correlated states efficiently using a small fraction of the variational

degrees of freedom.

To illustrate the ability of MRSQK to determine accurate ground-state po-

tential energy surfaces (PES) in the presence of strong correlation, we ex-

amine the dissociation of the H6 chain and linear BeH2. Figure 2.5 show the

energy and error with respect to FCI for H6, for restricted Hartree–Fock (RHF),

second-order Møller–Plesset perturbation theory (MP2), coupled cluster with

singles and doubles (CCSD),[177] and MRSQK with a Krylov basis of 20 states

(s = 3, d = 5). With the onset of strong electron correlation, single-reference

methods (RHF, MP2, CCSD) fail to capture the the correct qualitative features

of the PEC. For example, CCSD produces very accurate results near the equi-

librium geometry; however, it dips significantly below the FCI energy for bond

distances greater than 1.5 Å. In contrast, MRSQK far outperforms CCSD even

with the lowest Trotter number (m = 1) and chemically accurate MRSQK

results are obtained with m = 8.
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Figure 2.5: Potential energy curve (top) and error (bottom) for symmetric
dissociation of linear H6 in a STO-6G basis. MRSQK computations use ∆t =
0.5 a.u., three time steps (s = 3), and five references (d = 5) corresponding
to 20 Krylov basis states. The number of Trotter steps (m) is indicated in
parentheses, while those from exact time evolution are labeled (m = ∞).

In Figure 2.6 we report the potential energy curve for the symmetric dis-

sociation of linear BeH2. For this problem, the size of the determinant space

is 169. Like H6, BeH2 is a challenging problem for single-reference methods,
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Figure 2.6: Potential energy curve (top) and error (bottom) for symmetric
dissociation of linear BeH2 in a STO-6G basis. MRSQK computations use ∆t =
2 a.u., four time steps (s = 4), and six references (d = 6) corresponding
to 30 Krylov basis states. The number of Trotter steps (m) is indicated in
parentheses, while those from exact time evolution are labeled (m = ∞).

although CCSD shows smaller errors (less than 10 mEh) throughout the entire

curve. MRSQK computations on BeH2 employed 30 Krylov states generated

by a space of six references and four time steps (s = 4). For this problem,
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we found that using a larger time step provides more accurate results and

therefore, we report results using ∆t = 2 a.u. In the case of no Trotter approx-

imation (m = ∞), the MRSQK error is less than 0.1 mEh across the entire

potential energy curve. The approximate MRSQK scheme based on four Trot-

ter steps is already comparable in accuracy to CCSD, while using m = 8 the

error falls within chemical accuracy. By analyzing the error plot in the bottom

half of Fig. 2.6, we see that there are small discontinuities in the curve due to

the selection of a different set of reference states. This problem, however, is

common to all selected CI methodologies, [178, 179, 180, 181, 182] as well as

ADAPT-VQE. These discontinuities may be removed by employing references

built from a fixed set of determinants.

2.4 Summary

In summary, the multireference selected quantum Krylov is a new quantum

subspace diagonalization algorithm for solving the electronic Schrödinger

equation on NISQ devices. MRSQK diagonalizes the Hamiltonian in a basis

of many-body states generated by real-time evolution of a set of orthogonal

reference states. This approach has two major advantages: (i) it requires

no variational optimization of classical parameters, (ii) it avoids the linear

dependency problem that may plague other QSD methods. Benchmark com-

putations on H6, H8, and BeH2 show that MRSQK with exact time-propagation

converges rapidly to the exact energy using a number of Krylov states that is a

small fraction of the full determinant space. When the real-time propagator is

approximated via a Trotter decomposition, modest Trotter numbers m = 4, 8
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are sufficient to ensure that truncation errors yield chemically accurate

potential energy curves. We also report a comparison of the convergence of

the energy of H6 for MRSQK, selected configuration interaction (sCI), and

the state-of-the-art ADAPT-VQE algorithm. In comparing sCI and MRSQK,

the significantly faster convergence of the latter method indicates that the

Krylov basis efficiently captures the important multideterminantal features of

the wave function. The comparison with ADAPT-VQE shows that MRSQK can

achieve a compact representation of the wave function competitive even with

an adaptive strategy that aims to minimize the number of unitary rotations.

Together, these advantages make MRSQK a promising tool for treating

strongly correlated electronic systems with quantum computation. However,

there are several aspects of the MRSQK that deserve more consideration. The

current reference selection strategy may produce different sets of references as

the molecular geometry is changed, which in turn causes small discontinuities

in potential energy curves. Selection procedures that, e.g., identify references

from a small fixed set of orbitals could be used to address this issues. In this

work, we have selected fixed values for the time steps tn. Schemes in which

the time steps are treated as variational parameters may be able to represent

states with a fewer number of Krylov states and are worth exploring. Another

important aspect is improving the approximation to the real-time dynamics.

Our results indicate that low Trotter number approximations (m = 1, 2) com-

monly used in other context introduce errors that are too large. It would be

desirable to explore the implementation of real-time dynamics via alterna-

tive methods, e.g. truncated Taylor series.[156] An interesting alternative is

to follow the strategy of Ref. [183], which employs an unphysical dynamics
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generated by a simple function of the Hamiltonian. This dynamics still spans

the classical Krylov space and may be implemented with the same number of

gates as a single Trotter number approximation.

2.5 Appendix

2.5.1 Trotterization errors and term ordering

The accuracy of MRSQK computations is primarily affected by errors resulting

from the Trotter-Suzuki approximation of real-time dynamics. In this context,

two key factors influencing the approximation error are the number of Trotter

steps, denoted as m, and the ordering of Pauli term exponentials in the cir-

cuit. It is intriguing to investigate the extent to which the ordering of terms

effectively ameliorates the Trotter error, particularly when a small number of

Trotter steps is utilized. By selecting a potentially optimal term ordering, it

becomes possible to achieve comparable accuracy with a smaller value of m.
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Table 2.4 shows the ground-state energies from MRSQK computations with

the Trotter number m of 1, 2, 4, 8, and four ordering strategies for linear H6

at a bond length of 1.5 Å. We observe that chemical accuracy (error less than

1 kcal mol−1 = 1.594 mEh) can be reached fastest if sq ordering is used. For

example, when m = 4, MRSQK using sq ordering gives an error of 0.917 mEh

with 20 Krylov basis states, while JW ordering gives 0.967 mEh, and both

the OF and rand ordering have a much larger error of 2.584 mEh. To see

the effect of ordering clearly, we compare the energy errors with respect to

FCI for different orderings in several Trotter number m as a function of the

number of Krylov basis states N , displayed in Fig. 2.7. It is clear to find two

patterns of asymptotic convergences. For this specific H6 geometry, sq and JW

ordering always converge faster than OF and rand ordering. While there is

a small difference between sq energies and JW energies, numbers of OF and

rand are exactly the same to at least 6 decimals. Other random orderings are

also tested (not shown), but all of them give the same results as OF and rand

energies reported in Table 2.4.

Next, we examine how the effect of ordering might be change with dif-

ferent bond distances. Figure 2.8 and Figure 2.9 show the potential energy

curves (PEC) of H6 and BeH2, for RHF, MP2, CCSD, and the MRSQK utiliz-

ing 20 Krylov basis states (s = 3. d = 5). For MRSQK results, only sq and

rand energies are plotted because they already well represent two asymptotic

patterns. We can see that MRSQK with the lowest Trotter number m already

outperforms RHF and MP2, ranging from the equilibrium geometry towards

geometries displaying strong correlation. MRSQK with m = 4 and sq order-

ing achieves the same level of accuracy as CCSD at short bond distance range
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Figure 2.7: Energy error ∆E (in Eh) as a function of the number of Krylov
basis states N of linear H6 at a bond distance of 1.5 Å.

(0.6 Å to 1.1 Å), and when using m = 8 and sq ordering, MRSQK performs

better than CCSD throughout the PEC (except the kink range of CCSD), es-

pecially when the geometry is far from the equilibrium with a bond length

greater than 1.5 Å. Note that MRSQK always gives a variational estimate of

the energy, and produces accurate results for both strong and weak correlation

range of the bond distance.

For the effect of term ordering on the energy error, we find that for H6

chain, the optimality of sq is consistent throughout the entire PEC (bond

length from 0.6 Å to 2.0 Å), which can be seen that the sq curves are al-

ways below the rand curves for these small Trotter number m = 1, 2, 4, 8.

By scrutinizing the error plot, we observe some small discontinuities in the

sq curves but none in the rand curves, which results from the fact that the



54

−3.2

−3.0

−2.8

−2.6

−2.4

E
n

er
g

y
/

E
h

0.6 1.0 1.4 1.8

r / Å
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Figure 2.8: Potential energy curve (top) and energy error (bottom) for sym-
metric dissociation of linear H6 in STO-6G basis. References in MRSQK were
selected using initial QK calculations with s0 = 4 evolutions of the Hartree–
Fock determinant and a time step of ∆t0 = 0.25 a.u. Then the following
MRSQK calculations use ∆t = 0.5 a.u., three time steps (s = 3), and five
references (d = 5) corresponding to 20 Krylov basis states. Two orderings of
Pauli terms are employed for comparison, with notations consistent with that
in Table 2.4. The number of Trotter steps (m) is indicated in parentheses,
while those from exact time evolution are labeled (m = ∞).

optimal Trotter ordering varies with the bond length.[184]

The ordering effect in the PEC of BeH2 is much involved. In this case,

the optimal ordering is not consistent when varying bond distances. Most

of the case rand ordering performs better, in both the energy error and the

discontinuity problem. The sq ordering also suffer from the problem of slow
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Figure 2.9: Potential energy curve (top) and energy error (bottom) for sym-
metric dissociation of linear BeH2 in STO-6G basis. References in MRSQK
were selected using initial QK calculations with s0 = 3 evolutions of the
Hartree–Fock determinant and a time step of ∆t0 = 0.25 a.u. Then the fol-
lowing MRSQK calculations use ∆t = 2.0 a.u., three time steps (s = 4), and
five references (d = 6) corresponding to 30 Krylov basis states. Two orderings
of Pauli terms are employed for comparison, with notations consistent with
that in Table 2.4. The number of Trotter steps (m) is indicated in parentheses.

convergence of energy with respect to the Trotter number m. We run the

PEC calculations using a very large m of 100, and surprisingly find that for sq

ordering, the m = 100 plot overlaps with m = 8 plot entirely. This numerical

observation is not well understood, thus requires a systematic study in the

future.
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2.5.2 Comments

Several questions remain for further interrogations.

I. Term ordering strategy. For H6 case, sq ordering performs the best

among the reported four strategies as well as many other random orderings.

Nevertheless, we have no theoretical demonstration that it gives the fastest

energy convergence among all possible N ! orderings that can be generated

from N Pauli terms in the Hamiltonian. A possible route is to construct error

operators for these orderings, as shown in Ref. [184].

II. Measurement optimization. In the reference selection part, we em-

ploy statistics of indirect measurements on the time-evolved states. While

we only want a qualitatively correct probability distribution, running MRSQK

calculations on realistic hardware with a high noise level might nonetheless

necessitate a larger number of measurements than expected. It is worth-

while to try many recently proposed strategies to mitigate the measurement

cost.[185, 186, 187, 188, 189, 190]

III. Gate count reduction. As discussed in section 2.1.4, some orderings

of term exponentials in circuits will reduce the number of CNOT gates and

Hk gates by the cancellation. We need to implement this term contraction

in practice. Note that there might be a counterbalance between the number

of gates that can be saved and errors from the term ordering for a specific

level of Trotter steps and a Krylov subspace with a fixed size. But no available

evidence wipes out the possibility that an optimal ordering exists that gives

accurate energies as well as a significant reduction of gate counts.
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2.6 Computing electronic excited states via mul-

tireference quantum Krylov method

This section summarizes some preliminary results for excited-state MRSQK

calculations.

Computing excited states in the MRSQK framework is straightforward,

since diagonalizing the Hamiltonian in the subspace also gives estimates of

excited states with no additional cost. However, unlike in the ground state

case, it is necessary to carefully choose the MRSQK reference space R. This

consideration comes from the fact that the multi-electron excited states with

considerable multireference character usually have dominant contributions

from double or higher excitations with respect to the Hartree–Fock determi-

nant. Therefore, the quantum Krylov space generated via the Hamiltonian

evolution of a trial ground-state wave function (e.g. the Hartree–Fock deter-

minant) is biased toward the ground state and may not provide a good refer-

ence basis for describing excited states. An open problem is how to generalize

the reference selection procedure to target excited states in a root-agnostic,

black-box manner as the ground-state calculations.

Here, we test several approaches to generate reference spaces that aim to

describe multiple electronic states.

2.6.1 State-specific approach

We first explore the use of a state-specific reference space informed by a small

classical selected CI (sCI) calculation RsCI for targeting the low-lying excited
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states [191, 192]. We also examine the use of the reference space generated

by the ground state calculation RGS, to provide quantitative evidence for our

intuitive argument stated above. Table 2.5 summarizes the two reference

spaces employed in this study to calculate the first singlet excited state of

linear H6. Note that the Hartree–Fock determinant is not included in the

sCI reference space, since a small selected CI calculation of the first excited

state suggests a negligible contribution of the Hartree–Fock determinant in

the target excited-state manifold (|C(1)
HF|2 = 0.025), compared to the small but

considerable weight in the ground-state FCI wave function (|C(0)
HF|2 = 0.634).

Table 2.6 reports the vertical excitation energies (in eV) for the first singlet

excited state of linear H6 at rHH = 1.5 Å, and 0.9 Å (near equilibrium geome-

try) computed with MRSQK method. We examine how energy estimations are

impacted by the reference space type (RGS or RsCI), level of Trotter approxi-

mations (m), as well as the size of the Krylov subspace (N). Since the number

of time steps (s = 3) and the time grid (∆t = 0.5 a.u.) are fixed, the total

number of Krylov basis states N = 4, 8, 12, 16, 20 corresponds to the size of

reference space dim(R) = 1, 2, 3, 4, 5. The vertical excitation energy is cal-

culated with respect to the corresponding ground-state energy obtained using

the same values for N and the Trotter number m (same as those reported in

Table 2.3).

For both geometries, best estimates of excitation energies using sCI refer-

ence space RsCI (with an absolute error of 0.035 eV for 1.5 Å and 0.238 eV for

0.9 Å) are more accurate than those from ground-state reference space RGS

(with error of 0.336 eV for 1.5 Å and 0.905 eV for 0.9 Å). It is noteworthy that

MRSQK calculations with sCI reference space RsCI obtain the best excitation
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energy estimation with small Trotter number (m = 1, 2).

Figure 2.10 shows the potential energy curve of the first singlet excited

state of H6 computed with MRSQK method using two reference spaces, as

well as results from CISD, EOM-CCSD, EOM-CC3 method for comparison.

In Figure 2.11, we report the deviations in vertical excitation energies of

2 1Ag state (with respect to FCI results) along the dissociation curve. We also

show mean absolute errors and nonparallelism errors in Table 2.7.

Table 2.5: Two reference spaces used in MRSQK method for computing the
first singlet excited state (2 1Ag) of linear H6. The orbitals are ordered by the
irreducible representation of the D2h point group as 1ag, 2ag, 3ag, 1b1u, 2b1u,
3b1u. The ordering of orbital energies (in ascending order) from the restricted
Hartree–Fock calculation is given by 1ag < 1b1u < 2ag < 2b1u < 3ag < 3b1u, so
the Hartree–Fock determinant is |220200⟩.

Reference Ground-state reference space RGS sCI reference space RsCI

|Φ0⟩ |220200⟩ |200220⟩

|Φ1⟩ |200220⟩ |220020⟩

|Φ2⟩
−0.5771(|2 ↑↓↓↑ 0⟩+ |2 ↓↑↑↓ 0⟩)

0.7071(|220 ↑↓ 0⟩+ |220 ↓↑ 0⟩)+0.3042(|2 ↑↑↓↓ 0⟩+ |2 ↓↓↑↑ 0⟩)

+0.2729(|2 ↑↓↑↓ 0⟩+ |2 ↓↑↓↑ 0⟩)

|Φ3⟩ |222000⟩ |202200⟩

|Φ4⟩
−0.5699(|↑↓ 02 ↓↑⟩+ |↓↑ 02 ↑↓⟩)

0.7071(|2 ↑↓ 200⟩+ |2 ↓↑ 200⟩)+0.3651(|↑↓ 02 ↑↓⟩+ |↓↑ 02 ↓↑⟩)

+0.2047(|↑↑ 02 ↓↓⟩+ |↓↓ 02 ↑↑⟩)

2.6.2 State-averaged approach with dynamic weights

The state-specific treatments in Sec. 2.6.1 would be deficient in describing

excited states involved in avoided crossings and conical intersections, which
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Table 2.6: Vertical excitation energies ∆E (in eV) for the first singlet excited
state (2 1Ag) of linear H6 at two bond distance 1.5 Å and 0.9 Å computed with
MRSQK method in a STO-6G basis. MRSQK calculations use N = d(s + 1)
Krylov basis states using ∆t = 0.5 a.u. and three steps (s = 3). The vertical
excitation energy is calculated with respect to the corresponding ground-state
energy obtained using the same values for N and m (as reported in Table 2.3).
Note that we take the Trotter approximation with m = 100 as a good approxi-
mation to the infinite m limit. The data in parentheses show deviations from
the FCI result (ϵ = ∆EMRSQK −∆EFCI, unit in eV). The best estimate of each
reference space is indicated in bold type.

N

∆EMRSQK 4 8 12 16 20
rHH = 1.5 Å

Ground-state reference space
m = 1 20.585(17.040) 7.265(3.720) 6.507(2.962) 6.285(2.74) 6.274(2.729)
m = 2 18.644(15.099) 5.492(1.947) 5.026(1.481) 4.893(1.348) 4.809(1.264)
m = 4 17.475(13.930) 4.593(1.048) 4.304(0.759) 4.209(0.664) 4.134(0.589)
m = 8 16.828(13.283) 4.271(0.726) 4.066(0.521) 4.007(0.462) 3.944(0.399)
m = ∞ 16.254(12.709) 4.101(0.556) 3.964(0.419) 3.934(0.389) 3.881(0.336)

sCI reference space
m = 1 4.864(1.319) 5.060(1.515) 5.161(1.616) 5.089(1.544) 3.902(0.357)
m = 2 3.369(−0.176) 3.627(0.082) 3.715(0.170) 3.624(0.079) 3.510(−0.035)
m = 4 2.656(−0.889) 2.735(−0.810) 2.768(−0.777) 2.548(−0.997) 2.564(−0.981)
m = 8 2.410(−1.135) 2.360(−1.185) 2.375(−1.170) 2.132(−1.413) 2.137(−1.408)
m = ∞ 2.256(−1.289) 2.113(−1.432) 2.124(−1.421) 1.899(−1.646) 1.904(−1.641)

FCI 3.545
rHH = 0.9 Å

Ground-state reference space
m = 1 47.783(34.855) 17.156(4.228) 17.013(4.084) 16.678(3.749) 16.648(3.720)
m = 2 37.473(24.544) 16.054(3.125) 15.999(3.070) 15.671(2.742) 15.637(2.709)
m = 4 31.539(18.610) 15.205(2.277) 15.021(2.092) 14.496(1.567) 14.453(1.524)
m = 8 29.163(16.234) 14.900(1.971) 14.614(1.685) 14.073(1.144) 14.004(1.076)
m = 100 27.607(14.678) 14.754(1.825) 14.404(1.475) 13.919(0.991) 13.834(0.905)

sCI reference space
m = 1 15.744(2.815) 15.879(2.950) 13.166(0.238) 13.184(0.256) 12.092(−0.837)
m = 2 13.547(0.618) 13.545(0.616) 12.627(−0.302) 12.626(−0.303) 11.900(−1.028)
m = 4 11.700(−1.229) 10.964(−1.965) 10.949(−1.980) 10.092(−2.837) 10.070(−2.859)
m = 8 10.907(−2.022) 9.873(−3.056) 9.866(−3.063) 8.977(−3.951) 8.968(−3.960)
m = ∞ 10.403(−2.526) 9.287(−3.641) 9.289(−3.640) 8.429(−4.500) 8.429(−4.500)

FCI 12.929

hold significant importance in nonradiative processes [193, 194, 195]. In

such scenarios, multiple electronic states with distinct characters become de-
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Figure 2.10: Potential energy curves (in Eh) of the ground state (1 1Ag) and
the first singlet excited state (2 1Ag) for the symmetric dissociation of H6 com-
puted with the MRSQK method using two reference spaces. All calculations
use a STO-6G basis. MRSQK computations use one Trotter step (m = 1),
∆t = 0.5 a.u., three time steps (s = 3), and five references (d = 4) corre-
sponding to 16 Krylov basis states.

Table 2.7: Statistical evaluation for deviations of vertical excitation energies
(in eV) along the dissociation of H6 as shown in Figure 2.11. The mean abso-
lute error (MAE, in eV) is estimated as an arithmetic average of the absolute
errors over 28 geometries. The nonparallelism error (NPE, in eV) is defined
as the difference between the largest and smallest excitation energy devia-
tion from the FCI vertical excitation energy along the symmetric dissociation
curve.

Method MAE NPE
MRSQK(GS space) 3.274 3.583
MRSQK(sCI space) 1.145 3.057
CISD 0.934 0.948
EOM-CCSD 0.612 2.634
EOM-CC3 0.276 1.691
TDDFT 1.849 1.473
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Figure 2.11: Deviations of vertical excitation energies (in eV) from FCI results
of the first singlet excited state (2 1Ag) along the symmetric dissociation of H6

computed with the MRSQK method using two reference spaces. All calcula-
tions use a STO-6G basis. MRSQK computations use one Trotter step (m = 1),
∆t = 0.5 a.u., three time steps (s = 3), and five references (d = 4) corre-
sponding to 16 Krylov basis states.

generate or nearly degenerate, posing challenges for describing them accu-

rately using single-reference excited-state electronic structure methods[196]

such as time-dependent density functional theory (TD-DFT)[197, 198] and

the equation-of-motion coupled cluster hierarchy[199, 200], or state-specific

multireference approaches [201]. This becomes particularly challenging when

the states involved include the ground and first excited states.

Here we explore a state-averaged approach[191, 202] in which a single

reference space is formed with dynamically-weighted references from multiple

state-specific reference spaces that correspond to all roots of interest. We

assume states in state-specific reference spaces are in descending order of
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importance with respect to the target root. The k-th reference state in the

state-averaged reference space RSA is given by

|ΦSA
k ⟩ =

∑
r

ar |Φr
k⟩ (2.15)

where |Φr
k⟩ is the k-th reference state in the state-specific reference space Rr,

and the normalization condition
∑

r ar = 1 is enforced. The dynamic weights

{ar} provide more flexibility when we want to describe a large area of the

potential energy surface on an equal footing.
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Chapter 3

Leveraging small scale quantum

computers with unitarily

downfolded Hamiltonians

Most of this chapter is reprinted/adapted with permission from Renke Huang,

Chenyang Li, and Francesco A. Evangelista. PRX Quantum, 4(2):020313, 2023,

DOI:10.1103/PRXQuantum.4.020313. Copyright held by authors.

Molecules and materials that display strong electron correlation are hard

to simulate with classical computers due to the exponential growth of the

many-body Hilbert space [4]. Quantum computers [1, 3] are particularly well

suited to simulate many-body systems, as they can efficiently represent and

perform operations on many-particle wave functions. These features make

them a promising solution to the electron correlation problem [85, 86], which,

in its most general form, still defies classical algorithms. However, the ac-

curate modeling of realistic many-electron systems requires the use of large

https://journals.aps.org/prxquantum/abstract/10.1103/PRXQuantum.4.020313
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computational bases and, therefore, it is unlikely to be accessible to small-

scale quantum computers with up to only a few hundred qubits. One of the

most promising strategies to maximize the impact of near-term quantum de-

vices is to pair a quantum algorithm with classical approaches that perform a

reduction of the number of qubits required in a quantum computation [203].

Several strategies have been proposed to minimize quantum resources

by combining quantum computations with traditional quantum chemistry

approaches. Takeshita et al. [137] have applied quantum algorithms in

combination with the active-space approximation and orbital optimization.

This idea has been demonstrated experimentally for model molecules with

up to ten orbitals using just two qubits [204]. Boyn et al. [205] have ob-

tained active-space 2-RDMs from quantum computations and postprocessed

them with two classical correlation methods, the anti-Hermitian contracted

Schrödinger equation (ACSE) theory [206, 207, 208] and multiconfigura-

tional pair density functional theory (MC-PDFT) [209]. Fujii et al. have

combined the divide-and-conquer technique with quantum computations to

solve the ground state of a 64-qubit two-dimensional Heisenberg model with

20-qubit simulations, [210] and have later extended it to obtain excited states

of periodic hydrogen chain [211]. Malone et al. have devised an efficient

active-space formulation of first-order symmetry-adapted perturbation theory

(SAPT) that has produced accurate interaction energies between large

molecular systems using low-depth wave functions from quantum computers

[212] and, later, Loipersberger et al. have extended it to obtain second-order

interaction energies [213]. Ma et al. have proposed a multiscale quantum

computing framework based on the many-body expansion fragmentation
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approach [214]. Tammaro et al. [215] have investigated the use of N -

electron valence perturbation theory (NEVPT) [216, 217] in combination

with the variational quantum eigensolver (VQE) [57, 58, 59] and quantum

subspace expansion [91, 113] algorithms. Ryabinkin et al. [218] have

used low-order perturbative corrections to reduce the quantum resources

required in their iterative qubit coupled-cluster VQE approach. Huggins et al.

have recently proposed a hybrid algorithm that combines quantum shadow

tomography with the auxiliary-field quantum Monte Carlo method, achieving

the largest-to-date chemical simulation on hardware of a 16-qubit chemical

system [219].

Other works have focused on reducing the number of qubits and gates re-

quired by variational quantum algorithms using embedding techniques. For

example, density-matrix embedding theory [220, 221] has been applied to

simulate a H10 ring on an ion-trap quantum computer by decomposing this 20-

qubit system into ten two-qubit problems [222]. Huang et al. have used quan-

tum defect embedding theory to simulate spin defects on quantum computers

[223]. Tazhigulov et al. have used simplified low-energy spin models and var-

ious error-mitigation protocols to simulate iron-sulfur clusters and spin-liquid

materials [224]. Combining explicitly correlated methods with quantum algo-

rithms is another strategy explored in several works [225, 226, 227, 228, 229]

to achieve higher accuracy without increasing quantum resources. Motta et al.

[225] have used a canonical transcorrelated F12 (CT-F12) Hamiltonian [230]

in conjunction with the variational quantum eigensolver method, whereas

McArdle et al. [226] have used Boys and Handy’s transcorrelated approach,

which produces a non-Hermitian Hamiltonian containing up to three-body
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terms. A recent contribution also considers an a posteriori perturbative cor-

rection based on the explicitly correlated [2]R12 approach [227].

Quantum chemical effective Hamiltonian theories [231, 232, 233, 234,

235, 236, 237] offer another way to downfold correlation effects into a small

active-space quantum computation. In such approaches, one partitions the

orbital space into two sets, active and inactive, and a transformation is ap-

plied to the Hamiltonian to eliminate terms that couple these two spaces.

The resulting Hamiltonian then accounts for electron correlation effects in

the inactive orbitals via effective many-body interactions. In principle, it is

straightforward to adapt this strategy to a quantum-classical hybrid setting

whereby a highly entangled quantum state involving only the active orbitals

is solved for on a quantum computer and the remaining weak correlation ef-

fects are recovered with a polynomially scaling classical algorithm. However,

there are several major potential issues when combining effective Hamilto-

nian methods and quantum algorithms. A particularly severe limitation of

some approaches is the need to measure three- and four-body reduced den-

sity matrices (RDMs), introducing a prohibitively large prefactor in quantum

computations that scales as the sixth to the eighth power of the number of

active orbitals. A second important issue is the impact of noise in the mea-

sured RDMs on the energy (and other properties) and the numerical stability

of methods that require the solution of nonlinear equations. Lastly, it is often

necessary to go beyond low-order perturbative treatments to achieve accurate

energetics. Several quantum downfolding methods have been proposed. The

double unitary coupled-cluster (DUCC) approach [238, 239, 240] is a down-

folding procedure based on a mean-field reference state. Le and Tran [241]
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have employed their one-body second-order Møller-Plesset perturbation the-

ory (OBMP2) to create an effective Hamiltonian with modified one-body in-

teractions for the VQE method.

In this chapter, we present a quantum downfolding approach based on the

driven similarity renormalization group (DSRG) [242, 243, 244, 245] that

addresses the challenges highlighted above, including reducing the cost of

measuring RDMs on quantum devices. The DSRG is an integral reformulation

of numerical flow-renormalization group methods [246, 247, 248, 249]. Our

quantum formulation of the DSRG (QDSRG) is compatible with any quantum

algorithm capable of producing low-rank RDMs [57, 91, 134, 140, 250] (up to

partial or full second-order) and augments it with an accurate, intruder-free,

and nonperturbative treatment of weak (dynamical) correlation. We bench-

mark the performance of the QDSRG scheme in computing the dissociation

curve of the nitrogen molecule and the adiabatic singlet-triplet splittings of

the para-benzyne diradical. In addition to exact simulations, we demonstrate

the usefulness of this strategy in the presence of realistic noise by combining

the QDSRG with VQE experiments on IBM quantum computers. We compute

the dissociation curve of the H2 molecule with a nearly-complete quintuple-ζ

basis and model the bicyclobutane isomerization pathways to trans-butadiene.

This isomerization reaction proceeds via two transition states whose relative

energies are impacted by significant orbital rearrangements and different cor-

relation effects in the electronic states. Resolving the energetics of all reaction

intermediates across the full pathway with sufficient accuracy is notoriously

challenging for many quantum chemistry methods, including advanced cou-

pled cluster methods [251]. The methodological advances introduced in this
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work are complementary to others developed recently to model reactions of

ever-increasing complexity on quantum hardware, including the hydrogen-

transfer reaction studied at the Hartree–Fock level [252], the recent work of

Motta et al. [253] on the simulation of ground- and excited-state properties of

the sulfonium cation using VQE and quantum subspace expansion [91], and

a study by O’Brien et al. of the ring-opening reaction in cyclobutadiene using

VQE and a Hamiltonian projected on the seniority zero subspace [254]. Our

work demonstrates that classical downfolding provides a path to modeling

complex chemistry reactivity on near-term quantum devices, accounting for

both electron correlation and basis set effects to approach relative energies

within 1 kcal mol−1 from experimental energies.

3.1 Methods

3.1.1 Unitary Hamiltonian downfolding via the DSRG

The DSRG method [242, 243, 244, 245, 255] starts from a reference corre-

lated state Ψ0 and performs a unitary transformation of the Hamiltonian, H,

that brings it to a block-diagonal form

H 7→ H̄ = e−AHeA, (3.1)

where the operator A is anti-Hermitian. The goal of this transformation is to

remove the second-quantized components of H̄ that couple Ψ0 to excited con-

figurations, which we refer to as the nondiagonal components of H̄ (denoted

as H̄N).
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One of the challenges associated with eliminating these couplings (i.e.,

solving for H̄N = 0) is the emergence of numerical instabilities, which are

related to excitations with small energy denominators. To avoid this issue, the

DSRG achieves only a partial block-diagonalization of H by solving a set of

regularized equations

H̄N = R(s). (3.2)

In this equation, R(s) is an operator that depends on the flow parameter s ∈

[0,∞), and its purpose is to suppress excited configurations associated with an

energy denominator smaller than the energy cutoff Λ = 1/
√
s. Hence, solving

Eq. (3.2) imparts a dependence on s onto the A operator and the transformed

Hamiltonian.

The DSRG operator A(s) is expressed in terms of a s-dependent coupled

cluster particle-hole excitation operator [256, 257, 258, 259] as A = T − T †

with T = T1 + T2 + . . . where each k-body component is

Tk =
1

(k!)2

hole∑
ij···

particle∑
ab···

tij···ab···(s){â
ab···
ij··· }, (3.3)

where we write the normal-ordered creation and annihilation operators in a

compact form {âab···ij··· } = {âaâb · · · âj âi} [260, 261], and the cluster amplitudes

(tij···ab···) are tensors antisymmetric with respect to the individual permutation of

upper and lower indices. The hole space contains the occupied and partially

occupied spin orbitals (labeled with the indices i, j, . . .), while the particle

space contains the partially occupied and unoccupied spin orbitals (labeled

with the indices a, b, . . .) of the reference Ψ0. One of the simplest nonpertur-
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bative truncation schemes is the linearized DSRG (LDSRG) with one- and two-

body operators [LDSRG(2)] [244] where: 1) T is truncated as T ≈ T1 + T2,

and 2) every commutator in the Baker–Campbell–Hausdorff expansion of H̄

contains only one- and two-body operators (indicated with subscript “1,2”)

using a linear recursive commutator approximation [262, 232].

H̄ ≈ H̄1,2 = H +
∞∑
k=1

1

k!
[· · · [[H,A]1,2, A]1,2, . . .]1,2︸ ︷︷ ︸

k nested commutators

. (3.4)

The resulting approximate DSRG transformed Hamiltonian (H̄1,2) contains a

scalar term plus one- and two-body interactions, as the original Hamiltonian.

We note that it is possible to go beyond this truncation scheme and include

higher-order contributions in H̄ [263, 264]; however, this comes at the cost

of increasing the number of unique terms and the computational scaling.

Once Eq. (3.2) is solved, the energy may be computed as the expectation

value of H̄1,2

E = ⟨Ψ0|H̄1,2|Ψ0⟩ . (3.5)

Alternatively, one may solve the eigenvalue problem

H̄1,2 |Ψ̃0⟩ = Ẽ |Ψ̃0⟩ , (3.6)

and obtain a relaxed reference state Ψ̃0 and its corresponding energy Ẽ. It is

often the case that multireference quantum chemistry methods, like CASPT2

[265] or NEVPT2 [216, 217], only evaluate the energy as an expectation value

via equations analogous to Eq. (3.5). In this case, one talks of a “diagonalize-

then-perturb” approach and the resulting formalism only provides an energy
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correction rather than a properly downfolded Hamiltonian. We note that,

when performed exactly, the unitary transformation at the basis of the DSRG

[Eq. (3.1)] would lead to a method similar to the ACSE [206, 207, 208]. In

the case of a reference composed of a single Slater determinant, the DSRG

becomes equivalent to a regularized form of unitary coupled cluster theory

[266].

Solving the DSRG equations [Eq. (3.2)] requires the reduced density cu-

mulants (RDCs) of the reference state (which we also refer to as “cumulants”)

[267, 268]. A generic k-body reduced density cumulant (λk) is the connected

part of the corresponding k-body RDM (γk), defined as

γxy···uv··· = ⟨Ψ0|a†xa†y · · · avau|Ψ0⟩ ... (3.7)

where the product a†xa
†
y · · · avau contains k creation and k annihilation oper-

ators. Throughout the paper, we use the indices u, v, w, x, y, z to label active

spin orbitals partially occupied in Ψ0. The RDCs of the reference state encode

all the information required to include correlation effects outside of the ac-

tive orbitals. Therefore, any computational method capable of generating Ψ0

and its RDMs can be interfaced with the DSRG downfolding procedure. It is

convenient to express the DSRG equations in terms of cumulants, as any trun-

cated scheme preserves the size extensivity of the energy. Reduced density

cumulants enter the LDSRG(2) equations in the following way. Evaluation of

the operator A requires λ1 and λ2, while evaluation of the energy additionally

requires λ3, which is challenging to measure on near-term devices. In the next

section, we analyze a modified DSRG approach for a hybrid quantum-classical
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scheme.

3.1.2 Hybrid quantum-classical DSRG downfolding

Figure 3.1: The QDSRG scheme for performing hybrid classical-quantum com-
putations on strongly correlated molecules. The computation begins with a
classical or hybrid orbital optimization (1), followed by the preparation of
a correlated reference state defined in the subset of active molecular orbitals
(2). This step yields the reduced density cumulants (λ̃k), which are passed to a
classical DSRG algorithm (3) to produce the effective Hamiltonian (H̄1,2) and
its expectation value with respect to the approximate cumulants (⟨H̄1,2⟩λ̃k

).
(4) In the last step, an eigenvalue of the DSRG effective Hamiltonian is found
via a quantum algorithm.

An outline of how the DSRG downfolding scheme may be adapted to a

hybrid quantum-classical scheme is illustrated in Figure 3.1. We can break

down the procedure into four steps:

1. Orbital optimization. The first step is an optimization of the molecular

orbitals for a target electronic state. To ensure that this scheme is ap-

plicable to large active spaces, it is important that the cost of the orbital

optimization scales as a low-order polynomial of the size of the system.

This step could employ a mean-field approximation (e.g., Hartree–Fock)

or optimize the orbitals of a correlated state, as in the complete-active-



74

space self-consistent-field (CASSCF) method. In the latter case, a quan-

tum computation may be used to optimize the correlated state.

2. Reference preparation. In the second step, we propose to employ an

approximate reference state that might be obtained from a classical or

quantum computation. In this step, the spin orbital basis is partitioned

into three subsets: core (doubly occupied), active (partially occupied),

and virtual (empty). The quantum computation involves only the ac-

tive orbitals and uses a modified one-electron operator that accounts for

the interaction with the occupied core orbitals. With these restrictions,

the quantum computation requires at most 2 NA qubits, where NA is

the number of active orbitals. As part of the quantum computation,

the low-rank reduced density cumulants (λ̃k) of the reference state are

evaluated. This step requires only a coarsely optimized reference state,

and therefore, it does not introduce a significant overhead in our hybrid

quantum-classical scheme.

3. DSRG downfolding. The third step consists of a classical DSRG computa-

tion using the approximate reduced density cumulants (λ̃k) from step 2.

This step produces the anti-Hermitian operator A and the DSRG trans-

formed Hamiltonian. We also obtain the expectation value of H̄1,2 with

respect to the approximate RDCs, (⟨H̄1,2⟩λ̃k
); however, this quantity is

generally a poor approximation to the exact energy. This step has poly-

nomial scaling in the number of active and total orbitals.

4. Eigenvalue estimation. In the last step of this procedure, the approxi-

mate DSRG downfolded Hamiltonian is used in a quantum computation
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that estimates one of its eigenvalues (Ẽ). Depending on the quantum

resources available, this step may be performed with a hybrid quantum-

classical algorithm like VQE, in which case one may obtain an exact or

approximate eigenvalue of H̄1,2, or use a pure quantum algorithm like

phase estimation [85, 86] to target an exact eigenvalue.

For generality, we separate steps 1 and 2 of the QDSRG scheme; however, if

the orbital optimization step minimizes the energy of a correlated state gener-

ated via a quantum computation (e.g., like in CASSCF), then these steps can

be combined into a single one.

The most crucial differences between the conventional DSRG formulation

and the QDSRG scheme are the density cumulant approximation in the DSRG

downfolding procedure and the eigenvalue estimation (step 4). Here we con-

sider approximations of the cumulants that are consistent with the measure-

ment of, at most, a quadratic-scaling number of elements. The simplest ap-

proximation (1-QDSRG) retains only the diagonal elements of the one-body

density cumulant, that is,

λ̃uv =


λuu, if u = v,

0, otherwise.
(3.8)

Since λ1 = γ1, this scheme requires only the diagonal parts of the one-body

density matrix γuu = ⟨Ψ0|a†uau|Ψ0⟩. As the number operators nu = a†uau com-

mute with each other, the diagonal elements of arbitrary rank RDMs can be

measured simultaneously. Therefore, if Ψ0 is generated via a quantum com-

putation, this would require performing only two experiments to measure the
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energy (⟨H⟩) and the diagonal elements of γ1.

The next approximation (2-QDSRG) requires access to a quadratic number

of elements of the RDCs, and consists in taking the full one-body density ma-

trix (λ̃1 = λ1) plus the diagonal components of the two-body reduced density

cumulant

λ̃uvxy =


λuvuv, if u = x and v = y,

λuvvu = −λuvuv, if u = y and v = x,

0, otherwise.

(3.9)

where the two-body RDC is computed from one- and two-body RDMs

λuvxy = γuvxy − γuxγ
v
y + γuy γ

v
x. (3.10)

These cumulant approximations may be justified using a perturbative ar-

gument. At first order in perturbation theory (assuming a one-body diagonal

zeroth-order operator, H0 =
∑

p ϵp{a†pap}), one may show that the amplitudes

corresponding to single and double excitations are given by [243]

ti,(1)a =
[
f i
a +

A∑
ux

∆x
ut

iu,(1)
ax γxu

]1− e−s(∆i
a)

2

∆i
a

, (3.11)

t
ij,(1)
ab = ⟨ab||ij⟩ 1− e−s(∆ij

ab)
2

∆ij
ab

, (3.12)

where the quantities f i
a and ⟨ab||ij⟩ are elements of an effective one-body op-

erator and antisymmetrized two-electron integrals, respectively, while the de-

nominators are defined as ∆i
a = ϵi − ϵa and ∆ij

ab = ϵi + ϵj − ϵa − ϵb, with

ϵi = f i
i [243]. These equations show that at first order, the double exci-
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tation component of A is independent of the reference cumulants, and the

single excitation component of A depends only on the off-diagonal elements

of the active-active block of γ1 [since when x = u in Eq. (3.11) we have that

γuu∆
u
u = γuu(ϵu − ϵu) = 0]. Therefore, the 2-QDSRG approximation is already

consistent with a first-order approximation to the DSRG operator A, while 1-

QDSRG neglects the off-diagonal terms of γxu that enter into Eq. (3.11). The

three-body cumulant λ3 is neglected in both the 1-QDSRG and 2-QDSRG, and

it may be shown to enter the energy at second-order in perturbation theory.

The impact of neglecting λ3 in the DSRG was analyzed in previous studies

[243, 269, 270].

It is noteworthy that the QDSRG scheme significantly reduces the cost of

state preparation and measurement. As shown by Zhao et al. [271], the

number of repeated state preparations required to estimate the k-body RDM

of a n-fermion system with precision ϵ can be reduced to
(
n
k

)
k3/2 log(n)/ε2

via partial tomography. As other active space methods, the QDSRG scheme

reduces n from the full basis to a limited number of active spin orbitals. More

importantly, a significant cost reduction is achieved compared to other active

space methods that require up to the 4-RDM (k = 4) [215] and the LDSRG(2)

method, which requires up to the 3-RDM (k = 3). In the linearized 1-QDSRG

with one- and two-body operators [1-QLDSRG(2)], the diagonal elements of

1-RDM can be measured with a cost independent of n, while the 2-QLDSRG(2)

corresponds to the case k = 1 with the small additional cost of measuring the

diagonal elements of the 2-RDM (independent of n), which needs (n log(n) +

1)/ε2 state preparations and measurements for a desired precision ϵ.

Note that the computational cost of the DSRG classical downfolding proce-
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dure (step 3) is also reduced by the cumulant approximation introduced in the

QDSRG scheme. Specifically, the N6
A-scaling terms are eliminated completely

in QLDSRG(2), compared to the original LDSRG(2) formalism. However, we

should point out that this cost reduction is limited, since the overall scaling

of the QLDSRG(2) transformation is still dominated by a term that scales as

O(N4
VN

2
C), whereNV is the number of unoccupied orbitals andNC the number

of doubly occupied orbitals.

To enable the pipeline of QDSRG computations, we implement functional-

ities that export integrals and read/write the reference density matrices from

external files in Forte [272], an open-source plugin for the ab initio quantum

chemistry package Psi4 [273]. We obtain the QDSRG effective Hamiltonian

from Forte using a spin-free implementation [255].
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3.2 Calibration

3.2.1 Noiseless simulations

To investigate the accuracy of the QDSRG procedure for quantum computing,

we examine a numerical example. We consider the H2 molecule at four ge-

ometries using a triple-ζ basis. As the H2 molecule is stretched, the 1σg and

1σu orbitals become near-degenerate, and the reference state must be taken

of the form |Ψ0⟩ = cg |(1σg)2⟩ + cu |(1σu)2⟩ to guarantee a continuous and

qualitatively correct solution for all bond lengths. Table 3.1 reports the en-

ergy error with respect to a full configuration interaction (FCI) computation

for the LDSRG(2) and the QLDSRG(2) methods. We report both the average

energy ⟨H̄1,2⟩ and the eigenvalue of H̄1,2 using active spaces of various sizes

and different orbitals choices. In addition to the 1σg and 1σu orbitals, which

originate from the 1s shell, we consider active spaces augmented with the

2σg/2σu and 3σg/3σu orbitals (of mixed 2s/2pz character). These are found

to be the orbitals that give the most important energetic contributions at the

equilibrium and stretched geometries. Active spaces that span the full 2s and

2p shells (including the 1πu and 1πg MOs) do not improve the energetics in a

consistent way. In analyzing these results, we focus on the largest error and

use the labels A–M to refer to a specific row of Table 3.1.

The importance of optimizing the orbitals is reflected in the significant

difference in the accuracy of the LDSRG(2) ⟨H̄1,2⟩ when the orbitals 1σg and

1σu come from a restricted Hartree–Fock (RHF) or CASSCF calculation (using

only the 1σg and 1σu as active MOs), whereby the latter optimizes both the
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orbitals and coefficients of the determinants that define Ψ0. The LDSRG(2)

error with RHF orbitals (A) is as large as 17.4 mEh ≈ 0.47 eV (at rH-H = 3

Å), whereas CASSCF orbitals (B) give an error of ca. 1 mEh ≈ 0.03 eV, and

this error can be further reduced to less than 0.3 mEh (C) if the reference

state is augmented with determinants formed out of a larger active space that

includes the 2σg and 2σu orbitals. Diagonalization of H̄1,2 in an active space

containing the 1σg and 1σu MOs (D) yields a maximum error similar to the

one of case (C). Note that even with a full iterated solution of the equations,

the LDSRG(2) method is not exact for two electrons and the potential energy

curve of H2 will deviate from FCI. This deviation is due to both truncation of

the commutator expansion of H̄ and the use of a finite value of s.

For the QDSRG methods, we report two sets of results. We first exam-

ine the ones denoted with “γ3 = 0”, which use a three-body cumulant (λ̃3)

reconstructed from λ̃1 and λ̃2 [275, 267, 268, 276] and, therefore, differ

slightly from the approximations defined in the previous section, where we

set λ̃3 = 0. The case γ3 = 0 is consistent with the fact that a reference con-

taining two electrons always yields a zero three-body RDM. Since the three-

body cumulant contains disconnected contributions from products of the one-

and two-body RDMs, its elements may be nonzero even for two-electron sys-

tems [268]. We note that the 2-QDSRG approach (E) leads to small errors

(max 0.4 mEh) that are similar to those of case D, where the energy comes

from diagonalization of the LDSRG(2) H̄1,2. When we neglect entirely the

three-body cumulant (F), the 2-QDSRG error increases for all points. This

observation may be understood by considering how λ̃3 enters into the DSRG

equations. At the lowest order, λ̃3 gives a scalar contribution to H̄1,2 via the
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term 1
4
λxyzuvw(⟨mz∥uv⟩ tmw

xy +⟨we∥xy⟩ tuvez ), where implicit summation of repeated

indices is assumed, and m and e run over all the doubly occupied and empty

orbitals, respectively. We estimated this quantity using second-order perturba-

tion theory and found that it explains the difference between the γ3 = 0 and

λ̃3 = 0 energies of H2 (and, therefore, provides also a means to correct for this

difference). For example, at r = 1.50 Å, the contribution due to λ̃3 amounts

to about −2.77 mEh, a value close to minus the energy error increase (about

2.93 mEh) seen between E and F.

The more drastic approximation (1-QDSRG) with γ3 = 0 gives a large max-

imum error (6.4 mEh, G). In this case, it is possible to improve the accuracy

by expanding the active space with a single or double set of σg/σu orbitals,

reducing the maximum energy error to 2.2 and 0.5 mEh (H, I), respectively.

Interestingly, imposing λ̃3 = 0 has a different impact on the 1-QDSRG,

improving the agreement with FCI, an effect attributed to error cancellation.

The different behavior of the “1-” and “2-” approximation going from γ3 = 0

to λ̃3 = 0 (e.g., E vs. F and G vs. J) is a consequence, in the latter case, of λ̃2

not being included in the reconstruction of λ̃3.

As mentioned earlier, a practical realization of the QDSRG scheme requires

either two quantum computations (one to generate the orbitals and approxi-

mate cumulants plus a final diagonalization step) or it may use orbitals and cu-

mulants from a polynomial-scaling classical method as a starting point. Here

we demonstrate how this second option may be realized in practice using nat-

ural orbitals from coupled cluster theory [277]. In the results labeled “M”,

we use coupled cluster theory with singles and doubles (CCSD) to compute

an approximate unrelaxed density matrix γCCSD
1 that spans the entire orbital
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space. The orbitals are then rotated to the natural basis (defined as the basis

in which γCCSD
1 is diagonal). The active space occupation numbers are then

scaled so that their sum equals to the number of electrons in the active or-

bitals (2) and these are used to reconstruct an approximate diagonal λ̃1. The

1-QLDSRG(2) computations using CCSD natural orbitals (NOs) (M) give en-

ergies that are comparable to the ones using CASSCF(2,2) orbitals (J), with

the energy difference between these two approximate methods being at most

0.2 mEh at rHH = 1.50 Å. We reexamine the use of CCSD NOs as a way to

reduce the cost of QDSRG computations in Sec. 3.3.

In Sec. 3.5.2, we provide a comparison of the QDSRG scheme with the

DUCC downfolding approach for the H2 molecule and the beryllium atom

using data from Ref. [238]. Both methods employ an exponential unitary

transformation of the Hamiltonian, but differ in several ways. For example,

whereas, DUCC is formulated in a single-reference setting, the QDSRG method

derives the A operator from a correlated state. This and other differences,

have important consequences on the accuracy of these two methods, with our

comparison showing that the QDSRG leads to smaller errors (up to an order

of magnitude smaller), especially in computations with fewer active orbitals.

3.2.2 Sensitivity to noise

We conclude our initial assessment of the QDSRG approach by analyzing the

sensitivity to stochastic errors introduced by quantum devices. As shown in

Figure 3.1, step 2 of the QDSRG procedure allows for the approximate cu-

mulants to be obtained from a quantum computation. In this case, there will
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Figure 3.2: The energy error for the H2 molecule (in mEh) computed with
the QLDSRG(2) with various amounts of stochastic noise (σ) added to the
RDMs. For a given value of σ, the semiopaque circles aligned vertically show
the distribution of errors from 50 computations, while the horizontal bars
represent the average error. All computations use a cc-pVTZ basis [274] and
the flow parameter value s = 0.5 E−2

h . The energy errors are computed with
respect to noiseless values. The data are obtained imposing γ3 = 0 in the
reconstruction of the approximate three-body cumulant.
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be a compounding of errors due to the fact that the measured densities (later

converted into cumulants) will be subject to finite measurement errors and

gate and measurement noise.

To study the effect of noise on the measured RDMs, we performed QDSRG

computations on the H2 molecule at bond distances of 0.75 and 1.5 Å. Follow-

ing Ref. [95], we model noise by augmenting the cumulants with stochastic

error sampled from a Gaussian distribution with standard deviation σ and

zero mean [N (0, σ2)],

γuv··· ,measured
xy··· = γuv···xy··· +N (0, σ2). (3.13)

This simple noise model can mimic finite measurement errors, but cannot ac-

count for correlated noise among qubits and decoherence. Noise is added to

the unique elements of the RDMs to avoid breaking antisymmetry with re-

spect to permutation of the upper/lower indices (e.g., γuvxy = −γvuxy = −γuvyx =

γvuyx); however, we do not enforce fermionic N -representability conditions

[278, 279, 280, 281] onto the resulting RDMs, which likely leads to over-

estimating the resulting energy errors. Several works discuss how to utilize

the N -representability constraints to accelerate and improve hybrid quantum

algorithms mainly via reducing the measurement scaling [282, 252], which

might be combined with the QDSRG approach to improve its accuracy.

Figure 3.2 shows the energy error computed with respect to noiseless re-

sults for the 1- and 2-QLDSRG(2) schemes (enforcing γ3 = 0). At both ge-

ometries we observe that the 1-QLDSRG(2) is less sensitive to noise than the

2-QLDSRG(2), and that the average energy error increases linearly with σ.
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Interestingly, the average error is slightly higher at the shorter bond distance

(0.75 Å) than at the elongated one (1.5 Å). In both cases, a value of σ = 0.01

seems sufficient to recover the energy with an error less than 1 kcal/mol (≈

1.6 mEh), a threshold often referred to as chemical accuracy. These results can

then inform an analysis of the quantum resources necessary to measure the

RDMs with an accuracy sufficient for a hybrid quantum-classical procedure

based on the QDSRG.

In summary, the preliminary results reported in Sec. 3.2.1 and 3.2.2 show

that even a very drastic approximation of the cumulants that enter the DSRG

combined with diagonalization of the resulting transformed Hamiltonian can

yield energies with small absolute energy errors, even under the presence of

noise. We expand this analysis to molecules with more complex electronic

structures and larger basis sets in Sec. 3.3 with the goal of determining if it is

possible to predict relative energies that approach chemical accuracy. There,

we also report the results of experiments on NISQ devices that show the po-

tential usefulness of QDSRG in leveraging near-term quantum computers.

3.3 Results and Discussion

In this section, we report two types of QDSRG results: the noiseless exact

computations in Secs. 3.3.1 and 3.3.2, and device computations (Sec. 3.3.3)

where we combine the QDSRG with variational quantum computations per-

formed on IBM hardware.



87

3.3.1 Dissociation curve of the nitrogen molecule
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Figure 3.3: The dissociation curve for the ground-state N2 computed with
the LDSRG(2) and QLDSRG(2). (a) The total energy and (b) the energy er-
ror with respect to FCI in units of Eh. Nonparallelism errors (in mEh) for
each method are reported in square brackets. All computations use an active
space containing six 2p N atomic orbitals, a cc-pVDZ basis [274], and the flow
parameter value s = 0.5 E−2

h . The 1-QLDSRG(2)-CCSD data employ natural
orbitals and γ1 from CCSD as the input to the QDSRG computation. All other
results employ CASSCF(6,6) orbitals.
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As the first benchmark of the QDSRG scheme, we compute the potential

energy curve for the ground singlet state of N2 using an active space contain-

ing six orbitals (built from combinations of the six 2p N orbitals). Figure 3.3a

shows the potential energy curve for the LDSRG(2), the two approximate vari-

ants of the QDSRG, CCSD [177], and CCSD(T) [285]. In the DSRG compu-

tations, we employ CASSCF(6,6) orbitals and use the corresponding state as

a reference, while the CCSD and CCSD(T) results employ restricted (RHF)

and unrestricted broken symmetry (UHF) Hartree–Fock references. The DSRG

methods produce curves that are nearly indistinguishable, except in the recou-

pling region (1.6–2.0 Å) where the QDSRG energy is slightly higher than the

LDSRG(2) one. The RHF-CCSD and RHF-CCSD(T) curves, although accurate

in the equilibrium region, deviate significantly from the DSRG one for large

N–N distances, while the UHF-based counterparts give results that are close to

the DSRG methods. In the bottom panel of Figure 3.3, we report the energy

error with respect to FCI and the nonparallelism error (NPE), defined as the

difference between the largest and smallest energy deviation from FCI along

the dissociation curve. Here we notice that the 1- and 2-QLDSRG(2) lead to

errors as large as 17.5 mEh (and NPE as high as 14.4 mEh), while the LD-

SRG(2) is more accurate, with the maximum deviation from FCI always being

less than 10 mEh. As observed for H2, the 1-QLDSRG(2) potential energy

curve based on the CCSD-NOs reference is still accurate and displays maxi-

mum errors with respect to FCI smaller than those obtained using CASSCF

orbitals and cumulants from exact diagonalization. In comparison, the UHF-

based CCSD and CCSD(T) curves show larger deviations from FCI, with NPE

values (22.9 and 34.0 mEh) larger than those of the 1- and 2-QLDSRG(2)
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(14.3 and 14.4 mEh).

Table 3.2 reports various spectroscopic constants, including the bond dis-

tance (re), the harmonic vibrational frequency (ωe), the anharmonicity con-

stant (ωexe), and the bond dissociation energy (De, electronic energy only) for

the ground state (X 1Σ+
g ) of N2 computed from the potential energy curves

in Figure 3.3, as well as values from other methods, including the density

matrix renormalization group [286], tailored coupled cluster theory with a

CAS(6e,6o) active space [DMRG(6,6)-tCCSD] [283], MRCI with singles and

doubles (MRCISD) [287, 288], and MRCISD with Davidson’s correction (MR-

CISD+Q) [289]. Notably, all LDSRG(2) and QLDSRG(2) computations yield

results that considerably exceed the quality of the UHF-CCSD ones for all

constants and dissociation energies, while the LDSRG(2) achieves an accu-

racy comparable to UHF-CCSD(T). While LDSRG(2) predicts an equilibrium

bond length re similar to the DMRG(6,6)-tCCSD one, both LDSRG(2) and 2-

QLDSRG(2) overestimate the vibrational constant ωe.

3.3.2 Singlet-triplet gaps of para-benzyne

In our next example, we apply the QDSRG scheme to a medium-

sized molecule. We compute the adiabatic singlet-triplet splitting

(∆EST = ET − ES) of para-benzyne. The singlet ground state of this

molecule exhibits pronounced diradical character and is dominated

by two closed-shell determinants. para-benzyne and its isomers have

been studied extensively both experimentally [292] and theoretically

[290, 291, 293, 298, 299, 300, 297, 301, 302].
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Table 3.3: Adiabatic singlet-triplet splittings (∆EST = ET−ES) in kcal mol−1

of para-benzyne computed with the LDSRG(2) and QLDSRG(2) in the cc-pVTZ
basis [274] with the flow parameter value s = 1.0 E−2

h . The data in paren-
theses show the difference with respect to the experimental value of ∆EST (in
kcal mol−1). All LDSRG(2) and QLDSRG(2) results include a zero-point vibra-
tional energy (ZPVE) correction equal to +0.30 kcal mol−1 (see Ref. [290]).
The geometries are taken from Ref. [291]. We use CASSCF(2,2) optimized
orbitals for all computations of the singlet state and ROHF orbitals for the
triplet state. For the LDSRG(2), the expectation value of the energy is desig-
nated with “⟨H̄1,2⟩”, while the lowest eigenvalue is indicated with “eig. H̄1,2”.
For the QDSRG methods, we report two sets of data. Those labeled “γ3 = 0”
use an approximate three-body cumulant reconstructed from approximate λ̃1

and λ̃2. All literature results listed here for comparison use the same cc-pVTZ
basis.

Method ∆EST / kcal mol−1

Active orbitals: {σg, σu}
CASSCF(2,2) 0.31 ( −3.49 )
LDSRG(2) (⟨H̄1,2⟩) 2.76 ( −1.04 )
LDSRG(2) (eig. H̄1,2) 3.48 ( −0.32 )
2-QLDSRG(2) (γ3 = 0) 3.45 ( −0.35 )
1-QLDSRG(2) (γ3 = 0) 3.22 ( −0.58 )
2-QLDSRG(2) 2.98 ( −0.82 )
1-QLDSRG(2) 3.38 ( −0.42 )
Mk-MRCCSD(T)b,g 4.45 ( +0.65 )
ic-MRCCSD(T)c,g 5.18 ( +1.38 )
DIP-EOM-CCSDf 4.40 ( +0.60 )
DEA-EOM-CCSDe,h 3.83 ( +0.03 )
SF-CCSDd,h 3.87 ( +0.07 )
Experimenta 3.8± 0.4

a From Ref. [292]; experimental value taken from ultraviolet photoelectron
spectra of para-benzyne radical anion.

b From Ref. [291].
c From Ref. [293].
d From Ref. [294].
e From Ref. [295].
f From Ref. [296].
g ZPVE correction of +0.30 kcal mol−1 obtained using CCSD(T)/cc-pVDZ (see

Ref. [290]) is included, same as that used for LDSRG(2) and QLDSRG(2).
h ZPVE correction of 0.021 eV (+0.48 kcal mol−1) at the SF-DFT/6-311G*

level (see Ref. [297]) is included according to the paper.
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Here we compute the singlet-triplet splitting using CASSCF(2,2) orbitals

for the singlet state and ROHF orbitals for the triplet state. The experimental

splitting value is taken from the ultraviolet photoelectron spectroscopy results

of Ref. [292]. We utilize the singlet and triplet geometries from Ref. [291],

which were optimized at the Mk-MRCCSD/cc-pVTZ level of theory. All com-

putations use the cc-pVTZ basis set [274], and the value of the DSRG flow

parameter is set to 1.0 E−2
h , based on previous studies [284, 269, 303]. We

freeze the six 1s-like orbitals on carbon atoms in the DSRG correlation treat-

ment.

Table 3.3 reports the singlet-triplet splitting obtained by the LDSRG(2)

and the QLDSRG(2) methods. All splittings are shifted by +0.30 kcal mol−1

to account for zero-point vibrational energy (ZPVE) corrections [290]. Labels

for methods are consistent with those in Table 3.1.

It is encouraging that most LDSRG(2) and QLDSRG(2) results are chem-

ically accurate (deviation from experimental value less than 1 kcal mol−1),

with the largest deviation reaching 1.04 kcal mol−1. For all QLDSRG(2) vari-

ants, the estimated ∆EST deviates from the LDSRG(2) (eig. H̄1,2) value by

only 0.03 –0.50 kcal mol−1, which shows the robustness of the DSRG down-

folding with respect to density cumulant approximations even for medium-

sized systems. Interestingly, the simpler 1-QLDSRG(2) method more accu-

rately estimates ∆EST (3.38 kcal mol−1) than the 2-QLDSRG(2) (2.98 kcal

mol−1), likely due to error cancellation. For comparison, we also include in

Table 3.3 theoretical ∆EST values from other methods, including Mukher-

jee’s multireference coupled cluster theory with singles, doubles, and per-

turbative triples [Mk-MRCCSD(T)] [291], internally contracted multirefer-
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ence coupled cluster theory [ic-MRCCSD(T)] [293], double ionization po-

tential and double electron attachment equation-of-motion coupled cluster

theory with singles and doubles (DIP-EOM-CCSD [294] and DEA-EOM-CCSD

[295]), and spin-flip coupled cluster theory with singles and doubles (SF-

CCSD) [296, 297]. In general, both LDSRG(2) and QLDSRG(2) slightly un-

derestimate ∆EST, while other methods tend to overestimate it by 0.03–1.38

kcal mol−1. Most QLDSRG(2) splittings are more accurate than those from

Mk-MRCCSD(T), ic-MRCCSD(T), and DIP-EOM-CCSD, while DEA-EOM-CCSD

and SF-CCSD slightly outperform other methods.

3.3.3 Hardware implementation

In this section, we combine the 2-QLDSRG(2) method with the VQE [57, 58,

59] on the IBM quantum computers to demonstrate the ability of this hybrid

scheme to compute the total energies under realistic noise from near-term

quantum devices. We use the Qiskit [168] package to construct circuits and

execute them on hardware.

Ideally, we would measure both density matrices and the QDSRG energy

(steps 2 and 4 in Figure 3.1) from a quantum computation. Due to the high

level of noise from near-term devices and the fact that density matrices are

more sensitive to noise than the energy, we employ a quantum computer only

to estimate the eigenvalue of the 2-QLDSRG(2) effective Hamiltonian H̄1,2.

We use the VQE algorithm to optimize a trial wave function and measure its

energy. To reduce the quantum resources (the number of qubits, the circuit

depth, etc.) and minimize errors, we explore a symmetry-preserving one-qubit
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ansatz (see Sec. 3.5.1 for details).

For each experiment on the device, we carry out the maximum number of

measurements allowed, which differs by device. To ameliorate measurement

errors, we utilize readout-error-mitigation tools in the Qiskit-Ignis module

to construct a calibration matrix and apply its inverse to the raw measurement

counts of each experiment.

Our first example is a computation of the dissociation curve of H2, which is

a representative benchmark system for quantum computing. Figure 3.4 shows

the dissociation curve and the energy error for the H2 molecule in the cc-pV5Z

basis [274] (110 orbitals) obtained by the one-qubit 2-QLDSRG(2) computa-

tions on the ibmq_lagos quantum computer. A direct second-quantized quan-

tum computation would require 220 qubits (ignoring qubit tapering or other

symmetry adaptation techniques). We also report the 2-QLDSRG(2) energy

errors and the standard deviations of the device results in Table 3.4. The ef-

fectiveness of the QDSRG downfolding method can be seen from the small

errors of the 2-QLDSRG(2) energies, which differ from noiseless simulations

at most by 0.5 mEh for all geometries. The 2-QLDSRG(2) energies from the

device have unsigned average errors lower than 1 mEh for over half of the

geometries, with a maximum error of 2.0 mEh. Empirically, it is important

to collect the measurement statistics of 105 shots to obtain a reliable estimate

of the average energy from the device. We observe that device results have

relatively large errors for short bond distances. This is due to the behavior of

the matrix element cz in the qubit Hamiltonian, which enters via the term czZ

[see Eq. (3.18) in Sec. 3.5.1]. By definition, cz is half the energy difference

between the (1σg)
2 and (1σu)

2 electron configurations generated by the VQE
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Table 3.4: The errors of 2-QLDSRG(2) energies in mEh (with respect to FCI
energies) along the H2 dissociation curve (Figure 3.4). For results from the
ibm_lagos device, we show the unsigned average energy errors and standard
deviations (in mEh). Unsigned energy errors below 1 mEh are highlighted in
bold type.

r/Å ∆Enoiseless ∆Edevice Standard deviation
0.6 0.53 2.02 2.08
0.65 0.54 1.59 1.63
0.7 0.54 1.28 1.14
0.75 0.55 2.10 1.24
0.8 0.54 1.32 1.41
0.85 0.54 0.63 1.47
1.15 0.40 0.19 1.61
1.2 0.37 0.59 1.00
1.3 0.32 1.24 1.42
1.45 0.28 0.00 0.89
1.6 0.29 0.89 0.56
1.9 0.36 0.68 0.77
2.5 0.20 0.38 0.35
2.95 0.07 0.19 0.45
6.0 0.00 0.31 0.15

trial state. As the H2 bond is stretched and the two configurations become

near-degenerate, cz decreases by several orders of magnitude (−0.819 at 0.70

Å, while −0.036 for 2.95 Å), reducing the impact of the error in the estimation

of the expectation value of Z at large r values.

From this example, we see that errors from hardware (finite measure-

ments, decoherence, etc.) are more significant than errors from the QDSRG

downfolding.
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Figure 3.4: The dissociation curve (a) and the energy error (b) for the H2

molecule computed with the 2-QLDSRG(2) using one qubit on the ibm_lagos
device. The energy errors are with respect to FCI energies. For each geometry,
the semiopaque blue circles aligned vertically show the distribution of ener-
gies (energy errors) from 9 experiments, with each experiment consisting of
32000 measurements, while the horizontal bars in blue denote average ener-
gies or average energy errors. All computations use the cc-pV5Z basis [274]
(110 basis functions), CASSCF(2,2) orbitals, and the flow parameter value s
= 0.5 E−2

h . The gray-shaded area indicates unsigned energy errors below 1
mEh. The unsigned energy errors and the standard deviations are reported in
Table 3.4.
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Figure 3.5: Conrotatory and disrotatory pathways describing the isomeriza-
tion of bicyclo[1.1.0]butane (bicyclobutane) to trans-buta-1,3-diene (trans-
butadiene). The enthalpies in kcal mol−1 are relative to the reactant for rel-
evant stationary points computed with the 2-QLDSRG(2) method using one
qubit on the device ibmq_manila. The black horizontal bars represent the
2-QLDSRG(2) results obtained with noiseless simulations. The device results
are shown in parentheses. The semiopaque blue circles aligned vertically show
the distribution of the relative enthalpies from eight experiments (20000 mea-
surements per experiment), while the yellow horizontal bars denote the aver-
age relative enthalpies. We use a cc-pVTZ basis [274] (204 basis functions)
and CASSCF(2,2) natural orbitals, and the flow parameter value s = 1.0 E−2

h

for all six stationary points.
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For our second set of hardware experiments, we consider a larger and more

chemically-relevant problem, the pericyclic rearrangement reaction of bicy-

clo[1.1.0] butane (bicyclobutane) to trans-buta-1,3-diene (trans-butadiene).

This isomerization process goes through a concerted conrotatory movement of

the methylene groups with an activation barrier (enthalpy) of 40.6 ± 2.5 kcal

mol−1 [306], suggested by early experimental studies [306, 308, 309, 310,

311]. This mechanism has been investigated in many computational stud-

ies using high-level electronic structure methods, including MRMBPT [304,

312, 313], multi-reference configuration interaction (MRCI) [313], variants

of single-reference coupled-cluster methods including CR-CC(2,3) [304, 314]

and CC(t;3) [251], the diffusion quantum Monte Carlo [305] and the anti-

Hermitian contracted Schrödinger equation (ACSE) method [312, 315].

These theoretical studies also investigate the unfavored concerted disro-

tatory pathway [304, 314, 312, 305, 313], characterized by a transition state

(TS) that is estimated to be 15–25 kcal mol−1 higher in energy than the conro-

tatory one. Both transition states display significant biradical character [304],

and their ground state wave functions have large contributions from multiple

determinants, requiring a multireference treatment. This makes the system

suitable to treat with the QDSRG method. Previous studies also confirmed that

for both concerted pathways, the reaction reaches a gauche-buta-1,3-diene in-

termediate (gauche-butadiene), and then proceeds through a low-energy ro-

tational barrier to the trans-butadiene product.

We compute the reaction enthalpies along the full concerted conrotatory

and disrotatory pathways from bicyclobutane to trans-butadiene. Cartesian

coordinates of the structures of all six stationary points optimized at the
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CASSCF(10,10)/cc-pVDZ level of theory are taken from Ref. [304]. Zero-

point vibrational energies (ZPVE) obtained at the same level of theory are

used to convert total electronic energies to enthalpies. For all six stationary

points, we use CASSCF(2,2) natural orbitals, which yield a two-configuration

reference that can be mapped to a one-qubit ansatz (see Sec. 3.5.1 for

details). All computations use the cc-pVTZ basis [274] (204 orbitals) and

we freeze four 1s-like orbitals on carbon atoms in the DSRG correlation

treatment.

Figure 3.5 shows the concerted conrotatory and disrotatory pathways of

the bicyclobutane → trans-butadiene reaction and Table 3.5 reports the rel-

ative enthalpies (with respect to the bicyclobutane reactant) from the LD-

SRG(2) and the 2-QLDSRG(2) methods obtained via noiseless simulations and

via VQE on three quantum devices. We show the best device results, obtained

with the ibmq_manila device, in Figure 3.5.

Compared to the experimental value [306], both LDSRG(2) and the 2-

QLDSRG(2) methods give relative enthalpies of the conrotatory transition

state that achieve chemical accuracy, while the relative enthalpies of trans-

butadiene predicted by the two methods are slightly underestimated [307].

For the other three stationary points, experimental data are not available;

therefore, we compare our results with data from two high-level approaches,

the optimized multireference diffusion quantum Monte Carlo (OMR3-DMC)

[305] and an active-space coupled-cluster method with corrected triple ex-

citations termed CC(t;3) [251] using the same cc-pVTZ basis. The relative

enthalpy of the disrotatory transition state predicted by the LDSRG(2) and

2-QLDSRG(2) methods agrees with the OMR3-DMC result (58.6 kcal mol−1)
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[305] and is slightly lower than the CC(t;3) value (60.1 kcal mol−1) [251]. For

both gauche-butadiene and the transition state connecting gauche-butadiene

and trans-butadiene, the LDSRG(2) and the 2-QLDSRG(2) results are about 1

kcal mol−1 lower than the OMR3-DMC and CC(t;3) values. The 2-QLDSRG(2)

results from three devices are in good agreement with the result from noiseless

simulations, with most devices yielding values within 1 kcal mol−1 from the

exact result. Notably, two devices yield chemically accurate relative enthalpies

for the conrotatory transition state (40.5 kcal mol−1, 39.6 kcal mol−1). The

best device results in Table 3.5 give unsigned errors less than 0.5 kcal mol−1

for all six stationary points.

The results for the bicyclobutane → trans-butadiene reaction demonstrate

that the QDSRG method can effectively downfold the dynamical correlation

for a large basis with 204 orbitals, reducing the number of qubits from several

hundred to just one.

3.4 Summary

In this work, we introduced a practical unitary downfolding method that

enables accurate molecular computations on near-term quantum computers.

The QDSRG is agnostic to the type of quantum algorithm (e.g., variational,

phase estimation) and can be used with both noisy near-term computers and

future fault-tolerant hardware. Therefore, we expect that the QDSRG will be

a useful method to leverage small quantum computers in applications to large

molecules and large basis sets.

The QDSRG is based on the driven similarity renormalization group
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(DSRG) [242], a classical numerically-robust and polynomial-scaling ap-

proach to block-diagonalize many-body Hamiltonians. In this work, we

propose a “diagonalize-then-dress-then-diagonalize” strategy that combines

truncation of the reduced density cumulants provided to the DSRG with

diagonalization of the resulting similarity-transformed Hamiltonian. This

downfolding procedure may be justified by a perturbative analysis of the

DSRG equations and leads to two practical computational schemes: in the

1-QDSRG we retain only the diagonal part of the one-body RDM, whereas

in the 2-QDSRG we retain the full one-body RDM and the diagonal part of

the two-body cumulants. These two schemes require estimating a number

of reduced density matrix elements that is at most linear or quadratic in

the number of active orbitals (NA), substantially reducing the demands of

conventional multireference theories, which require N6
A to N8

A RDM elements.

Our calibration of the QDSRG shows that the use of orbitals optimized for a

reference correlated state is crucial to compute accurate energies. The QDSRG

results show that the 2- approximation is able to accurately predict energies

along the bond-breaking coordinate in a minimal active space. The 1- approx-

imation leads to larger errors, but these can be suppressed by increasing the

active space size. To simulate the effect of noise, we examined QDSRG com-

putations starting with inaccurate RDMs and found that milliHartree accuracy

can be retained when the standard deviation of the RDMs errors is as large as

10−3–10−2.

In our computations on the more challenging N2 and p-benzyne molecules,

we were also able to accurately predict potential energy curves and singlet-

triplet gaps using the QDSRG. In the case of N2, we demonstrate how the first
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two steps of the QDSRG procedure (orbital optimization and reference prepa-

ration) could be approximated with the classical polynomial-scaling CCSD

method, using the corresponding one-body reduced density matrix. Finally,

we demonstrate the QDSRG procedure in combination with the VQE algo-

rithm on the IBM quantum devices. We extend computations of the H2 disso-

ciation curve with a nearly-complete quintuple-ζ basis, corresponding to a full

computation with 220 qubits. In this example, we find that hardware errors

still remain the most significant source of error in comparison to the QDSRG

downfolding error. We also apply the QDSRG method to model the reaction

pathways of the bicyclobutane → trans-butadiene isomerization process us-

ing a basis of 204 orbitals. We are able to obtain high-quality device results

that reach sub-kcal mol−1 accuracy with respect to the exact QDSRG and two

high-level classical electronic structure approaches with a modest number of

measurements, while a full VQE computation may need 109 number of mea-

surements for one single energy evaluation based on the empirical resource

estimation of Ref. [316].

The extension of the QDSRG with explicit correlation methods and to elec-

tronically excited states are two interesting directions worth exploring. We

expect that with the availability of more accurate hardware and a larger num-

ber of qubits, the QDSRG will provide a systematic path to perform accurate

quantum chemistry computations on chemically relevant systems.
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Table 3.6: Summary of the number of qubits required for the full-space and
QDSRG computations that use large basis sets in this study.

basis set Nq(full-space) Active space Nq(QDSRG)

para-benzyne cc-pVTZ 236 (2e, 2o) 1

H2 cc-pV5Z 220 (2e, 2o) 1

bicyclobutane cc-pVTZ 408 (2e, 2o) 1

3.5 Appendix

3.5.1 Symmetry-preserving ansatz for two-configuration

wave functions

We exploit spin, particle number, and spatial symmetries to construct a

hardware-efficient ansatz for two-configuration wave functions. Consider a

two-electron wave function in a basis of two molecular orbitals ψ1, ψ2. The

singlet ground state in the most general case includes three configurations

(bars over the number denote β spin orbitals),

|Φ1⟩ = |ψ1ψ1̄⟩ ,

|Φ2⟩ = |ψ2ψ2̄⟩ ,

|Φ3⟩ =
1√
2
(|ψ1ψ2̄⟩ − |ψ1̄ψ2⟩).

(3.14)

We can remove the contribution of the open-shell configuration |Φ3⟩ from the

normalized ground-state wave function |Ψ0⟩ = C ′
1 |Φ1⟩ + C ′

2 |Φ2⟩ + C ′
3 |Φ3⟩
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without changing the energy via an orbital rotation

|ψ′
1⟩ = cos θ |ψ1⟩+ sin θ |ψ2⟩ ,

|ψ′
2⟩ = sin θ |ψ1⟩ − cos θ |ψ2⟩ ,

(3.15)

where tan 2θ =
√
2C′

3

(C′
1−C′

2)
[317, 318, 290]. We refer interested readers to

Ref. [290] (Sec IV.) for detailed discussions on this basis transformation.

For H2, the ground-state wave function expanded in the CASSCF(2,2) or-

bitals can be accurately described by two closed-shell configurations. While

for two transition states in the bicyclobutane → trans-butadiene reaction, the

open-shell contribution to the wave function cannot be neglected due to the

strong biradical character (especially for the disrotatory TS). Therefore, we

transform to the CASSCF(2,2) natural orbital basis, which is mathematically

equivalent to enforcing Eq. 3.15. The ground states of the other four sta-

tionary points in the pathways are generally well described by a single de-

terminant in the CASSCF(2,2) basis; however, for consistency, we employ

CASSCF(2,2) natural orbitals for all computations.

The resulting two-configuration wave function |Ψ0⟩ = C1 |ψ′
1ψ

′
1̄⟩+C2 |ψ′

2ψ
′
2̄⟩

can be mapped to a one-qubit space

|ψ′
1ψ

′
1̄⟩ → |0⟩ ,

|ψ′
2ψ

′
2̄⟩ → |1⟩ ,

(3.16)

which leads to the one-qubit wave function ansatz

|Ψ⟩ = C1 |0⟩+ C2 |1⟩ . (3.17)
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This state can be prepared by applying to the |0⟩ state a single Y-rotation

gate R̂y(t) = e−
itY
2 with one variational parameter t, giving C1 = cos( t

2
),

C2 = sin( t
2
). The Hamiltonian in the one-qubit basis is represented as H =

h00|0⟩⟨0|+h11|1⟩⟨1|+h10(|0⟩⟨1|+ |1⟩⟨0|) where h00, h11, h10 are calculated from

the one- and two-electron integrals. The Hamiltonian can be decomposed into

a weighted sum of single-qubit Pauli operators

H = c0 + czZ + cxX, (3.18)

with coefficients given by c0 = (h00 + h11)/2, cz = (h00 − h11)/2, cx = h10.

The expectation value of this one-qubit Hamiltonian with respect to |Ψ⟩

has the definite tomography [319, 320] given by

⟨H⟩t = a+ b cos t+ c sin t, (3.19)

The coefficients a, b, c can be found using a three-point Fourier quadrature

[319] that requires measuring expectation values for three parameters

t0, t1, t2. The corresponding linear equation to solve is:


1 ⟨Z⟩t0 ⟨X⟩t0

1 ⟨Z⟩t1 ⟨X⟩t1

1 ⟨Z⟩t2 ⟨X⟩t2




a

b

c

 =


⟨H⟩t0
⟨H⟩t1
⟨H⟩t2

 .

In this work, we use the following three-point Fourier quadrature:

t0, t0 − π/3, t0 + π/3, (3.20)
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Table 3.7: The relations between the elements of the fermionic 1-RDM
(γpq = ⟨a†paq⟩) and 2-RDM (γpqrs = ⟨a†pa†qasar⟩) and the measured quantities
for the one-qubit ansatz. Only nonzero elements are shown; others are zero
due to symmetries. |C1|2 = ⟨Ψ|0⟩ ⟨0|Ψ⟩ and |C2|2 = ⟨Ψ|1⟩ ⟨1|Ψ⟩ are obtained
from projective measurements [51, 321] of the optimized state in the compu-
tational basis; ⟨X⟩ is the expectation value of the Pauli X operator.

RDM element Analytical Measurement

γ11 , γ
1
1
, γ11

11
, γ11

11
cos2 t

2
|C1|2

γ22 , γ2
2
, γ22

22
, γ22

22
sin2 t

2
|C2|2

γ11
11
, γ11

11
− cos2 t

2
−|C1|2

γ22
22
, γ22

22
− sin2 t

2
−|C2|2

γ11
22
, γ11

22
γ22
11
, γ22

11
cos t

2
sin t

2
⟨X⟩ /2

γ11
22
, γ11

22
γ22
11
, γ22

11
− cos t

2
sin t

2
−⟨X⟩ /2

where t0 is arbitrary. For convenience, we use the analytic solution for the

optimal angle

t0 = arctan2 (cx, cz) . (3.21)

For the reference preparation (step 2 in Figure 3.1), we run the VQE algo-

rithm to obtain the 1- and 2-RDMs. These quantities can be measured from

the state tomography of the optimal wave function. Table 3.7 summarizes the

expressions for the 1- and 2-RDMs in terms of analytical expressions of the

variational parameter t and quantities from direct measurements.

Note that for both the 1- and 2-QDSRG methods, we only need to measure

the Pauli Z operator to compute the full 1-RDM and the approximate 2-RDM,

while the Pauli X operator only contributes to the non-diagonal components

of the two-body reduced density cumulant. Finally, we use the VQE algorithm

to estimate the eigenvalue of the DSRG effective Hamiltonian (step 4 in Fig-

ure 3.1).
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3.5.2 Comparing QDSRG with double unitary coupled clus-

ter approach

Table 3.8: A comparison of the energy errors (in mEh) of the QDSRG and
the DUCC for the H2 molecule at four bond lengths in the cc-pVTZ basis using
DSRG flow parameter s = 0.5 E−2

h . The size of the active space is denoted in
parentheses. The energy errors are with respect to the full-space (30-orbital)
FCI computations [absolute energies (in Eh) are shown in the first row]. The
DUCC data are taken from Ref. [238].

Method Orbital type (Nact) 0.8 a.u. 1.4008 a.u. 4.00 a.u. 10.00 a.u.
FCI (full space) RHF ( 30 ) −1.015729 −1.172455 −1.014872 −0.999623
FCI (active space) RHF ( 4 ) 32.729 25.755 7.872 2.523
DUCC RHF ( 4 ) 7.129 4.555 −0.328 −1.977
LDSRG(2) (diag. H̄1,2) RHF ( 4 ) −0.130 −0.234 1.920 0.122
1-QLDSRG(2) RHF ( 4 ) −0.094 −0.098 4.047 0.524
2-QLDSRG(2) RHF ( 4 ) −0.087 −0.084 3.794 0.126
1-QLDSRG(2) CASSCF(2,2) ( 4 ) 0.455 0.169 1.498 0.006
2-QLDSRG(2) CASSCF(2,2) ( 4 ) 0.460 0.179 1.662 0.006

Here we compare the QDSRG method with the DUCC downfolding tech-

nique for the H2 molecule and the Be atom. In Table 3.8, we report energies

of H2 at four geometries obtained by diagonalizing the bare, the QDSRG-

downfolded, and the DUCC downfolded Hamiltonians in a four-orbital active

space, together with the energy errors with respect to the full-space FCI results

which use 30 orbitals. We also compute QDSRG energies using different types

of orbitals. The DUCC data are taken from Ref. [238]. We observe that for

three geometries, all QDSRG computations consistently give less significant

energy errors than the DUCC results. For instance, the largest error for the

DUCC using RHF orbitals is 7.13 mEh, while the QDSRG shows smaller errors

(at most 4.1 mEh). The use of CASSCF orbitals further reduces the maximum

QDSRG errors to at most 1.7 mEh.
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Table 3.9: A comparison of the energy errors (in mEh) of the QDSRG and the
DUCC for the Be atom with different basis sets and active spaces. The DSRG
flow parameter s = 2.0 E−2

h . All computations use RHF orbitals. The energy
errors are with respect to the full-space FCI computations [absolute energies
(in Eh) are shown in the last column], which use 14, 30 and 55 orbitals for
the cc-pVDZ, cc-pVTZ, and cc-pVQZ basis sets, respectively. The DUCC data
are taken from Ref. [238].

Method 5 orbitals 6 orbitals 9 orbitals All orbitals
cc-pVDZ

FCI 22.242 20.575 0.493 -14.617409
DUCC 19.009 18.109 1.809
1-QLDSRG(2) 3.408 1.998 3.067
2-QLDSRG(2) 3.430 2.074 3.065

cc-pVTZ
FCI 34.881 33.621 7.024 -14.623810
DUCC 26.710 24.410 5.010
1-QLDSRG(2) 4.199 3.202 1.216
2-QLDSRG(2) 4.200 3.192 2.751

cc-pVQZ
FCI 54.950 54.366 26.798 -14.640147
DUCC 30.547 27.547 7.347
1-QLDSRG(2) 4.927 4.166 0.879
2-QLDSRG(2) 4.923 4.158 2.909

Tab. 3.9 shows the comparison of the Be atom results using active spaces

of different sizes and three basis sets. Here we see that the DUCC method

introduces errors in the range of 18–30.5 mEh when five or six active or-

bitals are used, and that this error is reduced to smaller values (1.8–7.3 mEh)

when using nine active orbitals, while QDSRG results consistently show much

smaller energy errors (0.9–4.9 mEh) for all active spaces and basis sets. No-

tably, the QDSRG downfolding is most effective for the large cc-pVQZ basis,

which significantly reduces the energy errors of the active-space FCI results by

50, 50.2 and 26 mEh for five-, six- and nine-orbital active spaces, while the

DUCC method merely gives a reduction of 24, 27 and 19 mEh.
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Chapter 4

Simulating conical intersections

on quantum computers with

unitarily downfolded Hamiltonians

Solving the electronic structure of strongly correlated systems with sufficient

accuracy is a challenging task in computational quantum chemistry and ma-

terial science [4]. These problems are argued as the most promising ap-

plications for quantum computers to achieve a practical quantum speedup

[9, 322, 1]. Though the debate regarding the existence of the exponential

quantum advantage for determining quantum chemistry problems in general

is still ongoing [323], many efforts have been undertaken to maximize the

impact of near-term small-scale quantum devices to obtain the ground state

of the time-independent Schrödinger equation in a problem-tailored manner

[137, 205, 215, 225, 238, 254]. Quantum algorithms for computing excited

states are less explored and have primarily been tested on small diatomic
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molecules in minimal one-electron computational basis sets [91, 113, 112,

324]. However, achieving accurate modeling of realistic excited-state dynam-

ics in numerous photochemical processes requires the utilization of large ba-

sis sets. This, in turn, demands a substantial number of qubits that exceeds

the capabilities of near-term quantum computers. One of the most promis-

ing strategies to resolve excited-state energy surfaces using limited quantum

resources is quantum downfolding based on effective Hamiltonian theories

[325, 238, 239, 240].

In a recent work, we have introduced a practical quantum unitary down-

folding scheme based on the driven similarity renormalization group (QD-

SRG) that enables accurate ground-state molecular computations on near-

term noisy small-scale quantum devices. Notably, our device results have

achieved chemical accuracy (relative energies within 1 kcal mol−1 from ex-

perimental energies) in modeling the reaction pathways of the bicyclobutane

→ trans-butadiene isomerization process utilizing a large basis set with 204

orbitals [325].

This work aims to extend the QDSRG scheme to treat near-degenerate ex-

cited states via a state-averaged downfolding formalism (SA-QDSRG) [326].

We note that such state-averaged formalism has been employed in several

multireference excited-state electronic structure methods [327, 191, 202].

Consistent with the previous work, we reduce the cost of measuring reduced

density matrices (RDMs) from quantum devices via a systematic truncation

of RDMs. We combine the SA-QDSRG scheme with the variational quantum

eigensolver (VQE) to calculate ground states and the quantum subspace ex-

pansion (QSE) [91, 113] algorithm to obtain excited states.
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We are particularly interested in studying near-degenerate states in ethy-

lene photodynamics. Ethylene is an important prototype system for under-

standing the ultrafast energy conversion through nonadiabatic transitions,

and has been investigated in many computational studies using high-level

electronic structure methods [193, 328, 329, 330, 331, 332, 333, 334]. The

ethylene photodynamics is characterized by the following processes, with ge-

ometrical coordinates defined in Fig. 4.1. Following a vertical ππ∗ excitation

to the first valence state S1, the system’s potential energy decreases through

a torsional motion (torsion angle τ) around the C-C bond, transitioning from

a planar geometry to a twisted-orthogonal structure (see the upper panel in

Fig. 4.1). In this structure, two planes defined by two CH2 groups are or-

thogonal to each other. Subsequently, the energy of the S1 state is reduced

by a pyramidalization motion (angle β) of one CH2 group. During this pro-

cess, the system reaches a twisted-pyramid conical intersection between

the S1 and S0 ground state. This conical intersection allows for a rapid non-

radiative pathway back to the ground state. Systems that contain a conical

intersection between the ground and first excited state have posed significant

challenges for single-reference excited state methods such as time-dependent

density functional theory (TD-DFT) [335] and equation-of-motion coupled

cluster theory [336, 337, 338].

In this study, we apply the SA-QDSRG method to investigate this nonra-

diative process in ethylene molecule by computing excitation energies of the

twisted-pyramid conical intersection, as well as resolving the energetics along

the pyramidalization coordinate.

This work demonstrates a rare example to resolve complex energetics of
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a photodynamical process that involves near-degenerate states on near-term

quantum processors.

Figure 4.1: Definition of geometrical coordinates, torsion angle τ and pyrami-
dalization angle β utilized in this study. The figure is adapted with permission
from J. Chem. Phys., 121(23):11614–11624, 2004, DOI:10.1063/1.1807378.
Copyright 2023 American Institute of Physics.

4.1 Methods

4.1.1 State-averaged Hamiltonian downfolding via QDSRG

The workflow of the state-averaged QDSRG downfolding scheme is nearly

identical to that shown in Fig. 3.1, only differing in the preparation of the

reference state.

The DSRG downfolding for ground states [242, 243, 244, 245, 255] starts

from a single reference correlated state Ψ0, while in the state-averaged scheme

[326], we use the density matrix (ρ̂) for an ensemble of N correlated states,

https://doi.org/10.1063/1.1807378
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E0 ≡ {|Ψα
0 ⟩ , α = 1, 2, . . . , N}. Each state in the ensemble is spanned by the

same set of determinants {|Φµ⟩}

|Ψα
0 ⟩ =

NCAS∑
µ=1

cαi |Φµ⟩ (4.1)

where NCAS is the total number of determinants in the active space.

Similar to the original QDSRG scheme, the state-averaged DSRG down-

folding uses one unitary transformation H 7→ H̄ = e−AHeA, but now this

transformation decouples the ensemble of reference states {|Ψα
0 ⟩} from their

corresponding excited configurations in an averaged way. The DSRG effec-

tive Hamiltonian H̄SA is computed using equal-weighted averaged one- and

two-body RDMs γ over N correlated states

γuv···xy··· =
1

N

N∑
α=1

[γα]uv···xy···. (4.2)

Here, γα denotes the generic k-body RDMs of α-th reference state in the en-

semble given by

[γα]uv···xy··· = ⟨Ψα
0 |â†uâ†v · · · âyâx|Ψα

0 ⟩ (4.3)

where the product â†uâ
†
v · · · âyâx contains k creation and k annihilation opera-

tors; we use indices u, v, w, x, y, z to label active spin orbitals partially occupied

in each reference state.

The density cumulant approximations introduced in 1-QDSRG (Eq. 3.8)

and 2-QDSRG (Eq. 3.9) are consistent with the previous treatments. The 3-

body density cumulants are set to zero in all QDSRG treatments.

For the truncation level of the DSRG effective Hamiltonian, we consider



115

two treatments with increasing accuracy: (1) the perturbative truncation of

multireference DSRG at second order [DSRG-PT2] [243]; (2) the nonper-

turbative linearized DSRG (LDSRG) with one- and two-body operators [LD-

SRG(2)] (shown in Eq. 3.4) as employed in the previous study. The details

of obtaining DSRG-PT2 effective Hamiltonian can be found at Sec 2.6 of

Ref. [245] or Ref. [243]. Here we employ two truncated effective Hamiltoni-

ans for the sake of the computational cost. The latter is crucial for determining

the structure of the conical intersection in a economic way.

4.1.2 Quantum subspace expansion for excited states

The quantum subspace expansion (QSE) algorithm [91, 113, 137] obtains

the electronic excited states with an additional measurement overhead upon

the ground-state computations. Given an optimized ground state |Ψ0⟩, we

expand the Hamiltonian in a subspace formed by {ÔJ |Ψ0⟩}, where ÔJ ∈

{â†aâi, â†aâ
†
bâj âi}. Note that the subspace is truncated at double excitations that

are sufficient for modeling the electronic states of ethylene. Since the basis is

nonorthogonal, we solve a generalized eigenvalue problem Hc = ScE where

elements of the overlap matrix (S) and Hamiltonian (H) are given by

Sαβ = ⟨Ψ0|ÔαÔβ|Ψ0⟩ , Hαβ = ⟨Ψ0|ÔαĤÔβ|Ψ0⟩ (4.4)

We further reduce the measurement cost of the QSE procedure by exploiting

various symmetries of the system (particle number, total spin).
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4.1.3 Spin-restricted ansatz

The process of ethylene photodynamics involving valence states can be well

described by a multireference treatment employing an active space with two

electrons in two orbitals [CAS(2,2)]. Fig. 4.2 shows two active molecular

orbitals used for the twisted-pyramid conical intersection geometry.

Figure 4.2: Two π-like molecular orbitals in the active space for the twisted-
pyramid conical intersection geometry. The orbitals are optimized at the
CASSCF(2,2)/aug-cc-pVTZ level of theory.

For the quantum simulations, we utilize a minimal spin-restricted circuit

ansatz to encode the system which preserve the electron number, Sz and S2

symmetries [339, 340] which only use two qubits, as shown in Fig. 4.3.

|0⟩ Ry(θ0) • Ry(θ1)

|0⟩ X Ry(−θ1)

Figure 4.3: Circuit for singlet-restricted ansatz for a CAS(2,2) system

We use Jordan-Wigner encoding with a subsequent qubit tapering proce-

dure that applies Z2 symmetry reduction [167, 341, 342] to obtain the two-

qubit Hamiltonian. The mapping between determinants and qubit computa-
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tional basis states is given by

|π2⟩ → |01⟩

|π∗2⟩ → |10⟩

|π↑π∗↓⟩ → |11⟩

|π↓π∗↑⟩ → |00⟩ .

(4.5)

The wavefunction ansatz has the analytical expression as follows:

|ψ(θ0, θ1)⟩ =
1√
2
[sin

(
θ0
2
+
π

4

)
− cos

(
θ0
2
+
π

4

)
cos θ1] |01⟩

+
1√
2
[sin

(
θ0
2
+
π

4

)
+ cos

(
θ0
2
+
π

4

)
cos θ1] |10⟩

+
1√
2
cos

(
θ0
2
+
π

4

)
sin θ1(|00⟩+ |11⟩)

(4.6)

4.2 Computational Details

The SA-QDSRG effective Hamiltonians are computed using Forte [272], an

open-source plugin for the ab initio quantum chemistry package Psi4 [273].

All computations use CASSCF(2,2) orbitals optimized averaged over three

lowest singlet states in the aug-cc-pVTZ basis [274, 343], with the density-

fitting approximation of the two-electron integrals in the JKFIT basis set [344].

We freeze two 1s-like orbitals on carbon atoms in the DSRG correlation treat-

ment. All DSRG computations use the flow parameter s=2.0 E−2
h , based on

the previous study [345]. We take the geometry of the twisted-pyramid con-

ical intersection from Ref. [345], which was optimized via the gradient pro-

jection method [346] at the SA-DSRG-PT2/aug-cc-pVTZ levelof theory with
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the flow parameter value s = 2.0 E−2
h and CASSCF(2,2) orbitals optimized

averaged over three lowest singlet states.

4.3 Results and Discussion

We first show results of noiseless simulations. We compute the excitation ener-

gies of the three low-lying singlet states of the twisted-pyramid conical inter-

section geometry at the SA-DSRG-PT2, 1(2)-SA-QDSRG-PT2, SA-LDSRG(2)

and 1(2)-SA-QLDSRG(2) levels, as reported in Table 4.1. We also include val-

ues from other methods for comparison, including MRCI with singles and dou-

bles (MRCISD) [287, 288], MRCISD with Davidson’s correction (MRCISD+Q)

[289]. For this system, the impact of density cumulant approximations intro-

duced in the QDSRG is negligible for excited-state calculations, because we

observe very small deviations (0.0–0.3 eV) of the SA-QDSRG results from the

SA-DSRG ones. We can see that the state-averaged DSRG and QDSRG for-

malism are well capable of describing degenerate states, since the energy dif-

ferences between 2 1A and 1 1A states are generally small, within 0.01–0.04

eV, which slightly outperform MRCISD+Q result, while MRCISD is better at

capturing the degeneracy of 2 1A and 1 1A states.

In Fig. 4.4, we show potential energy curves of the three lowest singlet

states along the pyramidalization motion of one CH2 group obtained with

the bare Hamiltonian (Figure 4.4c) and the QDSRG downfolded Hamiltoni-

ans (SA-DSRG-PT2 and 2-SA-QDSRG-PT2 in Figure 4.4a, SA-LDSRG(2) and

2-SA-QLDSRG(2) in Figure 4.4b). For each method, all energies are shifted to

ensure that the energy of the ground state at the planar geometry is zero. Dy-
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namic correlation beyond the active space is crucial for accurately describing

the energetics in the vicinity of the conical intersection, since diagonalizing

the bare Hamiltonian within the active space alone does not yield the dis-

tinctive “double-cone” shape in the near-degenerate region. In contrast, all

QDSRG downfolded Hamiltonians correctly capture the "double-cone" shape

that characterizes the conical intersection. We note that the exact geometry of

the conical intersection is dependent on the level of theory employed in com-

putations. As seen in Figure 4.4, SA-DSRG-PT2 and 2-SA-QDSRG-PT2 give

a pyramidalization angle of 106°at the conical intersection geometry, while

SA-LDSRG(2) and 2-SA-QLDSRG(2) predict an angle of 98°. The inclusion of

more dynamic correlation moves the location of the conical intersection to a

smaller pyramidalization angle.

Table 4.1: Excitation energies (in eV) of the three lowest singlet states of
the twisted-pyramid conical intersection geometry. The excitation energies
are computed with respect to the ground-state energy of the planar geometry
(Franck-Condon point) calculated at the corresponding computational level.

Method 1 1A 2 1A 3 1A

SA-DSRG-PT2(eig. H̄pt2) 4.11 4.12 8.55
2-SA-QDSRG-PT2 4.10 4.12 8.55
1-SA-QDSRG-PT2 4.09 4.12 8.56
SA-LDSRG(2)(eig. H̄1,2) 4.87 4.90 9.96
2-SA-QLDSRG(2) 4.87 4.90 9.96
1-SA-QLDSRG(2) 4.86 4.90 9.99
MRCISDa 4.83 4.83 9.83
MRCISD+Qa 4.50 4.54 9.26

a From Ref. [329].
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4.4 Summary and future work

This chapter summarizes the results from noiseless SA-QDSRG computations

of the twisted-pyramid conical intersection on the ethylene excited-state en-

ergy surfaces and the energetics of the relevant nonradiative process. As of

the completion of this dissertation, ongoing efforts are being made to obtain

satisfactory results from experiments on quantum devices. There are several

aspects worth exploring for the device computations

• the sensitivity of SA-QDSRG energies with respect to the stochastic

noises (finite measurement errors) in the reference RDMs;

• how various error mitigation techniques may improve upon the raw data

since we have a CNOT gate in the ansatz. We always perform readout-

error mitigation [347] since it is quite standardized in the workflow.

Other typical error mitigation methods include zero-noise extrapolation

[38] with linear [348] or exponential function form [37], probabilistic

error cancellation [36, 37, 349].
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Figure 4.4: Potential energy curves of the three lowest singlet states along the
pyramidalization motion of one CH2 group computed with (a) SA-DSRG-PT2
[solid lines] and 2-SA-QDSRG-PT2 [asterisks], (b) SA-LDSRG(2) [solid lines],
2-SA-QLDSRG(2) [asterisks], (c) diagonalizing the bare Hamiltonian. Ener-
gies are shifted with respect to the ground-state energy of the planar geometry
calculated using the same method. The vertical dash lines and angle values
denote the twisted-pyramid conical intersection geometry at the correspond-
ing computational level.
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Chapter 5

Conclusions and perspectives

In this dissertation, we have shown that quantum simulations of many-body

problems are practical applications of quantum computers.

In Chapter 2, we introduced a novel quantum algorithm, termed the

multireference selected quantum Krylov (MRSQK) method that combines

a compact quantum Krylov subspace, unitary real-time evolution, and

multi-reference strategy to facilitate a numerically-robust treatment of

strongly-correlated systems. Benchmarks on various systems demonstrate the

feasibility of MRSQK to use compact Krylov bases for predicting ground state

energies. MRSQK provides a natural extension to compute excited states. An

open problem is how to select a good reference space for the target excited

state.

Achieving realistic chemical simulations on current small, noisy quantum

devices involves addressing two key challenges. Firstly, many quantum algo-

rithms for chemistry are solely tested in classical exact emulations, neglecting

intrinsic errors that occur in real quantum hardware, such as finite measure-
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ment errors and device noise. This limitation hinders the accurate representa-

tion of quantum behavior on the actual hardware. Secondly, performing real-

istic chemical applications requires large one-electron orbital basis sets, which

is resource-intensive due to the linear scaling of qubits with the number of cor-

related molecular orbitals. To overcome these obstacles, we propose a prac-

tical solution in Chapter 3 - a quantum unitary downfolding formalism based

on the driven similarity renormalization group (QDSRG), which optimizes the

quantum resource and enables more accurate and efficient chemical simula-

tions on noisy quantum devices. The QDSRG is a polynomial-scaling down-

folding method that retains the accuracy of classical multireference many-

body theories while avoiding the evaluation of expensive higher-order re-

duced density matrices. This method effectively reduces the dimensionality

of the problem and minimizes the required quantum resources, which enables

resource-efficient simulations on small-scale quantum computers using large

computational basis sets. We model the bicyclobutane isomerization path-

ways to trans-butadiene on IBM quantum devices, demonstrating the viability

of QDSRG to leverage near-term quantum devices for estimating molecular

properties with chemical accuracy.

In Chapter 4, we extend the QDSRG downfolding method to a state-

averaged formalism (SA-QDSRG) that is capable of treating near-degenerate

states which pose great challenges for many quantum chemical methods.

We have shown results from noiseless SA-QDSRG computations of the

twisted-pyramid conical intersection on the ethylene excited-state energy

surfaces and the energetics of the relevant nonradiative process.

We believe that the QDSRG downfolding scheme provides a robust and el-
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egant framework to simulate complex chemical processes with limited quan-

tum resources, demonstrating practical applications of near-term small quan-

tum devices. With the continuous advancements in quantum hardware and

the increasing availability of qubits, we hope this general Hamiltonian unitary

downfolding scheme based on DSRG could enable rapid and precise simula-

tions of large systems with industry relevance that could potentially achieve a

real quantum advantage over classical computing.
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