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ABSTRACT 

The first chapter is a general review of rhodium stabilized carbenes and their reactions, including 

introduction of basic concepts, development of carbene reactions and metal catalysts as well as recent 

progress with rhodium donor/acceptor carbene in C–H functionalization. 

The second chapter is focused on exploring new reactions with rhodium vinyl carbenes, a special 

type of donor/acceptor carbene. A novel reaction of siloxydienes with E-vinyldiazoacetates in the 

presence of the bulky chiral dirhodium tetracarboxylate catalyst, Rh2(R-p-PhTPCP)4 results in an 

enantioselective [4+2] cycloaddition, in which three new stereogenic centers are formed.  The [4+2] 

cycloadducts are generated as single diastereomers with high enantiocontrol (95-98% ee). When the 

diene contains an additional stereogenic center, effective kinetic resolution can be achieved. 

The third chapter is focused on solving the limitation of the fixed aryl-ester moiety in products 

from our rhodium donor/acceptor carbene chemistry. The first attempt was exploring the reactivity 

profile of acceptor only carbene under our latest dirhodium catalysts. Secondary and tertiary selective 

C–H insertion with 2-methylpentane were achieved in moderate to good site-selectivity. However, these 

results did not surpass previous studies with other metal catalysts. Further test reactions with pentane 

showed serious issues of site-selectivity compared to donor/acceptor carbenes. The second attempt was 

to check the behavior of asymmetric cyclopropanation with rarely used donor only carbenes generated 

from retro-Büchner reaction under rhodium catalysis. The best ee achieved is 30%, suggesting poor 

catalyst-controlled chiral induction for donor only carbenes. The third try of developing general 

derivatizations of products from our rhodium donor/acceptor carbene turned out to be successful. Firstly, 

derivatization by removing the aryl part through Ru(VIII) oxidation/decarboxylation was studied. A 

few examples were achieved but the strong Ru(VIII) oxidation has narrow functional group tolerance. 

Therefore, we moved our focus to removing the ester part and a general derivatization was developed 

using hydrolysis followed by a photoredox decarboxylation. Under these mild conditions, various 

unique C–H functionalization compounds reported by our group were transformed to formal 

benzylation type of products in good yield and with maintained high stereoselectivity. 
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The fourth chapter describes a C–H functionalization approach for the synthesis of chiral 

C2 symmetric 1,5-cyclooctadienes ligands. This is an example of applying our rhodium donor/acceptor 

carbene chemistry on relatively simple molecules to generate valuable chiral products. Chiral 

cyclooctadiene (COD) derivatives are readily prepared by rhodium-catalyzed allylic C–H 

functionalization of COD. Either mono- or di-functionalization of COD is possible generating the 

products in high yield, diastereoselectivity and enantioselectivity. The double C–H functionalization 

generates C2 symmetric COD derivatives with four new stereogenic centers in >99% ee, which can be 

readily converted to a series of chiral COD ligands. Preliminary evaluations revealed that these COD 

ligands can be used in rhodium-catalyzed asymmetric arylation of cyclohex-2-enone, leading to the 

conjugate addition products in up to 76% ee. 

The last chapter covers my experimental studies with an unusual observation initially discovered 

by Dr. Wenbin Liu. A direct cyclopropanation with N-sulfonyl piperidines and rhodium donor/acceptor 

carbenes was observed as minor byproducts during her piperidine C2 insertion studies. This unexpected 

observation intrigued us to explore the possibility of a catalyst controlled direct cyclopropanation of 

protected piperidines, which would save the trouble of preparing enamines as substrates as described in 

our reported methodology.  Therefore, a systematic optimization was performed with this reaction 

regarding factors such as dirhodium catalysts, aryldiazoacetates, and reaction solvents. The best ratio 

of desired cyclopropanation versus the standard C2 insertion obtained to date was 1.87 : 1, suggesting 

achieving clean cyclopropanation will be challenging. Miscellaneous studies with other protected cyclic 

amines under the same conditions observed no cyclopropanation, suggesting the unique structural 

properties of N-sulfonylpiperidines for this type of reaction. 
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Chapter One 
Overview of rhodium carbene chemistry 

1.1 Introduction 

Developing new methodologies is a continuous goal for synthetic organic chemists. We use these 

novel strategies to solve synthetic challenges of complicated molecules, optimize current synthetic 

routes to important medicinally related compounds as well as to test new chemical hypotheses and 

predictions. Metal-carbenoid mediated C–H functionalization has been an active focus of methodology 

studies since its discovery in the 1950s 1 and is becoming more valued in organic synthetic chemistry 

in recent years. The combination of rhodium tetracarboxylate catalysts with donor/acceptor type of 

carbene precursors has been shown by the Davies group to be applicable to w wider range of useful 

synthetic methods, such as, asymmetric cyclopropanation,2-10 vinylogous reactions with rhodium vinyl 

carbene,11-29 allylic C–H insertion followed by a Cope rearrangement30-38 and  site-selective C–H 

insertion of unactivated primary, secondary or tertiary C–H bonds.39-43  

Electronic effects are decisive factors that influence the reactivity of carbenes. Based on this point, 

the carbenes generated from diazo compounds in  Figure 1 can be categorized into five types, 

acceptor/acceptor, acceptor only, donor/acceptor, donor only and donor/donor. Although free carbenes, 

generated from photodecomposition  or thermal decomposition of diazo compounds, have shown to 

have some utility, including C–H functionalization,44-45 free carbenes are still prone to self-dimerization 

and the reactions are not enantioselective.46-48 Therefore, the background discussions will focus on the 

chemistry of  metal-bonded carbenes.  

Figure 1. Classification of diazo compounds based on electronic properties 

 

R1

N2

R2

(Diazo compounds)

common carbene precursor

heat or hv. R1 R2 (free carbene)

R1

M

R2

(tend to dimerize; low selectivity)

(metal carbene)

(better for controlled reactivity)
focus of carbene chemistry

M
(metal catalysts)

EWG

N2

EWG H

N2

EWG

(5 types)

EDG

N2

EWG H

N2

EDG GDE

N2

EDG
(Acceptor-acceptor) Acceptor only Donor-Acceptor Donor-Only Donor-Donor

Electrophilicity



 15 

Acceptor/acceptor and acceptor only carbenes are highly electrophilic and reactive. It is difficult 

to control the reactivity and selectivity of reactions with this type of carbene, as has been demonstrated 

in early studies of C–H insertion with alkanes (Figure 2(a)).49-54 On the contrary, donor/acceptor 

carbenes developed by the Davies group can perform much more selective transformations. This is 

attributed to the reduced electrophilicity by the donor part, usually an aryl or a vinyl, that can donate 

electron density into the empty p-orbital of the carbene carbon.55-56 The reduced electrophilicity leads 

to attenuated reactivity of donor/acceptor carbenes, enabling them to be delicately controlled by the 

steric and electronic features of different metal catalysts and eventually achieve highly site- and stereo-

selective intermolecular reactions (Figure 2(b)).39-41 A more detailed introduction to the reactivity 

profile of acceptor only carbenes versus donor/acceptor carbenes is illustrated in chapter three. 

Figure 2 Reactivity and selectivity of different types of carbenes. 
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applications. It would be very challenging to perform selective C–H insertion to unactivated C–H bonds 

like the donor/acceptor carbene did with donor only or donor/donor carbenes.  

Copper catalysts are the most widely applied metal catalysts in early studies of carbene-induced 

C–H functionalization since the initial report of CuO-catalyzed intramolecular C–H insertion by Jeger 

et. al. in 1958.1 Later Scott et. al. reported an early intermolecular reaction of ethyl diazoacetate with 

cyclohexane under Cu catalysis.48 Wenkert et. al.58 and Tabber et. al.59 for the first time expanded the 

scope of transition metal catalysts to dirhodium catalysts in intramolecular metal-carbene reactions 

(Figure 3). The breakthrough to intermolecular rhodium-mediated carbene reactions was achieved by 

Teyssié et. al.50-51 in the reaction of ethyl diazoacetates with alkanes. Although the selectivity is an issue 

with acceptor only type of carbenes, it was realized that rhodium(II) carboxylates can be more efficient 

for promoting carbene insertion compared to the early Cu catalysts. Since then, new dirhodium catalysts, 

especially chiral ones with better performance and selectivity have been developed by featuring 

different types of ligands.60 

Figure 3 Metal catalysts for carbene reactions 
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enantioselective intramolecular reactions with acceptor only carbenes.63 Nevertheless, they did not 

show promising applications in intermolecular reactions.  

Figure 4 Classification of dirhodium catalysts based on ligand types.  
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bearing the diazo moiety. The synthesis of these compounds usually requires multiple steps and can be 

very challenging if the diazo-transfer step is not compatible with sensitive functional groups. Also, a 

successful intramolecular C–H functionalization is closely related to the steric properties around the 

diazo moiety within the specific starting material, yet it is impossible to develop a new C–H 

functionalization for each substrate. Therefore, more selective and generalizable intermolecular C–H 

functionalization methods were needed to build on Teyssié’s early intermolecular reactions between 

ethyl diazoacetates and  alkanes.49-50  

The Davies group has achieved many remarkable intermolecular reactions through the use of a 

combination of donor/acceptor carbenes with newly developed tool box of chiral dirhodium catalysts 

featuring different reactivity and selectivity.11-38, 39-43 Rhodium donor/acceptor carbenes applied in our 

chemistry can be categorized into two types based on the donor feature of diazo compounds. The first 

type is vinyldiazoacetates, which has an alkenyl group as the donor. The second type is 

aryldiazoacetates, in which the donor is an aryl or heteroaryl functional group.  

Vinyldiazoacetates react with dirhodium catalysts to form rhodium vinyl carbenes, which can 

participate in further reactions either initiated at the carbene carbon site or the vinylogous carbon site. 

the unique feature of  two reactive sites within the rhodium-bound vinylcarbene intrigued us to explore 

catalyst-controlled site-selectivity. An early successful example is the reaction of rhodium vinylcarbene 

with substituted indoles, in which selective reactions at the carbenoid site and the vinylogous site can 

be achieved by modifying the steric feature of indole substrates and the dirhodium catalysts (Figure 6). 

It suggests that steric properties of substrates and the catalysts can have significant influence on the 

reaction outcome. Since then, many interesting reactions with rhodium vinylcarbene have been 

developed.11-29 A limitation for vinyl carbene is that it tends to cyclize by itself to form byproducts, so 

the reaction generally requires reactive substrates such as alkene or allylic C–H bonds and lower 

reaction temperature. The reactivity profiles of these rhodium vinyl carbenes will be discussed in more 

detail in Chapter 2. 
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Figure 6 Examples of regioselective reactions with rhodium vinyl carbene 

 

Rhodium donor/acceptor carbenes from aryldiazoacetates were more stable compared to the vinyl 

carbenes and are more frequently studied for asymmetric cyclopropanation as well as intermolecular 

C–H insertion reactions. The cyclopropanation is beyond the discussion of this thesis so it is not 

introduced in this overview. A general intermolecular C–H insertion reaction with rhodium 

donor/acceptor carbene involves two steps. The initial step is the formation of a transient rhodium-

carbene intermediate in situ accompanied by the nitrogen extrusion. The second step is insertion of this 

highly reactive intermediate to a C–H bond through a hydride abstraction (Figure 7).75  

Figure 7 General mechanism for rhodium donor/acceptor carbene mediated C–H insertion 

 

The specific site-selectivity of a reaction is mainly controlled by the electronic and steric features 

of the substrates and the rhodium carbenes (Figure 8). The site on the substrate that can better stabilize 

partial positive charge during the insertion of the electrophilic rhodium carbene into the C–H bond is 
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more favored. Therefore, electronically, the reactivity of a C–H bond toward functionalization is: 

activated (benzylic/allylic) > 3° > 2° > 1°. However, rhodium carbene surrounded with bulky chiral 

ligands can hinder the reaction with sterically congested sites such as a 3° C–H bond. A combination 

of these effects leave 2° C–H bonds to be commonly preferred reactive sites, and many 2° selective  C–

H insertion reactions have been developed by our group.40,42,43 Highly sterically encumbered dirhodium 

tetracarboxylate catalysts can suppress the 2° C–H insertion and push the reaction to favor the most 

open 1° C–H bonds.39 

Figure 8 General trend for the site-selectivity of a C–H insertion reaction 

 

A major goal of the Davies group is to develop a toolbox of dirhodium catalysts that can target 

different types of  C–H bonds. There are three generations of chiral dirhodium tetracarboxylate catalysts 

commonly used based on the ligand type (Figure 9). The first generation includes chiral sulfonyl proline 

ligand-based catalysts developed by our group.60,68 Rh2(DOSP)4 is the most widely applied one among 

this type that has a dodecyl chain on the sulfonyl proline ligand. This long aliphatic chain allows the 

catalyst to have good solubility in non-polar solvents, such as pentane, which is the optimized solvent 

for many reactions with Rh2(DOSP)4.68 It can catalyze highly enantioselective cyclopropanation as well 

as  C–H insertion reactions at activated C–H bonds (Figure 9 (a)).60 The second generation includes 

chiral phthalimido protected amino acid ligand-based catalysts that originally developed by the 

Hashimoto group.69-71 A representative catalyst is Rh2(PTAD)4, which adopts a C4 symmetrical 

structure. The much more rigid ligand enables this catalyst to catalyze some unique reactions.64 New 
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members of  the 2nd generation catalysts developed by the Davies group further expanded the application 

to site-selective intermolecular C–H insertions with unactivated C–H bonds (Figure 9 (b)). The third 

generation are chiral triarylcyclopropane ligand-based catalysts (Figure 9 (c)). The chiral cyclopropane 

ligands are prepared from asymmetric cyclopropanation reactions under the catalysis of the first and 

the second generation of dirhodium catalysts.39-42,73,74 These catalysts are generally considered to be 

sterically congested and they can adopt different symmetries depending on the substitution pattern of 

the triarylcyclopropane ligand. These catalysts are capable of  achieving highly regioselective C–H 

insertion reactions towards unactivated 2° or 1° C–H bonds.39-42 Some prominent C–H insertion 

reactions from our group in recent years are briefly noted in Figure 9, and in more detail in Chapter 3. 

Figure 9 Three generation of chiral dirhodium catalysts in the Davies lab and their applications 
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1.2 Conclusion 

Rhodium carbene chemistry has been a thriving field ever since its discovery decades ago and 

many novel methodologies have been developed that feature various C–H functionalization strategies. 

The Davies group achieved remarkable site- and stereoselective C–H functionalization reactions 

through the use of donor/acceptor carbenes and the development of new dirhodium catalysts. Some 

notable catalyst-controlled intermolecular C–H insertion reactions developed by the Davies group 

include primary, secondary or tertiary selective functionalization of pentane derivatives;40 selective 

terminal C2 or benzylic functionalization of linear alkyl benzenes42 and desymmetrization of substituted 

alkyl cyclohexane.43  

Despite the unprecedented reactivity and selectivity of these novel reactions, several limitations 

remain to be explored in further studies. One major limitation is that C–H functionalization products 

contain the donor/acceptor moiety (aryl ester or vinyl ester). The substrate scope could also benefit from 

further expansion to sophisticated systems beyond hydrocarbons, which could limit late-stage 

applications. 

In this thesis, the main focus of study is broadening the potential application of rhodium 

donor/acceptor carbene chemistry from three aspects. The first aspect is to take advantage of the 

vinylogous reactivity of rhodium vinyl carbene and develop novel reactions. The second aspect is to 

explore direct and indirect solutions to broaden the scope of the products formed  in C–H 

functionalization beyond the standard donor/acceptor functionality.  Specifically, the direct solution is 

to explore other types of carbenes such as acceptor only carbene using our latest toolbox of chiral 

dirhodium catalysts, and the indirect solution is to develop general derivatizations of successful and 

unique C–H functionalization products from donor/acceptor diazo compounds. In addition, this thesis 

will also cover some miscellaneous exploratory studies using rhodium carbene chemistry. 
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Chapter Two 
Enantioselective [4+2] Cycloaddition of Rh-vinylcarbenes with Dienes31 

2.1  Introduction 

In the mid 1980’s, we began exploring intermolecular reactions of vinyldiazoacetates with dienes.1 

Since then, a large number of synthetically useful transformations of these vinylcarbenes have been 

developed, such as cyclopropanation,2 tandem cyclopropanation/Cope rearrangement,2,3 C–H 

functionalization,4 combined C–H functionalization/Cope rearrangement and various more elaborate 

cascade reactions.5,6   

The vinylogous reaction of Rh-vinylcarbene was initially observed in the reaction of unsubstituted 

vinyldiazoacetate 1 and N-Boc pyrrole 2.7 Besides the formation of the typical cycloadduct 3 from 

tandem cyclopropanation followed by Cope rearrangement, another product 4 with alkylation at the 

vinylogous position of the pyrrole was also observed (Scheme 1).  This was viewed as a side reaction 

during these early studies of rhodium carbene chemistry because such transformations were limited to 

terminal unsubstituted vinylcarbenes, and consequently, do not generate any new stereogenic centers. 

In addition, conditions for clean vinylogous product formation was not available at that time. 

Scheme 1  Early observation of vinylogous reactivity of rhodium vinylcarbene 

 

Recently, vinylogous reactions were successfully applied for developing new synthetic methods. 

In the reaction of cis-substituted vinyldiazoacetate 5 with indoles,8 it was found that the reaction 

outcome was dependent on the steric hinderance around the indole. The reaction with N-methyl indole 

6 occurred at the carbenoid site to give 8, while the reaction with more sterically crowded 1,2-

dimethylinodle 7 occurred at the vinylogous position to give 9 (Scheme 2).  In the reaction with 1,2-

dimethylindole 7, the Z-isomer of product 9 was proposed to indicate that the cis conformation of 5 
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forced the rhodium carbene to prefer s-trans configuration, in which the carbenoid site is less accessible 

compared to the vinylogous site.  This also indicates that resulting vinyl rhodium intermediate is 

protonated stereospecifically.  

Scheme 2  reaction of cis-substituted vinyldiazoacetate with substituted indoles. 

 

Asymmetric vinylogous reactions of rhodium vinylcarbene with the indole system was also 

developed using our chiral dirhodium catalysts.9  Although the achiral vinylogous reaction was achieved 

with cis-vinyldiazoacetate 5, attempts at achieving chiral reactions proceeded with low 

enantioselectivity. Therefore, the current study focused on trans-vinyldiazoacetate 10. Unlike cis-

vinyldiazoacetate 5, 10 does not have internal steric factors that favor s-trans configuration of rhodium 

vinylcarbene, so the proposed controlling factor comes from the bulky dirhodium catalysts. The steric 

demanding ligand on the rhodium could push the rhodium vinylcarbene configuration to favor s-trans 

and enable the vinylogous reaction with 1,2-dimethylindole 7 to happen. The catalysts screening 

identified Rh2(S-biTISP)4 as the optimized catalyst to generate vinylogous reaction product 11 with 

good regio- and enantioselectivity. 

Scheme 3  reaction of trans-substituted vinyldiazoacetate with substituted indole 
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The Davies group10,11,23 and the Doyle group12-22 in recent years have conducted independent 

studies on the reactions of siloxyvinyldiazoacetates with various trapping agents.  These reactions are 

considered to proceed by means of vinylogous functionalization of the rhodium vinylcarbenes.  Doyle 

et. al.15 demonstrated a [3+3] cycloaddition between siloxyvinyldiazoacetate 14 and nitrones 15 

(Scheme 4(a)), in which the rhodium vinylcarbenes were proposed to exist in the s-cis configuration. 

Davies et. al. tested this hypothesis23 by using a trans-substituted vinyldiazoacetate 17 to react with the 

nitrone 15 under the catalysis of a bulky dirhodium catalyst Rh2(R-TPCP)4, which by analogy to the 

study with substituted indoles9 would be expected to react through the rhodium vinylcarbene in the s-

trans configuration. Indeed, a different [3+2] type of cycloadduct 18 was observed in this reaction 

(Scheme 4(b)).  

Scheme 4  [3+3] and [3+2] cycloaddition between vinyldiazoacetates and nitrones 

 

The reaction of siloxyvinyldiazoacetates with cyclic silyl enol ethers can generate different 

products depending on the terminal substitution of vinyldiazo compounds. Cyclic enol ether 19 reacts 
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with terminal methyl substituted (Z)-siloxyvinyldiazoacetate 20 at the carbenoid site to give allylic C–

H functionalization/Cope rearrangement product 21 with high ee. and d.r. under catalyst Rh2(S-PTAD)4
  

(Scheme 5(a)).24 However, the reaction of the same cyclic enol ether 19 with terminal unsubstituted 

siloxyvinyldiazoacetate 14 occurs at the vinylogous position, followed by an unusual 1,4-siloxy group 

transfer, giving the final alkynolate product 22 with excellent diastereoselectivity but only low to 

moderate ee. (Scheme 5(b)).10  

Scheme 5  Allylic C–H functionalization/Cope rearrangement vs. alkynoate formation for the 

reaction of siloxyvinyldiazoacetates with cyclic silyl enol ethers  

  

Further exploration of the reaction between siloxyvinyldiazoacetates and acyclic silyl enol ethers 

also shows that the steric factors associated with the diene substrates can influence the reaction 

outcome.11 In the reaction of acyclic (Z)-silyl enol ethers 23 with terminal unsubstituted 

siloxyvinyldiazoacetate 14, less crowded silyl enol ethers (Scheme 6 (small R1)) at room temperature 

under Rh2(S-PTAD)4 catalyst will experience a fast 1,4-siloxy group transfer and generate the di-siloxy-

ketal product 24. However, more crowded silyl enol ethers (Scheme 6 (large R1) ) with elevated 

reaction temperature at 70 oC will generate a formal [3+2] aldol type of reaction product 25. 

Scheme 6  Diverse reaction of acyclic enol ethers with siloxyvinyldiazoacetates  
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These results indicate that the configuration of  rhodium vinylcarbene will significantly influence 

the geometry of  vinyl rhodium intermediate and lead to a different reaction outcome. A general reaction 

pattern was proposed for the vinylogous reaction of rhodium vinylcarbene (Scheme 7). Vinylcarbenes 

with an internal substituent will preferentially adopt s-cis configuration 26 8,25 while  Z-vinylcarbene 

tends to react with s-trans configuration 29.23 E-vinylcarbene is more flexible and can react through s-

cis or s-trans configuration.9 The s-cis configuration 26 will lead to intermediate 27 that can directly 

cyclize to give product 28,11,15,26  while s-trans configuration 29 will generate intermediate 30 that 

cannot directly cyclize. It will form a temporary new rhodium carbene 31 and undergo further reactions 

such as 1,2 H-shift to give product with smaller-sized ring. Recently, we have found that bulky 

dirhodium catalysts can cause E-vinylcarbene to preferentially react in the s-trans conformation, 9, 23 

and it has been confirmed by computational study.27 

Scheme 7  General reaction pattern for s-cis/s-trans configuration of rhodium vinylcarbene 
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The Davies group also studied reactions of siloxyvinyldiazoacetates with siloxy dienes. An early 

example is the formal [4+3] cycloaddition from cyclopropanation/Cope rearrangement.3 It does not 

engage the vinylogous reactivity of rhodium vinylcarbenes (Scheme 8(a)). Recently, a different [4+3] 

cycloaddition between rhodium vinylcarbenes and dienes that involves vinylogous reactivity was 

developed.25 This reaction is conducted with a vinylcarbene that has an internal siloxy substituent, 

which would favor s-cis configuration during the reaction and generate the intermediate that can directly 

cyclize to form a seven membered ring product 36 with opposite regioselectivity compared to the earlier 

[4+3]. (Scheme 8(b)). 

 

 

Scheme 8  [4+3] cycloaddition of siloxy dienes with siloxy vinyl diazoacetates 
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dominant product when Rh2(OOct)4 in hexane was used as catalyst, and the scope of the diene [4+2] 

cycloaddition was not explored further.   

Scheme 9 Proposed new formal 4+2 cycloaddition with bulky dirhodium catalysts. 
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Congested diene 46 was reacted with the same vinyl diazo compound 44 under Rh2(R-p-PhTPCP)4 and 

Rh2(esp)4 catalysis. The two catalysts gave quite different results this time, Rh2(esp)4 gave a mixture of 

products while Rh2(R-p-PhTPCP)4 cleanly generated the desired 4+2 formal cycloaddition product 47 

in 77% yield. The diene starting material is prepared in 81:19 Z/E mixture, which explains the 4:1 dr in 

the product. This observation also suggests that both Z and E isomer of the diene starting material react 

at similar rates. The major diastereomer of the product has >99% ee, showing that the reaction is highly 

enantioselective (Scheme 10(b)). Rh2(R-p-PhTPCP)4 was therefore chosen as the optimum catalyst for 

the following studies. 

Scheme 10 Initial test reactions and optimization study 
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product 59 in 96% ee.  Racemic cyclohexadienes 57 and 58 are the most intriguing substrates because 

they have the possibility for the chiral catalyst to preferentially react with only one enantiomer. Indeed, 

the results show a high level of kinetic resolution, generating 60 and 61 that contain four stereogenic 

centers as single diastereomers with high asymmetric induction (95-96% ee). The absolute 

configuration of desilylated 52 was determined by X-ray crystallography and all the other [4+2] 

cycloadducts are tentatively assigned by analogy. 

Scheme 11 Reaction scope for the 4+2 cycloaddition 
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2.5  Diene steric influence on the 4+2 cycloaddition 

The steric features of the dienes can significantly influence this [4+2] cycloaddition.  We have 

already shown that less crowded diene 43 only demonstrated normal carbene reactivity and generated 

[4+3] cycloadduct. However, further test studies with sterically crowded diene substrates also gave 

unsatisfactory results (Scheme 12). The [4+2] cycloaddition will be blocked as can be seen in the 

reaction with the cyclohexadienes 65, in which alkylation product 66 is generated in 45% yield and 99% 

ee (Scheme 13). This product indeed indicated initial vinylogous attack, but the final cyclization is 

blocked by the geminal dimethyl group and so following protonation/deprotonation leads to the non-

cyclized product 66. Such cis-enoate conformation can be related to a similar type of reaction that has 

been observed in the reaction of vinylcarbene with indoles.8,9 This result is good supporting evidence 

that the reaction occurs through E-vinylrhodium conformer.  For more highly substituted diene 

substrates 67 and 68, a messy mixture of products was observed. Again, the steric hindrance may block 

the attack of the diene onto the vinylcarbene.  Finally, it is found that the diene needs to be electron rich 

as attempted reaction with cyclohexadiene 69 shows no sign of [4+2] cycloadduct.  

Scheme 13.  Diene steric influence on the 4+2 reaction 
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2.6  Proposed reaction mechanism 

The proposed mechanism of this reaction is illustrated in the Scheme 14. Initial attack of the 

diene active site occurs at the vinylogous position of the s-trans vinylcarbene 73. Our hypothesis that 

bulky dirhodium catalysts lead to preferential attack at the s-trans conformer of the E-vinylcarbenes9 

was also supported by recent computational studies27 for the 3+2 cycloaddition between vinylcarbenes 

and nitrones. The stereochemistry is determined by the reaction proceeding via endo transition state 

occurring at the Re face of the carbene. Following this initial attack, the resulting intermediate 71 

directly cyclizes towards the cyclohexene intermediate bearing a new rhodium23 carbene 72.  Finally, 

the intermediate 72 would undergo a 1,2-hydride shift to generate the 4+2 cycloadduct 73. This final 

step would be different from the 1,3-hydride shift23, 27  followed by proton transfer observed in the 

nitrone [3+2] cycloaddition reaction.  

Scheme 14. Mechanistic model for the formal 4+2 cycloaddition 
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Chapter Three 
Broadening the application of Rh-carbene mediated C–H functionalization 

3.1 Introduction 

Since the initial reported transition metal mediated carbene insertion reaction in 1958,1 early 

synthetically useful C–H insertion examples with diazo compounds were limited to intramolecular 

reactions in geometrically rigid systems (Scheme 15(a),(b)).2-4 Copper and nickel (II)5 catalysts are 

effective for systems such as diazocamphor2 76 and the scope of transition metal was expanded to 

dirhodium(II) acetate by Wenkert6 and Taber.7 These intramolecular C–H insertion reactions tend to 

occur at the gamma position to form five membered rings (Scheme 15(c)).8-10  

Scheme 15 Early transition metal mediated intramolecular carbene insertion reactions. 
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Scheme 16 Teyssie’s initial study of C–H reaction of ethyl diazoacetates with alkanes  
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indicated that C–H insertion of ethyl diazoacetate 82 with 2,3-dimethylbutane 85 could achieve 

excellent tertiary selective C–H insertion (3° : 1° > 99 : 1, Cu-based catalyst) or relatively good primary 

selective C–H insertion (3° : 1° = 20 : 80, Ag-based  catalyst). However, for linear aliphatic system like 

pentane (86), the best selectivity among terminal 2° (methylene), internal 2° (methylene) or 1° (methyl) 

C–H bond is only moderate (Scheme 17(a)). Later on, the Perez group also explored copper and gold-

based catalysts with N-heterocyclic carbene (NHC) as ligands for C–H insertion of ethyl diazoacetate 

82 with 2,3-dimethylbutane 85. The regioselectivity between tertiary and primary C–H insertion ranges 

from 3° : 1° >99 : 1 (Cu-based catalyst) to 3° : 1° = 17 : 83 (Au based catalyst)(Scheme 17(b)). 

Scheme 17 Perez’s study of C–H reaction of ethyl diazoacetates with alkanes  

 

Rh2(OAc)4

Rh2(tfa)4

Rh2(9-trp)4

Reaction with H

N2

CO2Et ,  the arrow define the site of C-H insertion

33      63       4

31      64       5

 9       61      30

 5       8        86      1

 5      25       66      4

18     18       27     37

 5     95

12    88

33    67

-typically low yields

-higher yields

-highest yields

COO)4Rh2

Rh2(9-trp)4

82

83 84 85

Reaction with H CO2Et ,  the arrow define the site of C-H insertion

TpBr3Cu

TpBr3Ag

Tp(CF3)2Ag

—      78     22

41      47     12

41      12     47

—     >99

60      40

80      20

B
H

N
N

N

R1 R2

R3

M

N
N

R2

R1

R3

N

R1

R2

r3

S

Tpx catalysts

X=Br3,
R1=R2=R3=Br

X=(CF3)2
R1=R3=CF3, R2=H

(a) with TpxM catalysts

(b) with (NHC)M catalysts NHCMCl, M’X

ehtyldiazoacetate

CO2Me

+ CO2Et

M            NHC             MX (halide scavenger)          Conv. (%)        1o insertion              3o insertion
Cu            IPr                         NaBAr’4                           48                       13                             87
Cu            IPr                         NH4PF6                            99                        3                              97
Cu            IPr                         AgBF4                              75                       nd                             99 
Au            ItBu                        NaBAr’4                           61                       53                             47 
Au            IAd                         NaBAr’4                           74                       60                             40 
Au            IPr                         NaBAr’4                           90                       83                             17

NNR R

NHC (R=bulky group)

85 86

85 87 88

N2 82



 42 

Both Teyssie and Perez’s work have demonstrated the possibility of controlling regioselectivity of 

C–H insertion by modifying the ligands on the metal catalysts. Although clean tertiary C–H insertion 

reactions were achieved with certain alkanes, the regioselectivity had always been a challenge for 

acceptor only type of carbene, for example, in terms of distinguishing different methylene sites. On the 

basis of these early investigations that generally demonstrated limited selectivity profiles,11-18,20 Doyle 

concluded that “Intermolecular C–H insertion reactions are of mechanistic interest but are not 

synthetically useful”.21   

However, the Davies group demonstrated that regioselective and enantioselective intermolecular 

C–H insertion reactions can be achieved with aryldiazoacetates and vinyldiazoacetates (Scheme 

18).22,26 The electron-donating nature of aryl (see 91) and vinyl groups (see 89) tempers the reactivity 

of these donor/acceptor carbene, enabling them to be delicately controlled by dirhodium catalysts with 

different ligands and perform selective C–H insertion.23-25  

Scheme 18 Davies’ early studies of regio- and enantioselective C–H insertion reactions. 

 

The regioselectivity of donor/acceptor rhodium carbenes in early studies was still not ideal, 

especially for primary or secondary C–H bonds in aliphatic substrates like 2-methyl pentane.26 This 
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cyclopropanation reactions to enable the design of new chiral catalysts, they can catalyze highly regio-, 

diastereo- and enantioselective intermolecular C–H insertion reactions.28 In the reaction of 

aryldiazoacetate 95 with substituted benzenes 96-99, Rh2(R-p-PhTPCP)4 primary benzylic/allylic C–H 

insertion was highly favored over secondary or tertiary benzylic/allylic C–H bonds (Scheme 19). 

Scheme 19 Davies’s regioselective primary benzylic C–H insertion reactions. 

 

Later on, the Davies group explored more TPCP ligand-based as well as phthalimido ligand-based 

chiral dirhodium catalysts and has achieved great success on site- and stereo-selective C–H insertion of 
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3° C–H insertion, which is far better than the behavior of acceptor only carbene (Scheme 20(b)).11 The 

electronically challenging site- and stereo-selective primary C–H insertion was achieved with another 

Reaction with C6H4(p-Br)

N2

CO2Me,  the arrow define the site of C-H insertion

Rh2(R-p-PhC6H4)4
catalyst

>20      :         1

82% yield, 
95% ee.

>20      :         1

75% yield, 
97% ee.

17       :        1

60% yield, 
94% ee.

 8      :      1

80% yield, 
95% ee.

Ph
Ph

Ph

O

O

Rh

Rh

4

95

96 97 98 99



 44 

bulky TPCP type catalyst Rh2(R-tris-(p-tBuC6H4)TPCP)4.29 The reaction with 2-methylbutane 84 gave 

a 1° : 3° = 9 : 1, which is remarkable for the electronically disfavored primary C–H bond. Reactions 

with other alkane substrates (104, 107, 108) also achieved good regioselectivity (Scheme 20(c)). 

Scheme 20 Davies’s stereo- and enantio-selective C–H insertion reactions with alkanes 
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(Scheme 21(b)). Such excellent site- and stereo-selectivity for C–H insertion of cyclic alkanes was 

unprecedented in previous studies.34,35 

Scheme 21 Davies’s recent breakthrough on site and stereo selective C–H insertion reactions 

 

Nevertheless, despite the success and novelty of these new catalysts and methodologies, a long-

term challenge still exists within our group, which is to broaden the application scope of rhodium 

carbene chemistry. Most of our C–H functionalization products contain the aryl-ester moiety derived 

from the aryldiazoacetates. This fixed substructure could be a limitation for a general synthetic 

application. One solution would be to explore other types of rhodium carbenes beyond the 

donor/acceptor type, such as acceptor only carbenes or the donor only carbenes. Another indirect 

solution would be to develop general derivatizations to the successful C–H functionalization products 

from donor/acceptor carbene. In this chapter, both solutions have been explored to address the problem. 

3.2 Exploring site-selective intermolecular C–H insertion with Rh acceptor only carbene  

Recently developed bulky dirhodium catalysts in the Davies group can enable rhodium 

donor/acceptor carbene to achieve highly site-selective intermolecular C–H insertion reactions.29-33 

These catalysts have not been applied to intermolecular C–H insertion reactions with rhodium acceptor 

only carbene. Given the current limitation that acceptor only carbenes are unable to react in a site-

selective manner, it would be worthwhile to test if promising results can be achieved with these novel 
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3.2.1 Early study of alkyl diazoester as carbene precursor 

Diazo compounds 114 and 115 were prepared for the C–H insertion test reactions (Scheme 22 (a)). 

Substrates for tests include ones that contain activated C–H bond (THF, 1,3-dioxane); ones that only 

contain unactivated C–H bonds (Methylcyclopentane);  ones that contain deactivated C–H bonds (alkyl 

halides). Recently developed Rh2(R-p-PhTPCP)4 was chosen as the dirhodium catalyst for all the test 

reactions. However, Intramolecular 1,2-H shift dominate the reaction no matter what type of substrates 

are applied. The only product observed is the  trans-alkene (Scheme 22 (b)). 

Scheme 22  Preparation of alkyl-diazoester and their C–H insertion performance 
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3.2.2.1.1  Study of site-selective tertiary (3°) C–H insertion 

(1) Dirhodium catalyst influence  

Dirhodium catalyst is the key element for achieving various site-selective C–H insertion with 

donor/acceptor carbene. So, the investigation began by doing a broad screening for the reaction of 2-

methylpentane with diazo compound 116 (Scheme 16). All of the catalysts generated substantial 

amount of diazo dimerization byproduct, with Rh2(R-NTTL)4 giving almost exclusively the dimer. As 

for the C–H insertion products, internal 2° C–H is always the minor reaction site, so the focus was the 

ratio of terminal 2° C–H functionalization to 3° C–H functionalization. The highest 3° to terminal 2° 

ratio is 2.15 : 1 achieved with Rh2(R-TCPTAD)4 catalyst; while the lowest 3° to terminal 2°  ratio is 

0.44 : 1 achieved with Rh2(S-2-Cl,5-BrTPCP)4. Therefore, Rh2(R-TCPTAD)4 was chosen as the 

optimized catalyst for further study of tertiary selective C–H functionalization. 

Scheme 23  Catalyst screening for the reaction of diazo compound 116 with 2-methyl pentane 
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reaction temperature. Therefore, a comparison study was performed at 40 °C, 0 °C and -20 °C. The test 

results confirmed that low temperature (-20 °C) significantly suppressed the side reaction. Also, this 

temperature seems to improve the 3° to terminal 2° ratio to 2.80 : 1 (Scheme 24).  Based on these results, 

-20 °C was chosen as the optimized reaction temperature for further study with 3° C–H insertion. 

Scheme 24  Temperature influence (find optimized T/°C for tertiary insertion) 

 

(3) Influence of the electron-withdrawing group (EWG) within the diazo compound  

The EWG in the diazo compound can also significantly influence the site-selectivity. With the 

optimized Rh2(R-TCPTAD)4 catalyst and -20 °C reaction temperature, a series of electron withdrawing 

groups (116-124) were screened to compare the 3° selectivity. tBu group (117) seems more favor the 3° 

insertion than the Trichloroethyl (Troc) group, but the formation of intramolecular insertion byproduct 
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optimized EWG identified is the pentafluorobenzyl group (119), which can increase the ratio of 3° to 
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Using pentafluorobenzyl group gave the product in 71% NMR yield, which is also very high among all 

the results (Scheme 25(a)). The 3° insertion product was then isolated and compared with the authentic 

sample 125 prepared using traditional chemistry. The matched 1HNMR confirmed the structure to be 

correct (Scheme 25(b)). 
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Scheme 25  Influence of the EWG within the diazo compound 
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(1) Dirhodium catalyst influence (part I) 

Similar to the study of tertiary C–H insertion, various dirhodium catalysts from the Davies lab 

were examined for the reaction of diazoester 126 with 2-methylpentane 104 to compare the site-

selectivity (Scheme 26). Unfortunately, many dirhodium catalysts gave only intramolecular 

cyclopropanation side products, including the Rh2(S-2Cl,5BrTPCP)4 that showed the most 2° C–H 

selective reaction with 2,2,2-trichloroethyl 2-diazoacetate (116). But we are delighted to find that some 

catalysts [Rh2(S-DOSP)4, Rh2(R-PTAD)4, Rh2(R-TCPTAD)4, Rh2(S-TPPTTL)4] did give desired 

intermolecular C–H insertion, and the 2° C–H insertion dominate the reaction. Another good sign is 

that no catalyst gave diazo dimerization byproduct. The best 2° C–H insertion result was again given 

by the Rh2(R-TCPTAD)4 catalyst with the ratio of 2° : 3°= 8.33 : 1.  Although the crude 1HNMR 

indicated that the major 2° C–H insertion product is the terminal 2° one , the actual ratio of terminal 2° 

to internal 2° is hard to determine in this system. Therefore, all the ratio in following studies use 

combined 2° insertion. 

Scheme 26  Catalyst screening for the reaction of diazo compound 126 with 2-methyl pentane  
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dimerization, but the intramolecular primary insertion to the ortho tBu group. It is possible that lower 

reaction temperature combined with using 2-methyl pentane (104) as solvent can suppress the 

byproduct formation. Therefore, a comparison experiment with the same reaction under 0 °C, and -

20 °C was performed (Scheme 27). The test results show that byproduct is well suppressed under low 

temperature with 2-methyl pentane directly as solvent. Also, both 0 °C and -20 °C enhanced the ratio 

of 2° insertion to 3° insertion. Although -20 °C gave highest 2° : 3° ratio and lowest side product 

formation, the 1HNMR yield dropped significantly. So, 0 °C is chosen as optimized reaction 

temperature for good ratio, low byproduct and good 1HNMR yield.  

Scheme 27  Reaction temperature influence  

 

(3) Screening diazo compounds other bulky aryl ester as EWG for comparison 

Two diazo compounds (127-128) with different aryl ester as EWG were tested, considering that 

other ortho functionalized Ar may also give good secondary selectivity without the intramolecular side 

reaction given by 2,4,6-tritBuAr.  However, the test results show that they both gave much worse ratio 

compared to the diazo compound 126 (Scheme 28). 

Scheme 28  Comparison of more aryl ester type of EWG for secondary insertion 
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 (4) Dirhodium catalyst influence (part II) 

In catalyst screening part I,  Rh2(R-TCPTAD)4 achieved best secondary C–H insertion and Rh2(S-

TPPTTL)4 behaved the second-best result. Inspired by the fact that they are both phthalimido-based 

dirhodium catalysts, three dirhodium catalysts of this series were further tested (Scheme 29).  Among 

the three new catalyst, Rh2(R-TPPTBL)4 131 gave worse 2° insertion compared to Rh2(R-TCPTAD)4; 

Rh2(R-TPPTCL)4 130 and Rh2(R-TPPTAD)4 129 gave better 2° insertion compared to Rh2(R-

TCPTAD)4 with Rh2(TPPTAD)4 129 being the best (2° : 3° = 25 : 1 ). However, the intramolecular side 

reaction product for catalyst 129 is heavier than Rh2(R-TCPTAD)4. Another disadvantage is that from 

crude 1HNMR these catalysts seems to give bad ratio of internal 2° to terminal 2°, suggesting bad 

selectivity between different secondary sites. 

Scheme 29  Study of more phthalimido ligand based dirhodium catalyst  
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3.2.2.2  Preliminary test reactions with pentane as substrate. 

Two reactions with pentane as substrates were performed to have an initial understanding of 

acceptor only rhodium carbene’s selectivity between terminal and internal secondary C–H sites 

(Scheme 30).  The first reaction followed the optimized 2° insertion from the study with 2-

methylpentane (diazo compound 126, Rh2(R-TCPTAD)4 catalyst). The reaction gave a ratio of 2° 

(terminal) to 2° (internal) as 2.85 : 1. Considering that there are two terminal methylene sites, the 

selectivity is considered poor (ter : int = 1.4 : 1). The second reaction use (perfluoro phenyl)methyl 2-

diazoacetate 119 to react with pentane under Rh2(S-Dibic)4 catalyst, which is a good comparison to 

Rh2(S-Dibic)4 catalyzed pentane insertion reaction with donor/acceptor carbene. The ratio 2° (terminal) : 

2° (internal) = 6.07 : 1. Considering that there are two terminal 2° sites, the selectivity is only moderate.   

Scheme 30   Two preliminary reactions of acceptor-only Rh carbene with pentane 

 

However, the pentane system deserves a future systematic study to gain more conclusions. 

Different EWGs within diazo compound should be screened again as there is no more tertiary C–H site 

and the only focus now is selectivity between terminal 2° and internal 2°.  Also, TPCP series of 

dirhodium catalysts that failed in the reaction of 2-methylpentane with diazo compound 126 due to 

intramolecular side reaction should be re-studied for pentane reaction. For example, in previous study 

with diazo compound 116 (Troc as EWG), Rh2(S-2-Cl,5-BrTPCP)4 is the most secondary C–H selective 

catalyst, which could be a very promising catalyst for pentane reaction system as well. 
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3.2.2.3  Preliminary test reactions for benzylic C–H insertion 

Donor/acceptor rhodium carbene has achieved high diastereoselectivity and  enantioselectivity for 

many benzylic C–H insertions, so it is natural to test if acceptor only rhodium carbene can achieve good 

selectivity for benzylic C–H insertion. 4-methoxyanisole and 4-Br ethylbenzene were chosen to 

represent electron rich and electron deficient aryl substrates and they were reacted with diazo compound 

116 (Troc as EWG) using various dirhodium catalysts. However, the results were not promising, 4-

methoxyanisole gave substantial cyclopropanation on benzene ring with no sign of the desired benzylic 

C–H insertion; while 4-Br ethylbenzene gave substantial diazo dimer byproduct, minor 

cyclopropanation on benzene ring and still no benzylic C–H insertion. Therefore, benzylic substrates 

are considered to be not suitable for acceptor only rhodium carbene C-H functionalization. 

3.2.3  Conclusion for site-selective C–H insertion with Rh acceptor-only carbene 

For 2-methylpentane system, both optimized selective 2° and 3° C–H insertion have been achieved 

with Rh2(R-TCPTAD)4 catalyst but with different ester group of the diazo compounds. The optimized 

3° insertion is obtained with pentafluorobenzyl ester as EWG ( 3° : 2° (ter): 2° (int) = 5.95 : 1 : 0.68).   

This ratio is good but did not surpass previous best result from other metal catalysts.11,16 The optimized 

2° insertion is obtained with 2,4-6-tritBuPhenyl ester as EWG and the ratio 2° (combined) : 3° is 10.5 : 

1. This high ratio for secondary C–H insertion is unprecedented, but the reaction requires to use 2-

methylpentane as solvent to suppress intramolecular side reaction. Also, the overlap of terminal 2° and 

internal 2° insertion peak in 1HNMR makes it difficult to study the selectivity between different 2° C–

H sites.  For the pentane system, the poor regioselectivity indicates that it is still difficult to distinguish 

between terminal 2° and internal 2° even with these newly developed bulky dirhodium catalysts. 

However, more studies are needed based on this very preliminary study. For the benzylic C–H insertion. 

The messy mixture without observation of desired insertion products indicate that rhodium acceptor 

only carbene behave poor for these substrates. 
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3.3  Asymmetric cyclopropanation with Rh donor-only carbene generated from retro- 

       Büchner reaction 

3.3.1 Introduction 

Rhodium donor-only carbenes have no precedence of applications in C–H insertion. To better 

understand the reactivity profile of this type of carbene, it is more reasonable to study if it can achieve 

asymmetric cyclopropanation first. Professor Antonio Echavarren’s group has discovered that retro- 

Büchner reaction from compound 132 can generate donor-only type metal carbenoid and further react 

with styrene to form cyclopropanes.36,37  Several attempts to achieve the enantioselective version have 

been made, including a gold(I) catalyst that gave up to 30% ee.36 The best result so far was a 44% ee 

obtained with a stoichiometric Zinc-BINOL lewis acid.36 Later on, they found that the same reaction 

can be carried out under Rh2(DOSP)4 catalyst, giving product 133 in 7:1 dr and 12% ee (major) (Scheme 

31).37 The possibility of inducing enantioselectivity with Rh(II) complexes was proved, and it would be 

worthwhile to explore new chiral dirhodium catalysts developed from the Davies lab to see if better 

asymmetric induction can be achieved. 

Scheme 31 Model reaction to study enantioselective retro-Büchner cyclopropanation  

 

3.3.2  Chiral dirhodium catalysts screening  

Various chiral dirhodium catalysts from the Davies group were screened to see if higher 

enantioselectivity can be achieved (Scheme 32). The new chiral dirhodium catalysts involved in the 

screening tests were Rh2(R-TCPTAD)4, Rh2(R-p-BrTPCP)4, Rh2(R-TPPTTL)4, Rh2(R-2Cl,5BrTPCP)4.  

Racemic sample was obtained by using the reported reaction with Rh2(TFA)4 (16:1 dr).ref It was shown 

that these newer chiral dirhodium catalysts were not able to significantly increase the enantioselectivity 

compared to Rh2(S-DOSP)4 (12% ee. 7:1 dr.). The best results among these catalysts is achieved with 

Rh2(R-2Cl,5BrTPCP)4 (32% ee. 8:1 dr.), which is comparable to the previous best result by 

+
1,2-DCE

25–60 ºC, 12-40 h 25 ºC, 24 h: <10% yield, n/d ee
60 ºC, 40 h: 70% yield, 7:1 dr, 12% ee (major)

Rh2(S-DOSP)4 (2 mol%)
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Echavarren’s group using Au(I) catalyst. All TPCP catalysts require higher temperature (80 °C) to 

complete the reaction, possibly due to increased steric demand from the catalysts.  

Scheme 32 Catalyst screening results with new chiral dirhodium catalysts from Davies group  

 

Recently the Davies group reported increased ee in cyclopropanation with donor-acceptor carbene 

with dimethyl carbonate (DMC) solvent,38 so a reaction with Rh2(R-TCPTAD)4 catalyst was also run 

in DMC as comparison. However, the ee turned out to be 25%, which is lower compared to 30% ee in 

CH2Cl2. Therefore, DMC solvent is not helpful for this reaction system. 

3.3.3  Conclusion for asymmetric cyclopropanation with Rh donor-only carbene 

Asymmetric cyclopropanation with rhodium donor carbene can be achieved. However, only low 

ee can be achieved even with our latest bulky chiral dirhodium catalysts. This suggests that this type of 

carbene is very difficult to achieve catalyst-controlled selectivity. Therefore, no further study was 

carried on with rhodium donor only carbene. 
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3.4 Derivatization of C–H insertion products from Rh donor/acceptor carbene 
 

Given the unsatisfactory site-selective C–H insertion results obtained directly with acceptor only 

rhodium carbene, it is reasonable to consider derivatizing successful C–H insertion products from 

donor/acceptor rhodium carbene, which can also broaden the application of our rhodium carbene 

chemistry. Two types of derivatizations are studied in this section. The first derivatization is removing 

the aryl group (donor) of C–H insertion products from rhodium donor/acceptor carbenes, which will 

generate formal C–H insertion products from previously studied acceptor only carbenes. The second 

derivatization is removing the ester part (acceptor) of C–H insertion products from rhodium 

donor/acceptor carbene, which will generate formal benzylation products. Such derivatizations could 

be synthetically very useful if they can be generalized to C–H insertion products obtained from unique 

reactivity and selectivity of rhodium donor/acceptor carbenes. 

3.4.1 Remove aryl of C–H insertion products from Rh donor/acceptor carbene 

The aryl group is usually a very stable group and there are currently no methods for removing the 

aryl group in one step. A viable 2-step method to achieve the goal is to perform a Ru(VIII) oxidation to 

transform the aryl group into carboxylic acid first39-44 followed by a decarboxylation. The combination 

of catalytic amount of RuCl3 and excess amount of NaIO4 as oxidant are used to generate RuO4 in-situ 

in the first oxidation step, but it requires the aryl rings to be electron rich.39 Therefore, in the initial C–

H insertion step we need to use aryldiazoacetates that have electron donating groups on the aromatic 

ring. The oxidation step would generate a malonate type of intermediate 134, so the following 

decarboxylation step requires a methodology that is more suitable for malonate type of product. In this 

study, we chose to use microwave-assisted fast decarboxylation reported by Tellitu et. Al.45 to perform 

the following decarboxylation towards the final product 135. (Scheme 33). 
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Scheme 33. General scheme of removing the aryl (donor) of Donor/acceptor Rh carbene mediated 

C–H insertion products 

 

3.4.1.1  Ru(VIII) oxidation/decarboxylation with benzylic C–H insertion products. 

The aromatic ring needs to be electron rich for Ru(VIII) oxidation to work, and selective cleavage 

of electron-rich aromatic rings in the presence of electron-deficient aromatic rings has been 

demonstrated.41 It would be reasonable to test the Ru(VIII) oxidation/decarboxylation derivatization 

with a benzylic C–H insertion product first so that the final product would still be UV active and can 

measure ee.  The specific benzylic C–H insertion reaction engaged for the study is developed by Dr. 

Wenbin Liu46 (Scheme 34). The C–H insertion product 137 is obtained in 74% yield, 83% ee (for the 

major) and 17:1 dr.  

Scheme 34. Benzylic C–H insertion (preparing substrate for following derivatization) 

 

The obtained C–H insertion product 137 was subjected to Ru(VIII) oxidation (Scheme 35). The 

electron rich aromatic ring from the diazo compound 136 was oxidized in the Ru(VIII) oxidation step, 

while the electron-deficient aromatic ring from substrate 4-ethyl toluene survived the oxidation. Early 

test reaction gave desired product in relatively low yield, so an optimization study was performed by 

changing reaction temperature, stoichiometry of NaIO4 and reaction solvent. The optimized yield 

achieved for product 138 is 45%.  The ee and dr remain unchanged in this reaction. 
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Scheme 35. Optimization study for the Ru(VIII) mediated oxidation of electron rich Ar ring 

 

 

Two other diazo compounds with electron rich aryl rings were also tested as a comparison (Scheme 

36). Diazo compound 139 gave C–H insertion product 140 in 58% yield and 20:1 dr The Ru(VIII) 

oxidation step then gave malonate type product 138 in 28% isolated yield and 44% ee (for the major). 

Diazo compound 141 gave C–H insertion product 142 in 88% yield and 6.7:1 dr Following Ru(VIII) 

oxidation gave malonate type product 138 in 37% isolated yield and 71% ee (for the major). Both diazo 

compounds show less promising ee. and low yields, therefore the optimized reaction remains unchanged. 

Scheme 36. Comparison study with other diazo compounds bearing electron-rich aromatic ring 
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 Microwave-assisted decarboxylation developed by Tellitu et. Al.45 were then applied to the 

malonate type of intermediate from Ru(VIII) oxidation (Scheme 37).  With the optimized 138 (17:1 dr, 

83% ee) that come from 137,  clean decarboxylation product 143 can be achieved in 77% yield and 77% 

ee. The dropped ee. is proposed to be caused by the minor diastereomer in the insertion step as one 

stereocenter is burned during the reaction. 

Scheme 37. Microwave-assisted decarboxylation to generate formal C–H insertion product from 

acceptor only carbene 

 

3.4.1.2 Ru(VIII) oxidation/decarboxylation with other C–H insertion products. 

The successful Ru(VIII) oxidation/decarboxylation derivatization with benzylic C–H insertion 

product prompted us to apply the strategy to other C–H insertion products from the Davies lab. C3 

functionalized tBu-cyclohexane33 was first tested. Diazo compound 145 was reacted with tBu-

cyclohexane 144 following the published procedure, giving C–H insertion product 146 in 63% yield, 

10:1 dr and 96% ee. This compound was subjected to Ru(VIII) oxidation and gave the malonate type 

of product 147 in 70% yield, 10:1 dr. Then, microwave-assisted decarboxylation gave the final product 

148 in 94% yield (Scheme 38(a)). Due to a lack of UV active chromophore, the ee. for the products in 

oxidation and decarboxylation steps were not able to be measured on our HPLC. Terminal methylene 

functionalized pentane derivatives30 was also tested. However, the C–H insertion step behaves poorly 

if the aryl ring of the diazo compound is too electron rich (such as previous 136, 139, 141), so the one 

chosen for test is 149, in which the aryl group is moderately electron-rich  (p-tBuC6H4). C–H insertion 

product 150 following published procedure was obtained in 75% yield, >30:1 dr and >99% ee. This 

compound was subjected to Ru(VIII) oxidation and gave the malonate type of product 151 in 69% 

yield, >30:1 dr. Noticing that elevated temperature was used for oxidizing this less electron rich aryl 
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part. Following microwave-assisted decarboxylation gave final product 152 in 85% yield (Scheme 

38(b)). Again, the ee was not measured due to the lack of UV active chromophore.  

Scheme 38. Application of Ru(VIII) oxidation/decarboxylation to other C–H insertion products  

 

3.4.1.3 Conclusion for the Ru(VIII) oxidation/decarboxylation derivatization.  

 A few examples have been achieved for removing the aryl groups of C–H insertion products from 

rhodium donor acceptor carbenes. These examples were achieved through Ru(VIII) oxidation 

(transform aryl part into carboxylic acid) followed by microwave-assisted decarboxylation. However, 

aryl diazoacetates with electron rich aryl parts behave poorly for many C–H insertion reactions 

developed in the Davies lab, so there are not many choices of substrates to be tested.  In addition, the 
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the Davies group give optimized results (ee, dr or yield) with 2,2,2-trichloroethyl aryl diazoacetates.47 

Zn/AcOH condition are frequently used to hydrolyze 2,2,2-trichloroethyl esters into carboxylic acids 

153. Therefore, it is natural to consider a 2-step hydrolysis/decarboxylation derivatization to remove 

the ester part and generate the formal benzylation products 154. A mild decarboxylation with wide 

functional group tolerance is important for the strategy to be general. The Nicewicz group recently 

developed a photoredox decarboxylation that is carried under very mild conditions and are applied to 

complicated molecules in the late stage functionalization.48 Therefore, Zn/AcOH hydrolysis was 

combined with this photoredox decarboxylation as the strategy for the desired derivatization of 

removing the ester part of C–H insertion products from Rh donor/acceptor carbenes. (Scheme 39) 

Scheme 39. General scheme of removing the ester (acceptor) of Donor/acceptor Rh carbene 

mediated C–H insertion products 

 

3.4.2.1  Hydrolysis/decarboxylation with 3° C–H insertion products  

Site- and stereo-selective tertiary (3°) C–H insertion to acyl-protected Vitamin E and acyl-

protected cholesterol were reported by Dr. Kuangbiao Liao.31 These C–H insertion products were 

successfully derivatized to formal benzylation compounds with the hydrolysis/decarboxylation strategy. 

For a tertiary C–H insertion product, the final decarboxylation step will remove the benzylic chiral 

center, so the dr in the insertion step does not influence the final product. The first tested substrate is 3° 

C–H insertion product (157) of acyl-protected cholesterol, which was prepared in 82% yield and 10.6:1 

dr. The following Zn/AcOH hydrolysis of 157 gave carboxylic acid intermediate 158 in 73% yield. The 

final photoredox decarboxylation of 158 gave the formal benzylation compound 159 in 82% yield. 

(Scheme 40)  
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Scheme 40. Derivatization with 3° C–H insertion products from Acyl-protected cholesterol 

 

The next substrate tested is acyl-protected vitamin E 3° C–H insertion product. C–H insertion 

product 161 was initially prepared in 74% yield and 14.8:1 dr. The following Zn/AcOH hydrolysis of 

161 gave carboxylic acid intermediate 162 in 97% yield. Final photoredox decarboxylation of 161gave 

the formal benzylation product 163 in 40% yield. It was noticed that there was benzyl aldehyde type of 

side product, which could be the reason for the dropped yield. (Scheme 41)  

Scheme 41. Hydrolysis/decarboxylation with 3° C–H insertion products from Acyl-Vitamin E 

 

3.4.2.2  Hydrolysis/decarboxylation with 2° C–H insertion products  
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the minor diastereomer for many secondary (2°) C–H insertion reactions could give rise to a problem 

that after decarboxylation the ee. may drop. Moreover, initial test results showed that the racemate of 

formal benzylation products could not be separated on chiral HPLC due to a lack of nearby polar 

binding functional group. Therefore, recrystallization of carboxylic acid intermediates was considered 

as a solution. With enhanced dr to over 50:1, the ee of carboxylic acid intermediates, it is reasonable to 
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assume that the ee will keep unchanged after decarboxylation. The products of decarboxylation indeed 

show optical activity, but it is difficult to assess the degree of enantiopurity of these compounds.  

3.4.2.2.1 Derivatization of products from Rh2(S-2-Cl,5-BrTPCP)4 catalysts. 

Rh2(S-2-Cl-5-BrTPCP)4 catalyst is developed by Dr. Wenbin Liu.32 This catalyst tends to perform  

C–H functionalization on the most accessible secondary C–H bond. For substrates containing an 

aliphatic chain, this catalyst can overcome electronically favored site and perform C–H insertion at the 

terminal methylene site.32 The first substrate tested is 2° C–H insertion product (165) of 1-bromo-4-

pentylbenzene, which was prepared in 82% yield, 18.5:1 dr, 12:1 r.r., and 86% ee. The following 

Zn/AcOH hydrolysis of 165 gave carboxylic acid intermediate 166 in 93% yield, 18.5:1 dr, 12:1 r.r. 

and 86% ee. Recrystallization of the acid 166 gave 63% recovered yield with significantly enhanced 

74:1 dr, >30:1 r.r. and >99% ee. Final photoredox decarboxylation of 166 gave the formal benzylation 

product 167 in 82% yield. Given the high dr for recrystallized acid, the ee can be considered unchanged 

(>99% ee). (Scheme 42)  

Scheme 42  Derivatization for 2° C–H insertion product of 4-Br,n-pentylbenzene 

 

The second substrate tested is 2° C–H insertion product (169) of a di-Boc protected amine,50 which 

was obtained in 83% yield, 17.6:1 dr, >30:1 r.r. and 89% ee. The following Zn/AcOH hydrolysis of 169 

gave carboxylic acid intermediate 170 in 93% yield, 17.6:1 dr, >30:1 r.r. and 89% ee. One of the two 

Boc protecting group was also cleaved off under the condition. Recrystallization of the acid 170 gave 

63% recovered yield with significantly enhanced 123:1 dr and 97% ee. Final photoredox 

decarboxylation of 170 gave the formal benzylation product 171 in 82% yield. Given the high dr for 

recrystallized acid, the ee is considered unchanged (97% ee). (Scheme 43) 
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Scheme 43  Derivatization for 2° C–H insertion product of di-Boc protected amyl amine 

 

The third substrate tested is 2° C–H insertion product (173) of TBS protected 1-hexanol,49 which 

was obtained in 78% yield, 14:1 dr, >30:1 r.r. and 87% ee. The following Zn/AcOH hydrolysis of 173 

gave carboxylic acid intermediate 174 in 70% yield, as a single diastereomer, >30:1 r.r. and 87% ee. 

The TBS protecting group was also cleaved off under this condition and the major diastereomer of 174 

can be directly isolated via column on silica gel. Recrystallization of the acid 174 gave 87% recovered 

yield with enhanced 95% ee. Final photoredox decarboxylation of 174 gave the formal benzylation 

product 175 in 75% yield. The ee is considered unchanged (95% ee.) (Scheme 44).  

Scheme 44  Derivatization for 2° C–H insertion product of TBS protected 1-hexanol 

 

The fourth substrate tested is bis- 2° C–H insertion product (177) of norbornane. Although the 

crude NMR showed 29:2:2:1 dr, direct crystallization from the reaction crude can obtain 177 in 63% 

yield as a single diastereomer, regioisomer in >99% ee.52 The following Zn/AcOH hydrolysis of 177 

gave bis-carboxylic acid intermediate 178 in quantitative yield. Final photoredox bis-decarboxylation 

of 178 gave the bis-formal benzylation product 179 in 65% yield. The ee is considered unchanged (>99% 

ee). (Scheme 45)  
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Scheme 45  Derivatization for 2° C–H insertion product of TBS protected 1-hexanol 

 

The fifth substrate tested is 2° C–H insertion product (181) of a natural compound 180 (from the 

Bill Wuest lab), which was obtained in 14:1 dr (by 1H NMR, for relative position of terminal methyl 

and Troc group) and 15:1 dr (by HPLC, for the absolute stereochemistry of the terminal methyl).51   The 

following Zn/AcOH hydrolysis of 181 gave carboxylic acid intermediate 182 in 75%. Unfortunately, 

acid 182 is not a solid cannot be recrystallized to enhance the dr. Final photoredox decarboxylation of 

182 gave formal benzylation product 183 in 75% yield. The dr was not determined. (Scheme 46)  

Scheme 46  Derivatization for 2° C–H insertion product of a nature product 180 

 

3.4.2.2.2 Derivatization of products from Rh2(S-TPPTTL)4 catalysts. 
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substituted cyclohexane.33 It can achieve C3 secondary C–H insertion to substituted cyclohexanes with 

high regioselectivity, diastereoselectivity and enantioselectivity.33 Two Rh2(S-TPPTTL)4 catalyzed C–

H insertion products were successfully derivatized to formal benzylation compounds with the 
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photoredox decarboxylation of 185 gave the formal benzylation product 186 in 79% yield. Given the 

high dr for recrystallized acid, the ee is considered unchanged (>99% ee). (Scheme 47)  

Scheme 47  Derivatization for C3 2° C–H insertion products of tert-Butyl cyclohexane  

 

The second substrate tested is C3 insertion product (188) of TBDPS protected cyclohexanol53, 

which was obtained in 74% yield, 6:1 dr, >30:1 r.r. and 97% ee. The following Zn/AcOH hydrolysis of 

188 gave carboxylic acid intermediate 189 in quantitative yield, 10:1 dr and 97% ee. Recrystallization 

of the acid 189 gave 78% recovered yield with enhanced >50:1 dr and >99% ee. Final photoredox 

decarboxylation of 189 gave the formal benzylation product 190 in 69% yield. Given the high dr for 

recrystallized acid, the ee is considered unchanged (>99% ee). (Scheme 48) 

Scheme 48  Derivatization for C3 insertion products of TBDPS protected cyclohexanol  

 

3.4.2.3  Demonstrating the aryl scope with acyl- cholesterol 3° C–H formal benzylation 

With the successful formal benzylation from 3° C–H insertion product of Ac-protected cholesterol 

example (Scheme 40), aryl diazoacetates (191-195) bearing different aromatic groups were tested to 

demonstrate the diazo compound scope (Scheme 49). It can be seen that the formal benzylation strategy 

“Hydrolysis/decarboxylation” is compatible with different electronic feature on the aryl ring.  

 

 

 

tBu
Troc

Br
tBu

Br

Troc
N2

+
Rh2(S-TPPTTL)4

0.5 mol%
CH2Cl2, 40 oC

Zn (10 equiv)

HOAc

tBu
CO2H

Br

tBu

Br

78% yield
10.6:1 dr.
>30:1 r.r.
96% ee.

98% yield
10.6:1 dr.
>30:1 r.r.
96% ee.

79% yield
>30:1dr.
>99% ee.a

2.5 equiv 1.0 equiv

Mes-Arc-Ph (5 mol%)
(PhS)2  (10 mol%)

DIPEA (20 mol %)
Blue LED, 48 h

(Jiantao, 2018)
recrystalization 74% recovery

63:1 dr.
>30:1 r.r.
>99% ee.

H

Formal benzylation

155

184

185 186

a. The maintained ee. is assuming that the decarboxylation does not influence the chiral center

144

TBDPSO
Troc

Br
OTBDPS

Br

Troc
N2

+
Rh2(STPPTTL)4

0.5 mol%
CH2Cl2, 40 oC

Zn (10 equiv)

HOAc

TBDPSO
CO2H

Br

TBDPSO

Br

80% yield
6:1 dr.

>30:1 r.r.
97% ee.

quantitative
 yield
6:1 dr.

>30:1 r.r.
97% ee.

69% yield
>30:1dr.
>99% ee.a

2.5 equiv 1.0 equiv

Mes-Arc-Ph (5 mol%)
(PhS)2  (10 mol%)

DIPEA (20 mol %)
Blue LED, 48 h

recrystalization
78% recovery

>50:1 dr.
>30:1 r.r.
>99% ee.

H

Formal benzylation

187 155

188

189
190

a. The maintained ee. is assuming that the decarboxylation does not influence the chiral center



 68 

Scheme 49. Aryldiazoacetates scope for acyl-cholesterol 3° C–H formal benzylation 

 

 

 

3.4.2.4 Conclusion for hydrolysis/decarboxylation derivatization 

The Zn/AcOH hydrolysis of trichloroethyl ester moiety followed by a mild photoredox 

decarboxylation proved to be a desired general derivatization strategy. Multiple unique C–H 

insertion products achieved with the Davies’ rhodium donor/acceptor chemistry were successfully 

derivatized to formal benzylation products with good yield. The recrystallization of carboxylic acid 

intermediates can significantly enhance the dr so that final products are considered to maintain the 

high ee. In general, this strategy is very promising for late stage benzylation and also achieved the 

goal of broadening the application of our rhodium carbene chemistry. 
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Chapter Four 
C–H Functionalization Approach for the Synthesis of Chiral C2 symmetric 

1,5-Cyclootadienes (COD) Ligands28   

4.1  Introduction 

Metal-COD complexes are useful because many are stable to isolate, easily handled, and often 

more robust than the related ethylene complexes because of chelation. Even though the metal-COD 

complexes were initially considered as stable precursors to active catalysts, it became clear in many 

instances that the COD ligand participated in the entire catalytic cycle.2-4  One classic example is 

rhodium catalyzed asymmetric conjugate addition of cyclohexa-2-enone 211 with phenyl boronic acid. 

The chiral pocket from the rhodium-chiral COD ligand complex only allows the enone 211 to approach 

at alpha-Re face, inducing the enantioselectivity (Scheme 50).       

Scheme 50  Rh-catalyzed asymmetric conjugate addition 

 

Recently, more transition-metal catalyzed reactions emerged in which the COD ligand was an 

integral part of the catalytic cycle.2,3 One example would be the intramolecular hydroamination of 

compound 214, where one COD ligand is always bound to the iridium center during the catalytic cycle 

(Scheme 51(a)).2 In the reaction of formic acid-mediated Z-selective reductive coupling of dienes 216 

and aldehydes 217, it is also proposed in the mechanism that the COD ligand is binding to rhodium 

center throughout the reaction(Scheme 51(b)).3 It would be worthwhile to consider the asymmetric 

version of such reactions using chiral COD ligands. Consequently, there has been an increased interest 

in designing chiral COD ligands for asymmetric catalysis.  
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Scheme 51  Recent reactions with a binding M-COD complex during the catalytic cycle 

 

The chiral COD ligands 211 and 219 have shown considerable promise but their synthesis requires 

multiple steps and a chiral resolution.5 This has led to the synthesis of other cyclic dienes as chiral 

ligands,4-6 including a number of C2 symmetric ligands (211-223).3-6 (Scheme 52).  

Scheme 52 Previous cyclic chiral diene ligands and the challenging synthesis 

 

We realized that COD would be an intriguing substrate to challenge catalyst-controlled C–H 

functionalization by rhodium-stabilized donor/acceptor carbenes (Scheme 53).7,8 The Davies group 
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catalysts.10,13,14 COD was considered to be an interesting substrate because even though the methylene 

sites are allylic and activated, the cis alkene would be expected to be a competing site for 

cyclopropanation. Therefore, we would need to identify a catalyst that would lead to selective C–H 

functionalization instead of cyclopropanation. Then, ideally once the mono C–H functionalization has 

occurred, the catalyst would select the C5 site for a second C–H functionalization, over the two other 

allylic methylene sites at C3 and C6 to generate the COD derivative 224.  In this chapter, the challenge 

of controlling the stereochemistry of the four newly formed stereogenic centers was successfully solved 

using our rhodium donor acceptor carbene chemistry, where C2-symmetric 224 along with their 

derivatives 225 were obtained as novel chiral COD ligands. 

Scheme 53 Synthetic challenge and the achievement of this work  
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4.2  Mono-allylic C–H functionalization experiments 

4.2.1  Catalyst optimization study 

We proposed that the dirhodium catalysts are important for the reaction to achieve the desired 

vinylogous C–H insertion cleanly. Therefore, the initial study focused on a catalyst screening for the 

mono-allylic C–H functionalization. Several promising dirhodium catalysts developed by the Davies 

lab that target the methylene sites were chosen to perform the optimization studies (Scheme 54).  Rh2(S-

DOSP)4  is our first generation of chiral dirhodium catalysts that demonstrate wide applications for 

methylene C–H functionalization.7b Rh2(S-PTAD)4  is our second generation of chiral dirhodium 

catalyst that give different reactivity as well as stereochemistry compared to the Rh2(S-DOSP)4 with 

regards to methylene C–H functionalization.7b Rh2(R-TPPTTL)4  is more recently developed that 

demonstrate outstanding site and stereo selectivity for C3 over C4 C–H functionalization of substituted 

cyclohexanes.13 The triaryl-cyclopropanecarboxylates (TPCP) series of catalysts are the latest 

generation that are considered to be the most sterically congested. Rh2(R-p-BrTPCP)4  was the first 

developed among this type of catalysts and it preferred to react at sterically less crowded C–H bonds.8-

9 Other TPCP series of dirhodium catalysts tested include Rh2(R-3,5-(p-tBuC6H4)TPCP)4
10 and Rh2(R-

2-Cl-5-BrTPCP)4.14 These two have shown great success for functionalization of unactivated C–H 

bonds and they both tend to react at the most accessible methylene site.  Rhodium donor/acceptor 

carbenes with trichloroethyl ester as the electron withdrawing group have been shown to give better 

yield and selectivity in many situations,9 and therefore, the initial reaction was conducted with 

trichloroethyl aryldiazoacetate 155 with 2.5 equiv of COD substrate. Most catalysts gave undefined 

mixture of products (see supporting information for crude 1H NMR), but the Rh2(R-2-Cl-5-BrTPCP)4-

catalyzed reaction cleanly generated the desired mono C–H functionalization product 226 in 72% 

isolated yield, >30:1 dr and 91% ee. Therefore, Rh2(R-2-Cl-5-BrTPCP)4 was chosen as the optimized 

catalyst for the following studies. 
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Scheme 54 Catalysts screening for the mono-allylic C–H functionalization 

 

 

4.2.2  Diazo compound scope for the mono allylic C–H functionalization 

The scope of the mono-allylic C–H insertion was then investigated with various aryldiazoacetates 

using Rh2(R-2-Cl-5-BrTPCP)4 as the optimal catalyst (Scheme 55). The influence of the ester 

functionality was initially examined (entries 1-3).  By comparing the dr and ee of the C–H 

functionalization products 226-236, we found that the trifluoroethyl aryldiazoacetate was the most 

effective and gave the allylic C–H insertion product 228 with the highest enantioselectivity (93% ee) 

and excellent diastereoselectivity (>30:1 dr).  Therefore, the following studies focused on the 

trifluoroethyl derivatives.  A series of p-substituted aryl and a pyridyl derivative were applied to the 

reaction under optimized condition and they all generate the desired product 229-234 in high yield and 

dr, with the asymmetric induction in the range of 79-95% ee.  The meta-substituted aryldiazoacetate 

behaved poorer with regard to the enantioselectivity, giving product 235 in 63% ee. A styryldiazoacetate 

was also tested and it gave an effective reaction towards allylic insertion product 236 in 67% 

yield, >30:1 dr, 88% ee. 
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Scheme 55 Diazo compound scope for the mono C–H functionalization of COD 

 

4.3  Double-allylic C–H functionalization experiments 

With the goal of designing C2 symmetric chiral COD ligands, we then focused on exploring the 

possibility of achieving a double C–H functionalization, which would be a direct synthesis of C2 

symmetric ligands. It was initially considered challenging because the second allylic C–H insertion 

would need to be regio- and stereoselective in the presence of two other allylic methylene sites. 

Nevertheless, the double allylic C–H insertion turned out to be very effective (Scheme 56). The limiting 

reagent was switched and 3 equiv of the diazo compound was reacted with 1 equiv of COD at elevated 

temperature (40 °C). The bis C–H insertion products 237-244 were formed in good yield with very high 

levels of enantioselectivity (>99% ee) even though the enantioselectivity for mono C–H 

functionalization was considerably lower (72-95% ee).  This is because the minor enantiomer of the 

mono-insertion product would be primarily transformed into the meso diastereomer of the final bis C–

H insertion compound. Such enantio-enrichment is known as the Horeau Principle.15  Therefore, bis C–

H insertion products 237-244 were obtained in high ee but with moderate diastereoselectivity.  

Nevertheless, the target major diastereomer can be easily isolated using AgNO3-impreganated silica gel. 

 

 

Entry            product              R1                       R2                 yield, %                  dr                  ee, %

   1                   226             p-BrC6H4              CH2CCl3             72/80*                 >30:1              91/89*

   2                   227              p-BrC6H4             CH3                    73                       11.6:1                 72

   3                   228             p-BrC6H4              CH2CF3              83                       >30:1                 93

   4                   229             p-IC6H4                 CH2CF3              78                       >30:1                 95

   5                   230             p-(MeO)C6H4        CH2CF3              72                       >30:1                 81

   6                   231             p-(CF3)C6H4         CH2CF3              78                       >30:1                 94

   7                   232             p-tBuC6H4             CH2CF3              85                       >30:1                 88

   8                   233             p-(AcO)C6H4        CH2CF3              70                       >30:1                 79

   9                   234             6-(2-Clpyridine)    CH2CF3              72                       >30:1                 87

  10                  235             m-BrC6H4              CH2CF3              64                       >30:1                 63

  11                  236             styryl                     CH2CF3              67                       >30:1                 88
* larger scale reaction at 3.0 mmol of diazo compound
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Scheme 56 Diazo compound scope for the double- C–H functionalization of COD 

 

4.4  Evaluation of related cycloalkanes 

The excellent site- and stereoselectivity for the allylic functionalization of COD is unprecedented, 

which prompted us to explore the reactivity of other related cycloalkanes. A series of control 

experiments were conducted using Rh2(S-2-Cl,5-BrTPCP)4 (Scheme 57). 1E,5E,9E-Cyclododecatriene 

(245) was found to be an effective substrate that generate cleanly the allylic C–H insertion product 246 

with poor diastereoselectivity but high enantioselectivity.  Catalyst screening for this reaction showed 

that the diastereomeric ratio can only vary slightly from 2:1 to 1:2, which suggest that no catalyst can 

render the reaction highly diastereoselective (Scheme 57 (a)).  The reaction with cyclohexene generated 

a mixture of cyclopropanation (247) and allylic C–H insertion products (248), ranging from 1.27:1 to 

1:2.85, and the dr was also poor ranging from 3.11:1 to 1:3.12 (see supporting information) (Scheme 

57 (b)). The reaction with cis-cyclooctene, however, exclusively gave cyclopropanation product (249) 

(Scheme 57 (c)). Such results seem to suggest that the structural features of 1,5-cyclooctadiene are 

uniquely suitable for stereoselective allylic C–H functionalization, while other cycloalkenes tend to 

react in a very different manner. 
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Scheme 57 Diazo compound scope for the double- C–H functionalization of COD 

 

4.5  Evaluation of chiral COD ligands for enantioselective conjugate addition reaction 

4.5.1  Evaluation of chiral COD ligands directly from bis-allylic C–H insertion 

The new C2 symmetric chiral COD ligands 237-243 derived from double allylic C–H 

functionalization was first evaluated by Michael R. Hollerbach from the Blakey Group. The reaction 

chosen for the evaluation study was enantioselective conjugate addition of cyclohexenone to phenyl 

boronic acid (Scheme 58). The reaction with these ligands, except for the aryl iodide derivative 240, 

all generated product in reasonable yield (43-84%) but low enantioselectivity (22-45% ee.) 

Scheme 58.  Enantioselective conjugate addition (part 1) 
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4.5.2 Evaluation of the further derivatized C2 symmetric chiral COD ligands. 

The bis C–H functionalization products obtained from double allylic C–H insertion can be further 

derivatized through ester hydrolysis, reduction, or aryllithium addition.  The alcohol formed from ester 

reduction or aryllithium addition can also be protected with silyl groups. Such derivatization 

successfully gave a variety of C2-symmetric chiral COD ligands (250-258).  These derivatized ligands, 

again can enable the conjugate addition product to be formed in reasonable yield (26-76%). (Scheme 

59)  The enantioselectivity is more variable, with the ee. ranging from 26-76%. It seems that sterically 

congested ligands tended to give higher enantioselectivity.  The most promising ligand has been 258, 

which resulted in the formation of 213 in 63% yield, 76% ee.  

Scheme 59.  Enantioselective conjugate addition (part 2) 
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derivatives revealed they were highly effective in the rhodium-catalyzed asymmetric arylation of 

cyclohex-2-enone. 
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Chapter Five 
Exploring the direct cyclopropanation with N-sulfonyl protected piperidines 

5.1  Introduction 

 Substituted piperidine rings are prominent structural elements in various pharmaceutical 

molecules,1 such as Ritalin (methylphenidate) for treating attention deficit hyperactivity disorder,2 

Risperidone for treating schizophrenia, bipolar disorder and irritability caused by autism3 and 

Tofacitinib (CP-690,550) for treating rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and 

ulcerative colitis ((Scheme 60).4 Traditional synthesis usually involves the ring construction or directly 

start with functionalized piperidines.2,5 The latter one could be especially challenging due to a lack of 

readily available enantiopure piperidine precursors. 

Scheme 60  examples of pharmaceutical molecules with substituted piperidine ring 

 

In recent years, site-selective C–H functionalization has emerged as a new tool for building 

substituted piperidine rings, where most successful examples include the functionalization at the C2 

position. Knochel et. al. developed the highly diastereoselective arylation of substituted piperidines6 

through an initial formation of zinc complex 260 followed by a Pd-catalyzed asymmetric cross-coupling. 

(Scheme 61(a)) Seidel et. al. achieved direct C–H functionalization at the C2 position of unprotected 

piperidines and other cyclic amines7 through enamine intermediate 263 (Scheme 61(b)). Later on, the 

Davies group successfully achieved highly enantioselective selective piperidine C2 functionalization8 

using rhodium donor/acceptor carbenes. This reaction can directly generate Ritalin-related piperidine 

drug molecule 265 in high yield, dr. and ee.(Scheme 61(C)).   
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Scheme 61  Selective piperidine C–H functionalization at the C2 position 

 

Selective piperidine C3 functionalization was limited during early studies. The Baudoin group 

reported a ligand controlled C3-selective arylation of N-Boc piperidines.9 This reaction is very similar 

to Knochel’s work6 by forming the same zinc-complex first before Pd-catalyzed cross coupling, but the 

flexible biarylphosphine ligand 266 applied in this work favor the formation of C3 arylation products 

267 (Scheme 62(a)). The Davies and the Reiser groups introduced an indirect way of synthesizing C3 

functionalized piperidines through cyclopropanation with enamine 268 followed by a ring opening 

process.8  C3-substituted piperidines 269 can be obtained in high ee as a single diastereomer (Scheme 

62(b)). One factor that may limit the application of this work is that starting material enamine 268 is 

not readily available and need to be prepared using electrochemistry. 

Scheme 62  Selective piperidine C–H functionalization at the C3 position 

 

Selective C4 functionalization of piperidines was also a challenge given the difficulty to control 

the reaction at the distant position. The Sanford group made a breakthrough by achieving Pd-catalyzed 

transannular C–H functionalization of cyclic amines. The unique amide directing group in 271 is 
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important to form the boat shaped Pd-complex 272, which is proposed to lead to the formation of C4 

arylation products 273 (Scheme 63(a)).10  Their following optimization with the second generation 

catalyst combined with pyridine or quinoline ligands increased the reaction rate, yield and application 

scope.11 The Davies group recently developed an enantioselective C4-selective piperidine C–H 

functionalization with rhodium donor/acceptor carbene.8 Piperidine substrate 274 with a special a-

oxoarylacetyl protecting group was reacted with aryldiazoacetates under a recently developed catalyst 

Rh2(S-2Cl,5-BrTPCP)4 that favors most accessible methylene site11 to give exclusively piperidine C4-

insertion product 275 with excellent ee.(Scheme 63(b)). 

Scheme 63  Selective piperidine C–H functionalization at the C4 position 

 

 The Davies group recently observed unexpected cyclopropanation as a side reaction during the 

C2 insertion study of sulfonyl protected piperidine substrates.12 In the reaction of protected piperidines 

(276, 277) with aryldiazoacetate 155 under Rh2(S-DOSP)4 catalysis,12 unusual cyclopropanation 
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N
O

NH(p-CF3C6F4)
H

(1) Pd(OAc)2 (10 mol%)
Ar-I (30 equiv.)

CsOPiv (3 equiv.)
150 oC, 18h, air

(2) NaBH4 work up N
Pd

N
O

F3C
F

F

F
F

boat conformation 
Pd complex

Ar N
O

NH(p-CF3C6F4)
Ar

This directing group is important
33-66% yield

Sanford et. al. 2016

(a)

271 272
273

N

O
O

Br Ar

N2

CO2CH2CCl3
+(b)

Rh2(S-2-Cl,5-BrTPCP)4
(0.5 mol%)

CH2Cl2, 39oC

PG

NPG

Ar

CO2CH2CCl3
H

>30:1 r.r.
50-76% yield
96-98% ee.Ar=p-BrC6H4, p-CF3C6H4, 

       3,4-diBrC6H3274 275
Liu et. al. 2020



 86 

Scheme 64 Early study of the reaction and proposed mechanism. 

 

This direct cyclopropanation between aryldiazoacetates and sulfonyl-protected piperidines 

intrigued us to further explore this reaction. In this chapter, a systematic optimization study was 

performed for this reaction to enhance the ratio of desired cyclopropanation over the C2 insertion. This 

study can save the step of preparing enamine starting material that is required in our previously reported 

piperidine C3 functionalization (enamine cyclopropanation/ring opening).8  

5.2  Optimization study (to achieve higher ratio of desired cyclopropanation)  

Factors that may influence the ratio of the cyclopropanation to C2-insertion include stoichiometry, 

piperidine protecting groups (PG), solvents, dirhodium catalysts and reaction temperature. A series of 

controlled studies were performed to investigate the reaction parameters and optimize toward 

cyclopropanation. 

5.2.1  Stoichiometry influence 

The stoichiometry ratio of sulfonyl piperidine to diazo compound was varied from 2:1 to 1:3 in a 

given reaction (Scheme 65), but the product ratio 278 : 279 is fixed at around 5:1. This suggests that 

stoichiometry has little to no influence on the product composition. It is proposed that the competition 

between partial and complete H abstraction (lead to 279) in the first step determines the product ratio. 

Once the enamine intermediate is formed, following cyclopropanation occurred at a much faster rate 

than C2-insertion, so all the enamine intermediates are consumed immediately. 
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Scheme 65  Study of stoichiometry influence 

 

5.2.2  Solvent influence 

It is proposed that more polar solvent could better stabilize charged intermediates generated from 

the full H abstraction and favor the formation of cyclopropanation product 279. Therefore, several more 

polar solvents (compared to CH2Cl2) were tested for the reaction system (Scheme 66). 1,2-DCE gave 

worse ratio for desired cyclopropanation product 279. Ethyl acetate and nitromethane gave messy 

reaction mixture, neither 278 nor 279 can be observed in the crude 1HNMR. 1,2-dioxane was chosen 

considering that the two internal methylene were generally inactive towards carbenoid chemistry, 

however, the diazo compound seemed  to have reacted with solvent 1,2-dioxane in this reaction. 

Scheme 66  Study of solvent influence 
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5.2.3  N-sulfonyl protecting group (PG) influence (Part I) 

Protecting groups can influence the product ratio, which has been observed in Liu’s preliminary 

studies. Sulfonyl PGs can generate the cyclopropanation product while carbamate PGs cannot. It was 

also observed that (p-Br)C6H4SO2 PG (276) gave C2 insertion (C2) : Cyclopropanation (Cyclo) at 

around 5:1 while (p-Methyl)C6H4SO2 (Tosyl) PG (277) give C2 : Cyclo at around 2:1. Two other 

sulfonyl protected piperidines 282 and 283 were also tested as a comparison (Scheme 67). Piperidine 

substrate 282 gave C2 : Cyclo at 2.2:1, which is similar to 277. Piperidine substrate 283  reacted to give 

a messy mixture. The better performance of 277 and 282 towards cyclopropanation suggests that 

electron donating group (EDG) on the sulfonyl aromatic ring may contribute to the cyclopropanation. 

The messy results with 283 indicates that bulky aryl sulfonyl protecting groups may hinder the approach 

of rhodium carbene. More studies of protecting group’s influence were shown later in part II. 

Scheme 67  Study of N-sulfonyl protecting group influence (Part I) 
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Scheme 68  Study of temperature influence 

 

5.2.5  Dirhodium catalyst influence (part I) 

Dirhodium catalyst is an important factor that can influence the composition of reaction products. 

In Liu’s preliminary studies, it has been observed that the new generation TPCP series of catalysts from 

Davies lab gave no cyclopropanation and generated mainly diazo dimer.12 Rh2(PTAD)4 indeed gave 

cyclopropanation but the ratio is much worse compared to Rh2(DOSP)4.  There is a lack of systematic 

catalyst screening in early studies. Therefore, it is necessary to test more dirhodium catalysts for this 

reaction. Simple achiral catalysts such as Rh2(OAc)4 and Rh2(TFA)4 were initially tested for the reaction 

of piperidine substrate 277 and aryldiazoacetate 155 (Scheme 69). It is interesting that Rh2(OAc)4 

favored more for the cyclopropanation compared to Rh2(S-DOSP)4, enhanced the ratio of Cyclo : C2 

from 1:2.02 to 1:1.25. The reaction using Rh2(TFA)4 generated the desired cyclopropanation product 

281 without undesired C2 insertion product 280, but diazo dimerization dominated the reaction. This 

study indicates that the more electron-deficient catalyst may favor the desired cyclopropanation 

(Rh2(TFA)4> Rh2(OAc)4> Rh2(S-DOSP)4), but too much electrophilic feature can hinder the 

intermolecular reaction. Rh2(S-F-DOSP)4 (286), a catalyst structurally similar to Rh2(S-DOSP)4 but 

more electron deficient, was also tested. Again, the more electron-deficient Rh2(S-F-DOSP)4 gave 

higher ratio of  281 (Cyclo) compared to Rh2(S-DOSP)4. The most optimized result came from a bridged 

catalyst Rh2(S-BiTISP)2 (287) developed earlier by Davies group,13 which gave a ratio of Cyclo : C2 at 

1:1.10. More dirhodium catalysts were investigated later in part II. 
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Scheme 69 Study of dirhodium catalyst influence (part 1) 

 

5.2.6  N-sulfonyl protecting group (PG) influence (part II) 

Three aryl sulfonyl protected piperidine substrates with strong electron donating groups on the 

aromatic ring were further tested with optimized Rh2(S-BiTISP)2 (287) catalyst. Using (p-

OMe)C6H4SO2 as PG (288) reversed the ratio of two products (C2 : Cyclo at 1:1.20). More electron 

donating Benzoin-sulfonyl protected piperidine (89) was even more promising (C2 : Cyclo at 1:1.35). 

(2,4-dimethoxy)C6H4SO2 as PG (290) gave a messy crude 1HNMR with no evidence for the formation 

of either cyclopropanation or C2-insertion product (Scheme 70).  

Scheme 70  Study of N-sulfonyl protecting group influence (part II) 
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Benzoin-sulfonyl protected piperidine 289 is so far the most optimized piperidine substrate for the 

cyclopropanation reaction from combined protecting group study in part I and II. Although sulfonyl 

protecting groups with more electron donating aromatic ring can be tested, the trend of adding EDG to 

the sulfonyl aryl ring seems difficult to promote a clean cyclopropanation. 

5.2.7  Aryl diazoester influence 

 The electronic features of an aryldiazoacetate is directly related to the reactivity of the rhodium 

carbenoid, and therefore, can influence the reaction outcome. Studies on dirhodium catalysts have 

shown that cyclopropanation is more favored with more electrophilic rhodium carbene. Therefore, 

electron-deficient aryldiazoacetates (compared 155) should also improve the chemoselectivity. This can 

be achieved either by incorporating a more electron-deficient aryl group or a more electron-withdrawing 

ester group into the diazo design. Because Rh2(S-BiTISP)2 is a relatively precious catalyst (287), Rh2(S-

DOSP)4 was used for the initial screening (Scheme 71). Comparison of  entries 2 and 1 confirmed that 

more electrophilic 295 indeed gave better ratio for cyclopropanation. The same trend applies to 296 

versus 155. However, too electron-deficient  297 and 298 gave only diazo dimer side product.  

Scheme 71  Aryldiazoacetate influence (Initial screening) 
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Diazo compounds 295 and 299 showed similar ratio of C2-insertion versus cyclopropanation in 

the above reaction, so further test reaction with the optimized reaction condition  was performed to 

select the best diazo compound (Scheme 72). We found that aryldiazoacetate 299 performed better than 

295 for cyclopropanation (C2 : Cyclo at 1:1.87). This is also the highest ratio for cyclopropanation 

achieved so far. 

Scheme 72  Comparison of aryldiazoacetate 295 and 299 in the optimized reaction 
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More dirhodium catalysts were screened with the optimized reaction (Scheme 73). Rh2(NTTL)4 is 
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this reaction. Rh2(S-TCPTAD)4 is considered to be an electron-deficient catalyst which should favor 

the cyclopropanation, however, it did not perform better than Rh2(S-DOSP)4.  Inspired by the optimized 
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Rh2(esp)2 was also tested (Entry 2). Unfortunately, they both failed to outperform the Rh2(S-BiTISP)2. 

Therefore, studies from part I and II show that Rh2(S-BiTISP)2 (287) is the optimized catalyst so far. 
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Scheme 73  Study of dirhodium catalyst influence (part II) 

 

 

5.3  Miscellaneous reactions with other protected cyclic amines  

Five- and seven-membered cyclic amines were firstly tested to see if the cyclopropanation is 

uniquely observed for 6 membered piperidine (Scheme 74). Sulfonyl protected pyrrolidine (310) and 

azepane (311) were reacted with 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate 155 using 

Rh2(S-DOSP)4 in refluxing CH2Cl2, but only C2-insertion products were observed for both substrates.  

Scheme 74  Miscellaneous tests with sulfonyl protected pyrrolidine and azepane 
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Scheme 75  Miscellaneous tests with sulfonyl protected morpholine and indoline 

 

Two TBS protected tetrahydroquinoline substrates 316 and 317 were also tested under the same 

reaction conditions (Scheme 76). Substrate 316 reacted to give alkylated product 318 at the 6-position 

of the aromatic ring, which is proposed to happen through an ylide reaction. Substrate 317 has a 

blocking “Br” on the 6-position of aromatic ring, and it reacted to give clean benzylic C–H insertion 

product 319 under Rh2(S-TPPTTL)4 catalysis (3.7:1 dr.) or Rh2(2-Cl,5-BrTPCP)4 catalysis (5.7:1 dr.) 

The ee. was not measured for these reactions. 

Scheme 76  Miscellaneous tests with TBS protected tetrahydroquinoline substrates 

 

5.4 Conclusion 

The reaction of N-sulfonyl piperidine with aryldiazoacetates under certain dirhodium catalysts can 

directly generate cyclopropanation products, which is unprecedented. However, this reaction is usually 

accompanied by competitive C2-insertion and difficult to optimize toward a clean cyclopropanation. 

The highest cyclopropanation to C2-insertion products ratio achieved in this study is 1.87:1, with 

approximately 24% conversion of sulfonyl piperidine (limiting reagent) based on crude 1H NMR.  The 

low conversion rate is mainly caused by significant diazo-dimerization side reaction, suggesting low 
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reactivity between the substrate and the carbene. Such direct cyclopropanation reaction is not observed 

with other protected cyclic amine substrates, suggesting that sulfonyl protected piperidines are 

structurally unique for the reaction to happen. 
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Chapter Six 
Experimental procedure 

6.1  Chapter 2 (Experimental procedure) 

6.1.1 General procedure for diene synthesis 

(1) Diene 43 & 65 

Starting material enone (10 mmol) was dissolved in 30 mL anhydrous dichloromethane.  The 

solution was cooled to 0 °C and Et3N (1.4 equiv.) was added.  Keep the solution stirring for 5 min and 

then TBSOTf or TIPSOTf (1.15 equiv.) was added in one portion.  The reaction was kept running for 

30 min.   Dilute the mixture with 20 mL pentane, wash with saturated NaHCO3 solution (50 mL×2) and 

then dry over MgSO4.  Filter and the filtrate were concentrated under vacuum.  Pure product is obtained 

through basified column chromatography (Et3N:Pentane =1:99) 

 

(E)-triisopropyl(penta-1,3-dien-2-yloxy)silane 43:  derived from (E)-pent-3-en-2-one (10 mmol) 

with general procedure, yield 96 %. All spectra matched the reference[1]. 

 

tert-butyl((4,4-dimethylcyclohexa-1,5-dien-1-yl)oxy)dimethylsilane 65:  derived from 4,4-

dimethylcyclohex-2-enone (10 mmol) with general procedure, yield 93%. All spectra matched the 

reference[5]. 

1H NMR (500 MHz, CDCl3): δ 5.53 (m, 2H), 4.77 (m, 1H), 2.09 (d, J = 4.7 Hz, 2H), 0.99 (s, 6H, 2 

methyl), 0.91 (s, 9H, TBS), 0.11 (S, 6H, TBS) ;   13C NMR(100 MHz, CDCl3): δ 147.4, 140.0, 123.9, 

101.4, 37.0, 31.2, 27.7, 25.7, 18.1, -4.49 

TIPSO

43

TBSO

65
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(2) Diene 46, 48, 56-58, 62, 67, 68 

Diisopropylamine (1.2 equiv.) was added to 40 mL anhydrous THF.  The solution was cooled to -

78 °C for 5 min and then n-BuLi (2.5 M in hexane, 1.2 equiv.) was added dropwisely.  The mixture was 

warmed up to 0 °C for 15min and then cooled back to -78 °C followed by slow addition of starting 

material enone (purchased or prepared from reported references) (10 mmol).  The reaction was kept 

running for 1 h, and then TBSOTf (1.15 equiv.) was added in one portion.  After stirring for another 1 

h, the solution was warmed to room temperature, diluted with 40 mL pentane and then washed with 

saturated NaHCO3 solution (50 mL×3).  Dry the solution over MgSO4 and then filter.  The filtrate was 

concentrated under vacuum, and pure product was obtained through basified column (Et3N:Pentane 

=1:99) or kugelrhor distillation. 

 

tert-butyl((4E)-hexa-2,4-dien-3-yloxy)dimethylsilane 46:  derived from (E)-hex-4-en-3-one (10 

mmol) with general procedure, purified through basified column, Z/E=81:19, yield 60 %. 1HNMR 

spectra matched the reference[1].  

 

tert-butyl(cyclohexa-1,5-dien-1-yloxy)dimethylsilane 48:  derived from cyclohex-2-enone (20 

mmol) with general procedure, purified through kugelrhor distillation, yield 81 %. All spectra 

matched the reference[2]. 

 

TBSO

46

TBSO

48

56

TBSO
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tert-butyl(cyclohepta-1,6-dien-1-yloxy)dimethylsilane 56:  derived from cyclohept-2-enone (10 

mmol) with general procedure, purified through basified column, yield 93 %. All spectra matched the 

reference[5]. 

1H NMR (600 MHz, CDCl3): δ 5.79 ((dt, J = 12.0, 5.2 Hz, 1H), 5.65 (dq, J = 12.0, 1.8 Hz, 1H), 5.18 

(dt, J = 6.0, 2.0 Hz, 1H), 2.29 (q, J = 5.8 Hz, 2H), 2.16 (q, J = 5.8 Hz, 2H), 1.82 (p, J = 5.8 Hz, J=2H), 

0.92 (s, 9H, TBS), 0.11 (S, 6H, TBS) ;   13C NMR(100 MHz, CDCl3): δ 148.3, 133.3, 128.2, 112.7, 

31.4, 27.0, 26.7, 25.8, 18.0, -4.5 

 

tert-butyldimethyl((4-methylcyclohexa-1,5-dien-1-yl)oxy)silane 57:  derived from 4-methyl- 

cyclohex-2-enone (10 mmol, prepared through reported procedure[3]) with general procedure, purified 

through basified column, yield 45 %. 

1H NMR (600 MHz, CDCl3): δ 5.70 (dd, J = 9.9, 3.6 Hz, 1H), 5.65 (dt, J = 9.9, 2.1 Hz, 1H), 4.83 (m, 

1H), 2.36 (m, 1H), 2.25 (m, 1H), 1.96 (m, 2H), 1.01 (d, J = 7.03 Hz, 3H, methyl), 0.93 (s, 9H, TBS), 

0.13 (s, 6H, TBS);   13C NMR(100 MHz, CDCl3): δ 148.0, 135.3, 125.4, 101.7, 30.2, 28.4, 26.3, 25.7, 

19.6, -4.5;  IR(neat): 2957, 2929, 2857, 2822, 1739, 1661, 1472, 1397, 1252, 1195, 1112, 920;  HRMS-

(APCI) m/z: 225.1667 [(M+H)+ : [C13H25OSi]+ requires 225.1669] 

 

tert-butyl((1,6-dihydro-[1,1'-biphenyl]-3-yl)oxy)dimethylsilane 58:  derived from 1,6-dihydro-[1,1'-

biphenyl]-3(2H)-one (10 mmol, prepared through reported procedure[4]) with general procedure, 

purified through basified column, yield 78 %. All spectra matched the reference[5]. 

 

1H NMR (600 MHz, CDCl3): δ 7.18-7.29 (m, 5H, Ph ring), 5.78 (m, 2H), 4.93 (m, 1H), 3.68 (ddd, J = 

12.3, 9.0, 2.9 Hz, benzylic), 2.46 (m, 1H), 2.23 (m, 1H), 0.99 (s, 6H, 2 methyl), 0.93 (s, 9H, TBS), 

TBSO

57

TBSO

58

Ph



 99 

0.15 (S, 6H, TBS) ;   13C NMR(100 MHz, CDCl3): δ 149.0, 145.2, 128.4, 127.6, 127.5, 126.3, 126.2, 

106.7, 40.2, 32.4, 25.7, 18.1, -4.5 

 

tert-butyldimethyl((6-methyl-3-(prop-1-en-2-yl)cyclohexa-1,5-dien-1-yl)oxy)silane 62:  derived 

from S-(+)-carvone or R-(-)-carvone (10 mmol) with general procedure, purified through basified 

column, yield 74 %. All spectra matched the reference[11]. 

1H NMR (600 MHz, CDCl3): δ 5.57 (m, 1H), 4.78 (m, 1H), 4.75 (d, J=3.80 Hz, 1H), 4.72 (m, 1H), 3.02 

(ddd, J = 12.3, 8.3, 3.7 Hz,1H), 2.05-2.21 (m, 2H), 1.74 (s, 6H, 2 methyl), 0.95 (s, 9H, TBS), 0.18 (S, 

6H, TBS) ;   13C NMR(100 MHz, CDCl3): δ 150.0, 148.7, 132.1, 123.1, 109.9, 105.1, 42.0, 28.7, 25.8, 

22.3, 20.6, 18.2, 17.7, 14.1, -4.6 

 

tert-butyldimethyl((5-methylcyclohexa-1,5-dien-1-yl)oxy)silane 67:  derived from 3-methyl-

cyclohex-2-enone (10 mmol) with general procedure, purified through kugelrhor distillation, yield 45 %. 

All spectra matched the reference[9]. 

1H NMR (600 MHz, CDCl3): δ 5.43 (s, 1H), 4.71 (m, 1H), 2.15 (m, 2H), 2.15 (m, 2H), 2.00 (m, 2H), 

1.77 (s, 3H, methyl), 0.96 (s, 9H, TBS), 0.11 (S, 6H, TBS);   13C NMR(100 MHz, CDCl3): δ 149.0, 

138.9, 121.1, 99.1, 28.5, 25.7, 23.0, 22.2, 18.1, -4.5 

 

 

TBSO

62 S

TBSO

62 R

TBSO
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tert-butyldimethyl((2-methylcyclohexa-1,5-dien-1-yl)oxy)silane 68:  derived from 6-methyl-

cyclohex-2-enone (10 mmol, prepared through reported procedure[6]) with general procedure, purified 

through basified column, yield 70 %. All spectra matched the reference[10]. 

1H NMR (600 MHz, CDCl3): δ 5.68 (m, 2H), 2.10 (m, 4H), 1.67 (s, 3H, methyl), 0.96 (s, 9H, TBS), 

0.11 (s, 6H, TBS) ;   13C NMR(100 MHz, CDCl3): δ 142.0, 126.4, 125.2, 112.4, 28.6, 26.3, 25.8, 23.0, 

18.1, 16.2, -4.2 

6.1.2 General procedure for vinyl diazo compounds  

 

Starting material β, γ-unsaturated carboxylic acid was directly purchased or prepared from reported 

procedures.  First step is a DCC-coupled esterification. β, γ-unsaturated carboxylic acid (15 mmol), 

2,2,2-trichloroethanol (1.2 equiv.), DCC (1.1 equiv.) were dissolved in 35 mL anhydrous 

dichloromethane.  The mixture was cooled to 0 °C and kept stirring. DMAP (0.1 equiv.) was dissolved 

in 5 mL dichloromethane and added to the solution. The reaction was kept running for 4 hrs. Filter and 

the filtrate was concentrated under vacuum. Pure ester was obtained by flushing column with 1 % Et2O 

in pentane.   

Obtained Ester (10 mmol) were directly dissolved in 30 mL anhydrous acetonitrile along with 

diazo transfer reagent o-NBSA (1.2 equiv.) or p-ABSA (1.2 equiv.).  The solution was cooled to 0 °C 

and kept stirring for 5 min. DBU (1.2 equiv.) was then added dropwisely, and the colorless solution 

gradually changed to yellow and eventually bright orange. The reaction was kept running for 1hr and 

quenched by diluting with Et2O (20 mL). Wash the organic layer with Saturated NH4Cl (20 mL×2), 

brine (20 mL×2) and then dried over MgSO4. Filter and the filtrate were concentrated under vacuum. 

The pure vinyl diazo compound was obtained by flushing column with 3-5 % Et2O in pentane. 

 

R COOH
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(E)-2,2,2-trichloroethyl 2-diazohex-3-enoate 44:  derived from (E)-hex-3-enoic acid (20 mmol) with 

general procedure, diazo transfer reagent is o-NBSA, yield (2 step) 74%. 

1H NMR (600 MHz, CDCl3): δ 5.72 (dq, J = 15.8, 1.5 Hz, 1H), 5.45 (dq, J = 15.8, 6.5 Hz, 1H), 4.84 (s, 

2H, trichloroethyl), 2.21 (m, 2H ethyl CH2), 1.05 (t, J = 7.5 Hz, 3H, ethyl CH3) ;   13C NMR(100 MHz, 

CDCl3): δ 128.2, 110.1, 95.0, 73.9, 25.9, 13.7;  IR(neat): 2956, 2082, 1708, 1450, 1375, 1336, 1306, 

1248, 1121, 950, 795, 715;  HRMS-(APCI) m/z: 270.9729, 272.9699 (M+2 for Cl), 274.9670 (M+4 for 

Cl) [(M+H)+ : [C8H10Cl3N2O2]+ requires 270.9730] 

 

(E)-2,2,2-trichloroethyl 2-diazopent-3-enoate 49:  derived from (E)-pent-3-enoic acid (20 mmol, 

prepared from reported procedures[7]), diazo transfer reagent is o-NBSA, yield (2 step) 63%. 

1H NMR (600 MHz, CDCl3): δ 5.74 (dq, J = 15.8, 1.7 Hz, 1H), 5.44 (dq, J = 15.8, 6.7 Hz, 1H), 4.84 (s, 

2H, trichloroethyl), 1.86 (dd, J = 6.7, 1.7 Hz, 3H, methyl) ;  13C NMR(100 MHz, CDCl3): δ 121.5, 

111.9, 95.0, 73.9, 18.3;  IR(neat): 2955, 2080, 1704, 1450, 1374, 1336, 1247, 1118, 1058, 949, 794, 

714;  HRMS-(APCI) m/z: 256.9647, 258.9617 (M+2 for Cl), 260.9588 (M+4 for Cl) [(M+H)+ : 

[C7H8Cl3N2O2]+ requires 256.9647] 

 

(E)-2,2,2-trichloroethyl 2-diazoundec-3-enoate 50:  derived from (E)-undec-3-enoic acid (10 mmol, 

prepared from reported procedures[7]), diazo transfer reagent is o-NBSA, yield (2 step) 49%. 

1H NMR (600 MHz, CDCl3): δ 5.72 (dt, J = 15.8, 1.4 Hz, 1H), 5.41 (dt, J = 15.8, 6.8 Hz,1H), 4.84 (s, 

2H, trichloroethyl), 2.19 (qd, J = 7.1, 1.5 Hz, 2H), 1.40 (m, 2H), 1.24-1.33 (m, 6H), 0.88 (t, J = 7.0 

Hz, 3H, methyl) ;  13C NMR(100 MHz, CDCl3): δ 127.0, 110.8, 95.0, 73.9, 32.8, 31.7, 29.4, 28.8, 22.6, 

14.1;  IR(neat): 2955, 2926, 2855, 2081, 1713, 1455, 1376, 1234, 1129, 1108, 949, 712;  HRMS-(APCI) 

m/z: 327.0431, 329.0401 (M+2 for Cl), 331.0372 (M+4 for Cl) [(M+H)+ : [C12H18Cl3N2O2]+ requires 

327.0428] 

CO2CH2CCl3

N2

49

CO2CH2CCl3

N2

5
50
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(E)-2,2,2-trichloroethyl 2-diazo-5-phenylpent-3-enoate 51:  derived from (E)-5-phenylpent-3-enoic 

acid (10 mmol, prepared from reported procedures[8]), diazo transfer reagent is o-NBSA, yield (2 step) 

75%. 

1H NMR (600 MHz, CDCl3): δ 7.18-7.34 (m, 5H, Ph ring), 5.82 (dt, J = 15.8, 1.4 Hz, 1H), 5.58 (dt, J 

= 15.8, 6.9 Hz, H), 4.84 (s, 2H, trichloroethyl), 3.51 (d, J = 6.6 Hz, 2H, benzylic) ;  13C NMR(100 

MHz, CDCl3): δ171.3, 139.7, 128.6, 128.5, 128.3, 126.4, 124.9, 112.5, 95.0, 74.0, 39.1;  IR(neat): 3028, 

2954, 2082, 1703, 1646, 1603, 1495, 1453, 1378, 1247, 1113, 950, 697;  HRMS-(APCI) m/z: 330.9819, 

332.9790 (M+2 for Cl), 334.9761 (M+4 for Cl) [(M-H)- : [C13H10Cl3N2O2]+ requires 330.9813] 

 

 

 

 

 

6.1.3 General Procedure for 4+2 cycloaddition products & miscellaneous compounds 

Cross-conjugated siloxy diene (1.05 mmol, 3.5 equiv.) was dissolved in 2.5 mL anhydrous 

dichloromethane in a dry 10 mL round bottom flask. R- or S- Rh2(p-PhTPCP)4 was then added, and the 

flask was degassed and filled with Ar for several times.  The solution was cooled to 0 °C and kept 

stirring for 5min. Vinyl diazo compound (0.30 mmol, 1.0 equiv.) was then dissolved in 2.5 mL 

anhydrous dichloromethane and added to the round bottom flask over 1hr using the syringe pump. The 

reaction was kept running for 4hrs. The solution was later concentrated under vacuum to give crude 

mixture.  Pure [4+2] cycloadducts and other compound 45 (4+3), 66 (open chain) was obtained through 

column chromatography (0.5-1.0 % Et2O in pentane). 

Ph CO2CH2CCl3

N2

51
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(3R,4R)-2,2,2-trichloroethyl 3-ethyl-4-methyl-6-oxocyclohept-1-enecarboxylate 45’: 45 

(characterized as 45’ after desilylation) derived from diene 43 (1.05 mmol) and vinyl diazoacetate 44 

(0.30 mmol) with general procedure, isolated product: 110.1 mg, yield 76% (Rh2(esp)2); 83.2 mg, yield 

53% (Rh2(R-p-PhTPCP)4). 

1H NMR (600 MHz, CDCl3): δ 7.13 (dd, J = 7.1 Hz, 2.5 Hz, 1H, alkene H), 4.83 (d, J = 11.9 Hz, 1H, 

trichloroethyl), 4.82 (d, J = 11.9 Hz, 1H, trichloroethyl), 3.59 (d, J = 18.7 Hz, 1H, CH2 between 

carbonyl and alkene), 3.36 (d, J = 18.8 Hz, 1H, CH2 between carbonyl and alkene), 2.53 (m, 1H), 

2.42-2.48 (m, 3H), 1.50-1.62 (m, 2H), 0.95 (t, J = 7.45 Hz, 3H, methyl on Et), 0.92 (d, J = 6.3 Hz, 3H, 

Me on ring);  13C NMR(100 MHz, CDCl3): δ 208.7 (ketone carbonyl), 164.5 (ester carbonyl), 149.7, 

127.3, 94.9, 74.6, 49.2, 43.55,43.50, 36.5, 25.1, 15.8, 12.4;  IR(neat): 2961, 2932, 2875, 1714, 1636, 

1457, 1381, 1228, 1154, 1099, 798, 718;  HRMS-(APCI) m/z: 327.0242, 329.0213 (M+2 for Cl), 

331.0191 (M+4 for Cl) [(M+H)+ : [C13H18Cl3O3]+ requires 327.0243] 

  

(Z)-2,2,2-trichloroethyl 2-((2S,6R)-4-((tert-butyldimethylsilyl)oxy)-6-ethyl-2,5-dimethylcyclohex-

3-en-1-ylidene)acetate 47:  derived from diene 46 (1.05 mmol) and vinyl diazoacetate 44 (0.30 mmol) 

with general procedure, isolated yield 77%. Since diene 46 was prepared as mixture of Z/E isomers, 44 

was obtained as a mixture of diastereomers with regards to the 5-methyl group. 1H NMR was attached 

with major and minor product noted in the spectra, stereochemistry of 2-methyl and 6-ehtyl was based 

on analogy of [4+2] product 52. Distinctive peaks for the [4+2] was noted in spectra, some detailed 

peaks were not further analyzed. 

TIPSO
CO2CH2CCl3

45

Me Et

TBAF/THF

O
CO2CH2CCl3

45’

Me Et

TBSO

CO2CH2CCl3

47
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(Z)-2,2,2-trichloroethyl 2-((1R,3R,4R)-5-((tert-butyldimethylsilyl)oxy)-3-ethylbicyclo[2.2.2]oct-5-

en-2-ylidene)acetate 52:  derived from diene 48 (1.05 mmol) and vinyl diazoacetate 44 (0.30 mmol) 

with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 100.4 mg, yield 74%.  

1H NMR (600 MHz, CDCl3): δ 5.77 (d, J = 1.9 Hz, 1H, H next to trichloroethyl), 4.90 (dd, J = 6.7 Hz, 

2.3 Hz, 1H, alkene H next to TBS), 4.78 (d, J = 12.1 Hz, 1H, trichloroethyl), 4.74 (d, J = 12.1 Hz, 

1H, trichloroethyl), 3.10 (dt, J = 6.8, 2.7 Hz, 1H), 2.91 (ddd, J = 10.4, 4.9, 2.7 Hz, 1H), 2.65 (m, 1H), 

1.50-1.66 (m, 4H), 1.43 (m, 1H), 1.11 (m, 1H), 1.03 (t, J = 7.1 Hz, 3H, methyl), 0.93 (s, 9H, TBS), 

0.17 (s, 3H, TBS), 0.16 (s, 3H, TBS),;  13C NMR(100 MHz, CDCl3): δ 175.3, 165.1, 157.3, 109.1, 98.6, 

95.7, 73.8, 48.5, 43.5, 40.3, 29.7, 27.1, 25.8, 23.5, 18.2, 12.9, -4.5;  IR(neat): 2954, 2931, 2860, 1731, 

1636, 1462, 1369, 1250, 1222, 1138, 1098, 905, 863;  HRMS-(APCI) m/z: 453.1179, 455.1150 (M+2 

for Cl), 457.1128 (M+4 for Cl) [(M+H)+ : [C20H32Cl3O3Si]+ requires 453.1181];  [α]20
D: -19.2o  (c=1.00, 

CHCl3);  

 

(E)-2,2,2-trichloroethyl 2-((1R,3R,4R)-5-((tert-butyldimethylsilyl)oxy)-3-methylbicyclo[2.2.2]oct-

5-en-2-ylidene)acetate 53:  derived from diene 48 (1.05 mmol) and vinyl diazoacetate 49 (0.30 mmol) 

with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 79.6 mg, yield 60%.  

1H NMR (600 MHz, CDCl3): δ 5.78 (d, J = 1.8 Hz, 1H, H next to trichloroethyl), 4.90 (dd, J = 7.0, 

2.2 Hz, 1H, alkene H next to TBS), 4.79 (d, J = 12.0 Hz, 1H, trichloroethyl), 4.73 (d, J = 12.0 Hz, 

1H, trichloroethyl), 3.10 (m, 2H), 2.36 (m, 1H), 1.48-1.58 (m, 4H), 1.10 (d, J = 6.8 Hz, 3H, methyl), 

0.93 (s, 9H, TBS), 0.17 (s, 3H, TBS), 0.16 (s, 3H, TBS);  13C NMR(100 MHz, CDCl3): δ 174.8, 164.5, 

157.4, 109.0, 98.2, 95.5, 73.6, 44.8, 43.2, 41.0, 28.7, 25.6, 23.6, 18.9, 18.0, -4.5;  IR(neat): 2951, 2930, 

52

TBSO

CO2CH2CCl3

Et

H

53
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2858, 1734, 1637, 1463, 1368, 1252, 1229, 1196, 1139, 903, 839;  HRMS-(APCI) m/z: 439.0950, 

440.0921 (M+2 for Cl), 443.0899 (M+4 for Cl) [(M+H)+ : [C19H30Cl3O3Si]+ requires 439.0952] 

 

(Z)-2,2,2-trichloroethyl 2-((1R,3R,4R)-3-hexyl-5-oxobicyclo[2.2.2]octan-2-ylidene)acetate 54’: 

54 (characterized after desilylation as 54’) derived from diene 48 (1.05 mmol) and vinyl diazoacetate 

50 (0.30 mmol) with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 75.6 mg, yield 

49%.  

1H NMR (600 MHz, CDCl3): δ 5.94 (d, J = 1.8 Hz, 1H, H next to trichloroethyl), 4.82 (d, J = 11.9 Hz, 

1H, trichloroethyl), 4.76 (d, J = 11.93 Hz, H, trichloroethyl), 3.37 (ddd, J = 11.7, 5.2, 3.1 Hz, 1H), 

2.83 (m, 1H), 2.64 (m, 1H), 2.32 (m, 2H, 2H next to carbonyl) 1.93 (m, 1H), 1.72-1.84 (m, 4H), 1.46 

(m, 1H), 1.18-1.38 (m, 7H), 1.02 (m, 1H), 0.86 (t, J = 7.1 Hz, 3H, methyl) ;  13C NMR(100 MHz, 

CDCl3): δ 214.1 (ketone carbonyl), 171.2 (trichloroethyl carbonyl), 163.9, 112.2, 95.2, 73.7, 47.0, 

43.3, 42.1, 40.9, 34.1, 31.7, 29.0, 27.3, 27.2, 22.63, 22.60, 14.1;  IR(neat): 2953, 2927, 2858, 1729, 

1640, 1448, 1383, 1205, 1142, 1119, 1084, 1036, 810;  HRMS-(APCI) m/z: 395.0868, 397.0840 (M+2 

for Cl), 399.0817 (M+4 for Cl) [(M+H)+ : [C18H26Cl3O3]+ requires 395.0869];  [α]20
D: -22.5o  (c=1.00, 

CHCl3); 

 

(Z)-2,2,2-trichloroethyl 2-((1R,3R,4R)-3-benzyl-5-((tert-butyldimethylsilyl)oxy)bicyclo[2.2.2]oct-

5-en-2-ylidene)acetate 55:  derived from diene 48 (1.05 mmol) and vinyl diazoacetate 51 (0.30 mmol) 

with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 95.5 mg, yield 62%.  

1H NMR (600 MHz, CDCl3): δ 7.50 (m, 2H, Ph ring), 7.29 (m, 2H, Ph ring), 7.20 (m, 1H, Ph ring), 

5.90 (d, J = 1.8 Hz, 1H, H next to trichloroethyl), 5.01 (dd, J = 6.8, 2.3 Hz, 1H, alkene H next to 

TBSO
C6H13
H

CO2CH2CCl3

54

TBAF/THF
O

C6H13
H

CO2CH2CCl3

54’

TBSO Bn
H

CO2CH2CCl3

55
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TBS), 4.86 (d, J = 12.1 Hz, 1H, trichloroethyl), 4.79 (d, J = 12.1 Hz, 1H, trichloroethyl), 3.17 (m, 

2H, benzylic), 2.98 (dd, J = 13.2, 2.6 Hz, 1H), 2.39 (m, 1H, H next to benzyl), 2.28 (dd, J = 13.1, 11.2 

Hz, 1H), 1.41-1.54 (m, 2H), 1.30 (m, 2H), 0.99 (s, 9H, TBS), 0.23 (s, 3H, TBS), 0.17 (s, 3H, TBS);  

13C NMR(100 MHz, CDCl3): δ 173.9, 164.8, 157.4, 140.9, 129.7, 128.0, 125.9, 109.4, 99.8, 95.5, 73.6, 

49.1, 43.3, 39.9, 31.2, 29.7, 29.4, 25.7, 23.2, 22.7, 18.1, 14.1, -4.25, -4.76;  IR(neat): 2952, 2929, 2858, 

1727, 1636, 1462, 1368, 1252, 1224, 1194, 1139, 1105, 896;  HRMS-(APCI) m/z: 515.1263, 517.1234 

(M+2 for Cl), 519.1212 (M+4 for Cl) [(M+H)+ : [C25H34Cl3O3Si]+ requires 515.1265];  [α]20
D: +52.8o  

(c=1.00, CHCl3); 

 

(Z)-2,2,2-trichloroethyl 2-((1R,5R,9R)-6-((tert-butyldimethylsilyl)oxy)-9-ethylbicyclo[3.2.2]non-

6-en-8-ylidene)acetate 59:  derived from diene 56  (1.05 mmol) and vinyl diazoacetate 44 (0.30 mmol) 

with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 80.0 mg yield 57%.  

1H NMR (600 MHz, CDCl3): δ 5.79 (d, J = 1.6 Hz, 1H, H next to trichloroethyl), 4.83 (d, J = 12.0 Hz, 

1H, trichloroethyl), 4.80 (dd, J = 7.0, 2.1 Hz, 1H, alkene H next to TBS), 4.74 (d, J = 12.0 Hz, 1H, 

trichloroethyl), 3.26 (ddd, J = 10.6, 4.3, 2.0 Hz, 1H), 3.00 (m, 1H), 2.35 (m, 1H, H next to ethyl), 1.75 

(m, 1H), 1.58-1.69 (m, 3H), 1.49-1.55 (m, 2H), 1.32 (m, 2H), 1.01 (t, J = 7.5 Hz, 3H, methyl), 0.93 (s, 

9H, TBS), 0.20 (s, 3H, TBS), 0.17 (s, 3H, TBS);  13C NMR(100 MHz, CDCl3): δ 176.5, 164.5, 157.8, 

111.0, 98.6, 95.5, 73.5, 47.6, 42.6, 39.8, 33.2, 28.6, 26.3, 25.6, 22.0, 17.9, 13.0, -4.54, -4.47;  IR(neat): 

2955, 2930, 2858, 1732, 1628, 1462, 1375, 1257, 1229, 1177, 1129, 882, 839;  HRMS-(APCI) m/z: 

467.1264, 469.1236 (M+2 for Cl), 471.1213 (M+4 for Cl) [(M+H)+ : [C21H34Cl3O3Si]+ requires 

467.1265];  [α]20
D: +9.7o  (c=1.00, CHCl3); 

 

TBSO Et
H

CO2CH2CCl3
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(E)-2,2,2-trichloroethyl 2-((1R,3R,4R,7S)-5-((tert-butyldimethylsilyl)oxy)-3-ethyl-7-methyl-

bicyclo[2.2.2]oct-5-en-2-ylidene)acetate 60:  derived from diene 57 (1.05 mmol) and vinyl 

diazoacetate 44 (0.30 mmol) with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 75.4 

mg, yield 53%. The steric position of 7-methyl group was determined by NOE experiment. 

1H NMR (600 MHz, CDCl3): δ 5.78 (d, J = 1.9 Hz, 1H, H next to trichloroethyl), 4.77 (d, J = 12.0 Hz, 

1H, trichloroethyl), 4.75(dd, J = 6.6, 2.3 Hz, 1H, alkene H next to TBS), 4.74 (d, J = 12.02 Hz, 1H, 

trichloroethyl), 2.86 (dd, J = 6.8, 2.4 Hz, 1H), 2.81 (ddd, J = 10.3, 4.9, 2.7 Hz, 1H, H next to ethyl), 

2.59 (m, 1H), 1.81 (m, 1H, H next to methyl on the ring), 1.63-1.72 (m, 2H, ethyl CH2, ring CH2), 

1.08 (m, 1H, ethyl CH2), 1.01 (t, J = 7.2 Hz, 3H, methyl), 1.01 (m, 1H, ring CH2), 0.93 (s, 9H, TBS), 

0.87 (d, J = 6.8 Hz, 3H, methyl on the ring), 0.18 (s, 3H, TBS), 0.18 (s, 3H, TBS);  13C NMR(100 

MHz, CDCl3): δ 175.6, 164.9, 156.9, 108.7, 95.1, 73.5, 50.0, 48.8, 40.7, 34.8, 32.9, 26.9, 25.6, 21.3, 

12.7, -4.7;  IR(neat): 2956, 2929, 2859, 1731, 1637, 1462, 1372, 1250, 1213, 1130, 998, 893, 818, 719;  

HRMS-(APCI) m/z: 467.1264, 469.1235 (M+2 for Cl), 471.1213 (M+4 for Cl) [(M+H)+ : 

[C21H34Cl3O3Si]+ requires 467.1265];  [α]20
D: +9.5o  (c=1.00, CHCl3); 

 

(Z)-2,2,2-trichloroethyl 2-((1R,3R,4S,8R)-5-((tert-butyldimethylsilyl)oxy)-3-ethyl-8-

phenylbicyclo[2.2.2]oct-5-en-2-ylidene)acetate 61:  derived from diene 58 (1.05 mmol) and vinyl 

diazoacetate 44 (0.30 mmol) with general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 

127.3 mg, yield 80%. Stereochemistry of 8-phenyl was determined by NOE. 

1H NMR (600 MHz, CDCl3): δ 7.17-7.22 (m, 5H, Ph ring), 5.86 (d, J = 1.7 Hz, 1H, H next to 

trichloroethyl)), 5.01(dd, J = 6.8, 2.5 Hz, 1H, alkene H next to TBS), 4.81(d, J = 12.2 Hz, 1H, 

trichloroethyl), 4.76(d, J = 12.2 Hz, 1H, trichloroethyl), 3.17 (td, J = 6.8, 2.8 Hz, 1H), 3.10 (ddd, J = 

10.7, 4.8, 2.8 Hz, 1H, H next to Et), 2.89 (dt, J = 6.8, 1.6 Hz, 1H, benzylic), 2.79 (m, 1H, H next to 

ethyl), 2.15 (dt, J = 9.7, 3.8 Hz, 1H, ring CH2), 1.67 (m, 2H, ethyl CH2, ring CH2), 1.15 (m, 1H, ethyl 

CH2), 1.02 (t, J = 7.3 Hz, 3H, methyl), 0.86 (s, 9H, TBS), 0.18 (s, 3H, TBS), 0.17 (s, 3H, TBS);  13C 

TBSO Et
H

CO2CH2CCl3
Ph H
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NMR(100 MHz, CDCl3): δ 174.0, 164.8, 155.4, 146.5, 128.2, 127.4, 126.0, 109.7, 97.7, 95.4, 73.7, 

49.1, 47.0, 43.3, 42.4, 39.4, 29.7, 26.3, 25.4, 17.8, 12.5, -4.9;  IR(neat): 2955, 2929, 2858, 1730, 1637, 

1472, 1462, 1374, 1252, 1120, 910, 878, 781;  HRMS-(APCI) m/z: 529.1419, 531.1390 (M+2 for Cl), 

533.1369 (M+4 for Cl) [(M+H)+ : [C26H36Cl3O3Si]+ requires 529.1421];  [α]20
D: +11.7o  (c=1.00, CHCl3); 

 

(E)-2,2,2-trichloroethyl 2-((1S,3S,4R,8R)-5-((tert-butyldimethylsilyl)oxy)-3-ethyl-8-(prop-1-en-2-

yl)bicyclo[2.2.2]oct-5-en-2-ylidene)acetate 63:  derived from diene 62(R) (1.05 mmol) and vinyl 

diazoacetate 44 (0.30 mmol) under Rh2(R-p-PhTPCP)4 with general procedure, isolated product: 145.1 

mg, yield 95%. Stereochemistry of 3- and 8-position is determined by NOE. 

1H NMR (600 MHz, CDCl3): δ 5.82 (d, J = 1.8 Hz, 1H, H next to trichloroethyl), 4.79 (d, J = 12.1 Hz, 

1H, trichloroethyl), 4.75 (m, 1H, alkene H), 4.74 (d, J = 12.1 Hz, 1H, trichloroethyl), 4.72 (m, 1H, 

alkene H), 2.92 (t, J = 2.9 Hz, 1H), 2.89 (ddd, J = 10.1, 4.7, 2.4 Hz, 1H, H next to ethyl), 2.63 (m, 

1H,), 2.16 (t, J = 8.3 Hz, 1H, next to 8-(prop-1-en-2-yl)), 1.75 (s, 3H, methyl next to open alkene), 

1.73 (m, 1H), 1.66 (s, 3H, methyl on alkene next to TBS), 1.56 (m, 1H, ethyl H), 1.52 (m, 1H), 1.13 

(m, 1H, ethyl H), 1.05 (t, J = 7.1 Hz, 3H, methyl of ethyl), 0.92 (s, 9H, TBS), 0.12 (s, 3H, TBS), 0.12 

(s, 3H, TBS);  13C NMR(100 MHz, CDCl3): δ 174.3, 164.7, 148.1, 147.2, 110.2, 109.4, 108.5, 95.5, 

73.6, 53.4, 50.5, 49.9, 45.2, 44.4, 34.5, 27.0, 25.6, 22.8, 18.3, 13.4, 13.2, -3.7;  IR(neat): 2957, 2930, 

2857, 1730, 1677, 1634, 1462, 1381, 1354, 1254, 1221, 1117, 922;  HRMS-(APCI) m/z: 507.1577, 

509.1548 (M+2 for Cl), 511.1527 (M+4 for Cl) [(M+H)+ : [C24H38Cl3O3Si]+ requires 507.1578];   [α]20
D: 

+38.1o  (c=1.00, CHCl3); 
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(E)-2,2,2-trichloroethyl 2-((1S,3S,4R,8R)-5-((tert-butyldimethylsilyl)oxy)-3-ethyl-8-(prop-1-en-2-

yl)bicyclo[2.2.2]oct-5-en-2-ylidene)acetate 64:  derived from diene 62(R) (1.05 mmol) and vinyl 

diazoacetate 44 (0.30 mmol) under Rh2(S-p-PhTPCP)4 with general procedure, isolated product: 78.5 

mg, yield 51%. Stereochemistry of 3- and 8-position is determined by NOE. 

1H NMR (600 MHz, CDCl3): δ 5.69 (d, J = 2.2 Hz, 1H, H next to trichloroethyl), 4.82 (d, J = 12.1 Hz, 

1H, trichloroethyl), 4.76 (m, 1H, alkene H), 4.71 (m, 1H, alkene H), 4.70 (d, J = 12.1 Hz, 1H, 

trichloroethyl), 3.01 (ddd, J = 11.2, 5.7, 3.5 Hz, 1H, H next to ethyl), 2.83 (dd, J = 3.1, 2.5 Hz, 1H), 

2.61 (m, 1H, next to 8-(prop-1-en-2-yl)), 2.59 (m, 1H), 2.08 (m, 1H, ethyl CH2), 1.77 (m, 1H), 1.74 

(s, 3H, methyl next to open alkene), 1.61 (s, 3H, methyl on alkene next to TBS), 1.55 (m, 1H), 1.20 

(m, 1H, ethyl CH2), 0.98 (t, J = 7.4 Hz, 3H, methyl of ethyl), 0.92 (s, 9H, TBS), 0.10 (s, 3H, TBS), 

0.06 (s, 3H, TBS) ;  13C NMR(100 MHz, CDCl3): δ 172.7, 164.8, 150.4, 148.3, 112.5, 110.3, 107.5, 

95.4, 73.7, 53.4, 50.0, 43.8, 42.5, 38.6, 28.5, 25.6, 23.7, 22.0, 18.0, 12.8, 12.1, -3.6, -4.1;  IR(neat): 

2956, 2931, 2858, 1728, 1678, 1631, 1462, 1380, 1347, 1252, 1221, 1119, 834;  HRMS-(APCI) m/z: 

507.1577, 509.1548 (M+2 for Cl), 511.1527 (M+4 for Cl) [(M+H)+ : [C24H38Cl3O3Si]+ requires 

507.1578];   [α]20
D: +105.0o  (c=1.00, CHCl3); 

 

(R,Z)-2,2,2-trichloroethyl 4-(2-((tert-butyldimethylsilyl)oxy)-5,5-dimethylcyclohexa-1,3-dien-1-

yl)hex-2-enoate 66: derived from diene 65 (1.05 mmol) and vinyl diazoacetate 44 (0.30 mmol) with 

general procedure with Rh2(R-p-PhTPCP)4 cat., isolated product: 65.2 mg, yield 45%.  

1H NMR (600 MHz, CDCl3): δ 6.33 (dd, J = 11.5, 10.1 Hz, 1H, alkene next to ester), 5.87 (dd, J = 

11.5, 1.1 Hz, 1H, alkene next to ester), 5.61(d, J = 9.9 Hz, 1H, alkene in ring), 5.47 (d, J = 9.9 Hz, 

1H, alkene in ring), 4.76 (s, 2H, trichloroethyl CH2), 4.56 (m, 1H, H next to Ethyl), 2.07 (d, J = 16.3 

Hz, 1H, ring CH2), 2.04 (d, J = 16.3 Hz, 1H, ring CH2), 1.51 (m, 2H, Ethyl CH2), 1.03 (s, 3H, Me on 

ring), 1.00 (s, 3H, Me on ring), 0.94 (s, 9H, TBS), 0.89 (t, J = 7.4 Hz, 3H, Me on Ethyl), 0.13 (s, 3H, 

TBSO
(R)

CO2CH2CCl3

66
H
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TBS), 0.09 (s, 3H, TBS) ;  13C NMR(100 MHz, CDCl3): δ 163.8, 153.8, 143.2, 137.6, 124.0, 116.9, 

113.0, 95.3, 73.6, 39.0, 37.4, 31.5, 27.8, 27.2, 25.9, 25.6, 18.1, 12.0, -3.8;  IR(neat): 2957, 2930, 2858, 

1741, 1652, 1463, 1400, 1377, 1253, 1140, 962, 839, 779;  HRMS-(APCI) m/z: 481.1419, 483.1398 

(M+2 for Cl), 485.1368 (M+4 for Cl) [(M+H)+ : [C22H36Cl3O3Si]+ requires 481.1421] 
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6.2  Chapter 3 (Experimental procedure)  

6.2.1 Exploring site-selective C–H insertion with Rh acceptor only carbene  

*General method for the preparation of acceptor-only diazo compounds 

 

2,2,6-trimethyl-4H-1,3-dioxin-4-one (technical grade 87%, 20 mmol, 1.0 equiv) and nucleophile 

R1OH or R2R3N (in accordance to the EWG of final acceptor only diazoacetate) (20 mmol, 1.0 equiv) 

were dissolved in 50 mL xylene. The solution was heated to 140 °C and kept reflux for 3h. The solution 

after the reaction was concentrated to give crude C. purification of C was done by column 

chromatography or simple silica plug (ether/hexane) over silica gel.  

C (10 mmol, 1.0 equiv), p-ABSA (10.5 mmol, 1.05 equiv) were dissolved in 100 mL acetonitrile 

and the solution was cooled to 0 °C with ice/water bath. Et3N (11 mmol, 1.1 equiv) was added to the 

solution and the reaction mixture was kept stirring for 4 h, meanwhile, gradually warmed to r.t. or NMR 

is attached for representative silyl ketene acetals involved in experiments.  1H NMR for those reported 

matched the reference [1] or the database, others can be directly confirmed by analysis of the attached 

1H NMR.  They are all prepared following the general procedure above, the yield ranged from 40% to 

80%.  The solution was filtered to remove white precipitation, and then concentrated to give crude D. 

purification of D was done by simple silica plug (ether/hexane) over silica gel. 

D (5-10 mmol, 1.0 equiv) was dissolved in 50 mL ether. 50 mL KOH (5%) solution was added 

and the reaction mixture was stirred for 2.5 to 6 h at r.t. The organic layer was extracted with ether (20 

mL*3), combined and dried over MgSO4. The filtrate was concentrated to yield crude final acceptor 

only diazoacetate. Pure diazo compound for test was obtained by column chromatography 

(ether/pentane) over silica gel.  

 

 

O

OO
+ R1 OH
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140oC
reflux 3h

1.0 equiv 1.0 equiv

O O
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0oC-r.t. 4h

O O

OR1
N2

C D

KOH (5%)

Et2O
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2,2,2-trichloroethyl 2-diazoacetate 116: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one and 

2,2,2-trichloroethanol according to the general procedure. This specific diazoacetate was prepared and 

shared among the group. The 1HNMR checked and matched the reference[1]. 

 

tert-butyl 2-diazoacetate 117: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one and tert-butanol 

according to the general procedure. This specific diazoacetate was prepared and shared among the group. 

The 1HNMR checked and matched the reference[2]. 

 

2,2,2-trifluoroethyl 2-diazoacetate 81: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one and 2,2,2-

trifluoroethanol according to the general procedure. This specific diazoacetate was prepared by Dr. 

Wenbin Liu. The 1HNMR checked and matched the reference[1]. 

 

2,2,2-trifluoroethyl 2-diazoacetate 119: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one (25 mmol, 

1.0 equiv) and (perfluorophenyl)methanol (25 mmol, 4.95 g, 1.0 equiv) according to the general 

procedure. 119 is obtained as yellow oil, 2.39 g, 36% yield (3 step combined).  

1H NMR (600 MHz, Chloroform-d) δ 5.28 (s, 2H), 4.79 (s, 1H).    13C NMR (151 MHz, Chloroform-d) 

δ 166.1, 145.7 (dddt, J = 251.4, 11.6, 7.9, 4.0 Hz), 141.8 (dtt, J = 256.0, 13.4, 5.2 Hz), 138.6 – 136.3 

(m), 109.4 (td, J = 17.3, 3.9 Hz), 53.5, 46.3;  IR(neat): 3132, 2111, 1695, 1658, 1523, 1504, 1391, 1352, 

O

OCH2CCl3
N2

H
(Troc)

116

O

OtBu
N2

H
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O

OCH2CF3
N2

H

118

O
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1338, 1309, 1230, 1167, 1129, 1054.   HRMS-(APCI) m/z: calcd for C9H4O2N2F5 (M+H)+ 267.0184; 

found 267.0186; 

 

4-chlorobenzyl 2-diazoacetate 120: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20 mmol, 1.0 

equiv) and (4-chlorophenyl)methanol (20 mmol, 2.85 g, 1.0 equiv) according to the general procedure. 

120 is obtained as yellow oil, the yield was not measured. The 1HNMR checked and matched the 

reference[3].   

 

1,1,1,3,3,3-hexafluoropropan-2-yl 2-diazoacetate 121: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-

4-one (30 mmol, 1.0 equiv) and 1,1,1,3,3,3-hexafluoropropan-2-ol (45 mmol, 7.56 g, 1.0 equiv) 

according to the general procedure. 121 is obtained as yellow oil, the yield was low and not measured. 

This diazo compound seems volatile under the vacuum.  

1H NMR (600 MHz, Chloroform-d) δ 5.82 (hept, J = 6.1 Hz, 1H), 5.10 (s, broad, 1H).    13C NMR (151 

MHz, CDCl3) δ 164.5, 120.4 (d, J = 282.1 Hz), 66.4 (p, J = 34.8 Hz), 46.9.    IR(neat): 3141, 2972, 2124, 

1716, 1376, 1361, 1343, 1268, 1229, 1192, 1138, 1104, 1076, 972;  HRMS-(APCI) m/z: calcd for 

C5H3O2N2F6 (M+H)+ 236.0020; found 236.0018.  

 

2-diazo-N,N-diethylacetamide 122: This specific diazo compound is directly derived from 

commercially available C intermediate N,N-diethyl-3-oxobutanamide (40 mmol, 6.29 g). 122 is 

obtained as yellow oil, the yield was not measured. The 1HNMR checked and matched the reference[4].   
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N,N-dibenzyl-2-diazoacetamide 123: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20 mmol, 

1.0 equiv) and dibenzylamine (20 mmol, 3.95 g, 1.0 equiv) according to the general procedure. 123 is 

obtained as yellow oil, 1.16 g, 22% yield (3 step combined), this is the clean fraction, the actual yield 

should be higher. The 1HNMR checked and matched the reference[5].   

 

2-diazo-N,N-bis(2,2,2-trifluoroethyl)acetamide 124: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-

one (20 mmol, 1.0 equiv) and bis(2,2,2-trifluoroethyl)amine (20 mmol, 3.62 g, 1.0 equiv) according to 

the general procedure. 124 is obtained as light yellow solid. The yield was not measured 

1H NMR (600 MHz, Chloroform-d) δ 5.12 (s, 1H), 4.01 (s, 4H).    13C NMR (151 MHz, Chloroform-d) 

δ 166.6, 124.1 (q, J = 281.3 Hz), 47.7, 47.1;   IR(neat): 3100, 2980, 2116, 1628, 1435, 1417, 1323, 1267, 

1240, 1155, 1134, 1109, 1032, 899;    HRMS-(APCI) m/z: calcd for C6H5ON3F6
23Na (M+Na)+ 272.0229; 

found 272.0227.    m.p. 66-68 °C 

 

2,4,6-tri-tert-butylphenyl 2-diazoacetate 126: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one (20 

mmol, 1.0 equiv) and 2,4,6-tri-tert-butylphenol (20 mmol, 5.25 g, 1.0 equiv) according to the general 

procedure. 126 is obtained as light yellow solid. The yield was not measured.  

1H NMR (500 MHz, Chloroform-d) δ 7.32 (s, 2H), 5.01 (s, 1H, broad peak), 1.36 (s, 18H), 1.31 (s, 9H).  

13C NMR (151 MHz, CDCl3) δ 166.3, 147.3, 145.0, 141.7, 123.4, 47.5, 35.6, 34.8, 31.5;   IR(neat):3096, 
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2954, 2909, 2108, 1717, 1594, 1479, 1428, 1394, 1363, 1333, 1247, 1223, 1202, 1184, 1105.   HRMS-

(APCI) m/z: calcd for C20H30O2N2
23Na (M+Na)+ 353.2200; found 353.1194.   m.p. 124-126 °C 

 

4-(tert-butyl)-2,6-diiodophenyl 2-diazoacetate 127: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-

one (10 mmol, 1.0 equiv) and 4-(tert-butyl)-2,6-diiodophenol (10 mmol, 4.70 g, 1.0 equiv) according 

to the general procedure. 127 is obtained as light yellow solid. The yield was not measured.  

1H NMR (600 MHz, Chloroform-d) δ 7.76 (s, 2H), 5.08 (s, 1H), 1.29 (s, 9H).    13C NMR (151 MHz, 

CDCl3) δ 162.9, 152.9, 148.6, 136.9, 90.4, 47.8, 34.5, 31.2;    IR(neat):3118, 2963, 2867, 2115, 1709, 

1574, 1539, 1475, 1442, 1361, 1340, 1260, 1190, 1136, 1115;   HRMS-(APCI) m/z: calcd for 

C12H12O2N2
127I2

 23Na (M+Na)+ 492.8880; found 492.8876.     m.p. 118-120 °C 

 

2,6-bis(trimethylsilyl)phenyl 2-diazoacetate 128: Derived from 2,2,6-trimethyl-4H-1,3-dioxin-4-one 

(20 mmol, 1.0 equiv) and 2,6-bis(trimethylsilyl)phenol (20 mmol, 4.77 g, 1.0 equiv) according to the 

general procedure. 128 is obtained as light yellow solid. The yield was not measured. 

1H NMR (600 MHz, Chloroform-d) δ 7.38 (d, J = 7.3 Hz, 2H), 7.11 (t, J = 7.3 Hz, 1H), 0.14 (s, 18H).   

13C NMR (151 MHz, CDCl3) δ 165.9, 137.6, 137.4, 133.0, 126.2, 47.3, -0.0.    IR(neat): 3111, 2955, 

2898, 2110, 1705, 1576, 1382, 1352, 1336, 1248, 1223, 1168, 1144, 1116, 971;  HRMS-(APCI) m/z: 

calcd for C14H23O2N2
28Si2 (M+H)+ 307.1293; found 307.1290.     m.p. 64-66 °C 
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6.2.2 Asymmetric cyclopropanation with Rh donor-only carbene generated from retro- 

Büchner reaction 

*General procedure for the retro-buchner reaction. 

 Precursor (E)-1,3,5-trimethyl-7-styrylcyclohepta-1,3,5-triene (0.20 mmol, 1.0 equiv, 47.3 mg) 

and styrene (0.8 mmol, 4.0 equiv, 83.3 mg) were dissolved in 2 mL anhydrous 1,2-DCE in a 8 mL glass 

reaction vial. Rh2(L)4 or Rh2(L)2 (2 mol %) was then added and the solution was kept stirring at 60 or 

80 °C for 16-36 h (monitor by TLC). After the reaction, the solution was concentrated and pure 

cyclopropanation products are isolated through flash column chromatography on silica gel (0.2% ether 

in pentane). The 1HNMR matched the reference[6]. 

 

References for 6.2.1 and 6.2.2 

1. Liu, W., Babl, T., Rother, A., Reiser, O*., Davies, H. M. L*. Chem. Eur. J. 2020, 26, 4236. 

2. Dadabhau, K. D., Liu, R. Org. Lett., 2019, 21, 6452  

3. Han, M., Xie, X., Zhou, D., Li, P., Wang, L., Org. Lett., 2017, 19, 2282 

4. Doeben, N., Yan, H. Kischkewitz, M., Mao, J., Studer, A., Org. Lett., 2018, 20, 7933 

5. Liu, Q., Li, M., Xiong, R., Mo, F., Org. Lett., 2017, 19, 6756  

6. Mato, M., Herle, B., Echavarren, A. M. Org. Lett. 2018, 20, 4341–4345 
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6.2.3  Derivatization of C–H insertion products from Rh donor/acceptor carbene  

6.2.3.1 Remove the aryl of insertion products from Rh donor/acceptor carbene 

6.2.3.1.1 Experimental procedure for the C–H insertion reactions. 

 

methyl (2S,3S)-3-(4-bromophenyl)-2-(3,4-dimethoxyphenyl)butanoate 137: 4-Br ethylbenzene 

(0.75 mmol, 139 mg, 1.5 equiv) and Rh2(S-2-Cl-5BrTPCP)4 (1 mol%) were dissolved in 1 mL 

anhydrous CH2Cl2 and the solution was kept stirring at 40 °C (reflux temperature). Aryl diazoacetate 

136 (0.50 mmol, 118 mg, provided by Dr. Wenbin Liu) was dissolved in 5 mL anhydrous CH2Cl2 and 

the solution was added dropwisely to the previous substrate solution over 3 h (via syringe pump). The 

reaction was kept running for another 2 h after the addition of diazo compound solution is finished. The 

reaction mixture was concentrated and the pure C–H insertion product 137 was isolated by column 

chromatography over silica gel (25-30% ether in pentane), 146 mg, 74% yield, 17:1 dr, 83% ee. The 

1HNMR matched the reported data by Dr. Wenbin Liu[1]. 

 

methyl (2S,3S)-3-(4-bromophenyl)-2-(4-((tert-butyldimethylsilyl)oxy)phenyl)butanoate 101: 4-Br 

ethylbenzene (1.67 mmol, 0.24 mL, 1.5 equiv) and Rh2(S-2-Cl-5BrTPCP)4 (1 mol%) were dissolved in 

1 mL anhydrous CH2Cl2 and the solution was kept stirring at 40 oC (reflux temperature). Aryl 

diazoacetate 139 (1.12 mmol, 342 mg, provided by Dr. Wenbin Liu) was dissolved in 5 mL anhydrous 

CH2Cl2 and the solution was added dropwisely to the previous substrate solution over 3 h (via syringe 

pump). The reaction was kept running for another 2 h after the addition of diazo compound solution is 

finished. The reaction mixture was concentrated and the pure C–H insertion product 140 was isolated 

by column chromatography over silica gel (25-30% ether in pentane), 298 mg, 58% yield, >20:1 dr, 44% 

 CO2MeMeO
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ee (ee. is based on the malonic-type 138 formed after Ru Oxidation, the Ru(VIII) oxidation is 

proved to maintain the ee. from 137).  

1H NMR (600 MHz, Chloroform-d) δ 7.21 (d, J = 8.5 Hz, 2H), 6.94 (d, J = 8.6 Hz, 2H), 6.81 (d, J = 

8.4 Hz, 2H), 6.60 (d, J = 8.6 Hz, 2H), 3.71 (s, 3H), 3.55 (d, J = 11.1 Hz, 1H), 3.36 (dq, J = 11.0, 6.7 

Hz, 1H), 1.34 (d, J = 6.8 Hz, 3H), 0.92 (s, 9H), 0.12 (two Methyl of TMS(117, 0.119), 6H).    13C NMR 

(151 MHz, CDCl3) δ 174.1, 154.7, 142.7, 131.1, 130.0, 129.3, 120.0, 58.4, 52.0, 43.6, 25.7, 20.6, 18.2, 

-4.45, -4.46.   IR(neat): 2954, 2930, 2858, 1735, 1607, 1508, 1489, 1472, 1463, 1406, 1343, 1254, 1157, 

1074, 1010.  HRMS-(APCI) m/z: calcd for C23H32O3
79Br28Si (M+H)+ 463.1299; found 463.1290.    m.p. 

80-83 °C 

 

methyl (2S,3S)-3-(4-bromophenyl)-2-(3,4,5-trimethoxyphenyl)butanoate 142: 4-Br ethylbenzene 

(1.67 mmol, 0.24 mL, 1.5 equiv) and Rh2(S-2-Cl-5BrTPCP)4 (1 mol%) were dissolved in 1 mL 

anhydrous CH2Cl2 and the solution was kept stirring at 40 °C (reflux temperature). Aryl diazoacetate 

141 (1.12 mmol, 342 mg, provided by Dr. Wenbin Liu) was dissolved in 5 mL anhydrous CH2Cl2 and 

the solution was added dropwisely to the previous substrate solution over 3 h (via syringe pump). The 

reaction was kept running for another 2 h after the addition of diazo compound solution is finished. The 

reaction mixture was concentrated and the pure C–H insertion product 142 was isolated by column 

chromatography over silica gel (25-30% ether in pentane), 411 mg, 88% yield, 6.7:1 dr, 71% ee. (ee. is 

based on the malonic-type 138 formed after Ru Oxidation, the Ru(VIII) oxidation is proved to 

maintain the ee. from 137). The 1HNMR matched the reported data by Dr. Wenbin Liu[1]. 
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2,2,2-trichloroethyl (R)-2-((1S,3R)-3-(tert-butyl)cyclohexyl)-2-(3-methoxyphenyl)acetate 146: 

tert-butyl cyclohexane (1.25 mmol, 175 mg, 2.5 equiv) and Rh2(R-TPPTTL)4 (1 mol%) were dissolved 

in 1 mL anhydrous CH2Cl2 and the solution was kept stirring at 40 °C (reflux temperature). Aryl 

diazoacetate 145 (0.50 mmol, 162 mg, from Davies lab diazo-inventory) was dissolved in 5 mL 

anhydrous CH2Cl2 and the solution was added dropwisely to the previous substrate solution over 3 h 

(via syringe pump). The reaction was kept running for another 4 h after the addition of diazo compound 

solution is finished. The reaction mixture was concentrated and the pure C–H insertion product 146 was 

isolated by column chromatography over silica gel (25-30% ether in pentane), 137 mg, 63% yield, 10:1 

dr,  >30:1 r.r., 96% ee. The 1HNMR matched the reported data by Dr. Jiantao Fu[2]. 

 

2,2,2-trichloroethyl (2S,3R)-2-(4-(tert-butyl)phenyl)-3-methylhexanoate 150: Rh2(R-3,5-

ditBuPhTPCP)4 (0.5 mol%) were dissolved in 0.5 mL anhydrous CH2Cl2 and 0.5 mL pentane mixed 

solvent. the solution was kept stirring at 40 °C (reflux temperature). Aryl diazoacetate 149 (0.50 mmol, 

174 mg, from Davies lab diazo-inventory) was dissolved in 5 mL anhydrous CH2Cl2 and the solution 

was added dropwisely to the previous substrate solution over 3 h (via syringe pump). The reaction was 

kept running for another 4 h after the addition of diazo compound solution is finished. The reaction 

mixture was concentrated and the pure C–H insertion product 150 was isolated by column 

chromatography over silica gel (25-30% ether in pentane), 139 mg, 71% yield, >20:1 dr, >30:1 r.r., 99% 

ee. The 1HNMR matched the reported data by Kuangbiao Liao[3]. 

 

6.2.3.1.2 General procedure for the Ru(VIII) mediated oxidation 

NaIO4 (1 mmol, 10 equiv.) was dissolved in 1 mL H2O, followed by addition of RuCl3.XH2O (10 

mol%). The solution was kept stirring vigorously.( T/°C depend on the substrate). C–H insertion 

Troc

tBu

150
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product (0.1 mmol, 1.0 equiv) was dissolved in 0.5 mL ethyl acetate and added dropwisely to the 

previous stirring solution in 1 min[4]. The reaction was monitored by TLC and stopped when the reaction 

is finished (maximum 6h if not complete). The organic phase was extraced with ethyl acetate (1mL*5), 

combined and dried over MgSO4. The solution was evaporated to give crude mixture and pure oxidation 

product was isolated via column chromatography over silica gel (ether/pentane system). 

 

(2S,3S)-3-(4-bromophenyl)-2-(methoxycarbonyl)butanoic acid 138: Derived from C–H insertion 

product 137 (78 mg, 0.2 mmol) following the general Ru(VIII) oxidation procedure. The product 138 

was isolated as sticky oil in 27 mg, 45% yield. 17:1 dr, 83% ee. 

1H NMR (500 MHz, Chloroform-d) δ 7.42 (d, J = 8.5 Hz, 2H), 7.10 (d, J = 8.4 Hz, 2H), 3.78 (s, 3H), 

3.61 (d, J = 9.9 Hz, 1H), 3.51 – 3.46 (m, 1H), 1.32 (d, J = 7.0 Hz, 3H).    13C NMR (151 MHz, CDCl3) 

δ 172.6, 168.5, 141.6, 131.7, 129.1, 120.9, 58.4, 52.9, 39.5, 19.7.    IR(neat): 2969, 2495(broad), 1733, 

1590, 1489, 1457, 1435, 1374, 1285, 1261, 1191, 1161, 1072, 1010.    HRMS-(ESI negative) m/z: calcd 

for C12H12O4
79Br (M-H)- 298.9924; found 298.9928.      

 

(R)-2-((1S,3R)-3-(tert-butyl)cyclohexyl)-3-oxo-3-(2,2,2-trichloroethoxy)propanoic acid 147: : 

Derived from C–H insertion product 146 (44 mg, 0.1 mmol) following the general Ru(VIII) oxidation 

procedure. The product 147 was isolated as sticky oil in 26 mg, 70% yield. 7.3:1 dr. (dropped 

compared to the insertion compound 106’s 10:1 dr, but this is probably because the malonic chiral 

center itself epimerizes over time) 

1H NMR (500 MHz, Chloroform-d) δ 4.88 (d, J = 11.9 Hz, 1H), 4.73 (d, J = 11.9 Hz, 1H), 3.43 (d, J = 

7.7 Hz, 1H), 2.16 (tdt, J = 11.5, 7.5, 3.3 Hz, 1H), 1.88 – 1.82 (m, 2H), 1.80 – 1.74 (m, 2H), 1.33 – 1.23 

(m, 1H), 1.16 – 1.03 (m, 2H), 0.96 – 0.86 (m, 2H), 0.83 (s, 9H).    13C NMR (151 MHz, CDCl3) δ 172.3, 

 CO2MeHO2C
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167.4, 94.4, 74.5, 57.7, 47.8, 38.9, 32.6, 31.7, 30.2, 27.5, 26.7, 26.2.   IR(neat): 2941(a broad plus a 

sharp), 2859, 1757, 1713, 1448, 1413, 1394, 1367, 1285, 1242, 1223, 1198, 1142, 1125, 1028.   HRMS-

(APCI) m/z: calcd for C15H24O4
35Cl3 (M+H)+ 373.0735; found 373.0732. 

 

(2S,3R)-3-methyl-2-((2,2,2-trichloroethoxy)carbonyl)hexanoic acid 151: Derived from C–H 

insertion product 150 (39 mg, 0.1 mmol) following the general Ru(VIII) oxidation procedure. The 

product 151 was isolated as sticky oil in 21 mg, 69% yield. 7.5:1 dr. (dropped compared to the 

insertion compound 150’s >20:1 dr, but this is probably because the malonic chiral center itself 

epimerizes over time) 

1H NMR (500 MHz, Chloroform-d) δ 4.86 (d, J = 11.9 Hz, 1H), 4.74 (d, J = 11.9 Hz, 1H), 3.50 (d, J = 

7.1 Hz, 1H), 2.38 – 2.28 (m, 2H), 1.50 – 1.40 (m, 2H), 1.35 – 1.27 (m, 2H), 1.08 (d, J = 6.8 Hz, 3H), 

0.91 (t, J = 6.9 Hz, 3H).    13C NMR (151 MHz, CDCl3) 173.0, 167.2, 94.4, 74.5, 56.7, 36.4, 33.6, 20.0, 

16.9, 14.0.    IR(neat): 2960 (a broad plus a sharp), 2933, 2874, 1759, 1714, 1467, 1457, 1414, 1377, 

1272, 1202, 1146, 1128, 1037, 921.   HRMS-(APCI) m/z: calcd for C10H15O4
35Cl3

23Na (M+Na)+ 

326.9928; found 326.9925. 

6.2.3.1.3 General procedure for the microwave-assisted decarboxylation 

Malonate type of intermediate from the oxidation step (1.0 equiv) and imidazole (1.0 equiv) was 

added to a 8 mL microwave tube and sealed with the cap. The microwave reaction condition was set as 

120 °C. 600 W, 4.5 min[5]. After the program is finished, the reaction mixture was directly subjected to 

small pipette column (pentane/ether system) for isolation of pure decarboxylation product. 
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methyl (S)-3-(4-bromophenyl)butanoate 143: Derived from carboxylic acid intermediate 138 (18.7 

mg, 0.062 mmol, from 137) following the general procedure. The product 143 was isolated as 

colorless oil in 11.4 mg, 71% yield. 77% ee. 

1H NMR (600 MHz, Chloroform-d) δ 7.34 (d, J = 8.4 Hz, 2H), 7.03 (d, J = 8.3 Hz, 2H), 3.55 (s, 3H), 

2.51 (dd, J = 15.3, 7.3 Hz, 1H), 2.47 (dd, J = 15.3, 7.8 Hz, 1H), 1.21 (d, J = 7.0 Hz, 3H).    13C NMR 

(151 MHz, CDCl3) δ 172.5, 144.6, 131.6, 128.5, 120.1, 51.6, 42.5, 36.0, 21.8.   IR(neat): 2954, 2925, 

1737, 1490, 1456, 1436, 1407, 1377, 1362, 1287, 1262, 1166, 1100, 1010;   HRMS-(APCI) m/z: calcd 

for C11H14O2
79Br (M+H)+ 257.0172; found 257.0169. 

 

2,2,2-trichloroethyl 2-((1S,3R)-3-(tert-butyl)cyclohexyl)acetate 148: Derived from carboxylic acid 

intermediate 147 (18.9 mg, 0.051 mmol) following the general procedure. The product 148 was 

isolated as colorless oil in 15.7 mg, 94% yield. 

1H NMR (600 MHz, Chloroform-d) δ 4.76 (d, J = 12.0 Hz, 1H), 4.72 (d, J = 12.0 Hz, 1H), 2.35 (dd, J 

= 6.8, 1.6 Hz, 2H), 1.84 – 1.80 (m, 2H), 1.78 – 1.73 (m, 2H), 1.26 (qt, J = 12.6, 3.4 Hz, 2H), 1.06 (tt, J 

= 11.9, 2.9 Hz, 1H), 0.94 – 0.86 (m, 3H), 0.83 (s, 9H), 0.73 (q, J = 12.4 Hz, 1H).    13C NMR (151 MHz, 

CDCl3) δ 171.4, 95.1, 73.9, 47.7, 42.1, 35.4, 34.1, 32.9, 32.5, 27.5, 26.9, 26.3.    IR(neat):2926, 2856, 

1753, 1478, 1448, 1366, 1280, 1261, 1241, 1222, 1178, 1139, 1111, 1029;     HRMS-(APCI) m/z: calcd 

for C14H24O2
35Cl3 (M+H)+ 329.0836; found 329.0835. 

 

 

2,2,2-trichloroethyl (R)-3-methylhexanoate 152: Derived from carboxylic acid intermediate 151 

(12.4 mg, 0.041 mmol) following the general Ru(VIII) oxidation procedure. The product 152 was 

isolated as colorless oil in 9.0 mg, 85% yield. 
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1H NMR (600 MHz, Chloroform-d) δ 4.74 (s, 2H), 2.45 (dd, J = 15.0, 6.0 Hz, 1H), 2.27 (dd, J = 15.0, 

8.0 Hz, 1H), 2.04 (dq, J = 13.0, 6.2, 5.8 Hz, 1H), 1.39 – 1.28 (m, 3H), 1.26 – 1.21 (m, 1H), 0.98 (d, J = 

6.7 Hz, 3H), 0.90 (t, J = 7.0 Hz, 3H).    13C NMR (151 MHz, CDCl3) δ 171.6, 95.1, 73.9, 41.4, 38.8, 

30.0, 20.0, 19.7, 14.1.    IR(neat): 2959, 2930, 2874, 1756, 1458, 1378, 1262, 1226, 1149, 1106, 1060, 

1033, 879.   HRMS-(APCI) m/z: calcd for C9H16O2
35Cl3 (M+H)+ 262.0210; found 262.0208. 

6.2.3.2 Remove the ester of insertion products from Rh donor/acceptor carbene 

6.2.3.2.1 Experimental procedure for C–H insertion reactions 

(1) General procedure for Ac-cholesterol tertiary C–H insertion 

Acyl protected cholesterol (0.54 mmol, 1.8 equiv), stir bar and Rh2(R-TCPTAD)4 (1 mol%) was 

added to a 16 mL glass vial. The vial was degassed and filled with nitrogen several times. Anhydrous 

CH2Cl2 (2 mL) was added to the vial via a syringe. The solution was kept stirring at refluxing 

temperature (40 °C). Aryldiazoacetate (0.3 mmol, 1.0 equiv) was dissolved in anhydrous CH2Cl2 (4 mL) 

and added to the reaction solution dropwisely over 3 h. The reaction was let run for further 6 h after the 

addition is finished. The solution was concentrated to give crude material and the pure C–H insertion 

product was isolated via column chromatography over silica gel (pentane/ether or pentane/hexanes).  

 

2,2,2-trichloroethyl (2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9, 

10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(4-bromophenyl) 

-3,3-dimethyloctanoate 157: Derived following the general procedure with Ac-cholesterol 156 (171 

mg, 0.4 mmol) and aryldiazoacetate 155 (268 mg, 0.72 mmol). The product is isolated (5-10% ether in 

pentane for column chromatography) as white solid in 254 mg, 82% yield, dr.=10.6: 1(measured after 

LiAlH4 reduction), r.r. >30:1. The 1HNMR matched to the reference[6].  
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2,2,2-trichloroethyl (2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9, 

10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(4-fluorophenyl) 

-3,3-dimethyloctanoate 196: Derived following the general procedure with Ac-cholesterol 156 (129 

mg, 0.3 mmol) and aryldiazoacetate 191 (168 mg, 0.54 mmol). The product is isolated (2-5% ether in 

hexanes for column chromatography) as white solid in 174 mg, 81% yield, dr.=20:1(measured after 

LiAlH4 reduction), r.r. >30:1.  

1H NMR (600 MHz, Chloroform-d) δ 7.38 (dd, J = 8.8, 5.4 Hz, 2H), 7.00 (t, J = 8.7 Hz, 2H), 5.37 (d, 

J = 5.0 Hz, 1H), 4.81 (d, J = 12.0 Hz, 1H, CH2 of Troc), 4.61 (d, J = 12.0 Hz, 1H, CH2 of Troc), 4.63 

– 4.56 (m, 1H), 3.65 (s, 1H), 2.35 – 2.28 (m, 2H), 2.03 (s, 3H), 2.02 – 1.94 (m, 2H), 1.88 – 1.83 (m, 

2H), 1.82 – 1.76 (m, 1H), 1.62 – 1.06 (m, 17H), 1.05 (s, 3H), 1.02 (s, 3H), 1.01 – 0.93 (m, 3H), 0.92 

(m, 6H), 0.67 (s, 3H).    13C NMR (151 MHz, CDCl3) δ 171.4, 170.5, 162.3 (d, J = 246.2 Hz), 139.7, 

131.7 (d, J = 7.8 Hz), 131.0, 122.6, 114.8 (d, J = 21.2 Hz)， 94.8, 74.1, 74.0, 59.5, 56.7, 56.1, 50.0, 

42.3, 41.2, 39.7, 38.1, 37.4, 37.0, 36.7, 36.6, 35.8, 31.89, 31.86, 28.3, 27.8, 24.6, 24.3, 21.5, 21.0, 20.3, 

19.3, 18.8, 11.9.  IR(cm-1): 2941, 2868, 1749, 1733, 1605, 1508, 1467, 1374, 1243, 1161, 1120, 1033, 

840, 808.    HRMS (APCI) m/z: calcd for C39H58O4N35Cl3 (M+NH4)+ 728.3410; found 728.3382.  [α]20
D: 

-16.0°  (c=1.00, CHCl3);    m.p. 42-45 °C 
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2,2,2-trichloroethyl (2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9, 

10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(4-acetoxy 

phenyl)-3,3-dimethyloctanoate 197: Derived following the general procedure with Ac-cholesterol 156 

(129 mg, 0.3 mmol) and aryldiazoacetate 192 (190 mg, 0.54 mmol). The product is isolated (18-25% 

ether in hexanes for column chromatography) as white solid in 166 mg, 74% yield, dr.=5.3:1(measured 

after LiAlH4 reduction), r.r. >30:1.  

1H NMR (600 MHz, Chloroform-d) δ 7.42 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 5.37 (d, J = 

5.0 Hz, 1H), 4.84 (d, J = 12.0 Hz, 1H, CH2 of Troc), 4.60 (m, 1H), 4.55 (d, J = 12.0 Hz, 1H, CH2 of 

Troc), 3.67 (s, 1H), 2.34 – 2.30 (m, 2H), 2.29 (s, 3H), 2.03 (s, 3H), 2.02 – 1.93 (m, 2H), 1.89 – 1.82 

(m, 2H), 1.83 – 1.75 (m, 1H), 1.62 – 1.07 (m, 17H), 1.05 (s, 3H), 1.02 (s, 3H), 1.01 – 0.94 (m, 3H), 

0.94 – 0.91 (m, 6H), 0.67 (s, 3H).     13C NMR (151 MHz, CDCl3) δ 171.3, 170.5, 169.4, 150.0, 139.7, 

132.7, 131.2, 122.6, 120.9, 94.8, 74.2, 74.0, 59.7, 56.7, 56.1, 50.0, 42.3, 41.2, 39.7, 38.1, 37.5, 37.0, 

36.7, 36.6, 35.9, 31.89, 31.86, 28.3, 27.8, 24.6, 24.3, 24.2, 21.5, 21.2, 21.0, 20.4, 19.3, 18.8, 11.9.     

IR(cm-1): 2941, 2867, 1750, 1732, 1506, 1468, 1439, 1370, 1242, 1200, 1170, 1118, 1033, 1020.    

HRMS (APCI) m/z: calcd for C41H58O6
35Cl3 (M+H)+ 751.3294; found 751.3268.  [α]20

D: -12.4°  (c=1.00, 

CHCl3);    m.p. 53-56 °C 

 

2,2,2-trichloroethyl (2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8, 

9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(3-acetoxy 

phenyl)-3,3-dimethyloctanoate 198: Derived following the general procedure with Ac-cholesterol 156 

(107 mg, 0.25 mmol) and aryldiazoacetate 193 (158 mg, 0.45 mmol). The product is isolated (20% 

ether in hexanes for column chromatography) as white solid in 126 mg, 67% yield, dr.=5.6:1(measured 

after LiAlH4 reduction), r.r. >30:1.  
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1H NMR (600 MHz, Chloroform-d) δ 7.31 (t, J = 7.9 Hz, 1H), 7.26 – 7.24 (m, 1H), 7.20 – 7.16 (m, 1H), 

7.03 (ddd, J = 8.0, 2.3, 1.0 Hz, 1H), 5.37 (d, J = 5.0 Hz, 1H), 4.84 (d, J = 12.0 Hz, 1H, CH2 of Troc), 

4.64 – 4.58 (m, 1H, CH2 of Troc), 4.57 (d, J = 12.0 Hz, 1H), 3.67 (s, 1H), 2.33 – 2.30 (m, 2H), 2.29 (s, 

3H), 2.03 (s, 3H), 2.02 – 1.93 (m, 2H), 1.88 – 1.83 (m, 2H), 1.83 – 1.77 (m, 1H), 1.61– 1.07 (m, 17H), 

1.06 (s, 3H), 1.02 (s, 3H), 1.01 – 0.94 (m, 3H), 0.94 – 0.91 (m, 6H), 0.67 (s, 3H).    13C NMR (151 MHz, 

CDCl3) δ 171.1, 170.6, 169.3, 150.2, 139.7, 136.8, 128.7, 127.8, 123.3, 122.6, 120.6, 94.8, 74.1, 74.0, 

59.9, 56.7, 56.1, 50.0, 42.3, 41.3, 39.7, 38.1, 37.6, 37.0, 36.64, 36.59, 35.9, 31.89, 31.87, 28.3, 27.8, 

24.7, 24.3, 24.3, 21.5, 21.2, 21.0, 20.4, 19.3, 18.8, 11.9.     IR(cm-1): 2940, 2867, 1769, 1749, 1732, 

1608, 1588, 1468, 1444, 1371, 1241, 1200, 1118, 1032.    HRMS (APCI) m/z: calcd for C41H58O6
35Cl3 

(M+H)+ 751.3280; found 751.3292.  [α]20
D: -13.5°  (c=1.00, CHCl3);    m.p. 48-51 °C 

 

2,2,2-trichloroethyl (2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8, 

9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-3,3-dimethyl-2-

(m-tolyl)octanoate 199: Derived following the general procedure with Ac-cholesterol 156 (129 mg, 

0.3 mmol) and aryldiazoacetate 194 (175 mg, 0.57 mmol). The product is isolated (5-10% ether in 

hexanes for column chromatography) as white solid in 130 mg, 61% yield, dr.=3.1:1(measured after 

LiAlH4 reduction), r.r. >30:1. 

1H NMR (600 MHz, Chloroform-d) δ 7.23 – 7.17 (m, 3H), 7.10 (d, J = 6.6 Hz, 1H), 5.40 – 5.36 (m, 

1H), 4.86 (d, J = 12.0 Hz, 1H, CH2 of Troc), 4.64 – 4.56 (m, 1H), 4.54 (d, J = 12.0 Hz, 1H, CH2 of 

Troc), 3.64 (s, 1H), 2.35 (s, 3H), 2.33 – 2.29 (m, 2H), 2.03 (s, 3H), 2.02 – 1.94 (m, 2H), 1.88 – 1.83 

(m, 2H), 1.84 – 1.77 (m, 1H), 1.63 – 1.08 (m, 17H), 1.06 (s, 3H), 1.02 (s, 3H), 0.97 (d, J = 37.7 Hz, 

3H), 0.94 – 0.91 (m, 6H), 0.67 (s, 3H).     13C NMR (151 MHz, CDCl3) δ 171.5, 170.5, 139.7, 137.4, 

135.1, 130.9, 128.9, 127.7, 127.3, 122.6, 95.0, 74.1, 74.0, 60.2, 56.7, 56.1, 50.0, 42.3, 41.3, 39.7, 38.1, 
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37.3, 37.0, 36.7, 36.6, 35.8, 31.90, 31.87, 28.3, 27.8, 24.8, 24.4, 24.3, 21.5, 21.5, 21.0, 20.3, 19.3, 18.8, 

11.9.      IR(cm-1): 2942, 1868, 1749, 1734, 1466, 1440, 1374, 1243, 1119, 1033, 959, 905.    HRMS 

(APCI) m/z: calcd for C40H61O4N35Cl3 (M+NH4)+ 724.3661; found 724.3658.  [α]20
D: -16.7°  (c=1.00, 

CHCl3);    m.p. 45-47 °C 

 

2,2,2-trichloroethyl (2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9, 

10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-3,3-dimethyl-2-

phenyloctanoate 200: Derived following the general procedure with Ac-cholesterol 156 (129 mg, 

0.23mmol) and aryldiazoacetate 195 (167 mg, 0.57 mmol). The product is isolated (2.5% ether in 

hexanes for column chromatography) as white solid in 155 mg, 75% yield, dr.=4.1:1(measured after 

LiAlH4 reduction), r.r. >30:1.  

1H NMR (600 MHz, Chloroform-d) δ 7.41 (m, 2H), 7.33 – 7.27 (m, 3H), 5.37 (d, J = 5.0 Hz, 1H), 4.84 

(d, J = 12.0 Hz, 1H, CH2 of Troc), 4.64 – 4.58 (m, 1H), 4.57 (d, J = 12.0 Hz, 1H, CH2 of Troc), 3.67 

(s, 1H), 2.35 – 2.27 (m, 2H), 2.03 (s, 3H), 2.02 – 1.94 (m, 2H), 1.88 – 1.83 (m, 2H), 1.84 – 1.75 (m, 

1H), 1.62 – 1.07 (m, 17H), 1.06 (s, 3H), 1.02 (s, 3H), 1.01 – 0.94 (m, 3H), 0.94 – 0.90 (m, 6H), 0.67 (s, 

3H).     13C NMR (151 MHz, CDCl3) δ 171.5, 170.5, 139.7, 135.2, 130.2, 127.9, 127.4, 122.6, 94.9, 

74.1, 74.0, 60.3, 56.7, 56.1, 50.0, 42.3, 41.3, 39.7, 38.1, 37.4, 37.0, 36.7, 36.6, 35.8, 31.90, 31.87, 28.3, 

27.8, 24.8, 24.3, 24.4, 21.5, 21.0, 20.4, 19.3, 18.8, 11.9.     IR(cm-1): 2939, 2867, 1749, 1732, 1468, 

1455, 1374, 1240, 1116, 1032, 958, 904.    HRMS (APCI) m/z: calcd for C39H59O4N35Cl3 (M+NH4)+ 

710.3504; found 710.3500.  [α]20
D: -13.8°  (c=1.00, CHCl3);    m.p. 41-44 °C 

(2) Experimental procedure for Ac-vitamin E tertiary C–H insertion 

AcO
H

H

H

Troc

200

Troc=CO2CH2CCl3



 128 

 

2,2,2-trichloroethyl (2S,7R,11S)-14-((S)-6-acetoxy-2,5,7,8-tetramethylchroman-2-yl)-2-(4-bromo 

phenyl)-3,3,7,11-tetramethyltetradecanoate 161: Acyl protected vitamin E 160 (189 mg, 0.64 mmol, 

1.6 equiv), stir bar and Rh2(R-TCPTAD)4 (1 mol%) was added to a 16 mL glass vial. The vial was 

degassed and filled with nitrogen several times. Anhydrous CH2Cl2 (2 mL) was added to the vial via a 

syringe. The solution was kept stirring at refluxing temperature (40 °C). Aryldiazoacetate 155 (238 mg, 

0.4 mmol, 1.0 equiv) was dissolved in anhydrous CH2Cl2 (4 mL) and added to the reaction solution 

dropwisely over 3 h. The reaction was let run for further 6 h after the addition is finished. The solution 

was concentrated to give crude material and the pure C–H insertion product was isolated via column 

chromatography over silica gel (2.5-10% ether in pentane). The product 161 is obtained in 240 mg as 

sticky oil, 74% yield, 14.8:1 dr. (measured by HPLC), >30:1 r.r. The 1HNMR matched the reference[6]. 

(3) General procedure for Rh2(S-2-Cl-5-BrTPCP)4 mediated secondary C–H insertion 

Substrates (for C–H insertion) (0.6 mmol, 2.0 equiv), stir bar and Rh2(S-2-Cl-5-BrTPCP)4 (1 mol%) 

was added to a 16 mL glass vial. The vial was degassed and filled with nitrogen several times. 

Anhydrous CH2Cl2 (2 mL) was added to the vial via a syringe. The solution was kept stirring at refluxing 

temperature (40 °C). Aryldiazoacetate (0.3 mmol, 1.0 equiv) was dissolved in anhydrous CH2Cl2 (4 mL) 

and added to the reaction solution dropwisely over 3 h. The reaction was let run for further 6 h after the 

addition is finished. The solution was concentrated to give crude material and the pure C–H insertion 

product was isolated via column chromatography over silica gel (pentane/ether system).  

 

O

OAc

Troc

Br

161

Troc=CO2CH2CCl3



 129 

 

2,2,2-trichloroethyl (2S,3R)-2,6-bis(4-bromophenyl)-3-methylhexanoate 165: Derived following 

the general procedure with 1-bromo-4-pentylbenzene 164 (136 mg, 0.6 mmol) and aryldiazoacetate 155 

(112 mg, 0.3 mmol). The product is isolated (2.5% ether in pentane for column chromatography) as 

colorless oil in 141 mg, 82% yield, 18.5:1 dr, 12:1 r.r., 87% ee. The 1HNMR matched the reference[7].  

 

2,2,2-trichloroethyl (2S,3R)-6-(bis(tert-butoxycarbonyl)amino)-2-(4-bromophenyl)-3-methyl 

hexanoate 169: Derived following the general procedure with tert-butyl (tert-butoxycarbonyl) 

(pentyl)carbamate 168 (172 mg, 0.6 mmol) and aryldiazoacetate 155 (112 mg, 0.3 mmol). The product 

is isolated (15% ether in pentane for column chromatography) as sticky oil (slight purple due to 

coelution with catalyst) in 159 mg, 83% yield, 17:1 dr, >30:1 r.r., 89% ee. The 1HNMR matched the 

reference[1]. 

 

2,2,2-trichloroethyl (2S,3R)-2-(4-bromophenyl)-7-((tert-butyldimethylsilyl)oxy)-3-methylhep-

tanoate 173: Derived following the general procedure with tert-butyl(hexyloxy)dimethylsilane 172 

(216 mg, 1.0 mmol) and aryldiazoacetate 155 (186 mg, 0.5 mmol). The product is isolated (15% ether 

in pentane for column chromatography) as colorless sticky oil in 219 mg, 78% yield, 14:1 dr, >30:1 r.r., 

87% ee. The 1HNMR matched the reference[8]. 
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bis(2,2,2-trichloroethyl) 2,2'-((1R,2S,4R,5S)-bicyclo[2.2.1]heptane-2,5-diyl)(2S,2'S)-bis(2-(4-

bromophenyl)acetate) 177:  Derived following the general procedure with norbornane 176 (48 mg, 

0.5 mmol 1.0 equiv) and aryldiazoacetate 155 (596 mg, 1.6 mmol, 3.2 equiv). Analysis of the crude 

material shows 29:2:2:1 dr. The crude material was directly subjected to Pd/C (10 wt.%) catalyzed 

hydrogenation (H2 balloon) for 4 h to reduce the azine byproduct so that a following silica plug (5-10% 

ether in pentane) can be used to obtain product in relative clean fractions. The fractions that contain the 

product was combined and evaporated to remove the solvent to yield a sticky oil compound. Directly 

dissolve the sticky oil compound in minimum amount of CH2Cl2 at 40 °C, keep stirring while adding 

hexanes dropwisely until no more white solid precipitate out. Filter and wash the white solid with 

hexanes. This crystallization was repeated again with the mother liquor. The obtained white solid is the 

pure product as a single diastereomer in 248 mg, 63% yield, >30:1 r.r., >99% ee.  

1H NMR (600 MHz, Chloroform-d) δ 7.46 (d, J = 8.5 Hz, 4H), 7.23 (d, J = 8.4 Hz, 4H), 4.73 (d, J = 

12.0 Hz, 2H, CH2 of Troc), 4.59 (d, J = 12.0 Hz, 2H, CH2 of Troc), 3.29 (d, J = 11.8 Hz, 2H), 2.27 

(ddd, J = 12.3, 8.1, 5.1 Hz, 2H), 1.82 (d, J = 4.3 Hz, 2H), 1.60 (dd, J = 12.7, 8.2 Hz, 2H), 1.29 (s, 2H), 

1.16 (dt, J = 12.7, 4.7 Hz, 2H).     13C NMR (151 MHz, CDCl3) δ 171.2, 136.7, 131.9, 130.1, 121.7, 

94.7, 74.1, 57.0, 44.5, 39.2, 37.3, 32.5.     IR(cm-1): 2954, 2866, 1750, 1488, 1450, 1408, 1372, 1317, 

1273, 1218, 1184, 1150, 1127, 1074, 1012.    HRMS (APCI) m/z: calcd for C27H25O4
79Br2

35Cl6(M+H)+ 

780.8245; found 780.8235.  [α]20
D: +20.1°  (c=1.00, CHCl3);  m.p. >200 °C 
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2,2,2-trichloroethyl (2S,3R)-2-(4-bromophenyl)-3-methyl-9-((3aR,6R,7S,8E,11R,12E,13aR)-2,2, 

7,11-tetramethyl-4-oxo-3a,6,7,10,11,13a-hexahydro-4H-[1,3]dioxolo[4,5-c][1]oxacyclododecin-6-

yl)nonanoate 181: Derived following the general procedure with substrate 180 (35 mg, 0.089 mmol, 

1.0 equiv) and aryldiazoacetate 155 (166 mg, 0.446 mmol, 5.0 equiv). The reaction was performed in a 

4 mL glass vial and the CH2Cl2 is used in half amount (1 mL +3 mL). The product is isolated (15% 

ether in pentane for column chromatography) as colorless sticky oil in 50 mg, 76% yield, 14:1 dr. (Me 

and Troc relative position, by 1HNMR), 15:1 dr. (absolute position of Me, by HPLC), >30:1 r.r. The 

1HNMR matched the reference[1]. 

(4) General procedure for Rh2(S-TPPTTL)4 mediated secondary C–H insertion 

Substrates (for C–H insertion) (0.75 mmol, 2.5 equiv), stir bar and Rh2(S-TPPTTL)4 (0.5 mol%) 

was added to a 16 mL glass vial. The vial was degassed and filled with nitrogen several times. 

Anhydrous CH2Cl2 (2 mL) was added to the vial via a syringe. The solution was kept stirring at refluxing 

temperature (40 °C). Aryldiazoacetate (0.3 mmol, 1.0 equiv) was dissolved in anhydrous CH2Cl2 (4 mL) 

and added to the reaction solution dropwisely over 3 h. The reaction was let run for further 6 h after the 

addition is finished. The solution was concentrated to give crude material and the pure C–H insertion 

product was isolated via column chromatography over silica gel (pentane/ether system).  
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2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-((1S,3R)-3-(tert-butyl)cyclohexyl)acetate 184: 

Derived following the general procedure with tert-butyl cyclohexane 144 (175 mg, 1.25 mmol) and 

aryldiazoacetate 155 (186 mg, 0.5 mmol). The product is isolated (1-5% ether in pentane for column 

chromatography) as colorless sticky oil in 189 mg, 78% yield, 10:1 dr, >30:1 r.r., 96% ee. The 1HNMR 

matched the reference[2]. 

 

2,2,2-trichloroethyl (R)-2-(4-bromophenyl)-2-((1S,3R)-3-((tert-butyldiphenylsilyl)oxy)cyclohexyl) 

acetate 188: Derived following the general procedure with substrate 187 (254 mg, 0.75 mmol) and 

aryldiazoacetate 155 (112 mg, 0.3 mmol). The product is isolated (1-5% ether in pentane for column 

chromatography) as colorless sticky oil in 163 mg, 80% yield, 10:1 dr, >30:1 r.r., 96% ee. The 1HNMR 

matched the reference[9]. 

  

TBDPSO
Troc

Br

188



 133 

6.2.3.2.2 General procedure for the Zn/AcOH hydrolysis  

The TCE ester from C–H insertion (1.0 equiv) was dissolved in AcOH. Zn powder (10 equiv) was 

added and the solution was kept stirring vigorously at r.t. overnight. After the reaction, the solution was 

diluted with DCM and pass through a short pipette cotton plug to remove solid. The clear solution was 

concentrated to give crude acid product. The pure acid product was obtained through column 

chromatography on silica gel. 

 

(2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15, 

16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(4-bromophenyl)-3,3-dimethyl-

octanoic acid 158: Following general procedure, TCE ester 157 (0.30 mmol, 230 mg, 1.0 equiv) from 

Rh2(R-TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn 

powder (2.97 mmol, 195 mg, 10.0 equiv). Pure product was isolated through column chromatography 

(20% CHCl3 in pentane with 0.5% AcOH to pure CHCl3) on silica gel as white powder, 140 mg, 73% 

yield, 10.6:1 dr. (based on the TCE ester 157), >30:1 r.r. 

1H NMR (600 MHz, Chloroform-d) δ 7.43 (d, J = 8.5 Hz, 2H), 7.28 (d, J = 8.5 Hz, 2H), 5.37 (d, J = 

4.9 Hz, 1H), 4.60 (tdd, J = 10.5, 6.4, 4.1 Hz, 1H), 3.51 (s, 1H), 2.36 – 2.27 (m, 2H), 2.03 (s, 3H), 2.02 

– 1.93 (m, 2H), 1.86 (d, J = 10.0 Hz, 2H), 1.84 – 1.75 (m, 1H), 1.63 – 1.41 (m, 7H), 1.40 – 1.32 (m, 

3H), 1.30 – 1.04 (m, 10H), 1.02 (s, 6H), 1.01 – 0.93 (m, 3H), 0.92 – 0.90 (m, 6H), 0.67 (s, 3H).    13C 

NMR (151 MHz, CDCl3) δ 176.8, 170.6, 139.7, 134.5, 131.8, 131.0, 122.6, 121.5, 74.0, 59.3, 56.7, 56.0, 

50.0, 42.3, 41.2, 39.7, 38.1, 37.1, 37.0, 36.7, 36.6, 35.8, 31.89, 31.87, 28.2, 27.8, 24.5, 24.34, 24.28, 

21.5, 21.0, 20.2, 19.3, 18.8, 11.9.    IR(cm-1): 3000(br, COOH), 2940, 1720, 1686, 1488, 1464, 1439, 

1375, 1286, 1243, 1198, 1177, 1147, 1075.    HRMS (APCI) m/z: calcd for C37H52O4
79Br (M-H)- 

639.3054; found 639.3058.  [α]20
D: -12.4°  (c=1.00, CHCl3);    m.p. >200 °C. 
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(2S,7R,11S)-14-((S)-6-acetoxy-2,5,7,8-tetramethylchroman-2-yl)-2-(4-bromophenyl)-3,3,7,11-

tetramethyltetradecanoic acid 162: Following general procedure, TCE ester 161 (0.24 mmol, 199 mg, 

1.0 equiv) from Rh2(R-TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, 

reacting with Zn powder (2.4 mmol, 159 mg, 10.0 equiv). Pure product was isolated through column 

chromatography (10-20% ether in pentane with 0.5% AcOH) on silica gel as slightly yellow sticky oil, 

240 mg, 97% yield, 14.8:1 dr. (based on TCE ester 161), >30:1 r.r. 

1H NMR (600 MHz, Chloroform-d) δ 7.42 (d, J = 8.5 Hz, 2H), 7.27 (d, J = 8.5 Hz, 2H), 3.50 (s, 1H), 

2.59 (t, J = 6.8 Hz, 2H), 2.33 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H), 1.81 (dt, J = 14.0, 7.2 Hz, 

1H), 1.74 (dt, J = 13.3, 5.7 Hz, 1H), 1.55 (tt, J = 15.0, 7.1 Hz, 2H), 1.51 – 1.25 (m, 12H), 1.21 – 1.04 

(m, 7H), 1.02 (s, 3H), 0.91 (s, 3H), 0.89 – 0.82 (m, 8H).    13C NMR (151 MHz, CDCl3) δ 177.5, 169.8, 

149.4, 140.5, 134.6, 131.8, 131.0, 126.7, 124.9, 123.0, 121.5, 117.4, 75.1, 59.6, 41.0, 39.4, 37.8, 37.44, 

37.42, 37.0, 32.9, 32.8, 32.8, 28.0, 24.4, 24.3, 22.74, 22.65, 21.3, 21.0, 20.61, 20.58, 19.8, 19.7, 13.0, 

12.1, 11.9.    IR(cm-1): 3000(br, COOH),2928, 2867, 1757, 1705, 1488, 1462, 1368, 1208, 1166, 1109, 

1076, 1011, 922.    HRMS (APCI) m/z: calcd for C39H56O5
79Br (M-H)- 683.3317; found 683.3318.  

[α]20
D: +9.0°  (c=1.00, CHCl3).  

 

(2S,3R)-2,6-bis(4-bromophenyl)-3-methylhexanoic acid 166: Following general procedure, TCE 

ester 165 (0.095 mmol, 54 mg, 1.0 equiv) from Rh2(S-2-Cl,5-BrTPCP)4 catalyzed secondary C–H 

insertion was dissolved in 4 mL AcOH, reacting with Zn powder (0.95 mmol, 62 mg, 10.0 equiv). Pure 

product was isolated through column chromatography (10% ether in pentane with 0.5% AcOH) on 

silica gel as sticky oil to white solid, 38 mg, 90% yield, 18.5:1 dr, 86% ee, 20:1 r.r. 
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1H NMR (600 MHz, Chloroform-d) δ 7.43 (d, J = 8.5 Hz, 2H), 7.34 (d, J = 8.4 Hz, 2H), 7.16 (d, J = 

8.4 Hz, 2H), 6.91 (d, J = 8.4 Hz, 2H), 3.20 (d, J = 10.6 Hz, 1H), 2.45 (ddd, J = 14.6, 9.1, 5.9 Hz, 1H), 

2.32 (ddd, J = 14.0, 9.1, 6.7 Hz, 1H), 2.16 (dddq, J = 12.9, 9.7, 6.5, 3.2 Hz, 1H), 1.56 (dddd, J = 15.6, 

13.6, 6.8, 4.6 Hz, 1H), 1.46 – 1.37 (m, 1H), 1.16 (dddd, J = 13.8, 10.6, 5.8, 3.3 Hz, 1H), 1.04 (d, J = 

6.5 Hz, 3H), 0.95 – 0.88 (m, 1H).    13C NMR (151 MHz, CDCl3) δ 178.7, 141.1, 136.3, 131.8, 131.3, 

130.3, 130.0, 121.6, 119.4, 57.8, 35.9, 35.0, 32.6, 27.9, 17.8.    IR(cm-1): 3000(br, COOH), 2933, 2858, 

1703, 1488, 1404, 1281, 1073, 1022, 951, 817, 751.    HRMS (APCI) m/z: calcd for C19H21O2
79Br2 

(M+H)+ 438.9903; found 438.9906.  [α]20
D: +36.5°  (c=1.00, CHCl3).  m.p. 98-101°C 

 

(2S,3R)-2-(4-bromophenyl)-6-((tert-butoxycarbonyl)amino)-3-methylhexanoic acid 170: 

Following general procedure, TCE ester 169 (0.27 mmol, 170 mg, 1.0 equiv) from Rh2(S-2-Cl,5-

BrTPCP)4 catalyzed secondary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn powder 

(2.15 mmol, 141 mg, 8.0 equiv). Pure product was isolated through column chromatography (10% ether 

in pentane with 0.5% AcOH) on silica gel as white solid, 81 mg, 75% yield, 89% ee, 17.6:1 dr. (dr. 

didn’t change compared to TCE ester), >30:1 r.r. 

1H NMR (600 MHz, Chloroform-d) δ 7.44 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 4.37 (s, 1H), 

3.23 (d, J = 10.5 Hz, 1H), 3.07 – 2.95 (m, 1H), 2.89 (dt, J = 12.6, 6.5 Hz, 1H), 2.16 (dddq, J = 13.0, 9.8, 

6.5, 3.2 Hz, 1H), 1.53 – 1.42 (m, 1H), 1.41 (s, 9H), 1.36 – 1.27 (m, 1H), 1.16 (dddd, J = 13.9, 10.7, 5.7, 

3.3 Hz, 1H), 1.04 (d, J = 6.5 Hz, 3H), 0.89 (dtd, J = 13.8, 10.2, 4.7 Hz, 1H).    13C NMR (151 MHz, 

CDCl3) δ 177.6, 155.9, 136.4, 131.8, 130.3, 121.6, 79.2, 57.8, 40.4, 35.8, 30.3, 28.4, 26.9, 17.8.    IR(cm-

1): 3300(br, amide NH), 3000(br, COOH), 2974, 2933, 1706, 1519, 1489, 1454, 1408, 1367, 1276, 1252, 

1167, 1011.    HRMS (APCI) m/z: calcd for C18H25O4N79Br (M-H)- 398.0972; found 398.0971.  [α]20
D: 

+30.0°  (c=1.00, CHCl3);    m.p. 99-102 °C. 
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(2S,3R)-2-(4-bromophenyl)-7-hydroxy-3-methylheptanoic acid 174: Following general procedure, 

TCE ester 173 (0.36 mmol, 200 mg, 1.0 equiv) from Rh2(S-2-Cl,5-BrTPCP)4 catalyzed secondary C–H 

insertion was dissolved in 4 mL AcOH, reacting with Zn powder (3.56 mmol, 233 mg, 8.0 equiv). Pure 

product was isolated through column chromatography (40-60 % ether in pentane with 1% AcOH) on 

silica gel as white solid, 57 mg, 70% yield, single diastereomer (The major diastereomer can be directly 

isolated cleanly via column over silica gel), 87% ee.  

1H NMR (600 MHz, Chloroform-d) δ 7.44 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.4 Hz, 2H), 3.54 (td, J = 

6.3, 1.5 Hz, 2H), 3.24 (d, J = 10.5 Hz, 1H), 2.16 (m, 1H), 1.50 – 1.31 (m, 3H), 1.24 – 1.11 (m, 2H), 

1.05 (d, J = 6.5 Hz, 3H), 0.97 – 0.86 (m, 1H).     13C NMR (151 MHz, CDCl3) δ 177.5, 136.5, 131.7, 

130.4, 121.6, 62.8, 57.7, 36.0, 33.0, 32.6, 22.5, 17.8.    IR(cm-1): 3350(broad), 2935, 2861, 2591(broad), 

1702, 1488, 1461, 1406, 1382, 1295, 1276, 1216, 1178, 1095, 1048, 1011.    HRMS (APCI) m/z: calcd 

for C14H19O3
79Br (M-H)- 313.0445; found 313.0448.  [α]20

D: +32.5°  (c=1.00, CHCl3);    m.p. 92-94 °C 

 

(2S,2'S)-2,2'-((1R,2S,4R,5S)-bicyclo[2.2.1]heptane-2,5-diyl)bis(2-(4-bromophenyl)acetic acid) 178: 

Following general procedure, TCE ester 177 (0.53 mmol, 416 mg, 1.0 equiv) from Norbornane bis-C–

H insertion with Rh2(S-2-Cl,5-BrTPCP)4 catalyst was dissolved in 5 mL AcOH and 1 mL DCM mixed 

solvent, reacting with Zn powder (5.3 mmol, 347 mg, 10.0 equiv). Pure product was isolated through 

column chromatography (40% ether in pentane with 1% AcOH) on silica gel as white powder 278 mg, 

quantitative yield. Single diastereomer and >99.5% ee. (based on TCE ester 177) 

1H NMR (600 MHz, DMSO-d6) δ 12.35 (s, 1H), 7.53 (d, J = 8.5 Hz, 2H), 7.29 (d, J = 8.5 Hz, 2H), 3.18 

(d, J = 11.7 Hz, 1H), 2.07 (ddd, J = 12.3, 8.0, 5.1 Hz, 1H), 1.58 (d, J = 4.1 Hz, 1H), 1.44 (dd, J = 12.2, 

8.1 Hz, 1H), 1.26 (s, 1H), 1.06 (dt, J = 12.3, 4.7 Hz, 1H).    13C NMR (101 MHz, DMSO) δ 174.3, 139.4, 
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131.8, 130.8, 120.6, 56.7, 44.8, 39.0, 37.3, 32.3.    IR(cm-1): 3000(br, COOH), 2953, 2865, 1702, 1488, 

1450, 1405, 1278, 1181, 1100, 1074, 1011, 933, 817.    HRMS (APCI) m/z: calcd for C23H23O4
79Br2 

(M+H)+ 520.9969; found 520.9962.  [α]20
D: +30.7°  (c=1.00, ether);    m.p. 163-166 °C. 

 

(2S,3R)-2-(4-bromophenyl)-3-methyl-9-((3aR,6R,7S,8E,11R,12E,13aR)-2,2,7,11-tetramethyl-4-

oxo-3a,6,7,10,11,13a-hexahydro-4H-[1,3]dioxolo[4,5-c][1]oxacyclododecin-6-yl)nonanoic acid 

182: Following general procedure, TCE ester 181 (0.088 mmol, 65 mg, 1.0 equiv) from Rh2(S-2-Cl,5-

BrTPCP)4 catalyzed secondary C–H insertion was dissolved in 3 mL AcOH, reacting with Zn powder 

(8.8 mmol, 58 mg, 10.0 equiv). Pure product was isolated through column chromatography (10% ether 

in pentane with 0.5% AcOH) on silica gel as colorless oil 40 mg, 75% yield, 14:1 dr. 

1H NMR (600 MHz, Chloroform-d) δ 7.44 (d, J = 8.5 Hz, 2H), 7.21 (d, J = 8.5 Hz, 2H), 5.73 (dd, J = 

15.7, 7.6 Hz, 1H), 5.25 (dd, J = 16.6, 6.9 Hz, 1H), 5.13 – 5.04 (m, 2H), 4.79 – 4.70 (m, 2H), 4.52 (d, J 

= 6.7 Hz, 1H), 3.25 (d, J = 10.3 Hz, 1H), 2.23 – 2.08 (m, 4H), 1.99 – 1.90 (m, 1H), 1.69 (s, 3H), 1.60 

(dddt, J = 13.0, 8.7, 5.9, 2.7 Hz, 1H), 1.41 (S, 3H), 1.41– 1.32 (m, 1H), 1.24 – 1.07 (m, 9H), 1.05 (d, J 

= 6.7 Hz, 3H), 1.02 (d, J = 6.5 Hz, 3H), 0.95 (d, J = 6.8 Hz, 3H), 0.91 – 0.80 (m, 2H).    13C NMR (151 

MHz, CDCl3) δ 177.9, 170.1, 138.5, 136.4, 134.9, 131.6, 130.3, 129.7, 123.3, 121.4, 110.9, 78.5, 78.3, 

78.2, 57.6, 42.3, 38.7, 36.0, 35.9, 33.0, 32.3, 29.2, 29.2, 26.7, 26.0, 25.8, 24.7, 21.1, 18.0, 17.7.    IR(cm-

1): 3000(br, COOH),2930, 2856, 1747, 1706, 1489, 1459, 1380, 1189, 1086, 1011, 969, 881, 816.    

HRMS (APCI) m/z: calcd for C32H44O6
79Br (M-H)- 603.2327; found 603.2331.  [α]20

D: +8.5°  (c=1.00, 

CHCl3). 
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(R)-2-(4-bromophenyl)-2-((1S,3R)-3-(tert-butyl)cyclohexyl)acetic acid 185: Following general 

procedure, TCE ester 184 (0.4 mmol, 196 mg, 1.0 equiv) from Rh2(S-TPPTTL)4 catalyzed secondary 

C–H insertion was dissolved in 4 mL AcOH, reacting with Zn powder (2.0 mmol, 132 mg, 5.0 equiv). 

Pure product was isolated through column chromatography (10% ether in pentane with 0.5% AcOH) 

on silica gel as white powder, 140 mg, 98% yield, 10:1 dr (dr. didn’t change compared to TCE ester)  

1H NMR (600 MHz, Chloroform-d) δ 7.44 (d, J = 8.5 Hz, 2H), 7.20 (d, J = 8.4 Hz, 2H), 3.20 (d, J = 

10.3 Hz, 1H), 1.94 (tdd, J = 11.8, 7.6, 3.2 Hz, 1H), 1.89 – 1.78 (m, 2H), 1.74 (d, J = 12.5 Hz, 1H), 1.42 

(d, J = 12.6 Hz, 1H), 1.27 (dddd, J = 16.6, 13.1, 8.4, 3.6 Hz, 1H), 1.01 – 0.87 (m, 2H), 0.87 (dd, J = 

12.4, 9.0 Hz, 1H), 0.71 (s, 9H), 0.45 (q, J = 11.9 Hz, 1H).    13C NMR (151 MHz, CDCl3) δ 177.8, 136.2, 

131.6, 130.3, 121.4, 58.3, 47.7, 41.2, 32.5, 31.7, 31.2, 27.4, 27.0, 26.3.    IR(cm-1): 3000(br, COOH), 

2929, 2856, 1704, 1488, 1447, 1404, 1366, 1286, 1242, 1201, 1073, 1012, 941, 818.    HRMS (APCI) 

m/z: calcd for C18H26O2
79Br (M+H)+ 353.1111; found 353.1111.  [α]20

D: -18.8°  (c=1.00, CHCl3);    m.p. 

145-148 °C. 

 

(R)-2-(4-bromophenyl)-2-((1S,3R)-3-((tert-butyldiphenylsilyl)oxy)cyclohexyl)acetic acid 189: 

Following general procedure, TCE ester 188 (0.177 mmol, 121 mg, 1.0 equiv) from Rh2(S-TPPTTL)4 

catalyzed secondary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn powder (1.77 mmol, 

116 mg, 10.0 equiv). Pure product was isolated through column chromatography (2.5-5% ether in 

pentane with 0.5% AcOH) on silica gel as sticky oil to white solid 98 mg, quantitative yield, 7:1 dr.  

1H NMR (600 MHz, Chloroform-d) δ 7.53 (d, J = 6.7 Hz, 2H), 7.46 (d, J = 6.7 Hz, 2H), 7.41 – 7.33 (m, 

4H), 7.30 (t, J = 7.5 Hz, 2H), 7.23 (t, J = 7.6 Hz, 2H), 6.99 (d, J = 8.4 Hz, 2H), 3.45 (tt, J = 10.5, 4.2 
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Hz, 1H), 3.10 (d, J = 10.5 Hz, 1H), 1.88 (d, J = 12.0 Hz, 1H), 1.69 (d, J = 9.9 Hz, 3H), 1.33 – 1.28 (m, 

1H), 1.28 – 1.22 (m, 1H), 1.13 (qd, J = 13.2, 3.4 Hz, 1H), 0.96 (s, 9H), 0.91 – 0.84 (m, 1H), 0.75 (q, J 

= 12.2 Hz, 1H).    13C NMR (101 MHz, CDCl3) δ 177.6, 144.8, 135.7, 135.5, 134.4, 131.7, 130.0, 129.4, 

127.4, 127.3, 121.5, 71.8, 57.4, 39.5, 39.4, 35.5, 30.7, 26.9, 23.7, 19.0.    IR(cm-1): 3000(br, COOH), 

2930, 2856, 1704, 1488, 1472, 1463, 1448, 1427, 1376, 1275, 1105, 1073, 1011.    HRMS (APCI) m/z: 

calcd for C30H34O3
79Br28Si (M-H)- 549.1466; found 549.1468.  [α]20

D: +8.9°  (c=1.00, CHCl3).   m.p. 

130-133 °C 

 

(2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15, 

16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(4-fluorophenyl)-3,3-dimethyl-

octanoic acid 201: Following general procedure, TCE ester 196 (0.140 mmol, 100 mg, 1.0 equiv) from 

Rh2(R-TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn 

powder (1.40 mmol, 92 mg, 10.0 equiv). Pure product was isolated through column chromatography 

(50% CHCl3 in pentane with 1% AcOH to pure CHCl3) on silica gel as white powder, 65 mg, 80% yield, 

20:1 dr. (based on the TCE ester 196)  

1H NMR (600 MHz, Chloroform-d) δ 7.37 (dd, J = 8.7, 5.4 Hz, 2H), 6.99 (t, J = 8.7 Hz, 2H), 5.42 – 

5.33 (m, 1H), 4.65 – 4.56 (m, 1H), 3.54 (s, 1H), 2.35 – 2.27 (m, 2H), 2.03 (s, 3H), 2.02 – 1.93 (m, 2H), 

1.89 – 1.83 (m, 2H), 1.83 – 1.76 (m, 1H), 1.62 – 1.04 (m, 17H), 1.02 (6H, 2 CH3 singlet quite close to 

each other, 1.023(s, 3H), 1.019 (s, 3H)), 1.01 – 0.93 (m, 3H), 0.94 – 0.88 (m, 6H), 0.67 (s, 3H).     13C 

NMR (151 MHz, CDCl3) δ 176.9, 170.6, 162.2 (d, J = 246.1 Hz), 139.7, 131.7 (d, J = 7.8 Hz), 131.2 

(d, J = 3.0 Hz), 122.6, 114.7 (d, J = 21.1 Hz), 74.0, 65.9, 59.0, 56.7, 56.0, 50.0, 42.3, 41.2, 39.7, 38.1, 

37.0, 36.7, 36.6, 35.8, 31.9, 31.9, 28.2, 27.8, 24.6, 24.3, 24.3, 21.5, 21.0, 20.3, 19.3, 18.8, 15.3, 11.9.      

IR(cm-1): 2941, 1733, 1705, 1508, 1467, 1440, 1375, 1241, 1161, 1034, 908, 838.    HRMS (APCI) m/z: 

calcd for C37H52O4F (M-H)- 579.3855; found 579.3846.  [α]20
D: -5.6°  (c=1.00, CHCl3);    m.p. >200 °C 

AcO
H

H

H

CO2H

201

F



 140 

 

(2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15, 

16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(4-acetoxyphenyl)-3,3-dimethyl-

octanoic acid 202: Following general procedure, TCE ester 197 (0.19 mmol, 140 mg, 1.0 equiv) from 

Rh2(R-TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn 

powder (1.86 mmol, 122 mg, 10.0 equiv). Pure product was isolated through column chromatography 

(3% AcOH in CHCl3) on silica gel as white powder, 120 mg, quantitative yield, 5.3:1 dr. (based on 

TCE ester 197), >30:1 r.r.  

1H NMR (600 MHz, Chloroform-d) δ 7.41 (d, J = 8.7 Hz, 2H), 7.03 (d, J = 8.7 Hz, 2H), 5.37 (d, J = 

5.0 Hz, 1H), 4.65 – 4.56 (m, 1H), 3.55 (s, 1H), 2.34 – 2.29 (m, 2H), 2.29 (s, 3H), 2.03 (s, 3H), 2.01 – 

1.93 (m, 2H), 1.89 – 1.83 (m, 2H), 1.83 – 1.77 (m, 1H), 1.62 – 1.05 (m, 17H), 1.03 (s, 3H), 1.02 (s, 3H), 

1.01 – 0.93 (m, 3H), 0.93 – 0.89 (m, 6H), 0.67 (s, 3H).     13C NMR (151 MHz, CDCl3) δ 177.5, 170.6, 

169.4, 150.0, 139.7, 133.0, 131.2, 122.6, 120.9, 74.0, 59.4, 56.7, 56.0, 50.0, 42.3, 41.2, 39.7, 38.1, 37.1, 

37.0, 36.7, 36.6, 35.9, 31.89, 31.87, 28.2, 27.8, 24.6, 24.30, 24.28, 21.5, 21.2, 21.0, 20.3, 19.3, 18.8, 

11.9.     IR(cm-1): 2941, 2868, 1766, 1733,  1707, 1506, 1468, 1439, 1367, 1240, 1201, 1168, 1033, 

1021.    HRMS (APCI) m/z: calcd for C39H55O6 (M-H)- 619.4004; found 619.3996.  [α]20
D: -3.2°  (c=1.00, 

CHCl3);    m.p. >200 °C 

 

(2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15, 

16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-2-(3-acetoxyphenyl)-3,3-dimethyl-
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octanoic acid 203: Following general procedure, TCE ester 198 (0.15 mmol, 110 mg, 1.0 equiv) from 

Rh2(R-TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn 

powder (1.53 mmol, 99 mg, 10.0 equiv). Pure product was isolated through column chromatography 

(3% AcOH in CHCl3) on silica gel as white powder, 89 mg, 94% yield, 5.6:1 dr. (based on TCE ester 

198), >30:1 r.r. 

1H NMR (600 MHz, Chloroform-d) δ 7.30 (t, J = 7.9 Hz, 1H), 7.23 (d, J = 8.3 Hz, 1H), 7.17 (t, J = 1.9 

Hz, 1H), 7.02 (ddd, J = 8.1, 2.2, 0.9 Hz, 1H), 5.39 – 5.35 (m, 1H), 4.64 – 4.57 (m, 1H), 3.56 (s, 1H), 

2.34 – 2.28 (m, 5H), 2.29 (s, 3H), 2.03 (s, 3H), 2.02 – 1.94 (m, 2H), 1.88 – 1.83 (m, 2H), 1.83 – 1.76 

(m, 1H), 1.62 – 1.05 (m, 17H), 1.04 (s, 3H), 1.02 (s, 3H), 1.01 – 0.93 (m, 3H), 0.93 – 0.90 (m, 6H), 

0.67 (s, 3H).     13C NMR (151 MHz, CDCl3) δ 176.6, 170.6, 169.4, 150.2, 139.7, 137.1, 128.6, 127.8, 

123.3, 122.6, 120.5, 74.0, 59.4, 56.7, 56.0, 50.0, 42.3, 41.3, 39.7, 38.1, 37.2, 37.0, 36.7, 36.6, 35.9, 

31.89, 31.87, 28.2, 27.8, 24.6, 24.31, 24.29, 21.5, 21.2, 21.0, 20.3, 19.3, 18.8, 11.9.     IR(cm-1): 2940, 

2868, 1769, 1732, 1706, , 1608, 1587, 1471, 1446, 1368, 1242, 1202, 1142, 1034.    HRMS (APCI) 

m/z: calcd for C39H55O6 (M-H)- 619.4004; found 619.4007.   [α]20
D: -3.6°  (c=1.00, CHCl3);    

m.p. >200 °C 

 

(2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15, 

16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-3,3-dimethyl-2-(m-tolyl)octanoic 

acid 204: Following general procedure, TCE ester 199 (0.13 mmol, 92 mg, 1.0 equiv) from Rh2(R-

TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn powder 

(1.3 mmol, 85 mg, 10.0 equiv). Pure product was isolated through column chromatography (3% AcOH 

in CHCl3) on silica gel as white powder, 71 mg, 94% yield, 3.1:1 dr. (based on TCE ester 199), >30:1 

r.r. 
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1H NMR (600 MHz, Chloroform-d) δ 7.19 (m, 3H), 7.12 – 7.05 (m, 1H), 5.37 (d, J = 4.8 Hz, 1H), 4.64 

– 4.57 (m, 1H), 3.51 (s, 1H), 2.34 (s, 3H), 2.33 – 2.27 (m, 2H), 2.03 (s, 3H), 2.02 – 1.94 (m, 2H), 1.86 

(m, 2H), 1.83 – 1.76 (m, 1H), 1.61 – 1.06 (m, 17H), 1.04 (s, 3H), 1.02 (s, 3H), 1.01 – 0.93 (m, 3H), 

0.92 (m, 6H), 0.67 (s, 3H).     13C NMR (151 MHz, CDCl3) δ 177.8, 170.6, 139.7, 137.4, 135.5, 130.9, 

128.0, 127.7, 127.3, 122.6, 74.0, 59.9, 56.7, 56.1, 50.0, 42.3, 41.3, 39.7, 38.1, 37.0, 36.9, 36.7, 36.6, 

35.8, 31.9, 31.9, 28.2, 27.8, 24.7, 24.4, 24.3, 21.5, 21.5, 21.0, 20.3, 19.3, 18.8, 11.9.    IR(cm-1): 2941, 

2868, 1734, 1705, 1467, 1442, 1374, 1367, 1243, 1135, 1034, 716.    HRMS (APCI) m/z: calcd for 

C38H55O4 (M-H)- 575.4106; found 575.4109.  [α]20
D: -8.9°  (c=1.00, CHCl3);    m.p. 180-183 °C 

 

(2R,7R)-7-((3S,8S,9S,10R,13R,14S,17R)-3-acetoxy-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15, 

16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-3,3-dimethyl-2-phenyloctanoic acid 

205: Following general procedure, TCE ester 200 (0.14 mmol, 100 mg, 1.0 equiv) from Rh2(R-

TCPTAD)4 catalyzed tertiary C–H insertion was dissolved in 4 mL AcOH, reacting with Zn powder 

(1.44 mmol, 94 mg, 10.0 equiv). Pure product was isolated through column chromatography (2% AcOH 

in CHCl3) on silica gel as white powder, 74 mg, 91% yield, 4.1:1 dr. (based on TCE ester 200), >30:1 

r.r.  

1H NMR (600 MHz, Chloroform-d) δ 7.43 – 7.34 (m, 2H), 7.32 – 7.26 (m, 3H), 5.37 (d, J = 4.9 Hz, 

1H), 4.66 – 4.56 (m, 1H), 3.55 (s, 1H), 2.36 – 2.27 (m, 2H), 2.03 (s, 3H), 2.01 – 1.93 (m, 2H), 1.89 – 

1.82 (m, 2H), 1.84 – 1.75 (m, 1H), 1.62 – 1.05 (m, 17H), 1.04 (s, 3H), 1.02 (s, 3H), 1.03 – 0.92 (m, 

10H), 0.91 (m, 6H), 0.67 (s, 3H).     13C NMR (151 MHz, CDCl3) δ 177.8, 170.6, 139.7, 135.6, 130.2, 

127.9, 127.3, 122.6, 74.0, 60.0, 56.7, 56.0, 50.0, 42.3, 41.3, 39.7, 38.1, 37.0, 36.7, 36.6, 35.8, 31.90, 

31.87, 28.2, 27.8, 24.7, 24.4, 24.3, 21.5, 21.0, 20.3, 19.3, 18.8, 11.9.    IR(cm-1): 2939 (a broad and a 

sharp), 2851, 1732, 1704, 1467, 1456, 1415, 1374, 1366, 1241, 1168, 1136, 1033, 977.    HRMS (ESI 
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negative) m/z: calcd for C37H53O4 (M-H)- 561.3949; found 561.3951.  [α]20
D: -16.4°  (c=1.00, CHCl3);    

m.p. 198-200 °C 

 
6.2.3.2.3 Procedure for recrystallization of carboxylic acid intermediates  

 

[Starting acid compound: 61 mg (from Rh2(S-2-Cl-5BrTPCP)4 catalyst) 17:1 dr. 89% ee.] 

The original acid 170 (61 mg) was dissolved with minimum amount of ether (add dropwisely) and 

diluted with 1 mL pentane in a 4 mL glass vial. The solution was heated at 40 °C for reflux until slight 

turbidity appears. The vial was capped and cooled to r.t. naturally with slow stir. Meanwhile, white 

precipitation is formed during the process. The suspension was filtered with a pipette that blocked with 

cotton at the front. The mother liquor was repeated for the recrystallization procedure above twice. 

After the last filtration, the white solid left on the cotton of the pipette was flushed with ether and 

concentrated to give recrystallized acid 170 at 49.9 mg, 82% recovered yield. 160:1 dr. (measured by 

HPLC), 97% ee. 

 

[Starting acid compound: 51 mg (from Rh2(S-2-Cl-5BrTPCP)4 catalyst)  single diastereomer, 89% ee.] 

The original acid 174 (61 mg) was dissolved with minimum amount of ether (add dropwisely) in a 4 

mL glass vial. The solution was heated at 40 °C for reflux and pentane was added dropwisely until  

slight turbidity appears. The vial was capped and cooled to r.t. naturally with slow stir. Meanwhile, 

white precipitation is formed during the process. The suspension was filtered with a pipette that blocked 

with cotton at the front. The mother liquor was repeated for the recrystallization procedure above twice. 

After the last filtration, the white solid left on the cotton of the pipette was flushed with ether and 

concentrated to give recrystallized acid 174 at 44.5 mg, 87% recovered yield. Single diastereomer, 95% 

ee.  
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[starting acid compound: 70 mg (from Rh2(S-2-Cl-5BrTPCP)4 catalyst) 17:1 dr, 87% ee.] 

The original acid 166 (70 mg) was dissolved with 1 drop of ether and diluted with 1 mL pentane in a 4 

mL glass vial. The solution was heated at 40 °C for reflux until slight turbidity appears. The vial was 

capped and cooled to r.t. naturally with slow stir. Meanwhile, white precipitation is formed during the 

process. The suspension was filtered with a pipette that blocked with cotton at the front. The white solid 

left on the cotton was obtained at 11 mg (HPLC analysis shows ~13% ee. suggesting that enantiomers 

of this acid tend to pair when crystalize, so the ee. of the mother liquor should be enhanced.) Then the 

mother liquor (59 mg) was concentrated to sticky solid and re-dissolved with minimum amount of ether 

followed by dilution with 1 mL pentane. This solution was kept stirring at 40 °C in the open air until 

the clear solution become turbid.  Another 2 mL pentane was added in one time and the white 

precipitation formed quickly. The suspension was cooled to r.t. naturally and then filtered. The white 

solid left on the cotton of the pipette was collected at 44.5 mg, 64% recovered yield, 66:1 dr, >99% 

ee.  (The difference between the recrystallization of original acid and the following mother liquor is 

very subtle, but this is the accurate procedure and the final recrystallized acid 166 indeed has 

significantly enhanced dr and ee) 

 

[Starting acid compound: 42 mg (from Rh2(S-TPPTTL)4 catalyst) 10:1 dr, 96% ee.] 

The original acid 185 (42 mg) was dissolved with one drop of ether and diluted with 1 mL pentane in a 

4 mL glass vial. The solution was heated at 40 °C for reflux until slight turbidity appears. The vial was 

capped and cooled to r.t. naturally with slow stir. Meanwhile, white precipitation is formed during the 
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process. The suspension was filtered with a pipette that blocked with cotton at the front. The mother 

liquor was repeated for the recrystallization procedure above twice. After the last filtration, the white 

solid left on the cotton of the pipette was flushed with ether and concentrated to give recrystallized acid 

185 at 36.0 mg, 86% recovered yield. 64:1 dr, (measured by HPLC), >99% ee. 

 

[Starting acid compound: 72 mg (from Rh2(S-TPPTTL)4 catalyst) 6:1 dr, 97% ee.] 

The original acid 189 (72 mg) was dissolved with 1 mL pentane in a 4 mL glass vial. The solution was 

heated at 40 °C for reflux until slight turbidity appears. The vial was capped and cooled to r.t. naturally 

with slow stir. Meanwhile, white precipitation is formed during the process. The suspension was filtered 

with a pipette that blocked with cotton at the front. The mother liquor was repeated for the 

recrystallization procedure above twice. After the last filtration, the white solid left on the cotton of the 

pipette was flushed with ether and concentrated to give recrystallized acid 189 at 56.5 mg, 78% 

recovered yield. >50:1 dr, >99% ee (measured after desilylation). 

6.2.3.2.4 General procedure for the photoredox decarboxylation 

Trifluoroethanol(TFE) and ethyl acetate(EtOAc) solvents are purged with dry N2 for 10 min. 

Carboxylic acid (0.05 mmol), (PhS)2 (1.09 mg, 10 mol%) and photo catalyst Ar-Mes-Ph (1.15 mg, 5 

mol%) were added to an 8 mL glass reaction vial. Stir bar was added and the vial was sealed with a cap. 

Purge the vial with gentle N2 flow for 5 min. TFE:EtOAc=2:1 mixed solvent (0.25 mL) was added and 

the mixture was stirred at r.t. till all the solid is dissolved. Diisopropylethylamine(DIPEA)(1.29 mg, 20 

mol% was added to the solution and the vial was placed 2-3 cm in front of a 15 W blue LED lamp. The 

reaction was let run for 48 h and then concentrated to remove solvent for analysis and purification. Pure 

product is isolated via column chromatography over silica gel (pentane/ether system) 
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(3S,8S,9S,10R,13R,14S,17R)-17-((R)-7-(4-bromophenyl)-6,6-dimethylheptan-2-yl)-10,13-

dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 

acetate 159: Following general procedure, target carboxylic acid 158 (32.1 mg, 0.05 mmol, 1.0 equiv) 

was decarboxylated to the product 159. The product is isolated (2-5% ether in pentane for column) as 

white solid in 24.6 mg, 82% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.37 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 5.38 (d, J = 

5.0 Hz, 1H), 4.61 (tdd, J = 10.4, 6.5, 4.2 Hz, 1H), 2.44 (s, 2H), 2.36 – 2.27 (m, 2H), 2.03 (s, 3H), 2.02 

– 1.93 (m, 2H), 1.90 – 1.78 (m, 3H), 1.61 – 1.04 (m, 18H), 1.02 (s, 3H), 1.01 – 0.94 (m, 3H), 0.93 (d, J 

= 6.6 Hz, 3H), 0.82 (s, 6H), 0.68 (s, 3H).    13C NMR (151 MHz, CDCl3) δ 170.5, 139.7, 138.5, 132.2, 

130.7, 122.6, 119.6, 74.0, 56.7, 56.1, 50.0, 47.8, 42.5, 42.3, 39.7, 38.1, 37.0, 36.8, 36.6, 35.9, 34.2, 

31.90, 31.87, 28.3, 27.8, 26.81, 26.78, 24.3, 21.5, 21.0, 20.6, 19.3, 18.8, 11.9.    IR(cm-1): 2937, 2866, 

1733, 1488, 1468, 1439, 1373, 1364, 1241, 1119, 1073, 1033, 1012, 840.    HRMS (APCI) m/z: calcd 

for C36H54O2
79Br (M+H)+ 597.3302; found 597.3307.  [α]20

D: -30.4°  (c=1.00, CHCl3);    m.p. 125-

127 °C. 

 

(S)-2-((4S,8R)-13-(4-bromophenyl)-4,8,12,12-tetramethyltridecyl)-2,5,7,8-tetramethylchroman-

6-yl acetate 163:  Following general procedure, target carboxylic acid 162 (34.3 mg, 0.05 mmol, 1.0 

equiv) was decarboxylated to the product 163. The product is isolated (5% ether in pentane for column) 

as colorless sticky oil 13.1 mg, 40% yield.  
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1H NMR (600 MHz, Chloroform-d) δ 7.37 (d, J = 8.4 Hz, 2H), 6.98 (d, J = 8.4 Hz, 2H), 2.59 (t, J = 6.8 

Hz, 2H), 2.45 (s, 2H), 2.33 (s, 3H), 2.09 (s, 3H), 2.02 (s, 3H), 1.98 (s, 3H), 1.81 (dt, J = 14.1, 7.1 Hz, 

1H), 1.74 (dt, J = 12.8, 6.1 Hz, 1H), 1.49 – 1.02 (m, 23H), 0.86 (d, J = 6.6 Hz, 6H), 0.82 (s, 6H).     

13C NMR (151 MHz, CDCl3) δ 169.8, 149.4, 140.5, 138.5, 132.2, 130.7, 126.7, 124.9, 123.0, 119.6, 

117.4, 75.1, 47.8, 42.4, 37.9, 37.5, 37.5, 34.2, 32.8, 32.7, 26.8, 26.7, 24.5, 21.5, 21.0, 20.60, 20.58, 19.8, 

19.7, 13.0, 12.1, 11.8.    IR(cm-1): 2927, 2865, 1757, 1488, 1461, 1366, 1333, 1206, 1158, 1109, 1074, 

1012, 921, 841.    HRMS (APCI) m/z: calcd for C38H58O3
79Br (M+H)+ 641.3564; found 641.3565.  

[α]20
D: -30.4°  (c=1.00, CHCl3). 

 

(R)-4,4'-(2-methylpentane-1,5-diyl)bis(bromobenzene) 167: Following general procedure, target 

carboxylic acid 166 (22.0 mg, 0.05 mmol, 1.0 equiv) was decarboxylated to the product 167. The 

product is isolated (1% ether in pentane for column) as colorless oil 16.3 mg, 82% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.38 (dd, J = 8.4, 2.0 Hz, 4H), 7.02 (d, J = 8.4 Hz, 2H), 6.98 (d, 

J = 8.4 Hz, 2H), 2.58 – 2.46 (m, 3H), 2.32 (dd, J = 13.5, 8.0 Hz, 1H), 1.72 – 1.61 (m, 2H), 1.61 – 1.54 

(m, 1H), 1.38 – 1.29 (m, 1H), 1.16 (tdd, J = 13.2, 6.7, 4.0 Hz, 1H), 0.83 (d, J = 6.6 Hz, 3H).    13C NMR 

(151 MHz, CDCl3) δ 141.5, 140.3, 131.3, 131.2, 130.9, 130.1, 119.43, 119.36, 43.0, 35.9, 35.5, 34.8, 

28.8, 19.3.    IR(cm-1): 2926, 2855, 1487, 1460, 1403, 1377, 1202, 1109, 1072, 1011, 826, 796.    HRMS 

(APCI) m/z: calcd for C18H20
79Br2 (M) 393.9926; found 393.9930.  [α]20

D: +13.9°  (c=1.00, CHCl3). 

 

tert-butyl (R)-(5-(4-bromophenyl)-4-methylpentyl)carbamate 171: Following general procedure, 

target carboxylic acid 170 (25.0 mg, 0.05 mmol, 1.0 equiv) was decarboxylated to the product 171. The 

product is isolated (10% ether in pentane for column) as colorless oil 18.3 mg, 80% yield.  
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1H NMR (600 MHz, Chloroform-d) δ 7.38 (d, J = 8.3 Hz, 2H), 7.00 (d, J = 8.4 Hz, 2H), 4.48 (s, 1H), 

3.14 – 2.98 (m, 2H), 2.56 (dd, J = 13.5, 6.2 Hz, 1H), 2.33 (dd, J = 13.5, 8.1 Hz, 1H), 1.69 (dh, J = 13.2, 

6.6 Hz, 1H), 1.54 (td, J = 12.9, 12.2, 6.3 Hz, 1H), 1.44 (s, 9H), 1.34 (ddt, J = 13.4, 10.7, 5.3 Hz, 1H), 

1.14 (dddd, J = 13.3, 10.7, 8.0, 5.1 Hz, 1H), 0.84 (d, J = 6.6 Hz, 3H).    13C NMR (151 MHz, CDCl3) δ 

155.9, 140.2, 131.2, 130.9, 119.45 79.1, 43.0, 40.8, 34.7, 33.5, 28.4, 27.7, 19.3.    IR(cm-1): 3350 (br, 

amide NH), 2968, 2928, 2869, 1692, 1512, 1488, 1455, 1391, 1365, 1250, 1171, 1072, 1011.    HRMS 

(APCI) m/z: calcd for C18H20
79Br2 (M-H)- 354.1074; found 354.1077.    [α]20

D: +6.9°  (c=1.00, CHCl3). 

 

(R)-6-(4-bromophenyl)-5-methylhexan-1-ol 175:  Following general procedure, use (Ph2S)2  (0.06 

mmol, 13 mg, 1.0 equiv), target carboxylic acid 174 (16 mg, 0.06 mmol, 1.0 equiv) was decarboxylated 

to the product 175. The product is isolated (5% ether in pentane for column) as colorless oil 12 mg, 75% 

yield. 

1H NMR (600 MHz, Chloroform-d) δ 7.38 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.5 Hz, 2H), 3.63 (t, J = 6.6 

Hz, 2H), 2.58 (dd, J = 13.5, 6.2 Hz, 1H), 2.33 (dd, J = 13.4, 8.1 Hz, 1H), 1.75 – 1.63 (m, 1H), 1.58 – 

1.49 (m, 2H), 1.47 – 1.41 (m, 1H), 1.37 – 1.31 (m, 2H), 1.20 – 1.13 (m, 1H), 0.84 (d, J = 6.6 Hz, 3H).     

13C NMR (151 MHz, CDCl3) δ 140.4, 131.2, 130.9, 119.4, 63.0, 43.0, 36.3, 34.9, 33.0, 23.2, 19.3.    

IR(cm-1): 3352(broad), 2926, 2857, 1488, 1459, 1403, 1377, 1349, 1202, 1109, 1071, 1050, 1011, 936.    

HRMS (ESI) m/z: calcd for C13H19O79Br23Na (M+Na)+ 293.0512; found 293.0511.    [α]20
D: +7.2°  

(c=1.00, CHCl3). 

 

(1R,2R,4R,5R)-2,5-bis(4-bromobenzyl)bicyclo[2.2.1]heptane 179: Following general procedure, use 

(PhS)2(20 mol%), DIPEA (40 mol%), target carboxylic acid 178 (26.1 mg, 0.04 mmol, 1.0 equiv) was 
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decarboxylated to the product 179. The product is isolated (100% pentane for column) as white solid 

14.0 mg, 65% yield. 

1H NMR (600 MHz, Chloroform-d) δ 7.37 (d, J = 8.4 Hz, 4H), 7.02 (d, J = 8.5 Hz, 4H), 2.49 (dd, J = 

13.9, 8.3 Hz, 2H), 2.38 (dd, J = 13.9, 7.5 Hz, 2H), 1.97 (d, J = 4.3 Hz, 2H), 1.66 (qd, J = 8.2, 5.1 Hz, 

2H), 1.34 – 1.30 (m, 4H), 1.08 (dt, J = 12.6, 4.6 Hz, 2H).    13C NMR (151 MHz, CDCl3) δ 139.6, 130.2, 

129.6, 118.3, 75.8, 41.8, 40.9, 39.9, 37.0, 30.9.    IR(cm-1): 3000(br, COOH), 2953, 2865, 1702, 1488, 

1450, 1405, 1278, 1181, 1100, 1074, 1011, 933, 817.    HRMS (APCI) m/z: calcd for C11H22
79Br2 (M) 

432.0083; found 432.0089.    [α]20
D: -39.5°  (c=1.00, CHCl3);     m.p. 71-73 °C. 

 

(3aR,6R,7S,8E,11R,12E,13aR)-6-((R)-8-(4-bromophenyl)-7-methyloctyl)-2,2,7,11-tetramethyl-

3a,6,7,10,11,13a-hexahydro-4H-[1,3]dioxolo[4,5-c][1]oxacyclododecin-4-one 183: Following 

general procedure, target carboxylic acid 182 (24.2 mg, 0.04 mmol, 1.0 equiv) was decarboxylated to 

the product 183. The product is isolated (2-5% ether in pentane for column) as colorless oil 17.0 mg, 

76% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.38 (d, J = 8.4 Hz, 2H), 7.01 (d, J = 8.4 Hz, 2H), 5.73 (dd, J = 

15.2, 7.2 Hz, 1H), 5.25 (ddd, J = 15.6, 6.9, 1.0 Hz, 1H), 5.13 – 5.07 (m, 2H), 4.78 (ddd, J = 10.8, 8.5, 

2.7 Hz, 1H), 4.74 (td, J = 6.8, 1.1 Hz, 1H), 4.52 (d, J = 6.7 Hz, 1H), 2.57 (dd, J = 13.5, 6.1 Hz, 1H), 

2.30 (dd, J = 13.5, 8.2 Hz, 1H), 2.24 – 2.15 (m, 3H), 1.98 – 1.90 (m, 1H), 1.70 (s, 3H), 1.68 – 1.61 (m, 

2H), 1.49 – 1.42 (m, 1H), 1.41 (s, 3H), 1.35 – 1.17 (m, 10H), 1.15 – 1.07 (m, 1H), 1.05 (d, J = 6.7 Hz, 

3H), 0.97 (d, J = 6.8 Hz, 3H), 0.82 (d, J = 6.6 Hz, 3H).    13C NMR (151 MHz, CDCl3) δ 170.3, 140.6, 

138.6, 135.0, 131.1, 130.9, 129.8, 123.4, 119.3, 111.0, 78.6, 78.44, 78.35, 43.0, 42.3, 38.7, 36.5, 36.0, 

34.9, 32.4, 29.6, 29.6, 27.0, 26.8, 25.9, 24.9, 21.1, 19.3, 18.1.    IR(cm-1): 2926, 2854, 1748, 1488, 1457, 
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1378, 1253, 1223, 1186, 1085, 1011, 968, 880, 794.    HRMS (APCI) m/z: calcd for C31H46O4
79Br 

(M+H)+ 561.2574; found 561.2579.    [α]20
D: -5.0°  (c=1.00, CHCl3). 

 

1-bromo-4-(((1S,3R)-3-(tert-butyl)cyclohexyl)methyl)benzene 186: Following general procedure, 

target carboxylic acid 185 (17.7 mg, 0.05 mmol, 1.0 equiv) was decarboxylated to the product 186. The 

product is isolated (100% pentane for column) as colorless oil 12.2 mg, 79% yield.  

1H NMR (500 MHz, Chloroform-d) δ 7.38 (d, J = 8.3 Hz, 2H), 7.01 (d, J = 8.2 Hz, 2H), 2.50 (dd, J = 

13.4, 6.3 Hz, 1H), 2.38 (dd, J = 13.4, 7.8 Hz, 1H), 1.80 – 1.68 (m, 3H), 1.63 – 1.56 (m, 1H), 1.51 – 1.41 

(m, 1H), 1.14 (qt, J = 13.6, 3.7 Hz, 1H), 0.99 (tt, J = 11.9, 2.9 Hz, 1H), 0.92 – 0.85 (m, 1H), 0.82 (s, 

9H), 0.80 – 0.72 (m, 1H), 0.67 (q, J = 11.9 Hz, 1H).    13C NMR (126 MHz, cdcl3) δ 140.3, 131.1, 130.9, 

119.3, 47.9, 43.9, 40.2, 34.4, 32.7, 32.5, 27.5, 27.2, 26.5.    IR(cm-1): 2922, 2853, 1487, 1467, 1447, 

1403, 1393, 1365, 1240, 1202, 1113, 1097, 1072, 1012.    HRMS (APCI) m/z: calcd for C17H25
79Br (M) 

308.1145; found 308.1138.  [α]20
D: -7.1°  (c=1.00, CHCl3);    m.p. 163-166 °C. 

 

(((1R,3R)-3-(4-bromobenzyl)cyclohexyl)oxy)(tert-butyl)diphenylsilane 190: Following general 

procedure, target carboxylic acid 189 (27.6 mg, 0.05 mmol, 1.0 equiv) was decarboxylated to the 

product 190. The product is isolated (100% pentane for column) as colorless oil 17.5 mg, 69% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.62 (td, J = 7.9, 1.4 Hz, 4H), 7.40 (td, J = 7.5, 0.9 Hz, 2H), 7.36 

– 7.28 (m, 6H), 6.89 (d, J = 8.4 Hz, 2H), 3.52 (tt, J = 10.7, 4.3 Hz, 1H), 2.41 (dd, J = 13.4, 7.1 Hz, 1H), 

2.35 (dd, J = 13.4, 7.1 Hz, 1H), 1.83 (d, J = 12.4 Hz, 1H), 1.74 (d, J = 13.8 Hz, 1H), 1.62 (dp, J = 13.6, 

3.4 Hz, 1H), 1.48 (d, J = 12.8 Hz, 1H), 1.34 – 1.21 (m, 2H), 1.03 (s, 9H), 1.02 – 0.96 (m, 2H), 0.78 (qd, 

J = 12.9, 3.7 Hz, 1H).    13C NMR (151 MHz, CDCl3) δ 139.7, 135.7, 135.7, 134.71, 134.70, 131.1, 
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130.8, 129.4, 127.4, 119.4, 72.2, 42.9, 42.3, 38.3, 35.8, 31.8, 27.0, 23.9, 19.1.    IR(cm-1): 3070, 2928, 

2855, 1487, 1472, 1462, 1448, 1427, 1373, 1262, 1189, 1104, 1074, 1049.    HRMS (APCI) m/z: calcd 

for C29H54O79Br28Si (M-H)- 505.1568; found 505.1573.  [α]20
D: +23.6°  (c=1.00, CHCl3).   

 

(3S,8S,9S,10R,13R,14S,17R)-17-((R)-7-(4-fluorophenyl)-6,6-dimethylheptan-2-yl)-10,13-

dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanth -ren-3-yl 

acetate 206:  Following general procedure, target carboxylic acid 201 (29 mg, 0.05 mmol, 1.0 equiv) 

was decarboxylated to the product 206. The product is isolated (2-3% ether in pentane for column) as 

white solid in 19 mg, 69% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.08 – 7.03 (m, 2H), 6.97 – 6.90 (m, 2H), 5.38 (d, J = 5.1 Hz, 

1H), 4.65 – 4.56 (m, 1H), 2.46 (s, 2H), 2.34 – 2.27 (m, 2H), 2.03 (s, 3H), 2.03 – 1.94 (m, 2H), 1.88 – 

1.79 (m, 3H), 1.61 – 1.05 (m, 17H), 1.02 (s, 3H), 1.02 – 0.95 (m, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.82 

(6H, 2 CH3 singlet, not a doublet, 0,824 ppm and 0.826 ppm), 0.68 (s, 3H).     13C NMR (151 MHz, 

CDCl3) δ 170.5, 161.3 (d, J = 243.3 Hz), 139.6, 135.1 (d, J = 3.2 Hz), 131.7 (d, J = 7.7 Hz), 122.6, 

114.3 (d, J = 20.9 Hz), 74.0, 56.7, 56.1, 50.0, 47.5, 42.5, 42.3, 39.7, 38.1, 37.0, 36.8, 36.6, 35.9, 34.2, 

31.88, 31.85.     IR(cm-1):2937, 2867, 2850, 1733, 1606, 1508, 1469, 1439, 1374, 1365, 1241, 1223, 

1158, 1033.    HRMS (APCI) m/z: calcd for C36H57O2NF (M+NH4)+ 554.4368; found 554.4353.  [α]20
D: 

-34.2°  (c=1.00, CHCl3).  m.p. 119-121 °C 
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(3S,8S,9S,10R,13R,14S,17R)-17-((R)-7-(4-hydroxyphenyl)-6,6-dimethylheptan-2-yl)-10,13-

dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 

acetate 207:  Following general procedure, target carboxylic acid 202 (31.0 mg, 0.05 mmol, 1.0 equiv) 

was decarboxylated to the product 207. The product is isolated (20% ether in pentane)  as white solid 

in 23.4 mg, 87% yield.  

1H NMR (600 MHz, Chloroform-d) δ 6.97 (d, J = 8.5 Hz, 2H), 6.73 (d, J = 8.5 Hz, 2H), 5.38 (d, J = 

5.0 Hz, 1H), 4.78 (s, 1H), 4.65 – 4.56 (m, 1H), 2.42 (s, 2H), 2.37 – 2.27 (m, 2H), 2.03 (s, 3H), 2.04 – 

1.93 (m, 5H), 1.88 – 1.79 (m, 3H), 1.62 – 1.04 (m, 17H), 1.02 (s, 3H), 1.01 – 0.94 (m, 3H), 0.94 (d, J 

= 6.6 Hz, 3H), 0.82 (6H, 2 CH3 singlet, not a doublet, 0.817 ppm and 0.819 ppm), 0.68 (s, 3H).     13C 

NMR (151 MHz, CDCl3) δ 170.6, 153.5, 139.6, 131.7, 131.5, 122.6, 114.4, 74.0, 56.6, 56.1, 49.9, 47.4, 

42.4, 42.3, 39.7, 38.0, 36.9, 36.8, 36.5, 35.8, 34.1, 31.81, 31.78, 28.2, 27.7, 26.74, 26.72, 24.2, 21.4, 

21.0, 20.5, 19.2, 18.7, 11.8.     IR(cm-1): 3394(broad), 2935, 2867, 2850, 1732, 1711, 1615, 1596, 1514, 

1469, 1442, 1375, 1365, 1270, 1172, 1035.    HRMS (APCI) m/z: calcd for C36H55O3 (M-H)- 535.4146; 

found 535.4130.  [α]20
D: -30.6°  (c=1.00, CHCl3).  m.p. 140-142 °C 

 

(3S,8S,9S,10R,13R,14S,17R)-17-((R)-7-(3-hydroxyphenyl)-6,6-dimethylheptan-2-yl)-10,13-

dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl 

acetate 208: Following general procedure, target carboxylic acid 203 (18.6 mg, 0.03 mmol, 1.0 equiv) 

was decarboxylated to the product 208. The product is isolated (20% ether in pentane) as white solid in 

13.0 mg, 81% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.12 (t, J = 7.8 Hz, 1H), 6.75 – 6.62 (m, 2H), 6.63 – 6.55 (m, 1H), 

5.37 (d, J = 5.0 Hz, 1H), 4.75 (s, 1H), 4.65 – 4.57 (m, 1H), 2.45 (s, 2H), 2.35 – 2.27 (m, 2H), 2.03 (s, 

3H), 2.03 – 1.94 (m, 2H), 1.89 – 1.79 (m, 3H), 1.64 – 1.58 (m, 1H), 1.55 – 1.04 (m, 17H), 1.02 (s, 3H), 

1.01 – 0.94 (m, 3H), 0.94 (d, J = 6.6 Hz, 3H), 0.84 (6H, 2 CH3 singlet, not a doublet, 0.844 ppm and 
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0.846 ppm), 0.68 (s, 3H).      13C NMR (151 MHz, CDCl3) δ 170.6, 154.9, 141.6, 139.7, 128.6, 123.2, 

122.7, 117.5, 112.6, 74.0, 56.7, 56.2, 50.0, 48.3, 42.7, 42.3, 39.7, 38.1, 37.0, 36.9, 36.6, 35.9, 34.3, 

31.90, 31.87, 28.3, 27.8, 27.0, 26.9, 24.3, 21.5, 21.0, 20.6, 19.3, 18.8, 11.9.     IR(cm-1): 3379(broad), 

2936, 2867, 2849, 1733, 1707, 1598, 1587, 1488, 1457, 1375, 1365, 1269, 1243, 1158, 1034.    HRMS 

(ESI) m/z: calcd for C36H55O3 (M+H)+ 535.4146; found 535.4144.  [α]20
D: -31.0°  (c=1.00, CHCl3).  m.p. 

150-152 °C 

 

(3S,8S,9S,10R,13R,14S,17R)-17-((R)-6,6-dimethyl-7-(m-tolyl)heptan-2-yl)-10,13-dimethyl-2,3,4, 

7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate 209: 

Following general procedure, target carboxylic acid 204 (28.8 mg, 0.05 mmol, 1.0 equiv) was 

decarboxylated to the product 209. The product is isolated (2-4% ether in pentane) as white solid in 

19.7 mg, 74% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.15 (t, J = 7.5 Hz, 1H), 7.01 (d, J = 7.5 Hz, 1H), 6.92 (m, 2H), 

5.42 – 5.34 (m, 1H), 4.67 – 4.55 (m, 1H), 2.46 (s, 2H), 2.34 – 2.38 (m, 2H), 2.33 (s, 3H), 2.03 (s, 3H), 

2.03 – 1.94 (m, 2H), 1.90 – 1.79 (m, 3H), 1.64 – 1.03 (m, 17H), 1.02 (s, 3H), 1.02 – 0.95 (m, 3H), 0.94 

(d, J = 6.5 Hz, 3H), 0.84 (6H, 2 CH3 singlet, not a doublet, 0.842 ppm and 0.844 ppm), 0.69 (s, 3H).     

13C NMR (151 MHz, CDCl3) δ 170.5, 139.7, 139.5, 137.0, 131.4, 127.7, 127.4, 126.4, 122.7, 74.0, 56.7, 

56.1, 50.1, 48.2, 42.6, 42.3, 39.7, 38.1, 37.0, 36.9, 36.6, 35.9, 34.2, 31.91, 31.88, 28.3, 27.8, 27.0, 24.3, 

21.47, 21.45, 21.1, 20.6, 19.3, 18.8, 11.9 .     IR(cm-1): 2938, 2867, 2850, 1735, 1607, 1468, 1439, 1374, 

1364, 1241, 1136, 1033, 959.    HRMS (APCI) m/z: calcd for C37H60O2N (M+NH4)+ 550.4619; found 

550.4619.  [α]20
D: -33.0°  (c=1.00, CHCl3).  m.p. 109-111 °C 
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(3S,8S,9S,10R,13R,14S,17R)-17-((R)-6,6-dimethyl-7-phenylheptan-2-yl)-10,13-dimethyl-2,3,4,7, 

8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl acetate 210: 

Following general procedure, target carboxylic acid 205 (28.1 mg, 0.05 mmol, 1.0 equiv) was 

decarboxylated to the product 210. The product is isolated (23% ether in pentane) as white solid in 18.8 

mg, 72% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.26 – 7.23 (m, 2H), 7.21 – 7.17 (m, 1H), 7.13 – 7.10 (m, 2H), 

5.38 (d, J = 5.0 Hz, 1H), 4.65 – 4.56 (m, 1H), 2.50 (s, 2H), 2.36 – 2.27 (m, 2H), 2.03 (s, 3H), 2.03 – 

1.94 (m, 2H), 1.89 – 1.80 (m, 3H), 1.63 – 1.04 (m, 17H), 1.02 (s, 3H), 1.03 – 0.94 (m, 8H), 0.94 (d, J 

= 6.6 Hz, 3H), 0.84 (6H, 2 CH3 singlet, not a doublet, 0.842 ppm and 0.844 ppm), 0.68 (s, 3H).      13C 

NMR (151 MHz, CDCl3) δ 170.5, 139.7, 130.6, 127.6, 125.6, 122.7, 74.0, 56.7, 56.2, 50.0, 48.4, 42.6, 

42.3, 39.7, 38.1, 37.0, 36.9, 36.6, 35.9, 34.3, 31.91, 31.88, 28.3, 27.8, 26.91, 26.90, 24.3, 21.5, 21.0, 

20.6, 19.3, 18.8, 11.9.     IR(cm-1): 2937, 2866, 2850, 1733, 1495, 1469, 1454, 1439, 1373, 1364, 1240, 

1033, 979.    HRMS (APCI) m/z: calcd for C36H58O2N (M+NH4)+ 536.4462; found 536.4461.  [α]20
D: -

30.7°  (c=1.00, CHCl3).  m.p. 80-82 °C 
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6.3  Chapter 4 (Experimental procedures) 

6.3.1 General procedure for diazo compounds synthesis 

Diazo compound 155, I-XI used in this work were pre-synthesized by group in storage following the 

general procedure below. 

 

(1) Aryl acetic acid (1.0 equiv, 20 mmol) and 2,2,2-trihaloethanol (1.1 equiv, 22 mmol) were dissolved 

in 50 mL dichloromethane and stirred at 0 °C in ice/water bath. N,N'-Dicyclohexylcarbodiimide (DCC) 

(1.1 equiv. 22 mmol) was then added to the stirring solution carefully. Catalytic DMAP (0.1 equiv, 2.0 

mmol) was then dissolved in 2 mL DCM and added to the solution. The white precipitation forms 

rapidly, and the solution become milk color. The reaction was kept running for 4 h and warm to r.t. 

naturally. Filter and concentrate the solution give the crude ester product. Purify the ester with a quick 

silica plug (5% Et2O/Pentane) and then concentrate under vacuum, yielding the ester as colorless oil, 

which is directly used for the following diazo transfer step. 

 

(2) Ester from step (1) (1.0 equiv, 10 mmol) and ortho-nitrobenzenesulfonyl azide (o-NBSA) (1.2 equiv, 

12 mmol) were dissolved in 30 mL anhydrous CH3CN. The solution was kept stirring at 0 °C and DBU 

(1.4 equiv, 14 mmol) was added dropwisely to the solution. The color of the solution gradually turned 

orange and it is quenched after 1 h by diluting with 100 mL Et2O followed by adding 100mL NH4Cl 

(sat.) solution. Extract the aqueous layer with Et2O (30 mLx3), combined the organic layers and dry it 

over MgSO4. Silica plug and concentrate give the crude diazo product as orange oil or solid. Further 

purification was done by flash column chromatography (2-5% Et2O/Pentane) 

 

 

*For spectra information of these diazo compounds, refer to the references[1-3].  

Ar CO2CH2CH2X3 + o-NBSA

Ar CO2H + HO CX3

X=Cl,F

1.0 equiv 1.1 equiv

(1)
DCC (1.1 equiv)

DMAP (0.1 equiv)
DCM

0 oC - r.t.,  4h

Ar CO2CH2CX3

(2) DBU (1.4 equiv)

CH3CN
0 oC,  1h

Ar CO2CH2CH2X3

N2

1.0 equiv 1.2 equiv
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 (below are all diazo compounds involved in this study) 

 

6.3.2 General Procedure for mono-allylic-insertion 

To a 16 mL glass reaction vial was added stir bar, 1,5-cyclooctadiene (COD) (0.75 mmol, 2.5 equiv, 81 

mg/~0.1 mL) and Rh2(R-2-Cl,5-BrTPCP)4 (0.1 mol %). The vial was degassed and filled with Ar for 

several times. 2mL anhydrous DCM was then added to the vial and the solution was kept stirring at 

0 °C for 5 min. Aryl diazo ester (0.3 mmol, 1.0 equiv) was dissolved in 4 mL DCM and added 

dropwisely to the vial over 3 h via syringe pump.  The reaction was kept running for 2 h after the 

addition of diazo compound is finished. The solution was concentrated to give oil mixture and the crude 

1H NMR was obtained for dr analysis. Further purification was done by column chromatography (0.8-

10% Et2O in pentane depending on substrate), giving product as colorless oil. 

 

(R)-methyl 2-(4-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 227: Derived from the 

reaction of diazo I (0.3 mmol, 77 mg) and COD (0.75 mmol, 81 mg) following general procedure, 

purified by column chromatography (2.5% Et2O in pentane). Product: 74 mg, 73% yield; 72% ee.; 

11.6:1 dr, colorless oil.  
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1H NMR (600 MHz, CDCl3) δ 7.43 (m, 2H), 7.22 (m, 2H), 5.57 (q, J = 4.5 Hz, 2H), 5.49 – 5.42 (m, 

1H), 5.01 (dd, J = 11.6, 6.9 Hz, 1H), 3.67 (s, 3H), 3.51 – 3.44 (m, 1H), 3.39 (d, J = 10.5 Hz, 1H), 2.55 

– 2.46 (m, 1H), 2.38 (dq, J = 13.7, 3.6, 2.7 Hz, 1H), 2.35 – 2.24 (m, 3H), 2.22 – 2.16 (m, 1H).  13C 

NMR (151 MHz, CDCl3) δ 173.50, 136.55, 131.58, 130.46, 129.96, 129.35, 129.28, 127.23, 121.41, 

57.48, 52.10, 42.16, 33.05, 27.91, 27.46.  IR: 3010, 2949, 2885, 1732, 1488, 1433, 1340, 1266, 1153, 

1073, 1011, 813, 763 (cm-1);  HRMS-(APCI) m/z: found at 335.0643 [(M+H)+ : [C17H20O2Br]+ 

calculates to be 335.0641];  [α]20
D: -35.1°  (c=1.00, CHCl3); 

 

(R)-2,2,2-trichloroethyl 2-(4-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 226: 

Derived from the reaction of diazo 155 (0.2 mmol, 75 mg) and COD (0.5 mmol, 81 mg) following 

general procedure, purified by column chromatography (1-2% Et2O in pentane). Product: 66 mg, 72% 

yield; 91% ee.; dr > 30:1, colorless oil.  A large-scale reaction was also performed for this reaction. 

Diazo I (3.0 mmol, 1.12 g) and COD (6.0 mmol, 650 mg) was reacted to generate the product at yield: 

1.08 g, 80% yield; 89% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.45 (m, 2H), 7.26 (m, 2H), 5.58 (q, J = 6.1, 5.7 Hz, 2H), 5.48 (dt, J = 

13.0, 7.1 Hz, 1H), 5.03 (dd, J = 11.6, 6.7 Hz, 1H), 4.77 (d, J = 12.0 Hz, 1H, H of CH2 next to CCl3), 

4.66 (d, J = 12.0 Hz, 1H, H of CH2 next to CCl3), 3.58 (td, J = 10.4, 5.4 Hz, 1H), 3.53 (d, J = 10.5 Hz, 

1H), 2.57 – 2.44 (m, 2H), 2.38 – 2.26 (m, 3H), 2.24 – 2.16 (m, 1H).  13C NMR (151 MHz, CDCl3) δ 

171.3, 135.6, 131.7, 130.6, 129.7, 129.4, 127.0, 121.8, 94.7, 74.2, 57.4, 41.8, 33.1, 27.9, 27.5.  IR:  3012, 

2888, 1749, 1488, 1428, 1407, 1371, 1270, 1200, 1134, 1074, 1012, 824 (cm-1);  HRMS-(APCI) m/z: 

found at 450.9632 [(M+H)+ : [C18H19O2BrCl3]+ calculates to be 450.9629];  [α]20
D: -24.8°  (c=1.00, 

CHCl3); 
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(R)-2,2,2-trifluoroethyl 2-(4-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 228: 

Derived from the reaction of diazo II (0.3 mmol, 97 mg) and COD (0.75 mmol, 81 mg) following 

general procedure, purified by column chromatography (0.8-1.5% Et2O in pentane). Product: 100 mg, 

83% yield; 93% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.47 – 7.44 (m, 2H), 7.24 – 7.20 (m, 2H), 5.61 – 5.53 (m, 2H), 5.51 – 

5.46 (m, 1H), 5.02 (dd, J = 11.6, 6.1 Hz, 1H), 4.56 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 

4.35 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 3.53 – 3.46 (m, 2H), 2.49 (ddt, J = 17.9, 11.9, 

5.7 Hz, 1H), 2.42 – 2.17 (m, 5H).  13C NMR (151 MHz, CDCl3) δ 171.5, 135.5, 131.8, 130.4, 129.8, 

129.5, 129.3, 126.8, 122.8 (q, J=277.8 Hz, C of CF3), 121.8, 60.5 (q, J=36.7 Hz, C of CH2 next to 

CF3), 56.9, 42.2, 32.7, 28.0, 27.4.  IR: 3014, 2889, 1751, 1488, 1407, 1280, 1164, 1131, 1071, 1036, 

1011, 978, 812 (cm-1);  HRMS-(APCI) m/z: found at 401.0361 [(M-H)- : [C18H17O2BrF3]- calculates to 

be 401.0359];  [α]20
D: -39.2°  (c=1.00, CHCl3); 

 

(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(4-iodophenyl)acetate 229: 

Derived from the reaction of diazo III (0.3 mmol, 111 mg) and COD (0.75 mmol, 81 mg) following 

general procedure, purified by column chromatography (2% Et2O in pentane). Product: 117 mg, 78% 

yield; 95% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.72 – 7.60 (m, 2H), 7.14 – 7.04 (m, 2H), 5.56 (tq, J = 11.6, 5.9 Hz, 2H), 

5.52 – 5.44 (m, 1H), 5.02 (dd, J = 10.9, 5.5 Hz, 1H), 4.56 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to 

CF3), 4.34 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 3.53 – 3.44 (m, 2H), 2.48 (ddt, J = 17.6, 
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11.9, 5.7 Hz, 1H), 2.42 – 2.16 (m, 5H).  13C NMR (151 MHz, CDCl3) δ 171.5, 137.7, 136.1, 130.7, 

129.8, 129.5, 129.3, 126.8, 122.8 (q, J=277.8 Hz, C of CF3), 93.5, 60.5 (q, J=36.7 Hz, C of CH2 next 

to CF3), 57.0, 42.1, 32.7, 28.0, 27.4.  IR: 3013, 2887, 1750, 1485, 1404, 1279, 1164, 1129, 1062, 1006, 

977, 810, 758 (cm-1);  HRMS-(APCI) m/z: found at 451.0379 [(M+H)+ : [C18H19O2F3I]+ calculates to 

be 451.0376];  [α]20
D: -36.5°  (c=1.00, CHCl3); 

 

(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(4-methoxyphenyl)acetate 230: 

Derived from the reaction of diazo IV (0.3 mmol, 82 mg) and COD (0.75 mmol, 81 mg) following 

general procedure, purified by column chromatography (2-4% Et2O in pentane). Product: 77 mg, 72% 

yield; 81% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.25 (m, 2H), 6.88 – 6.82 (m, 2H), 5.61 – 5.53 (m, 2H), 5.51 – 5.43 (m, 

1H), 5.06 (dd, J = 11.6, 6.3 Hz, 1H), 4.56 (dq, J = 12.7, 8.5 Hz, 1H, H of CH2 next to CF3), 4.33 (dq, 

J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 3.79 (s, 3H), 3.55 – 3.45 (m, 2H), 2.51 (ddt, J = 17.2, 

11.6, 5.8 Hz, 1H), 2.40 (dt, J = 15.1, 3.9 Hz, 1H), 2.36 – 2.24 (m, 3H), 2.20 (dq, J = 16.8, 4.8 Hz, 1H).  

13C NMR (151 MHz, CDCl3) δ 172.1, 159.1, 129.9, 129.8, 129.4, 129.3, 128.5, 127.1, 122.9 (q, J=277.4 

Hz, C of CF3), 114.0, 60.3 (q, J=36.6 Hz, C of CH2 next to CF3), 56.7, 55.2, 42.1, 32.8, 28.0, 27.4.  

IR: 3012, 2891, 1750, 1610, 1511, 1465, 1407, 1283,1249, 1163, 1128, 1034, 978 (cm-1);  

HRMS-(APCI) m/z: found at 355.1517 [(M+H)+ : [C19H22O3F3]+ calculates to be 355.1516]; [α]20
D: -

34.5°  (c=1.00, CHCl3); 
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(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(4-(trifluoromethyl)phenyl) 

acetate 231: Derived from the reaction of diazo V (0.3 mmol, 94 mg) and COD (0.75 mmol 81 mg) 

following general procedure, purified by column chromatography (1-2% Et2O in pentane). Product: 91 

mg, 78% yield; 94% ee.; dr > 30:1, white solid. (Single Crystal structure obtained for this compound);   

1H NMR (600 MHz, CDCl3) δ 7.59 (d, J = 8.1 Hz, 2H), 7.47 (d, J = 8.1 Hz, 2H), 5.63 – 5.53 (m, 2H), 

5.49 (dddd, J = 11.6, 7.6, 5.9, 1.1 Hz, 1H), 5.01 (dd, J = 11.7, 6.8 Hz, 1H), 4.57 (dq, J = 12.7, 8.4 Hz, 

1H, H of CH2 next to CF3 in ester), 4.36 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3 in ester), 

3.62 (d, J = 10.3 Hz, 1H), 3.54 (tt, J = 10.6, 5.5 Hz, 1H), 2.49 (ddt, J = 16.6, 11.8, 5.4 Hz, 1H), 2.43 – 

2.18 (m, 5H).  13C NMR (151 MHz, CDCl3) δ 171.3, 140.4, 130.0 (q, J=32.5 Hz, C on Ar ring next to 

CF3), 130.1, 129.6, 129.2, 129.1, 126.7, 125.5 (q, J=3.7 Hz, C on Ar ring next to the 130.02 C), 124.0 

(q, J=272.3 Hz, C of CF3 on the Ar ring), 122.8 (q, J=277.7 Hz, C of CF3 in the ester), 60.6 (q, J=36.7 

Hz, C of CH2 next to CF3 in ester), 57.3, 42.3, 32.7, 28.0, 27.3.   IR: 3017, 2893, 1755, 1619, 1422, 

1326, 1286, 1166, 1130, 1069, 1020, 980, 838 (cm-1);  HRMS-(APCI) m/z: found at 393.1284 [(M+H)+ : 

[C19H19O2F6]+ calculates to be 393.1284];  [α]20
D: -43.5°  (c=1.00, CHCl3);  m.p. 58-60 °C 

 

(R)-2,2,2-trifluoroethyl 2-(4-(tert-butyl)phenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 232: 

Derived from the reaction of diazo VI (0.3 mmol, 90 mg) and COD (0.75 mmol, 81 mg) following 

general procedure, purified by column chromatography (0.8-1.5% Et2O in pentane). Product: 98 mg, 

85% yield; 88% ee.; dr > 30:1, colorless oil. 

1H NMR (500 MHz, CDCl3) δ 7.35 – 7.30 (m, 2H), 7.27 – 7.23 (m, 2H), 5.63 – 5.52 (m, 2H), 5.51 – 

5.43 (m, 1H), 5.08 (dd, J = 11.0, 5.5 Hz, 1H), 4.58 (dq, J = 12.7, 8.5 Hz, 1H, H of CH2 next to CF3), 

4.30 (dq, J = 12.9, 8.5 Hz, 1H, H of CH2 next to CF3), 3.55 – 3.48 (m, 2H), 2.50 (ddt, J = 16.8, 11.2, 

5.3 Hz, 1H), 2.45 – 2.17 (m, 5H), 1.30 (s, 9H).  13C NMR (126 MHz, CDCl3) δ 172.1, 150.5, 133.2, 

129.9, 129.4, 129.2, 128.3, 127.1, 125.5, 122.9 (q, J=277.5 Hz, C of CF3), 77.0, 60.3 (q, J=37.1 Hz, C 
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H

CO2CH2CF3

tBu

232



 162 

of CH2 next to CF3), 57.0, 42.10, 34.5, 32.5, 31.3, 28.0, 27.3.  IR: 3014, 2964, 2890, 1753, 1508, 1408, 

1365, 1283, 1166, 1131, 1062, 979, 841 (cm-1);  HRMS-(APCI) m/z: found at 381.2037 [(M+H)+ : 

[C22H28O2F3]+ calculates to be 381.2036];  [α]20
D: -33.2°  (c=1.00, CHCl3); 

 

(R)-2,2,2-trifluoroethyl 2-(4-acetoxyphenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 233: 

Derived from the reaction of diazo VII (0.2 mmol, 60 mg) and COD (0.5 mmol, 54 mg) following 

general procedure, purified by column chromatography (6-10% Et2O in pentane). Product: 53 mg, 70% 

yield; 79% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.38 – 7.32 (m, 2H), 7.09 – 7.02 (m, 2H), 5.62 – 5.52 (m, 2H), 5.48 

(dddd, J = 11.7, 7.7, 6.0, 1.1 Hz, 1H), 5.05 (dd, J = 11.6, 6.5 Hz, 1H), 4.58 (dq, J = 12.7, 8.4 Hz, 1H), 

4.33 (dq, J = 12.7, 8.4 Hz, 1H), 3.54 (d, J = 10.4 Hz, 1H), 3.49 (m, 1H), 2.49 (ddt, J = 17.9, 11.9, 5.8 

Hz, 1H), 2.43 – 2.24 (m, 7H, 2.29 (s, 3H for Me in OAc)), 2.24 – 2.17 (m, 1H).  13C NMR (151 MHz, 

CDCl3) δ 171.7, 169.3, 150.2, 133.9, 129.8, 129.6, 129.5, 129.5, 126.9, 122.9 (q, J=277.4 Hz, C of CF3), 

121.6, 60.4 (q, J=36.6 Hz, C of CH2 next to CF3), 56.9, 42.3, 32.6, 28.0, 27.3, 21.2.  IR: 3014, 2891, 

1752, 1507, 1408, 1370, 1283, 1198, 1166, 1132, 1018, 978, 912 (cm-1);  HRMS-(APCI) m/z: found at 

383.1465 [(M+H)+ : [C20H22O4F3]+ calculates to be 383.1465];  [α]20
D: -32.4°  (c=1.00, CHCl3); 

 

 

(R)-2,2,2-trifluoroethyl 2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)-2-(6-(trifluoromethyl)pyridin-3-

yl)acetate 234: Derived from the reaction of diazo VIII (0.3 mmol, 84 mg) and COD (0.75 mmol, 81 
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mg) following general procedure, purified by column chromatography (5-8% Et2O in pentane). Product: 

78 mg, 72% yield; 87% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 8.31 (d, J = 2.4 Hz, 1H), 7.71 (dd, J = 8.3, 2.5 Hz, 1H), 7.31 (d, J = 8.3 

Hz, 1H), 5.62 – 5.50 (m, 3H), 5.03 (dd, J = 11.6, 6.9 Hz, 1H), 4.58 (dq, J = 12.7, 8.3 Hz, 1H, H of CH2 

next to CF3), 4.40 (dq, J = 12.7, 8.3 Hz, 1H, H of CH2 next to CF3), 3.58 (d, J = 9.8 Hz, 1H), 3.48 (p, 

J = 7.9 Hz, 1H), 2.44 (td, J = 13.6, 11.5, 8.5 Hz, 1H), 2.37 – 2.32 (m, 2H), 2.32 – 2.18 (m, 3H).  13C 

NMR (151 MHz, CDCl3) δ 170.9, 151.0, 150.0, 138.8, 131.1, 130.8, 129.7, 128.4, 126.4, 124.2, 122.7 

(q, J=278.6 Hz, C of CF3), 60.7 (q, J=36.8 Hz, C of CH2 next to CF3), 54.0, 42.4, 32.7, 27.9, 27.2.  IR: 

3014, 2891, 1752, 1584, 1565, 1462, 1410, 1391, 1278, 1166, 1138, 1107, 1023, 978 (cm-1);  HRMS-

(APCI) m/z: found at 360.0971 [(M+H)+ : [C17H18O2NClF3]+ calculates to be 360.0973];  [α]20
D: -33.4°  

(c=1.00, CHCl3); 

 

2,2,2-trichloroethyl (R)-2-(3-bromophenyl)-2-((S,2Z,6Z)-cycloocta-2,6-dien-1-yl)acetate 235: 

Derived from the reaction of diazo IX (0.3 mmol, 97 mg) and COD (0.75 mmol, 81 mg) following 

general procedure, purified by column chromatography (6-10% Et2O in pentane). Product: 78 mg, 64% 

yield; 63% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, Chloroform-d) δ 7.50 (t, J = 1.8 Hz, 1H), 7.42 (ddd, J = 7.9, 2.0, 1.1 Hz, 1H), 7.28 

(dt, J = 7.8, 1.3 Hz, 1H), 7.20 (t, J = 7.8 Hz, 1H), 5.63 – 5.53 (m, 2H), 5.53 – 5.47 (m, 1H), 5.04 (dd, J 

= 11.6, 6.3 Hz, 1H), 4.59 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 4.35 (dq, J = 12.7, 8.4 Hz, 

1H, H of CH2 next to CF3), 3.54 – 3.42 (m, 2H), 2.48 (ddt, J = 17.5, 11.8, 5.6 Hz, 1H), 2.43 – 2.17 (m, 

5H). 13C NMR (151 MHz, CDCl3) δ 171.4, 138.6, 131.8, 130.9, 130.1, 129.9, 129.6, 129.2, 127.4, 126.7, 

122.8 (q, J =277.3 Hz, C of CF3),122.6, 60.5 (q, J =36.7 Hz, C of CH2 next to CF3), 57.0, 42.3, 32.5, 

28.0, 27.3.  IR: 3014,2890, 1754, 1593, 1570, 1475, 1429, 1408, 1282, 1169, 1136, 1075, 997, 979 (cm-

1);  HRMS-(APCI) m/z: found at 403.0510 [(M+H)+ : [C18H19O2F3Br]+ calculates to be 403.0515]; [α]20
D: 

-39.9°  (c=1.00, CHCl3); 
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bis(2,2,2-trichloroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)(2S,2'S,3E,3'E)-bis(4-

phenylbut-3-enoate) 236: Derived from the reaction of diazo X (0.2 mmol, 67 mg) and COD (0.5 

mmol, 54 mg) following general procedure, purified by column chromatography (6-10% Et2O in 

pentane). Product: 53 mg, 67% yield; 88% ee.; dr > 30:1, colorless oil. 

1H NMR (600 MHz, CDCl3) δ 7.40 – 7.37 (m, 2H), 7.32 (t, J = 7.6 Hz, 2H), 7.26 – 7.23 (m, 1H), 6.55 

(d, J = 15.8 Hz, 1H), 6.25 (dd, J = 15.8, 9.5 Hz, 1H), 5.67 – 5.61 (m, 1H), 5.61 – 5.54 (m, 2H), 5.42 

(dd, J = 11.6, 6.8 Hz, 1H), 4.83 (d, J = 12.0 Hz, 1H), 4.73 (d, J = 12.0 Hz, 1H), 3.35 (td, J = 11.8, 7.1 

Hz, 1H), 3.28 – 3.21 (m, 1H), 2.44 (dtt, J = 16.8, 7.5, 4.4 Hz, 3H), 2.36 – 2.26 (m, 2H), 2.22 (dt, J = 

15.4, 3.9 Hz, 1H). 13C NMR (151 MHz, CDCl3) δ 171.6, 136.6, 134.2, 129.9, 129.4, 129.2, 128.6, 127.8, 

127.1, 126.5, 124.9, 94.9, 74.1, 55.3, 41.5, 32.8, 27.9, 27.5.  IR: 3011, 2952, 2888, 1747, 1496, 1449, 

1428, 1373, 1257, 1196, 1133, 966, 802 (cm-1);  HRMS-(APCI) m/z: found at 399.0682 [(M+H)+ : 

[C20H22O2Cl3I]+ calculates to be 399.0680]; [α]20
D: -39.9° (c=1.00, CHCl3); 

 

(R)-2,2,2-trifluoroethyl 2-((R,2E,6E,10E)-cyclododeca-2,6,10-trien-1-yl)-2-(4-iodophenyl)acetate 

246 (major) & (R)-2,2,2-trifluoroethyl 2-((S,2E,6E,10E)-cyclododeca-2,6,10-trien-1-yl)-2-(4-

iodophenyl)acetate 186 (minor): Derived from the reaction of diazo V (0.3 mmol, 111 mg) and Triene 

245 (0.75 mmol, 122 mg) following general procedure, purified by column chromatography (2% Et2O 

in pentane). Product: 118 mg (combined for 246 (major) and 246 (minor)), 78% yield; dr =1:0.86 [186 

(major):246 (minor)]; 92% ee. for 246 (major), 96% ee. for 246 (minor); white solid. The 2 

236
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diastereomers were fully separated and characterized using prep HPLC. (Single crystal structure 

obtained for 246 (major).) 

 

246(major):  

1H NMR (600 MHz, CDCl3) δ 7.69 – 7.58 (m, 2H), 7.03 – 6.98 (m, 2H), 5.08 – 4.91 (m, 4H), 4.88 (ddd, 

J = 14.7, 10.6, 3.9 Hz, 1H), 4.59 (ddd, J = 15.0, 9.9, 1.4 Hz, 1H), 4.52 (dq, J = 12.7, 8.4 Hz, 1H, H of 

CH2 next to CF3), 4.35 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 3.47 (d, J = 9.8 Hz, 1H), 

2.72 (qd, J = 10.0, 2.7 Hz, 1H), 2.25 – 2.17 (m, 3H), 2.18 – 2.12 (m, 1H), 2.05 – 2.00 (m, 1H), 1.90 – 

1.82 (m, 2H), 1.82 – 1.74 (m, 2H), 1.67 (tdd, J = 13.2, 10.8, 2.9 Hz, 1H).  13C NMR (151 MHz, CDCl3) 

δ 171.5, 137.4, 136.2, 134.1, 132.3, 131.3, 130.9, 130.7, 129.6, 122.8 (q, J=277.5 Hz, C of CF3), 93.1, 

65.9, 60.4 (q, J=36.6 Hz, C of CH2 next to CF3), 56.2, 46.8, 37.3, 32.2, 32.14, 32.12, 31.9, 29.7, 15.3.  

IR: 2971, 2929, 2913, 2847, 1748, 1485, 1445, 1433, 1410, 1347, 1277, 1146, 1132, 1007, 981 (cm-1);  

HRMS-(APCI) m/z: found at 505.0846 [(M+H)+ : [C22H25O2F3I]+ calculates to be 505.0846];  [α]20
D: -

175.5°  (c=1.00, CHCl3);  m.p. 126-131°C 

 

246 (minor): 

1H NMR (600 MHz, CDCl3) δ 7.71 – 7.63 (m, 2H), 7.16 – 7.09 (m, 2H), 5.17 (ddd, J = 14.3, 10.0, 3.9 

Hz, 1H), 5.05 – 4.94 (m, 3H), 4.93 – 4.84 (m, 2H), 4.44 (dq, J = 12.7, 8.5 Hz, 1H, H of CH2 next to 

CF3), 4.27 (dq, J = 12.7, 8.4 Hz, 1H, H of CH2 next to CF3), 3.41 (d, J = 10.8 Hz, 1H), 2.63 (qd, J = 

11.1, 3.0 Hz, 1H), 2.26 – 2.12 (m, 4H), 1.92 – 1.78 (m, 5H), 1.57 – 1.48 (m, 2H).  13C NMR (151 MHz, 

CDCl3) δ 171.1, 137.8, 136.0, 133.6, 132.4, 131.8, 131.4, 131.2, 130.61, 130.60, 129.4, 122.9 (q, 

J=277.4 Hz, C of CF3), 93.4, 65.9, 60.4 (q, J=36.6 Hz, C of CH2 next to CF3), 56.7, 47.2, 35.8, 32.22, 

32.19, 32.1, 31.2, 29.7, 15.3;  IR: 2912, 2844, 1753, 1485, 1436, 1404, 1279, 1168, 1128, 1063, 1007, 

978, 958 (cm-1);  HRMS-(APCI) m/z: found at 505.0846 [(M+H)+ : [C22H25O2F3I]+ calculates to be 

505.0846];  [α]20
D: +103.2°  (c=1.00, CHCl3);  m.p. 85-87°C 
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6.3.3 General Procedure for bis-allylic-insertion 

       To a 16 ml glass reaction vial was added stir bar, 1,5-cyclooctadiene (COD) (0.3 mmol, 1.0 equiv, 

32 mg) and Rh2(2-Cl,5-BrTPCP)4 (0.1 mol%). The vial was degassed and filled with Ar several times. 

2mL anhydrous DCM was then added to the vial and the solution was kept stirring at 40 °C for 5min. 

Aryl diazo ester (0.9 mmol, 3.0 equiv) was dissolved in 4ml DCM and added dropwisely to the vial 

over 3 h via syringe pump.  The reaction was kept running for 2 h after the addition of diazo compound 

is finished. The solution was concentrated to give oil crude, 1HNMR was obtained for dr analysis. 

Further purification was done by column chromatography (2-4% Et2O in pentane) or 5% AgNO3 on 

silica column chromatography (4-10% Et2O in pentane), giving product as sticky oil or white solid. 

 

dimethyl 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)(2R,2'R)-bis(2-(4-bromophenyl)acetate) 

237:  Derived from the reaction of diazo I (0.9 mmol, 230 mg, 3.0 equiv) and COD (0.3 mmol, 32 mg, 

1.0 equiv) following general procedure, major dr purified by normal column chromatography (6-8% 

Et2O in pentane). Product: 141 mg, 84% yield; >99% ee.; dr = 6.5:1, white foam solid. 

1H NMR (600 MHz, CDCl3) δ 7.44 (d, J = 8.5 Hz, 4H), 7.20 (d, J = 8.5 Hz, 4H), 5.44 (ddd, J = 11.6, 

7.9, 6.0 Hz, 2H), 5.04 (dd, J = 11.6, 6.6 Hz, 2H), 3.67 (s, 6H), 3.41-3.35 (m, 2H), 3.37 (d, J = 2.8 Hz, 

2H), 2.28 – 2.11 (m, 4H).  13C NMR (151 MHz, CDCl3) δ 173.3, 136.2, 131.6, 130.4, 130.4, 128.4, 

121.5, 57.4, 52.2, 42.0, 32.7.  IR: 2950, 1734, 1590, 1488, 1434, 1407, 1339, 1264, 1156, 1073, 1011, 

908, 819 (cm-1);  HRMS-(APCI) m/z: found at 561.0275 [(M+H)+ : [C26H27O4Br2]+ calculates to be 

561.0271];  [α]20
D: -55.8°  (c=1.00, CHCl3);  m.p. 66-70 °C 
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(2R,2'R)-bis(2,2,2-trichloroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-

bromophenyl)acetate) 238:  Derived from the reaction of diazo 155 (0.9 mmol, 335 mg, 3.0 equiv) 

and COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by normal 

column chromatography (2% Et2O in pentane). Product: 152 mg, 55% yield; >99% ee.; dr = 3.2:1, white 

foam solid. A larger scale of reaction at COD (0.8 mmol, 86 mg) and diazo113 (2.4 mmol, 3.0 equiv 

893 mg) was performed, given 340 mg product, 53% yield , >99% ee. dr = 3.2:1.  

1H NMR (600 MHz, CDCl3) δ 7.51 – 7.41 (m, 4H), 7.26 – 7.23 (m, 4H), 5.51 – 5.41 (m, 2H), 5.04 (dd, 

J = 11.3, 7.9 Hz, 2H), 4.76 (d, J = 12.0 Hz, 2H, H of CH2 next to CCl3), 4.68 (d, J = 12.0 Hz, 2H, H 

of CH2 next to CCl3), 3.67 (qd, J = 10.1, 8.0, 5.4 Hz, 2H), 3.47 (d, J = 10.2 Hz, 2H), 2.47 – 2.36 (m, 

2H), 2.14 (ddd, J = 15.9, 12.5, 8.0 Hz, 2H).  13C NMR (151 MHz, CDCl3) δ 170.8, 135.2, 131.8, 130.6, 

130.0, 128.6, 121.9, 94.7, 74.3, 57.7, 41.1, 33.4.  IR: 2924, 1750, 1489, 1408, 1371, 1262, 1216, 1136, 

1074, 1012, 826, 762, 719 (cm-1);  HRMS-(APCI) m/z: found at 792.8262 [(M+H)+ : [C28H25O4Br2Cl6]+ 

calculates to be 792.8245];  [α]20
D: +21.8°  (c=1.00, CHCl3);  m.p. 48-52 °C 

 

(2R,2'S)-bis(2,2,2-trichloroethyl) 2,2'-((1R,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-

bromophenyl)acetate) 238 (meso minor dr): Originally isolated from the reaction that give 238 

(major). Clean preparation of 238 (minor) is derived from mono insertion product 226 (0.4 mmol, 181 

mg, 1.0 equiv) and diazo 155 (0.8 mmol, 298 mg, 2.0 equiv) following general procedure using the 

H
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Br Br
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different enantiomer of catalyst. Purify this meso product with column chromatography (2% Et2O in 

pentane). Product: 168 mg, 53% yield, white foam solid. 

1H NMR (600 MHz, CDCl3) δ 7.48 – 7.43 (m, 4H), 7.26 – 7.22 (m, 4H), 5.57 (dtd, J = 10.7, 8.8, 1.8 

Hz, 2H), 5.15 (dd, J = 11.7, 4.3 Hz, 2H), 4.79 (d, J = 12.0 Hz, 2H), 4.63 (d, J = 12.0 Hz, 2H), 3.62 (d, 

J = 10.8 Hz, 2H), 3.24 – 3.15 (m, 2H), 2.53 (ddd, J = 13.9, 9.1, 4.7 Hz, 2H), 2.46 – 2.35 (m, 2H).  13C 

NMR (151 MHz, CDCl3) δ 171.1, 135.3, 131.8, 130.9, 130.6, 127.3, 122.0, 94.6, 74.2, 56.0, 43.2, 30.2.  

IR: 2952, 2874, 1748, 1488, 1447, 1408, 1371, 1331, 1269, 1206, 1130, 1074, 1011 (cm-1);  HRMS-

(APCI) m/z: found at 792.8262 [(M+H)+ : [C28H25O4Br2Cl6]+ calculates to be 792.8245];  m.p. 50-55 °C 

 

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-

bromophenyl)acetate) 239:  Derived from the reaction of diazo II (0.9 mmol, 290 mg, 3.0 equiv) and 

COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by AgNO3 column 

chromatography (4-8% Et2O in pentane). Product: 160 mg, 76 % yield; >99% ee.; dr = 6.5:1, sticky oil 

to half solid. 

1H NMR (500 MHz, CDCl3) δ 7.53 – 7.42 (m, 4H), 7.24 – 7.14 (m, 4H), 5.46 (ddd, J = 12.6, 7.9, 5.3 

Hz, 2H), 5.04 (dd, J = 11.5, 7.3 Hz, 2H), 4.50 (ddd, J = 13.1, 8.7, 4.5 Hz, 2H, H of CH2 next to CF3), 

4.44 (ddd, J = 12.7, 8.7, 4.5 Hz, 2H, H of CH2 next to CF3), 3.58 – 3.47 (m, 3H), 3.46 (d, J = 10.0 Hz, 

2H), 2.25 (dt, J = 15.4, 4.6 Hz, 2H), 2.14 (ddd, J = 15.5, 12.0, 8.2 Hz, 2H).  13C NMR (126 MHz, cdcl3) 

δ 171.0, 135.0, 131.8, 130.4, 129.8, 128.5, 122.8 (q, J=277.7 Hz, C of CF3), 122.0, 60.5 (q, J=36.6 Hz, 

C of CH2 next to CF3), 57.0, 41.6, 32.7.  IR: 3017, 1753, 1489, 1408, 1282, 1168, 1138, 1074, 1012, 

978, 817, 760, 644 (cm-1);  HRMS-(APCI) m/z: found at 694.9880 [(M-H)- : [C28H23O4Br2F6]+ 

calculates to be 694.9873];  [α]20
D: -10.2°  (c=1.00, CHCl3); 
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(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-

iodophenyl)acetate) 240:  Derived from the reaction of diazo III (0.9 mmol, 333 mg, 3.0 equiv) and 

COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by AgNO3 column 

chromatography (4-8% Et2O in pentane). Product: 156 mg, 66 % yield; >99% ee.; dr = 6.8:1, white 

solid. 

1H NMR (600 MHz, CDCl3) δ 7.68 – 7.64 (m, 4H), 7.08 – 7.05 (m, 4H), 5.46 (ddd, J = 12.4, 7.8, 5.4 

Hz, 2H), 5.04 (dd, J = 11.5, 7.4 Hz, 2H), 4.50 (dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 4.43 

(dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 3.55 – 3.47 (m, 2H), 3.44 (d, J = 10.0 Hz, 2H), 2.24 

(dt, J = 15.3, 4.7 Hz, 2H), 2.14 (ddd, J = 15.6, 12.3, 8.2 Hz, 2H).  13C NMR (151 MHz, CDCl3) δ 171.0, 

137.8, 135.7, 130.6, 129.8, 128.6, 122.8 (q, J=277.7 Hz, C of CF3), 93.6, 60.6 (q, J=36.7 Hz, C of CH2 

next to CF3), 57.1, 41.6, 32.7.  IR: 3017, 1752, 1485, 1405, 1281, 1168, 1138, 1063, 1007, 978, 815, 

757, 644 (cm-1);  HRMS-(APCI) m/z: found at 792.9745 [(M+H)+ : [C28H25O4F6I2]+ calculates to be 

792.9741];  [α]20
D: -7.1°  (c=1.00, CHCl3);  m.p. 113-116 °C; 

 

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-

methoxyphenyl)acetate) 241:  Derived from the reaction of diazo IV (0.9 mmol, 247 mg, 3.0 equiv) 

and COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by AgNO3 
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column chromatography (4-8% Et2O in pentane). Product: 96 mg, 53% yield; >99% ee.; dr = 4.2:1, 

white solid. 

1H NMR (600 MHz, CDCl3) δ 7.26 – 7.23 (m, 4H), 6.90 – 6.83 (m, 4H), 5.45 (ddd, J = 12.1, 7.7, 5.1 

Hz, 2H), 5.05 (dd, J = 11.5, 7.6 Hz, 2H), 4.49 (dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 4.42 

(dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 3.80 (s, 6H), 3.63 – 3.52 (m, 2H), 3.44 (d, J = 10.3 

Hz, 2H), 2.31 (dt, J = 15.4, 4.5 Hz, 2H), 2.19 (ddd, J = 15.7, 12.3, 8.1 Hz, 2H).  13C NMR (151 MHz, 

CDCl3) δ 171.8, 159.2, 130.3, 129.7, 128.2, 122.9 (q, J=277.7 Hz, C of CF3), 114.1, 60.4 (q, J=36.6 Hz, 

C of CH2 next to CF3), 56.9, 55.2, 41.6, 32.9.  IR: 2962, 2839, 1750, 1610, 1511, 1464, 1408, 1283, 

1249, 1164, 1133, 1034, 977 (cm-1);  HRMS-(APCI) m/z: found at 601.2021 [(M+H)+ : [C30H31O6F6]+ 

calculates to be 601.2029];   [α]20
D: -17.2°  (c=1.00, CHCl3);  m.p. 89-93 °C 

 

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-

(trifluoromethyl)phenyl)acetate) 242:  Derived from the reaction of diazo V (0.9 mmol, 281 mg, 3.0 

equiv) and COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by 

AgNO3 column chromatography (3-6% Et2O in pentane). Product: 123 mg, 61 % yield; >99 % ee.; dr 

= 7.9:1, white solid. 

1H NMR (600 MHz, CDCl3) δ 7.59 (d, J = 8.1 Hz, 4H), 7.45 (d, J = 8.1 Hz, 4H), 5.49 (ddd, J = 11.7, 

8.0, 5.5 Hz, 2H), 5.06 (dd, J = 11.5, 7.0 Hz, 2H), 4.52 (dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 

4.44 (dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 3.59 (d, J = 9.7 Hz, 2H), 3.58 – 3.50 (m, 3H), 

2.25 (dt, J = 14.4, 4.3 Hz, 2H), 2.16 (ddd, J = 15.1, 11.6, 8.4 Hz, 2H).  13C NMR (126 MHz, cdcl3) δ 

170.8, 139.8, 130.1 (q, J=32.5 Hz, C on Ar ring next to CF3), 129.6, 129.1, 128.7, 125.6 (q, J=3.6 Hz, 

C on Ar ring next to the 130.13 C), 124.0 (q, J=272.3 Hz, C of CF3 on the Ar ring), 122.7 (q, J=277.4 

Hz, C of CF3 in the ester), 60.6 (q, J=36.7 Hz, C of CH2 next to CF3 in ester), 57.2, 41.8, 32.5.  IR: 
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3021, 1754, 1619, 1422, 1325, 1285, 1163, 1127, 1069, 1020, 979, 827, 723 (cm-1);  HRMS-(APCI) 

m/z: found at 677.1551 [(M+H)+ : [C30H25O4F12]+ calculates to be 677.1556];  [α]20
D: -35.8°  (c=1.00, 

CHCl3);  m.p. 96-101 °C 

 

(2R,2'R)-bis(2,2,2-trifluoroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-(tert-

butyl)phenyl)acetate) 243:  Derived from the reaction of diazo VI (0.9 mmol, 270 mg, 3.0 equiv) and 

COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by AgNO3 column 

chromatography (2-6% Et2O in pentane). Product: 150 mg, 76 % yield; >99 % ee.; dr = 6.8:1, sticky oil 

to half solid. 

1H NMR (600 MHz, CDCl3) δ 7.35 – 7.29 (m, 4H), 7.25 – 7.22 (m, 4H), 5.45 (ddd, J = 12.6, 7.6, 5.7 

Hz, 2H), 5.07 (dd, J = 11.6, 7.2 Hz, 2H), 4.51 (dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 4.37 

(dq, J = 12.7, 8.4 Hz, 2H, H of CH2 next to CF3), 3.53 (m, 2H), 3.48 (d, J = 10.2 Hz, 2H), 2.33 – 2.19 

(m, 4H), 1.30 (s, 18H).  13C NMR (101 MHz, CDCl3) δ 171.8, 150.6, 132.9, 130.4, 128.2, 128.1, 125.5, 

122.9 (q, J=277.6 Hz, C of CF3), 60.4 (q, J=36.5 Hz, C of CH2 next to CF3), 57.2, 41.6, 34.5, 32.6.  

IR: 2965, 1753, 1509, 1408, 1365, 1283, 1167, 1134, 1065, 1019, 978, 842, 823 (cm-1);  HRMS-(APCI) 

m/z: found at 653.3066 [(M+H)+ : [C36H43O4F6]+ calculates to be 653.3060];  [α]20
D: -31.0°  (c=1.00, 

CHCl3); 
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(2R,2'R)-bis(2,2,2-trichloroethyl) 2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-(tert-

butyl)phenyl)acetate) 244:  Derived from the reaction of diazo XI (0.9 mmol, 315 mg, 3.0 equiv) and 

COD (0.3 mmol, 32 mg, 1.0 equiv) following general procedure, major dr purified by normal column 

chromatography (4-8% Et2O in pentane). Product: 231 mg, 72 % yield; >99 % ee.; dr = 4.5:1, white 

foam solid. (Single crystal structure obtained for the reduction product of this compound.) 

1H NMR (600 MHz, CDCl3) δ 7.36 – 7.27 (m, 9H), 5.46 (ddd, J = 11.9, 7.2, 4.9 Hz, 2H), 5.08 (dd, J = 

11.6, 7.5 Hz, 2H), 4.73 (d, J = 12.0 Hz, 3H, H of CH2 next to CCl3), 4.69 (d, J = 12.0 Hz, 3H, H of 

CH2 next to CCl3), 3.78 – 3.68 (m, 2H), 3.50 (d, J = 10.5 Hz, 2H), 2.52 – 2.44 (m, 2H), 2.22 (ddd, J = 

15.8, 12.2, 7.9 Hz, 2H), 1.31 (s, 18H).  13C NMR (151 MHz, CDCl3) δ 171.6, 150.6, 133.2, 130.5, 128.5, 

128.1, 125.5, 94.8, 74.3, 58.0, 41.0, 34.5, 33.4, 31.3.  IR: 2963, 1749, 1516, 1461, 1366, 1269, 1200, 

1131, 1058, 915, 827, 771, 721 (cm-1);  HRMS-(APCI) m/z: found at 749.1296 [(M+H)+ : 

[C36H43O4Cl6]+ calculates to be 749.1287];  [α]20
D: +10.2°  (c=1.00, CHCl3);  m.p. 72-77 °C 

6.3.4 Derivatization for Bis-insertion C2 symmetric chiral COD ligand 

 

(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)acetic acid) 250: 

Bis-insertion compound 238 (0.053 mmol, 41.9 mg, 1.0 equiv) was dissolved in 1 mL AcOH. Zn 

powder (34.4 mg, 10 equiv) was added to the solution, and the suspension was kept stirring overnight. 
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Crude material was obtained by filtration and concentration under reduced pressure. Further column 

chromatography (50% Et2O in pentane with 0.5% AcOH) gave pure product as white powder 17.2 mg, 

61% yield.   

1H NMR (600 MHz, CDCl3) δ 7.46 (d, J = 8.3 Hz, 4H), 7.23 (d, J = 8.6 Hz, 4H), 5.58 – 5.37 (m, 2H), 

5.18 – 4.99 (m, 2H), 3.44 (d, J = 9.5 Hz, 2H), 3.40 – 3.25 (m, 2H), 2.49 – 2.31 (m, 2H), 2.32 – 2.21 (m, 

2H).  13C NMR (151 MHz, CDCl3) δ 178.9, 135.5, 131.8, 130.5, 130.3, 128.5, 121.8, 57.0, 42.2, 31.9, 

20.6.  IR: 2921, 2851, 1725, 1488, 1409, 1263, 1098, 1012, 800, 730 (cm-1);  HRMS-(APCI) m/z: found 

at 530.9817 [(M-H)- : [C24H21O4Br2]- calculates to be 530.9812];  [α]20
D: -14.0°  (c=1.00, acetone);  m.p. > 

200 °C 

 

(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)ethan-1-ol) 251: 

Bis-insertion compound 238 (0.065 mmol, 51.9 mg, 1.0 equiv) was dissolved in 1 mL anhydrous THF, 

and the solution was cooled to -78 °C. LiAlH4 (1.0 M THF solution) (0.18 mL, 2.5 equiv) was slowly 

added to the stirring solution. The reaction was kept running for 2 h at -78 °C, then raised to r.t. for 15 

min and quenched with 1mL sodium potassium tartrate solution(saturated) and 1.0 mL HCl(1.0 M). 

The organic phase was extracted with Et2O multiple times, combined and dried over MgSO4. Crude 

material was obtained through filtration and concentration under reduced pressure. Further column 

chromatography (60% Et2O in pentane) gave pure product 27.5 mg as white powder, 84% yield.  

1H NMR (600 MHz, CDCl3) δ 7.40 (d, J = 8.5 Hz, 4H), 6.94 (d, J = 8.4 Hz, 4H), 5.54 (ddd, J = 11.4, 

9.0, 7.4 Hz, 2H), 5.32 (dd, J = 11.4, 6.3 Hz, 2H), 3.83 (dq, J = 7.5, 4.1, 3.5 Hz, 4H), 2.73 (dp, J = 11.8, 

5.7 Hz, 4H), 1.72 (ddd, J = 12.2, 7.1, 4.9 Hz, 2H), 1.64 (dt, J = 13.2, 6.8 Hz, 2H).  13C NMR (151 MHz, 

CDCl3) δ 138.4, 131.2, 130.7, 129.52, 129.48, 120.7, 64.4, 53.0, 41.1, 31.6.  IR: 3342 (broad OH), 3006, 

2930, 2874, 1488, 1408, 1105, 1073, 1027, 1007, 819, 754 (cm-1);  HRMS-(APCI) m/z: found at 
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505.0376 [(M+H)+ : [C24H27O2Br2]+ calculates to be 505.0372];  [α]20
D: -129.2°  (c=1.00, CHCl3);  m.p. 

69-73 °C 

 

(1Z,3S,5Z,7S)-3,7-bis((R)-1-(4-bromophenyl)-2-((tert-butyldimethylsilyl)oxy)ethyl)cycloocta-

1,5-diene 252: The di-ol starting material 251 (0.063 mmol, 31.7 mg, 1.0 equiv) was dissolved in 1 mL 

DCM, and the solution was cooled to 0 °C. Imidazole (0.158 mmol, 10.8 mg, 2.5 equiv) and TBSCl 

(0.139 mmol, 21.0 mg, 2.2 equiv.) was added to the solution, and the solution was kept stirring overnight. 

Crude material was obtained by filtration and concentration under reduced pressure. Further column 

chromatography (100% pentane) gave pure product as white solid. 42.0 mg, 90% yield. 

1H NMR (600 MHz, CDCl3) δ 7.33 (d, J = 8.4 Hz, 4H), 6.92 (d, J = 8.4 Hz, 4H), 5.54 (ddd, J = 11.3, 

8.7, 7.0 Hz, 2H), 5.32 (dd, J = 11.4, 7.1 Hz, 2H), 3.76 (dd, J = 10.0, 7.2 Hz, 2H), 3.70 (dd, J = 10.0, 6.0 

Hz, 2H), 2.93 (dq, J = 12.6, 6.2 Hz, 2H), 2.59 (q, J = 6.4 Hz, 2H), 1.79 (dt, J = 12.2, 6.0 Hz, 2H), 1.61 

(td, J = 14.0, 9.2 Hz, 2H), 0.84 (s, 18H), -0.03 (s, 6H), -0.04 (s, 6H).  13C NMR (151 MHz, CDCl3) δ 

139.8, 130.7, 130.7, 129.9, 129.5, 120.1, 64.5, 53.0, 40.0, 32.1, 25.9, 18.2, 0.0, -5.5.  IR: 3008, 2953, 

2928, 2885, 2856, 1488, 1471, 1408, 1361, 1254, 1097, 1074, 1010 (cm-1);  HRMS-(APCI) m/z: found 

at 733.2095 [(M+H)+ : [C36H55O2Br2Si2]+ calculates to be 733.2102];  [α]20
D: -109.0°  (c=1.00, CHCl3);  

m.p. 67-69 °C 
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(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-

diphenylethan-1-ol) 253: The bis-insertion compound 226 (0.756 mmol, 380 mg, 1.0 equiv) was 

dissolved in 4 mL anhydrous THF. The solution was kept stirring under Ar at -78 °C.  PhLi (1.9 M 

purchased from Sigma Aldrich) in THF 2.6 mL was slowly added to the stirring solution over 30 min. 

The reaction was maintained at -78 °C for 3 h.  After that, the solution was diluted with 4 mL Et2O and 

quenched with HCl (1.0 M).  The organic layer was extracted 3 times with Et2O (1 mL), combined and 

dried over MgSO4. Flash cotton pipette (a layer of silica) plug and concentration under reduced pressure 

gave crude sticky oil. Flash column chromatography (15% Et2O/pentane) for the crude to remove 

nonpolar impurity and gave greenish yellow solid. Pure product was further obtained through 

recrystallization with ether/pentane system (40 °C cool to 0 °C) as white solid, 275mg, 50% yield.  

1H NMR (600 MHz, CDCl3) δ 7.55 (dd, J = 8.4, 1.1 Hz, 4H), 7.33 (t, J = 7.8 Hz, 4H), 7.24 – 7.19 (m, 

6H), 7.18 – 7.14 (m, 4H), 7.11 – 6.99 (m, 8H), 6.93 (t, J = 7.3 Hz, 2H), 5.48 (dd, J = 11.3, 7.2 Hz, 2H), 

5.45 – 5.36 (m, 2H), 3.58 (d, J = 3.3 Hz, 2H), 2.67 (s, 2H), 2.66 – 2.54 (m, 2H), 1.46 – 1.32 (m, 4H).  

13C NMR (151 MHz, CDCl3) δ 146.7, 146.1, 136.9, 133.1, 130.2, 130.0, 129.8, 128.5, 127.8, 126.8, 

126.1, 125.4, 125.1, 120.3, 81.4, 58.2, 40.2, 33.3.  IR: 3586(Broad), 3057, 3021, 2974, 2868, 1597, 

1488, 1447, 1157, 1112, 1075, 1068, 1010 (cm-1);  HRMS-(ESI) m/z: found at 843.1261 [(M+Cl)- : 

[C48H42O2Br2Cl]- calculates to be 843.1246];  [α]20
D: -94.3°  (c=1.00, CHCl3);  m.p. > 200 °C 

 

(1Z,3S,5Z,7S)-3,7-bis((R)-1-(4-bromophenyl)-2-methoxy-2,2-diphenylethyl)cycloocta-1,5-diene 

254: The di-ol starting material 253 (59.7 mg, 0.074 mmol, 1 equiv ) was dissolved in 1.5 mL anhydrous 

DCM.  NaH (17.8 mg, 60% wt in mineral oil, 0.74 mmol, 10 equiv) was added into the solution, and 

the suspension was kept stirring at 0 °C.  CH3I (52.5 mg, 0.37 mmol, 5 equiv) was then added to the 

solution. The reaction was let warm up to r.t. naturally and run overnight. After that, the reaction was 
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quenched with NH4Cl(saturated) and extracted with Et2O multiple times. The organic layer was 

combined and dried over MgSO4. Crude material was obtained through filtration and concentration 

under reduced pressure. Further column chromatography (5% ether in pentane)gave pure product as 

white solid 50.8 mg, 82% yield. 

1H NMR (600 MHz, CDCl3) δ 7.27 (s, 10H), 7.24 (d, J = 8.6 Hz, 4H), 7.22 – 7.11 (m, 10H), 6.80 (d, J 

= 7.8 Hz, 4H), 5.09 – 4.97 (m, J = 7.9 Hz, 4H), 3.32 (d, J = 4.1 Hz, 2H), 2.78 (s, 6H), 2.64 – 2.44 (m, 

2H), 1.37 – 1.29 (m, 2H), 1.18 (td, J = 13.8, 7.6 Hz, 2H).  13C NMR (126 MHz, CDCl3) δ 141.3, 138.0, 

133.9, 130.7, 129.6, 129.0, 128.0, 127.5, 127.38, 127.35, 127.2, 120.1, 87.3, 60.8, 52.5, 40.5, 34.1, 29.7.  

IR: 3021, 2929, 2826, 1488,1446, 1407, 1193, 1074, 1010, 828, 756, 729, 702 (cm-1);  HRMS-(APCI) 

m/z: found at 871.1572 [(M+Cl)- : [C50H46O2Br2Cl]- calculates to be 871.1559];  [α]20
D: -75.7°  (c=1.00, 

CHCl3);  m.p. 91-96 °C 

 

(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-bis(4-(tert-

butyl)phenyl)ethan-1-ol) 255: The bis-insertion compound 226 (0.1 mmol, 56.0 mg, 1.0 equiv) was 

dissolved in 1 mL anhydrous THF, and the solution was cooled to -78 °C. tBuPhLi solution (prepared 

from Li and 4-tBuPhBr, 0.94 M) (0.6 mL, 5.5 equiv) was added to the stirring solution, and the reaction 

was let run for 2 h at -78 °C. After that, the reaction was quenched with NH4Cl (saturated) 1 mL , HCl 

(1.0 M) 1 mL and extracted with Et2O multiple times. The organic phase was combined, dried over 

MgSO4, filtered and concentrated to obtain crude material. Further column purification (5-8% Et2O in 

pentane) gave pure product as white powder 43.5 mg, 42% yield. 

1H NMR (600 MHz, CDCl3) δ 7.44 (d, J = 8.6 Hz, 4H), 7.32 (d, J = 8.5 Hz, 4H), 7.16 (d, J = 8.7 Hz, 

4H), 7.11 (d, J = 8.8 Hz, 4H), 7.03 (d, J = 8.8 Hz, 8H), 5.52 (dd, J = 11.3, 7.2 Hz, 2H), 5.46 – 5.35 (m, 
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2H), 3.51 (d, J = 3.3 Hz, 2H), 2.67 (s, 2H), 2.56-2.60 (m, 2H), 1.36 – 1.31 (m, 4H), 1.30 (s, 18H), 1.15 

(s, 18H).  13C NMR (151 MHz, CDCl3) δ 149.2, 148.6, 143.6, 143.3, 137.3, 133.1, 130.1, 129.7, 125.3, 

125.1, 124.8, 124.6, 120.1, 81.2, 58.5, 40.3, 34.4, 34.1, 33.2, 31.4, 31.2.  IR: 3580, 2962, 2867, 1509, 

1487, 1404, 1363, 1269, 1109, 1076, 1010, 909, 839 (cm-1);  HRMS-(APCI) m/z: found at 1050.4424 

[(M+NH4)+ : [C64H78O2NBr2]+ calculates to be 1050.4394];  [α]20
D: -98.5°  (c=1.00, CHCl3);  m.p. > 

200 °C 

 

(1Z,3S,5Z,7S)-3,7-bis((R)-1-(4-bromophenyl)-2,2-bis(4-(tert-butyl)phenyl)-2-

methoxyethyl)cycloocta-1,5-diene 256: The di-ol starting material 255 (37.9 mg, 0.037 mmol, 1 equiv ) 

was dissolved in 1.5 mL anhydrous DCM.  NaH (15 mg, 60% wt in mineral oil, 0.37 mmol, 10 equiv) 

was added into the solution, and the reaction was kept stirring at 0 °C.  CH3I (20.8 mg, 0.148 mmol, 4 

equiv) was then added to the solution and the reaction was let warm up to r.t. overnight. After that, the 

reaction was quenched with NH4Cl(saturated) 1 mL and extracted with Et2O multiple times. The organic 

layer was combined and dried over MgSO4, filtered and concentrated to yield crude material. Further 

column chromatography purification gave pure product 33.2 mg, 90% yield.  

1H NMR (600 MHz, CDCl3) δ 7.28 (d, J = 8.7 Hz, 4H), 7.24 (dd, J = 8.8, 1.8 Hz, 9H), 7.09 (d, J = 8.8 

Hz, 4H), 6.95 (d, J = 8.7 Hz, 8H), 5.12 (qd, J = 11.6, 7.0 Hz, 4H), 3.15 (d, J = 2.4 Hz, 2H), 2.82 (s, 6H), 

2.29 – 2.19 (m, 2H), 1.30 (s, 18H), 1.24 (s, 18H), 1.11 – 0.95 (m, 4H).  13C NMR (151 MHz, CDCl3) δ 

149.9, 149.6, 139.5, 138.4, 138.0, 134.2, 130.4, 129.7, 129.6, 128.4, 128.2, 124.4, 123.9, 120.0, 87.7, 

60.9, 52.9, 41.2, 34.4, 34.3, 33.1, 31.4, 31.3.  IR: 2962, 2903, 2868, 1508, 1486, 1403, 1363, 1271, 

1110, 1083, 1011, 966, 833 (cm-1);  HRMS-(APCI) m/z: found at 1083.4276 [(M+Na)+ : 

[C66H78O2Br2Na]+ calculates to be 1083.4261];  [α]20
D: -132.7°  (c=1.00, CHCl3);  m.p. 159-163 °C 
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(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-bis(3,5-

dimethylphenyl)ethan-1-ol) 257: Bis-insertion ester 226 (0.1 mmol, 56.0 mg, 1.0 equiv.) was 

dissolved in 1 mL anhydrous THF, and the solution was cooled to -78 °C. 3,5-diMePhLi 

solution (prepared from Li and 3,5-di-Methyl-4-Br-benzene, 0.73 M) (0.75 mL, 5.5 equiv.) was slowly 

added to the stirring solution, and the reaction was let run for 2 h at -78 °C. After that, the reaction was 

quenched with NH4Cl (saturated) 1 mL, HCl (1.0 M) 1mL and extracted with Et2O multiple times. The 

organic phase was combined, dried over MgSO4,  and concentrated to give crude material. Further 

column purification (2-5% Et2O in pentane) gave pure product as white solid 52.1 mg, 56% yield. 

1H NMR (600 MHz, CDCl3) δ 7.16 (d, J = 8.7 Hz, 4H), 7.13 (s, 4H), 7.11 – 6.98 (m, 4H), 6.82 (d, J = 

7.7 Hz, 6H), 6.56 (s, 2H), 5.51 (dd, J = 11.4, 7.1 Hz, 2H), 5.44 – 5.33 (m, 2H), 3.51 (d, J = 3.2 Hz, 2H), 

2.54 – 2.49 (m, 2H), 2.50 (s, 2H), 2.29 (s, 12H), 2.10 (s, 12H), 1.38 – 1.27 (m, 4H).  13C NMR (151 

MHz, CDCl3) δ 146.8, 146.2, 137.7, 137.4, 136.9, 133.1, 130.1, 130.0, 129.7, 128.3, 127.7, 123.4, 122.8, 

120.1, 81.3, 58.4, 40.4, 33.4, 21.7, 21.5.  IR: 3586, 2007, 2916, 1597, 1487, 1408, 1376, 1216, 1157, 

1111, 1075, 1010, 843 (cm-1);  HRMS-(APCI) m/z: found at 920.2830 [(M) : [C56H58O2Br2] calculates 

to be 920.2809];  [α]20
D: -121.0°  (c=1.00, CHCl3);  m.p. 140-144 °C 
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(2R,2'R)-2,2'-((1S,2Z,5S,6Z)-cycloocta-2,6-diene-1,5-diyl)bis(2-(4-bromophenyl)-1,1-bis(3,5-di-

tert-butylphenyl)ethan-1-ol) 258: Bis-insertion ester 177 (0.1 mmol, 56.0 mg, 1.0 equiv.) was 

dissolved in 1 mL anhydrous THF, and the solution was cooled to -78 °C. 3,5-ditBuPhLi 

solution (prepared from Li and 3,5-di-tBu-4-Br-benzene, 1.1 M) (0.5 mL, 5.5 equiv.) was slowly added 

to the stirring solution, and the reaction was let run for 4 h at -78 °C. After that, the reaction was 

quenched with NH4Cl (saturated) 1 mL, HCl (1.0 M) 1mL. The organic phase was extracted with Et2O 

multiple times, combined, dried over MgSO4,  and concentrated to give crude material. Further column 

purification (0-2% Et2O in pentane) gave pure product as white solid 55.3 mg, 44% yield.  

1H NMR (600 MHz, CDCl3) δ 7.42 (d, J = 1.7 Hz, 4H), 7.25 (t, J = 1.7 Hz, 2H), 7.11 (d, J = 8.7 Hz, 

4H), 6.96 (dd, J = 13.7, 1.7 Hz, 10H), 5.46 (dd, J = 11.4, 6.7 Hz, 2H), 5.43 – 5.37 (m, 2H), 3.36 (d, J = 

3.2 Hz, 2H), 2.60 – 2.53 (m, 2H), 2.55 (s, 2H), 1.44 – 1.32 (m, 4H), 1.30 (s, 36H), 1.09 (s, 36H).  13C 

NMR (151 MHz, CDCl3) δ 150.2, 149.4, 145.0, 144.9, 137.3, 133.2, 130.2, 129.8, 129.6, 120.3, 120.23, 

120.20, 120.0, 119.78 82.3, 60.1, 40.8, 35.0, 34.7, 33.5, 31.6, 31.3.  IR: 3609, 2962, 2904, 2866, 1598, 

1487, 1477, 1393, 1362, 1248, 1109, 1076, 1011, 879 (cm-1);  HRMS-(APCI) m/z: found at 1279.6415 

[(M+Na)+ : [C80H106O2Br2Na]+ calculates to be 1279.6452] [α]20
D: -35.8°  (c=1.00, CHCl3);  m.p. 128-

131 °C 

 

6.3.5 General Procedure for conjugate addition test (Arylation of cyclohex-2-enone) 

To an oven dried 4 mL vial with a stir bar was weighed di-μ-chlorotetraethylene dirhodium (0.025 

equiv) and cyclooctadiene derived ligand (0.055 equiv). The vial was wrapped with Teflon™ thread 

tape, fitted with a septum cap and the atmosphere was exchanged for a dry N2 atmosphere (3 cycles, 1 

minute per cycle). Dry, nitrogen sparged 1,4-dioxane (1.8 mL) was then added to the vial and placed 

on a preheated hotplate at 50 °C to stir for 20 minutes under N2. Aqueous potassium hydroxide (0.18 

mL, 56.1 mg/mL, 0.50 equiv, sparged with N2) was added to the reaction vial via syringe and allowed 

to stir for an additional 10 minutes at temperature. The vial was opened for addition of solid 

phenylboronic acid  (3 equiv), then quickly resealed and the headspace was purged under positive 

pressure with addition of a vent needle for 1 minute.  To the vial was added cyclohex-2-enone (0.2 
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mmol, 1 equiv) via syringe and the vial was fitted with a N2 balloon and allowed to stir at temperature 

for 12 hours. The reaction was removed from heat, allowed to cool, and diluted with diethyl ether and 

passed through a silica plug.  The combined organics were dried over sodium sulfate and concentrated 

under reduced pressure. The crude mixture was then purified by flash chromatography on silica gel in 

a gradient of Hexanes: EtOAc (97:3 à 90:10) to afford the pure 3-phenylcyclohexan-1-one. 

 

Ligand 177 178 179 180 181 182 183 190 191 192 193 194 195 196 197 198 

yield 67 84 81 ~2 68 60 45 43 61 78 58 32 69 81 63 63 

ee. 39 34 36 45 30 33 22 27 26 53 47 60 69 59 41 76 
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6.4  Chapter 5 (Experimental procedures) 

6.4.1 General procedure for sulfonyl cyclic amine substrates. 
 
          Sulfonyl chloride (20 mmol, 1.0 equiv) was dissolved in 100 mL anhydrous DCM, the solution 

was kept stirring at r.t. Piperidine (24 mmol, 1.2 equiv, 2.4 ml) was slowly added to the stirring 

solution. (white fume generated) Et3N (30 mmol, 1.5 equiv) was then added into the mixture. The 

solution was heated to 40 °C and kept refluxing for 2.5 h. The solution was cooled to r.t. and 

concentrated to give crude material. Pure compounds were obtained through silica plug or flash 

column chromatography (10-20 % EtOAc in hexane) 

 

 (All sulfonyl protected substrates above are prepared according to the general procedure.) 

 The HNMR matched the reference[1-6] 290 and 289 have no reference and they are characterized. 
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scale          20 mmol           20 mmol            20 mmol                20 mmol              20 mmol              1 mmol              

yield         quantitative             94%                92%                 quantitative           quantitative               —*                      

Ref                1                         1                      2                             3                          4                        —                  

* crystalization from crude for fast use, did not do full isolation and calculate yield
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N

scale         3.5 mmol         20 mmol        20 mmol            10 mmol         10 mmol
    
yield              89%                —*                 —*                     —*                  —*

Ref               —                       4                    5                       4                   6

* crystalization from crude for fast use, did not do full isolation and calculate yield

N-sulfonyl piperidine table for the study:

288276 277 283 282 290

289 310 311 314 315
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6.4.2  Procedure for sulfonyl protected piperidine substrates 290 and 289. 

 

1-((2,4-dimethoxyphenyl)sulfonyl)piperidine 290: Derived from piperidine (12 mmol) and 2,4-

dimethoxybenzenesulfonyl chloride (10 mmol) following the general procedure as white solid. The 

yield was not measured. 

1H NMR (600 MHz, Chloroform-d) δ 7.80 (d, J = 8.6 Hz, 1H), 6.52 – 6.46 (m, 2H), 3.87 (s, 3H), 3.84 

(s, 3H), 3.16 – 3.11 (m, 4H), 1.59 (p, J = 5.8 Hz, 4H), 1.47 (p, J = 5.7 Hz, 2H).    13C NMR (151 MHz, 

CDCl3) δ 164.4, 158.4, 133.4, 119.0, 104.1, 99.4, 55.9, 55.7, 46.8, 25.7, 23.9.    IR(neat):2938, 2851, 

1592, 1676, 1465, 1439, 1415, 1330, 1322, 1310, 1287, 1256, 1160, 1140, 1074, 1049, 1023;  HRMS-

(APCI) m/z: calcd for C₁₃H₂₀O₄N³²S (M+H)+ 286.1108; found 286.1103;    m.p. 80-82 °C 

 

1-((2,3-dihydrobenzo[b][1,4]dioxin-6-yl)sulfonyl)piperidine 289: Derived from piperidine (4.2 

mmol) and 2,3-dihydrobenzo[b][1,4]dioxine-6-sulfonyl chloride (3.5 mmol) following the general 

procedure as white solid, 746 mg, 89% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.26 (d, J = 2.0 Hz, 1H), 7.22 (dd, J = 8.5, 2.2 Hz, 1H), 6.95 (d, 

J = 8.5 Hz, 1H), 4.33 – 4.30 (m, 2H), 4.30 – 4.27 (m, 2H), 3.02 – 2.90 (m, 4H), 1.63 (p, J = 5.9 Hz, 

4H), 1.45 – 1.37 (m, 2H).     13C NMR (151 MHz, CDCl3) δ 147.3, 143.5, 128.8, 121.4, 117.6, 117.2, 

64.5, 64.2, 47.0, 25.2, 23.5.    IR(neat):2939, 2840, 1582, 1491, 1460, 1418, 1336, 1315, 1287, 1254, 

1214, 1160, 1125, 1079.   HRMS-(APCI) m/z: calcd for C₁₃H18O₄N³²S (M+H)+ 284.0951; found 

284.0948;    m.p. 118-120 °C 
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6.5.2  Procedure for TBS protected cyclic amine substrates. 

 

TBSOTf (11 mmol, 1.3 g, 1.1 equiv) was added dropwisely to the solution of tetrahydroquinoline (10 

mmol, 1.2 mL, 1.0 equiv) in 20 mL anhydrous DCM. Et3N (15 mmol, 2.1 mL, 1.5 equiv) was then 

added and the solution was heated to 40 °C and kept refluxing for 2.5 h. The solution was concentrated 

and then dissolved with 10 mL pentane. The solution was then washed with saturated NaHCO3 solution 

and dried over MgSO4. Pure product was obtained by flash column chromatography (2.5% Et3N in 

pentane) as colorless oil 2.1 g, 85% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.10 (t, J = 8.7 Hz, 2H), 6.92 (d, J = 8.1 Hz, 1H), 6.88 – 6.78 (m, 

1H), 3.46 – 3.37 (m, 2H), 2.95 (t, J = 6.8 Hz, 2H), 2.01 – 1.91 (m, 2H), 1.16 (s, 9H), 0.42 (s, 6H).    13C 

NMR (151 MHz, CDCl3) δ 146.9, 129.9, 125.7, 125.5, 119.8, 118.2, 46.1, 27.7, 27.3, 24.4, 20.6, -3.1.    

IR(neat):2927, 2854, 1601, 1573, 1489, 1472, 1463, 1451, 1360, 1305, 1279, 1244, 1187, 1123, 1090.    

HRMS-(APCI) m/z: calcd for C15H26N28Si (M+H)+ 248.1829; found 248.1825;     

 

 

TBSOTf (1.1 mmol, 291 mg, 1.1 equiv) was added dropwisely to the solution of tetrahydroquinoline 

(1.0 mmol, 212 mg, 1.0 equiv) in 5 mL anhydrous DCM. Et3N (1.5 mmol, 0.2 mL, 1.5 equiv) was then 

added and the solution was heated to 40 °C and kept refluxing for 2.5 h. The solution was concentrated 

and then dissolved with 10 mL pentane. The solution was then washed with saturated NaHCO3 solution 

and dried over MgSO4. Pure product was obtained by recrystallisation with DCM/pentane solvent 

system as white crystal 252 mg, 77% yield.  

1H NMR (600 MHz, Chloroform-d) δ 7.11 – 7.05 (m, 1H), 7.02 (dd, J = 8.7, 2.4 Hz, 1H), 6.62 (d, J = 

8.7 Hz, 1H), 3.30 – 3.19 (m, 2H), 2.76 (t, J = 6.8 Hz, 2H), 1.79 (dtd, J = 10.5, 6.9, 3.1 Hz, 2H), 0.98 (s, 

9H), 0.24 (s, 6H).    13C NMR (151 MHz, CDCl3) δ 145.9, 132.1, 128.1, 127.8, 121.0, 109.9, 45.9, 27.4, 

N
TBS

316

N
TBS

Br
317
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27.1, 23.7, 20.4, -3.4.    IR(neat):2927, 2854, 1590, 1560, 1483, 1408, 1361, 1302, 1276, 1254, 1187, 

1135, 1095, 1082, 982.   HRMS-(APCI) m/z: calcd for C15H25N79Br28Si (M+H)+ 326.0934; found 

326.0930;        m.p. 54-56 °C 

6.5.3 General procedure for N-sulfonyl piperidine cyclopropanation 

N-sulfonyl piperidine (0.20 mmol, 1.0 equiv) and Rh cat. (2 mol%) was dissolved in 1.5 mL anhydrous 

DCM, and the solution was kept stirring under Ar at r.t. The diazo compound (0.20 mmol, 1.0 equiv) 

was then dissolved in 2.5 mL anhydrous DCM and add dropwisely to the stirring solution over 2h. The 

reaction was let run overnight before concentration and crude 1HNMR analysis. 

*The 1HNMR matched the reported reference by Dr. Wenbin Liu[8] 
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