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Abstract 

Traditional versus Competing Risks Approaches in the Modeling of Survival Time 

By Chao Zhang 

  

 In survival analysis, it is often the case that competing events may preclude the event of 

interest. In our specific case, death was the competing event to our outcome of interest, hospital 

readmission after CABG surgery. In these situations, the usage of competing risks methods 

becomes necessary, as traditional survival analysis methods inaccurately assume competing 

events as censored observations. We first outline the fundamental quantities and models 

associated with competing risks analysis, which are largely based from the Kaplan-Meier 

estimator and Cox proportional hazards model in traditional survival analysis: the cumulative 

incidence function (subdistribution), cause-specific hazard function, and their respective 

generalizations of the Cox model, the Fine-Gray subdistribution hazard function and cause-

specific hazards regression. We then compare the results of the Kaplan-Meier estimate with 

those of the cumulative incidence function, and then extend the Cox model to the cause-specific 

hazard function and subdistribution hazard function.  

               The hazard ratios from the Fine-Gray and cause-specific hazards regression models 

were largely similar and identified several significant risk factors for readmission, including, but 

not limited to, gender (male), race (black), history of diabetes, and prior myocardial infarction. 

However, due to the low amount of competing events in our dataset, the results between 

traditional and competing risks methods differed minimally. As such, the data was modified to 

increase the incidence of deaths and readmissions. When there a large number of observations 

experiencing competing events, the Kaplan-Meier estimator becomes increasingly inaccurate, 

and its complement can no longer be interpreted as the probability of experiencing the event of 

interest; instead, the cumulative incidence function and its models are necessary here. 

Additionally, the distribution of competing events within a covariate was also found to lead to 

differences in results between the cause-specific hazards and Fine-Gray models. Overall, we can 

conclude that competing risks methods are largely trivial when the number of competing events 

is minimal, but can provide a meaningful prospective to the problem when a large number of 

competing event(s) exist, and the results of traditional estimators are no longer accurate. 
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 Introduction 

I. The Competing Risks Problem 

 Time to event data is commonly encountered and analyzed across a wide variety of 

quantitative and scientific areas of study. In the specific context of the biological and medical 

fields, the set of methods to analyze time to event data is generally known as survival analysis. 

Traditional survival analysis methods consider the outcome as the time until an event of interest 

occurs over a follow-up period.1 Here, failure (oftentimes death) is observed only when a subject 

in the study experiences the event of interest during the study period. Otherwise, if the survival 

time of a subject cannot be determined as a result of him/her withdrawing from the study, or 

simply not experiencing the event of interest during the follow-up period, the subject’s time to 

event is unknown and thus censored.1,2  

The most common methods for survival analysis, given the respective assumptions are 

met, are the non-parametric Kaplan-Meier estimator and the semi-parametric Cox proportional 

hazards (PH) regression model. For some time to event data, the former attempts to estimate a 

survival function that is independent of any parametric distribution; this survival function 

approximates the probability of survival at any given point during the follow-up time.1,2 

Likewise, the Cox model also does not assume any parametric distribution for the survival times, 

but instead assumes a parametric relationship between a set of predictor variables and the 

probability of experiencing the event of interest.1,3  

While the aforementioned models are considered the bread-and-butter of survival 

analysis, and are the preferred techniques in traditional survival problems, there are certainly 

limitations in their applicability and usefulness. Both the Kaplan-Meier estimator and standard 
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Cox regression are designed to model either the survival or hazard function, given that there is 

only one event of interest attributed to failure.4 However, in many real world situations, it is 

entirely realistic that other event(s) may either preclude or significantly affect the probability of 

the event of interest. These “competing” events, known as competing risks, are often 

encountered in the analysis of medical time to event data. Cause-specific mortality is a 

particularly common example, where death can be the result of one of numerous causes, such as 

heart disease, cancer, fatal injuries, etc.1 Here, death resulting from any one condition naturally 

precludes death from any other cause. Another common medical situation where a competing 

risks model is useful is site-specific cancer relapse, where a patient may experience a distant 

relapse (i.e., cancer recurrence in a different part of the body) or die prior to any cancer relapse.4 

Using the Kaplan-Meier and standard Cox regression methods, only one event of interest 

can be considered in estimating the survival or hazard function; as a result, any observations 

experiencing failure attributed to competing events are treated as censored.4 Additionally, the 

censoring assumptions for the Kaplan-Meier are violated when competing events are present, 

and will tend to overestimate the probability of experiencing the event of interest at any time.5,6,7 

As a result, several methods have been designed as extensions of the existing survival 

analysis framework to model survival data in the presence of competing risks. The two 

fundamental quantities in competing risks are the cumulative incidence function (also commonly 

known as the subdistribution) and cause-specific hazard function.3,4,5 Both the subdistribution 

and cause-specific hazard function have corresponding regression models that are largely derived 

from the Cox proportional hazards framework; standard Cox regression is applicable to the 

cause-specific hazard function, while the Fine-Gray model was specifically designed to 

complement the subdistribution hazard.3,4 Rather than estimating survival probabilities or 
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instantaneous event rates, the impetus of the subdistribution is to estimate the marginal 

cumulative incidences of the event of interest and each competing event at a given point in time 

during follow-up.4 On the other hand, the cause-specific hazard function denotes instantaneous 

probabilities of failure from specific events, and is largely a generalization of the hazard function 

in traditional survival analysis.4,5 

In this thesis, both the aforementioned traditional survival analysis methods and more 

recently introduced competing risks methods will be introduced, examined and compared in 

analyzing data when competing risks are present. We will examine these approaches using real 

data from coronary artery bypass grafting (CABG) patients, as well as modifications on the 

original dataset by simulating additional events. The primary purpose of this thesis is to examine 

the differences between traditional and competing risks approaches in modeling time to hospital 

readmission for CABG patients, treating post-discharge death as censored and as a competing 

event, respectively. Our secondary objective is to identify significant risk factors for readmission 

using generalizations of the Cox proportional hazards model in the competing risks framework. 
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II. Data Background 

This study is specifically concerned with the application of competing risks methods in 

the context of time to hospital readmission after coronary artery bypass grafting (CABG). All 

patients in the study underwent a CABG procedure, which is a common surgical treatment for 

coronary heart disease (CHD), the most common form of heart disease. CHD is caused by 

excessive accumulation of plaque in the heart’s coronary arteries, which in turn restricts the flow 

of oxygen-rich blood to the heart. These conditions may in turn cause angina, a type of chest 

pain.8 The purpose of the CABG surgery procedure is thus to restore any blockage or narrowing 

of the arteries resulting from plaque accumulation, thereby re-enabling regular blood flow to the 

heart again.8,9 CABG is generally considered a largely successful surgical procedure for most 

patients, as many of them do not suffer from symptoms of angina for ten or more years following 

surgery.8 

While many patients are able to undergo CABG without any major complications and an 

overwhelming majority survive the procedure, many others will suffer from complications 

during the surgery or prior to discharge, and a small percentage may also die during the 

operation or prior to discharge. For the vast majority of patients that are eventually discharged, 

the risk of readmission, especially within the following 30 days, becomes a financial question of 

interest for both the patients and their hospitals. Hospitals are naturally incentivized to have low 

readmission rates to avoid financial penalties and maintain the reputation of being effective 

healthcare institutions. CABG in particular is one of the most expensive surgeries for patients, 

and also has a relatively high 30-day readmission rate. Thus, it is necessary for hospitals and 

patients alike to understand the risk factors associated with short-term readmissions, and this is 

the primary question of interest that the competing risks models in this thesis will seek to 
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address. In previous research studies on predicting or identifying risk factors for readmission, 

patient characteristics that were found to be significant included, but were not limited to, age, 

race and a multitude of previous health conditions. However, many other potential risk factors, 

such as experience of post-operative events, length of stay or length of surgery, were generally 

not mentioned in previous analyses.  

In short, the event of interest being observed in the study is hospital readmission after 

undergoing a CABG procedure. Mortality from any cause serves as the competing event here, as 

a patient cannot possibly be re-admitted to the hospital after he/she dies. Additionally, for 

patients that are readmitted, the date of the first readmission serves as the endpoint of follow-up, 

and mortality after this date, or recurrent readmission, is not of interest to this analysis. Thus, 

failure for any patient can be defined as either being readmitted after discharge, or dying after 

being discharged but before being readmitted. For any patient, time to event is thus measured 

either as the number of days between date of discharge and date of readmission, or the number of 

days between discharge and mortality, depending on whether mortality precedes (and thus 

precludes) readmission. 
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Methods 

III. Data Overview 

 Data were obtained from 6809 cardiac surgery patients that underwent a CABG 

procedure between July 2011 and November 2018. Operations occurred at four hospitals in the 

Atlanta, GA metropolitan area: Emory University Hospital, Emory University Midtown 

Hospital, Emory St. Joseph’s Hospital and Wellstar Kennestone Hospital in Marietta.  

Each patient was classified in one of three database versions as defined by the Society of 

Thoracic Surgeons (STS). The dates of discharge were available for all discharged patients, and 

this was the starting date of follow-up for each patient. However, the endpoint of follow-up for 

many patients was unclear; in the earlier two versions, due to limited information on follow-up 

dates, we assumed that the endpoint of follow-up was 30 days after discharge. This assumption 

was based on the common practice of hospitals to follow-up with patients and record their status 

during the 30 days following discharge. In the most recent database version, the date of last 

follow-up was available for almost all patients and was generally around 30 or more days after 

readmission. It should also be noted that not all readmitted patients returned to the hospital 

within 30 days. 

For readmitted patients, time to readmission was defined as the number of days elapsed 

from the date of discharge to the date of readmission. While information on date of surgery was 

also available, this is not a logical starting date, as some patients will die during the surgery or 

prior to discharge. As such, they are never at risk for our event of interest, readmission. Time to 

death was defined as the number of days elapsed from the date of discharge to the mortality date, 

but was valid only for patients that had died prior to readmission. There were multiple cases of 
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patients that were readmitted, but died after readmission; in these situations, post-readmission 

death does not serve as a competing risk, as it does not preclude the event of interest that had 

already occurred. As such, the only quantity of interest for these cases is the time to readmission, 

and time to death is ignored.  However, in a different scenario where multiple readmissions for 

each patient are recorded, and readmission is regarded as a recurrent event, such deaths could be 

treated as competing events. Lastly, patients that did not experience either event were right 

censored, with the censoring date as either 30 days after the date of discharge, or the date of last 

follow-up, depending on the availability of follow-up information. 

As detailed in Table 1 in the appendix, not all patients were included in the analysis; 

patients with infeasible baseline characteristics were excluded, as were patients that were never 

at risk for readmission due to intra-operative or pre-discharge mortality. Patients that 

experienced events more than 2 months (60 days) after discharge were censored after 60 days of 

follow-up. The final data used for the analysis consisted of 6724 patients.  

Patient characteristics recorded in the database can be separated into three categories: 

pre-operative, intra-operative and post-operative. Pre-operative variables include patient 

demographics and pre-operative risk factors and are essential to include in most statistical 

analyses studying risk factors; these include age, race, gender, prior disease and health history, 

etc. Intra-operative characteristics are related to events, procedures and complications that occur 

during surgery. While these characteristics are very useful when comparing the efficacies of 

various surgical procedures, this is not the emphasis of the analysis; as such, most of these 

variables will not be considered here. Lastly, a wide array of post-operative events may arise 

among patients; however, most of these were unique to only a very small subset of patients. As 

such, we only considered whether the patient had experienced any post-operation complications 
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as a binary exposure of interest. A full list of summarized patient characteristics can be found in 

Table 2 in the appendix. 

Lastly, several variables of interest contained a large number of missing values or 

“unknown” entries. These missing values were treated as the equivalent of “no” for their 

respective variables, an assumption that can be considered valid in the context of the study.  
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IV.  Kaplan-Meier (KM) Estimator 

 In standard survival analysis, when we assume or know that survival times do not follow 

any sort of distribution, the Kaplan-Meier (KM) estimator and Cox proportional hazards 

regression model are the most common methods to estimate the survival function S(t) and hazard 

rates, respectively. Here, we assume that only one event of interest serves as the follow-up 

endpoint; thus, in a competing events problem, all failures resulting from competing events must 

be treated as right censored. 

The Kaplan-Meier estimator (product-limit estimator) is a monotonic, stepwise 

decreasing estimate of the survival function S(t), which represents the probability of a patient 

surviving beyond time t. It can also be separately computed and visualized for each level of a 

discrete or categorical variable of interest, and the log-rank test can be used to assess whether 

survival probability differs between groups. In the context of this thesis, S(t) represents the 

probability of a discharged CABG patient not being readmitted after t days, given that they have 

not yet been readmitted nor censored. At the beginning of the follow-up period up until the time t 

that the first readmission occurs, S(t) = S(t0) = 1.0. For a time t less than or equal to the 

maximum time to readmission, the estimates for S(t) and its variance V(S(t)) are as follows:  

�̂�(𝒕) =         

{
 
 

 
 

   1                                     𝑡 < 𝑡1
              

∏[1 − 
𝑑𝑖
𝑛𝑖
]

𝑡𝑖

𝑡1

                         𝑡 ≥ 𝑡1       
  

�̂� (�̂�(𝒕)) =  �̂�(𝑡)2∑
𝑑𝑖

𝑛𝑖(𝑛𝑖 − 𝑑𝑖)
 

𝑡𝑖

𝑡1
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Here, ti represents a time where readmission(s) occurred, di represents the number of 

readmissions occurring at time ti, and ni is the size of the risk set (i.e., patients that have not yet 

been readmitted or censored immediately prior to ti). The variance of Ŝ(t) can be derived from 

Greenwood’s formula. 

The usefulness and applicability of the KM estimator lie largely in meeting the 

assumption of non-informative censoring, meaning that time to event is independent of any 

causes that led to the patient being censored. Naturally, such an assumption is clearly violated in 

a situation where competing event(s) can preclude the event of interest. 
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V. Cox Proportional Hazards model 

The Cox proportional hazards (PH) model, or Cox regression, is the standard survival 

analysis regression model that allows the estimation of the instantaneous hazard (in this case, 

probability of readmission) for a particular patient at time t, given a baseline hazard function 

h0(t) and the covariates of interest (Z1, Z2,…, Zi) associated with the patient. The definition of the 

hazard function h(t), cumulative hazard function H(t) and their relationship with the survival 

function S(t) are as follows:  

ℎ(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑇 + ∆𝑡 | 𝑇 ≥ 𝑡)

∆𝑡
 

𝐻(𝑡) =  ∫ℎ(𝑥) 𝑑𝑥 =  −ln [𝑆(𝑡)]

𝑡

0

 

The baseline hazard function h0(t) is the instantaneous probability of readmission at time 

t, when covariates of interest (Z1, Z2,…, Zi) are equal to their base/reference value. As such, the 

Cox model is expressed as: 

ℎ(𝑡 | 𝑍) = ℎ0(𝑡) ∗ exp (𝛽
𝑇* Z)  

Here, β and Z are vectors of the coefficients and covariates of interest, respectively. The 

coefficients in the β vector are parameters that quantify the effect of their respective covariates in 

the Cox model, and the quantity exp(βi) can be interpreted as the hazard ratio for covariate Zi. 

The value of the βi coefficients can be obtained by maximizing the following partial likelihood 

below for the β vector, with Ri denoting the risk set. 

𝐿(𝜷) =  ∏
exp (𝛽𝑇𝑍𝑖) 

∑ (𝛽𝑇𝑍𝑗)𝑗 ∈𝑅𝑖 𝑖=1
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Accurate usage of the Cox model requires that several assumptions are met. Notably, we 

must have independent censoring, proportionality in the hazards and linearity in the continuous 

covariates. While the first assumption is violated in the competing risks framework, there are 

numerous methods to test the proportional hazards and linearity assumptions, including 

visualizing stratified Kaplan-Meier curves and plotting model residuals against time. 

The Cox model can be easily generalized to cause-specific hazards and the 

subdistribution hazard for competing risks problems; in each case, the difference lies only in the 

definition of the baseline hazard function. As such, the same proportional hazards assumption 

and parametric covariate effects apply to the competing risks versions of Cox regression models. 
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VI. Representation of Competing Risks 

The Kaplan-Meier (KM) estimator and Cox proportional hazards (PH) model are 

inaccurate or insufficient for survival analysis problems in the presence of competing risks, since 

observations that experience competing events are treated as right-censored observations. 

However, the fundamental theories behind both of these methods are still relevant in any survival 

analysis problem where survival times do not assume any parametric distribution. Consequently, 

the methods that have been developed for competing risks analysis are largely built upon and 

modified from the popular existing methods. 

In defining the total events n in the competing risks representations, both the competing 

events and the event of interest are included (i.e., n = number of competing events + 1). For 

example, in the context of this thesis, there is one competing event (death) and one event of 

interest (readmission); thus, n = 2. 

 The fundamental definition of a competing risks problem is quite simple, and can be 

expressed either as a bivariate random variable or as latent failure times. In the bivariate random 

variable form, we define an event or censoring time T and censoring indicator C, where C = 0 for 

censored observations. For uncensored observations, we set C = k, where k represents the type of 

event experienced that resulted in failure for k = 1, 2, …, n. In the context of this study, there are 

two types of events: death and readmission; here, C = 0 if the patient is censored, C = 1 if the 

patient dies prior to readmission, and C = 2 if the patient is readmitted. 

 In the latent failure times representation, for each patient, a set of n latent event times T1, 

T2, …, Tn are defined. However, in a competing risks problem, only the time of the first event Ti 

is of importance, and thus the time variable of interest T is defined as T = min{T1, T2, …, Tn}. 
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Similar to the bivariate representation, the censoring variable C is set to 0 for censored 

observations, and equal to k for observations that experience events, corresponding to which 

event k the subject experiences first. While the problem representations are largely similar, some 

quantities of interest in the competing risks framework, such as the cause-specific hazard 

function, are only defined in the latent failure times representation. 
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VII. Cumulative Incidence Function (Subdistribution) 

The cumulative incidence function (CIF), also commonly referred to as the 

subdistribution, is essentially a derivation of the Kaplan-Meier estimator to survival analysis 

problems where multiple events can result in failure. Instead of estimating a survival function, 

the CIF creates subdistributions by estimating cumulative marginal probabilities of each event of 

interest that results in failure.  

 In the standard survival analysis problem where failure is attributed to just one event of 

interest (i.e., no competing risks), the cumulative incidence function Fi(t) evaluated at any given 

time t is intuitively the complement of the KM estimate of the survival function at t, denoted by 

1 – S(t) or 1 – KM. However, under competing risks settings, 1 – KM is an overestimate of the 

probability of experiencing the event of interest. Thus, the survival function S(t) derived from the 

Kaplan-Meier estimator is not useful when competing events are considered. When there are one 

or more competing events, for any event i of n total events, the CIF can be expressed as: 

 

𝐹𝑖(𝑡) = 𝑃(𝑇 ≤ 𝑡),   𝑖 = 1, 2, … . , 𝑛;  𝑡 ≥ 0 

The quantity Fi (t) can be interpreted as the probability of event i occurring at a time 

before t and before any other competing event can occur. Mathematically, the estimate for the 

CIF for any event i is directly derived from Ŝ(t) as follows, where dij is the number of patients 

that experience an event of type i at time tj, and nj is the size of the risk set at tj. 

�̂�𝑖(𝑡) =  ∑ (
𝑑𝑖𝑗

𝑛𝑗
) �̂�

𝑗: 𝑡𝑗 ≤𝑡

(𝑡𝑗−1) 
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 Furthermore, the sum of all CIFs, denoted as �̂�(𝑡), is equal to the probability of any event 

occurring at or before time t. Thus, it is intuitive that �̂�(𝑡) =  ∑ �̂�𝑖(𝑡) = 1 − �̂�(𝑡)
𝑛
𝑖=1 , or the 

complement of the survival probability. Another concept associated with the subdistribution is 

the subdensity 𝑓𝑖(𝑡), which is defined as the partial derivative of the subdistribution with respect 

to time: 𝑓𝑖(𝑡) =  
𝜕𝐹𝑖(𝑡)

𝜕𝑡
. The subdensity is an important quantity in calculating the hazard of the 

subdistribution, which is the baseline quantity of the Fine-Gray subdistribution hazard function, a 

generalization of Cox proportional hazards regression for the CIF and subdistribution hazard. 

 The subdistribution variance can be derived via the delta method, but the derivation is 

mathematically cumbersome; as such, only the final quantity derived by Marubini & Valsecchi 

(1995) will be presented below. However, it should be noted that in a traditional survival 

analysis problem with no competing events, the subdistribution variance �̂� (�̂�1(𝑡)) is equivalent 

to the variance of the Kaplan-Meier estimate obtained via Greenwood’s formula.  

�̂� (�̂�𝑖(𝑡)) =  ∑
[�̂�𝑖(𝑡) − �̂�𝑖(𝑡𝑗)]

2
∗ 𝑑𝑗

𝑛𝑗(𝑛𝑗 − 𝑑𝑗)𝑡𝑗≤𝑡

+∑ �̂�𝑖(𝑡𝑗−1)
2

𝑡𝑗≤𝑡

𝑑𝑖𝑗(𝑛𝑗 − 𝑑𝑖𝑗)

𝑛𝑗3
 

− 2∑ (�̂�𝑖(𝑡) − �̂�𝑖(𝑡𝑗))
2

𝑡𝑗≤𝑡

�̂�𝑖(𝑡𝑗−1)
𝑑𝑖𝑗

𝑛𝑗2
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VIII. Cause-Specific Hazard Function 

 When event times are represented as latent failure times in competing risks, the cause-

specific hazard function can be defined. The cause-specific hazard function is a generalization of 

the hazard function h(t) in traditional survival analysis to competing risks problems. As their 

name suggests, cause-specific hazards quantify the instantaneous hazard from a specific event, 

given that the observation has not yet been censored nor experienced the specified cause. The 

form of the cause-specific hazard function largely resembles that of the standard hazard function; 

for event k, the cause-specific hazard function is defined as follows:  

ℎ𝑘(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 ≤ 𝑇 < 𝑇 + ∆𝑡, 𝐶 = 𝑘 | 𝑇 ≥ 𝑡)

∆𝑡
 

 The cause-specific hazard for event k can be expressed as a function of an event’s 

subdensity 𝑓𝑖(𝑡) and marginal survivor function 𝑆𝑖(𝑡) using latent failure times for n events, 

which are defined below: 

𝑓𝑘(𝑡) =  −
𝜕𝑆(𝑡1, 𝑡2, … , 𝑡𝑛)

𝜕𝑡𝑘
;  𝑡1 = 𝑡2 = ⋯ = 𝑡𝑛 = 𝑡 

𝑆𝑘(𝑡) = 𝑆(𝑡1 = 0, 𝑡2 = 0,… , 𝑡𝑘 = 𝑡, 𝑡𝑛 = 0) 

ℎ𝒌(𝒕) =  −
𝜕 log [(𝑆𝑘(𝑡)]

𝜕𝑡
 =

𝑓𝑘(𝑡)

𝑆𝑘(𝑡)
 

In comparison to the subdistribution, which can be interpreted as the risk of failure from a 

particular event over time, the cause-specific hazard quantifies the instantaneous rate of failure 

attributable to a specific event. The cause-specific hazard function assumes non-informative 

censoring for all events i ≠ k, meaning that ℎ𝑘(𝑡) is calculated from a marginal distribution 

where event k serves as the only event of interest.   
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Furthermore, unlike the direct relationship between S(t) and h(t) in traditional survival 

analysis, there is no simple one-to-one relationship between the CIF and cause-specific hazard 

function. When competing risks are present, the CIF cannot be directly derived from the cause-

specific hazard function, and vice versa. 
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IX. Fine-Gray Subdistribution Hazard Function 

The subdistribution hazard function is an extension of Cox regression to the 

CIF/subdistribution, first introduced by Fine & Gray (1999). In contrast with cause-specific 

hazards regression, the baseline function of interest is the hazard of the subdistribution, rather 

than a cause-specific hazard. The subdistribution hazard 𝜆𝑘(𝑡) is the instantaneous risk of failure 

from event k, given that the patient has not yet experienced event k: 

𝜆𝑘(𝑡) =  lim
∆𝑡→0

𝑃(𝑡 < 𝑇 ≤ 𝑡 + ∆𝑡,   𝐶 = 𝑘 | 𝑇 > 𝑡 ∪ (𝑇 < 𝑡 ∩ 𝐶 ≠ 𝑘))

∆𝑡
 

=
𝑑

𝑑𝑡
log(1 −  𝐹𝑘(𝑡)) =  

𝑓𝑘(𝑡)

1 − 𝐹𝑘(𝑡)
 

Here, 𝑓𝑘(𝑡) and 𝐹𝑘(𝑡) represent the subdensity and CIF for event k, respectively. 

 

The definition of a subdistribution hazard is less intuitive than that of a cause-specific 

hazard, and differs in the method that the risk set is defined; for cause-specific hazards, the risk 

set includes anyone that has yet to experience any event, while the subdistribution hazard 

includes all patients that have yet to experience events, as well as those that have already 

experienced a competing event. Thus, for any covariate, the hazard ratio from the Fine-Gray 

model can differ from and is not interpreted the same way as the hazard ratio from cause-specific 

hazards regression; this means that the subdistribution hazard and cause-specific hazard may be 

affected differently by covariates. The form of the Fine-Gray model is shown below, where 

𝜆𝑘0(𝑡) is the baseline subdistribution hazard, and βk and Z are vectors of the coefficients for 

event k and the covariates of interest, respectively. 

𝜆𝑘(𝑡 | 𝑍) = 𝜆𝑘0(𝑡) ∗ exp (𝛽𝑘
  𝑇* Z)  
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  βk is calculated by maximizing the pseudo-likelihood function of its coefficients: 

𝐿(𝛽𝑘) =  ∏
exp (𝛽𝑘

𝑇𝑍𝑖) 

∑ 𝑤𝑖𝑗(𝛽𝑘
𝑇𝑍𝑗)𝑗 ∈𝑅𝑖 𝑖=1

 

 The risk set Rj is defined uniquely for the subdistribution hazard function, as mentioned 

above. Another unique feature of the pseudo-likelihood function is the presence of subject-

specific weights wij. The weights are equal to 1 for patients that experience no event prior to time 

ti, and equal to a time-decreasing weight of 
�̂�(𝑡𝑖)

�̂�(min (𝑡𝑗,   𝑡𝑖))
 for patients that experience competing 

events prior to ti, where �̂�(𝑡𝑖) is defined as the KM estimate to the survival function for the 

censoring distribution (i.e., the cumulative probability of a patient being in the risk set at ti). 

 The interpretations of hazard ratios from the subdistribution hazard function are not as 

intuitive as those from cause-specific hazards regression. Subdistribution hazard ratios can be 

interpreted as the effect of the change of a covariate on the rate of experiencing event k among 

patients that are either event-free or have already experienced a competing risk. While this 

interpretation is certainly more tricky and arguably less practical than that of cause-specific 

hazard ratios, the Fine-Gray model is considered more useful when the question of interest is 

predicting event incidence and/or prognosis in the presence of competing risks. 
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X. Cause-Specific Hazards Regression 

 The Cox PH model is directly applicable to the cause-specific hazard function. Since the 

cause-specific hazard function is a generalization of h(t) in traditional survival analysis, the 

interpretation of hazard ratios in the cause-specific hazards Cox model is largely similar to that 

of standard hazard ratios. Essentially, cause-specific hazards regression is just an extension of 

traditional Cox regression to each individual type of event, where failures from competing events 

are treated as censored observations. The benefit of cause-specific hazards regression over the 

Fine-Gray subdistribution hazard function is the more intuitive interpretation of its hazard ratios; 

the cause-specific hazard ratio can be interpreted as the effect of the change of a covariate on the 

hazard rate from event k only. Additionally, the form of the cause-specific hazards regression is 

practically identical to that of traditional Cox regression, as seen below: 

ℎ𝑘(𝑡 | 𝑍) = ℎ𝑘0(𝑡) ∗ exp (𝛽𝑘
  𝑇* Z) 

Here, hk0(t) represents the baseline hazard function for event k, and βk and Z are vectors of the 

coefficients for event k and the covariates of interest, respectively.  

Like standard Cox regression, the values for the coefficients in β are obtained by 

maximizing the partial likelihood of the coefficients, although the formula is slightly modified to 

account for multiple types of events. Here, the risk set Ri denotes all patients immediately before 

time ti that have not failed from any events or been censored.  

𝐿(𝛽𝑘) =  ∏
exp (𝛽𝑘

𝑇𝑍𝑖) 

∑ (𝛽𝑘
𝑇𝑍𝑗)𝑗 ∈𝑅𝑖 𝑖=1

  

 



22 
 

XI. Implementation in SAS and R 

 All data cleaning and proportional hazards models were fitted using SAS, while 

calculation and visualization of the Kaplan-Meier estimators and CIFs was facilitated through R. 

Both SAS and R were used to take advantage of each language’s strengths; SAS has very 

flexible built-in procedures to conduct survival analysis, while R is well-known for its superior 

and more convenient data visualization. Observations that had infeasible values, as well as those 

that died prior to discharge, were excluded from all analyses beforehand.  

For the traditional survival analysis models (Kaplan-Meier and Cox regression), we 

defined the censoring indicator as 1 if the patient was readmitted at any time, and as 0 for 

patients that were never readmitted or died prior to readmission. The date of last follow-up for 

patients that experienced a competing event was the date of mortality.   

 Calculation of the KM estimators was done using the survfit() function in the R package 

‘survival’, and calculation of the CIFs was done using the cuminc() function in the ‘cmprsk’ 

package. Visualization of the respective curves was done using the ggsurvplot() and 

ggcompetingrisks() functions in the ‘survminer’ package. The PHREG procedure in SAS was 

used to fit the Cox regression model with the covariates of interest. The proportional hazards 

assumption was tested using the TEST statement in PHREG. 

For both the cumulative incidence function and cause-specific hazard function, as well as 

their respective generalizations of the Cox model, the censoring indicator was coded as 0 for 

patients that were never readmitted nor experienced a competing event, 1 for patients that died 

prior to readmission, and 2 for patients that were readmitted. Competing risks cases were 

identified based on the criteria of having a mortality date, but missing a readmission date. To 
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apply Cox regression to the subdistribution hazard (Fine-Gray) and cause-specific hazard 

functions, one can specify EVENTCODE(FG) and EVENTCODE(COX) in the PHREG 

procedure’s MODEL statement. 

Lastly, the simulation of additional competing events and readmissions was conducted 

using a random number generator (ranuni function in SAS) to change the censoring indicators for 

censored or readmitted patients. The results and visualizations of the simulation study should not 

be in any way associated with the context of identifying risk factors for readmission, as the event 

counts are purposely inflated and do not reflect our original question of interest in any way.  
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Results 

XII. Results from Original Data 

 Of the 6724 CABG patients included in the analyses, 598 (8.9%) were readmitted during 

the follow-up period. The mean time to readmission for patients was 11.3 ± 8.4 days, and ranged 

from 0.5 to 54 days after discharge. while maximum follow-up time for all patients was set at 60 

days. There were 28 (0.4%) patients that experienced the competing event of mortality after 

discharge. The mean time to death was 16.8 ± 15.3 days, and ranged from 1 to 53 days after 

discharge. The average age of patients was 64.5 ± 10.1 years, and around 76% of patients were 

male. Around 71% of patients were white, 21% were black and 8% were of another race. A 

summary of overall patient characteristics can be found in Table 2 in the appendix. 

 Using the Kaplan-Meier estimator and treating competing events as censored, we had 598 

readmissions and 6048 censored observations, 2743 of which were assumed to censored at 30 

days. The probability of a patient not yet being readmitted conditional on still remaining in the 

study was 91% at 30 days, and 89% at 60 days after discharge (Table 3). The Kaplan-Meier 

curve generated from the estimator can be seen in Figure 1 below. 

Table 3.  

Probability of survival (no readmission) at selected follow-up times 

Days �̂�(𝒕) 𝟏 − �̂�(𝒕) 𝑺𝑬[�̂�(𝐭)]* # Failed # at Risk 

7 0.9612 0.0388 0.0024 258 6386 
14 0.9377 0.0623 0.0030 414 6219 
30 0.9107 0.0893 0.0035 592 533 
45 0.8984 0.1016 0.0067 597 162 
60 0.8899 0.1101 0.011 598 0 

*𝑺𝑬[�̂�(𝒕)] =  √𝑽[�̂�(𝒕)] 
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Figure 1. Kaplan-Meier survival curve for readmission as event of interest. Competing events are censored.  

 Figure 2 displays the cumulative incidence functions of our two events of interest, 

readmission and mortality. Because the KM estimator treats competing events as censored, the 

cumulative incidence of both events �̂�1(𝑡) is not equal to 1 – KM, the probability of readmission 

when no competing events exist; 1 - KM is a slight overestimate when we consider death as a 

competing event. This miniscule difference can be attributed to the very low amount of 

competing events relative to the sample size. At 30 days after discharge, the risk of failure from 

readmission is roughly 9%, and the risk of failure from death is around 0.3%. At 60 days after 

discharge, the risk of failure from readmission is roughly 11%, and the risk of failure from death 

is around 3%. This trend is in line with the nature of the data, as most patients experienced 

events at or prior to 30 days after discharge. 
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Table 4. 

Probability of events at selected follow-up times (C = 1 for readmission, C = 2 for death) 

Days �̂�𝟏(𝒕) 𝑺𝑬[�̂�𝟏(𝒕)]* �̂�𝟐(𝒕) 𝑺𝑬[�̂�𝟐(𝒕)]* �̂�𝟏(𝒕) + �̂�𝟐(𝒕) 

7 0.0387 0.0024 0.0015 0.0005 0.0402 
14 0.0622 0.0030 0.0024 0.0006 0.0646 
30 0.0892 0.0035 0.0031 0.0007 0.0923 
45 0.1014 0.0067 0.0121 0.0054 0.1135 
60 0.1096 0.0105 0.0306 0.0120 0.1402 

*𝑺𝑬[�̂�𝟏(𝒕)] =  √𝑽[�̂�𝟏(𝒕)] 

 

 
 

Figure 2. Cumulative incidence functions for the two events leading to failure, post-discharge death (competing 

event) and hospital readmission. 

 

 The results from performing Cox regression and cause-specific hazards regression for the 

primary event of interest, readmission, are identical; as previously explained, this is due to the 

fact that cause-specific hazards regression is an extension of traditional Cox regression to each 

event. However, hazard ratios for the competing event are undefined in traditional Cox 

regression (since competing events are right-censored), but can be compared between the Fine-

Gray and cause-specific hazards regression models.  
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Table 5. 

Comparison of Hazard Ratios for Potential Risk Factors for Readmission 

 Cause-Specific HR Fine-Gray HR 

 HR 95% Wald CI p-value HR 95% Wald CI p-value 

Age (per 10 years) 1.05 0.96 – 1.13 0.28 1.04 0.96 – 1.14 0.33 

Male 0.75 0.63 – 0.90 0.0016 0.75 0.63 – 0.90 0.0015 

White 0.76 0.64 – 0.90 0.0013 0.76 0.64 – 0.90 0.0012 

Black 1.48 1.24 – 1.77 <0.0001 1.48 1.24 – 1.77 <0.0001 

Hispanic Ethnicity 1.15 0.90 – 1.48 0.26 1.15 0.90 – 1.48 0.26 

Smoking 1.00 0.85 – 1.18 0.95 1.00 0.85 – 1.18 0.95 

BMI 
(Overweight/Obese) 

0.89 0.74 – 1.07 0.22 0.89 0.74 – 1.08 0.23 

Hypertension 1.24 0.90 – 1.72 0.18 1.24 0.90 – 1.72 0.18 

Alcohol consumption 0.80 0.65 – 0.99 0.0366 0.80 0.65 -0.99 0.0369 

Diabetes 1.43 1.22 – 1.68 <0.0001 1.43 1.22 – 1.68 <0.0001 

Depression 1.06 0.80 – 1.40 0.71 1.05 0.80 – 1.39 0.72 

Illicit Drug Use 1.21 0.86 – 1.69 0.27 1.21 0.86 – 1.69 0.27 

Pneumonia 1.23 0.95 – 1.59 0.12 1.22 0.94 – 1.59 0.13 

Syncope 1.25 0.89 – 1.76 0.20 1.25 0.89 – 1.76 0.20 

Sleep Apnea 1.23 0.99 – 1.53 0.06 1.23 0.99 – 1.53 0.06 

Dyslipidemia 1.44 0.99 – 2.09 0.06 1.43 0.99 – 2.08 0.06 

Cancer 1.21 0.87 – 1.67 0.26 1.20 0.87 – 1.67 0.26 

Cerebrovascular 
Disease 

1.35 1.12 – 1.63 0.0015 1.35 1.12 – 1.62 0.0016 

Liver Disease 1.30 0.92 – 1.85 0.14 1.30 0.92 – 1.84 0.14 

Chronic Lung Disease 1.28 1.07 – 1.52 0.0057 1.27 1.07 – 1.51 0.0062 

Peripheral Arterial 
Disease 

1.52 1.25 – 1.86 <0.0001 1.52 1.24 – 1.86 <0.0001 

Previous heart failure 1.37 1.12 – 1.68 0.0024 1.37 1.12 – 1.67 0.0024 

Prior MI 1.28 1.09 – 1.50 0.0032 1.28 1.08 – 1.50 0.0032 

Previous CABG 1.28 0.78 – 2.10 0.33 1.28 0.78 – 2.10 0.33 

Previous PCI 1.07 0.90 – 1.27 0.44 1.07 0.90 – 1.27 0.45 

Status (Urgent) 1.44 1.20 – 1.73 <0.0001 1.44 1.20 – 1.73 <0.0001 

Dialysis 2.27 1.67 – 3.07 <0.0001 2.26 1.67 – 3.06 <0.0001 

Immunocompromise 1.80 1.34 – 2.44 0.0001 1.81 0.34 – 2.44 0.0001 

Total OR Hours 1.07 1.01 – 1.12 0.0115 1.07 1.02 – 1.12 0.0057 

Length of Stay (Days) 
[Surgery to Discharge] 

1.04 1.03 – 1.05 <0.0001 1.04 1.03 – 1.05 <0.0001 

Aspirin Post-Op 1.19 0.63 – 2.22 0.59 1.19 0.64 – 2.23 0.58 

Beta Blockers Post-Op 0.92 0.60 – 1.41 0.71 0.93 0.61 – 1.42 0.75 

Any Post-Op Events / 
Complications 

1.41 1.20 – 1.66 <0.0001 1.41 1.20 – 1.65 <0.0001 

*Definitions of covariates considered in the model are defined in Table 3 of the appendix. 
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 For readmission, the hazard ratios and their confidence intervals reported from the Fine-

Gray and cause-specific hazard regression models are practically identical. This is likely due to 

the small number of competing events, and that the overall average time to death is higher than 

the overall average time to readmission; thus, the risk sets for the subdistribution hazard and 

cause-specific hazard function are likely very similar. In this case, the effect of the covariates on 

the subdistribution hazard is essentially equal to the effect of the covariates on the cause-specific 

hazard. 

 Examining the hazard ratios from both proportional hazards models, we identify the same 

covariates as significant risk factors for CABG readmission (p < 0.05). Males (HR = 0.75, CI: 

0.63-0.90) were significantly less likely to be readmitted compared to females. For race, we 

compared whites and blacks against all other races separately. Whites (HR = 0.76, CI = 0.64-

0.90) were significantly less likely to be readmitted, while blacks (HR = 1.48, CI = 1.24-1.77) 

were significantly more likely to experience readmission. The other significant risk factors for 

readmission were mostly related to baseline patient health characteristics, including history of 

diabetes (HR = 1.43, CI = 1.22-1.68), cerebrovascular disease (HR = 1.35, CI = 1.12-1.63), 

chronic lung disease (HR = 1.28, CI: 1.07-1.52), peripheral arterial disease (HR = 1.52, CI: 1.25-

1.86), previous heart failure (HR = 1.37, CI: 1.12-1.68), prior myocardial infarction (HR = 1.28, 

1.09-1.50), dialysis (HR = 2.27, CI: 1.67-3.07), urgent clinical status (HR = 1.44, CI: 1.20-1.73), 

immunocompromise (HR = 1.80, CI: 1.34-2.44) or experience of post-operative 

events/complications (HR = 1.41, CI: 1.20 – 1.68).   

Additionally, increased operation time (in hours) and length of stay were significantly 

associated with increased risk of readmission. Interestingly, alcohol consumption (2+ drinks 

weekly) was found to be a protective factor against readmission (HR = 0.80, CI: 0.65 – 0.99).  
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Using the cause-specific hazards regression and Fine-Gray models, we also identified 

significant risk factors for the competing event, mortality. Because the amount of competing 

events was so low, the confidence intervals for the hazard ratios here were very wide and not 

very meaningful. Thus, only the significant risk factors for mortality were reported below in 

Table 6. Similar to the case of Table 5, the hazard ratios between the two models are not very 

different; as mentioned earlier, this may be due to the distribution of competing event times 

being mostly later than readmission times, resulting in largely similar risk sets for the 

subdistribution hazard and cause-specific hazard function.  

Table 6. 

Comparison of Hazard Ratios for Potential Risk Factors for Competing Event (Mortality) 

 Cause-Specific HR Fine-Gray HR 

 HR 95% Wald CI p-value HR 95% Wald CI p-value 

Hispanic Ethnicity 2.62 1.06 – 6.48 0.0377 2.54 1.03 – 6.27 0.0432 

Smoking 2.22 1.02 – 4.84 0.0440 2.24 1.00 – 5.03 0.0499 

BMI 
(Overweight/Obese) 

0.43 0.20 – 0.93 0.0314 0.44 0.21 – 0.93 0.0327 

Pneumonia 3.63 1.59 – 8.29 0.0022 3.63 1.58 – 8.35 0.0024 

Cerebrovascular 
Disease 

2.19 1.01 – 4.74 0.0474 2.17 0.99 – 4.72 0.05 

Chronic Lung Disease 2.87 1.37 – 6.03 0.0053 2.82 1.35 – 5.89 0.0059 

Total OR Hours 1.20 1.03 – 1.39 0.0185 1.20 1.09 – 1.33 0.0003 

Length of Stay (Days) 
[Surgery to Discharge] 

1.07 1.04 – 1.10 <0.0001 1.06 1.05 – 1.08 <0.0001 

Beta Blockers Post-Op 0.13 0.05 – 0.32 <0.0001 0.13 0.05 – 0.32 <0.0001 

Any Post-Op Events / 
Complications 

2.46 1.11 – 5.44 0.0263 2.41 1.10 – 5.27 0.0274 
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XIII. Comparison of Results Using Modified Data 

 The simulation of additional readmissions and post-discharge deaths can be seen below; 

as previously mentioned, the same analysis was conducted again for the data using inflated 

frequencies for readmission and mortality. While the simulated data are not reflective of the 

original problem, it is useful to compare hazard ratios across models in a situation where events 

of both types occur far more frequently. For the sake of brevity, since the event probabilities and 

hazard ratios obtained here are trivial, the plots for the CIF and KM estimator were not shown, 

and only the results for a few covariates of interest were recorded for comparison purposes. 

 We first simulated around 2500 additional readmissions and 1200 additional mortalities, 

while keeping the number of patients constant. In this case, the times to readmission were 

unchanged; thus, a large amount of patients were marked as readmitted at 30 days. 

 Censored (C = 0) Readmission (C = 1) Mortality (C = 2) 

Original Data (n = 6724) 6098 598 28 

Modified Data (n = 6724) 2463 3049 1212 

 

 Using the Kaplan-Meier estimator, we first treated readmission as the event of interest in 

Table 6, with patients that died prior to readmission or were never readmitted at all as censored. 

In Table 7, we treat post-discharge death as the event of interest, and all readmissions and 

originally censored patients as censored. The quantity 1 – S(t) can be interpreted the probability 

of readmission and death at time t, respectively, assuming no competing risks are present. In 

Table 8, we re-apply the cumulative incidence function to the modified data, where �̂�1(𝑡) +

 �̂�2(𝑡) represents the cumulative incidence of all events (readmission and death). 
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Table 7.  

Probability of survival (no readmission) at selected follow-up times for modified data 

Days �̂�(t) 𝟏 − �̂�(t) # Failed # at Risk 

7 0.9957 0.0043 29 6386 
14 0.9954 0.0046 31 6219 
30 0.6157 0.3843 2270 533 
45 0.3715 0.6285 2425 162 
60 0.2007 0.7993 2483 0 

 

 

Table 8.  

Probability of survival (no post-discharge death) at selected follow-up times for modified data 

Days �̂�(t) 𝟏 − �̂�(t) # Failed # at Risk 

7 0.9976 0.0024 16 6386 
14 0.9973 0.0027 18 6219 
30 0.8095 0.1905 1115 533 
45 0.6636 0.3364 1180 162 
60 0.4486 0.5514 1212 0 

 

Table 9. 

Probability of events at selected follow-up times for modified data  

Days �̂�𝟏(𝒕) �̂�𝟐(𝒕) �̂�𝟏(𝒕) + �̂�𝟐(𝒕) 

7 0.0043 0.0046 0.0089 
14 0.0046 0.0051 0.0097 
30 0.3751 0.3604 0.7355 
45 0.4607 0.4375 0.8982 
60 0.4998 0.4911 0.9909 

 

 The true probabilities of being readmitted after 30 and 60 days, represented by �̂�1(𝑡), are 

0.3751 and 0.4998, respectively. Comparatively, the complement of the Kaplan-Meier estimate 

at 30 and 60 days, 1 – KM, are 0.3843 and 0.7993, respectively. Thus, the quantity 1 – KM is a 

substantial overestimate of the probability of readmission, especially at a time after many 

competing events have occurred. Furthermore, the true probability of experiencing any event, 

represented by �̂�1(𝑡) + �̂�2(𝑡), is equal to 0.7355 at 30 days after discharge, and 0.9909 at 60 
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days. If we interpret 1 – KM as the event probability for both readmission and death, then the 

sum of 1 – KM for readmission and death should hypothetically equal to �̂�1(𝑡) + �̂�2(𝑡). 

However, this is clearly not the case here; the sum of 1 – KM for both events is equal to 0.7993 + 

0.5514 = 1.351, which is an impossible probability. Thus, when both the event of interest and 

competing event(s) occur at relatively high rates, the Kaplan-Meier estimator is completely 

inaccurate, and 1 – KM cannot be used to model event probabilities. 

 The proportional hazards models for competing risks were also applied to the modified 

data (Table 10). The purpose here was to compare the hazard ratios between the Fine-Gray and 

cause-specific hazards regression models, and examine whether increased incidence of both the 

competing event and event of interest would result in differences in the hazard ratios between the 

two popular models. 

 

Table 10. 

Comparison of Hazard Ratios for Readmission Risk Factors (Modified Data) 

 Cause-Specific HR Fine-Gray HR 

 HR 95% Wald CI p-value HR 95% Wald CI p-value 

Age (per 10 years) 1.01 0.98 – 1.05 0.44 1.01 0.98 - 1.04 0.54 

Male 1.03 0.95 – 1.12 0.48 1.02 0.96 - 1.09 0.55 

White 1.02 0.95 – 1.11 0.58 1.01 0.95 - 1.07 0.73 

Black 0.97 0.89 – 1.06 0.54 1.00 0.94 - 1.08 0.89 

Smoking 1.01 0.94 – 1.08 0.81 1.05 1.00 - 1.11 0.07 

Hypertension 1.03 0.90 – 1.17 0.70 1.05 0.95 - 1.17 0.31 

Alcohol 1.04 0.96 – 1.13 0.34 1.03 0.96 - 1.10 0.43 

Diabetes 1.04 0.97 – 1.12 0.24 1.03 0.97 - 1.09 0.35 

Previous heart failure 0.92 0.84 – 1.02 0.13 1.01 0.93 - 1.10 0.78 

Prior MI 1.01 0.94 – 1.09 0.73 1.02 0.97 - 1.08 0.46 

Status (Urgent) 1.01 0.93 – 1.08 0.87 1.00 0.94 - 1.06 0.98 

Total OR Hours 1.00 0.98 – 1.02 0.98 1.02 1.00 - 1.03 0.10 

Length of Stay (Days) 
[Surgery to Discharge] 

1.00 0.99 - 1.00 0.25 1.00 0.99 - 1.00 0.19 

Any Post-Op Events / 
Complications 

1.01 0.95 - 1.07 0.75 1.01 0.95 - 1.07 0.75 
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 While the values of the hazard ratios naturally have changed from modifying the data, the 

difference in hazard ratios between the Fine-Gray and cause-specific hazards regression models 

is still relatively small. However, the significance of several of these hazard ratios (i.e., smoking, 

total operating room hours) differs drastically between the two models. For example, smoking is 

an insignificant risk factor for readmission under the cause-specific hazards model, but is 

marginally significant under the Fine-Gray model, which includes those that have already 

experienced the competing event in its risk set. This can potentially be attributed to the 

difference in distribution of competing events among smokers and non-smokers. For example, in 

our simulated data, 490 smokers experienced a competing event, while 722 non-smokers 

experienced a competing event. This disparity likely increases the effect of smoking on 

readmission when using the Fine-Gray model, due to how the risk set is defined.  

Thus, it is reasonable to conclude that when a non-negligible amount of competing events 

are present, and when there is a disparity in the distribution of competing events within a 

covariate’s levels, the difference in the risk set definition between the two hazard functions may 

become noticeable. 
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Discussion 

 In terms of assessing risk factors for readmission, the results from our competing risks 

proportional hazards models were consistent with results from previous research on risk factors 

for CABG readmission (i.e., race, gender, previous heart failure, prior MI, etc.). Many of the 

significant risk factors that were not considered in previous research may seem intuitive; patients 

with worse baseline health outcomes, as well as those having longer duration CABG operations 

and/or experiencing post-operative complications, would be expected to be at higher risk for 

readmission. The only result that seemed counterintuitive was that alcohol consumption (2 or 

more drinks per week) was found to be significantly protective against readmission (HR = 0.80, 

95% CI: 0.65 – 0.99). Naturally, a critical assumption of the interpretation of the significance of 

the hazard ratios is that the patients and hospitals in our data are representative of CABG patients 

and hospitals that perform such surgeries as a whole. 

In a situation where few competing events are present, the hazard ratio estimates from 

cause-specific hazards regression and the Fine-Gray model were near identical. Furthermore, the 

hazard ratios for the competing event, mortality, had very wide confidence intervals due to the 

lack of actual such events. Thus, it is reasonable to suggest that competing risks models may not 

be of much value when the number of patients that experience competing risks is very low. This 

was the impetus behind modifying the data, where the number of events of both types was 

increased significantly. For the most part, the differences in the hazard ratios obtained from 

cause-specific hazards regression and the Fine-Gray model were still minimal.  However, the 

modified data showed that one covariate (smoking) was insignificant using the cause-specific 

hazards approach, but was marginally significant using the Fine-Gray model. This difference in 

results from the original data suggests that not only was increasing the number of competing 
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events influential, but modifying the data also introduced a disparity in the distribution of 

competing events for the smoking variable. These disparities in the distribution of competing 

events within a covariate were shown to lead to differences in results between the cause-specific 

hazards and Fine-Gray models. For example, if smokers are more likely to experience competing 

events than non-smokers, then the effect of smoking on readmission would be diminished; the 

opposite is also true.  

While it’s difficult to say which proportional hazards model is better in a competing risks 

setting, the Fine-Gray model has come under criticism for its ‘unnatural’ inclusion of 

observations that have already experienced other competing events in its risk set, which may be 

invalid for causal inference.17 Specifically, when a variable increases the cause-specific risk of 

an event, it will simultaneously decrease the subdistribution hazard for a competing event, even 

though the variable itself does not cause a decrease in the risk of the competing event. Even so, 

the CIF and subdistribution hazard is generally considered the better model for prediction. In 

addition, the cause-specific hazards approach can be limited in that it marks all other competing 

events as non-informative censoring, which is generally invalid in competing risks problems. 

Even when the hazard ratios do not differ greatly between competing risks proportional 

hazards models, the estimate for the survival function from the Kaplan-Meier estimator becomes 

more misleading when there are many observations that experience competing events. In these 

cases, the CIF/subdistribution would certainly be the more accurate way to model and predict 

event probabilities. 

 Along with the relatively low rates of readmission and post-discharge mortality, one of 

the major limitations of the data may be the assumption of censoring times for patients where 

there was no information on the last follow-up date; as previously mentioned, only patients in the 
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final database version had this information available. While the follow-up time for patients was 

generally around or slightly greater than 30 days, it is certainly inaccurate to assume that an 

overwhelming majority of patients were censored at exactly 30 days, and may make the overall 

problem less meaningful if exact event times are unknown. There is also almost certainly some 

degree of correlation between the covariates; for example, it is reasonable to expect that patients 

with higher length of stay post-surgery may have experienced intra-operative or post-operative 

complications. Due to the high amount of covariates we considered, it may have been helpful to 

use dimensionality reduction methods prior to analyzing the risk factors of interest. 

 Overall, although competing risks methods are certainly valid for our question of interest, 

it would certainly be more ideal to apply such methods to survival problems where the 

competing events pose a real threat to experiencing the event of interest. For example, our results 

would definitely be more meaningful if patients were followed for a much longer period after 

discharge, as there would certainly be more readmissions and competing events. In this 

hypothetical scenario, it may even be viable to consider cause-specific mortality as multiple 

competing events, or even shift the survival analysis problem to model time to death after 

surgery.  
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Appendix 

Table 1.  

Summary of Data Cleaning 

Covariate(s) Values Removed or Modified Notes 

Age < 18 Likely extreme cases not representative of 
the population of interest receiving CABG.  
(2 removed) 
 

BMI < 10, > 100 Infeasible values that were likely recorded 
erroneously as a result of incorrectly 
measured weight and/or height. (15 
removed) 
 

Race 
 

All races not white or black Race categories other than white and black 
consisted a very small subset of patients 
(~8%), and were grouped together as “other” 
under race.   
 

Death prior to discharge 
Death during surgery 
 

Yes These patients were never at risk for 
readmission. (62 removed) 

Total OR Time 0 Infeasible value for time in operating room. 
(1 removed) 
 

Date of readmission Occurring before date of 
discharge 
 
 
 
Occurring well beyond typical 
follow-up time 
 
Occurring on same day as 
discharge 

Readmission must occur after discharge. The 
year was likely recorded incorrectly for 2 
patients and thus modified to reflect likely 
circumstances. 
 
Year of readmission was likely improperly 
recorded for 2 patients; this was modified to 
reflect likely circumstances. 
 
Time to readmission for these observations 
were changed from 0 to 0.5, since a major 
assumption of survival analysis is that 
everyone is failure-free at start of follow-up 
(time = 0) 
 

Date of Last Follow-Up Occurring before date of 
discharge 

Follow-up only occurs after discharge. The 
year was likely recorded incorrectly for 2 
patients and thus modified to reflect likely 
circumstances. 
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Table 2. 

Summary of Patient Characteristics 

 Overall (n = 6724) 

Age (years) 64.5 ± 10.1 

Male 5066 (75.3) 

Race  

__White 4764 (70.9%) 

__Black 1396 (20.8%) 

__Other 564 (8.4%) 

Hispanic 706 (10.5%) 

Smoking 2832 (42.1%) 

BMI (kg/m2)  

__Underweight/Normal 1448 (21.5%) 

__Overweight/Obese 5276 (78.5%) 

Hypertension 6180 (91.9%) 

Alcohol 1473 (21.9%) 

Diabetes 3150 (47.0%) 

Depression 564 (8.4%) 

Illicit Drug Use 338 (5.0%) 

Pneumonia 607 (9.0%) 

Syncope 323 (4.8%) 

Sleep Apnea 910 (13.5%) 

Dyslipidemia 6271 (93.3%) 

Cancer 359 (5.3%) 

Cerebrovascular Disease 1325 (19.7%) 

Liver Disease 288 (4.3%) 

Chronic Lung Disease 1776 (26.4%) 

Peripheral Arterial Disease 964 (14.3%) 

Previous heart failure 1012 (15.1%) 

Prior myocardial infarction (MI) 3527 (52.5%) 

Previous CABG 141 (2.1%) 

Previous PCI 2054 (30.5%) 

Status  

__Elective 2260 (33.6%) 

__Urgent 4464 (66.4%) 

Dialysis 243 (3.6%) 

Immunocompromise 303 (4.5%) 

Total OR Hours 5.7 ± 1.4 

Length of Stay (Days) 
[Surgery to Discharge] 

6.5 ± 4.8 

Aspirin Post-Op 6591 (98.0%) 

Beta Blockers Post-Op 6491 (96.5%) 

Any Post-Op Events / 
Complications 

3186 (47.4%) 
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Table 3. 

Definition of Covariates (per STS Adult Cardiac Database Data Specifications) 

Age Patient's age in years, at time of surgery. 

Male Patient's sex at birth as either male or female. 

Race (White/Black) Whether the patient's race, as determined by the patient or family, includes 
White, Black / African American or other. 

Hispanic Ethnicity If the patient is of Hispanic, Latino or Spanish ethnicity as reported by the 
patient / family. 

Smoking Current (within one year of admission) or previous use of any tobacco product. 

BMI Measured and classified into the following categories: 
<25: Underweight/Normal; ≥ 25: Overweight/Obese 

Hypertension Current diagnosis of hypertension defined by any 1 of the following: 

• History of hypertension diagnosed and treated with medication, diet, 
and/or exercise  

• Prior documentation of blood pressure >140 mm Hg systolic and/or 90 
mm Hg diastolic for patients without diabetes or chronic kidney 
disease, or prior documentation of blood pressure >130 mm Hg 
systolic or 80 mm Hg diastolic on at least 2 occasions for patients with 
diabetes or chronic kidney disease  

• Currently undergoing pharmacological therapy for treatment of 
hypertension 

Alcohol Defined by average of 2 or more drinks per week 

Diabetes History of diabetes diagnosed and/or treated by a healthcare provider. 

Depression Whether there is a current or previous history of depression or documentation 
of a depressed mood or affect. 

Illicit Drug Use Documented history of use of illicit drugs, such as heroin, marijuana, cocaine, 
or methamphetamine, or abuse of a controlled substance. Excludes rare 
historical usage or prescription of medicinal marijuana. 

Pneumonia Whether patient has a history of pneumonia. 

Syncope Whether in the past year, the patient had a sudden loss of consciousness with 
loss of postural tone, not related to anesthesia, with spontaneous recovery 
and believed to be related to cardiac condition. 

Sleep Apnea Whether patient has a diagnosis of sleep apnea and uses BiPAP (Bilevel 
Positive Airway Pressure) therapy. 
 

Dyslipidemia Current or previous diagnosis of dyslipidemia per the National Cholesterol 
Education Program criteria, defined as any one of the following:  

• Total cholesterol greater than 200 mg/dl (5.18 mmol/l)  

• Low-density lipoprotein (LDL) greater than or equal to 130 mg/dl (3.37 
mmol/l)  

• High-density lipoprotein (HDL) less than 40 mg/dl (1.04 mmol/l) in men 
and less than 50 mg/dl (1.30 mmol/l) in women 

Cancer Whether the patient has a history of cancer diagnosed within 5 years of 
procedure. 

Cerebrovascular 
Disease 

Indicate whether the patient has cerebrovascular disease, documented by any 
one of the following:  
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• Cerebrovascular accident 

• Transient ischemic attack 

• Non-invasive carotid test with > 79% diameter occlusion. 

• Prior carotid surgery, stenting or prior cerebral aneurysm clipping or 
coil 

Liver Disease Whether the patient has a history of hepatitis B, hepatitis C, cirrhosis, portal 
hypertension, esophageal varices, chronic alcohol abuse or congestive 
hepatopathy. 

Chronic Lung Disease Whether the patient has chronic lung disease 

Peripheral Arterial 
Disease 

Whether the patient has a history of peripheral arterial disease (includes upper 
and lower extremity, renal, mesenteric, and abdominal aortic systems) 

Previous heart failure Whether there is physician documentation or report that the patient has been 
in a state of heart failure. 

Prior MI Whether patient has had at least one documented previous myocardial 
infarction at any time prior to current surgery. 

Previous CABG Whether the patient had a previous Coronary Bypass Graft prior to the current 
admission 

Previous PCI Whether a previous Percutaneous Coronary Intervention (PCI) was performed 
any time prior to current surgical procedure. 

Status (Urgent) Clinical status of the patient prior to entering the operating room 

• Elective: The patient's cardiac function has been stable in the days or 
weeks prior to the operation. The procedure could be deferred 
without increased risk of compromised cardiac outcome. 

• Urgent: Procedure required during same hospitalization in order to 
minimize chance of further clinical deterioration. 

Dialysis Whether the patient is currently (prior to surgery) undergoing dialysis. 

Immunocompromise Whether immunocompromise is present due to immunosuppressive 
medication therapy within 30 days preceding the operative procedure or 
existing medical condition. 

Total OR Hours Time (in hours) patient spent in operating room 

Length of Stay (Days) Days between date of surgery and date of discharge 

Aspirin Post-Op Whether patient was discharged from facility on aspirin, or if it was 
contraindicated. 

Beta Blockers Post-Op Whether patient was discharged on beta blockers, or if beta blocker was 
contraindicated 

Any Post-Op Events / 
Complications 

Whether a postoperative event occurred during the hospitalization for 
surgery; includes the entire postoperative period up to discharge, even if over 
30 days. 

 


