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Abstract

Towards the Robustness of Deep Learning Systems Against
Adversarial Examples in Sequential Data

By Wenjie Wang

Deep learning has achieved state-of-the-art performance in various real-world applica-
tions, including computer vision (CV), natural language processing (NLP), speech recogni-
tion, and clinical informatics. Although deep learning systems are powerful, they are overly
sensitive to perturbation in the input which would not fool a human observer. Recent stud-
ies have shown that adversarial examples can be generated by applying small perturbations
to the inputs such that the well-trained deep neural networks (DNNs) will misclassify. With
the increasing number of safety and security-sensitive applications of deep learning models,
the robustness of deep learning models to adversarial inputs has become a crucial topic.

Research on the adversarial examples in computer vision (CV) domains has been well
studied. However, the intrinsic difference between image and sequential data has placed
great challenges for directly applying adversarial techniques in CV to other application
domains such as speech, health informatics, and natural language processing (NLP).

To solve these gaps and challenges, my dissertation research combines multiple studies
to improve the robustness of deep learning systems against adversarial examples in sequen-
tial inputs. First, we take the NLP and health informatics domains as examples, focusing on
understanding the characteristics of these two domains individually and designing empiri-
cal adversarial defense methods, which are 1) RADAR, an adversarial detection for EHR
data, and 2) MATCH, detecting adversarial examples leveraging the consistency between
multiple modalities. Following the empirical defense methods, our next step is explor-
ing certified robustness for sequential inputs which is provable and theory-backed. To
this end, 1) We propose WordDP, certified robustness to word substitution attacks in the
NLP domain, leveraging the connection of differential privacy and certified robustness. 2)
We studied the certified robustness methods to univariant time-series data and propose an
adversarial attack in the Wasserstein space which is more appropriate for measuring the
in-distinguishability for time-series data.
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1

Chapter 1

Introduction

1.1 Overview

Deep learning has achieved state-of-the-art performance in various real-world applications,

including computer vision (CV) [53], natural language processing (NLP) [107], speech

recognition [27] and clinical informatics [85]. Although deep learning systems are pow-

erful, they are overly sensitive to perturbation in the input which would not fool a human

observer [91]. Many studies have revealed that adversarial examples can be generated by

applying small perturbations to the inputs such that the well-trained deep neural networks

(DNNs) will misclassify [14]. With the increasing demand for the safety and security of

these applications, how to provide a robust deep learning system that does not overly react

to adversarial perturbations has become a crucial topic.

Since the discovery of adversarial examples, many attempts have been made to de-

velop algorithms to generate adversarial examples [77], as well as the countermeasures

to study the defense mechanisms [69]. From the attacker’s perspective, since 2014 when

researchers found that adversarial examples can be easily crafted and mislead the DNNs,

many attempts have been made to develop algorithms to generate adversarial examples.

Generating adversarial examples can be generalized as an optimization problem: minimize
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the perturbation while leading the model to misclassify. Researchers have interpreted this

optimization problem from many angles and developed various methods. They can be cat-

egorized as white-box attack, black-box attack, and real-world attack. White attack means

that the attackers have full access to the model details including the parameters, while in

black-box attacks the attackers can only have permission to the model outputs. White-box

is more research-oriented which gives us the insight to study the interpretability of DNNs.

However, black-box attack is more related to real-world applications. Real-World Attack is

under another scenario where inputs are not directly fed into the model but perceived from

physical equipment such as cameras and sensors. This research direction is more related to

real-world applications and aimed to address the security of DNNs in real-world scenarios.

From the defender’s perspective, countermeasures to adversarial examples can be cate-

gorized based on their strategies: 1) reactive: detect adversarial examples after DNNs are

built such as detection; 2) proactive: make DNNs more robust before adversaries generate

adversarial examples such as distillation, adversarial training, and gradient masking. Be-

sides the empirical defense methods, certified robustness is the new direction to improve the

robustness of deep learning models that can provide theory-backed and provable defense

mechanisms for adversarial attacks. The general attempt is to transform a deterministic

base classifier into a probabilistic randomized classifier by adding noise layers.

The reasons that researchers have been motivated to study the potentials of adversarial

examples include: 1) Adversarial examples are a security concern for the real world. 2) To

test the worst-case robustness of machine learning algorithms. 3) To improve the robustness

of DNNs, where robustness refers to ensuring that small changes in the input will not result

in dramatic shift of its output.

Gaps and challenges.

Neural networks were first developed and widely applied in computer vision. There-

fore, an adversarial example first emerged and was extensively studied in the image do-

main [14]. However, adversarial threats also exist in other applications where the inputs
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are not in the form of an image. Sequential data is a typical example, which includes more

common and general data formats such as text, speech, and other temporal data (EHR or

trajectory). Little work has been done in the adversarial area for more general data inputs,

yet considerable threats still exist.

In the case of text data like spam, adversarial alterations may take the form of sub-

stituting synonyms for words that are common in non-spam messages (word substitution

attacks) [80]. In the medical domain, studies have shown that adversarial attacks can also

be executed successfully against highly accurate medical classifiers [28].

The differences between image and sequential data have placed great challenges to

directly apply techniques in the image to sequential inputs, which are listed as follows:

• Perturbation measurement. Image features are continuous while many of the tem-

poral data features are discrete. Generating adversarial examples is an optimization

problem that minimizes the perturbation magnitude while maximizing the predic-

tion probability of the target class. To measure the perturbation scales, we can use

Lp norm, the pixel-wise distance in the image domain. However, the perturbation

measurement for sequential data needs to be defined.

• Imperceptible perturbations. Small perturbations in the image are normally imper-

ceptible to human eyes, but changes in sequential data can be easily perceived. For

example, character-level insertion or grammar mistakes in texts are obvious when

reading. Significant changes in a patient’s vital signal can also be easily detected

by healthcare providers. From the aspect of attackers, more imperceptible attack

algorithms need to be developed. From the perspective of defenders,

• Data representation and modeling. Image patterns can be learned by the convolu-

tional network. However, learning the representation and capturing the pattern of

time-series data is more challenging due to the temporal dependency in addition to

the correlations between attributes.



4

To fill the gap of adversarial examples in sequential data and address the challenges, my

dissertation research focuses on improving the robustness of deep learning systems against

adversarial examples in sequential inputs, more specifically on two applications, NLP and

the health informatics domain.

1.2 Research Contributions

My dissertation research combines multiple studies to improve the robustness of deep learn-

ing systems against adversarial examples in sequential inputs. First, we take the NLP

and health informatics domains as examples, focusing on understanding the characteristics

of these two domains individually and designing empirical adversarial defense methods,

which are 1) RADAR, an adversarial detection for EHR data, and 2) MATCH, detecting

adversarial examples leveraging the consistency between multiple modalities. Following

the empirical defense methods, our next step is exploring certified robustness for sequential

inputs which is provable and theory-backed. To this end, 1) We propose WordDP, certified

robustness to word substitution attacks in the NLP domain, leveraging the connection of

differential privacy and certified robustness. 2) We studied the certified robustness meth-

ods to univariant time-series data and propose an adversarial attack in the Wasserstein space

which is more appropriate for measuring the in-distinguishability for time series data.

1.2.1 An Adversarial Detection Method for Sequential EHR Data (Sec.

4)

As adversarial threats are important yet under-explored in the clinical domain, in this work,

we devoted to enhancing the robustness of deep learning systems on temporal EHR data.

We focus on developing a defense method that takes into consideration the unique temporal

dependencies of the sequential data. Our goal is to benefit from the autoencoder’s [74]

reconstruction ability to distinguish adversarial examples and clean examples on EHR data.
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A recurrent autoencoder consisting of an encoder and decoder is trained on natural temporal

examples and learns the manifold of the natural examples [69]. At the test phase, given

an input x, the autoencoder will push the reconstructed output x′ closer to the manifold.

Adversarially designed examples can be interpreted as out-of-manifold examples that are

far away from natural example manifold. This reconstruction error can be used as a major

criterion to detect adversarial examples.

To more effectively model the multivariate time series data, we build an autoencoder

by integrating attention mechanism [6] with bi-directional LSTM [39] cell to capture both

past and future of the current time frame and their interdependence. In addition, to ad-

dress the sparsity and high dimensionality of EHR data, our method introduces prediction

uncertainty of the constructed output as additional detection criteria, besides lp-norm re-

construction error and prediction divergence of the target classifier.

Contributions. Our key contributions are:

1. We propose RADAR, the first effort to defend adversarial examples on temporal EHR

data. While EHR is used for evaluation, RADAR is also applicable to sequential text

data.

2. In order to more effectively model the multivariate time series data, we build an au-

toencoder by integrating attention mechanism [6] with bi-directional LSTM [39] cell

to capture both past and future of the current time frame and their interdependence.

3. To address the sparsity and high dimensionality of EHR data, our method introduces

prediction uncertainty of the constructed output as an additional detection criteria,

besides lp-norm reconstruction error and prediction divergence of the target classifier.
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1.2.2 Detecting Adversarial Examples Leveraging the Consistency be-

tween Multiple Modalities (Sec. 5)

This work also focuses on enhancing the robustness of deep learning systems on EHR data.

we build an empirical defense mechanism MATCH that uses additional modalities. As real-

world data always comes in multiple modalities, we believe that the correlations between

different modalities for the same entity can be exploited to defend against attacks. We pro-

pose MATCH system to detect whether an input is adversarial, under the circumstance that

one modality has been compromised, by measuring the consistency between the compro-

mised modality (clinical notes) and another uncompromised modality (temporal EHR). we

conduct a case study on predicting the 30-days readmission risk using an EHR dataset. Ex-

perimental results show that MATCH outperforms existing defense techniques in the text

domain due to the special characteristics of clinical notes.

Contributions. Our main contributions are as follows:

1. We apply adversarial attack methods to the clinical summaries of electronic health

records (EHR) dataset to show the vulnerability of the state-of-the-art clinical deep

learning systems.

2. We introduce a novel adversarial example detection method, MATCH, which auto-

matically validates the consistency between multiple modalities in data. This is the

first attempt to leverage multi-modality in adversarial research.

3. We conduct experiments to demonstrate the effectiveness of the MATCH detection

method. The results validate that they outperform existing state-of-the-art defense

methods in the medical domain.
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1.2.3 Certified Robustness to word substitution attacks via Differen-

tial Privacy (Sec. 6)

By studying the randomized smoothing on the embedding space, we conclude that the

existing efforts focused on the image domain cannot be easily adapted to text domain.

Rather than derive the certified bound ion the embedding space, it is more reasonable and

effective to explore the certified robustness in the word space.

In this work, We aim to improve the robustness of text classification models by ex-

plore the certified robustness in the word space. We propose a novel approach WordDP to

certified robustness against word substitution attacks in NLP via differential privacy (DP).

Differential privacy is a framework that protects the information of individual record in the

database by randomizing computations, such that the change of the algorithm’s output is

bounded when small perturbation is applied on the database.

This stable output guarantee is in parallel with the definition of robustness: ensuring

that small changes in the input will not result in dramatic shift of its output. Therefore, we

leverage this connection to provide a certified defense mechanism to adversarial examples.

Contributions. Our main contributions are as follows:

1. We propose WordDP to establish the connection between DP and certified robustness

for the first time in text classification domain

2. We leverage conceptual exponential mechanism to achieve WordDP and formally

prove an L-word bounded certified condition for robustness against word substitution

attacks.

3. We develop a simulated exponential mechanism via uniform sampling and weighted

averaging to overcome the computation bottleneck of the conceptual exponential

mechanism without compromising the certified robustness guarantee

4. Extensive experiments validate that WordDP outperforms existing defense methods



8

and achieves over 30× efficiency improvement in the inference stage than the state-

of-the-art certified robustness mechanism

1.2.4 Certified Robustness to the uni-variant time series data in the

Wasserstein space (Sec. 7)

To explore the certified robustness to time series data, we first propose a stronger adversarial

attack method to time series data.

The notion of adversarial indistinguishability, in the context of computer vision, is

typically bounded by L∞ or other norms. However these norms are not appropriate for

measuring indistinguishiability for time series data. In this work, we propose adversarial

examples in the Wasserstein space for time series data for the first time and use Wasserstein

distance to bound the perturbation between normal examples and adversarial examples. We

introduce Wasserstein projected gradient descent (PGD), an adversarial attack method for

perturbing univariant time series data. We leverage the closed form solution of Wasser-

stein distance in the 1D space and apply projection efficiently with the gradient descent

method. Followed by that, we evaluate Wasserstein smoothing [58], a potential certified

robustness method to Wasserstein adversarial examples that can provide certified bound in

the Wasserstein space.

Contributions. Our Contributions can be summarized as follow:

1. We study adversarial examples in the Wasserstein space for time series data for the

first time which better capture the distance and are more natural and imperceptible.

2. We utilize the characteristics of univariant time series data and propose a projected

gradient descent attack method which efficiently projects (bounds) adversarial exam-

ples in the Wasserstein ball.

3. We develop a two-step projection that first projects an adversarial example to a Lp
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norm ball and then use the projected example as the starting point for Wasserstein

projection to overcome the computing bottleneck of direct Wasserstein projection.

4. We empirically evaluate the proposed attack on several Electrocardiogram (ECG)

datasets in the health care domain. Extensive results demonstrate that the Wasser-

stein PGD is powerful and can attack most of the target classifiers with a high attack

success rate and yield more imperceptible and natural examples than attacks in the

Euclidean space.

5. We evaluate Wasserstein smoothing designed for image data as a baseline certified

robustness approach against Wasserstein attack which suggest that there is space for

stronger defense mechanisms tailored to time series data.

1.3 Organization

The remainder of this thesis is organized as follows. In Section 2, we give a brief overview

of the related works. In Section 3, we provide some preliminaries on adversarial examples,

certified robustness and differential privacy. Section 4, Section 5 Section 6 and Section 7

introduce our works. Section 8 is the conclusion and includes our future works.
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Chapter 2

Related Works

2.1 Adversarial Attack Algorithms

Since 2014 when researches found that adversarial examples can be easily crafted and

mislead the DNNs, many attempts have been made to develop algorithms to generate ad-

versarial examples. Generating adversarial examples can be generalized as an optimization

problem: minimize the perturbation while leading the model to misclassify. Researchers

have interpreted this optimization problem from many angles and developed various meth-

ods. They can be categorized as white-box attack, black-box attack, and real-world attack.

White-box attack means that the attackers have full access to the model details including

the parameters, while in black-box attacks the attackers can only have the permission to the

model outputs. White-box is more research-oriented that gives us the insight to study the

interpretability of DNNs. However, black-box attack is more related to real-world applica-

tions. Real-World Attack is under another scenario where inputs are not directly fed into

the model but perceived from physical equipment such as cameras and sensors. This re-

search direction is more related to real-world applications and aimed to address the security

of DNNs in the real world scenario.



11

2.1.1 White-Box Attack

L BFGS. Adversarial examples were first introduced in paper: Intriguing properties of

neural networks [91]. This was the first work that generalized the adversarial example

generation task into a constrained optimization problem:

Minimize ||r||2 such that : f(x+ r) = l and x+ r ∈ [0, 1]m (2.1)

where r indicates the perturbation. They converted this constrained optimization problem

into:

Minimize c ∗ ||r||2 + loss(f(x+ r), l), such that : x+ r ∈ [0, 1]m (2.2)

They approximate adversarial examples by using a box-constrained L-BFGS method to

find suitable constant c. The major findings of this work can be summarized as:

• Adversarial examples are easy to find.

• Generated adversarial examples could also be generalized to different models and

different training datasets.

• The cause of adversarial examples is more related to the data distribution rather than

the model hyperparameters.

FGSM. L-BFGS attack used an expensive linear search method which was time-consuming

and impractical. Ian Goodfellow et al [35]proposed a fast Gradient Method to generate

adversarial examples by performing one-step gradient update along the direction of the

sign of the gradient at each pixel:

r = ϵsign(∇xJ(θ, x, y)) (2.3)
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This method is simple and fast but cannot minimize the perturbation. Besides, FGSM is

an untargeted attack. Further studies have extended FGSM to targeted attack by slightly

modifying the loss function [81, 51]. Other researches intended to iteratively apply FGSM

in order to achieve a smaller perturbation[73, 50].

JSMA. JSMA [76] is designed to construct a direct mapping from input perturbation to

output perturbation. They use the Jacobian matrix of DNN output w.r.t the input - the for-

ward derivative to represent the adversarial salience map. Based on the pixel-wise salience

map, they modify one pixel at each time step. JSMA reduced the number of selected fea-

tures to perturb, however, this method runs very slow due to its significant computational

cost.

Deepfool. Deepfool [73] is proposed to find the closest distance from the original input

to the decision boundary of adversarial examples. They performed an iterative line ap-

proximation to overcome the nonlinearity of the high dimension. They introduce the basic

intuition from a basic affine classifier. The main idea of Deepfool is to reduce the intensity

of perturbation.

C&W. C&W [13]is the most powerful attack that requires minimal perturbations to achieve

the same attack success rate. They define the objective function to better minimize the

distance and penalty term.

2.1.2 Black-Box Attack [75]

Boundary attack. The intuition of boundary attack [11] is to initialize a sample that is

already adversarial, performs a random walk along the boundary between the adversarial

and the non-adversarial region such that the perturbation is reduced. They initialize the

adversarial example by random sampling and then perform random walk by drawing ran-

dom perturbation from proposal distribution. This iterative process ends when within the

maximum number of steps.
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ZOO. ZOO [15]is based on C&W attack with two modifications: 1) instead of using the

logits layer in the objective function, ZOO uses the model output with a log function;

2) Since black-box attack does not have access to the model parameter and cannot do

backward propagation, a zeroth-order optimization is applied to estimate the gradient and

use ADAM to do the optimization. As the computation is extremely high, they applied

Stochastic coordinate descent that randomly picks pixels to do optimization. ZOO can

achieve comparable performance as C&W attack.

2.1.3 Real-World Attack

All works we mentioned above have assumed a threat model in which the adversary can

feed data directly into the machine learning classifier. This is not always the case for sys-

tems operating in the physical world, for example, those which are using signals from

cameras and other sensors as input. In this work [50], they studied how the photo trans-

formation from the camera can affect the attack success rate and compared different image

transformation by changing the brightness, contrast, and Gaussian blur.

2.1.4 Non-LP-norm Attack

All the above attack methods we mentioned are LP -norm attack, which means that the

perturbations added to the images are constrained by a LP -norm distance. Another new

merging domain is Non-LP -norm attack. Non-LP -norm attack means that the perturbation

is not only a pixel-wise perturbation but could be other kinds of modifications such as

adding glasses or hat to a figure. Non-Lp-norm attack is often achieved by generative

models such as GAN or VAE [7, 84]. There is still a lack of defense techniques for these

kinds of adversarial examples.
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2.2 Defense Algorithms

Countermeasures to adversarial examples can be categorized based on their strategies: 1)

reactive: detect adversarial examples after DNNs are built such as detection; 2) proac-

tive: make DNNs more robust before adversaries generating adversarial examples such as

distillation, adversarial training, and gradient masking.

2.2.1 Network Distillation

Network distillation(ND) was originally used in transfer learning to reduce the size of the

DNNs. [78] introduced this idea into improving the generalize ability to an unseen dataset

and reduce the model to small noise. The intuition of ND is to use the softmax probability

of the first model to substitute the ground truth onehot label of the second model. They

use a parameter T to control the level of knowledge distillation. To apply this method as a

defense method, they use the same architecture for both models, which is basically a two-

stage training. From the result, defense distillation can significantly decrease the attack

success rate and does not influence model accuracy.

2.2.2 Adversarial Training

Adversarial training refers to training the model with adversarial examples [35]. Adver-

sarial examples are generated in every step of training and inject them into the training

set. Adversarial training is proved to be successful in improving the robustness of DNNs.

Adversarial training also could provide regularization for DNNs and improve precision as

well. However, [92] found that adversarially trained models are more robust to white-box

attacks but unsuccessful in black-box attacks. For black-box adversaries, perturbations

crafted on an undefended model often transfer to an adversarially trained one. To deal

with the perturbation transfer problem, they proposed Ensemble Adversarial Training, a

training methodology that incorporates perturbed inputs transferred from other pre-trained
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models. Their approach decouples adversarial example generation from the parameters of

the trained model and increases the diversity of perturbations seen during training.

2.2.3 Adversarial Detection

One category of the adversarial detector is to train DNN-based binary classifiers as detec-

tors to classify the input data as a clean input or an adversarial example. [34] proposed

to train the model using only clean data first and then generate adversarial examples for

each clean data. Then, they froze the weight of the first several layers and branch off the

main network at some layer and produce the probability of the input being adversarial. [70]

directly trained a binary classifier to distinguish adversarial examples from clean examples.

Another direction is to use the difference of the statistical proprieties of adversarial

examples to do detection. For example, [26] used higher prediction uncertainty of adver-

sarial example to do detection. Some other works [69, 101, 89] used probability divergence

(Jensen– Shannon divergence) as one of its detectors.

However, Carlini and Wagner [12] summarized most of these adversarial detecting

methods cannot defend adversarial examples in some cases by slightly change the loss

functions. They performed a zero-knowledge attack (adversary does not know the defense),

perfect-knowledge attack (knows the defense and model details), and limited-knowledge at-

tack (black-box, know the defense but do not have the detail of both the model and defense)

to evaluate ten detectors.

2.2.4 Gradient masking

Gradient masking is a technique that has been applied in many defense methods. Its in-

tuition is to make the model unusable to the attackers, including making the gradient un-

differentiable, randomizing the gradients, or leading the vanishing and exploding of the

gradient.

However, [5] claimed that obfuscated gradients give a false sense of security. They
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proposed new techniques to overcome obfuscated gradients caused by the above three phe-

nomena. From their experiments, seven of eight defenses in ICLR2018 which are based on

gradient masking have been broken using their techniques.

2.2.5 State-of-the-art Defense

[67]studied the adversarial robustness of neural networks through the lens of robust opti-

mization. They provided a broad and unifying view on much of the prior work on this topic.

They generalized the dense problem into a saddle point optimization problem. This saddle

point problem specifies a clear goal that an ideal robust classifier should achieve. They

achieve several conclusions: 1) Adversarial training based on the first-order adversary can

reliably solve this optimization. 2) Model capacity plays an important role in adversarial

robustness.

2.3 Certified Robustness

Most defense mechanisms can be easily broken after introduced. Therefore, it is impor-

tant to provide Certified Defense that is provable and theory-backed. This has become a

future direction to design an adversarial defense mechanism. The intention of Certified

robustness is to provide a bound for each image, such that adding any perturbation within

a norm bound around the image can be certified to be correctly classified. The evaluation

of certified robustness is not only the model performance but also the certified bound that

can be achieved. The current state-of-the-art certified defense includes [54, 18].

PixelDP. Lecuyer et al. [54] propose PixelDP to achieve certified robustness by considering

an input image as a database in DP parlance and each pixel of the image as each record in

DP. PixelDP shows that adding a randomization layer in the model to preserve DP on image

pixels guarantees certified robustness of the model against adversarial examples.

Randomized Smoothing. Randomized smoothing is another technique that adds random
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noise to the input for achieving certified robustness and has been shown to outperform

PixelDP with tighter robustness guarantee. Li et al. [59] derive a certified bound for ro-

bustness to adversarial examples using Rényi Divergence [33] by adding additive random

noise to the input. Cohen et al. [18] leveraged Neyman-Person lemma to analyze the cor-

relation between the highest scored class and the second highest class. Compared to the

previous work, they provide a tight certified robustness guarantee for the model. All above-

mentioned work are certified within an L2 radius which means that the adversary cannot

alter the prediction within a L2 unit ball. Lee et al. [56] provide certified robustness for

discrete cases where the adversary is L0 bounded (the number of pixel changes in a figure).

Salman et al. [82] further employ adversarial training to improve the certified robustness

of models.

2.4 Adversarial Examples in NLP Domain

2.4.1 Attack Algorithms

Attack algorithms in NLP domain refer to generating adversarial examples on input text to

make the target model gives the wrong prediction. A well-designed attack algorithm aims

to minimize the added perturbation meanwhile fools the model. In the image domain, we

can use Lp norm, the pixel-wise distance between adversarial examples and clean examples

to measure the scale of the perturbation. In text domain, the evaluation is more complicated

because it is import to maintain the grammar correctness, semantic and syntactic validity

at the same time. Most popular measurements include: 1) Norm-based measurement on

the embedding space. 2) Cosine Similarity between vectors. 3) perplexity to ensure the

generated adversarial examples are valid. 4) Word Mover’s Distance (WMD) 5) Jaccard

similarity coefficient that utilizes intersection and union of word sets of two sentences.

There are many ways to categorize adversarial attacks on texts:

• Model access: White-box vs. Black-White. White-box attack means that the attack-
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ers have full access to the model details including the parameters, while in black-box

attacks the attackers can only have the permission to the model outputs.

• Semantic group: Character-level vs. Word-Level vs. Sentence-level attack. The

attack level clarifies the basic semantic group that the attacker targets.

• Attack strategy: Optimization-based vs. Score-based. For optimization-based at-

tacks, generating adversarial examples is an optimization problem. For score-based

approach are those by modifying important words in a sentence.

• Target models: In mast cases the target model is classifiers. However, in text do-

main, there are some studies focused on generative models such as Neural Machine

Translation (NMT).

In this section, I will overview on the state-of-the-art attacks following the category of

Optimization-based approach vs. Score-based Approach.

Notations.

F represents the target model that the attackers attack on. It could be a text classifier,

or Q&A system or a NMT.

x = x1, x2, ..., xn represents the input sentence where xi denotes the ith word. x′ is the

corresponding adversarial example of clean example x.

y represents the ground truth label.

Optimization-based approach

Jacobian-based attack. In [77], the authors adopted the idea of JSMA in image domain

to text domain. They compute the Jacobian of the output w.r.t the embedding space of

the text input. Iteratively, they select the ith word at each step and perturb this word by

adding the sign of the Jacobian matrix of the jth class to ith word. However, the difficulty

is that, the perturbed embedding cannot be converted back to an existing word in the vo-



19

cabulary. Therefore, they further project the perturbed examples onto the closest vectors in

the embedding space to get valid embeddings.

iAdv-Text. The idea of iAdv-Text [83] is very similar to [77]. There are two major differ-

ences. First, They use the sign of the gradient of the loss w.r.t the embedding of input x.

Second, they only restrict the directions of the perturbation in the embedding space toward

existing words in the input word embedding space by adding a direction vector. Note, in

[77], they project the perturbed examples onto the closest vectors in the embedding space

to get valid embeddings. They also involve the generated adversarial examples in the ad-

versarial training. From their experiment, their method can decrease the test error rate of

the target model.

Combinatorial Optimization. In this paper [104], the authors point out that the existing

attacks are far from perfect, largely because of unsuitable search space reduction and in-

efficient optimization algorithms are employed. For the search space reduction problem,

the authors propose to use Sememe to search for the substitute word instead of the word-

embedding based, synonym-based substitution. This is because sememe-based method can

obtain the grammaticality and naturality of original input compared to word-embedding

based substitution, and have a larger search space compared with synonym-based substitu-

tion. For the inefficient optimization problem, the authors propose to apply Particle Swarm

Optimization (PSO) to search for the optimal adversarial example in the discrete searching

space composed of all substitution words of all the words in a sentence. They conduct

exhaustive experiments to evaluate the attack by attacking BiLSTM and BERT on three

benchmark datasets. Experimental results demonstrate that their method can achieve much

higher attack success rates and crafts more high-quality adversarial examples compared

with PWWS and Genetic Attack (will be mentioned in the next section).
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Score-based Approach

TextFool. The intuition of TextFool [63] is to firstly identify text items that possess signif-

icant contribution to the classification. These important words will generate “hot phrase”.

For all training samples, the hot phrases obtained previously will be collected. These

phrases will be inserted in, deleted from, or modified in the original text to generate ad-

versarial examples. They use the cost gradient to identify the importance of each word.

Cost gradient is defined as ∇xJ(F, x, y). This cost gradient is adopted from FGSM, the

most popular attack in the image domain. However, the drawback of this algorithm is

that, the process is performed manually. Therefore, they does not report the overall attack

success rate on the dataset. They just randomly sample an example from each class and

demonstrate the effectiveness of their attack.

AdvGen. AdvGen[17] is proposed to attack on Neural Machine Translation (NMT). For

a selected word, they use a language model to measure the probability of substituting the

original word to candidate word in the vocabulary. Then, they select the top k candidate

word xi and generate adversarial examples by:

argmax
xi

sim(e(x)− e(xi)),∇e(x)J) (2.4)

where sim() denotes a similarity measurement and e(x) refers to the word embedding.

They further use generated adversarial examples to adversarially train the NMT and im-

prove the robustness of the target model.

MHA. MHA [106] proposed to generate fluent adversarial examples. They utilize the

Metropolis- Hastings (M-H) sampling to sample words to be replaced and the words to be

replaced with under a pre-distribution π(x), and language model to guarantee the fluent of

the adversairal example. At each iteration, a proposal g(x′|x) is made to jump from x to x′.
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If this proposal pass the accepted rate, which is defined as:

α(x, x′) = min{1, π(x)g(x
′|x)

π(x′)g(x|x′)
} (2.5)

the algorithm jumps to x′. Otherwise, it stays at x.

DeepWordBug. DeepWordBug [31] generate adversarial examples by character transfor-

mations. They first identify the most important tokens that change the network output most

significantly. Then, random transformation such as character level insertion, deletion and

swap are introduced until the prediction label flipped. However, these transformations can

introduce typos such as misspelling into the sentence, which can be easily detected and

adjusted by autocorrector.

Hotflip. Hotflip [25] uses atomic flip operations to generate adversarial examples. It uses

directional vectors to represent the character-level operations such as insertion, deletion

and swap. Given a one-hot representation of the input, a character flip in the jth character

of the ith word can be represented by a directional vector. Then the best character swap can

be found by maximizing the first-order approximation of loss change along the operation

vector, which is the gradient of the loss w.r.t the input x times the directional vector. Using

the beam search, HotFlip can efficiently find the best directions for multiple flips.

TextBugger. TextBugger [60] can generating adversarial examples in both black-box and

white-box settings. In the white-box scenario, Jacobian matrix was used to calculate the

importance of each word. In the black-box scenario, they compute the importance of each

word by querying the target model with the original sentence and sentence with the word

removed. The difference between these queries’ results can represent the score of the word

in the sentence. After sorting the words based on the importance score, they use character-

level and word-level modification to adversarial examples.

Genetic Attack. Genetic attack [3] is inspired by the process of natural selection. At each

generation, the algorithm will generate a population by creating a set of distinct modifi-
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cations to the previous generation. For each population member, a fitness score will be

calculated as the target label prediction probability. If the prediction is equal to the target

label, the process ends with successfully generated the adversarial examples. Otherwise,

a new child sentence is then synthesized from a pair of parent sentences by independently

sampling using a uniform distribution. These child sentences will be used a the parent sen-

tence to generate the population for the next generation. They evaluated the algorithm on

two tasks: Sentiment Analysis and Textual Entailment and achieve a high attack success

rate.

PWWS. PWWS [80] proposes to use synonyms to substitute the original word to generate

adversarial examples, such that guarantee the lexical correctness with little grammatical

error and semantic shifting. They first generate synonyms sets for each word in the sen-

tence and select the synonym in the set that can cause the greatest prediction probability

change as the candidate substitution for the original word. Then, they incorporate word

saliency to determine the replacement order, which is the degree of change in the output

classification probability if a word is set to unknown. They report the attack success rate

and word replacement rate on three datasets (IMDB, AG’News and Yahoo’s Answers) and

outperformed four baseline attacks.

TEXTFOOLER. TEXTFOOLER [43] is a very simple but effective attack algorithm. It

first ranks the importance of the words in the sentence and iteratively modifies one word at

each time followed by the importance rank. They modify the ranked word by generating a

candidate word set which consists of synonyms measured by cosine similarity. Then, the

candidate word with the least confidence score of label y will be selected as the best re-

placement word for the original word. This process will terminate until the prediction label

being changed. Another contribution of this paper is that they conducted a comprehensive

evaluation of three state-of-the-art deep learning models over five popular text classification

tasks and two textual entailment tasks, including the Bert model. From the experiments, it

achieved the state-of-the-art attack success rate and perturbation rate compared to the Ge-
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netic Attack. Besides, they also performed a human evaluation on the grammar correctness.

The evaluation scores are close between adversarial examples and clean examples.

2.4.2 Defense Algorithms

The reason we study adversarial examples for NLP system is to improve the security and

robustness of these DNNs. However building a defense mechanism is much more chal-

lenging than adversarial attacks, which is the same situation in the image domain. This is

because the DNN is still not interpretable and the input space is extremely large, making it

impossible to build an actual adaptive defense method. In this section, I will discuss two

main tracks of defense works: Adversarial training and Adversarial detection.

Adversarial Training. Adversarial training has been widely used in the image domain

and has also been adapted to text domain. Adversarial training refers to training the model

with adversarial examples [35]. Adversarial examples are generated in every step of train-

ing and inject them into the training set. Adversarial training is proved to be successful

in improving the robustness of DNNs in the image domain. However, In text domain, ad-

versarial training is not usually useful because of the discrete nature of text data and the

different ways of applying perturbations (insertion, deletion and swap) compared with im-

age inputs. Miyato [71] applied the adversarial training to the text domain and achieved the

state-of-the-art-performance. Wang [98] proposed Synonyms Encoding Method (SEM),

which tried to find a mapping between the word and their synonymous neighbors before

the input layer. This can be considered as an adversarial training method via data augmen-

tation. Then this mapping works as an encoder applied to the classifier. The classifier is

forced to be smooth in this way. However, SEM can only work for synonym substitution

attacks.

Overfitting is also one of the major reason why the adversarial training is sometimes

not useful and effective specific to attacks that are used to generate adversarial examples in

the training stage.
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Adversarial Detection. Most detection methods use spelling check. Gao [31] used Python’s

Autocorrect 0.3.0 to detect character-level adversarial examples. [60] took advantage of a

context-aware spelling check service to do the similar work. However, these detections

are not effective for word-level attacks. Zhou [109] proposed a framework learning to dis-

criminate perturbations (DISP), which learns to discriminate against the perturbations and

restore the original embeddings.

Others. The above-mentioned methods share the same limitation: very specific to a task

or a specific model. In [45], they propose to build a framework that can reuse across mul-

tiple tasks, allowing us to only worry about robustness once: during its construction. They

introduce robust encodings (RobEn): a simple framework that confers guaranteed robust-

ness, without making compromises on model architecture. The core component of RobEn

is an encoding function, which maps sentences to a smaller, discrete space of encodings.

Systems using these encodings as a bottleneck confer guaranteed robustness with standard

training, and the same encodings can be used across multiple tasks.

2.4.3 Certified Robustness

Certified robustness with IBP. [42] and [38] provided a model that is provably robust to all

synonymous substitution attacks. Interval Bound Propagation (IBP) is a simple bounding

mechanism that giving the upper and lower bound of an input, we can obtain the upper

and lower bound of the output. The intuition of using IBP to provide certified robustness

bound is to compute an upper bound on the model’s loss in the forward pass when given

an adversarially perturbed input. Then we can efficiently train models to minimize this

bound via backpropagation. The key idea is to compute upper and lower bounds on the

activations in each layer of the network, in terms of bounds computed for previous layers.

These bounds propagate through the network in a standard forward pass until we obtain

bounds on the final output.

Certified Robustness with Tree Structure. Safer [102] is a certified robust method
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based on a new randomized smoothing technique. It replaces the original classifier with

a smoothed classifier. Given the synonym sets, they generate the perturbation sets from it.

When an input sentence X arrives, they draw perturbed sentences from a given distribution

and average their outputs to see with they satisfy a certain condition. If so, this input is

treated as certified robust. They reported the certified accuracy which is defined as how

many percentages of examples can satisfy the certified condition.

2.5 Adversarial Examples in Clinical Research

Very recently, it has been pointed out that medical machine learning systems may be

uniquely susceptible to adversarial examples [28]. Several works studied adversarial ex-

amples in medical image models [29, 65, 95, 61].

In 2019, a research team from Harvard and MIT [28] first pointed out that medical ma-

chine learning systems may be uniquely susceptible to adversarial examples. They gave

a high-level overview of the potential vulnerability in state-of-art medical machine learn-

ing systems. Following that, they demonstrated that adversarial examples are capable of

manipulating deep learning systems on medical computer vision models [29]. Ma et al.

[65] provided a deeper understanding of the nature that medical image DNN models can

be more vulnerable to adversarial examples. In 2019, Vatian [95] conducted experiments

to show that the degree of manifestation of adversarial examples varies depending on the

type of training model.

In 2020, Li et al. [61] generated adversarial 3D MRI brain image targeting conven-

tional deep neural network and hybrid deep model with additional features informed by

anatomical context. They found that the hybrid model is much more robust to adversarial

perturbations than the conventional deep neural network.

A few works explored the adversarial examples on sequential EHR data. Sun et al.

[90] proposed an RNN-based time-preferential minimum attack strategy. Their attack al-



26

gorithm is similar to the C&W attack in image domain. Although this work demonstrated

the vulnerability of the DNN model on EHR data, the main goal of this paper is to iden-

tify susceptible locations in EHR data and facilitate physicians. In 2019, Wang et.al [4]

proposed a saliency score based adversarial attack on longitudinal EHR data that requires

a minimal number of perturbations and minimizes the likelihood of detection. The limita-

tion of this work is that their medical features are binary coded so it is not applicable to

continuous features.

2.6 Differential Privacy

Gradient Perturbation. Gradient perturbation is a widely used technique that injects per-

turbation to the gradient of each parameter to guarantee DP for deep learning models. Song

et al. [88] first propose the gradient perturbation method by injecting perturbation to the

gradients during parameter updates with stocastic gradient descent (SGD). Bassily et al.

[8] improve the gradient perturbation by leveraging privacy amplification via sampling [9]

(Lemma II.2 in [8]) and strong composition [24] (Lemma II.3 in [8]) to achieve a tighter

bound. Abadi et al. [1] make further improvement by proposing a novel privacy composi-

tion tool: moments accountant, which can compute the overall privacy cost during training

and achieve a tighter bound. Shokri et al. [86] propose the gradient perturbation method

under the distributed learning scenario. Wang et al. [96] replace SGD optimizer used in

previous work with stochastic variance-reduced gradient (SVRG) [100] to achieve a faster

optimization. However, it requires the loss function l to be convex, G-Lipschitz and β-

smooth. Lee et al. [57] and Yu et al. [103] improve the gradient perturbation method by

dynamically allocating the privacy budget per iteration and leverage zero-concentrated DP

(zCDP) [57] to analyze the privacy cost.

Input Perturbation. Input perturbation is a technique that adds noise to the original train-

ing data to achieve DP models. Fukuchi et al. [30] first attempted to use Taylor expansion
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to transform input perturbation into gradient perturbation. Although input perturbation

framework theoretically guarantees that model trained with perturbed inputs is DP, this

work imposes several constraints on the loss function, which cannot be practically applied

with deep learning systems. Kang et al. [47] propose an input perturbation that generalizes

the constraints on the loss function to less strict conditions. They also take a further step by

finding that different training data will affect the model in different ways [46]. However,

this work requires a pre-trained model that should also be DP, which also requires privacy

budget. In summary, all the above works impose strict constraints on the loss function to

analyze DP for input perturbation. These constraints can not be satisfied by typical deep

learning models.
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Chapter 3

Preliminaries

3.1 Adversarial Word Substitution and Certified Robust-

ness

Adversarial Word Substitution. Consider a sentence of ω words X = (x1, x2, ..., xi, ..., xω),

where each word xi belongs to a synonym set of κ(i) number of synonyms S(xi) =

{x1
i , x

2
i , ..., x

κ(i)
i }. Following common practice [102], we also assume the synonymous

relation is symmetric, such that xi is in the synonym set of all its synonyms x2
i , ..., x

κ(i)
i

and S(xj
i ) = S(xk

i ) for all j, k ∈ [κ(i)]. The synonym set S(xi) can be built by following

GLOVE [79].

Definition 3.1.1. (L-Adversarial Word Substitution Attack) For an input sentence X, an

L-adversarial word substitution attack perturbs the sentence by selecting at most L (L ≤ ω)

words xτ1 , ..., xτL and substitutes each selected word xτi with one of its synonyms x′
τi
∈

S(xτi). We denote an attacked sentence by X′ and the set of all possible attacked sentences

by S (L).

Certified Robustness. In general, we say a model is robust to adversarial examples when

its prediction result is stable when applying small perturbations to the input.
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Definition 3.1.2. (Certified Robustness to Word Substitution Attack) Denote a multi-

class classification model by f(X) : X 7→ c ∈ C, where c is a label in the possible label set

C = {1, ..., C}. In general, f(X) outputs a vector of scores f y(X) = (f y1 , ..., f yC ) ∈ Y ,

where Y = {y :
∑C

i=1 f
yi = 1, f yi ∈ [0, 1]}, and c = argmaxi∈C f

yi . A predictive model

f(X) is robust to L-adversarial word substitution attack on input X, if for all X′ ∈ S (L),

it has f(X) = f(X ′), which is equivalent to

yc(X
′) > max

i∈C:i ̸=c
yi(X

′). (3.1)

In the following, we refer to the above robustness as L-certified robustness for short.

3.2 Differential Privacy and Exponential Mechanism

Differential Privacy. The concept of DP is to prevent the information leakage of an in-

dividual record in the database by introducing randomness into the computation. More

specifically, DP guarantees the output of a function over two neighbouring databases are

indistinguishable.

Definition 3.2.1. (Differential Privacy [22]) A randomized mechanismA is ϵ-differentially

private if, for all neighboring datasets D ∼ D′ that differ in one record or are bounded by

certain distance and for all events O in the output space O of A, we have

P[A(D) ∈ O] ≤ eϵP[A(D′) ∈ O]. (3.2)

Exponential Mechanism. The exponential mechanism is a commonly utilized DP mech-

anism in the discrete domain, which consists of the utility score function, sensitivity, and

sampling probability distribution as its key ingredients.

Definition 3.2.2. (Exponential Mechanism [68]) Denote the score function u(D, r) : D×

R 7→ R, which maps each pair of input dataset D ∼ D and candidate result r ∈ R to a

real valued score. Denote the sensitivity by ∆u := maxr∈R maxD∼D′ |u(D, r)− u(D′, r)|.
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The exponential mechanism ME(D, u,R) selects and outputs an element r ∈ R with

probability proportional to e
ϵu(D,r)
2∆u . The exponential mechanism is ϵ-differentially private.
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Chapter 4

RADAR: Recurrent Autoencoder Based

Detector for Adversarial Examples on

Temporal EHR

4.1 Overview

Electronic Health Record (EHR) is the digital version of a patient’s medical history in-

cluding diagnoses, medications, physician summary and medical image. The automated

and routine collection of EHR data not only improves the health care quality but also

places great potential in clinical informatics research [85]. Leveraging the information-

rich and large volume EHR data, deep learning systems have been applied for assisting

medical diagnosis, predicting health trajectories and readmission rates, as well as sup-

porting disease phenotyping [99]. Deep learning models have crucial advantages over the

traditional machine learning approaches including the capability of modeling complicated

high-dimensional inter-feature relationship within data and capturing the time-series pat-

tern and long-term dependency [90].

However, recent studies show that the statistical boundary of deep learning model is
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vulnerable, allowing the creation of adversarial examples by adding imperceptible pertur-

bations on input to mislead the classifier [35]. These adversarial threats are more severe

in the medical domain. First, the sparse, noisy and high-dimensional nature of EHR data

exposes more vulnerability to potential attackers. Second, some modalities of EHR data

such as genetic panels and clinical summary may be generated by a third-party company

that has a higher risk being attacked. Finally, medical machine learning systems may be

uniquely susceptible to adversarial examples [28] due to high financial interests such as

insurance claims.

Despite several attempts on the attack algorithms for temporal EHR data, there is no

study on potential defense techniques.In this work, we propose RADAR, a Recurrent

Autoencoder based Detector for Adversarial examples on temporal EHR data, which is

the first effort to defend adversarial examples on temporal EHR data. The intuition is that

an autoencoder can learn the manifold of the clean examples. At the test phase, given an

input, the autoencoder will reconstruct the input and push the reconstructed output closer

to the manifold. As a result, clean examples will have lower reconstruction error since they

are closer to the manifold while adversarial examples may have larger error because they

have been strategically perturbed. Thus the reconstruction error and additional criteria can

be used to detect adversarial examples.

RADAR has two main technical contributions addressing the challenges that are spe-

cific to temporal EHR data. First, in order to more effectively model the multivariate

time series data, we build an autoencoder by integrating attention mechanism [6] with

bi-directional LSTM cell to capture both past and future of the current time frame and their

interdependence. By increasing the amount of input information available to the network,

RADAR has a higher reconstruction ability which guarantees a higher detectability. Sec-

ond, to address the sparsity and high dimensionality, besides lp-norm reconstruction error

and prediction divergence of the target classifier between the input and reconstructed out-

put, our method introduces prediction uncertainty of the constructed output as an additional
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detection criteria. Our hypothesis is that autoencoder reconstructed output of adversarial

examples can result in more uncertainty on the prediction due to its goal of flipping the

original class label. This metric focuses on the downstream prediction rather than the data

itself thus can overcome the sparsity challenge of EHR data, and provide a critical and

complementary criteria for detecting adversarial examples.

RADAR is the first effort to propose defense techniques on temporal EHR data. We

evaluate RADAR on a mortality classifier using the MIMIC-III [44] dataset against both

existing and our enhanced attacks. Experiments show that RADAR can effectively filter

out adversarial examples and significantly improve the target model performance.

Figure 4.1: The framework of RADAR

4.2 Method

In this section, we first give an overview of the RADAR framework. We then present

the details of the recurrent autoencoder architecture, followed by the adversarial example

detection criteria. Finally, we present our enhanced attack algorithm.

RADAR is an autoencoder based detector as shown in Figure 4.1. A recurrent autoen-

coder consisting of encoder and decoder is trained on natural temporal examples and learns

the manifold of the natural examples. At the test phase, given an input x, the autoencoder
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will push the reconstructed output x′ closer to the manifold. Adversarially designed exam-

ples can be interpreted as out-of-manifold examples that are far away from natural example

manifold. Therefore, when an adversarial example x is fed into a well trained autoencoder,

the reconstruction distance between x and x′ would be high. The stronger the adversarial

perturbation, the larger the reconstruction distance. By contrast, as clean example itself

is close to the manifold, the reconstruction distance would be small. Based on a set of

carefully designed detection criteria including the reconstruction error, RADAR can detect

adversarial examples. As autoencoder can push the reconstructed output closer to the mani-

fold, it can play the role of a reformer. In other words, if an adversarial example is detected,

its reconstructed output x′ will be treated as reformed output and fed into the classifier.

4.2.1 Recurrent Autoencoder Architecture

Temporal EHR data is multivariate time series data. As our goal is to benefit from the au-

toencoder’s reconstruction ability to distinguish adversarial examples and clean examples,

it is crucial to build a recurrent autoencoder structure that is capable of learning both tem-

poral correlations and feature correlations. In this work, we adopt the bidirectional-RNN

with attention mechanism for temporal EHR. While the architecture is commonly used, the

attention mechanism is first used for EHR data.

Our model is a bidirectional-RNN autoencoder which is shown in Figure 4.2. For the

RNN cell, we adopt a stacked LSTM cell designed to capture the long-term dependency and

remember information for long periods of time. We feed into the bidirectional-RNN au-

toencoder with input x1, x2, ..., xt and reversed input xt, xt − 1, ..., x1. The forward stacked

LSTM of the encoder steps through forward input and encodes the input into hidden states

h1f for the first stack and h2f for the second stack. Similarly, the backward stacked LSTM

works on the reversed input and generates hidden states h1b and h2b. These hidden states

are concatenated and a fully-connected layer is applied to form two fixed-length vectors

z1 and z2. These two vectors are treated as the initial states of stacked LSTM cells in the
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Figure 4.2: BRNN-AE Architecture.

decoder, feeding z1 to the first stacked LSTM cell and z2 to the second stacked LSTM cell,

which enables the decoder to generate reconstructed output.

One limitation of this encoder and decoder structure is that when the input sequence

is long, the fixed-length vector may fail to compress all the information. This issue is

significant in temporal EHR data, as the duration of a patient’s stay may vary and can be

extremely long. To address this, we add the attention mechanism between the encoder and

the decoder. Rather than encoding the input sequence into a fixed-length vector, attention

forms a weighted sum of each hidden state, referred to as context vectors, allowing the

decoder to focus on certain parts of the input when generating its output. In this work, we

adopt Bahdanau attention [6] which uses weighted sum of attention weights and encoder

hidden states to calculate context vectors and compute the final output of decoder.

We train the autoencoder on clean temporal EHR examples. The loss function is the

reconstruction error between the input sequence and the generated output sequence, which

is defined as:

L(x, x′) = ∥x, x′∥2 + Lreg(θ) (4.1)

where Lreg denotes the L1 regularization on parameters.
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4.2.2 RADAR Detection Criteria

Given an input sequence and the reconstructed sequence, RADAR uses a set of detection

criteria to distinguish between a clean example and an adversarial example. Considering

the sparsity and high-dimensionality nature of EHR data, our detection criteria includes not

only the reconstruction error and prediction divergence that are employed in MagNet, but

also the prediction uncertainty of the target classifier.

Reconstruction Error. The reconstruction error between the original and reconstructed

sequence is measured by the Lp-norm Lp(x, x
′). Most commonly used Lp-norm is L1

norm and L∞ norm.

Prediction Divergence. In addition to the distance between x and x′ in the data space, the

prediction divergence between x and x′ in their prediction output on the target classifier

is also considered. The intuition is that clean examples should have a low divergence.

Jensen Shannon Divergence (JSD), a symmetric measurement of the distribution similarity

is applied to the target classifier’s prediction logits, which is defined as:

JSD(lx||lx′) =
1

2
KL(lx||

1

2
(lx + lx′)) +

1

2
KL(lx′ ||1

2
(lx + lx′)) (4.2)

where lx and lx′ are the classifier’s prediction logits of input x and reconstructed output

x′. KL denotes the Kullback-Leibler divergence which is a non-symmetric measurement

of the difference between two probability distributions. The lower value of JSD, the more

similar two distributions are.

Prediction Uncertainty. In addition to the above two measures, we introduce a new criteria

based on the prediction uncertainty of the reconstructed output on the target classifier. Our

hypothesis is that the reconstructed output of an adversarial examples can result in more

uncertainty on the prediction due to its goal of flipping the original class label. Prediction

uncertainty focuses on the downstream prediction rather than the data itself thus can over-

come the sparsity challenge of EHR data, and provide a critical and complementary criteria
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for detecting adversarial examples. Some existing works have proposed methods to mea-

sure neural network prediction uncertainty, such as entropy of predictive distribution [62],

mutual information and differential entropy [87]. In this work, we use entropy of predictive

distribution to reflect uncertainty, which is defined as:

Entropy(lx′) = −
n∑

i=1

silog(si), where si =
el

i
x′∑n

j=1 e
lj
x′

(4.3)

Here, n is the number of prediction classes, si is the softmax value of the ith class and lix′

is the logits value of the ith class of x′.

Given an input x, RADAR detects it as an adversarial example if any one of the above

three measurements is greater than a threshold: M(x, x′) > δM where M represents re-

construction error, prediction divergence, and prediction uncertainty; and δM is the corre-

sponding threshold. In practice, we can choose δM to allow a certain percentage of clean

examples (e.g. 95%) to pass each criteria. We will study its tradeoff in the experiments

section.

4.2.3 Enhanced Attack

In this paper, we also propose an enhanced attack algorithm that addresses the sparsity

and high-dimensionality of sequential EHR data to generate more powerful adversarial

examples.

Adversarial examples are designed by adding small perturbations to clean examples.

For temporal EHR data, a clean example can be represented as x ∈ Rt×f = {x1, x2, ..., xt},

where xi ∈ Rf denotes the f -dimension feature space at the time step i. Given a classifier

F , if xadv satisfies that F (xadv) ̸= F (x) and Lp(x, xadv) < C, we say xadv is the corre-

sponding adversarial example of x. The attack algorithm that we applied to evaluate our

proposed defense mechanism is similar to the method proposed in Sun et al. [90]. The

purpose of the attack is to maximize the prediction logits on the position of targeted label
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(which equals to minimizing the logits on the position of true label) while minimizing the

perturbation magnitude, which is formulated as:

argmin
xadv

Ly + αLx, with (4.4)

Ly = max{l(xadv)ytrue − l(xadv)yfalse ,−k} and Lx = ||xadv − x||p (4.5)

where l(·)ytrue and l(·)yfalse denotes the logits on the position of true label and false

label, as mortality prediction is a binary prediction. A positive value of k ensures a gap

between true and adversarial label, which is commonly set to 0. α is a coefficient for the

perturbation magnitude.

The Lp-norm is aimed to minimize the EHR location-wise similarity, which does not

take into consideration the sparsity and high-dimensionality of sequential EHR data. There-

fore, the adversarial examples generated by the attack algorithm can be easily detected by

an autoencoder based detection. To craft more powerful adversarial examples, we introduce

Gaussian observation [52] into the loss function to force the generated adversarial example

to follow the same distribution as clean examples and less detectable by an autoencoder

based detection. Gaussian observation is defined as the probability of clean example fol-

lowing the Gaussian distribution with mean as the corresponding adversarial examples and

covariance as an identity matrix. Adding the objective of maximizing the Gaussian obser-

vation N(x|xadv, I), the attack algorithm can be formulated as a minimization problem:

argmin
xadv

Ly + αLx − βN(x|xadv, I) (4.6)

where α and β are the coefficients of the two parts of perturbation constraint. For

the perturbation magnitude Lx, the L1 norm induces sparsity on the perturbation and en-

courages the attack to be more focused on some specific location. By contrast, L∞ norm

encourages the perturbation to be more uniformly distributed with smaller magnitude on

each location. In the experiments, we will compare the attack performance of L1 norm and
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L∞ norm with and without Gaussian observation.

4.3 Experiments

In this section, we will first compare adversarial examples generated by our enhanced attack

compared to existing works. Then, we will evaluate the detection performance of RADAR.

4.3.1 Data and Model

Dataset and Model Architecture. MIMIC-III (The Multiparameter Intelligent Monitoring

in Intensive Care) dataset [44] is a publicly available clinic dataset containing thousands of

de-identified intensive care unit patients’ health care records. For mortality prediction, we

directly adopt the processed MIMIC-III data from Sun et al. [90] The data contains 3177

positive samples and 30344 negative samples. Each sample consists of 48 timestamps

and 19 features at each time step. These 19 variables include vital signs measurements

such as heart rate, systolic blood pressure, temperature, and respiratory rate, as well as lab

events such as carbon dioxide, calcium, and glucose. Missing features are imputed using

average value across all timestamps and outliers are removed and imputed according to

interquartile range (IQR) criteria. Then, each sequence is truncated or padded to the same

length (48 hours). After imputation and padding, each feature is normalized using min-max

normalization.

X =
X −min(X)

max(X)−min(X)
(4.7)

The BRNN-AE architecture consists of an encoder with bi-directional two-stacked

LSTM cells of units 32 and 64 respectively for both forward and backward LSTM, fol-

lowed by two fully-connected layers of size 16 and 32 to form two fixed-length vectors as

the input to decoder. The decoder consists of an attention layer of size 64 and two-stacked

LSTM cells of size 16 and 32.
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Pretrained Model Performance. Our target model is a mortality classifier. The network

architecture is a simple LSTM of 128 units followed by a fully-connected layer of 32 units

and a softmax layer. The 5-fold mean and standard deviation of the model performance is

shown in Table 4.1.

Table 4.1: 5-fold cross validation performance of target classifier

Metric Accuracy AUC F1 Precision Recall
Avg ± STD 0.894± 0.0124 0.812± 0.0187 0.603± 0.0279 0.536± 0.0548 0.702± 0.0564

4.3.2 Attack Performance

We use different distance metric to measure the similarity between adversarial examples

and clean examples, including Lp-norm and KL divergence. Lp-norm aims to measure

EHR location-wise similarity and KL divergence measures the distribution similarity over

the whole set of adversarial examples and clean examples. A lower distance means a less

detectable attack. In this experiment, the stop criteria for generating each adversarial ex-

ample is when the prediction label is flipped. Only the successfully attacked examples will

be used to calculate the Lp-norm and KL divergence.

Table 4.2 shows the distance metrics of the successfully flipped examples by different

attacks. For the baseline attack with no distance optimization, the α and β in equation

4.6 are set to 0. For the L1-norm attack (Sun et al.[90]) and L∞-norm attack, α is set

to 1 and β is set to 0. The last two columns correspond to our enhanced attacks with

Gaussian observation. We observe that the no dist attack (that only aims to flip the label)

has the highest distance as expected. Our enhanced attacks based on L1 and L∞ have

the lowest L1 and L∞ distances respectively, and significantly outperform the existing L1

and L∞ based attacks. This verifies the benefit of Gaussian observation in our enhanced
Table 4.2: Attack performance comparison

MetricLoss Func No dist L1-norm L∞-norm L1-norm enhanced L∞-norm enhanced
L1 3.672 0.815 0.920 0.524 0.792
L∞ 0.427 0.138 0.131 0.129 0.119
KL 6.521 0.736 0.817 0.811 0.735
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(a) Attack Success Rate (b) Detection Success Rate

Figure 4.3: Comparison between baseline attack and enhanced attack

attacks. By forcing the generated adversarial example to follow the same distribution as

clean examples, it not only helps to decrease the KL divergence (in the case of L∞ based

attacks) but more importantly significantly decrease the Lp-norm. The comparison between

L1-norm and L∞-norm enhanced attacks demonstrates that the L∞-norm enhanced attack

achieves smaller KL divergence, as it encourages the perturbation to be more uniformly

distributed with smaller magnitude on each location.

The above results show the comparison of different attack methods for successfully

flipped examples. To give a more comprehensive comparison, we also use varying pertur-

bation magnitude as stopping criteria and compare the attack success rate and detection rate

(by our detection approach) of different attack methods, which is shown in Figure 4.3. In

all cases, our enhanced attacks achieve a higher attack success rate and lower detection rate

than the baseline attacks, which confirms the effectiveness of adding Gaussian observation

as part of the minimization in the attack.

To illustrate the perturbation introduced by the adversarial examples, we also show the

mean perturbation for each of the feature-time points by our enhanced L∞ attack added

to the positive and negative clean examples respectively in Figure 4.4. We observe that

most of the perturbation is imposed on the recent time stamps. In addition, interestingly, it

requires more perturbation to flip a positive example to negative than vice versa. The reason

is that, for an imbalanced dataset, the confidence level is high when classifier predicts an

example as positive, which means it requires more perturbation to flip its label.
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(a) Positive examples (b) Negative examples

Figure 4.4: Mean perturbation distribution

4.3.3 Detection Performance

In this section, we will first show the impact of varying detection threshold on the clean

example pass rate and adversarial example detection rate, and then evaluate the detectability

of RADAR in terms of detection rate and the accuracy of the classification model with the

detection. We use L∞-norm enhanced attack and apply varying perturbation bounds of 0.5,

0.75, 1.0, 1.25 and 1.5, which means that the stop criteria for generating each adversarial

example is when the perturbation is larger than the perturbation bound.

Selection of Detection Threshold. The threshold of each detection criteria is crucial in

the trade-off between the adversarial detection rate and the sacrifice of clean examples, i.e.,

the true positive and false positive rate. If the threshold is low, it can successfully detect

adversarial examples but can also mistakenly filter out clean examples. If the threshold

is high, the effectiveness of RADAR will be compromised. Figure 4.5 demonstrates this

trade-off by showing the corresponding adversarial detection rate and the clean example

pass rate for different thresholds under different perturbation bound. As shown in the figure,

a higher perturbation bound results in higher detection rate as expected. When allowing

more clean examples to pass, fewer adversarial examples can be detected. The optimal

threshold would allow a majority of clean examples to pass while still remaining effective

in detecting adversarial examples. In the following experiments, we select the threshold

that allows 95% clean example pass rate.
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Figure 4.5: The trade-off between adversarial detection rate and clean pass rate

(a) RADAR performance under L1 enhanced
attack

(b) RADAR performance under L∞ enhanced
attack

Figure 4.6: Contribution of each criterion and comparison of RADAR with MagNet

Detection Success Rate. Figure 4.6 shows how much contribution each detection criterion

makes to filter adversarial examples. It also compares RADAR (with all three criteria) and

the existing MagNet approach (which uses the L-norm and JS Divergence only). With the

increase of attack magnitude, the attack detection rate for all criteria/approaches increase as

expected. Among the three criteria, our newly introduced prediction uncertainty makes the

most and dominating contribution in detecting adversarial examples. As a result, RADAR

dramatically outperforms MagNet.

Model Performance. We also evaluate the performance of RADAR in terms of the im-
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(a) Acc of L1 Enhanced Attack (b) F1 for L1 Enhanced Attack

(c) Acc of L∞ Enhanced Attack (d) F1 of L∞ Enhanced Attack

Figure 4.7: Performance improvement

provement of the target model’s prediction accuracy and F1 score. Since any detection

mechanism should not sacrifice the accuracy of clean examples, we report the accuracy

of clean examples without RADAR (clean) and with RADAR (clean + RADAR). For the

purpose of abalation study, we report the accuracy of adversarial examples under different

scenarios: 1) when there is no defense (adv), 2) with detector only (adv + detector), 3) with

reformer only (adv + reformer), and 4) with both detector and reformer (adv + RADAR).

When the RADAR detector is used, if an example is detected as adversarial, we will flip its

classification label and softmax output as the final prediction because our task is a binary

classification. When only reformer is used, the autoencoder reconstructed output will be
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used for classification.

Figure 4.7 shows the target model accuracy and F1 score vs. varying perturbation mag-

nitude for different methods under different attacks. For clean examples, employment of

RADAR as a defense mechanism does not affect the prediction performance and can even

improve the accuracy. We speculate the reason is that the clean examples that are orig-

inally misclassified are usually close to the classification boundary or are outliers, hence

may have a high prediction uncertainty or reconstruction error and be detected as adversar-

ial examples. Once they are detected, their prediction will be automatically flipped, which

will be correctly classified. Comparing the adversarial examples, only applying RADAR

as a reformer can effectively reform the adversarial examples and improve the accuracy

and F1 score by more than 10%. When RADAR works as both detector and reformer,

it can additionally improve prediction accuracy by more than 60% and even exceeds the

accuracy of clean examples. The F1 scores can also be improved by 40% when the per-

turbation magnitudes are larger than 1.0. The benefit of reformer on top of detector can be

noticed in Figure 4.7. With increasing perturbation magnitude, the model accuracy and F1

score of adversarial examples with no defense and reformer drop dramatically due to the

increasing attack power. However, interestingly, the model performance with the detection

mechanism increases thanks to the increased detection rate as we have observed earlier.

These experiments verify the significant improvement of the model performance and the

effectiveness of the RADAR mechanism.
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Chapter 5

Detecting Adversarial Examples

Leveraging the Consistency between

Multiple Modalities

5.1 Overview

Most existing defense mechanisms have focused on a single modality of the data. How-

ever, EHR data always comes in multiple modalities including diagnoses, medications,

physician summaries and medical image, which presents both challenges and opportunities

for building more robust defense systems. This is because some modalities are particularly

susceptible to adversarial attacks and still lack effective defense mechanisms. For exam-

ple, the clinical summary is often generated by a third-party dictation system and has a

higher risk to be attacked. We believe that the correlations between different modalities

for the same entity can be exploited to defend against such attacks, as it is not realistic for

an adversary to attack all modalities. Although there are some existing defense techniques

in the text domain, these methods cannot be directly applied to clinical texts due to the

special characteristics of clinical notes. On one hand, for ordinary texts, spelling or syntax
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checks can easily detect adversarial examples generated by introducing misspelled words.

However, there are originally plenty of misspelling words or abbreviations in clinical notes,

which places challenges to distinguish whether a misspelled word is under attack. One the

other hand, data augmentation is another strategy of some adversarial defense techniques in

text domain. For example, Synonyms Encoding Method (SEM) [98] is a data preprocess-

ing method that inserts a synonym encoder before the input layers to eliminate adversarial

perturbations. However, for clinical notes, a large number of words are proper nouns which

makes it difficult to generate synonym set thus challenging to apply such defense. Adver-

sarial training [71] has also been applied to increase the generalization ability of textual

deep learning models. However, no research has studied the effectiveness of applying ad-

versarial training in the training of text-based clinical deep learning systems.

In this work, we propose a novel defense method, Multimodal feATure Consistency

cHeck (MATCH), against adversarial attacks by utilizing the multimodal properties in the

data. We assume that one modality has been compromised, and the MATCH system detects

whether an input is adversarial by measuring the consistency between the compromised

modality and another uncompromised modality.

To validate our idea, we conduct a case study on predicting the 30-day readmission

risk using an EHR dataset. We craft adversarial examples on clinical summary and use

the sequential numerical records as another un-attacked modality to detect the adversarial

examples. Figure 5.1 depicts the high-level flow of our system.

Figure 5.1: Illustration of MATCH: an adversarial attack on the text modal and how MATCH de-
tection finds the inconsistency using the numerical features as another modality.
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5.2 Methods

In this section, we will explain our high-level idea and intuitions behind MATCH.

5.2.1 Multi-modality Model Consistency Check

Figure 5.2: Detection Pipeline

System Overview. The main idea of MATCH is to reject adversarial examples if the fea-

tures from one modality are far away from another un-attacked modality’s features. In

MATCH, we assume that there is duplicate information in multiple modalities (e.g., ‘gray

cat’ in an image caption and a gray cat in image) and manipulating information can be

harder in one modality than another modality. Thus, it is difficult for an attacker to make

coherent perturbations across all modalities. In other words, using the gradient to find the

steepest change in the decision surface is a common attack strategy, but such a gradient can

be drastically different from modality to modality. Moreover, for a certain modality, even

if the adversarial and clean examples are close in the input space, their differences would

be amplified in the feature space. Therefore, if another un-attacked modality is introduced,

the difference between the two modalities can be a criteria to distinguish adversarial and

clean examples. Figure 5.2 shows our detection pipeline using text and numerical features.

Note that, while we use text and numerical modalities for the experiments, our framework

works for any modalities.

We first pre-train two models on two modalities separately. These two models are

trained only with clean data, and we use the outputs of their last fully-connected layer
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before logits layer as the extracted features. Note that the extracted features from two

modalities are in different feature spaces, which requires a “Projection” step to bring the

two feature sets into the same feature space. We train a projection model, a fully-connected

layer network, for each modality on the clean examples. The objective function of the

projection model is:

min
θ1,θ2

MSE(pθ1(F1(m1))− pθ2(F2(m2))) (5.1)

where m1 and m2 represent different modalities. Fi and pθi are the feature extractor and

the projector of mi respectively.

Then, a consistency check model is trained only on clean data by minimizing the con-

sistency level between multi-modal features. The consistency level is defined as the L2

norm of the difference between the projected features from the two modalities. Once all

the models are trained, given an input example with two modalities, the system detects it

as an adversarial example if the consistency level between two modalities is greater than a

threshold δ:

||pθ1(F1(m1))− pθ2(F2(m2))||2 > δ (5.2)

δ is decided based on what percentage of clean examples are allowed to pass MATCH.

Predictive Model and Feature Extractor. For clinical notes, we use pre-trained Clinical

BERT as our feature extractor. Clinical BERT is pre-trained using thr same tasks as [20] and

fine-tuned on readmission prediction. Clinical BERT also provides a readmission classifier,

which is a single layer fully-connected layer. We use this classification representation as

the extracted feature.

For sequential numerical records, we adopt the architecture in [105] . However, as our

data preprocessing steps and selected features are different, we modify the architecture to

optimize the performance. Our architecture (Figure 5.3) employs a stacked-bidirectional-

LSTM, followed by a convolutional layer and a fully connected layer. The number of
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stacks in stacked-bidirectional-LSTM and the number of convolutional layers, as well as

the convolution kernel size are tuned during experiments, which are different from the

architecture in [105]. The output of the final layer is used as the extracted features.

Figure 5.3: Stacked Bidirectional LSTM+CNN architecture

5.3 Experiments

In this section, we first present the attack performance of two text attack algorithms in or-

der to demonstrate the vulnerability of state-of-the-art clinical deep learning systems. Sec-

ondly, we evaluate the effectiveness of the MATCH detection method for the readmission

classification task using the MIMIC-III data.

5.3.1 Data Preprocessing

Clinical Summary. For the clinical summary, which is the target modality the attacker,

we directly use the processed data from [37]. The data contains 34,560 patients with 2,963

positive readmission labels and 48,150 negative labels. In MIMIC-III [44], there are several

categories in the clinical notes including ECG summaries, physician notes and discharge

summaries. We select the discharge summary as our text modality, as it is most relevant to

readmission prediction.

Numerical Data. For the other modality which is used to conduct the consistency check,

we use the patents’ numeric data in their medical records. We use the patient ID from
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the discharge summary to extract the multivariate time series numerical records consisting

of 90 continuous features including vital signs such as heart rate and blood pressure as

well as other lab measurements. The features are selected based on the frequency of their

appearance in all the patients’ records.

Then, we apply a standardization for each feature x across all patients and time steps

using the following formula: x = x−x̄
std(x)

. We pad all the sequences to the same length (120

hours before discharge), because this time window is crucial to predict the readmission rate.

We ignore all the previous time steps if a patient stayed more than 120 hours and repeat the

last time step if a patient’s sequence is shorter than 120 hours. We represent the numerical

data as a 3-dimensional tensor: patients × time step (120) × features (90).

5.3.2 Predictive Model Performance

For the clinical summary data, we use the pre-trained Clinical BERT, whose AUC is 0.768.

For the numerical data, the performance of our stacked bi-directional LSTM+CNN model

produces AUC 0.65. Although the performance of the numerical data is lower than that of

Clinical BERT, our experiments indicate that it does not affect MATCH’s overall perfor-

mance. The reason is that we only need this prediction model to learn the feature repre-

sentation. As long as the two models have a comparable performance with each other, the

extracted features from the two modalities have a similar representative ability. Clinical

BERT is also used as the target classifier under attacked.

Figure 5.4: Attack Success Rate Comparison between Text-FGM and DeepWordBug
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Figure 5.5: Example of generated adversarial texts with Text-FGM and DeepWordBug

5.3.3 Attack Results

In this section, we present the attack performance of two text attack algorithms in order to

demonstrate the vulnerability of state-of-the-art clinical deep learning systems. We select

two attack algorithms that can present all attack categories we mentioned in the related

work: Text-FGM,a white-box, semantic attack and DeepWordBug a black-box, syntactic

attack. Besides, these two attack algorithms will also be used to evaluate the performance

of our proposed MATCH, in order to show that MATCH can defense against various kinds

of adversarial attacks.

We generate adversarial examples with different attack power levels: 4%, 8%, 16%,

which define the maximum percentage of word changes in a text. Then we show the attack

success rate under different attack powers, as well as the generated adversarial examples

of two attack algorithms. As shown in Figure 5.4, both Text-FGM and DeepWordBug can

produces high attack success rate on the Clinical Bert model. With higher percentage of

word changes, the attack success rate also increased for b0th Text-FGM and DeepWordBug.

This is intuitive because as more perturbations being introduced to the input space, the
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(a) Text-FGM (b) DeepWordBug

Figure 5.6: Distribution of misspelled words in adversarial /clean text under different attack power

model is more likely to give a wrong prediction. For Text-FGM, it achieves almost 80%

attack success rate with only 8% of word change, which indicated that the Clinical Bert

model are easily fooled and give a wrong prediction. This result indicates the vulnerability

of the state-of-the-art text-based medical deep learning systems.

Figure 5.5 shows several examples of our generated adversarial examples from both

attack methods compared to the clean examples. The red words represent the changed

words in Text-FGM, and green words denote the changed words in DeepWordBug. It is

obvious that even the generated adversarial texts are indistinguishable to human knowledge,
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(a) Text-FGM

(b) DeepWordBug

Figure 5.7: Comparison of the adversarial detection performance between MATCH and misspelling
check-based defense.

especially those that generated by Text-FGM, but well-trained deep learning models will

misclassify.

Besides the attack success rate and the generated adversarial examples, we also present

the distribution of the number of misspelled words in the clean and adversarial examples.

As shown in Figure 5.6, the number of misspelled word distributions of the clean and the

Text-FGM adversarial examples are difficult to separate, while the adversarial examples

generated by DeepWordBug have a large distribution shift compared to that of the clean

examples. Further, as the attack power grows, the distribution shift is more distinguishable.

This explains why the spelling check service is effective to DeepWordBug but not useful

for the synonym substitution attack.
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5.3.4 Defense Result

In this section, we use Text-FGM and DeepWordBug, which represent the two types of

attacks, semantic vs. syntactic, to evaluate the performance of MATCH

Comparison with Baseline Detection Methods. We use mis-spelling check (pyspellchecker

form python) as a baseline to compare with MATCH, which is adopted in [31]. As shown in

Figure 5.7, we take the attack power (i.e., the percentage of word changes) of 4%, 8% and

16% and use the ROC curve to compare the detection performances between MATCH and

the mis-spelling check. ROC curve can represent the correlations between True Positive

Rate (TPR) and False Positive Rate (FPR). Here, we want to have higher TPR (adversarial

examples can be detected) while achieve lower FPR (clean examples can pass the detector).

Given the various detection thresholds δ which allow certain percentage of clean examples

to pass detection, these ROC curves illustrate the discriminating ability of MATCH on de-

tecting adversarial examples. Similar to MATCH, we take the number of misspelled words

as a threshold and show the discriminating ability given different thresholds. We can note

that MATCH significantly outperforms the baseline for both attacks. As mis-spelling check

can effectively detect adversarial texts with large misspelling distribution shifts, we take the

mis-spelling check as a pre-filter to filter out adversarial examples that are easy to detect.

Then, we apply MATCH as a secondary detector. We try different combinations of mis-

spelling word threshold and feature consistency threshold. The blue lines in the charts show

the lower boundary of the ROC curves. For DeepWordBug, MATCH can achieve close to

100% TPR and 0% FPR. In addition, both MATCH and baseline method works better for

DeepWordBug because the attack is syntactic, and the examples are easily separable based

on the misspelling distribution shifts as observed from Figure 5.6.

Comparison with Adversarial Training. Besides misspelling-check, we also use Adver-

sarial Training (AT) to compare with MATCH on Text-FGM. As mentioned in the related

work, AT is widly applied in image domain to improve the robustness of DNNs. As our

prediction is a binary classification, and MATCH is a detector, in order to compare with
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Table 5.1: Comparison of the Adversarial Detection Accuracy

Attack Levels Clean No Defense MATCH AT
16% 0.672 0.407 0.525 0.435
8% 0.672 0.450 0.523 0.464
4% 0.672 0.483 0.522 0.471

Adversarial Training, we flip the prediction label of examples which are detected as adver-

sarial examples and compare the accuracy with AT. The results in Table 5.1 show that the

accuracy of MATCH is much higher than AT and No Defense.

(a) Text-FGM (b) DeepWordBug

Figure 5.8: Detection Result

Impact of attack power. To better illustrate the impact of attack power, we plot the results

of varying attack powers in Figure 5.8. To clarify, for DeepWordBug we do not include

mis-spelling check as a pre-filter, only showing the performance of MATCH. Under Deep-

WordBug with attack power of 16%, MATCH can detect more than 60% of the adversarial

examples, while misclassifying 30% of the clean examples as adversarial. Under Text-

FGM with attack power of 16%, MATCH can detect more than 60% adversarial examples

but only 20% of clean examples are mistaken as adversarial. The ROC curve shows that

with a higher attack power, MATCH can more easily distinguish adversarial examples from

clean examples.



57

Chapter 6

Certified Robustness to Word

Substitution Attack with Differential

Privacy

6.1 Overview

In the context of text classification tasks, adversarial examples can be designed by manipu-

lating the word or characters under certain semantic and syntactic constraints [80, 43, 104,

31]. Among all the attack strategies, word substitution attacks, in which attackers attempt

to alter the model output by replacing input words with their synonyms, can maximally

maintain the naturalness and semantic similarity of the input. Therefore, in this paper, we

consider such word substitution attacks and focus on defending against such attacks. Figure

6.1 shows an example of the word substitution attack where the clean input text is changed

into adversarial text by substituting input words from a synonym list.

The wrestling between adversarial attacks and defenses has last for years. Most de-

fense mechanisms mentioned above are not robust enough and only empirically works,

which means that when a new defense algorithm being proposed, a stronger attack can be



58

developed to easily break the defense. Therefore, it is important to provide certified de-

fense that is provable and theory-backed [54]. Certified robustness is the new direction to

improve the robustness of deep learning models that can provide theory-backed and prov-

able defense mechanism for adversarial attacks. The general attempt is to transform a base

classifier into a randomized classifier by adding certain noise layer.

Figure 6.1: Word Substitution Attack and Certified Robustness via WordDP.

Various mechanisms have been developed to defend against adversarial examples in text

classification models. However, most of the previous works are only evaluated empirically

and have no theoretical analysis or guarantee on the robustness of the methods. Therefore,

in this work, we propose a novel approach WordDP to certified robustness against word

substitution attacks in text classification via differential privacy (DP) [21]. Figure 6.1 is a

high-level illustration. In the inference phase, the input go through a randomized mecha-

nism WordDP. If a clean input satisfies the certification condition of WordDP, its adversarial

counterpart is guaranteed to predict the same output label.

DP is a privacy framework that protects the information of individual record in the

database by randomized computations, such that the change of the computation output is

bounded when small perturbation is applied on the database. This stable output guarantee is

in parallel with the definition of robustness: ensuring that small changes in the input will not

result in dramatic shift of its output. The idea of providing robustness certification via DP

was originally introduced in PixelDP [54] which is specifically designed for norm-bounded

adversarial examples in the continuous domain for applications like image classification.

However, it is challenging to directly apply such an idea against word substitution at-

tack, due to the discrete nature of the text input space. Therefore, in this work, we develop
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WordDP to achieve the DP and robustness connection in the discrete text space by exploring

novel application of the exponential mechanism [68], conventionally utilized to realize DP

for answering discrete queries. To achieve this, we present a conceptual certified robustness

algorithm that randomly samples word-substituted sentences according to the probability

distribution designated by the exponential mechanism and aggregates their inference result

as the final classification for the input.

A fundamental barrier limiting the conceptual algorithm from being applied in prac-

tice is that the sampling distribution of the exponential mechanism requires an exhaustive

enumeration-based sub-step, which needs to repeat the model inference for every neigh-

boring sentences with word substitutions from the input sentence. To overcome this com-

putational difficulty, we develop a practical simulated exponential mechanism via uniform

sampling and re-weighted averaging, which not only lowers the computational overhead

but also ensures uncompromising level of certified robustness.

6.2 Proposed Method

6.2.1 WordDP for Certified Robustness

WordDP. We expand the intuition that DP can be applied to provide certified robustness

against textual adversarial examples like word substitution attack by regarding the sentence

as a database and each word as a record.

If the randomized predictive model satisfies ϵ-DP during inference, then the output of a

potentially adversarial input X ′ ∈ S (L) and the output of the original input X should be

indistinguishable. Thus, our proposed approach is to transform a multiclass classification

model’s prediction score into a randomized ϵ-WordDP score, which is formally defined

below.

Definition 6.2.1. (Word Differential Privacy) Consider any input sentence X and its L-

word substitution sentence set S (L). For a randomized function fA(X), let its prediction
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score vector be y ∈ Y . fA(X) satisfies ϵ-word differential privacy (WordDP), if it satisfies

ϵ-differential privacy for any pair of neighboring sentences X1, X2 ∈ S (L) and the output

space y ∈ Y .

Remark 1. We stress that WordDP does not seek DP protection for the training dataset

as in the conventional privacy area. Instead, it leverages the DP randomness for certified

robustness during inference with respect to a testing input.

In practice, for a base model f , a DP mechanismAwill be introduced to randomize it to

fA. For an ϵ-WordDP model fA, its expected prediction E[fA(X)] is certified robust. De-

note the prediction score vector of E[fA(X)] by E[fy
A(X)] = (E[f y1

A (X)], ...,E[f yC
A (X)]) ∈

Y . Lemma 6.2.2 shows E[fy
A(X)] satisfies the certified robustness condition in eq.(3.1),

based on Lemma 6.2.1 that shows each expected prediction score E[f yi
A (X)] is stable.

Lemma 6.2.1. For an ϵ-WordDP model fA, its prediction score satisfies the relation, ∀i ∈

[C],

E[fyi
A (X1)] ≤ eϵE[fyi

A (X2)], ∀X1, X2 ∈ L . (6.1)

From the above property, we can derive the certified robustness condition to adversarial

examples.

Lemma 6.2.2. For an ϵ-WordDP model fA and an input sentence X , if there exists a label

c such that:

E(fyc
A (X)) > e2ϵmax

i ̸=c
E(fyi

A (X)), (6.2)

then the multiclass classification model fA based on the expected label prediction score

vector E[fy
A(·)] is certified robust to L-adversary word substitution attack on X .

The proofs of the above two lemmas can be adapted from the pixelDP to WordDP

context based on Lemma 1 and Proposition 1 in Lecuyer et al. lecuyer2019certified.
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6.2.2 WordDP with Exponential Mechanism

In this section, we present the conceptual exponential mechanism-based algorithm to achieve

WordDP and the certification procedure.

Exponential Mechanism for WordDP. To obtain the DP classifier fA given the base model

f , we introduce the exponential mechanismME as the randomization mechanism A and

define fA := f(ME). Given an input example, the mechanism selects and outputs L-

substitution sentences with a probability based on exponential mechanism. It then aggre-

gates the inferences of these samples by an average as the estimated prediction of the input.

Figure 6.2 illustrates the algorithm.

Definition 6.2.2. (Exponential Mechanism for WordDP and L-Certified Robustness)

Given the base model f , for any input sentence X and potential L-substitution sentence set

S (L), we define the utility score function as:

u(S (L), X ′) = e−∥fy(X′)−fy(X)∥1 , (6.3)

which associates a utility score to a candidate output X ′ ∈ S (L). The sensitivity of the

utility score is ∆u = 1 − e−1. Then, the exponential mechanism selects and outputs X ′

with probability PX′

PX′ =
1

ρ
exp(

ϵ · u(S (L), X ′)

2∆u
), (6.4)

where ρ =
∑|S (X,L)|

i=1 exp(
ϵ·u(S (L),X′

i)

2∆u
) is the normalization factor.

Proposition 6.2.1. The exponential mechanism M(E) satisfies ϵ-DP. The composition

model function fME
(X) := f(ME(X)) is ϵ-DP and its prediction score vector E[fy

ME
(X)]-

based classification is certified robust to L-adversary word substitution attack on X .

To showME is ϵ-DP, we prove the sensitivity of the utility score (maximum difference

between the utility scores given any two neighboring input) ∆u is indeed 1 − e−1 and

the remaining follows the definition of the exponential mechanism (c.f.Definition 3.2.2).

Since ∥fy(X ′
i) − fy(X)∥1 is the prediction probability change which is in [0, 1], we have
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u(S (L), X ′
i) ∈ [e−1, 1], which leads to ∆u = 1 − e−1. Next, since ME(X) is ϵ-DP,

by the post-processing property (i.e., any computation on the output of the DP mechanism

remains DP, Proposition 2.1 in [23].), fME
(X) is also ϵ-DP. Subsequently, by Lemma 6.2.2,

E[fME
(X)] is L-certified robust on X .

Remark 2. 1) The design of the utility function has the intuition that we wish to assign

higher probability to sentences that have minimal impact on the prediction score function.

2) The privacy budget ϵ influences whether the sampling probability distribution is flat

(lower ϵ) or peaky (greater ϵ). Too small of an ϵ value will clearly affect the prediction

accuracy. For certification purpose, according to the certified condition Lemma 6.2.2, too

large of an ϵ value will result in none certified, so ϵ can only be searched within a limited

range.

Certification Condition. It is a common practice in certified robustness literature to esti-

mate E[fy
ME

(X)] via Monte Carlo estimation [54, 18] in the form of Ê[fy
ME

(X)]. That is,

we repeat the exponential mechanism-based inference to draw n samples of fy
ME

(X ′
τ ),

for τ ∈ [n] and let Ê[fy
ME

(X)] = 1
n

∑n
τ=1 f

y
ME

(X ′
τ ). The estimation error between

Ê[fy
ME

(X)] and E[fy
ME

(X)] can be bounded based on Hoeffding’s inequality with proba-

bility η, which guarantees that Ê[fy
ME

(X)] ∈ [E[fy
ME

(X)] −
√

1
2n
ln( 2C

1−η
),E[fy

ME
(X)] +√

1
2n
ln( 2C

1−η
)] := [Êlb[fy

ME
(X)], Êub[fy

ME
(X)]]. The next proposition shows that the infer-

ence based on the estimated Ê[fy
ME

(X)] (as versus E[fy
ME

(X)]) can still ensure certified

robustness.

Proposition 6.2.2. Under the same condition with Proposition 6.2.1, if there exists a label

c such that

Êlb[fyc

ME
(X)] > e2ϵmax

i ̸=c
Êub[fyi

ME
(X)], (6.5)

the prediction score vector Ê[fy
ME

(X)]-based classification is certified robust with proba-

bility η to L-adversary word substitution attack on X .
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6.2.3 Simulated Exponential Mechanism

Simulated Exponential Mechanism. The conceptual exponential mechanism in Defini-

tion 6.2.2 is computationally impractical. The bottleneck is the need to enumerate the entire

S (L) in order to calculate the probability distribution of PX′ for each X ′ ∈ S (L) and the

normalization factor ρ, which essentially requires us to perform inference for S (L) ≫ n

times (n is the number of samples) for certifying a single input sentence X .

In the following, we show that we can significantly reduce the computation cost by

sampling via a simulated exponential mechanism, which suffices to sample n candidate

L−substitution sentences and calculate only n times, i.e., the same repetitions as the Monte

Carlo estimation. The key insight is based on the different purpose of applying the expo-

nential mechanism between the conventional scenario for achieving DP and our certified

robustness scenario. For the former, in order to ensure DP of the final output fME
(X ′

τ ), the

intermediate X ′
τ is forced to satisfy DP, i.e., drawn from the exact probability distribution

designated by the exponential mechanism. For the latter, while the derivation of the certi-

fied robustness relied on the randomness of DP and the exponential mechanism, we do not

actually require the DP of the intermediate X ′
τ . As a result, it allows us to sample X ′

τ from

other simpler distributions without calculating the probability distribution of the exponen-

tial mechanism, as long as the alternative approach can obtain the equivalent Ê[fy
A(X)] for

robustness certification.

We develop a simulated exponential mechanism via uniform sampling and re-weighted

average prediction score calculation. Figure 6.2 shows the simulated mechanism in con-

trast to the conceptual mechanism. In detail, we sample from S (L) with uniform proba-

bility, which can be efficiently implemented without generating S (L). Denoting a sample

by X ′
τ , we calculate its scaled exponential mechanism probability by

PX′
τ
= exp(

ϵ · u(S (L), X ′
τ )

2∆u
), (6.6)

which can be obtained via a single inference on X ′
τ and the inference on X due to the
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omission of the normalization factor ρ that requires the entire S (L). The inference on

X only needs to be computed once and shared by all n Monte Carlo repetitions. Such

uniform sampling and scaled probability calculation is repeated for n times, which requires

only n + 1 inferences. Finally, we use the following re-weighted average prediction score

(weighted by the scaled exponential mechanism probability) for certified robust prediction,

E[fy
ME

(X)] =

n∑
τ=1

PX′
τ
· fy

ME
(X ′

τ ). (6.7)

The following theorem shows that E[fy
ME

(X)]-based prediction guarantees certified ro-

bustnessand the conceptual exponential mechanism-based inference in Proposition 6.2.2 is

certified robust provided E[fy
ME

(X)] is so.

Theorem 6.2.1. For any input X , let Ē[fy
ME

(X)] be calculated by eq.(6.7). Denote xbarElb[fy
ME

(X)]

and xbarEub[fy
ME

(X)] be η-confidence lower and upper bounds, respectively, i.e., xbarElb[fy
ME

(X)] =

xbarE[fy
ME

(X)]−
√

1
2n
ln( 2C

1−η
) and xbarEub[fy

ME
(X)] = xbarE[fy

ME
(X)]+

√
1
2n
ln( 2C

1−η
).

If there exists a label c such that

Elb[fyc
ME

(X)] > e2ϵmax
i ̸=c

Eub[fyi
ME

(X)], (6.8)

the prediction score vector xbarE[fy
ME

(X)]-based classification is certified robust with

probability η to L-adversary word substitution attack on X .

The proof of Theorem 6.2.1 requires the following lemma, which is adapted from

Lemma 6.2.1 from the accurate expectation of E[fy
ME

(X)] to the simulated expectation

xbarE[fy
ME

(X)]. We stress that during both proofs, we do not use the DP property of

xbarE[fy
ME

(·)], but only its equivalent relation to Ê[f yi
ME

(·)].

Lemma 6.2.3. For any label i ∈ [C] and any X1, X2 ∈ S (L), let xbarE[fy
ME

(X)] be

computed by eq.(6.7). Then, we have

E[fyi
ME

(X1)] ≤ eϵE[fyi
ME

(X2)]. (6.9)

First, we notice that for any X ′ ∈ S (L), it has E[f yi
ME

(X ′)] = ρ
|S (L)| Ê[f

yi
ME

(X ′)]

by xbarP[X ′] = ρP[X ′] and the uniform sampling probability 1
|S (L)| . Second, since
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Ê[f yi
ME

(X ′)] is ϵ-WordDP , we can show that it satisfies Lemma 6.2.1 by switching E[f yi
ME

(·)]

there to Ê[f yi
ME

(·)] here. It follows that:

E[fyi
ME

(X1)] = Ê[fyi
ME

(X1)] · (
ρ

|S (L)|
)

≤ eϵÊ[fyi
ME

(X2)] · (
ρ

|S (L)|
) = eϵE[fyi

ME
(X2)],

which proves the lemma.

Proof. (Proof of Theorem 6.2.1) For any X
′ ∈ S (L), by eq.(6.9), we have

as well as

E[fyi
ME

(X ′)] ≤ eϵE[fyi
ME

(X)] ≤ eϵmax
i ̸=c

E[fyi
ME

(X)]

≤ eϵmax
i ̸=c

(E[fyi
ME

(X)] +

√
1

2n
ln(

2C

1− η
))

= eϵmax
i ̸=c

Eub[fyi
ME

(X)].

Equipped with the above two relations, we can prove the claim in Theorem 6.2.1. We show

that E[f yi
ME

(X)] is certified robust for any X ′ ∈ S (L), as follows,

E[fyc
ME

(X ′)] > Elb[fyc
ME

(X)]/eϵ

> eϵmax
i ̸=c

Eub[fyi
ME

(X)] > eϵmax
i ̸=c

E[fyi
ME

(X ′)].
(6.10)

which is E[f yc
ME

(X ′)] > e2ϵ maxi ̸=c E[f yi
ME

(X)].

For completeness, we can also show that the certified robustness of E[fy
A(X)] implies the

certified robustness of Ê[fy
A(X)]:
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Ê[fyc
ME

(X ′)] = (
|S (L)|

ρ
) · E[fyc

ME
(X ′)]

> (
|S (L)|

ρ
)Elb[fyc

ME
(X)]/eϵ

> (
|S (L)|

ρ
)eϵmax

i ̸=c
Eub[fyi

ME
(X)]

> (
|S (L)|

ρ
)max

i ̸=c
E[fyi

ME
(X ′)] = max

i ̸=c
Ê[fyi

ME
(X ′)],

(6.11)

which proves Ê[f yc
ME

(X ′)] > maxi ̸=c Ê[f yi
ME

(X ′)].

Finally, we use Hoeffding’s inequality to bound the error in Ê[A(X ′)]. With η-confidence

error the lower bound and upper bound of Ê[A(X ′)] can be formulated as:

Êlb[A(x′)] = Ê[A(x′)]−
√

1

2N
ln(

2n

1− η
),

Êup[A(x′)] = Ê[A(x′)] +

√
1

2N
ln(

2n

1− η
),

such that Êlb[A(x′)] ≤ Ê[A(x′)] ≤ Êup[A(x′)]

(6.12)

where n represents number of classes.

Till now, our certified robustness condition can be generalized as:

Randomized mechanism A is jointly decided by L and ϵ, which defines the size of

the perturbation set, and the exponential probability respectively. During experiments,

WordDP not only generate aggregated perdition results but also indicate whether a given

input satisfy above certification criteria under certain neighbour constraint L and ϵ.

Training procedure. To achieve a better certification result, we involve randomness in the

training stage, which is also adopted by almost all certified robustness approaches. To do

so, we use the data augmentation strategy that utilizes the perturbed sentences for training,

i.e., X ′ ∈ S (L) \ X given the original training sample X . In practice, we first train the

model without data augmentation for several epochs to achieve a reasonable performance,

followed by training with perturbed X ′. For each training data point, we randomly draw
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one neighbour sentence during training (as opposed to multiple draws during certified in-

ference).

6.2.4 Extension of WordDP: Empirical defense method

Beside the certified mechanism with WordDP, we extend the idea of WordDP to an empir-

ical defense method.

The intuition on designing the utility function as formular 6.4 is to assign higher proba-

bility to sentence that have minimal impact to the scoring function, which are those exam-

ples that are close to the input data point. Therefore, this utility function favors the clean

examples that may achieve better performance on clean examples, as data points that closer

to clean examples are more likely to be correctly classified. The exponential mechanism

based on this utility function can also benefit the accuracy of adversarial examples based on

the assumption that majority of examples around adversarial examples should be be benign

examples.

To achieve a better result on adversarial examples, we design a utility function that is

very similar to formular 6.4 but favors adversarial examples more, which is defined as:

u(X ′
i, X) = eα||f(X

′
i)−f(X)||1 (6.13)

Note that this utility function assigns higher probability to sentence that have greater im-

pact to the scoring function, which are the examples that far away from the input data.

Therefore, adversarial example are more likely to be correctly classified according to the

aggregated prediction.

The sensitivity ∆u also slightly different from the sensitivity in WordDP. Here, u(X ′
i, X) ∈

[1, e1] as ||f(X ′
i)− f(X)||1 is the output probability changes which is bounded by 0 and 1.

Therefore, ∆u equals to e1 − 1.

In exponential mechanism, the privacy budget ϵ influence whether probability vector is



68

smoother or rougher. Generally, smaller ϵ just makes all the sampling probability be the

same, and generates a flatter distribution. On the contrast, greater ϵ just ”leaks more infor-

mation”, and generates rougher distribution that is close to the real distribution( sentence

with have higher utility score are more likely to be sampled). For certification purpose,

according to the certified condition, too large ϵ will result in 0-certified, such that ϵ should

be searched within a certain range.

However, if we only want to design a empirical defense without considering the certified

robustness, we can assign larger ϵ to achieve a identical exponential distribution of the

sampling distribution based on the utility function 6.13. In our empirical experiments, we

set ϵ to be 10, in order to achieve a higher conventional accuracy on the clean example.

The trade-off between the accuracy on clean example and adversarial examples will be

discussed in section 6.3.2.

Figure 6.2: with Exponential Mechanism.

6.3 Experiments

We evaluate WordDP on two classification datasets: Internet Movie Database (IMDB) [66]

and AG News corpus (AGNews) [107]. IMDB is a binary sentiment classification dataset

containing 50000 movie reviews. AGNews includes 30,000 news articles categorized into

four classes. The target model architecture we select is a single-layer LSTM model with

size of 128. We use Global Vectors for Word Representation (GloVe) [79] for word embed-

ding. The LSTM model achieves 88.4% and 91.8% clean accuracy on IMDB and AGNews,
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respectively. We use PWWS [80] to generate adversarial examples on the test dataset.

PWWS is a state-of-the-art attack method which uses WordNet to build synonym set and

incorporates word saliency to replace selected named entities (NEs) with their synonyms

in order to flip the prediction.

6.3.1 Evaluation Metrics and Baselines

We use four metrics to evaluate the effectiveness of WordDP: certified ratio, certified accu-

racy, conditional accuracy, and conventional accuracy. Certified Ratio represents the frac-

tion of testing set that the prediction satisfies the certification criteria:
∑T

t=1 certifiedCheck(Xt,L,ϵ)

T
,

where certifiedCheck returns 1 if Theorem 6.2.1 is satisfied and T is the size of the test

dataset. Certified accuracy (CertAcc) denotes the fraction of the clean testing set on

which the predictions are both correct and satisfy the certification criteria. This is a stan-

dard metric to evaluate certified robust model [54]. Formally, it is defined as:

∑T
t=1 certifiedCheck(Xt,L,ϵ)&corrClass(Xt,L,ϵ)

T
, where corrClass returns 1 if the classification

output is correct. When the accuracy of a model is close to 100%, certified accuracy largely

reflects certified ratio. Conventional accuracy (ConvAcc) is defined as the fraction of

testing set that is correctly classified,
∑T

t=1 corrClass(Xt,L,ϵ)

T
, which is a standard metric to

evaluate any deep learning systems. Note that the input Xt can be both adversarial or

clean inputs. We use this metric to evaluate how WordDP empirically works on adversarial

examples.

Besides the above standard metrics, we introduce a new accuracy metric called Condi-

tional accuracy (CondAcc) to evaluate the following: when a clean input Xt is certified

within bound L, whether its corresponding L-word substitution adversarial example Xadv
t

is indeed correctly classified. The CondAcc can be formulated as:∑T
t=1 certifiedCheck(Xt,L,ϵ)&corrClass(Xadv

t ,L,ϵ)∑T
t=1 certifiedCheck(Xt,L,ϵ)

.

While certified accuracy is typically evaluated on clean inputs in the literature to show
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the certified robustness property, conditional accuracy is evaluated on adversarial inputs

and provides an informative measure of the classification result of adversarial examples

when its counterpart clean input can be certified. This metric is aligned with the definition

and purpose of certified robustness. Ideally, if a clean example is successfully certified,

adversarial examples created from this clean example should have the same prediction.

Therefore, the accuracy of adversarial examples is influenced by the ConvAcc of clean

examples.

Comparison Methods. We compare WordDP with the state-of-the-art certified robust

method SAFER [102] for text classification. We note that SAFER only reports certified

accuracy, without accuracy on adversarial examples. To conduct a fair comparison with

WordDP, we rerun SAFER on the adversarial examples and report the comparison in Cer-

tAcc and CondAcc. Besides SAFER, we also compare the ConvAcc on adversarial exam-

ples with two state-of-the-art defense methods, i.e., IBP [42] and DNE [108], which do

not provide certified robustness guarantee. Thus, their defense may be broken by more

powerful word substitution attacks in the future.

6.3.2 Certified Results

Certified Accuracy. Figure 6.3 presents the CertAcc, CondAcc and ConvAcc under dif-

ferent ϵ and L, respectively. Each line in the figures represents a certified bound L, which

allows L number of words to be substituted. The first row is the results on IMDB, and the

second row is on AGNews.

Figures 6.3(a) and 6.3(d) show the certified accuracy on the two datasets. Since the

conventional accuracy on the clean examples of our mechanisms is close to 100% (as shown

in Figures 6.3(c) and 6.3(f)), the certified accuracy mainly reflects the certified ratio (which

we skip in the results). As shown, higher ϵ can result in lower CertAcc. This is intuitive as

the condition in Theorem 6.2.1 is more difficult to satisfy when given higher epsilon, i.e.

weaker requirement of indistinguishability of the output, hence results in lower certified
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Figure 6.3: Certified Accuracy, Conditional Accuracy and Conventional Accuracy on IMDB and
AGNews

ratio. As illustrated in 6.3(a), when ϵ is around 1.5, the mechanism will approach 0 certified

ratio. This indicates that ϵ can only be searched within a limited range.

Comparing each line in 6.3(a) and 6.3(d), we note that greater L results in higher Cer-

tAcc in most cases for the AGNews dataset. This can be explained by the fact that a greater

L means more word substitutions and randomness are introduced in WordDP, making it

easier to ensure the indistinguishability of the output, and hence a higher certified ratio.

Accuracy on Adversarial Examples. Figures 6.3(b), 6.3(e), 6.3(c) and 6.3(f) present Con-

dAcc and ConvAcc of the two datasets on adversarial examples, respectively. Note that we

only test the adversarial examples that are within the L bound. We also show the CondAcc

and ConvAcc for both clean and adversarial examples without any defense mechanisms as

a reference. In addition, we show ConvAcc of WordDP with varying parameters on clean

examples to show the impact of the mechanism on clean examples.

As shown in the figures, WordDP achieves significantly higher accuracy on adversarial

examples compared to no defense while maintaining the close to 100% accuracy on clean
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Figure 6.4: BERT Results of Certified Accuracy, Conditional Accuracy and Conventional Accuracy
on IMDB and AGNews

examples. Conditional accuracy is higher than conventional accuracy as expected, since it

is computed only on those adversarial examples with a certified counterpart clean example.

Besides, we can observe that with higher ϵ, higher CondAcc on adversarial examples can

be achieved. This is because less randomness is introduced in the inference.

In addition, by comparing different L bound under the same ϵ, larger L can yield more

accuracy improvement on adversarial examples but less on clean examples. Intuitively,

using the aggregated prediction of more distant neighbouring sentences (higher L) can

benefit adversarial examples more than clean examples.

WordDP performance on BERT model. Besides evaluating the performance on LSTM

model, we also consider the most state-of-the-art language model: BERT [19].As shown

in Figure 6.4, the performance of WordDP on Bert has the similar trend of that on LSTM

model, which can be summarized as: 1) higher ϵ can result in lower CertAcc. 2) greater L

results in higher CertAcc. 3) WordDP achieves significantly higher accuracy on adversarial

examples compared to no defense. 4) larger L can yield more accuracy improvement on
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Figure 6.5: Certified Ration vs. Conditional Accuracy

adversarial examples. 5) higher higher ϵ can result in lower CondAcc.

Note that this certified accuracy and conditional accuracy is achieved under the circum-

stance that WordDP is not integrated in the training process. As Bert is a pre-trained model

and the last a few layers are always fine-tuned according to different tasks, it is unrealistic

to add a noise layer and incorporate WordDP into the whole training process. Although

WordDP can provide considerable empirical accuracy improvement, other Certified Ro-

bustness mechanism such as Safer provide near-zero certified accuracy. Therefore, lager

space for improvement has been left to study the certified mechanism for pre-trained mod-

els. This topic is critical as in both industry and academia, increasingly large model size

are used to achieve state-of-the-art performance, and the pre-train plus fine-tune schema

has become the mainstream, which makes it crucial to explore certified robustness for pre-

trained models.

Trader-off between Certified Ratio and CondAcc. We can see that ϵ has an opposite im-

pact on certified accuracy (certified ratio) and CondAcc, we present the trade-off between

the certified ratio and CondAcc of WordDP in Figure 6.5 in comparison with the baseline

method SAFER. Ideally, we want both high certified ratio and high condAcc to contribute

to overall high accuracy. The black dot represents the baseline SAFER, since the neigh-

bouring sentence generating method of SAFER does not depend on L or ϵ. As illustrated
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ADV IBP DNE SAFER WordDP
IMDB 0.172 0.722 0.823 0.727 0.972
AGNews 0.194 0.823 0.909 0.647 0.719

Table 6.1: Empirical comparison on accuracy

on these two datasets, with L = 20 and L = 40,WordDP can dominate SAFER and achieve

a much better performance in both certified ratio and condAcc.

0 10 20 30 40
Robustness Condition L

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Certified Accuracy
Conditional Accuracy
Conventional Accuracy

(a) Fixed attack power 40

0 10 20 30 40
Attack Bound L_adv

0.0

0.2

0.4

0.6

0.8

1.0

A
cc
ur
ac
y

Certified Accuracy
Conditional Accuracy
Conventional Accuracy

(b) Fixed defense power 40

Figure 6.6: The trend on accuracy under different defense and attack power

Relation between certified bound L and adversarial attack power Ladv. Figure 6.6

presents the three accuracy metrics under different attack power and defense power. In

Figure 6.6(a), we fix the attack power Ladv to 40, which means allowing less than 40 word

substitutions, and adjust the WordDP defense power by using different certified bound L.

As discussed in Section 6.2, certified bound L determines the size of neighbouring set.

Greater L leads to higher randomness and thus can benefit the CondAcc and ConvAcc on

adversarial examples. On the other hand, greater L also makes the certified condition more

difficult to be satisfied, which result in lower CertAcc.

In Figure 6.6(b), we fix the certified bound L to 40, which means using the same power

of WordDP to defend against adversarial examples generated by varying attack power Ladv.

As shown in the figure, the performance increases with higher attack power. This is because

the adversarial examples with more word changes (higher Ladv) are more difficult to gen-

erate but easier to defend (due to the nature of PWWS attack algorithm). Comparison

with Empirical Defense. Besides certified robust method SAFER, we also compare Con-
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dAcc of WordDP with baseline empirical defense methods, IBP [42] and DNE [108]. Table

6.1 compares the highest CondAcc achieved by WordDP with the conventional accuracy

reported by the baselines (ADV corresponds to no defense). WordDP achieves a much

higher accuracy on IMDB dataset compared to IBP, DNE and SAFER. For AGNews, the

accuracy of WordDP outperforms SAFER, but is lower than the two empirical defenses.

We stress, however, the empirical defense methods do not provide any rigorous certified

robustness guarantees and the performance can be significantly dependent on datasets and

specific attacks.

Efficiency Comparison. We also compare the efficiency of WordDP with SAFER by

computing the average time cost for certifying one input and producing the Monte Carlo

sampling-based output. It takes WordDP 6.25s and 3.21s on IMDB and AGNews, respec-

tively. As a comparison, it costs SAFER 230.35s and 96.68s. Thus, WordDP achieves more

than 30× efficiency improvement.
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Chapter 7

Wasserstein Adversarial Examples on

Univariant Time Series Data and its

Certified Robustness

7.1 Overview

As deep learning models are increasingly used for time series data, and potential adversarial

attacks are present in many applications where the use of time series data is crucial, several

works adapted adversarial attacks from images to time series data [40, 48, 72] using Lp

norms. In these work, our goal is to develop more powerful adversarial examples on time-

series data and study the potential certified robustness mechanism to improve the robustness

of time-series deep learning models.

First, we aim to propose a more powerful and natural adversarial examples in time-

series data. The notion of indistinguishability of adversarial examples, in the context of

computer vision, was originally taken to be L∞ bounded perturbations, which refers to

noise with limited magnitude injected to each pixel [35]. In time series analysis, there

are more effective metrics for measuring similarity between two temporal sequences, es-
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pecially when the sequences vary in length and speed [2, 10]. Wasserstein distance [93],

which is the numerical cost of an optimal transportation problem, allows us to analyze

the distance between two time sequences. This distance can be intuitively understood for

time sequence as the cost of moving around feature mass from one time step to another

(transportation plan) in order to make two sequences the same.

We study the adversarial attack on time series in the Wasserstein space, to generate ad-

versarial examples that have small Wasserstein perturbation so it is more indistinguishable

and natural to human, e.g., physician who examines ECG data. Projected gradient descent

attack [67] is a widely-used attack method that applies small steps of maximizing the loss

objective iteratively and clipping the values of intermediate results after each step (pro-

jection to the Lp norm ball) to ensure that they are in a constrained neighbourhood of the

original inputs. Similarly, we propose a Wasserstein PGD method to search for adversarial

examples in the Wasserstein space for univariant time series. Wasserstein distance cannot

be calculated directly without solving an optimization subproblem and has no closed-form

solution in most cases, which limits its applications. At present, there are only two cases

that the Wasserstein distance can be directly calculated, one is the case of the dimension

of inputs being 1, and the other is the inputs following Gaussian distribution. For the uni-

variant time series, we can take advantage of its 1D characteristic and use the closed-form

Wasserstein distance to apply the projection of intermediate results of each step onto the

Wasserstein ball with gradient descent method.

Followed by that, we also study the certified robustness approach to Wasserstein adver-

sarial examples which provides a theoretical guarantee that adversarial examples generated

within certain distance bounds can be correctly classified. As Wasserstein adversarial ex-

amples are bounded by Wasserstein distance, the existing and well-known certified defense

within Euclidean distance is not applicable [18]. Therefore, we adapt Wasserstein Smooth-

ing [58], a certified robustness approach to Wasserstein adversarial examples for image

data which transfers Wasserstein distance on the image into L1 distance on the transport
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plan, to univariant time series adversarial examples. From the results, although the defense

can achieve some accuracy gain, it still has limitations in many cases and leaves space for

developing a stronger certified robustness method to Wasserstein adversarial examples on

univariant time series data.

7.2 Proposed Method

In this section, we present our proposed Wasserstein adversarial example against time se-

ries models. We rely on the most common method of creating adversarial examples, the

variation of projected gradient descent (PGD). The original PGD algorithm uses L∞ clip-

ping to perform the projection while we will use Wasserstein projection in our method.

First, we will explain how to perform the Wasserstein projection. Followed by that, we will

explain the Wasserstein PGD algorithm and the two-step projection.

7.2.1 Wasserstein Projection

Let (x, y) be a data point and its label, and B(x, ϵ) be a ball around x with radius ϵ. The

(general) projection of a point w on to B(x, ϵ) can be formulated as:

proj(w)
B(x,ϵ)

= argmin
z∈B(x,ϵ)

||w − z||22. (7.1)

A Wasserstein ball around sample x with radius ϵ can be defined as:

Bw(x, ϵ) = {x+ δ : dW(x, x+ δ) ≤ ϵ}, (7.2)

where dW(u, v) refers to the Wasserstein distance between two sample distributions in the

space X = R2, which can be calculated as:

dW(u, v) = [ inf
γ∈Π(u,v)

∫
X 2

||x− y||pdγ(x, y)]1/p. (7.3)
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Here γ defines the joint probability distribution, called coupling, which has marginal dis-

tribution exactly as u and v.

Algorithm 1: 1D Wasserstein Projection
Input: Original input: x; Initial adversarial input x0

adv; Wasserstein projection
bound: C; Step size: α

Output: Projected Adversarial example: xadv

1 i← 0;
2 L0

w =dW(x, x0
adv) (Formula 7.5);

3 while Lw ≥ C do
4 xi+1

adv = xi
adv − α · ∂Lw(x,xi

adv)

∂xi
adv

;

5 Li
w = dW(x, xi

adv);
6 i++;
7 if i ≥ I then
8 Break;
9 Return False;

When the input distribution satisfies the dimension being one, there is a closed-form

solution for the above dW :

dW(u, v) = ||F−1
u − F−1

v ||p

= (

∫ 1

0

||Fu(α)
−1 − Fv(α)

−1||pdα)1/p.
(7.4)

When p equals 1 and the inputs are in the discrete case, formula 7.4 can be further simplified

as:

dW(u, v) =

∫
R
|Fu(α)− Fv(α)|dα

=
n∑

i=1

|
i∑

j=1

ui −
i∑

j=1

vi|.
(7.5)

In this case, the transport plan is t = F−1
v ⊙ Fu.

Specifically, projecting w onto the Wasserstein ball around x with radius ϵ is defined

as:

proj(w)
BW (x,ϵ)

= argmin
z∈BW (x,ϵ)

dW(x, z). (7.6)
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As 1D Wasserstein distance has a closed-form solution and the above formula is also dif-

ferentiable, we can apply the gradient descend method to the projection, the algorithm is

explained in Algorithm 1. Note that this method may not find the exact projection onto the

Wasserstein ball, but it can converge to an example within the Wasserstein ball.

7.2.2 Wasserstein PGD Attack

Algorithm 2: Wasserstein PGD Attack on Univarient Time series
Input: Original input: X = {x, y}; Target model: Fθ; Attack Iteration: T; Step

size: ϵ; Wasserstein projection bound: ζ; L∞ Norm clipping value: δ
Output: Adversarial example: xadv

1 S t← 0;
2 Init x0

adv = x+N (0, 1);
3 while t ≤ T do

/* gradient descend step */
4 η = ϵ · sign(∇xLcross entropy(x, y,Fθ));
5 xt+1

adv = xt
adv + η;

/* norm ball clipping with center x and radius ζ */
6 xt+1

adv = min(max(xt+1
adv , x

t+1
adv − ζ), xt+1

adv + ζ);
/* Wasserstein ball projection with center x and

radius δ */
7 xt+1

adv = 1D Wasserstein Projection(x, xt+1
adv , δ) (Algorithm 1);

8 t++;

PGD attack utilizes the concept of back-propagation. It takes the gradient of the loss

function over inputs, to generate small perturbations at each time step and iteratively adds

the perturbation to the clean input to generate adversarial examples followed by projec-

tion (clipping into the L∞ ball), such that the new adversarial example has a greater ten-

dency towards being misclassified. For Wasserstein adversarial attack, each iteration of the

algorithm includes a gradient descent step to update the perturbed example followed by

Wassersten projection, which is formulated as:

xt+1
adv = proj

BW (x,ϵ)

(xt
adv + αT∇L(xt

adv, y)). (7.7)
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Theoretically, Wasserstein projection can be performed from any starting point. How-

ever, direct projection onto the Wasserstein ball using gradient descent can be time con-

suming and converge to a sub-optimal solution. We propose a two-step projection method

(shown in Algorithm 2) that first projects the adversarial example to a norm-ball and then

uses the projected example as the starting point for Wasserstein projection. As shown in

Figure 7.1, the blue curve refers to the direct Wasserstein projection using gradient descent

(this is the gradient descent used to perform projection shown in line 3-5 in Algorithm 1).

This is performed after each step of gradient descent that updates the adversarial example

(this is the gradient descent used to generate the perturbation shown in line 4-5 in Algo-

rithm 2). The red curve and green curve refer to the two-step projection that first projects

(clips) the example to the norm ball (line 6) and then projects it to the Wasserstein ball

(line 7). In this way, the search in the Wasserstein space is guided and constrained, which

is more effective and efficient.

Figure 7.1: Illustration of the difference between direct projection and two-step projection

7.3 Experiments

In this section, we will first describe our experimental settings and then evaluate our pro-

posed Wasserstein PGD in terms of the Attack Success Rate (ASR, the fraction of examples

that label has been fliped), and comparison with the PGD attack in the Euclidean space. We
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also demonstrate the effectiveness of the 2-step projection. Finally, we will demonstrate the

results of certified robustness to the proposed Wasserstein PGD attack.

Data Description
Dataset TrainSize TestSize Classes SeqLen
ECG200 100 100 2 96
ECG5000 500 4500 5 160
ECGFiveDays 23 861 2 136

Model Performance
Dataset MLP FCN CNN ResNet
ECG200 0.916 0.9 0.83 0.89
ECG5000 0.931 0.939 0.928 0.934
ECGFiveDays 0.979 0.987 0.885 0.993

Table 7.1: Summary of datasets

Figure 7.2: Attack Success Rate under different l∞ and Wasserstein Bound: The columns represent
the three dataset respectively.The first row illustrate under the same Wasserstein distance bound,
how the attack success rate change with the increase of the l∞ bound; The Second row illustrate
under the same l∞ bound, how the attack success rate change with the increase of the Wasserstein
distance bound.

7.3.1 Experimental Setup

Our experiments are evaluated on Five benchmark time series classification datasets from

the publicly available UCR archive [16]. The datasets are selected under the “ECG” cat-
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egory for ECG based diagnosis tasks, where an adversarial attack is a potential security

concern. In this section, we only show the results on three of the five ECG dataset, which

are: 1) ECG200 which includes two classes (normal heartbeat and Myocardial Infarction),

and contains 35 half-hour records sampled with the rate of 125 Hz. 2) ECG5000 which

is the Beth Israel Deaconess Medical Center (BIDMC) congestive heart failure database,

consisting of records of 15 subjects, with severe congestive heart failure. Five labels refes

to different levels of heart failure. Records of each individual were recorded in 20 hours,

containing two ECG signals, sampled with the rate of 250 Hz. 3) ECGFiveDays which is

from a 67-year-old male, including two classes which are two ECG dates. We relegate the

full version of the experiments of the other two datasets to the Appendix.

We adopt and evaluate the target deep learning models from [41] including: Multi-

Layer Perceptron (MLP) [32], Fully Connected Networks (FCN)[64], Convolutional Neu-

ral Networks (CNN) [49] and Residual Networks (ResNet) [36]. The detailed information

of the ECG datasets and the performance of the target models on each dataset is listed in

Table 7.1.

7.3.2 Attack Success Rate

Our proposed 2-step projection Wasserstein PGD involves a first projection to a L∞ norm-

ball and a second projection to a Wasserstein ball. Figure 7.2 illustrates the impact of these

two projections by comparing the ASR under different L∞ and Wasserstein bounds. The

first row shows under the same Wasserstein distance bound, how the ASR changes with the

increase of the L∞ bound, while the Second row shows under the same Ł∞ bound, how the

ASR changes with the increase of the Wasserstein distance bound. Each column represents

the results of each dataset and each line in each figure corresponds to a target model. We

show two models for each dataset and relegate the full version of the experiments to the

Appendix.

Under the same radius of Wasserstein ball, the general trend is that ASR first increases
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with the increase of L∞ bound. This is intuitive as the search space for optimal adversarial

examples that satisfy the Wasserstein distance constraint is increasing. It is easier to find

an adversarial example that successfully attack the target model and meanwhile satisfy

the Wasserstein constraint. However, as the L∞ bound keeps increasing, it does not help

anymore and even hurts the performance because the search in the Wasserstein Space is

not guided and constrained any more and can be too large for the projection to find a good

solution. Therefore, the ASR stops increasing or starts to decrease. This decreasing trend

is more noticeable in ECG200 and ECGFiveDays datasets, while for ECG5000, the ASR

increases to and stays at 1 (for the CNN model). Note that our attack is untargeted attack

that aims to flip the label to any class other than the original label rather than the targeted

label. Therefore, multi-class classification task (ECG5000) is easier to attack than binary

classification tasks (ECG200 and ECGFiveDays).

Figure 7.3: t-sne for ECG5000 (left) and ECG200 (right)

To further explain the difference between the datasets, we use t-distributed stochas-

tic neighbor embedding (t-SNE), a nonlinear dimensionality reduction technique for high-

dimensional visualization in a low-dimensional space [94], to visualize the datasets. Figure

7.3 shows the 2D t-sne for ECG200 and ECG5000 respectively. Each color represents a

class label. We can note that data points of ECG200 is more separable and the class bound-

ary is more clear, while the classes are overlapping for ECG5000 and the boundary is less

clear, which makes it easier to attack. This explains why for ECG5000, the ASR increases
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to 1 and does not decrease.

On the other hand, under the same L∞ bound shown in the bottom row of Figure 7.2,

larger Wasserstein bound also renders higher ASR at first due to larger search space. As

it keeps increasing, the ASR decreases due to the search space being too large and the

ineffectiveness of the search, especially when the radius of Wasserstein ball is greater than

the Euclidean ball. Overall, the ASR of ECG5000, ECG200 and ECGFivedays can reach

100%, 62% and 74% respectively.

7.3.3 Effectiveness of 2-step Projection

From the perspective of ASR, we compare the 2-step projection with the direct 1-step

Wasserstein projection shown as the dotted lines in the top row of Figure 7.2 under the same

attack settings. We observe that 2-step projection can achieve a higher ASR in general and

optimal attack success rate when choosing the proper L∞ bound for the first projection.

Figure 7.4: Comparison between direct Wasserstein projection (1-step projection) and 2-step pro-
jection.

From the perspective of human inspection, Figure 7.4 shows two successful adversarial

examples generated by the 2-step projection (purple) and direct projection (red) respec-

tively in comparison with the original example (blue). Although the Wasserstein pertur-

bation distances of the two adversarial examples are both 0.99, the one that is first norm

clipped is more imperceptible to human eyes, which has not only small Wasserstein dis-

tance but also bounded by L∞ distance.
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7.3.4 Comparison with L∞ PGD

The intuition of developing the Wasserstein PGD attack is to search for more indistinguish-

able and natural adversarial examples in the Wasserstein space. Therefore, we compare the

adversarial examples generated by Wasserstein PGD with those generated by original PGD

in the Euclidean space (L∞ PGD). On one hand, We draw the utility comparison from two

aspects: 1) Under the same attack success rate, Wasserstein PGD is more natural; and 2)

Under the same perturbation scale, Wasserstein PGD has a higher attack success rate. On

the other hand, as Wasserstein projection involves gradient descent which will add more

time cost in generating adversarial examples, we also compare the average time cost of two

attack methods.

Figure 7.5: Comparison between Wasserstein PGD (yellow) and L∞ PGD (green) under the same
attack success rate.

Under the same attack success rate, Wasserstein PGD is more natural

Figure 7.5 illustrates several comparisons between Wasserstein PGD and L∞ PGD under

the same ASR. We selected three examples randomly. For each figure, the blue curve is
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the original input. The yellow curves represent the perturbation and adversarial example

generated by Wasserstein PGD, while the green curves represent the L∞ PGD. Clearly, the

perturbation generated from Wasserstein PGD is smaller and more indistinguishable than

L∞ PGD.

Under the same perturbation scale, Wasserstein PGD has a higher attack success rate.

Another aspect to show the effectiveness of Wasserstein PGD is to compare the ASR with

the original PGD under the same perturbation scale. However, the two attacks are con-

ducted in different spaces. It is unfair to compare the ASR of adversarial examples gen-

erated from the Wasserstein ball and the L∞ ball with the same radius, as they represent

completely different spaces. To overcome this challenge, we use the greatest L∞ norm of

the Wasserstein examples as the radius of L∞ ball to generate L∞ PGD adversarial ex-

amples. For example, the maximum L∞ norm of the Wasserstein adversarial examples

with 0.01 Wasserstein distance is 0.2. Then we will search for adversarial examples in the

L∞ ball with the radius equal to 0.2. In this way, we have a fair comparison between the

Wasserstein PGD and the original PGD attack.

Figure 7.6 shows the comparison of ASR in the way we introduced above. The x-axis

refers to different attack settings corresponding to different Wasserstein and L∞ bounds

(note that we have two steps of projections, first to an L∞ norm ball and second to a

Wasserstein ball, while original PGD only uses L∞ projection). The purple and orange

lines correspond to the Wasserstein PGD and original PGD respectively. We can note that

in most cases, Wasserstein PGD has a higher attack success rate than the original attack.

From these two aspects, we can conclude that for univariant time series data, Wasser-

stein PGD not only can generate more natural adversarial examples but also can achieve a

higher ASR under the same attack scale.
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Figure 7.6: Comparison between Wasserstein PGD and l∞ PGD under the same attack scale.

Compare the time cost between Wasserstein PGD and L∞ PGD

Besides comparing the utility of Wasserstein PGD with L∞ PGD, we also evaluate how

Wasserstein PGD increases the time cost by comparing the average time cost of generating

an adversarial example with L∞ PGD attack, as Wasserstein PGD involves projection into

the Wasserstein ball via gradient which will result in more time cost. As the time cost of the

Wasserstein projection is largely relative to the size of L∞ ball (the start point of gradient

descent) and the size of the Wasserstein ball (the destination), we compare the average time

cost according to the ratio between Wasserstein bound and L∞ bound.

As shown in Figure 7.7, the red and blue curves are the Wasserstein PGD with and with-

out the first stage of norm clipping, while the black line represents the baseline L∞ PGD

attack, whose value is irrelevant to the ratio between Wasserstein and L∞ bound. We show

the result on two datasets and two models: ECG200 and ECG5000, with CNN and FCN

models. We can note that Wasserstein PGD will result in more time cost than L∞ PGD, es-

pecially when the ratio between Wasserstein bound and L∞ bound is large. However, when

the ratio approaches 1, this increase in time cost is neglectable. By comparing the red and

blue curves we can conclude that when the ratio between the Wasserstein bound and L∞

bound approaches 1, the first stage of norm clipping can effectively guide the search for

Wasserstein adversarial examples. However, when the ratio increases( approaches 0), even
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(a) ECG200 CNN (b) ECG200 FCN

(c) ECG5000 CNN (d) ECG5000 FCN

Figure 7.7: The average time cost of generating an adversarial example with Wasserstien PGD (with
and without norm bound clipping) and L∞ PGD attack.

with the bound of norm clipping, the search also tends to be a random search.

7.3.5 Countermeasure against Wasserstein PGD

To better study the nature of Wasserstein adversarial examples, we also explored certified

robustness approach as a potential defense mechanism for Wasserstein PGD. We consider

certified robustness in contrast to other empirical defense methods as it is the most powerful

and principled defense method to date.

We adopt Wasserstein smoothing [58] which is originally designed for image data to the

univariant time series data. The basic idea of Wasserstein smoothing is to define a reduced

transport plan and map the Wasserstein distance on the input space to the L1 norm on

the transport plan. The base classifier is transformed into a smoothed classifier by adding

Laplacian noise Laplace(0, σ)r to the reduced transport plan, where r is corresponding to
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the input dimension. Because of the mapping, smoothing in the transport domain can be

performed using existing L1 robustness certification provided by [55] and mapped back to

the Wasserstein Space. The strict form of the certified condition can be stated as:

Theorem 7.3.1. For any normalized probability distribution input x∈Rn∗m with correct

class c, if:

f̄c(x) ≥ e2
√
2ζ/σ(1− f̄c(x)) (7.8)

then for any perturbed x that dW (x, x) ≤ ζ , we have

f̄c(x) ≥ max
i ̸=c

f̄i(x) (7.9)

The detailed proof and the design of the reduced transport plan can be referred to [58]

We evaluate how Wasserstein Smoothing empirically works on the proposed Wasser-

stein PGD attack with two evaluation metrics [97]: Certified accuracy (CertAcc) which

denotes the fraction of the clean testing set on which the predictions are correct and also sat-

isfy the certification criteria. Formally, it is defined as:
∑T

t=1 certifiedCheck(Xt,L,ϵ)&corrClass(Xt,L,ϵ)

T
,

where certifiedCheck returns 1 if Theorem 7.3.1 is satisfied and corrClass returns 1 if

the classification output is correct. T is the size of the test dataset. Conventional ac-

curacy (ConvAcc) is defined as the fraction of testing set that is correctly classified,∑T
t=1 corrClass(Xt,L,ϵ)

T
, which is a standard metric to evaluate any deep learning systems.

Figure 7.8 illustrates how the certified accuracy changes under different Wasserstein

certified radius ζ in Equation 7.8. During the experiments, the Laplace parameter σ which

controls the noise to the transport plan is set to 0.01 and the soft prediction result is aver-

aged over 100 times of sampling. As Wasserstein radius increases, the certified accuracy

decreases, which means less fraction of examples can satisfy the certification condition in

Equation 7.8. When Wasserstein radius ζ is set over 0.1, the certified accuracy stops de-

creasing. We can note from this result that: first, under a certain Laplacian distribution, the

certified radius is limited. Second, to a very small certified radius, for examples less than
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0.01, the certified accuracy can achieve 100%.

Figure 7.8: Comparison of Certified Accuracy under different Wasserstein radius with σ = 0.01

Figure 7.9: Comparison of Conventional Accuracy of successfully attacked adversarial examples.

Figure 7.9 demonstrates whether Wasserstein smoothing can empirically increase the

conventional accuracy of adversarial examples generated by Wasserstein PGD. In the ex-

periments, we test on successfully generated adversarial examples, so the baseline accuracy

of the dataset is 0. Laplace parameter σ is set to 0.1 and the soft prediction result is averaged

over 100 times of sampling. The x-axis refers to the Wasserstein attack scales. The two red

lines represent the adversarial examples generated from ECG200 under two different set-

tings, L∞ norm set to 0.1 and 0.2, and the two blue lines represent the adversarial examples

generated from ECG5000 where L∞ norm set to 0.1 and 0.2. We can note from the figures

the following. First, when the Wasserstein attack scales are small, Wasserstein smoothing

can render some accuracy gain. The accuracy decreases with the increase of Wasserstein

perturbation scales as expected. When the Wasserstein distance increase over 0.06, which

is also the greatest certified radius, the accuracy gain is limited and does not change any-

more. We also randomly select two adversarial examples with Wasserstein perturbations
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around 0.06. As shown in Figure 7.10, the adversarial ECG is fairly indistinguishable to

human eyes. Yet Wasserstein Smoothing can not provide reasonable defense at this level.

Second, with ECG200 and ECG5000 under setting2 ( L∞ norm set to 0.2), the overall

accuracy gain is very small for all perturbation scales.

We can conclude from the results that the existing Wasserstein smoothing has limited

success in both certified ratio and conventional accuracy gain. This suggests that there is

still space for developing stronger certified robustness method to Wasserstein PGD tailored

to time series data instead of using the general transport plan based smoothing designed for

image data.

Figure 7.10: The comparison between adversarial examples and clean examples at dW scale around
0.06.
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Chapter 8

Conclusion and future work

My dissertation thesis combines several works to improve the robustness of deep learn-

ing systems to adversarial examples in sequential data, especially EHR data and NLP. We

propose and evaluate several empirical defense algorithms as well as certified robustness al-

gorithms. In section 4, we propose RADAR, the first effort to defend adversarial examples

on temporal EHR data. We benefit from the autoencoder’s reconstruction ability to distin-

guish adversarial examples and clean examples on EHR data. In order to more effectively

model the multivariate time series data, we build an autoencoder by integrating attention

mechanism with bi-directional LSTM cell to capture both past and future of the current

time frame and their interdependence. Experimental results showed that RADAR can filter

out more than 90% of adversarial examples and improve the target model accuracy by more

than 90% and F1 score by 60%.

In section 5, we propose MATCH to enhance the robustness of deep learning systems

on EHR data. MATCH system aims to detect whether an input is adversarial, under the

circumstance that one modality has been compromised, by measuring the consistency be-

tween the compromised modality (clinical notes) and another uncompromised modality

(temporal EHR). we conduct a case study on predicting the 30-days readmission risk us-

ing an EHR dataset. Experimental results show that MATCH outperforms existing defense
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techniques in the text domain due to the special characteristics of clinical notes.

In section 6, we propose a novel approach WordDP to certified robustness against word

substitution attacks in NLP via differential privacy (DP). We establish the connection be-

tween DP and certified robustness for the first time in text classification domain, and lever-

age conceptual exponential mechanism to achieve WordDP and formally prove an L-word

bounded certified condition for robustness against word substitution attacks. Extensive ex-

periments validate that WordDP outperforms existing defense methods and achieves over

30× efficiency improvement in the inference stage than the state-of-the-art certified robust-

ness mechanism

n section 7, we develop more powerful adversarial examples on times series data and

study the potential certified robustness mechanism to improve the robustness of time-series

deep learning models. We first develop an attack algorithm by adopting Wasserstein dis-

tance to better capture the perturbation magnitude instead of the common L2 distance on

image, and propose Wasserstein PGD to generate more natural adversarial examples to hu-

man eyes and achieve higher attack success rate. Followed by that, we evaluate Wasserstein

smoothing which is designed for image data as a potential certified robustness method to

Wasserstein adversarial examples that can provide certified bound in the Wasserstein space.

Results show that the existing Wasserstein smoothing has limited success in both certified

ratio and conventional accuracy gain. This suggests that there is still space for developing

stronger certified robustness method to Wasserstein PGD tailored to time series data instead

of using the general transport plan based smoothing designed for image data.

Future works. There are a few research directions that we would like to explore in the

future. In section 6, we attempted to apply WordDP to the most state-of-the-art NLP model

BERT. As Bert is a pre-trained model and the last a few layers are always fine-tuned ac-

cording to different tasks, it is unrealistic to add a noise layer and incorporate WordDP into

the whole training process. Although WordDP can provide considerable empirical accu-

racy improvement, other certified robustness mechanism such as Safer provide near-zero
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certified accuracy. Therefore, it would be meaningful to study the certified mechanisms

for pre-trained models, as in both industry and academia, increasingly large model size are

used to achieve state-of-the-art performance, and the pre-train plus fine-tune schema has

become the mainstream. Besides involving certified robustness mechanism in the training,

We would also adopt adversarial training to improve overall conventional accuracy. To

better evaluate the effective of WordDP, we will also adopt more difficult dataset such as

google benchmark.

Instead of studying certified robustness in the word space, we also want to study the

certified robustness in the word embedding space. We would study both attack and cer-

tified defending algorithms on the generative models generated embedding or contextual

embeddings.

From broader picture of view, it would be interesting to extend the certified robustness

definition to applications other than classifications, such as regression, real-time prediction

and text generation, as well as other model architectures.
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