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Abstract

Numerical Analysis of Mixed Formulations for Bingham Fluids
By Alexis Aposporidis

Visco-plastic materials have been attracting a great amount of attention among re-
searchers in the study of fluid flow due to their widespread presence in various fields
of science. While numerical techniques for simulating their flow have seen significant
improvements in the last few decades, the efficient solution of the nonlinear partial
differential equations modelling them still poses many challenges. From a mathemat-
ical point of view, the major difficulty associated with the numerical solution of these
equations is the presence of singularities in (a priori unknown) parts of the domain.
This “irregularity” of the equations generally reflects in slow convergence of numer-
ical solvers. In this thesis we introduce an augmented formulation of the Bingham
visco-plastic flow which is aimed at circumventing the singularity of the equations.
We develop a nonlinear solver based on this new formulation and compare its perfor-
mance to other common techniques for solving the Bingham flow, indicating superior
convergence properties of the solver based on the new formulation. Upon lineariza-
tion and discretization of the augmented formulation, a sequence of linear systems
is obtained which are in general very large and sparse. We introduce a nonlinear
geometric multilevel technique for the efficient solution of these linear systems. The
convergence of this multilevel technique is accelerated by a flexible Krylov subspace
method. We test the resulting numerical scheme on both academic test cases and
problems arising from real-life applications with a particular emphasis on problems
in hemodynamics.
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Chapter 1

Introduction

1.1 Non-Newtonian Fluids

In fluid mechanics, rheology is the study of the flow of materials. A measurement of a

fluid’s resistance to deformation under shear stress is given by its viscosity. Viscosity

can be perceived as the fluid’s “thickness” – the higher the viscosity the “thicker” the

fluid. Some fluids exhibit a constant viscosity under a fixed temperature, we call them

Newtonian fluids. While many common fluids, such as water, milk and ethanol [79],

fall into the category of Newtonian fluids, a much larger group of materials show a

viscosity which changes with the shear stress and are referred to as Non-Newtonian

fluids. Three general categories of Non-Newtonian fluids exist, characterized by the

manner in which their behavior deviates from that of a Newtonian [22]:

• shear thickening (dilatant) fluids,

• shear thinning (pseudoplastic) fluids and

• visco-plastic fluids.

Figure 1.1 shows the relationship between the shear rate and the shear stress for

these three categories.

1
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Figure 1.1: The shear stress as a function of the shear rate for Newtonian fluids
(yellow), shear thickening fluids (red), shear thinning fluids (green) and visco-plastic
(Bingham) fluids (blue).

For shear thickening fluids the viscosity increases as the shear stress increases in

magnitude, the material becomes “thicker” under stress. An example of a shear

thickening fluid is a 40% corn starch solution [92]. This is a popular example of a

Non-Newtonian fluid that is often used in television, literature and on the internet.

The effect of the Non-Newtonian behavior is demonstrated by having a person walk

over a tub filled with the corn starch solution. As long as the person applies a sufficient

amount of force to the surface when stepping on it, the person is able to walk over

the fluid without sinking. Once this person stands on the fluid or decreases the force

when stepping on the surface, the viscosity of the fluid is no longer high enough to

carry the person’s weight, causing the person to sink (see for example [103,104]).

Shear thinning fluids, on the other hand, exhibit a decreasing viscosity as the shear

rate increases. In other terms, they become “thinner” as the applied stress increases

in magnitude. Examples of shear-thinning fluids are high fruit concentrates such as

orange juice concentrate or apple sauce [92] and blood.
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Some materials only show a rate of deformation if the applied stress exceeds a certain

threshold. If the applied stress is below this critical value, the material has a vanishing

rate of deformation and it behaves like a solid rather than an incompressible fluid.

These types of materials are called visco-plastic fluids and the critical value that

has to be exceeded for it to behave as a fluid is referred to as the yield stress [64].

Literature provides three major subcategories of visco-plastic matter, characterized

by their relationship between shear stress τ and shear rate Du [23, 64]:

• Casson fluids:

τ =

(
√
µ+

√
τs
|Du|

)2

Du for |τ | > τs.

Examples of Casson fluids include tomato soup, honey and concentrated fruit

juices [54].

• Herschel-Bulkley fluids:

τ =

(
K|Du|n−1 +

τs
|Du|

)
Du for |τ | > τs.

Minced fish paste or raisin paste are examples of Herschel-Bulkley fluids [92].

• Bingham fluids:

τ =

(
2µ+

τs
|Du|

)
Du for |τ | > τs.

The flow of many materials can be described by the Bingham model, examples

fluids are ketchup and toothpaste, the flow of certain oil-bearing materials, mud

and magma [66], just to name a few.

In all three cases,

Du = 0 for |τ | ≤ τs,



4

Figure 1.2: Relationship between shear stress and shear rate for Bingham (blue),
Casson (green) and Herschel-Bulkley (red) fluids.

K > 0 and n > 0 are given constants and µ, τs are the constant static viscosity and

the yield stress, respectively. All these constants are material specific. See Figure 1.2

for a visualization of the relationship between shear rate and shear stress for Bingham,

Casson and Herschel-Bulkley fluids.

This thesis will focus on the analysis and the numerical simulation of the flow of

Bingham materials. The extension of the ideas presented here to the other types of

visco-plastic materials is part of the future work.

1.2 History of Rheology

Scientists have studied fluids for a long time, reaching as far back as antiquity. Proba-

bly the earliest application of viscosity effects was performed around 1600 BCE by the

Egyptian scientist Amenemhet, who made a correction to the drainage angle of a wa-

ter clock to account for the viscosity change of water as the temperature changes [19].

In 1687, Isaac Newton stated a famous definition of the resistance of ideal fluids (now
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called viscosity): “The resistance which arises from the lack of slipperiness originating

in a fluid – other things being equal – is proportional to the velocity by which the parts

of the fluid are separated from each other” [67]. Newton characterized the class of

fluids we now call Newtonian. The study of fluids, however, has not been a separate

discipline until the early twentieth century. In 1924, a Plasticity Symposium (for the

study of viscosity) was held at Lafayette College, Pennsylvania. Due to a high level of

interest in the subject, the symposium was held several times in the following years.

During the third symposium, in 1929, Eugene C. Bingham and Markus Reiner (both

Lafayette College) suggested the creation of a dedicated discipline for the “study of

the flow and the deformation of all forms of matter”, and suggested calling it “rhe-

ology”. A committee, which included Winslow H. Herschel, met on April 29th 1929

and decided to follow their suggestion. It was that same day that the field of rheol-

ogy was coined [37]. The class of visco-plastic materials had still not received much

attention during that time, and this did not change for the next few decades, until

the early eighties. In 1983, a review by Bird et al. [23] appeared providing a list of

several materials exhibiting a yield, making the scientific community more aware of

the widespread presence of visco-plastic materials – and their potential applications.

Since the appearance of this article, the interest in visco-plastic materials slowly in-

creased and researchers started to study them more thoroughly. Attempts were made

to model and simulate their flow. However, measuring the yield stress and finding the

unyielded regions were still unresolved problems. At the same time, some researchers

questioned the existence of visco-plasticity. Barnes and Walters [9] stated that if a

material flows at high stresses it would also flow for low stresses, even though very

slowly. This was however quickly disputed by many [7,53,88]. The appearance of the

modification of the Bingham model by Papanstasiou [70] in 1987 made the implemen-

tation of numerical solvers relatively easy. The assumption in his modification was

that visco-plastic materials can be approximated as fluids that exhibit an infinitely
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high viscosity at the limit of low shear rates, followed by a continuous transition to

a viscous fluid. The approximation could be controlled by a material parameter that

controls the exponential growth of the stress. The Papanastasiou modification and

its variants are still used today and are implemented in all major packages for Com-

putational Fluid Dynamics (CFD) for simulating the flow of visco-plastic materials.

In the time until today, experimental techniques have been (and still are) experienc-

ing significant improvements. With its applications in different and diverse fields,

the field of viscoplasticity enjoys a growing interest among researchers. The subject

remains challenging today, with many open problems to be tackled.

See [37] for a full review of the history of rheology and [64] for the particular branch

of visco-plastic matter.

1.3 Bingham Fluids

1.3.1 Motivation and Examples

Bingham fluids now enjoy a great amount of attention in the study of visco-plastic

materials. The flow of Bingham materials occurs in various fields of modern research,

ranging from geology, geophysics to medicine and many other industrial applications.

The Bingham model is used, among others, for describing the flow of oil bearing

materials, slurries, mud and magma as well as certain powder mixtures. A material

often associated with Bingham fluids is ketchup. The vico-plasticity can be observed

when turning an opened ketchup bottle upside down. The content will likely remain

inside the bottle since the shear stress induced by the earth’s gravity is less than the

yield stress of the material. To force a flow, the bottle needs to be shaken sufficiently

strong so that the stress on the material exceeds the yield stress. This results in the

(former rigid) medium to become an incompressible fluid and the content pours out

of the bottle [71]. Another material associated with Bingham fluids is toothpaste; a
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certain minimal amount of force needs to be applied to the tube before the toothpaste

pours out of the tube [73]. Bingham fluids are addressed in various fields of scientific

literature. Numerical simulations of Bingham fluid flows are used for analyzing the

flow of mud-rich debris and and its deposits [101] and for routing the flow of channel-

ized debris. Magnetorheologial fluids are field-controllable materials whose rheological

properties can be altered by applying magnetic fields [49]. These materials are used

for example for shock-absorbers and artificial joints and the Bingham model can be

used for describing the flow of these fluids [60].

Mud flow is an example of Bingham flow, making the model interesting for applica-

tions involving geology. For example in [56], Bingham fluids are used for modeling

and predicting landslides. Bingham fluids are of interest to the oil industry; the model

is used for analyzing start-up flows of waxy crude oils in pipelines [98, 99]. Bingham

fluids may, under certain circumstances, be used for simulating the flow of blood,

especially under a high concentration of white blood cells or blood solutes. We will

discuss the Bingham model for blood flow problems in more detail in Chapter 7. See

also [47] for applications of Bingham fluids involving problems in hemodynamics.

It should be mentioned that the examples listed here are just a small subset of ap-

plications and Bingham fluids in many more situations of interest. See [23] for a

comprehensive review of these applications.

1.3.2 The Equations

In this section we introduce the partial differential equations that describe the fluid

flow of a Bingham plastic. Let u denote the (two or three dimensional) velocity field

and let p be the pressure. We define the rate of deformation tensor Du = (∇u+∇uT )

with the Frobenius norm |Du| =
√

tr(Du ·DuT ). Now we define the strain rate

tensor τ by

τ = 2µDu + τs
Du

|Du|
. (1.1)
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The constant τs is the yield stress, the critical value the shear stress needs to exceed

for the Bingham material to become an incompressible fluid. In a given domain Ω,

the equations that describe the flow of a Bingham material are given by

 ρ[∂u
∂t

+ (u · ∇)u]−∇ · τ +∇p = f

∇ · u = 0
in Ω (1.2)

when |τ | > τs. For |τ | ≤ τs we set

Du = 0.

We call the subset of Ω in which it holds Du = 0 the plug or rigid region, since the

Bingham material behaves like a solid in this region. Outside the rigid region, the

material behaves like a fluid and (1.2) holds. This subset is referred to as the fluid

region. Consequently, the constitutive relation reads

Du =

 0 if |τ | ≤ τs (plug region)(
1− τs

|τ |

)
τ
2µ

if |τ | > τs (fluid region).
(1.3)

Equations (1.2), (1.3) can be viewed as a generalization of the Navier-Stokes equations

with shear-dependent viscosity µ̂ = 2µ+ τs
|Du| , reducing to the classical Navier-Stokes

equations with constant viscosity for τs = 0. In the case of a steady flow with a low

Reynolds number, we may also neglect the convective term and (1.2) simplifies to

 −∇ · τ +∇p = f

∇ · u = 0
in Ω. (1.4)

We refer to (1.4) as the steady Stokes type equations as opposed to the Navier-Stokes

type equations (1.2).
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1.4 Notation

We introduce some notation that will be used throughout this thesis. The set L2
0(Ω)

denotes the subspace of L2(Ω) functions with zero mean over Ω and H1
0 (Ω) the sub-

space of H1(Ω) functions with vanishing trace on ∂Ω. The corresponding spaces for

two or three dimensional vectors are denoted in bold, i.e. L2(Ω), Hk(Ω) or H1
0(Ω).

The subspace of H1
0(Ω) of vector-functions that are divergence free is denoted by V.

For tensors whose components are Hk(Ω) functions we use the notation Hk(Ω). For

the particular case of symmetric tensors, we use the notation Lps(Ω), H1
s(Ω). When

there is no possibility of confusion, the indication of the domain Ω will be omitted.

The norm in Hk is denoted by ‖ · ‖k, the scalar product and the norm in L2 are

denoted by (·, ·) and ‖ · ‖, respectively. The same norm and product notation is used

for the vector and tensor counterparts of Hk and L2.

1.5 Outline of the Thesis

The focus of this thesis will be the numerical solution and analysis of the Bingham

fluid flow equations. We introduce a new formulation of the problem which we will

refer to as the mixed formulation of the Bingham fluid flow. In Chapter 2 we

will explore different formulations of the Bingham fluid flow equations, including the

formulation in primitive variables, the regularized formulation and the augmented

formulation by Lion and Glowinski. We will then introduce the mixed formulation

of the problem. In Chapter 3 we establish the well-posedness of the continuous

problem in the primitive and mixed formulation. We start the chapter by presenting

the concept of monotonicity methods for nonlinear equations. This concept is then

used for proving the well-posedness. Chapter 4 presents the discretization and lin-

earization of the problem in primitive and mixed variables. We start with the Picard

linearization method and address its well-posedness. Error estimates for the Picard
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scheme will be provided. We also present the Newton linearization method. We

then address the finite element discretization of the problem in primitive and mixed

variables and prove the well-posedness. In Chapter 5 we show a comparison of the

performance of the nonlinear solver based on the mixed formulation and the prim-

itive formulation. A comparison to the solver based on the augmented formulation

by Lions and Glowinski will be presented as well. These experiments are performed

on simple two dimensional test cases. Chapter 6 presents iterative techniques and

preconditioners for solving the large and sparse linear systems arising from the dis-

cretization and linearization of the mixed formulation, with a particular emphasis on

geometric multilevel preconditioning. Numerical results will be shown in Chapter

7. We test our multilevel preconditioner on two and three dimensional problems, in-

cluding experiments on complex geometries arising from problems in hemodynamics.

The thesis concludes with some summarizing remarks and an outlook to future work

in Chapter 8.



Chapter 2

Mathematical Formulation

In this chapter we present various mathematical formulations of the Bingham fluid

flow. We start with different techniques for regularizing the problem in Section 2.1.

These techniques force the entire computational domain to be formally a fluid re-

gion. In Section 2.2 we present the augmented formulation introduced by Lions and

Glowinski, the resulting numerical solver will be addressed in a later chapter. We then

proceed to the mixed formulation in Section 2.3. This formulation will be the main

focus of this thesis. In Section 2.4 we present the weak formulation of the problem in

primitive and mixed variables.

2.1 Regularized Formulations

In Section 1.3 we introduced the partial differential equations (1.2), (1.3) describing

the flow of a Bingham material. We will refer to this formulation as the formulation

in primitive variables. Notice that in the constitutive relation (1.3) the deformation

tensor Du is piecewise defined in fluid and plug region. A major difficulty associated

with solving the Bingham equations is that the fluid and plug regions are unknown a

priori and finding them is part of the problem. Further notice that µ̂ = 2µ+ τs
|Du| is

singular in the plug region where the strain rate tensor vanishes. These difficulties can

11
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be addressed by regularizing µ̂. A common regularization technique is the Bercovier-

Engelman regularization [16], in which |Du| is replaced by |Du|ε =
√
|Du|2 + ε2 for

some ε > 0. In practice, regularization techniques replace the plug region by a flow

region in which the fluid has a high viscosity. The regularized formulation of the

Bingham flow, using the Bercovier-Engelman approach, reads

 ρ[∂u
∂t

+ (u · ∇)u]−∇ · (2µDu + τs
Du
|Du|ε ) +∇p = f

∇ · u = 0
(2.1)

and is imposed in the entire domain Ω. In the case of the steady Stokes type equations,

(2.1) reduces to  −∇ · (2µDu + τs
Du
|Du|ε ) +∇p = f

∇ · u = 0
(2.2)

While the Bercovier-Engelman regularization perturbs |Du| by a constant param-

eter ε independent of |Du|, other techniques exist taking into account the size of

|Du|. The model of Papanastasiou [70] is such a technique, providing an exponential

regularization of (1.1) by introducing a parameter m which controls the exponential

growth of the stress tensor. The Papanastasiou variant of (1.1) reads

τ = 2µ+ τs
Du

|Du|
(
1− e−m|Du|) ,

which is valid in both fluid and plug region. Here the impact of the perturbation

depends on Du: If Du is large in magnitude, the term 1 − e−m|Du| is negligible

whereas it has more impact as |Du| approaches zero.

Another option for regularizing is to perturb the problem only in those parts of the

domain where |Du| is sufficiently small. An example of such a regularization technique
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is

|Du|reg(ε) =

 |Du| for |Du| ≥ 2ε

|Du|2+4ε2

4ε
for |Du| < ε.

The Bercovier-Engelman regularization and the Papanastasiou model are most com-

monly used for solving the regularized Bingham model, we will use the Bercovier-

Engelman approach in this thesis due to its simplicity. However, other approaches

exist and we point out in particular two which have appeared in literature:

1. Tanner and Milthorpe [94] used a model called the bi-viscosity model, having two

finite viscosity slopes (that is, combining two Newtonian models): τ = 2µ0Du

if |Du| < γc and τ = 2µ0 + τs
Du
|Du| if |Du| ≥ γc, where γc and µ0 are chosen

parameters.

2. The approach by Beris et al. [17] essentially solved the Bercovier-Engelman

regularized problem, but took into account the equations for a plastic solid

when |Du| < ε.

Various well-established techniques for the numerical solution of the regularized Bing-

ham model exist, including iterative schemes of Newton or Picard type for linearizing

the equations coupled with preconditioned Krylov subspace methods for solving the

linear systems. The numerical implementation of the regularized Bingham model is

relatively simple in an existing CFD code, however the regularization prevents finding

the ‘exact’ visco-plastic solution. In particular, finding plug-regions in the domain is

a non-trivial task if ε > 0, see for example [76], or [98,99] for the case of compressible

fluids. Thus accurate computations require small values of ε [33, 45, 85]. However,

using small values of ε gives rise to an array of computational issues. In particular,

the Newton method applied to (4.1) is not robust with respect to ε, the domain of

convergence for the Newton method shrinks as ε → 0 (see [33] and numerical re-

sults in [51, 57]). Both Newton and Picard iterative methods exhibit a severe loss of
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efficiency as ε→ 0 reflecting in slow convergence of both methods.

2.2 The Formulation by Lions and Glowinski

The mathematical and numerical problems associated with solving the Bingham fluid

flow equations motivated researchers to consider different formulations of (1.2), (1.3).

One approach is based on the variational inequality formulation introduced by Du-

vaut and Lions [39]. A numerical solver based on this formulation was proposed by

Glowinski et. al. (see [34] and the references therein) and is based on Uzawa-type it-

erative schemes. It has become attractive when solving the non-regularized Bingham

equations, especially when it is necessary to find the ‘true’ visco-plastic solution and

to determine the plug regions [76, 80]. The idea of this approach is as follows: the

solution u of the Bingham problem is equivalent to the minimization

min
v∈H1

0 (Ω)
J(v), with J(v) = µ

∫
Ω

|Dv|2dx + τs

∫
Ω

|Dv|dx−
∫

Ω

fvdx.

The goal is now to decouple the nonlinearity and the derivatives by introducing an

auxiliary tensor γ = Du. Then the extra relation Du − γ = 0 is imposed by

penalization and use of a Lagrange multiplier. In this way, the solution u, τ together

with γ of the Bingham problem (1.2) is the saddle-point of the following Lagrangian

functional:

L(u,γ, τ ) = µ

∫
Ω

|γ|2dx+τs

∫
Ω

|γ|dx+

∫
Ω

(Du−γ) : τdx+λ

∫
Ω

|Du−γ|2dx−
∫

Ω

f·udx.

The constant λ > 0 is an auxiliary arbitrary parameter. Then

L(u,γ, τ ) = min
σ∈L2s,v∈V

max
ξ∈L2s
L(v,σ, ξ). (2.3)
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The resulting numerical scheme, which we will refer to as ALG, does not require a

regularization ε > 0 and is proven to be convergent [34]. However, the convergence

rate depends on the ‘right’ choice of the parameter λ and has not been rigorously

established. Numerical experiments suggest that the convergence of this scheme can

be very slow. We will provide details on the algorithm in Chapter 4 and a numerical

result in Chapter 5.

2.3 The Mixed Formulation

Motivated by the difficulties associated with solving the Bingham equations in the

primitive variables (1.2), (1.3) as well as the drawbacks of ALG, we introduce a

different formulation of the Bingham fluid flow equations. We consider first the

regularized formulation, using the Bercovier-Engelman approach. Define W = Du
|Du|ε .

Equations (1.2) and (1.3) can then be reformulated into


ρ[∂u

∂t
+ (u · ∇)u]−∇ · (2µDu + τsW ) +∇p = f

∇ · u = 0

Du− |Du|εW = 0.

(2.4)

The idea of adding an auxiliary variable W to the equations was motivated by [26],

where a similar approach was successfully applied in the context of an image restora-

tion problem. In this paper, the scalar variable u is the grey-level of an image and the

total variation
∫

Ω
|∇u| is minimized. Using a Tikhonov formulation, this minimization

can be written as

min
u
α‖|∇u|‖L1 +

1

2
‖Ku− z‖2

L2 .

The corresponding Euler-Lagrange equation is then

−α∇ ·
(
∇u
|∇u|

)
+K∗(Ku− z),



16

and the singularity of the term ∇u
|∇u| is treated by the same idea as presented here.

See [45,46] for analogies between image restoration problems and visco-plastic fluids.

Equation (2.4) denotes the mixed formulation of the Bingham fluid flow and will

be analyzed and discussed in further detail. Note that the third constraint of (2.4)

has been obtained by multiplying both sides of the equation by |Du|ε, resulting in

a formulation which contains no division. This is particularly relevant when letting

ε→ 0. The corresponding mixed formulation for the Stokes type equations reads


−∇ · (2µDu + τsW ) +∇p = f

∇ · u = 0

Du− |Du|εW = 0.

(2.5)

We introduce this formulation with the intention of enhancing the numerical proper-

ties of the regularized formulation of the Bingham fluid flow. Indeed, the numerical

experiments that will be presented in Chapter 5 will show that this formulation is

efficient for solving the regularized problem and that for a given ε the number of

nonlinear iterations is significantly reduced compared to solving the original problem

(1.2), (1.3). The fact that the formulation contains no division even makes the mixed

formulation applicable to the nonregularized case (ε = 0). In this case this approach

and the resulting iterative method compare favorably with ALG.

2.4 Weak Formulations

We now consider the weak formulation of the primitve and mixed formulation. Let

us introduce the following bilinear forms:

a(u,v) =

∫
Ω

2µDu : Dv on H1
0 ×H1

0,
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b(p,v) = −
∫

Ω

p∇ · v on L2
0 ×H1

0.

To handle the primitive formulation of the Bingham flow, we further define the form

aε(u,v) = a(u,v) +

∫
Ω

τs
|Du|ε

Du : Dv on H1
0 ×H1

0.

The continuity and coercivity of the form aε will be addressed in Section 3.3. Similarly,

for the mixed formulation we define the bilinear and non-linear forms

c(u, Z) =

∫
Ω

τsDu : Z on H1
0 × L2

s,

g(|Du|ε,W, Z) =

∫
Ω

τs|Du|εW : Z on H1
0 × L2

s × L∞s .

Note that since u ∈ H1
0, we have Du ∈ L2

s and therefore W ∈ L2
s, |Du|ε ∈ L2

2. Thus

we need to take test functions from L∞s to ensure that the form g is well-defined, i.e.

Z ∈ L∞s . Later in this thesis (see Section 3.4) we will see that W ∈ L∞s so that the

set of test functions can be extended to L2
s. The weak formulation of the regularized

primitive Stokes type formulation then reads: Find u ∈ H1
0 and p ∈ L2

0 such that for

any v ∈ H1
0 and q ∈ L2

0

aε(u,v)− b(p,v) + b(q,u) = (f,v). (2.6)

For the mixed formulation, the weak formulation of the Stokes type equations reads

as follows: Find u ∈ H1
0, p ∈ L2

0 and W ∈ L2
s such that for any v ∈ H1

0, q ∈ L2
0 and

Z ∈ L∞s

a(u,v)− b(p,v) + c(v,W ) + b(q,u) + c(u, Z)− g(|Du|ε,W, Z) = (f,v). (2.7)
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For the (unsteady) Navier-Stokes type equations, we need to define in addition the

form

n(u,v) = ρ

∫
Ω

[
∂u

∂t
· v + (u · ∇)u · v

]
on H1

0 ×H1
0.

The weak formulation of the Navier-Stokes type equations in primitive variables then

reads: find u ∈ H1
0 and p ∈ L2

0 such that for all v ∈ H1
0 and q ∈ L2

0

n(u,v) + aε(u,v)− b(p,v) + b(q,u) = (f,v). (2.8)

Similarly, for the Navier-Stokes type equations in the mixed formulation, we have:

find u ∈ H1
0, p ∈ L2

0 and W ∈ L2
s such that for all v ∈ H1

0, q ∈ L2
0 and Z ∈ L∞s

n(u,v)+a(u,v)−b(p,v)+c(v,W )+b(q,u)+c(u, Z)−g(|Du|ε,W, Z) = (f,v). (2.9)



Chapter 3

Well-Posedness of the Continuous

Problem 1

In this chapter we will address the well-posedness of the continuous regularized Bing-

ham problem in the primitive and mixed formulation. We start with presenting two

inequalities that will be used for our analysis in Section 3.1. In Section 3.2, we ex-

plain the concept of monotonicity methods for nonlinear equations, in particular the

method of Browder and Minty. This method will be a key component in establishing

the well-posedness of the problem. We then proceed to proving well-posedness of the

primitive formulation in Section 3.3. The well-posedness of the mixed formulation

is based on showing the equivalence (on the continuous level) of the primitive and

mixed formulation, the proof is carried out in Section 3.4.

3.1 Preliminaries

For the analysis presented in this chapter there will be two inequalities of importance.

From the vector identities 2∇ ·D = ∆ +∇∇· and ∇∇· = ∆ +∇×∇× and by using

1Results in this chapter have been published in A. Aposporidis, E. Haber, M. A. Olshanskii,
A. Veneziani, A mixed formulation of the Bingham fluid flow problem: Analysis and numerical
solution, Computer Methods in Applied Mechanics and Engineering, 200 (2011), pp. 2434-2446

19
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integration by parts we get the Korn type inequalities

‖Du‖ ≤ ‖∇u‖ ≤
√

2‖Du‖ for all u ∈ H1
0, (3.1)

stating the equivalence between the L2 norms of the gradient and its symmetric part.

We shall also refer to the Friedrich’s inequality (also known as Poincaré’s inequality)

‖u‖ ≤ CF‖∇u‖ for all u ∈ H1
0, (3.2)

where CF is a positive constant depending only on the domain Ω. Throughout this

chapter we will assume that the domain Ω is polygonal or ∂Ω ∈ C1,1 and that f ∈

L2. Moreover, for the sake of simplicity we assume homogeneous Dirichlet boundary

conditions (u = 0 on ∂Ω). The generalization to mixed Dirichlet and Neumann

boundary problems is possible. The analysis will be presented for the regularized

steady Stokes type case (2.2) and (2.5).

3.2 Monotonicity Methods

We follow Section 9.1 in [42] for explaining the concept of monotonicity. First, we

need an important fixed point theorem (see Section 8.1 in [42]).

Theorem 3.1 (Brouwer’s Fixed Point Theorem) Assume

g : B(0, 1)→ B(0, 1)

is continuous, where B(0, 1) denotes the closed unit ball in Rd. Then g has a fixed

point, i.e. there is a point x ∈ B(0, 1) such that

g(x) = x.
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We now proceed to the monotonicity method. Let u : Ω→ R and consider for the

sake of concreteness the quasilinear partial differential equation

 −∇ · a(Du) = f in Ω

u = 0 on ∂Ω,
(3.3)

where the function f ∈ L2(Ω) and the smooth vector field a : Rd → Rd are given and

u ∈ H1
0 (Ω) is the unknown.

Definition 3.1 A vector field a : Rd → Rd is called monotone provided

(a(x)− a(y)) · (x− y) ≥ 0 (3.4)

for all x,y ∈ Rd.

We make two assumptions on the vector field a:

|a(x)| ≤ C(1 + |x|) (3.5)

and

a(x) · y ≥ α|x|2 − β (3.6)

for all x ∈ Rd and some constants C, α > 0 and β ≥ 0. Our goal is to build a solution

of (3.3) as the limit of finite dimensional approximations. Consider the sequence

{wk = wk(x)}k of smooth functions so that

{wk}∞k=1 is an orthonormal basis of H1
0 (Ω)

with the inner product

(u, v) =

∫
Ω

Du ·Dvdx.



22

We want to find a function um ∈ H1
0 (Ω) of the form

um =
m∑
k=1

dkmwk, (3.7)

where the coefficients dkm should be selected so that

∫
Ω

a(Dum) ·Dwkdx =

∫
Ω

fwkdx (3.8)

for all k ∈ {1, 2, ...,m}.

Lemma 3.1 (Zeros of a vector field) Assume that the continuous function b :

Rd → Rd satisfies

b(x) · x ≥ 0 if |x| = r (3.9)

for some r > 0. Then there exists a point x ∈ B(0, r) = {z ∈ Rd|‖z‖ < r} such that

b(x) = 0.

Proof Suppose the statement were not true, that is, b(x) 6= 0 for all x ∈ B(0, r).

Define the map w : B(0, r)→ ∂B(0, r) by

w(x) = − r

|b(x)|
b(x).

Then w is continuous. By Brouwer’s Fixed Point Theorem (Theorem 3.1), there

exists a point z ∈ B(0, r) with

w(z) = z. (3.10)

But then z ∈ ∂B(0, r) and so (3.9) and (3.10) imply

r2 = z · z = w(z) · z = − r

|b(z)|
b(z) · z ≤ 0,
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a contradiction. �

Theorem 3.2 (Contruction of approximate solutions) For each integer m ∈ N

there exists a function um of the form (3.7) satisfying the identities (3.8).

Proof Define the continuous function b : Rm → Rm, b = (b1, b2, ..., bm) by

bk(d) =

∫
Ω

[
a

(
m∑
j=1

djDwj

)
·Dwk − fwk

]
dx (k ∈ {1, 2, ...,m}) (3.11)

for each point d = (d1, d2, ..., dm) ∈ Rm. Using (3.6) we get

b(d) · d =

∫
Ω

[
a

(
m∑
j=1

djDwj

)
·

(
m∑
j=1

djDwj

)
− f

(
m∑
j=1

djDwj

)]
dx

≥
∫

Ω

α ∣∣∣∣∣
m∑
j=1

djDwj

∣∣∣∣∣
2

− β − f

(
m∑
j=1

djDwj

) dx
= α|d|2 − β|Ω| −

m∑
j=1

dj

∫
Ω

fwjdx

≥ α

2
|d|2 − β|Ω| − C

m∑
j=1

(f, wj)
2
L2(Ω).

Now let u ∈ H1
0 (Ω) be the solution of the Laplacian −∆u = f . Then

∫
Ω

Du ·Dwjdx =

∫
Ω

fwjdx for j ∈ {1, 2, ...,m}

and hence
m∑
j=1

(f, wj)
2
L2(Ω) =

m∑
j=1

(u,wj)
2 ≤ ‖u‖2

H1
0 (Ω) ≤ C‖f‖2

L2(Ω).

Therefore b(d) ·d ≥ α
2
‖d‖2−C for a constant C and, if r is large enough, b(d) ·d ≥ 0

if ‖d‖ = r. Applying Lemma 3.1 gives b(d) = 0 for some d. Then (3.11) implies that

um defined by (3.7) satisfies (3.8). �

Next, we provide some uniform estimates.
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Theorem 3.3 There exists a constant C depending only on Ω and a such that

‖um‖H1
0 (Ω) ≤ C

(
1 + ‖f‖L2(Ω)

)
for m ∈ N.

Proof Multiplying (3.8) by dkm and summing over k gives

∫
Ω

a(Dum) ·Dumdx =

∫
Ω

fumdx.

With (3.6) we have

α

∫
Ω

|Dum|2dx ≤ C +

∫
Ω

fumdx ≤ C + ε

∫
Ω

u2
mdx+

1

4ε

∫
Ω

f 2dx.

With Poincaré’s inequality, and choosing ε > 0 small enough, the statement follows.

�

We are now in the position to prove the main result of this section, the existence

of a weak solution of (3.3).

Theorem 3.4 Assume a(·, ·) is monotone. Assume further that a(·, ·) satisfies (3.5)

and (3.6). Then there exists a weak solution of the nonlinear problem (3.3).

Proof Theorem 3.3 implies that we can extract a subsequence {umj
}j ⊂ {um}m and

a function u ∈ H1
0 (Ω) such that

umj
⇀ u weakly in H1

0 (Ω) (3.12)

and

umj
→ u in L2(Ω) (3.13)



25

(we use here the symbol ‘⇀’ for weak convergence). It remains to show that u satisfies

∫
Ω

a(Du) ·Dvdx =

∫
Ω

fvdx for all v ∈ H1
0 (Ω).

With the continuity condition (3.6), the sequence {a(Dum)}m is bounded in L2(Ω,Rn).

This means we may assume

a(Dum) ⇀ ξ weakly in L2(Ω,Rn) (3.14)

for some ξ ∈ L2(Ω,Rn), if necessary by passing to a further subsequence of {umj
}j.

With (3.8), ∫
Ω

ξ ·Dwkdx =

∫
Ω

fwkdx

for all k ∈ N. Thus

∫
Ω

ξ ·Dvdx =

∫
Ω

fvdx for each v ∈ H1
0 (Ω). (3.15)

Now since a is monotone,

∫
Ω

(a(Dum)− a(Dw)) · (Dum −Dw)dx ≥ 0 (3.16)

for all m ∈ N and all w ∈ H1
0 (Ω). Now (3.8) gives the identity

∫
Ω

a(Dum) ·Dumdx =

∫
Ω

fum.

Substituting this into (3.16) yields

∫
Ω

[fum − a(Dum) ·Dw − a(Dw) · (Dum −Dw)]dx ≥ 0.
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Let now j →∞. With (3.12), (3.13) and (3.14) we get

∫
Ω

fu− ξ ·Dw − a(Dw) · (Du−Dw)dx ≥ 0.

Using (3.15) with v = u gives

∫
Ω

(ξ − a(Dw)) ·D(u− w)dx ≥ 0 for all w ∈ H1
0 (Ω).

Now fixing v ∈ H1
0 (Ω) and setting w = u− λv for λ > 0 we obtain

∫
Ω

(ξ − a(Du− λDv)) ·Dvdx ≥ 0.

Letting now λ→ 0 gives

∫
Ω

(ξ − a(Du)) ·Dvdx ≥ 0 for all v ∈ H1
0 (Ω). (3.17)

Replacing v by −v we deduce that in fact the equality above holds and (3.15) together

with (3.17) give

∫
Ω

a(Du) ·Dvdx =

∫
Ω

fvdx for all v ∈ H1
0 (Ω)

and u is a solution of (3.3). �

The use of monotonicity in this proof is the Method of Browder and Minty. An

additional assumption on a will guarantee the uniqueness of this weak solution.

Definition 3.2 A vector field a : Rn → Rn is called strictly monotone if

(a(x)− a(y)) · (x− y) ≥ θ|x− y|2

for all x,y ∈ Rn and some constant θ > 0.
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Theorem 3.5 Assume a(·, ·) is strictly monotone. Then the solution of (3.3) is

unique.

Proof Assume u and ũ are two solutions of (3.3). Then

∫
Ω

a(Du) ·Dvdx =

∫
Ω

a(Dũ) ·Dvdx =

∫
Ω

fvdx,

therefore ∫
Ω

[a(Du)− a(Dũ)] ·Dvdx = 0

for all v ∈ H1
0 (Ω). Setting v = u− ũ, since a is strictly monotone, we get

∫
Ω

|Du−Dũ|2dx = 0,

and hence u = ũ almost everywhere in Ω. �

3.3 Well-Posedness of the Primitive Formulation

We now proceed to proving the well-posedness of the continuous problem in the

primitive formulation. Note first that by using the Korn and Friedrich’s inequalities

(3.1), (3.2) we get the coercivity, i.e. there exists a constant c > 0 such that

aε(u,u) ≥ c‖u‖2
1 for all u ∈ H1

0 (3.18)

and the continuity, i.e.

aε(u,v) ≤
(

2µ+
τs
ε

)
‖u‖1‖v‖1 for all u,v ∈ H1

0. (3.19)
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Moreover, one can show the strict monotonicity

aε(u,u− v)− aε(v,u− v) ≥ c‖u− v‖2
1 for all u,v ∈ H1

0. (3.20)

Indeed, it holds

aε(u,u− v)− aε(v,u− v)

=

∫
Ω

2µ|Du−Dv|2 +
τs
|Du|ε

Du : (Du−Dv)− τs
|Dv|ε

Dv : (Du−Dv)

=

∫
Ω

2µ|Du−Dv|2 + τs

(
Du−Dv

|Du|ε
+

(
1

|Du|ε
− 1

|Dv|ε

)
Dv

)
: (Du−Dv)

=

∫
Ω

2µ|Du−Dv|2 +
τs
|Du|ε

(
|Du−Dv|2 − |Du|ε − |Dv|ε

|Dv|ε
Dv : (Du−Dv)

)
≥
∫

Ω

2µ|Du−Dv|2 +
τs
|Du|ε

(
|Du−Dv|2 − |Du−Dv|

|Dv|ε
Dv : (Du−Dv)

)
.

Monotonicity (3.20) follows from (3.1) applied to the first term in the last inequality

and noting that since | Dv
|Dv|ε | ≤ 1, the second term is non-negative.

Proposition 3.1 The problem (2.6) has a unique solution {u, p} ∈ H1
0×L2

0 satisfying

the estimate

‖∇u‖ ≤ 1

µ
‖f‖−1, ‖p‖ ≤ c(‖f‖−1 + τs min{1, 1

ε
‖f‖−1}). (3.21)

Proof First, consider (2.6) restricted to the divergence free subspace V: find u ∈ V

such that

aε(u,v) = (f,v) for all v ∈ V. (3.22)

Due to (3.18), (3.19) and (3.20) as well as V ⊂ H1
0 we may apply the Browder-

Minty method of strictly monotone operators (Theorems 3.4 and 3.5) to prove the

existence and uniqueness of u ∈ V solving (2.6). The equivalence of (2.6) and (3.22)

together with the existence and uniqueness of the pressure as a Lagrange multiplier

corresponding to the divergence free constraint can be shown by a standard argument,
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see [50]. To prove the estimate (3.21) for the velocity we set in (2.6) u = v and q = p

and apply the inequality (f,v) ≤ ‖f‖−1‖∇v‖ to estimate the right-hand side. The

bound for the pressure follows by the Nečas inequality

‖p‖ ≤ c sup
v∈H1

0

(∇ · v, p)
|∇v|

. (3.23)

Indeed, setting in (2.6) q = 0, dividing the equality by ‖∇v‖ and exploiting | Du
|Du|ε | < 1

we get, together with the Korn and Cauchy inequalities (3.1) and (A.6) that

(∇ · v, p)
‖∇v‖

=
2µ(Du, Dv) + τs(|Du|−1

ε Du, Dv)− (f,v)

‖∇v‖

≤ 2µ‖∇u‖‖∇v‖+ τs(1, |Dv|) + ‖f‖−1

‖∇v‖
≤ 2µ‖∇u‖+ τs

√
|Ω|+ ‖f‖−1.

Passing to the upper limit with respect to v and using (3.23) yields

‖p‖ ≤ c(2µ‖∇u‖+ τs
√
|Ω|+ ‖f‖−1).

The estimate

‖p‖ ≤ c
(

2µ+
τs
ε

)
‖∇u‖+ ‖f‖−1

is proven by the same arguments using (3.19). Combining both estimates gives the

pressure estimate in (3.21). �

Notice from the second inequality in (3.21) that for f→ 0 it holds p→ 0. However

this is not true for ε = 0 since in the model the kinematic pressure is under-determined

in the plug region.

3.4 Well-Posedness of the Mixed Formulation

We consider now the well-posedness of Bingham problem in the mixed formulation.
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Theorem 3.6 The problem (2.7) has a unique solution {u, p,W} from H1
0×L2

0×L2
s

such that

‖u‖2
1 + ετs‖W‖2 ≤ ‖f‖−1, ‖p‖ ≤ c(‖f‖−1 + τs min{1, 1

ε
‖f‖−1}). (3.24)

Moreover W ∈ L∞s and

‖W‖L∞ ≤ 1. (3.25)

Proof The proof of the well-posedness is based on showing the equivalence of (2.6)

and (2.7) and applying Proposition 3.1. Indeed, assume {u, p} ∈ H1
0×L2

0 solves (2.6)

and define W = Du
|Du|ε . Since Du ∈ L2

s we conclude that the components of W are

measurable functions (as a product of such functions). Moreover, since for any x ∈ Ω

it holds | Du(x)
|Du(x)|ε | ≤ 1, we have W ∈ L∞s and both equalities W |Du|−1

ε = Du and

W = Du
|Du|ε hold in L2

s. Therefore, in view of (2.6) and noting that for W = Du
|Du|ε it

holds

a(u,v) + c(v,W ) = aε(u,v),

we conclude that {u, p,W} satisfies (2.7) for any {v, q, Z} from H1
0×L2

0×L∞s . Thus

the existence of a solution to (2.7) follows by Proposition 3.1. Now assume that some

{u, p,W} solves (2.7). Setting v = 0, q = 0 and varying Z ∈ L∞s we conclude that

|Du|εW = Du holds in (L∞s )′ ≡ L1
s. Hence for any solution of (2.7) it holds

W = |Du|−1
ε Du almost everywhere. (3.26)

Using this in the third term of (2.7) and setting Z = 0 we conclude that u and p

satisfy (2.6). The uniqueness of the solution of (2.7) follows from Proposition 3.1 and

(3.26). Finally, the first two estimates in (3.24) follow by the same arguments as in

(3.21), that is, by taking v = u, q = p, Z = W , and W ∈ L∞s with (3.25) follows

from (3.26). �
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Remark Although the formulations (2.6) and (2.7) are equivalent, their finite el-

ement discretizations are in general not equivalent and feature different numerical

properties.

The extension of Theorem 3.6 and Proposition 3.1 to the limit case ε = 0 is still

open. Some well-posedness results for the (non-regularized) Bingham problem are

based on the reformulation of the problem as a variational inequality, see [39]. In [10]

a non-regularized nonhomogeneous problem is analyzed as a limit case of a regularized

problem with an existence result for two dimensional periodic problems. Somewhat

related results can be found in [18], where the unsteady Navier-Stokes equations are

considered for fluids featuring a stress tensor of the form

τ = µ(δ + |Du|)s−2Du, s ∈ (1,∞).

The extension of this result to the case s = 1 (and thus to the Bingham problem)

remains open.

Remark Once we proved that the solution W of (2.7) is from L∞s we can extend the

space of admissible test functions Z in (2.7) from L∞s to L2
s.





Chapter 4

Linearization and Discretization 1

In this chapter we discuss the linearization and discretization of the Bingham fluid

flow problem in primitive and mixed variables. We start with the Picard linearization.

This scheme will be important for the next chapters and will be addressed in detail.

In particular, we establish the well-posedness of a Picard iteration applied to the

steady Stokes type problem and provide error estimates in the primitive and mixed

formulation. We then present the Newton linearization method and one of its variants,

the Newton Continuation. The discretization is then discussed and well-posedness of

the discrete problem is proven. We conclude this chapter with a result on the inf-sup

stability of the regularized discrete problem.

4.1 The Picard Linearization Method

We will focus on a Picard type linearization of (2.4) in this thesis. For the formulation

in primitive variables, starting with some initial guess u0, (2.1) can be linearized by

1Results in this chapter have been published in A. Aposporidis, E. Haber, M. A. Olshanskii,
A. Veneziani, A mixed formulation of the Bingham fluid flow problem: Analysis and numerical
solution, Computer Methods in Applied Mechanics and Engineering, 200 (2011), pp. 2434-2446

33
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the iterations ρ[∂u
k

∂t
+ (uk−1 · ∇)uk]−∇ · (2µDuk + τs

Duk

|Duk−1|ε ) +∇pk = f

∇ · uk = 0
(4.1)

for k = 1, 2, 3, ... until some convergence criterion is satisfied. For the mixed formu-

lation, starting with some initial guess u(0), we solve


ρ[∂u

(k)

∂t
+ (u(k−1) · ∇)u(k)]−∇ · (2µDu(k) + τsW

(k)) +∇p(k) = f

∇ · u(k) = 0

Du(k) − |Du(k−1)|εW (k) = 0

(4.2)

for u(k), p(k) and W (k). Other linearization techniques exist, such as a Newton type

linearization or a combination of Newton and Picard linearization, as described in [6].

4.1.1 Well-Posedness of the Picard Iterative Method

We first introduce two auxiliary linear problems. Let β ∈ H1
0 be a given vector field.

For the first problem we want to find u and p such that

 −∇ ·
((

2µ+ τs
|Dβ|ε

)
Du
)

+∇p = f

∇ · u = 0
in Ω (4.3)

with u = 0 on ∂Ω for simplicity. We define the bilinear form

aβ(u,v) =

∫
Ω

(
2µ+

τs
|Dβ|ε

)
Du : Dv

on V ×V. The weak formulation of (4.3) reads: find (u, p) ∈ H1
0 × L2

0 such that

aβ(u,v) + b(p,v)− b(q,u) = (f,v) for all (v, q) ∈ H1
0 × L2

0. (4.4)
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Proposition 4.1 Given f ∈ L2 and β ∈ H1
0 there exists a unique solution (u, p) to

(4.4).

Proof By Korn and Friedrich’s inequality, the bilinear form aβ is coercive:

aβ(u,u) ≥ µ‖∇u‖2 ≥ c‖u‖2
1.

It is also straightforward to check that aβ(·, ·) is continuous on V×V. Since V can be

equivalently defined as V = {v ∈ H1
0 : b(q,v) = 0 for all q ∈ L2

0}, the result follows

by Corollary 5.1 from [50]. �

For the second auxiliary problem we want to find u, p and W such that


−∇ · (2µDu + τsW ) +∇p = f

∇ · u = 0

|Dβ|εW −Du = 0

in Ω. (4.5)

Let

gε,β(W,Z) =

∫
Ω

τs|Dβ|εW : Z.

The weak form of (4.5) reads: find (u, p,W ) ∈ H1
0 × L2

0 × L2
s such that

a(u,v) + b(p,v) + c(v,W )− b(q,u)− c(u, Z) + gε,β(W,Z) = (f,v) (4.6)

for any (u, p,W ) ∈ H1
0 × L2

0 × L∞s .

Proposition 4.2 Given f ∈ L2, there exists a unique solution (u, p,W ) to (4.6).

Proof The proof is carried out by showing the equivalence of (4.4) and (4.6) and then

applying Proposition 4.1. The arguments are almost the same as in the nonlinear case,

see Theorem 3.6. The solution (u, p) of (4.4) together with W = Du
|Dβ|ε ∈ L

∞
s solves

(4.6). Conversely, if (u, p,W ) solves (4.4), then setting v = 0, q = 0 and varying
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Z ∈ L∞s it holds W
|Dβ|ε = u in (L∞s )′ ≡ L1

s. Thus W = Du
|Dβ|ε holds almost everywhere

in Ω. Inserting this in the third term of (4.6) and letting Z = 0 we find that (u, p)

solves (4.4). �

Note that the Picard linearized versions of the Bingham problem in the primitive

and mixed formulation (4.1) and (4.2) are of the form (4.3) and (4.5) with β = uk−1

and should be considered in the weak sense (4.4) and (4.6). Propositions 4.1 and 4.2

imply the well-posedness of a single Picard iteration.

Remark The results in this section can be easily extended to the unsteady Navier-

Stokes type equations, discretized in time by a classical backward Euler scheme. In

this case, the auxiliary problem reads

 ρ
(
∂u
∂t

+ (β · ∇)u
)
−∇ ·

((
2µ+ τs

|Dβ|ε

)
Du
)

+∇p = f

∇ · u = 0
in Ω, (4.7)

u = 0 on ∂Ω. We then define two additional forms:

q(u,v) =
ρ

∆t

∫
Ω

u · v on H1
0 ×H1

0, cβ(u,v) = ρ

∫
Ω

(β · ∇)u · v on H1
0 ×H1

0,

where ∆t is the time discretization parameter. The weak formulation, after time

discretization, then reads: find (u, p) ∈ H1
0 × L2

0 such that

q(uk+1,v) + cβ(uk+1,v) + aβ(u,v) + b(pk+1,v)− b(q,uk+1)

= (f,v) + q(uk,v) for all (v, q) ∈ H1
0 × L2

0,

where the superscript k, k = 0, 1, 2, ... denotes the time discretization step. The

bilinear form q(·, ·) is clearly well-defined, continuous and coercive. The boundedness

and continuity of the form cβ(·, ·) is a consequence of the Hölder’s inequality (A.5)

together with the Sobolev embedding theorem H1(Ω) ↪→ L4(Ω), see [44]. Then the
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same stream of arguments as used for (4.3) can be applied to (4.7) for showing the

well-posedness of (4.7).

4.1.2 Error Estimates for the Picard Iterative Scheme

Denote by (u, p,W ) the solution of (2.7). Then (u, p) also solve (2.6). Let e(k) ≡

u(k) − u, e(k) = p(k) − p and E(k) = W (k) −W . We first consider the iterations for

the problem in primitive variables (4.1). Equations (2.6) and (4.1) yield the error

equation

a(e(k),v) +

∫
Ω

τs

(
Du(k)

|Du(k−1)|ε
− Du

|Du|ε

)
: Dv + b(v, e(k))− b(e(k), q) = 0 (4.8)

for all v ∈ V and q ∈ L2
0.

Proposition 4.3 The velocity error of the iterations (4.1) satisfies

‖e(k)‖1 ≤
C

ε
‖e(k)‖1 +O

(
‖e(k)‖2

1

)
. (4.9)

Proof We rewrite the second term in (4.9) as

∫
Ω

τs

(
Du(k)

|Du(k−1)|ε
− Du

|Du(k−1)|ε
+

Du

|Du(k−1)|ε
− Du

|Du|ε

)
: Dv

=

∫
Ω

τs
De(k) : Dv

|Du(k−1)|ε
+

∫
Ω

τs

(
1

|Du(k−1)|ε
− 1

|Du|ε

)
Du : Dv.

Upon Frechét linearization, which is always possible as long as ε > 0, we have that

1

|Du(k−1)|ε
− 1

|Du|ε
=
Du : De(k−1)

|Du|3ε
+ h.o.t.

Selecting v = e(k) and q = e(k) in equation (4.8) gives

a(e(k), e(k)) +

∫
Ω

τs
De(k) : De(k)

|Du(k−1)|ε
= −

∫
Ω

τs

(
Du : De(k−1)

|Du|3ε
+ h.o.t.

)
Du : De(k).
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With the coercivity of the bilinear form a(·, ·), the inequality (3.1), the ε-independent

bound (3.23) on u and noting that x2√
(x2+ε2)3

≤ 2√
27ε

for any x ∈ R, we obtain the

inequality

µ‖∇e(k)‖2 ≤ C

ε

(
‖e(k−1)‖1 +O

(
‖e(k−1)‖2

1

))
‖e(k)‖1

where C here and after is a constant independent of ε. The latter inequality implies

(4.9). �

This Proposition quantifies the impact of small values of the regularization pa-

rameter ε on the Picard iteration in the formulation in primitive variables: in general,

small values of ε slow down the convergence, as mentioned earlier and as it is pointed

out in [51,57]. We can prove a similar result for the mixed formulation:

Proposition 4.4 The error of the iterative scheme (4.2) satisfies

‖e(k)‖1 +
√
ε‖E(k)‖ ≤ C√

ε
‖e(k−1)‖1. (4.10)

Proof After a memberwise subtraction of (4.2) and (2.7) and standard manipulations

with v = e(k), q = e(k) and Z = E(k) (test functions can be taken from L2
s, see Remark

3.4), we get

a(e(k), e(k)) + gε(|Du(k−1)|ε − |Du|ε,W,E(k)) + gε(|Du(k−1)|ε, E(k), E(k)) = 0. (4.11)

For the mapping f : H→ L2, f(v) = |Dv|ε, we find the Frechet derivative operator

d(f)|a =
Da

|Da|ε
: D =⇒ ‖d(f)‖H1→L2 ≤ 1 for all a ∈ H1

0.

Therefore

‖|Du(k−1)|ε − |Du|ε‖ ≤ ‖De(k−1)‖. (4.12)

Recalling that ‖W‖L∞ ≤ 1 (cf. Theorem 3.6) and gε(|Du(k−1)|ε, E(k), E(k)) ≥ ε‖E(k)‖2,
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we obtain from (4.11) and (4.12) the inequality

µ‖∇e(k)‖2
1 + ε‖E(k)‖2 ≤ τs‖e(k−1)‖1‖E(k)‖ ≤ τs

2ε
‖e(k−1)‖2

1 +
ε

2
‖E(k)‖2.

Thus

‖e(k)‖2
1 + ε‖E(k)‖2 ≤ C

τs
ε
‖e(k−1)‖2

1.

�

Remark Notice that (4.10) enjoys a milder dependence on ε than (4.9); also the

higher order terms disappear. At the same time, the velocity and pressure iterations

from (4.1) and (4.2) are the same due to the equivalence of the auxiliary linear systems.

Hence the velocity error e(k−1) from (4.1) should also satisfy the improved bound

(4.10). However, the argument to show this improved bound is indirect and resorts

to the mixed formulation. Moreover, such an indirect argument may not be valid in

the discrete case since the equivalence does not hold any longer in general. Comparing

the numerical performance of both formulations shows however that iterative methods

for the mixed formulation are less sensitive to small values of ε (see Chapter 5).

4.2 The Newton Method

For the primitive variables formulation (2.2) one step of the Newton method can be

written as follows: given u(k−1), find u(k) and p(k) satisfying



−∇ ·
(

2µ+
τs

|Du(k−1)|ε

[
1− Du(k−1) : Du(k−1)

|Du(k−1)|2ε

])
Du(k) +∇p(k)

= f− τs∇ ·
Du(k−1)|Du(k−1)|2

|Du(k−1)|3ε
∇ · u(k) = 0.
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For the mixed formulation, one step of the Newton method reads: given u(k−1) and

W (k−1), find u(k), p(k) and W (k) satisfying


−∇ ·

(
2µDu(k) + τsW

(k)
)

+∇p(k) = f

∇ · u(k) = 0

Du(k) − |Du(k−1)|εW (k) − Du(k−1):Du(k−1)

|Du(k−1)|ε
W (k−1) = − |Du(k−1)|2

|Du(k−1)|ε
W (k−1).

In Section 2.1 we mentioned the lack of robusteness of the Newton method when ε

gets smaller. In particular, the domain of convergence shrinks as ε decreases, making

a good initial guess necessary to ensure convergence. This problem can be remedied

in different ways. One possibility is to use a mix of Picard and Newton iterations:

We may perform a few iterations of the more robust Picard method and start the

Newton iterations once a good initial guess has been reached. Another possibility is

to use a so-called continuation strategy within the Newton method.

4.2.1 Newton Continuation

The idea behind the continuation method is to have a non-stationary selection of ε,

such that in the k-th iterate we have ε = ε(k) and limk→∞ ε(k) = 0. We start with

a (large value of) ε and perform one Newton iteration. If this iteration reduces the

residual by more than ε (in the algorithm below denoted by “success == true”), the

new solution is accepted and the value of ε is reduced. If not (“success == false”),

the new solution is discarded and ε is increased. The procedure continues until a

specified target value of ε is reached. The resulting algorithm reads:
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Algorithm 4.1 Newton Continuation
εnew = ε0, εcurr = εnew, ρ = ρ0;

u = u0, p = p0, W = 0;

while εcurr > εtarget do

[unew, pnew, Wnew, success]=Newton(u, p, W , f, εcurr);

if sucess == true then

εnew = εcurr, εcurr = ρεcurr, ρ = 0.9ρ;

u = unew, p = pnew, W = Wnew;

else

ρ = 1+ρ
2

;

εcurr = ρεnew;

end if

end while

4.3 Discretization

There are different ways to discretize (4.1) in space, examples are the MAC dis-

cretization on staggered grids and collocated finite difference methods [1, 66], finite

volume [84] or LBB-stable finite elements [34]. This thesis will focus on Galerkin fi-

nite element discretization methods. The application of the approach presented here

to other discretization methods is however possible. Denote by Hh ⊂ H1
0, Qh ⊂ L2

0

and Wh ⊂ L2
s the finite dimensional subspaces for the velocity, pressure, and the

auxiliary variable W , respectively. We assume throughout this thesis that the pair

of spaces Hh and Qh is LBB stable [50]. The finite element method for (2.7) reads:

Find uh ∈ Hh, ph ∈ Qh and Wh ∈ Wh such that

a(uh,vh) + b(ph,vh) + c(vh,Wh)− b(qh,uh)− c(uh, Zh) + gε(uh,Wh, Zh) = (f,vh)

(4.13)
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for any vh ∈ Hh, qh ∈ Qh and Zh ∈ Wh.

4.3.1 Well-Posedness of the Discrete Mixed Problem

We now turn our attention to the well-posedness and stability of the discrete Bingham

problem (4.13). Unlike the continuous case (see Theorem 3.6), the discrete problem

(4.13) is in general not equivalent to the finite element counterpart of the original

problem (2.6). Thus the well-posedness for (4.13) does not follow directly from the

theory of monotone operators applied to the weak formulation of (2.6). Instead, the

proof of the well-posedness of the discrete problem relies on the Schaefer’s extension

of the Brouwer theorem (see [42], Section 9.2):

Theorem 4.1 Suppose

F : X → X

is a continuous and compact mapping. Assume further that the set

{u ∈ X|u = λF [u] for some λ with 0 ≤ λ ≤ 1}

is bounded. Then F has a fixed point.

The next theorem is the well-posedness of the discrete problem.

Theorem 4.2 The problem (4.13) has a solution (u, p,W ) from Hh×Wh×Qh such

that

‖uh‖2
1 + ετs‖Wh‖2

0 ≤ ‖f‖−1, ‖ph‖ ≤ c(1 + τsε
−1)‖f‖−1 (4.14)

for a constant c > 0. If f is sufficiently small or µ and ε are sufficiently large then

the solution is unique.

Proof Define the discrete divergence free space Vh = {vh ∈ Hh : b(qh,vh) =

0 for all qh ∈ Qh}. For arbitrary λ ∈ [0, 1] consider the problem: find uλh ∈ Vh,
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W λ
h ∈ Wh such that

a(uλh,vh) + λc(vh,W
λ
h ) = λ(f,vh),

gε(u
λ
h,W

λ
h , Zh)− λc(uλh, Zh) = 0

(4.15)

for any vh ∈ Vh and Zh ∈ Wh. For λ = 1 the problem (4.15) is equivalent to (4.13).

To apply Theorem 4.1, it suffices to show:

(i) the set of solutions to (4.15) is bounded uniformly with respect to λ and

(ii) the mapping {uoldh ,W old
h } → {unewh ,W new

h } defined by

a(unewh ,vh) = (f,vh)− c
(
vh,W

old
h

)
for all vh ∈ Vh,

gε(u
old
h ,W new

h , Zh) = c(uoldh , Zh) for all Zh ∈ Wh

(4.16)

is continuous and bounded (all spaces are finite dimensional, so the boundedness

implies compactness).

To find a bound for {uλh,W λ
h } we set in (4.15) vh = uλh, Zh = W λ

h . Summing up the

equalities gives

min{2µ, τs, ε}
(
‖∇uλh‖2 + ‖W λ

h ‖2
)

≤ a(uλh,u
λ
h) + gε(u

λ
h,W

λ
h ,W

λ
h ) = λ(f,uλh)

≤ 1

2
min{2µ, τs, ε}‖∇uλh‖2 + max{µ−1, τ−1

s ε−1}‖f‖2
−1.

Thus

‖∇uλh‖2 + ‖W λ
h ‖2 ≤ max{µ−2, τ−2

s ε−2}‖f‖2
−1 for all λ ∈ [0, 1].

Now we check that the mapping defined by (4.16) is bounded and continuous. To

see the boundedness we set in (4.16) vh = unewh and Zh = W new
h and get through the
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Cauchy and Friedrich’s inequalities

‖∇unewh ‖ ≤ c(τs‖W old
h ‖+ ‖f‖−1) and ε‖W new

h ‖ ≤ ‖∇uoldu ‖.

The continuity follows from the observation that the forms in (4.16) are continuous

with respect to every argument. Therefore Theorem 4.1 provides the existence of a

solution to (4.15) for λ = 1. Let u1, W1 and u2, W2 be two solutions to (4.15) with

λ = 1. Denote eh = u1 − u2 and Eh = W1 −W2. Setting vh = eh and Zh = E in

(4.15) yields

2µ‖Deh‖2 + gε(u1, Eh, Eh) + (gε(u1,W2, Eh)− gε(u2,W2, Eh)) = 0. (4.17)

Therefore (4.17) and (4.12) result in

2µ‖Deh‖2 + ε‖Eh‖2 − ‖W2‖L∞‖Deh‖‖Eh‖ ≤ 0.

Now the a priori bound (4.14) and the smallness assumption yield the uniqueness

result. The standard argument in [50] shows the existence and uniqueness of the

pressure ph as a Lagrange multiplier. �

Even though the equivalence between the formulation in primitive and mixed variables

does not hold in general on the discrete level, there is a particular selection of finite

elements for which the equivalence indeed holds: P1isoP2 for velocity, P1 for pressure

and P0isoP2 for W . Here the Vh consists of continuous piecewise linear functions

with respect to the triangulation built by connecting the middle points of the edges

of the original triangulation. Similarly, Wh consists of piecewise constant functions

with respect to the same refined triangulation (by analogy denoted by P0isoP2). See

Figure 4.1 for the degrees of freedom of u, p and W in these types of finite elements.
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Figure 4.1: Degrees of freedom for the P1isoP2-P1-P0isoP2. • are the degrees of
freedom for the velocity components, � for the pressure and ◦ for the tensor W .
Images by Maxim A. Olshanskii, Department of Mechanics and Mathematics, Moscow
M. V. Lomonosov State University.

4.3.2 Algebraic Properties

We now establish the stability of the linear systems arising from the discretization

and linearization of the problem. Denote by Nu, Np and NW the number of degrees

of freedom of each velocity component in Hh, the pressure in Qh and each component

of the symmetric tensor in Wh, respectively. Each iteration of the Picard method for

the discrete mixed formulation requires solving a linear system of the form

A


u

p

W

 =


f

0

0

 , (4.18)

with

A =


A BT CT

B 0 0

C 0 −N

 . (4.19)

If d is the space dimension, d ∈ {2, 3}, we have A ∈ RdNu×dNu , B ∈ RNp×dNu . For the

size of C andN , we may exploit the symmetry of the tensorW . Note thatW ∈ Rd and

W = W T so that entries on the strictly lower part of the diagonal can be eliminated.

Thus, the number of additional unknowns added to the system is d2 − 1
2
(d2 − d) =
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d(d+1)
2

. It follows that C ∈ R
d(d+1)

2
NW×dNu , N ∈ R

d(d+1)
2

NW× d(d+1)
2

NW . The matrix

N denotes the discrete counterpart of the term |Du|εW , which is a weighted mass

matrix. In computations it can often be replaced by a lumped (diagonal) matrix.

When using Q1 or P1 finite elements for discretizing W (as we do in our experiments,

see Chapters 5 and 7), this lumping can be obtained by using a trapezoidal rule for

the numerical integration when assembling the matrix N .

Proposition 4.5 For ε > 0, the linear system (4.18), (4.19) is non-singular for any

choice of the finite element subspace Wh.

Proof For convenience, let us reorder the rows and columns of A such that

Ã =


−N C 0

CT A BT

0 B 0

 .

This reordering will not effect the rank of A. Let

D =

 −N C

CT A

 and B =

[
0 B

]
, then Ã =

 D BT

B 0

 .
First we prove that D is non-singular. Consider the matrix factorization

D =

 I 0

−CTN−1 I


 −N 0

0 ΣW


 I −N−1C

0 I

 , (4.20)

with the Schur complement matrix ΣW = A + CTN−1C). It is clear from (4.20)

that D is non-singular if and only if N and ΣW are non-singular. Since ε > 0, N is

symmetric and positive definite. The non-singularity of ΣW follows by the observation
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that also A is symmetric and positive definite. By the same argument, since

Â =

 I 0

BD−1 I


 D 0

0 −BD−1BT


 I D−1BT

0 I

 ,
we have that Ã (and henceA) is non-singular if D and the Schur complement BD−1BT

are non-singular. Noticing from (4.20) that

D−1 =

 I N−1C

0 I


 −N−1 0

0 Σ−1
W


 I 0

CTN−1 I

 ,
we obtain through a direct computation

−BD−1BT = −BΣ−1
W BT ,

which is a symmetric and positive definite matrix, so the Proposition is proven. 2

Note that if we impose u = 0 on the entire boundary ∂Ω, then the block B is one-

rank deficient having the hydrostatic pressure mode in its kernel. In computations,

we may overcome this by modifying A such that

A =


A BT CT

B −αQ 0

C 0 −N

 . (4.21)

The matrix Q serves as a pressure stabilization term which allows for a non inf-sup

stable space discretization. In addition, it also disambiguates the pressure in purely

Dirichlet boundary condition problems. In our experiments we choose Q to be a mass

matrix in the discrete pressure space and take the parameter α as small as 10−10.

Remark The result in the previous proposition does not hold for ε = 0 and the
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non-singularity of the linear system can not be guaranteed. A necessary condition

in this case is that ker(C) ∩ ker(N) = ∅. The problem of finding finite dimensional

spaces forcing the well-posedness of the discrete problem in this case remains open.

4.4 A Solver Based on the Formulation by Lions

and Glowinski

In Section 2.2 we presented an augmented formulation of the Bingham problem in-

troduced by Duvaut and Lions, resulting in the problem (2.3) of saddle point type.

Based on this formulation, Glowinski et. al. [34] advocated an iterative scheme of

Uzawa-type for solving (2.3):

1. find u = min
v∈H1

0 (Ω)
L(v, τ ,γ),

2. find τ = min
ξ∈L2s
L(u, ξ,γ),

3. update γ by γnew = γ + λ(Du− τ ).

This results in the following algorithms, which we refer to as ALG:

Algorithm 4.2 ALG

Initialize γh = γ
(0)
h , τh = τ

(0)
h ∈ Wh;

while convergence == false do

find [uh, ph] s.t.


∫

Ω
λDuh : Dvh + b(ph,vh) = 1

2

∫
Ω

(τh − 2λγh) : Dvh +
∫

Ω
fvh,

b(qh,uh) = 0.

Set γh =

 0 if |τh + 2λDuh| ≤ τs,(
1− τs

|τh+2λDuh|

)
τh+2λDuh

2(λ+µ)
otherwise.

Set τh = τh + 2λ(Duh − γh).

Test for convergence;

end while
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There are different ways for performing the convergence test. One possibility is to

consider the difference between τ
(k+1)
h and τ

(k)
h which corresponds to testing the resid-

ual Du
(k)
h −γ

(k)
h . As mentioned before, this scheme does not require a regularization,

but the convergence rate depends on the choice of the parameter λ and can be very

slow. In Section 5.3 we will present a numerical experiment in which ALG is applied

to one of our test cases and where its performance is compared to the solver based

on the mixed formulation.





Chapter 5

Performance of the Nonlinear

Solver 1

This chapter comprises several numerical experiments performed on the Bingham

problem in the primitive and mixed formulation. We present three test cases in two

dimensional domains. In the first test case, we consider a problem where the analytical

solution for the Bingham problem is known. We then test our solver on the classical

lid-driven cavity benchmark with a Bingham fluid flow. Our third experiment is a

test on a non-rectangular geometry.

5.1 Description of the Test Cases

For the implementation we use the IFISS package [40] in MATLAB. Problems (4.1)

and (4.2) are discretized using the inf-sup stable finite element pair Q2-Q1 for the

velocity and pressure, respectively. For the discretization of the auxiliary variable W ,

no inf-sup constraint exists if ε > 0 (see Section 4.3), however possible existence of

such a constraint is still open for ε = 0. We discretize W with Q1 finite elements since

1Results in this chapter have been published in A. Aposporidis, E. Haber, M. A. Olshanskii,
A. Veneziani, A mixed formulation of the Bingham fluid flow problem: Analysis and numerical
solution, Computer Methods in Applied Mechanics and Engineering, 200 (2011), pp. 2434-2446

51
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this choice delivered convergent and accurate results. Starting with the zero vector

as the initial guess, we perform Picard iterations until the initial residual r0 drops by

six orders of magnitude, i.e. ‖rk‖∞‖r0‖∞ ≤ 10−6. Unless stated otherwise, we choose µ = 1,

f = 0 and Ω = [0, 1] × [0, 1]. MATLAB’s backslash operator serves as the linear solver

at each nonlinear iteration step.

5.2 An Analytical Test Case

The flow between two parallel plates is one of the few available analytical test cases

for both the Stokes and Navier-Stokes type Bingham fluid flow. It is an analytical

solution of (1.2) and (1.4). In two dimensions this analytical solution is given by

u1 =


1
8
[(1− 2τs)

2 − (1− 2τs − 2y)2], if 0 ≤ y ≤ 1
2
− τs,

1
8
(1− 2τs)

2, if 1
2
− τs ≤ y ≤ 1

2
+ τs,

1
8
[(1− 2τs)

2 − (2y − 2τs − 1)2], if 1
2

+ τs < y ≤ 1,

(5.1)

u2 ≡ 0 and p = −x. The plug region {y ∈ Ω|1
2
−τs ≤ y ≤ 1

2
+τs} is the kernel moving

at a constant velocity. In this experiment we choose τs = 0.3. We impose Dirichlet

boundary conditions on Ω according to (5.1). The number of Picard iterations for

both the primitive and mixed formulation can be seen in Table 5.1. The comparison

clearly emphasizes the advantage of using the mixed formulation. Results for the non-

regularized case ε = 0 are included in the table as well. In particular, we notice that

even for the non-regularized case the mixed formulation is convergent and produces

accurate results. Figure 5.1 shows the numerical error in the discrete energy norm

for different choices of ε and h (obtained by using the mixed formulation). By a

direct computation, one realizes that the second derivative of the analytical solution

(5.1) is discontinuous. Therefore we have that for the velocity solution u from (5.1)

it holds u ∈ H2, but u 6∈ H3. This limits the guaranteed order of convergence to
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h ↓ \ε→ 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5 0
Primitive Variables Mixed Variables

1
16

7 20 15 30 38 5 12 17 20 23 19
1
32

7 23 60 81 83 4 12 19 24 25 24
1
64

7 27 89 95 88 4 9 14 16 16 22
1

128
6 23 61 134 192 3 8 11 12 12 13

Table 5.1: Number of Picard iterations required for reducing the residual by a factor
of 10−6 in the analytical test case for τs = 0.3 for different choices of ε and h in both
the formulation in primitive and mixed variables. The last column shows the results
for the non-regularized case which is not applicable in the primitive formulation.

O(h) in the energy norm. Large values of ε with small values of h clearly prevent

the optimal convergence rate of the finite element method. For smaller values of

ε the observed order of convergence is between one and two. Table 5.2 compares

the numerical error of the primitive and mixed formulation in the discrete energy

norm. The table indicates that slightly more accurate solutions are computed by

the formulation in primitive variables. It should be kept in mind, however, that the

primitive formulation needs significantly more iterations to converge to this solution.

Figure 5.2, top left, shows the computed pressure field. The pressure points out a

numerical error in the area around the plug region. This is expected since in the

model the stress tensor is under-determined in the plug zone. The other subplots

in the figure illustrate the velocity error for different values of τs, pointing out error

spikes in the neighborhood of the plug region. Note however that the maximum error

is of the order of 10−5.

5.3 The Lid-Driven Cavity

We perform two different numerical simulations, both in the unit square domain

Ω = [0, 1] × [0, 1]. For the first case, we solve (1.2) and (1.3) with ρ = 0 imposing

Dirichlet boundary conditions by u|y=1 = (0, 1)T and u = 0 everywhere else. Table

5.3 shows the number of Picard iterations for different sizes of the mesh and different
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Figure 5.1: The numerical error ‖u− uex‖A =
√

(u− uex)TA(u− uex) of the mixed
formulation for different sizes of the mesh and different ε. The matrix A is the finite
element velocity stiffness matrix. The thin solid line is a reference line for O(h2), the
thin dotted line for O(h).

h ↓ \ε→ 10−1 10−2 10−3 10−4 10−5

Primitive Variables
h = 1

16
0.0280 0.0093 0.0058 0.0060 0.0060

h = 1
32

0.0282 0.0076 0.0016 0.0013 0.0013
h = 1

64
0.0282 0.0075 0.0013 7.525e-04 7.290e-04

h = 1
128

0.0282 0.0074 0.0012 3.252e-04 2.349e-04
Mixed Variables

h = 1
16

0.0283 0.0108 0.0070 0.0082 0.0082
h = 1

32
0.0284 0.0082 0.0018 0.0015 0.0016

h = 1
64

0.0284 0.0081 0.0016 0.0010 9.925e-04
h = 1

128
0.0284 0.0081 0.0013 5.114e-04 4.857e-04

Table 5.2: The numerical error ‖u − uex‖A of the primitive (left) and mixed (right)
formulation for different sizes of the mesh and different values of ε (A is a finite
element velocity stiffness matrix).
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Figure 5.2: Top, left: the pressure field of the analytical test case computed with
τs = 0.3, h = 1

128
and ε = 10−5. Top, right: velocity error for τs = 0.1. Bottom:

velocity error for τs = 0.3 and τs = 0.4.
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values of τs and ε. Again the comparison between the mixed and the primitive formu-

lation demonstrates the effectiveness of the former; for the formulation in primitive

variables the method does not converge within 500 iterations in some cases (denoted

in the table by -). We also compare the numerical results of the mixed formulation

with ε = 0 to the augmented formulation by Lions and Glowinski described in Section

2.2. The latter involves a parameter λ. In Figure 5.3, left, we compare the dynamics

of the reduction of the difference ‖τ (k)−τ (k−1)‖ along the iterations for several values

of λ. The best choice for λ is λ = 0.01. Figure 5.3 on the right illustrates the dy-

namics of ‖τ (k) − τ (k−1)‖ along 200 iterations of the non-regularized version of (4.2),

i.e. ε = 0 and the Lions-Glowinski method with λ = 0.01. Note that in previous

results we used the Picard residual as a stoping criterion, whereas here we check the

difference between two consecutive computations of the stress. This is consistent with

the common stopping criterion of ALG. We use τs = 2 and h = 1
32

. The convergence

rate of the mixed formulation is better than the one of Lions and Glowinski mea-

sured in terms of ‖τ (k) − τ (k−1)‖ (notice however that the Picard residual indicates

a convergence to the same solution in fewer iterations). In general the identification

of the optimal parameter λ is not easy whereas the solver of the mixed formulation

is parameter free.

In the second experiment, we solve the unsteady Navier-Stokes type Bingham prob-

lem, i.e. (1.2) and (1.3) with ρ 6= 0. We take ρ = 1 for simplicity. We impose Dirichlet

boundary conditions by u|y=1 = (10, 0)T and homogeneous Dirichet boundary condi-

tions everywhere else. We choose ∆t = 0.1 as the time step, h = 1
128

, ε = 10−5, τs = 2

and µ = 0.1. In Figure 5.4 we show the streamlines of the solution of the Stokes type

problem with µ = 1 as well as the solution of the Navier-Stokes type problems with

µ = 0.1 and µ = 0.01 at time t = 1.0 after the solution has reached a steady state.

Furthermore, in Figure 5.5 we show equally distributed velocity streamlines for the

Stokes type problem together with the isoline of (2µ+ τs
|Du|ε )|Du| = τs, which may be
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h ↓ \ε→ 10−1 10−2 10−3 10−4 10−5 10−1 10−2 10−3 10−4 10−5 0
Primitive Variables Mixed Variables

τs = 2:
1
16

22 49 51 51 51 11 21 26 27 27 21
1
32

99 173 224 224 224 10 15 17 17 17 23
1
64

213 - - - - 8 12 12 12 12 15
1

128
- - - - - 7 9 9 9 9 11

τs = 5:
1
16

18 37 48 51 51 17 31 37 37 38 27
1
32

66 94 269 267 266 14 22 23 24 24 32
1
64

128 - - - - 12 17 18 18 18 22
1

128
- - - - - 10 13 14 14 14 15

Table 5.3: Number of Picard iterations required for reducing the residual by 10−6 for
the formulation in primitive variables (left) and the formulation in mixed variables
(right) for the lid-driven cavity. For h = 1

128
and in many cases of h = 1

64
the iterations

in primitive variables do not converge (denoted by -). The non-regularized case ε = 0
is included in the last column for the mixed formulation.

interpreted as a reasonable approximation of the yield surfaces [76]. Results presented

in Figure 5.5 are consistent with those found in literature (see for example [65]).

5.4 A Computation on Non-Rectangular Domains

We finally present two simple test cases carried out in non-rectangular geometries,

showing that the mixed formulation even with no regularization is a viable approach

for more realistic problems. Simulations are carried out with the software FreeFem++

(version 3.9), P1 bubble finite elements for the velocity, P1 for the pressure and each

component of the tensor W . A streamline upwind Petrov-Galerkin stabilization [21]

has been added for the treatment of the convective term (linearized with a Picard

approach). In the first case we simulate a two dimensional circular cavity attached to

a two dimensional rectangular channel. In the second case we consider a rectangular

channel with an obstacle represented by a sinusoidal bump. In Figure 5.6, top, we

show the computed shear rate for the first geometry with τs = 1, µ = 0.05 and an

incoming velocity profile with peak uM = 2. In Figure 5.6, bottom, we present results



58

Figure 5.3: Reduction of the difference ‖τ (k) − τ (k−1)‖ for the first 200 iterations
when solving the lid-driven cavity problem with τs = 2 and h = 1

32
. Left: ALG

with different choices of λ. No convergence occurs in the case of λ = 0.001. Right:
Comparison between the Picard iterations (4.2) with ε = 0 and ALG with λ = 0.01.

Figure 5.4: Streamlines of the lid-driven cavity flow (τs = 2, h = 1
128

and ε = 10−5).
Solution of the Stokes type problem. Center and Right: solution of the Navier-Stokes
type problem computed with u|y=0 = (10, 0)T , µ = 0.1 (center) and µ = 0.01 (right).
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Figure 5.5: Velocity streamlines (blue) and predicted yield surfaces (brown) of the
lid-driven cavity flow computed for different values of the yield stress τs with h = 1

64
.

Images by Maxim A. Olshanskii, Department of Mechanics and Mathematics, Moscow
M. V. Lomonosov State University.

for the second geometry with τs = 1, µ = 0.1 and uM = 10. The non-regularized

mixed formulation produces convergent results in all these test cases.
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Figure 5.6: Plot of |Du| for non-trivial domains. Top: Circular cavity attached to
a rectangular pipe. Bottom: An occluded pipe. Results obtained using the mixed
non-regularized formulation.



Chapter 6

Preconditioning 1

We have seen in Chapter 5 that the nonlinear iterative solver based on the mixed

formulation of the Bingham problem converges – for “academic” test cases – within a

small number of iterations and is robust with respect to the regularization parameter

ε and the size of the mesh. Also, the solver works well for the non-regularized case

ε = 0. The price of solving the mixed formulation as opposed to the formulation

in primitive variables is that additional unknowns augment the linear system, that

is, the linear systems to be solved at each nonlinear iteration are larger than those

for the formulation in primitive variables. Note that our numerical experiments from

Chapter 5 are performed on two dimensional test problems on a relatively small scale

and a direct method is used for solving the linear systems. Direct methods, however,

are usually unsuitable for realistic problems which are normally on a larger scale be-

cause of their poor scaling properties and an excessive memory requirement for larger

systems. This is in particular the case when solving three dimensional problems,

when direct methods become unaffordable even for problems of moderate size. The

purpose of this chapter is to introduce a more sophisticated linear solver which is

suitable for problems on larger scale, in particular for problems in three dimensions.

1The work presented in this chapter was performed in close collaboration with Panayot Vas-
silevski, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Liver-
more, CA.
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More precisely, we will solve linear systems arising from the non-regularized Bingham

problem using a Krylov subspace method. We will introduce a preconditioner which

results in a fast and robust convergence of the linear iterative solver within a small

number of iterations independent of the mesh size.

We begin this chapter by explaining the concept of two important methods in nu-

merical analysis, multigrid methods and domain decomposition methods. We then

provide an overview over the linear systems to be solved and the existing methods for

preconditioning them in Section 6.3. In Section 6.4 we suggest using the regularized

Bingham problem as a preconditioner for solving the non-regularized problem. For

efficient preconditioning of the linear system, the regularized Bingham problem needs

to be approximated. This can be done in different ways. We present two of these

possibilities in this chapter, the inexact factorization of the system in Section 6.5 and

geometric multigrid in Section 6.6.

6.1 Multigrid Methods

We start by introducing multigrid methods, which are often used as a preconditioning

technique that will be of high importance in this thesis. We follow [20] for explaining

the concept of multigrid.

We start with considering a general linear system of the form

Ax = f. (6.1)

For now we want to assume that the matrix A is obtained by discretizing a partial

differential equation on a given domain, i.e. the matrix A is associated to a mesh.

When it is not feasible to compute the exact solution x to (6.1), some approximation

x̃ is found. The corresponding (unknown) error is given by e = x − x̃. We may
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compute the residual r = Ax̃− f. The residual equation

Ae = r (6.2)

can be easily derived from the considerations above. Suppose now that an approxi-

mation x̃ to (6.1) has been computed. The approximation can be improved by solving

(6.2) for e and then updating x by

x = x̃ + e. (6.3)

One way to find an approximate solution to (6.1) is by applying a fixed number of

iterations of a stationary iterative method (see Appendix A). When testing stationary

iterative methods on cases where the analytical solution (hence the error at each

iteration is known), it can be observed that the norm of the error drops quickly for

the first few iterations, but reduces slowly for the proceeding iterations. This is due

to the fact that stationary iterative methods tend to “smooth” out the high frequency

modes of the error, whereas the low frequency modes are damped significantly slower.

More precisely, if we assume that the error corresponding to the initial guess has the

form

e = {ei}ni=1 =
n∑
k=1

αk

{
sin

(
kiπ

n

)}n
i=1

, αk ∈ R,

then those components of the error corresponding to large values of k (i.e. the high

frequency modes) are are damped rapidly while those components corresponding to

the lower values of k (the low frequency modes) decrease much more slowly. Whether

a frequency mode is to be considered high or low depends on the size of the mesh

h = 1/n. The property of eliminating high frequency modes and leaving low frequency

modes is called the smoothing property.

The idea behind multigrid is to first apply a fixed number of an iterative scheme
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satisfying the smoothing property to (6.1). This will eliminate high frequency modes

and only low to medium frequency modes will remain. We call this step pre-smoothing

and the iterative scheme the smoother. If the obtained approximation is represented

on a coarser mesh – this can be done in different ways, e.g. by restriction – some

of the modes which were medium frequency modes on the fine mesh now appear as

higher frequency modes on the coarse mesh and applying again the smoother will

damp these components. The new approximation is then transferred back to the fine

mesh (either by interpolation or by projection). In practice, after the pre-smoothing

step, we approximate the corresponding error on the coarse mesh using the residual

equation (6.2). This approximation of the error is interpolated to the fine mesh and

used to correct the solution obtained from the smoothing step using (6.3). We call

this the coarse-grid correction step. After the coarse-grid correction step, we again

apply the smoother to the updated solution. This is called post-smoothing. These

steps yield the following general two-level multigrid algorithm, letting Ac be the

coarse-grid representation of A and x0 be some initial guess:

Algorithm 6.1 Two-Level Multigrid

1: obtain approximation x̃ by smoothing ν times on Ax0 = f;

2: compute residual r = Ax̃− f;

3: find rc, the coarse-grid representation of r;

4: solve the residual equation Acec = rc;

5: find e, the fine-grid representation of ec;

6: update x = x̃ + e;

7: smooth ν times on Ax = f;

Note that if the size of the coarse-grid matrix Ac in line 4 of Algorithm 6.1 is small

enough, the residual equation may be solved exactly by a direct method. If Ac is still

too large for a direct solve, the residual equation may be approximated by applying

again the multigrid method in a recursive fashion. This yields a multigrid V-cycle
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which may be defined recursively. More generally, we may approximate the error

ec by applying the multigrid method σ times to Acxc = rc, resulting in a multigrid

W-cycle: Let y be a generic input vector, x the corresponding output vector and ν,

σ given constants. Let further ` denote the current level in the multigrid scheme. We

assume that the linear system matrix A can be represented on L multigrid levels by

{A`}L`=1. The multigrid W-cycle then looks like

Algorithm 6.2 Multigrid W-Cycle

WCycle({A`}`, x, y, ν, σ, `):

iterate ν times on A`x = y; //pre-smoothing

compute residual r = b−Ax;

project r a coarser grid, r`−1;

//coarse-grid correction:

if `− 1 == 1 then

solve A`−1xc = r`−1 directly;

else

call σ times WCycle({A`}`, xc, r`−1, ν, σ, `− 1);

end if

iterate ν times on A`x = y; //post-smoothing

Figure 6.1 visualizes the levels visited by the W-cycle on four levels of multigrid

for σ = 1 (V-cycle) and σ = 2.
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Figure 6.1: Levels visited by Algorithm 6.2 on four levels of multigrid with σ = 1

(left) and σ = 2 (right).

We refer to [20] for a more detailed approach to multigrid methods. Convergence

theory and some theoretical results can be found in [52].

6.2 Domain Decomposition Methods

Another important class of methods we will use for the linear solver are domain de-

composition methods. The concept will be explained following [90].

The first method based on a decomposition of the domain was introduced by Schwarz

in 1870. His method, referred to as the alternating Schwarz method, can be used to

solve elliptic boundary value problems on domains that are the union of two subdo-

mains by alternatingly solving the elliptic boundary value problem restricted to the

individual subdomains. Consider the domain Ω = Ω1 ∪Ω2 as shown in Figure 6.2 on

which we wish to solve the linear elliptic PDE

 Lu = f in Ω,

u = g on ∂Ω.
(6.4)

We consider here Dirichlet boundary conditions, but other types of boundary
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Figure 6.2: Original figure by Schwarz [90].

conditions are possible as well. The artificial boundaries are denoted by Γ1 and Γ2,

as shown in Figure 6.2. Let u
(k)
i denote the approximate solution of (6.4) on the

subdomain Ωi, i = 1, 2. We begin the alternating Schwarz iterations by selecting an

initial guess u
(0)
2 for the solution in subdomain Ω2. We then solve for k = 1, 2, ... the

boundary value problem


Lu

(k)
1 = f in Ω2

u
(k)
1 = g on ∂Ω1\Γ1

u
(k)
1 = u

(k−1)
2 |Γ1 on Γ1

for u
(k)
1 . Once u

(k)
1 is known, the boundary value problem


Lu

(k)
2 = f in Ω2

u
(k)
2 = g on ∂Ω2\Γ2

u
(k)
2 = u

(k)
1 |Γ2 on Γ2

is solved for u
(k)
2 .

For the numerical solution, (6.4) needs to be discretized, resulting in a linear system

of the form (6.1). Let A be the discretization of the operator L. Also, we consider
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the operator L restricted to the local subdomain Ωi and denote the corresponding

discrete operator by Ai. Since in the overlap region the meshes may not be matching,

it is necessary to define an interpolation operator IΩj→Γi
, i, j = 1, 2 for determining

the internal boundary on the artificial boundaries Γ1 and Γ2. The operator IΩj→Γi
,

i, j = 1, 2 interpolates values from Ωj to the boundary Γi. We are now ready to state

the algorithm for the discretized version of the alternating Schwarz method:

Algorithm 6.3 Alternating Overlapping Schwarz Method

w0
1 ← 0

while (convergence==false) do

solve 
A1x

(k)
1 = f1 on Ω1

x
(k)
∂Ω1\Γ1

= g1 on ∂Ω1\Γ1

x
(k)
Γ1

= w
(k−1)
1 on Γ1

for x
(k)
1 ;

interpolate w
(k)
2 ← IΩ1→Γ2x

(k)
Ω1

;

solve 
A2x

(k)
2 = f2 on Ω2

x
(k)
∂Ω2\Γ2

= g2 on ∂Ω2\Γ2

x
(k)
Γ2

= w
(k)
2 on Γ2

for x
(k)
2 ;

interpolate w
(k)
1 ← IΩ2→Γ1x

(k)
Ω2

;

check for convergence;

end while

The convergence rate of Algorithm 6.3 depends on the size of the overlap region;

more overlap results in faster convergence of the method. In case the grids in the

subdomains are matching, the interpolation is not necessary. Our goal is now to

eliminate the explicit dependence on the artificial boundary from the description of
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Figure 6.3: Partitioning of the matrix A.

the algorithm. Let us reorder the matrix A in the following ways (see Figure 6.2):

Areordered,1 =

 AΩ1 AΩ\Ω1

∗ ∗

 =

 AΩ1 AΓ1 AΩ\Ω1

∗ ∗ ∗


and

Areordered,2 =

 ∗ ∗

AΩ\Ω2 AΩ2

 =

 ∗ ∗ ∗

AΩ1\Ω2
AΓ2 AΩ2

 .
In general, AΩ1 and AΩ2 will contain some common entries from degrees of freedom

in the interior of the overlap region. These degrees of freedom will generate identical

coefficients in the matrices AΩ1 and AΩ2 (in Figure 6.2, these coefficients lie in the

small square at the intersection of AΩ1 and AΩ2). With this reordering, we may write

Algorithm 6.3 in the iterative form

x
(k)
Ω1
← x

(k−1)
Ω1

+A−1
Ω1

(
f1 −AΩ1x

(k−1)
Ω1

−AΓ1x
(k−1)
Γ1

)
,

x
(k)
Ω2
← x

(k−1)
Ω2

+A−1
Ω2

(
f2 −AΩ2x

(k−1)
Ω2

−AΓ2x
(k)
Γ2

)
.

(6.5)

If we make the additional assumption that there is no direct coupling between
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the degrees of freedom on opposite sides of the artificial boundaries, then AΩ2\Ω1
= 0

and AΩ1\Ω2
= 0 and we observe that AΓ1x

(k−1)
Γ1

≡ AΩ\Ω1x
(k−1)
Ω\Ω1

and AΓ2x
(k−1)
Γ2

≡

AΩ\Ω2x
(k−1)
Ω\Ω2

. This way, we may replace all terms involving explicitly the artificial

boundaries Γi in (6.5) and obtain the formulation

x
(k)
Ω1
← x

(k−1)
Ω1

+A−1
Ω1

(
f1 −AΩ1x

(k−1)
Ω1

−AΩ\Ω1x
(k−1)
Ω\Ω1

)
,

x
(k)
Ω2
← x

(k−1)
Ω2

+A−1
Ω2

(
f2 −AΩ2x

(k−1)
Ω2

−AΩ\Ω2x
(k)
Ω\Ω2

)
.

(6.6)

Iteration (6.6) results in the multiplicative Schwarz algorithm:

Algorithm 6.4 Multiplicative Schwarz Method

choose initial guess x(0);

while (convergence == false) do

x(k+1/2) = x(k) +

 A−1
Ω1

0

0 0

 (f−Ax(k));

x(k+1) = x(k+1/2) +

 0 0

0 A−1
Ω2

 (f−Ax(k+1/2));

check for convergence;

k ← k + 1;

end while

When writing Algorithm 6.4 in matrix form it can be viewed as a block Gauss-

Seidel iterative method. A major limitation of Algorithm 6.4 is that the computation

on subdomain Ω2 depends on the result obtained on Ω1, making it unsuitable for

parallel computations. This issue may be overcome by considering the corresponding

block Jacobi method. This yields the overlapping additive Schwarz method. It can

be written in iterative form as

x(k+1) = x(k) +


 A−1

Ω1
0

0 0

+

 0 0

0 A−1
Ω2


 (f−Ax).
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The computation of the local systems AΩ1 and AΩ2 is independent and may be com-

puted on separate processors, allowing a parallel implementation of the method. The

additive Schwarz method does not converge in general, thus in practice it is often

used as a preconditioner inside a Krylov method.

For simplicity, we explained the concept of domain decomposition methods on two

domains, but the extension to several domains follows in a natural way. For the

additive Schwarz method, the generalizes to

x(k+1) ← x(k) +





A−1
Ω1

0 · · · 0

0 0 0 0

...
...

. . .
...

0 0 0 0


+



0 0 0 0

0 A−1
Ω2
· · · 0

...
...

. . .
...

0 0 0 0



+ · · ·+



0 0 · · · 0

...
...

. . .
...

0 0 0 0

0 0 0 A−1
Ωn




(f−Ax)

(6.7)

We will use the additive Schwarz method (6.7) for the preconditioner presented in

this thesis. Further modifications of the method exist, such as the restricted additive

Schwarz method which was introduced with the purpose of reducing the commu-

nication in parallel computations [24]. For a more detailed introduction to domain

decomposition methods we refer to [90], some theoretical analysis can be found in [95].

6.3 The General Concept of Preconditioning

We now focus on the preconditioning of the linearized and discretized Bingham prob-

lem. In our computations, we will use a pressure stabilization term, that is, A is
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given as in (4.21):

Aε(u) =


A BT CT

B −αQ 0

C 0 −Nε(u)

 .
The efficient solution of this system with complex geometries or a large number of

degrees of freedom can be obtained either with an approximate factorization of Aε,

resorting to a sequential computation of velocity, pressure and the tensor W , or with

an efficient preconditioner. In the latter case, we could take advantage of the twofold

saddle point-structure of the problem. As a matter of fact, notice that there are two

different ways to recognize the saddle-point structure of (4.21). Letting

B =

 B

C

 and Nε =

 −αQ 0

0 −Nε(u
k−1)


gives a saddle-problem of the form

Aε =

 A BT

B Nε

 (6.8)

with a positive definite (1,1)-block, which is also symmetric in the case of the Stokes-

type problem. On the other hand, one may define

F =

 A BT

B −αQ

 and G =

[
C 0

]
.

In this case, the problem becomes

Aε =

 F GT

G −Nε(u
k−1)

 (6.9)
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and the (1,1)-block of the saddle-point problem is indefinite and represents in turn

a saddle-point problem. Many preconditioners have been suggested for saddle-point

problems either when the matrix (1,1)-block of the system is s.p.d (symmetric postive

definite), or its symmetric part is s.p.d. A broad spectrum of preconditioners relies

on inexact factorizations of the system and an approximation of the Schur comple-

ment, such as the least square commutator preconditioner or the pressure convection

diffusion preconditioner [40, 41]. Other preconditioning techniques for saddle-point

problems include augmented Lagrangian preconditioners [14, 15] or preconditioners

based on a dimensional splitting [12,13].

6.4 Approximating the Non-Regularized Problem

We have seen so far that one of the main advantages of the mixed formulation is the

treatment of the singularity represented by the plug regions. The numerical solver

based on this formulation is more robust with respect to the regularization parameter.

Also, the numerical results from Chapter 5 show that the mixed formulation can be

used for the non-regularized case. The idea we pursue here is to regard the regularized

mixed formulation of the Bingham problem as a preconditioner for the non-regularized

case. In other terms, we use a preconditioner built up for the regularized problem for

solving the case ε = 0. To support this idea, in Figure 6.4 we report the eigenvalues

of the non-regularized Bingham matrix A for the case of the Stokes-type equations

computed for one of our test cases, the flow between parallel plates (see Section

5.2) with a number of degrees of freedom small enough to use MATLAB’s eig, namely

h = 1/16 in a 2D unit square. The Figure also displays the eigenvalues of A when

preconditioned by the regularized problem Aε, i.e. the eigenvalues of A−1
ε A with

ε = 10−2. Clustering of the eigenvalues around λ = 1 is evident.

To quantify the impact of the regularization parameter on the non-regularized
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Figure 6.4: Absolute values of the eigenvalues of the discrete linearized Bingham
matrix A (blue) and eigenvalues of A−1

ε A (red) in the analytical test case, where Aε
is the regularized Bingham matrix with ε = 10−2.

problem, we define

S =

 A BT

B −αQ

 , F =

 B

C


and consider the following factorization of the linear system matrix Aε with ε > 0:

Aε =

 S FT

F Nε

 =

 S 0

F Nε −FS−1FT


 I S−1FT

0 I

 .
Then

A−1
ε =

 I −S−1FT

0 I


 S−1 0(

Nε −FS−1FT
)−1FS−1 −

(
Nε −FS−1FT

)−1


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and by a direct computation we get

A−1
ε A =

 I −S−1FT

0 I


 I S−1FT

0 −X

 (6.10)

with the matrix block

X =
(
FS−1FT

)
−N−1

ε

(
FS−1FT −N

)
. (6.11)

Note that S represents the (Newtonian) Stokes or Navier-Stokes part of the linear sys-

tem and the inverse S−1 is well-defined provided either u and p are discretized in inf-

sup compatible spaces. We can see from (6.10) and (6.11) that the eigenvalues of the

preconditioned matrix A−1
ε A cluster around one if the spectrum of

(
Nε −FS−1FT

)
is similar to the spectrum of

(
FS−1FT −N

)
. Should the inverses be computed ex-

actly, this trivially holds true for ε → 0. Figure 6.5 shows the residual for the first

30 iterations of GMRES when solving the preconditioned system A−1
ε Ax = A−1

ε f for

different values of ε. To provide this proof of concept, a coarse grid is used (again unit

square domain with h = 1/16) and the inverse of Aε is applied exactly using a direct

method. The smaller ε, the faster the GMRES iterations reach any given tolerance.

As far as we know, there been a strict distinction between solvers for the reg-

ularized model and solvers for the non-regularized model in the literature on the

numerical solution of Bingham fluids so far. To our knowledge, this type of combina-

tion of regularized and non-regularized model presented here has not been advocated

before.



76

Figure 6.5: Residual of GMRES for the first 30 iterations for when solving the non-
regularized problem preconditioned by the regularized one with different values of
ε.

6.5 Inexact Factorization

Using the exact inverse of Aε, with ε > 0 as a preconditioner as done in Figure 6.4, is

clearly not practical if the problem is large. The efficient solution of the linear system

requires an approximation of the inverse which can be computed at a relatively low

cost in terms of memory and CPU time and which significantly reduces the number

of iterations of the linear iterative solver. Many options exist how to obtain such an

approximation. We consider first inexact factorization methods for preconditioning

the linear system. While we will not follow this approach in this thesis, we believe

that these methods are worth mentioning here since they have been shown to be very

efficient when applied to the unsteady Navier-Stokes equations for incompressible

fluids [74,77,78] and their applicability to the Bingham flow (or Non-Newtonian fluid

flow in general) should be investigated in the future. We begin by recalling two

important types of inexact factorization methods applied to the unsteady Navier-
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Stokes equations (for Newtonian fluids) before presenting some ideas how this may

be used for the twofold saddle point problem (4.21) for Non-Newtonian fluids.

6.5.1 Yosida and Chorin-Temam Schemes

After linearization and discretization of the Navier-Stokes equations, the saddle point

problem

ANS =

 A BT

B 0


is obtained. Note that the matrix blocks A and B are indeed the same as in (4.21).

The problem may be factorized as

 A BT

B 0

 =

 A 0

B −BA−1BT


 I A−1BT

0 I

 ≈
 A 0

B −BH1B
T


 I H2B

T

0 I

 ,
(6.12)

where H1 and H2 are two approximations of the inverse A−1.

Note now that A = 1
∆t
M + T , where ∆t is the time step, M a mass matrix in the

discrete velocity space and T a discrete Laplacian. We have

A =
1

∆t
M + T =

1

∆t
M(I + ∆tM−1T ),

hence

A−1 = ∆t(I + ∆tM−1T )−1M−1.

Let us assume that I + ∆tM−1T ≈ I. Then

A−1 = ∆t(I + ∆tM−1T )−1 ≈ ∆tM−1.

The resulting three-step method is the (algebraic) Chorin-Temam scheme [74], letting

H1 = H2 = ∆tM−1 in (6.12):
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1. Solve Aû = f for the “intermediate velocity” û,

2. find the pressure p by solving −∆tBM−1BTp = −Bû,

3. “correct” the velocity by solving ∆tMu = ∆tM û−∆tBTp for u.

Similarly, the Yosida scheme [77] is obtained by letting H1 = ∆tM and H2 = A−1 in

(6.12) and reads

1. Aû = f (intermediate velocity computation),

2. −∆tBM−1BTp = −Bû (pressure computation),

3. Au = f−∆tBTp (final velocity computation).

6.5.2 Application to Bingham Fluids

Recall from Section 6.3 that there are two ways to interpret the saddle point structure

of (4.21). We therefore start our considerations on a general factorization of a saddle

point system of the form

 P LT

L J

 =

 P LT

L LP−1LT − SR

 ,
with S = LP−1LT and R = S−1(S+J) = (I+S−1J). Efficient computations require

good approximations Ŝ−1, R̂−1 and P̂−1 of S−1, R−1 and P−1 respectively. This can

be done in different ways and depends on the particular choice of P and L. The

resulting inexact factorization reads

 P LT

L J

 =

 P LT

L LP−1LT − SR

 ≈
 P 0

L −Ŝ


 I P̂−1LT

0 R̂

 . (6.13)
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Possible approximations of R−1 = (I−S−1J) are of Neumann type [61], that is, under

the assumption that the spectral radius of S−1J is less than one, ρ(S−1J) < 1, we

consider the Neumann series

(I − S−1J)−1 =
∞∑
i=1

(S−1J)i

and consequently obtain an approximation of the form

(I − S−1J)−1 ≈
q∑
i=1

(S−1J)i

for some q ∈ N. We may also use the Chaouet-Chabard type approximation [48]

(I + S−1L)−1 ≈ I + (S−1J)−1,

provided J is non-singular. The idea is to use the inexact factorization (6.12) to

sequentially compute u, p and W by interpreting the saddle point problem by either

(6.8) or (6.9). In the latter case, P represents the Navier-Stokes equations (for a

Newtonian fluid) and P̂−1 may be obtained by using Chorin-Temam or Yosida type

schemes.

Remark Recall that we may use the regularized problem as a preconditioner for the

non-regularized one. Hence, when considering inexact factorization methods, we may

assume that the matrix block N in (4.21) symmetric positive definite.

6.6 The Multilevel Preconditioner

While inexact factorization methods are a promising technique for approximating the

inverse of the regularized Bingham system A−1
ε , in this thesis we focus on a geometric

multigrid method. Multigrid methods have experienced an increasing popularity for a
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large range of problems, including the solution of indefinite problems (see, e.g. [87,102]

in the context of constrained optimization problems and fluid-structure interaction,

respectively). Let {Ak}Lk=1 be the linear system matrices representing the discretiza-

tion of (4.21) on a sequence of L meshes, Ak−1 being on a coarser mesh than Ak.

Let further {Pk}L−1
k=1 be the natural interpolation matrices relating variationally the

system matrix Ak to its coarser counterpart Ak−1, and let y be the generic input vec-

tor, x the corresponding output vector and σ, ν, ` and tol be given constants, where

` represents the current level and tol the given tolerance. We propose the following

recursive preconditioner:

Algorithm 6.5 The Multilevel Algorithm

MLPrecond(x, y, {Ak}k, {Pk}k, σ, ν, `, tol):

smooth ν times on A`x = y;

restrict residual: r = P T
`−1(y−Alx);

if `− 1 = 1 then

xc=(A`−1) \r; //coarsest level: Matlab notation for a direct method

else

xc = 0;

Precond = @MLPrecond(xc, r, {Ak}`−1
k=1, {Pk}`−1

k=1, σ, ν, `− 1, tol);

FGMRES(A`−1, xc, r, tol, σ, Precond);

end if

update x = x + P`−1xc;

smooth ν times on A`x = y;

Algorithm 6.5 is a multigrid W-cycle; the method “MLPrecond” recursively calls

itself σ times as a preconditioner inside an FGMRES scheme [81]. Note that we use

in the smoother a Krylov subspace method, which will also contribute towards the

nonlinear nature of the proposed preconditioner.
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6.6.1 Interpolation and Restriction

Starting with a mesh that is sufficiently coarse to allow a fast solution of the discrete

system (e.g. with a direct solver that we have denoted with “\”), we refine the mesh

uniformly L times. With each mesh, we associate a corresponding triple of finite

element spaces, Vk, Qk,Zk, k = 1, . . . , L. By construction, the coarse level spaces are

subspaces of the next fine level spaces. This defines natural embeddings {Pu
k }Lk=1,

{P p
k }Lk=1 and {PW

k }Lk=1 which transfer (interpolate) the degrees of freedom of u, p and

W , respectively from the coarse mesh to the fine mesh. The (monolithic) interpolation

operator is then given by

Pk =


Pu
k 0 0

0 P p
k 0

0 0 PW
k

 .
The matrix AL is assembled on the finest mesh, and the coarse ones are variationally

related via the Galerkin condition Ak−1 = P T
k AkPk for k = 1, ..., L.

6.6.2 Smoothing

Several types of smoothers may be considered. A classical approach is to perform

a few iterations of a preconditioned iterative method. This has been done in [?, 97]

for an s.p.d. problem, with a fixed number of conjugate gradient iterations used for

smoothing. The iterations can involve the preconditioner defined recursively on previ-

ous coarse levels. This nonlinear preconditioner is used to accelerate the convergence

of a flexible Krylov subspace method.

We will follow a similar idea on the indefinite system (4.21). An efficient smoother

is given by the overlapping additive Schwarz method. For the sake of simplicity, we

will omit the index k indicating the level of discretization for the remainder of this

section. Given the discretized domain Ω on any given level, we may subdivide the

domain into m overlapping subsets {Ωi}mi=1. Then we set up linear mappings {Iui }mi=1,
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{Ipi }mi=1 and {IWi }mi=1 restricting the degrees of freedom of u, p and W , respectively,

to the local domain Ωi. The discrete local matrix is then given by

Ai = IiAITi with Ii =


Iui 0 0

0 Ipi 0

0 0 IWi


and the inverse of the global matrix M is approximated by the formula

A−1 ≈
m∑
i=1

ITi A−1
i Ii.

The size of the subdomains should be chosen sufficiently small so that the inverse of

the local matrices Ai can be computed quickly.

In the next chapter we will discuss in detail the numerical performance of the pre-

conditioner presented here.



Chapter 7

Numerical Results 1

This chapter comprises several numerical experiments that demonstrate the effective-

ness of the multilevel preconditioner from Chapter 6 for solving linear system arising

from the discrete linearized Bingham equations. We consider both two dimensional

and three dimensional test cases, the latter being not affordable with the direct solver

used in Chapter 5. We start with explaining the experimental setup, with details on

how the parameters for the preconditioners are chosen. In Section 7.2 we present

numerical results on benchmark problems that have been introduced in Chapter 5.

We then proceed to problems from hemodynamics in Section 7.3.

7.1 Experimental Setup

Unless stated otherwise, the computational domain is a unit square or a unit cube.

We discretize in space with P2-P1 finite elements for velocity and pressure. The

auxiliary variable W is discretized with P1 finite elements. Again, we choose an

inf-sup stable pair for velocity and pressure and the choice for W was made as an

appropriate trade-off between accuracy and efficiency. We refer to the C++ finite

1The work presented in this chapter was performed in close collaboration with Panayot Vas-
silevski, Center for Applied Scientific Computing, Lawrence Livermore National Laboratory, Liver-
more, CA.

83
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element library MFEM [63]. For the coarsest grid we choose h = 1/4 in the two

dimensional case and h = 1/2 in three dimensions. As a solver on the coarsest grid

we use a direct solver within the C library SUITESPARSE. More precisely, the coarse

level matrix is factorized into an LDLT factorization (LDL package [29]) for the Stokes

type equations (1.4) and into an LU factorization (UMFPACK package [27,28,31,32]) for

the Navier-Stokes type problem (1.2). Before computing all factorizations we apply

a fill-in reducing reordering provided by AMD [2, 3, 30].

To set up the smoother on each level (except for the coarsest), we first generate

an adjacency matrix S = [sij] (with sij = 1 if element i and j share a common face

in three dimensions or a common edge in two dimensions and sij = 0 otherwise).

We then apply a graph partitioner in METIS [58] on S. This procedure results in

a partitioning of the mesh in which the overlap consists of one layer of elements at

the interface. Extra layers of overlap may be included as well. The solves on each

subdomain is again done by the direct solvers provided in SUITESPARSE. Table 7.1

shows the different meshes we use for our experiments and the number of multigrid

levels used for each mesh. Also, the number of subdomains is shown. The number of

overlapping nodes is specified as well. The number of subdomains on each level has a

strong influence on the performance of our preconditioner. The trade-off is between

the size of the local system (not too large) and the overall efficacy of the smoother.

This is achieved by increasing the number of subdomains by a factor of 4 in 2D and

a factor of 6 in 3D for each additional multigrid level, as shown in the table. The

size of the discrete system is shown as well. To produce the results in the following

subsections, we start the nonlinear Picard iterations with the initial guess u = u0,

p ≡ 0, W ≡ 0 where u0 is the solution of −µ∆u0 = f solved with preconditioned CG

iterations. We continue the nonlinear iterations until

‖r‖2

‖r0‖2

≤ 10−2,
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Experiments on Unit Square
mesh # levels # subd. #overlap. nodes size overl. size lin. syst.
h = 1/8 2 3 34-40 27 902
h = 1/16 3 9 42-50 126 3,334
h = 1/32 4 27 56-72 498 12,806
h = 1/64 5 81 68-85 1,839 50,182
h = 1/128 6 243 89-110 6,751 198,662
h = 1/256 7 729 114-143 24,343 790,534

Experiments on Unit Cube
mesh # levels # subd. size subd. size overl. size lin. syst.
h = 1/4 2 12 24-31 97 3,062
h = 1/8 3 72 27-49 669 19,842
h = 1/16 4 432 34-55 4,697 142,202
h = 1/32 5 2,392 41-70 34,925 1,075,434

Table 7.1: Number of levels of multigrid, number of subdomains, size of each subdo-
main, size of overlap and the size of the linear system to be solved in two and three
dimensions.

where r (r0) is the current (initial) residual. We set the absolute tolerance to 5 ·10−6.

By choosing this nonlinear stopping criterion we make sure that the linear solver is

accurate enough to achieve nonlinear convergence. The linear system is solved by

FGMRES with geometric multigrid preconditioner and is considered converged if the

quotient of current and inital residual drops below 10−6 in the L2-norm,

‖rk‖2

‖r0‖2

≤ 10−6.

All tables display the number of linear iterations needed for convergence of the first

nonlinear iteration. Table 7.2 shows the linear and nonlinear tolerances we use for

our experiments.

7.1.1 Choosing the Regularization Parameter

In Section 6.4 we stated that the performance of the preconditioner Aε improves

as ε decreases, provided that the inverse A−1
ε is computed exactly. However, the
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linear tol. nonlinear tol. nonlinear tol. (absolute) # subdomains

10−6 10−2 5 · 10−6 d`

Table 7.2: Tolerances and number of subdomains used in our experiments: relative
linear tolerance, nonlinear tolerance, absolute nonlinear tolerance (all measured in the
L2-norm), number of subdomains used (d is the spacial dimension and ` the number
of multigrid levels.

reduction of the regularization parameter in general deteriorates the conditioning

properties of the matrix and this may impair the quality of the approximation. In

this respect, finding the optimal value of ε involves finding the right trade-off between

numerical stability and approximating the physical problem to be solved. In our

experiments we empirically found the optimal choice to be ε = 10−2. However,

a rigorous analysis justifying this choice is still missing. It is worth noticing that

the domain decomposition used in our experiments is based entirely on the mesh

and not on the solution. If a subdomain is entirely contained in a plug region,

we may experience some performance degradation. As a matter of fact, the local

representation of the linear system is extremely ill-conditioned for small values of

ε and the local (direct) solves may be very inaccurate, resulting in failure of the

smoother. Larger values of ε yield an improved conditioning of the local system and

local solves are more accurate.

We also noticed that the condition number of the regularized block Nε in (4.21)

grows mildly as ε→ 0 except when between 10−2 and 10−3 where the increase is more

evident (see Figure 7.1).



87

Figure 7.1: Condition number of the block Nε for different values of ε and h.

7.2 Benchmark Problems

7.2.1 The Flow Between Two Parallel Plates

We test the linear solver on the analytical test case from Chapter 5. To precondition

the FGMRES iterations we use Algorithm 6.5 with two smoothing steps (ν = 2) in

two dimensions and four smoothing steps (ν = 4) in three dimensions as well as two

iterations of FGMRES (σ = 2) on each multigrid level. Table 7.3 displays the num-

ber of FGMRES iterations needed for convergence for the first Picard step, the total

number of nonlinear iterations needed as well as the CPU time needed for solving

the linear system. In the three dimensional case the number of iterations increases

slightly with growing mesh size. However, the parameters for the preconditioner were

chosen to minimize the CPU time as opposed to the iteration count. Mesh indepen-

dent convergence may be achieved by either increasing the number of smoothings or

by decreasing the number of subdomains. Note that when solving the Stokes type
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Figure 7.2: Streamlines and pressure for the two and three dimensional flow between
two parallel plates. The pressure field is indicated by the background color, the
streamlines are colored by the magnitude of the velocity field.

problem, only the matrix N in (4.21) needs to be updated before each iteration. In

this respect, timings provided in Table 7.3 are divided into initial setup time (this

includes setting up the interpolation matrices between the multigrid levels, determin-

ing the subdivisions of the domains and setting up the restriction matrices for each

subdomain) and updating time (this includes the updating of the matrix N in the

preconditioner, computing a factorization of the local monolithic system on each sub-

domain and computing a factorization for the direct solve on the coarsest level). All

experiments are implemented in serial code. Timings for the Stokes type problem are

obtained on a serial machine with an Intel Core i7 processor (2.6 GHz) and 8 GB of

memory. Timings in Table 7.3 scale as expected except in the three dimensional case

between h = 1
16

and h = 1
32

, where the updating time increases significantly. This

may be due to the high memory requirement of the fine mesh, causing memory-hard

disc communication during the computation. Therefore, in Table 7.3 we also include

timings for the three dimensional case obtained on a different machine, a Sun Mi-

crosystems SunFire X4600 with 20 AMD Opteron (TM) cores and 32 GB of memory.

Timings for the fine meshes show improved scaling properties on this machine. Figure

7.2 shows the streamlines and pressure of this flow in two and three dimensions.



89

Two Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/8 10 0.01 0.01 0.01 6
h = 1/16 13 0.08 0.02 0.03 6
h = 1/32 14 0.50 0.05 0.09 6
h = 1/64 14 2.19 0.18 0.40 6
h = 1/128 14 9.60 0.86 1.72 7
h = 1/256 12 37.93 5.44 7.25 7

Three Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 6 0.08 0.01 0.07 4
h = 1/8 8 1.51 0.17 0.75 5
h = 1/16 16 27.89 1.81 6.74 6
h = 1/32 11 258.53 25.53 90.46 6

Three Dimensional Experiments (*)
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 6 0.34 0.01 0.20 4
h = 1/8 8 7.74 0.94 2.36 5
h = 1/16 16 141.54 6.85 22.21 6
h = 1/32 11 927.99 86.75 269.61 6

Table 7.3: The flow between two parallel plates, an analytical test case in two and
three dimensions: Number of linear iterations, CPU time for solving the linear system,
setup and updating time for the preconditioner (all in seconds) and the total number
of Picard iterations. Three dimensional results in the third table are (marked by (*))
are obtained on a Sun Microsystems SunFire X4600.
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Figure 7.3: Streamlines and pressure field of the lid-driven cavity in two (left) and
three (right) dimensions.

7.2.2 The Lid-Driven Cavity

We now test the linear solver on the lid-driven cavity benchmark introduced in Chap-

ter 5. For the preconditioner we use Algorithm 6.5 with two smoothings in two

dimensions and four smoothings in three dimensions as well as two inner iterations of

FGMRES on each multigrid level. Table 7.4 shows the numerical results for this exper-

iment. Results in the table indicate mesh independent convergence of the linear and

nonlinear solver. Also, the total solution time increases by a factor of approximately 5

in two dimensions and approximately 10 in three dimensions (except between h = 1
16

and h = 1
32

) for each additional multigrid level, while the corresponding size of the

linear system increases by a factor of 4 and 8, respectively. Again we obtain im-

proved scaling of our timings on a machine with more memory, displayed in Table

7.4. Streamlines and pressure distribution in two and three dimensions are shown in

Figure 7.3.

7.2.3 The Steady Navier-Stokes type problem

In this subsection we apply the lid-driven cavity test case to the steady Navier-Stokes

type problem. More precisely, we solve (2.4) with ρ = 1 and ∂u
∂t
≡ 0. Here all
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Two Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/8 8 0.01 0.01 0.01 4
h = 1/16 11 0.07 0.01 0.02 5
h = 1/32 12 0.42 0.04 0.10 5
h = 1/64 12 1.87 0.17 0.40 5
h = 1/128 12 8.22 0.80 1.71 5
h = 1/256 11 34.91 5.44 7.29 4

Three Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 3 0.04 0.01 0.06 3
h = 1/8 5 0.94 0.17 0.74 4
h = 1/16 8 13.94 1.80 6.63 5
h = 1/32 5 167.21 25.48 89.12 5

Three Dimensional Experiments (*)
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 3 0.17 0.01 0.21 3
h = 1/8 5 4.63 0.49 2.37 4
h = 1/16 8 71.30 6.69 21.66 5
h = 1/32 5 419.88 86.94 200.62 5

Table 7.4: The lid-driven cavity flow in two and three dimensions: Number of linear
iterations, CPU time for solving the linear system, setup and updating time for the
preconditioner (all in seconds) and the total number of Picard iterations. The third
table (marked by (*)) displays timings obtained on a Sun Microsystems SunFire
X4600.



92

Two Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/8 7 0.03 0.01 0.04 9
h = 1/16 10 0.41 0.01 0.19 8
h = 1/32 12 2.50 0.04 0.77 7
h = 1/64 12 11.74 0.23 3.27 6
h = 1/128 12 54.00 1.44 13.39 5
h = 1/256 11 232.63 11.87 53.32 4

Three Dimensional Experiments
mesh # lin. its CPU time (s) setup (s) updating (s) # nonlin. its.
h = 1/4 6 0.59 0.02 0.61 12
h = 1/8 6 9.28 0.12 7.33 17
h = 1/16 8 101.76 1.77 58.29 15
h = 1/32 7 747.84 47.53 440.48 4

Table 7.5: The lid-driven cavity flow for the Navier-Stokes type problem: Number of
linear iterations, CPU time for solving the linear system, setup and updating time
for the preconditioner (all in seconds) and the total number of Picard iterations.

specifications are the same as in the previous subsection except that we now impose

u =


50

0

0

 if y = 1

corresponding to a Reynolds number of Re = 50. We now tighten the nonlinear

tolerance to 10−4 to ensure accurate solutions. Numerical results are shown in Table

7.5. Due to a high memory requirement for solving the Navier-Stokes type equations,

we perform the three dimensional experiments only on the Sun Microsystems Sun-

Fire X4600. Again we observe mesh independent convergence of the linear solver,

the number of nonlinear iterations even decreases with growing mesh size. Plots of

streamlines and pressure in Figure 7.4.
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Figure 7.4: Velocity and pressure field of the lid-driven cavity on the Navier-Stokes
type problem.

7.3 Applications in Hemodynamics

7.3.1 Motivation

In this section we discuss some potential applications of the research presented here to

real-life problems involving blood flow simulations. In particular, we are investigating

the applicability of Bingham fluids – or other types of visco-plastic fluids – to blood

flow through an aneurysm.

An aneurysm is a gradual expansion of a part of an artery, occurring over a prolonged

period of time. Two types of aneurysms exist [43]:

1. fusiform aneurysms are dilations of the cylindrical diameter of the vessel, and

2. saccular aneurysms are ball-like bulges on one side of the cylindrical vessel.

The affected part of the arterial wall stretches and becomes thinner and weaker. As a

consequence, untreated aneurysms are prone to rupture, leading to a possible severe

blood loss. In particular, a rupture of cerebral aneurysms – aneurysms occurring in

the brain – may be fatal. The formation of cerebral aneurysms is considered to be

caused by a complex interplay including biomechanical properties of the vessel wall

and the forces acting on the wall, originating from the flow of blood through the

vessel [25, 68, 89, 96]. Cerebral aneurysms tend to occur in regions with particular
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features, such as bifurcations and curves, supporting the hypothesis that blood flow

has a major involvement in their formation [72]. The purpose of the present research

involving simulations of the flow of blood through arteries is to develop a thorough

understanding of the nature of this involvement. These results could help anticipating

the probability of a rupture as well as developing possible treatments of non-ruptured

aneurysms [93]. It has been shown that the rupture of cerebral aneurysms is closely

correlated to certain geometrical properties of vessel, such as its curvature, radius

and its wall-shear stress [72].

Figure 7.5, left, shows a blood vessel with a cerebral aneurysm. The image in Figure

7.5 is obtained when injecting a contrast material into the vessel and tracing it after

it has distributed through the blood stream. Notice that only a part of the domain

is captured through this procedure, the material does not reach the center and the

area around the boundary of the saccular aneurysm. A possible explanation of this

phenomenon could be that the blood flow in this area exhibits visco-plastic effects,

that is, plug regions exist in parts of the vessel which are not reachable by the contrast

liquid. This observation motivated the idea of considering the Bingham model for

simulating the blood flow in this situation. Similarly, the Casson and Herschel-Bulkley

model from Chapter 1 could be considered. The applicability of these models for the

flow of blood through an aneurysm still needs to be fully understood.

7.3.2 A Simulation on an Idealized Geometry

Due to the complexity of geometries involving hemodymics and cardiovascular mod-

elling, numerical simulations are often performed on idealized geometries. For this

simulation we use a significantly simplified version of the domain in Figure 7.5. Here

we apply the unsteady Navier-Stokes type Bingham problem on a cylindrical domain

with a sphere attached to it. The set can be specified as D = {(x, y, z) ∈ R3|0 ≤ x ≤

10, y2 + z2 ≤ 1} ∪ {(x, y, z) ∈ R3|x2 + (y + 3
2
)2 + (z − 5)2 ≤ 1}, as a time interval
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Figure 7.5: Blood vessel with aneurysm. Left: the original domain. Right: domain
obtained when tracing the injected contrast material. Images by Frank Tong, Emory
School of Medicine, Emory University.

we choose I = [0, 1.5]. In the Bingham fluid flow equations, we choose µ = 1 and

τs = 1. A major challenge associated with using geometric multigrid preconditioning

described in Section 6.6 with more complex shaped geometries is to represent the

coarsest mesh accurately. We handle this by discretizing the domain with second

order isoparametric finite elements. Using elements of higher order has the effect

that the “curved” shape of the domain is captured well during the refinement process

of the geometric multigrid. Figure 7.6 shows the shape of the idealized geometry

on three levels of geometric multigrid. Note that the approximation of the domain

improves with each additional level of multigrid.

We use multigrid preconditioning on three levels in this experiment with four smooth-

ing steps and two inner FGMRES iterations. In the Bingham fluid equations we take

µ = 1 and τs = 1. On the inflow, we prescribe prescribe a parabolic Dirichlet bound-

ary condition by

u1 =

 −60t(y2 + z2), if 0 ≤ t ≤ 1
2
,

−30(y2 + z2), if 1
2
< t ≤ 3

2
.
, u2 ≡ u2 ≡ 0.



96

Figure 7.6: Idealized blood vessel with aneurism on three geometric multigrid lev-
els. Left: The coarsest level (280 elements), center: one level of refinement (2,240
elements), right: two levels of refinement (17,920 elements).

Fine level Intermediate level
# subd.: 72 # subd.: 12
size subd.: 100-140 size subd.: 74-98
size overl.: 2,791 size overl.: 342

General Information
# Picard its (per time st.): 5
CPU (s) (per t.s.): 53.41
setup (s): 0.80
updating: 72.36
# linear its: 6

Table 7.6: Numerical results and specifications of the preconditioner for the unsteady
Navier-Stokes experiment.

These inflow boundary conditions do not change with time in the last two thirds

of the time interval. This choice ensures that the solution reaches a steady-state

at the end of the time interval. On the walls, we prescribe a no-slip condition and

assume homogeneous Neumann boundary conditions on the outflow. The time is

discretized with a time step of ∆t = 0.1. Table 7.6 shows more details of how the

parameters for this preconditioner are chosen as well as the numerical results for this

experiment. Note that also in this “non-academic” test case with a more complex

geometry the solver converges within a small number of iterations. Figure 7.7 shows

the streamlines and pressure of this flow after a steady state has been reached. The

Reynolds number is chosen sufficiently high so that a recirculation occurs in the sphere

below the cylinder, as can be seen in the figure.

7.3.3 Simulations on a Real Aneurysms

We now test our solver on domains originating from real arteries. The images we

use in this subsection are obtained from the AneuriskWeb page at Emory University
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Figure 7.7: Streamlines of the unsteady Navier-Stokes type problem in a cylindrical
domain with an attached sphere.

(see [4]) and originate from DICOM [36]. The surface of the geometries are generated

via the vmtk software (see e.g. [75]). Based on the surface, we generate a mesh

using NETGEN [86], which is then used to perform our computations in MFEM. The

visualization of our solutions is done in ParaView [91].

We present two simulations in this subsection. In the first one, the domain is a part

of a vessel having an aneurysm. Again we consider the time interval I = [0, 1.5] and

take the Dirichlet inflow boundary condition

u1 =

 40t · η, for 0 ≤ t ≤ 1
2
,

20 · η for 1
2
< t ≤ 3

2
,
, u2 ≡ 0,

where η is the (inward) unit normal to the surface of the inflow. Again we choose

a time-dependent inflow boundary condition for the first third of the time interval

and a constant boundary condition for the rest of the interval, so that the solution

reaches a steady-state before t = 1.5. On the outflow, we assume homogeneous

Neumann conditions. This choice of boundary conditions is extremely simplified, with

no intention of mimicking a realistic situation where the inflow boundary condition

is determined by a heart beat. Instead, we wish to get some understanding of how
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Fine level Intermediate level
# subd.: 288 # subd.: 48
size subd.: 94-135 size subd.: 80-105
size overl.: 10,771 size overl.: 1396

General Information
# Picard its (per time st.): 5
CPU (s) (per t.s.): 284.80
setup (s): 4.91
updating: 230.96
# linear its: 7

Table 7.7: Numerical results and specifications of the preconditioner for the unsteady
Navier-Stokes experiment on a real blood vessel with aneurysm.

Bingham fluids behave in this domain and to test the performance of our solver in

complex geometries. We choose µ = 1 and τs = 1 in the Bingham equations for

simplicity. As in the previous test case we use three levels of geometric multigrid

and discretize the domain with second order isoparametric finite elements to capture

the details of the geometry during the mesh refinement. The time discretization is

∆t = 0.1 and we use five Picard iterations per time step. Table 7.7 displays details on

the choice of parameters for the solver as well as numerical results of this experiment.

Note that again the solver is convergent within a small number of iterations. Figure

7.8 shows a streamline plot of the solution after reaching a steady state, indicating a

recirculation of the fluid in the area of the aneurysm.

In the second experiment, the computational domain is the cerebral aneurysm

from Figure 7.5, left. This experiment is challenging due to the very complex shape

of the geometry. Once again we use second order isoparametric elements for the

discretization and two levels of geometric multigrid. Because of the complexity of the

geometry, the coarsest grid has a relatively high number of elements, as a consequence

the direct solve on the coarsest mesh is larger than in the previous experiments. The

time interval is I = [0, 1.5] discretized with ∆t = 0.1. The Dirichlet inflow boundary

condition is

u1 =

 240t · η, for 0 ≤ t ≤ 1
2
,

120 · η for 1
2
< t ≤ 3

2
,
, u2 ≡ 0,

with a unit normal η to the inflow surface. We prescribe a no-slip condition on the wall
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Figure 7.8: Streamlines of a Bingham fluid flow through a blood vessel with an
aneurysm.

and homogeneous Neumann boundary conditions on the four outflow boundaries. At

each time step we iterate with four Picard iterations. Table 7.8 shows more detailed

specifications of the preconditioner as well as numerical results for this experiment.

We obtain again convergence in a small number of iterations. Streamlines of the

solution once the steady state has been reached are shown in Figure 7.9. The figure

indicates a recirculation of the flow inside the aneurysm, the flow velocity is small

inside the bulge.
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Fine level
# subd.: 48
size subd.: 709-932
size overl.: 981

General Information
# Picard its (per time st.): 5
CPU (s) (per t.s.): 154.39
setup (s): 2.69
updating: 321.15
# linear its: 6

Table 7.8: Numerical results and specifications of the preconditioner for the unsteady
Navier-Stokes experiment on the geometry from Figure 7.5, left.

Figure 7.9: Streamlines of a Bingham fluid flow through the geometry from Figure
7.5, left.



Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this thesis we have introduced a new formulation for the regularized Bingham fluid

flow equations. This new formulation has the advantage of being numerically more

robust when the regularization parameter ε gets smaller. We proved well-posedness

results for the weak form of the problem and discussed algebraic properties of the dis-

cretized equations. In Chapter 5 we have performed several numerical experiments

using a finite element method. These experiments show that the number of nonlinear

iterations is significantly reduced for the new formulation compared to the classical

formulation in primitive variables. The mixed formulation does not become singular

in the plug region, so that – even though the theory in this thesis covers only the

regularized case – numerical experiments also demonstrate good convergence results

for the non-regularized case. For the non-regularized case the mixed formulation is

found to compare favorably with ALG based on the formulation by Lion and Glowin-

ski. The drawback of our approach is the augmentation of the problem. For this

reason, in Chapter 6 we have proposed an efficient way for solving the linear systems

that arise from the discretization and linearization of the non-regularized mixed for-
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mulation. These linear systems are solved with a flexible Krylov subspace method

preconditioned by a geometric multigrid algorithm. The preconditioner is computed

with the regularized problem and is then used for solving the non-regularized Bing-

ham system. This utilization of the regularization parameter ε is novel in the sense

that it serves as a preconditioning parameter as opposed to a parameter for regular-

ization purposes. Our numerical experiments presented in Chapter 7 indicate mesh

independent convergence of the linear solver in a small number of iterations. Timings

in Chapter 6 are obtained here on serial machines, but may be significantly improved

on a parallel architecture.

8.2 Future Work

The numerical methods presented in this thesis should be applied to large-scale prob-

lems on parallel architectures. We emphasize here in particular the application to

problems in computational hemodynamics. The applicability of the Bingham model

– or similar models for visco-plastic materials from Chapter 1 – should be investigated.

For the efficient solution of the linearized system, many possible research direction

exist. The geometric multilevel preconditioner from Chapter 6 has both strengths

and limitations. In contrast to its algebraic counterpart, the fine grids in geometric

multigrid are the result of a refinement of a coarse mesh. This makes the geometric

variant intuitive and projection and interpolation operators between multigrid lev-

els arise naturally from the underlying problem. In the case of algebraic multigrid,

the coarse levels are determined using the sparsity pattern of the linear system ma-

trix [20]. Many different ways to do this exist and the problem of finding a “good”

coarse level representation of the linear system is often a non-trivial task. However,

geometric multigrid has some limitations. Geometric multigrid methods can only be

applied to specific meshes satisfying specific requirements. In particular, the fine level
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mesh needs to be the result of a refinement of a coarse mesh. This becomes partic-

ularly challenging if the computational domain is very complex, since the coarsest

mesh may fail to capture the fine details of the domain. For this reason, considering

algebraic multigrid methods for solving the linearized and discretized Bingham equa-

tions may be worthwhile. We want to point out two other preconditioning techniques

that should be investigated in the future:

1. The incomplete LU (ILU) factorization method attempts to factorize the matrix

A into A = LU while dropping entries in L and U that are below a certain user

specified dropping tolerance [35]. The ILU factorization is not problem specific

and can be applied to very general linear systems with non-singular system

matrices. A possible approach for Bingham fluids would be to compute an

ILU factorization of A corresponding to the initial guess u0 for the nonlinear

iterations and reuse the factorization in the proceeding nonlinear iterations until

the performance of the linear solver has deteriorated by a specified amount. The

obtained factorization is then discarded and recomputed for the current system.

Presumably, the factorization will need to be discarded more frequently for the

first few nonlinear iterations than for higher iterations.

2. Inexact factorization techniques presented in Section 6.5 have been very efficient

for solving the Navier-Stokes equations, the applicability to Non-Newtonian

fluids should be investigated.

Concerning the nonlinear solver, the idea of adding an auxiliary variable to the system

could be applied to the fluid flow equations of other types of visco-plastic materials,

such as Casson or Herschel-Bulkley fluids. The effectiveness of this procedure should

be investigated.





Appendix A

Background

This chapter provides an overview of some basic concepts of numerical and functional

analysis that have been of significance in this thesis.

A.1 Solving Linear Systems of Equations

Consider the linear system

Ax = b, (A.1)

with A ∈ Rn×n and vectors x,b ∈ Rn. We assume here that A is nonsingular. Various

methods for solving a linear system of the form (6.1) exist.

A.1.1 Direct Methods

Direct methods, such as Gaussian elimination with partial pivoting, provide a ro-

bust and reliable way for solving linear equations and can be applied to very general

systems. Their time and memory requirement is predictable [38]. A major draw-

back of direct methods, however, is their scalability for large systems [11]. In many

linear systems arising from real-life applications, including the discretization of par-

tial differential equations, the dimension n is very large and A is very sparse. The
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sparsity of the matrix is crucial for practical reasons, since in numerical codes only

the non-zero entries need to be stored. This optimizes the use of memory resources

substantially. Direct methods however have the tendency to “destroy” the sparsity of

A, since many zero entries become non-zero during the solving process. This process

is called fill-in [5]. As a result, this increases the memory requirements significantly

and makes the procedure unaffordable for large systems. Also, Gaussian elimination

scales with O(n3) [8] which is not convenient if n is very large. When solving large

and sparse linear systems, iterative schemes are usually the method of choice.

A.1.2 Stationary Iterative Methods

Stationary iterative methods are iterative schemes of the form

x(k+1) = Tx(k) + c, k = 0, 1, 2, ... (A.2)

where T is the fixed iteration matrix, c is a fixed vector and x(0) is an initial guess.

Popular examples of stationary iterative methods are the Jacobi method or Gauss-

Seidel, which are based on a splitting A = B − C, with B nonsingular, of the matrix

A. The iterative scheme to solve (6.1) is then given by

x(k) = (I − B−1A)x(k−1) + B−1b,

which is of the form (A.2). The method converges if the spectral radius of the iteration

matrix T is less than one: ρ(T ) < 1 [59]. Stationary iterative methods are seldom

used as a main solver for large linear systems since their convergence is often very

slow [8].
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A.1.3 Krylov Subspace Methods

We start explaining the concept of Krylov methods by introducing the general pro-

jection method, following [82].

The idea of projection methods is to find an approximate solution of (6.1) in an m di-

mensional subspace K of Rn, with m < n. Typically, this approximation is obtained

by imposing m independent orthogonality conditions. More precisely, the residual

vector f− Ax is constrained to be orthogonal to m linear independent vectors. This

gives rise to another m dimensional subspace M of Rn, the subspace of contraints.

The projection method in its basic form can be expressed as

Algorithm A.1 Projection Method

while (convergence == false) do

select a pair of subspaces K and M;

choose bases V = [v1, v2, ..., vm], W = [w1, w2, ..., wm] for M;

r = f−Ax;

y = (W TAV )−1W T r;

x = x + V y;

check convergence;

end while

Krylov subspace methods are a particular kind of projection method where the

subspace K is given by the Krylov subspace

Km(A, r0) = span{r0,Ar0,A2r0, ...,Am−1r0},

where r0 = f−Ax0. The different types of Krylov methods arise from different choices

of the subspaceM. Note that the approximation of the solution of (6.1) by a Krylov

method has the form

A−1f ≈ xm = x0 + qm−1(A)r0,
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and in the particular case of x0 = 0 we have that

A−1f ≈ qm−1(A)f. (A.3)

This means that A−1f is approximated by qm−1(A)f. Numerous Krylov subspace

methods exist, however we want to mention here three well-known schemes that have

become quite popular [62]:

1. The Conjugate Gradient Method [55] (CG) is used when the matrix A is sym-

metric positive definite. Here K =M = Km(A, r0).

2. The Minimum Residual Method (MINRES) [69] is used when A is symmetric.

We take K = Km(A, r0) and M = AKm(A, r0),

3. the Generalized Minimum Residual Method (GMRES) [83] is used for general

linear systems, in particular when A 6= AT . In this case, K = Km(A, r0) and

M = AKm(A, r0).

A.2 Preconditioning

When using Krylov subspace methods on large and sparse linear systems, using pre-

conditioning is inevitable. When solving partial differential equations, the finer the

mesh (i.e. the larger the resulting linear system), the more Krylov iterations are

usually needed for achieving a given tolerance. The idea behind preconditioning is to

solve instead of (6.1) the equivalent system

P−1Ax = P−1b. (A.4)

The matrix P is nonsingular and should be chosen so that P−1A has in some sense

“better” algebraic properties than A so that the linear solver for system (A.4) con-
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verges in a small number of Krylov iterations. In the optimal case, the number of

iterations remains constant with growing system size. In the case where A is nor-

mal, the convergence behavior of CG, MINRES and GMRES is determined entirely by

the spectrum of A and fast convergence can be achieved by choosing P so that the

eigenvalues of P−1A cluster around one. In the case when A is non-normal, clustering

of the eigenvalues alone may not be sufficient for improving convergence of GMRES. A

rigorous understanding of this case is still largely open [62]. When choosing P = A,

any Krylov subspace method applied to (A.4) will converge in exactly one iteration.

However, applying P is obviously as difficult as solving (6.1). Choosing P = I makes

the application of P trivial, however the preconditioned method will converge in ex-

actly the same number of iterations as when solving the unpreconditioned method

(6.1). The challenge in preconditioning is to find the right trade-off between these

two extreme cases. A good preconditioner should [11]

• be relatively easy to apply,

• be relatively easy to construct and

• significantly reduce the number of iterations of a Krylov method needed for

solving the linear system with a given tolerance.

A large variety of preconditioners exist. Some preconditioners, such as those based

on an incomplete factorization of A, are very general and can be applied to almost

all linear systems [11]. Most preconditioners, however, are designed for specific linear

systems arising from a specific type of problem and require a solid understanding of

the spectrum of A and the physical problem represented by the linear system. An

overview over common techniques for preconditioning can be found in [11].
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A.3 Nonlinear Preconditioning

As mentioned in the previous subsection, multigrid methods are a powerful tool for

preconditioning an iterative solver. The smoother in Algorithm 6.2 is often a station-

ary iterative method, since their behavior is independent of the choice of the initial

guess x0 (the iteration matrix T in (A.2) constant and does not depend on the initial

guess). This makes the preconditioner P in (A.4) a linear operator. However, in

some cases Krylov subspace methods are used as smoothers, such as our multilevel

preconditioner from Chapter 6. Following (A.3), a Krylov method approximates the

inverse of A using a polynomial q of degree m− 1. However, q depends on the choice

of the initial guess x0, resulting in a different approximation of A−1 for different ini-

tial guesses x0. This means that a preconditioner based on a fixed number of Krylov

iterations results in a nonlinear mapping and the preconditioner changes along the

iterations of the outer Krylov subspace method. The nonlinearity of Krylov subspace

methods is addressed in more detail in [100]. To handle this changing preconditioner,

the outer Krylov method needs to be modified to ensure convergence. We mention

here one method which is suitable for nonlinear preconditioning, the flexible GMRES

method [81] (FGMRES). Since this method was used in Chapter 6, we report here the

algorithm for flexible GMRES [82]:

Algorithm A.2 FGMRES

1: compute r0 = b−Ax0, β = ‖r0‖2, and v1 = r0/β;
2: for j = 1, 2, ...,m do
3: compute zj = P−1

j vj;
4: compute w = Azj;
5: for i = 1, 2, ..., j do
6: hi,j = (w,vi);
7: end for
8: compute hj+1, j = ‖w‖2 and vj+1 = w/hj+1,j;
9: define Zm = [z1, ..., zm], Hm = {hi,j}1≤i≤j+1;1≤j≤m;

10: end for
11: compute ym = argminy‖βe1 −Hmy‖2 and xm = x0 + Zmym;
12: if satisfied stop, else set x0 ← xm and go to 1.
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A.4 Sobolev and Lebesgue Spaces

In Chapter 1 we introduced our notation for Sobolev and Lebesgue spaces. In this

section we give some details on these functional spaces. Let throughout this section

1 ≤ p ≤ ∞.

Definition A.1 We denote by Lp(Ω) the set of all functions f : Ω→ R, with Ω being

an open set, such that (∫
Ω

|f |p
) 1

p

<∞.

We define the corresponding norm on Lp(Ω) by

‖f‖p =

(∫
Ω

|f |p
) 1

p

.

With L∞(Ω) we denote the set of functions f : Ω→ R satisfying

‖f‖∞ = ess sup
x∈Ω
|f(x)| <∞.

Lp spaces are often called Lebesgue spaces. The functions in Lebesgue spaces are,

to be precise, representatives of equivalence classes where the equivalence relation is

“equality almost everywhere”, that is, they differ only on a set of measure zero [44].

An important inequality associated with these spaces is the Hölder inequality: For

f ∈ Lp(Ω) and g ∈ Lq(Ω) we have that

∣∣∣∣∫
Ω

fgdΩ

∣∣∣∣ ≤ ‖f‖p‖g‖q. (A.5)

For the special case p = q = 1
2
, this becomes the Cauchy, or Cauchy-Schwarz inequal-

ity ∣∣∣∣∫
Ω

fgdΩ

∣∣∣∣ ≤ ‖f‖2‖g‖2 (A.6)

for f, g ∈ L2(Ω).
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Definition A.2 We denote by Hk(Ω) the set of all functions f : Ω → R in L2(Ω)

such that

∂αf ∈ L2(Ω) for all α with |α| ≤ k.

We define the corresponding norm on Hk(Ω) by

‖f‖k =

∑
|α|≤k

|∂α|2f

 1
2

.

We refer to the Hk spaces as Sobolev spaces.

Here α is a multi-index and derivatives are to be understood in a weak sense. We

may define a scalar product on Hk(Ω) by

(u, v) =
∑
|α|≤k

∫
Ω

DαuDαvdΩ,

making the Hk(Ω) spaces Hilbert spaces.
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