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Abstract. In this paper, we give an exposition of Kannan Soundararajan’s
Princeton Ph.D. thesis. His main theorem gives lower bounds on the number of
torsion elements of the ideal class group CL(K) for imaginary quadratic fields
K = Q(

√
−d). The proof relies on counting the number of square free d satisfying

certain Diophantine conditions. These conditions are shown to be sufficient for the
existence of elements of order g. Proofs of certain classical results from algebraic
number theory, such as the finiteness of CL(K), are also included.
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1. Introduction and statement of results

The subject of algebraic number theory has two central goals: one is to develop an

algebraic theory of numbers; that is, to understand their structure via equations and

geometric intuition, and the other is to study the properties of algebraic numbers,

objects arising from extensions of “ordinary” numbers to more general systems.

Both interpretations will be discussed in this paper.

Let L : K be a field extension. We say an element α ∈ L is algebraic over K if

α is the root of some polynomial in K[x]. Furthermore, L is an algebraic extension

if every α ∈ L is algebraic. L is said to be a number field if it is a field containing

Q and is a finite dimensional Q vector space. Although many ideas from this area

of study were first motivated by attempts to determine the extent to which the

fundamental theorem of arithmetic prevailed in number fields - a question that was

important to 19th century mathematicians’ quest to resolve Fermat’s Last Theorem

- their relevance to our understanding of the integers remains crucial today. The

primary goal of this paper is to give an exposition of open problems and recent

results related to the class number of K. We begin with a definition:

Definition 1.1. Let K be a number field and OK be its ring of integers. Let H

denote the set of all fractional ideals of K. Define the ideal class group of K,

denoted CL(K), to be H/ ∼ where A ∼ B if there exist α, β ∈ OK such that

(α)A = (β)B.

It is a well known fact that CL(K) is a finite abelian group; see Section 2 for

a proof of finiteness. The order of this group is called the class number, denoted

h(K). For example, h(Q(i)) = h(Q(
√
−3)) = 1 and h(Q(

√
−5)) = 2, so CL(Q(i)) =

CL(Q(
√
−3)) = {0} and CL(Q(

√
−5)) = Z/2Z. See Examples 2.16 and 2.17 for
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details. For the remainder of this exposition, d 6= 0 is square free and K = Q(
√
d)

will denote a quadratic number field. K is called imaginary if d < 0 and real if

d > 0. A famous problem of Gauss is to provide for every h ≥ 1 a list of quadratic

fields with class number h(K) = h. In 1952, K. Heegner [10] gave a proof, with

some minor gaps, of a conjecture due to Gauss: the complete list of d < 0 for which

h(K) = 1 is given by

d = −1,−2,−3,−7,−11,−19,−43,−67,−163.

H. Stark [6] was able to give a correct proof of this fact in 1967; during the

same year, A. Baker [1] gave a completely different proof implying the same result.

Since then, there has been extensive work in enumerating number fields by class

number, for example see [2], [3] and [4]. For low class numbers - i.e. h(K) ≤ 100,

this problem has been solved for the case of imaginary quadratic fields, see [14].

However, Gauss conjectured that there are infinitely many real quadratic fields with

class number one; this remains an open problem today.

Fundamentally, Gauss’ class number problem is a question about the algebraic

properties of number fields for certain values of h(K). There are, however, other

interesting questions that can be asked about the arithmetic properties of h(K)

itself. H. Cohen and H. W. Lenstra give an important conjecture in this direction.

Conjecture 1.2 (Cohen-Lenstra). Let p be an odd prime,

(1) if K is an imaginary quadratic field, then the probability that p|h(K) is

1−
∞∏
i=1

(
1− 1

pi

)
.
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(2) if K is a real quadratic field, then the probability that p|h(K) is

1−

∏∞
i=1

(
1− 1

pi

)
1− 1/p

.

A table giving some numerics associated with these conjectures is displayed.

These values were computed using SAGE. In the notation below,

h−p (X) = #{d : p|h(K), d ≤ X is square free, K = Q(
√
−d)},

h+
p (X) = #{d : p|h(K), d ≤ X is square free, K = Q(

√
d)},

D = #{d : d ≤ X is square free}.

X
h−
3 (X)
D

h−
5 (X)
D

h−
7 (X)
D

h+
3 (X)
D

h+
5 (X)
D

h+
7 (X)
D

500 .261 .179 .071 .049 .009 .000

1,000 .300 .189 .093 .057 .009 .001

10,000 .353 .207 .141 .091 .026 .009

50,000 .378 .222 .150 .108 .034 .014

C-L prediction .439 .239 .163 .159 .049 .023

Following the notation in [11], let Ng(X) be the number of square free d ≤ X such

that CL(K) contains an element of order g. Here K = Q(
√
−d) is an imaginary

field. Due to Gauss’ genus theory, if d has at least two odd prime factors, then

CL(K) contains Z/2Z as a subgroup. Since d is square free, if d has at least three

prime factors, then CL(K) contains an element of order two, and there are no

elements of order two when d is prime. Since “most” numbers have more than

three prime factors, we expect almost all square free d to give rise to elements of
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order two in CL(K). The proportion of square free integers is given by

∏
p prime

(
1− 1

p2

)
=

1

ζ(2)
=

6

π2
,

where ζ(s) is the Riemann zeta function. This implies N2(X) ∼ 6X
π2 . However,

virtually nothing is known about Conjecture 1.2 beyond this. Namely, the behavior

of Ng(X) for g ≥ 3 is not well understood. H. Davenport and H. Heilbronn [5]

showed that the proportion of d for which 3 - h(K) is at least 1/2. More precisely,

for any ε > 0 and sufficiently large X > 0,

#{0 < d < X : h(K) 6≡ 0 mod 3}
#{0 < d < X}

≥ 1

2
− ε.

An estimate for the case of primes p > 3 is given by the work of W. Kohnen and

K. Ono [18], which says that for ε > 0 and sufficiently large X,

#{0 < d < X : h(K) 6≡ 0 mod p} ≥
(

2(p− 2)√
3(p− 1)

− ε
) √

X

log(X)
.

This result uses the theory of modular forms mod p, and is obtained by bounding

the largest d that is a multiple of some prime q 6≡
(−4
q

)
mod p for which p - h(K).

The main result to be explained in this paper is a theorem from K. Soundarara-

jan’s Ph.D. thesis at Princeton, which was published in the Journal of the London

Mathematical Society in 2000 [11].

Theorem 1.3 (Soundararajan). For large X we have

Ng(X)�


X1/2+2/g−ε if g ≡ 0 mod 4,

X1/2+3/(g+2)−ε if g ≡ 2 mod 4.

It should be noted that Theorem 1.3 includes cases when g is odd since Ng(X) ≥

N2g(X). The proof of Theorem 1.3 depends on certain Diophantine conditions on
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d that give rise to elements of order g in CL(K). Tools for counting the frequency

with which such d occur are explained in this paper.

In Section 2, we present preliminary facts and definitions from algebraic num-

ber theory that are necessary to understand Theorem 1.3. Section 3 contains the

Diophantine conditions mentioned above, as well as bounds on the number of ad-

missible d satisfying these conditions. Together with some technical details, these

estimates are enough to prove Theorem 1.3.

2. Preliminaries

In order to talk about the divisibility properties of h(K), we state and prove the

following theorem:

Theorem 2.1. If K is a number field, then h(K) is finite.

We recall some necessary definitions and facts. An element α of a commutative

ring R, with 1 ∈ R, is said to be integral over a subring A ⊆ R if α satisfies a monic

polynomial over A. In our case, we are interested in the α ∈ C that are integral

over Z, i.e. the algebraic integers. Let A denote the set of all such α. From

the definition, one can show that α ∈ A is equivalent to saying Z[α] is finitely

generated. Thus A is a ring since for any α, β ∈ A , all powers of α+β and αβ can

be expressed as integer linear combinations of αiβj , which lie in Z[α]Z[β]. Now for

any number filed K, we can define the integers of K to be OK := K ∩ A . Since

K is a field, it is clear that OK is a ring.

Definitions 2.2. Let K be a number field of degree n over Q, and OK its ring of

integers.

(1) Define the norm of an ideal a to be N(a) := |OK/a|.
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(2) If σi : K → C are the n embeddings of K, define the norm of an element

α ∈ K to be N(α) :=
∏n
i=1 σi(α).

(3) If {θ1, . . . , θn} is a Z-basis for a then define ∆[θ1, . . . , θn] := det(A)2, where

A = (σi(θj)).

(4) The discriminant ofK is defined as dK := ∆[α1, . . . , αn], where {α1, . . . , αn}

is a Z-basis for OK .

Facts 2.3. Let OK and {θ1, . . . , θn} be as above, and a be a non-zero ideal of OK .

Then,

(1) a contains a non-zero rational integer. That is, a ∩ Z 6= {0}.

(2) The norm of a is finite.

(3) a contains exactly one rational prime p.

(4) Let a = (α) be a principal ideal, then N(a) = N(α).

(5) If p is a prime ideal, then N(p) is a power of a rational prime.

(6) ∆[θ1, . . . , θn] = N(a)2dK .

(7) The norm of ideals is multiplicative. That is, if a, b are two ideals, then

N(ab) = N(a)N(b).

(8) a factors uniquely into prime ideals.

For proofs of these facts, see [13] and [7].

Lemma 2.4. For any fixed m ∈ Z>0, there are finitely many ideals a of OK such

that N(a) ≤ m.

Proof. By Facts 2.3 (5), (7) and (8) it is sufficient to prove that there are at most

finitely many prime ideals p with N(p) ≤ m. By Fact 2.3 (3), we know any prime

ideal p contains a rational prime p, and so (p) = pepe11 · · · p
ek
k . Then, by taking
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norms we have

N((p)) = pn = N(p)e
k∏
i=1

N(pi)
ei ⇒ N(p) = pt, t ≥ 1.

This fact implies there are at most finitely many choices for p, since k ≤ n− 1. �

Thus in order to prove Theorem 2.1, we need only show that each ideal class

contains an integral ideal of bounded norm. Then by Lemma 2.4 we are done. To

do this, we will require a geometric result due to Minkowski.

Definitions 2.5. Consider the set Ω ⊆ Rn,

(1) Ω is convex if ∀x, y ∈ Ω we have tx+ (1− t)y ∈ Ω, 0 ≤ t ≤ 1.

(2) Ω is centrally symmetric if x ∈ Ω⇒ −x ∈ Ω.

(3) A convex body is a non-empty, bounded, centrally symmetric convex set.

As a problem of independent interest, we wish to count the number of non-trivial

integral points in a convex body Ω. Methods for doing so will be useful for the proof

of Theorem 2.1.

Fact 2.6. Let Ω ⊆ Rn be bounded and Jordan measurable. For c ∈ Z>0, define

L(c) := #{P ∈ Ω : cP ∈ Zn}.

Then,

lim
c→∞

L(c)

cn
= Vol(Ω).

A proof of this fact can be found in [15]. The basic idea is that we can count

the number of 1
c -lattice points of Ω in the n-cube In := [−1, 1]n, with scaling

if necessary, by dividing In into (2c)n subcubes and counting the subcubes that
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contain such points. Doing so as c→∞ will produce a sequence of Riemann sums

for χΩ, which converges to Vol(Ω) since Ω is Jordan measurable.

Lemma 2.7. Let Ω ⊆ Rn be a convex body with Vol(Ω) :=
∫

Ω
χ(x)dx > 2n. Then

Ω ∩ Zn 6= {0}.

Proof. Notice that by scaling, 1
2Ω is also a convex body, with volume Vol

(
1
2Ω
)

=

1
2n Vol(Ω) > 1. Furthermore, Ω contains a non-trivial integral point if and only if

there is a 0 6= P ∈ 1
2Ω such that 2P ∈ Zn. Thus it suffices to show that there are

distinct S′, T ′ ∈ Ω such that S′ − T ′ ∈ Zn, and let P := 1
2S
′ − 1

2T
′ ∈ 1

2Ω.

Adopting the same notation as Fact 2.6, we have limc→∞
L(c)
cn = Vol(Ω) > 1.

This means that for sufficiently large c we have L(c) > cn = # (Z/cZ)
n
. So by the

pigeonhole principle there are S = (s1, . . . , sn), T = (t1, . . . , tn) ∈ Zn, S 6= T , such

that si ≡ ti mod c for all 1 ≤ i ≤ n and S′ := 1
cS, T

′ := 1
cT ∈ Ω. It then follows

that 0 6= S′ − T ′ ∈ Zn and by convexity 1
2S
′ − 1

2T
′ = 1

2 (S′ − T ′) ∈ 1
2Ω. �

Remark 2.8. The proof of Lemma 2.7 was taken from notes on the Four Squares

Theorem by Pete L. Clark [16]. The main idea is similar to that of Fact 2.6: we

can scale Ω and count the 1
c -lattice points.

The idea now is to show that every ideal a can be realized as a convex body in

Rn containing a non-trivial integral point. Recall for a degree n number field K,

there are n embeddings σi : K → C. Some of these embeddings will be real, i.e.

σi(K) ⊆ R, while others will be complex, σi(K) ⊆ C. If r1, r2 denote the number

of real and complex embeddings, respectively, then r1 + 2r2 = n, since complex

embeddings come in conjugate pairs. We will index the σi to be such that the real
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embeddings are written first. Define

σ : K → Rr1 × Cr2 , α 7→ (σi(α)), 1 ≤ i ≤ n.

For computational purposes, we will make the identification Rr1 ×Cr2 ∼= Rn. That

is, if

σs(α) = xs 1 ≤ s ≤ r1,

σr1+j(α) = yj + izj 1 ≤ j ≤ r2,

we write

σ(α) = (x1, . . . , xr1 , y1, z1, . . . , yr2 , zr2).

It is clear that σ maps Q-linearly independent elements of K to R-linear inde-

pendent elements of Rn. Thus, the image of an ideal a with Z-basis {θ1, . . . , θn}

under σ is a lattice with generators {σ(θ1), . . . , σ(θn)}.

Proposition 2.9. The volume of a fundamental domain for σ(a) is 2−r2N(a)
√
|dK |.

Proof. Let {θ1, . . . , θn} be a Z-basis for a. Then the volume of a fundamental

domain for σ(a) is given by the absolute value of the determinant of the matrix V

whose rows are σ(θi), 1 ≤ i ≤ n. It is clear that |det(V )| = 2−r2∆[θ1, . . . , θn]1/2.

Using the relation from Fact 2.3 (6) we have

Vol(σ(a)) = |det(V )| = 2−r2N(a)
√
|dK |.

�

Lemma 2.10 (Minkowski). Let Ω be a convex body, and λ1, . . . , λn ∈ Rn be R-

linearly independent vectors. If Vol(Ω) > 2n|det(A)|, then there exist 0 6= P =
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(x1, . . . , xn) ∈ Zn such that
∑n
i=1 xiλi ∈ Ω. Here, A denotes the matrix with λi as

its row vectors.

Proof. Let Ω′ = {(x1, . . . , xn) ∈ Rn :
∑n
i=1 xiλi ∈ Ω}. It is clear that Ω′ = A−1Ω

so Ω′ is a convex body. Thus by Lemma 2.7, if Vol(Ω′) > 2n then we have the

desired point. By linear algebra,

Vol(Ω′) > 2n ⇐⇒ Vol(Ω)|det(A)|−1 > 2n ⇐⇒ Vol(Ω) > 2n|det(A)|.

�

Lemma 2.11 (Minkowski’s bound). Let K be a number field of degree n over Q with

discriminant dK , and let r1, r2 denote the number of real and complex embeddings

σi : K → C, respectively. Then every ideal class in CL(K) contains an integral

ideal a that is equivalent to another integral ideal b such that

N(b) ≤ n!

nn

(
4

π

)r2
|dK |1/2.

Proof. First we show the existence of a. Let A = m
n be a fractional ideal of OK .

By Fact 2.3 (1), we know there is some 0 6= t ∈ n ∩ Z. Then, (t) = nl, for some

integral ideal l. And so, (t)A = nl
(
m
n

)
= lm = a, say. Thus A ∼ a.

To complete the proof, we will need Lemma 2.10. Let

Ωt :=

(x1, . . . , xn) ∈ Rn :

r1∑
i=1

|xi|+
r1+2r2−1∑
j=r1+1

2
√
x2
j + x2

j+1 < t

 .

It can be easily verified that Ωt is a convex body and a straightforward calculation

shows that Vol(Ωt) = 2r1−r2πr2 tn

n! (see Exercises 6.5.9 and 6.5.10 in [13]). Let V

be the matrix constructed in the proof of Proposition 2.9. If t is chosen so that

Vol(Ωt) > 2n|det(V )|, then by Lemma 2.10 we know Ωt contains
∑n
i=1 xiσ(θi),
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where the xi ∈ Z are not all zero. Writing 0 6= α =
∑n
i=1 xiθi ∈ a, we have by the

arithmetic mean-geometric mean inequality,

(2.12) |N(α)|1/n =

(
n∏
i=1

|σi(α)|

)1/n

≤
∑n
i=1 |σi(α)|

n
<
t

n
⇒ |N(α)| < tn

nn
.

By Proposition 2.9 and the above remarks we have,

tn

n!
>

2n|det(V )|
2r1−r2πr2

=

(
4

π

)r2
N(a)

√
|dK |.

Combining this with Equation (2.12) we have shown

|N(α)| < n!

nn

(
4

π

)r2
N(a)

√
|dK |.

Since α ∈ a, (α) = ab for some integral ideal b, and so by Facts 2.3 (4) and (7) we

are done. �

With Lemmas 2.4 and 2.11, Theorem 2.1 is proved.

Remark 2.13. Lemma 2.11 is very useful in computing h(K) because, as we will

see below, it means that CL(K) is generated by the prime ideals in OK with norm

less than Minkowski’s bound MK . Furthermore, if MK < 2, then CL(K) is trivial

and h(K) = 1. For real quadratic fields, r1 = 2 and r2 = 0 so if |dK | < 16 then

h(K) = 1. Similarly, for imaginary quadratic fields, if |dK | < π2 then h(K) = 1.

To utilize Minkowski’s bound, we need to compute dK , which requires an integral

basis. In practice, it is often not easy to compute an integral basis for an arbitrary

number field K. However, in the quadratic case there is a nice description:
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Fact 2.14. Let K = Q(
√
d), where d 6= 0 is square free. An integral basis {1, θ}

for K can be classified as follows,

θ =


√
d d 6≡ 1 mod 4,

1
2 (1 +

√
d) d ≡ 1 mod 4.

A general method for computing an integral basis of higher degree extensions can

be found in [8].

For a given prime p ∈ Z, it is often useful to be able to determine if, and how,

(p) factors in OK . The next theorem gives a method for doing so under special

conditions.

Theorem 2.15. Let p ∈ Z be prime and OK = Z[θ] for some θ ∈ OK . If f(x) is

the minimal polynomial of θ, and

f(x) ≡
k∏
i=1

fi(x)ei mod p,

with fi irreducible in Fp[x], then (p) factors as

(p) =

k∏
i=1

peii ,

where pi = (p, fi(θ)) are prime ideals and N(pi) = pdeg fi .

A proof of Theorem 2.15 can be found in [13].

Let a be an integral representative of an ideal class such that N(a) ≤ MK . By

unique factorization, a can be written uniquely as a = pe11 · · · p
ek
k , with each pi a

prime ideal. So by Lemma 2.11 we have

k∏
i=1

N(pi)
ei = N(a) ≤MK ,
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and so N(pi) ≤ MK for all 1 ≤ i ≤ k. By Fact 2.3 (5) N(pi) is a power of some

prime p, which means p ≤ MK . Thus, to compute CL(K) we need only find the

prime ideals of OK lying above primes p ≤MK .

Example 2.16. We compute the class number of K = Q(
√
−5). By Fact 2.14,

{1,
√
−5} is an integral basis for K and so dK = −20, MK = 2

π

√
20 < 2.85. The

only prime below MK is 2, so by the above comments we need to determine if (2)

is prime in OK . Since OK = Z[
√
−5], we can use Theorem 2.15 to determine that

(2) = (2, 1 +
√
−5)(2, 1 −

√
−5). By taking norms, we see that neither of these

prime factors are principal. Thus, any representative a of an ideal class in CL(K)

is either equivalent to a principal ideal or to (2, 1 +
√
−5), and so h(K) = 2.

Example 2.17. Consider K = Q(
√
d). For d = −1,−2,−3,−7, we have MK < 2

and so h(K) = 1.

(1) d = −11: MK < 2.12 and following the notation of Theorem 2.15,

f(x) = x2 − x+ 3 ≡ x2 − x+ 1 mod 2,

which is irreducible in F2[x] so (2) remains prime in OK = Z[ 1+
√
−11

2 ].

Thus, h(K) = 1.

(2) d = −19: This case is identical to d = −11 since MK < 2.78 and the

minimal polynomial of θ = 1+
√
−19

2 is f(x) = x2−x+5, which is irreducible

in F2[x].

(3) d = −43: MK < 4.18 so we must check primes p = 2, 3. The minimal

polynomial is f(x) = x2 − x+ 11 which is irreducible in F2[x] and F3[x] by

checking the possible roots, so once again h(K) = 1.
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(4) d = −63: MK < 5.21 and the list of primes to check are p = 2, 3, 5. We

have f(x) = x2 − x+ 17, which is irreducible in F2[x], F3[x] and F5[x].

(5) d = −163: MK < 8.13. The minimal polynomial f(x) = x2 − x + 41 is

irreducible in F2[x], F3[x], F5[x] and F7[x].

We have thus checked that the list of d < 0 for which Q(
√
d) has class number

one given in the introduction is indeed accurate. However, the problem of showing

these are the only admissible d < 0 is much more difficult.

2.1. Elementary Diophantine conditions.

Example 2.18. Let g > 1 be an integer. If n > 1 is odd and ng − 1 = d is square

free, then CL(K) contains an element of order g.

Proof. Since d ≡ 2 mod 4, by Fact 2.14 we know OK = Z[
√
d]. So we have the

ideal factorization

(ng) = (n)g = (1 +
√
−d)(1−

√
−d).

If (1+
√
−d) and (1−

√
−d) are not co-prime then 2 ∈ (ng) which is a contradiction

since n is odd. Therefore

(1 +
√
−d) = ag

(1−
√
−d) = bg,

for some ideals a, b. Hence a has order dividing g in CL(K). Now suppose am =

(u + v
√
−d). If v = 0 then am = (u), which implies bm = (u) by the relation

ab = (n). But this means gcd(am, bm) 6= 1, a contradiction. Now if we take norms,

we get

nm = u2 + dv2 ≥ d = ng − 1.
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Since ng−1 ≥ ng − 1 ⇐⇒ 1 ≥ ng−1(n− 1) > 2 we see that m cannot be less than

g. Thus a must have order g in CL(K). �

Example 2.19. Let g > 1 be odd. If d = 3g − x2 is square free with x odd and

satisfying x2 < 3g/2, then CL(K) has an element of order g.

Proof. It is clear that d ≡ 2 mod 4, so OK = Z[
√
−d]. The ideals (x+

√
−d) and

(x−
√
−d) are co-prime, so 3 splits in OK , meaning we have

(3) = p1p2.

And so, (x+
√
−d) = pg1. If pm1 = (u+ v

√
−d), for some m|g, then 3m = u2 + dv2.

If v 6= 0, then 3m ≥ d > 3g/2, which is a contradiction for all m ≤ g − 1. But if

v = 0, then 3m = u2, which is another contradiction since m is odd. So it must be

that m = g. �

Example 2.20. Let g be odd and N denote the number of square free integers of

the form 3g − x2, where 0 < x2 < 3g/2 and x is odd. For g sufficiently large, we

have N � 3g/2, and thus there are infinitely many imaginary quadratic fields K

for which g|h(K).

Proof. For a fixed g, the number of integers of the form 3g−x2, where 0 < x2 < 3g/2

and x is odd is 1
2
√

2
3g/2 +O(1). We now remove any numbers that are divisible by

the square of a prime. Since g is odd, we know 4 - 3g − x2 as otherwise x2 ≡ −1

mod 4 has a solution. If x is a multiple of three, then 9|3g − x2, so we remove

1
6
√

2
3g/2 + O(1) of such numbers. If p > 3 is prime, then the number of 3g − x2
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divisible by p2 is at most 1
p2
√

2
3g/2 +O(1), so we have

N ≥ 3g/2√
2

1

2
− 1

6
−
∑
p2<3g

p≥5

1

p2

+O

(
3g/2

g

)
.

The error term is an upper bound for π(3g/2), where π(x) is the usual prime

counting function (see problem 1.1.26 in [13]). Since

∑
p≥5

1

p2
≤

∞∑
n=5

1

n(n− 1)
=

(
1

4
− 1

5

)
+

(
1

5
− 1

6

)
+ · · ·

=
1

4
,

we obtain N � 3g/2. By Example 2.19, each integer counted in N gives rise to a

quadratic field K for which g|h(K). Applying the same argument to powers of g,

we deduce that there are infinitely many imaginary quadratic fields K whose class

number is divisible by g. �

Examples 2.18, 2.19 and 2.20 were taken from Chapter 6 of [13]. These are

simple illustrations of how solutions to Diophantine equations can guarantee the

existence of torsion subgroups of CL(K). A sophisticated amplification of these

ideas is the basis for Theorem 1.3.

3. Proof of Theorem 1.3

To begin the proof of Theorem 1.3, we state a Diophantine condition analogous

to Example 2.18.

Proposition 3.1. Let g1 ≥ 3 be an integer and suppose d ≥ 63 is a square free

integer such that mg1 − n2 = t2d, where t,m, n ∈ Z>0, (m, 2n) = 1 and mg1 <

(d+ 1)2. Then CL(K) contains an element of order g1.
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Proof. We have the ideal factorization

(mg1) = (m)g1 = (n+ t
√
−d)(n− t

√
−d).

Let d = gcd((n+t
√
−d), (n−t

√
−d)) = (n+t

√
−d)+(n−t

√
−d). Then 2n,mg1 ∈ d,

but since (mg1 , 2n) = 1 we have d = OK . Thus the ideals on the right hand side

are co-prime, and are each g1-th powers.

Let ag1 = (n + t
√
−d). If ar = (u + v

√
−d), for some u, v ∈ Z or 1

2 + Z, and

r strictly divides g1 then r ≤ g1
2 ⇒

g1
r ≥ 2. Now, (n + t

√
−d) = (ar)g1/r =

(u+ v
√
−d)g1/r so n+ t

√
−d = ±(u+ v

√
−d)g1/r, as the units in OK are ±1. Note

that u and v are non-zero since n and t are not. If g1
r = 2, then t = 2uv which

means both u, v ∈ Z so |u|, |v| ≥ 1. Otherwise, |u|, |v| ≥ 1
2 . Taking norms we obtain

mg1 = n2 + dt2 = (u2 + dv2)g1/r ≥



(d+ 1)2 if g1
r = 2,

(
d+1

4

)3
if g1

r > 2.

In both cases we have a contradiction of our assumption that mg1 < (d+ 1)2, since

if d ≥ 63, then (d+ 1)2 ≤
(
d+1

4

)3
. Thus, a must have order g1 in CL(K). �

Remark 3.2. By Gauss’ genus theory and the above proposition, if d has at least

two odd prime factors and g1 is odd then CL(K) will contain an element of order

g = 2g1.

The next proposition gives a condition for the existence of even order elements.

Proposition 3.3. If g1 ≥ 2 is an even integer, and d = 2mg1/2− t2 is square free,

where (m, 2t) = 1 and mg1/2 < (d + 1), then CL(K) contains an element of order

g1.
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Proof. Apply Proposition 3.1 with n = mg1/2 − t2. �

3.1. Outline of ideas. Now that we have sufficient conditions to determine when

a square free d gives rise to elements of order g1, we define g := 2g1 and count the

frequency with which the admissible d occur. We apply Proposition 3.3, when g1

is even, and Proposition 3.1, when g1 is odd. It is clear that the different cases of

Theorem 1.3 correspond to the parity of g1.

For even g1, let Se,g(X) denote the number of square free d ≤ X with at least

one solution in m and t to

(3.4) d = 2mg1 − t2 where 0 < m < d1/g1 , 0 < t and m is odd.

By Proposition 3.3, we have Ng(X) ≥ Se,g(X). If Re(d) denotes the number of

solutions to (3.4) for some fixed square free d ≤ X, then we expect

(3.5)
∑
d≤X

Re(d)� X1/2+1/g1 ,

since roughly speaking, m takes values at most X1/g1 and t ≤ X1/2.

It should be noted that the special case of g = 2g1 = 2 is missed by this approach.

However, the below proposition gives a concise description of this scenario.

Proposition 3.6. Let d be an odd square free integer and let R2(d) denote the

number of solutions to (3.4) with g1 = 2. Then R2(d) = 0 unless d ≡ 1 mod 8 is

composed entirely of primes congruent to ±1 mod 8. In this case, R2(d) = τ(d)/2

and CL(K) has at least τ(d) elements of order 4, where τ(n) is the divisor counting

function. This gives N4(X)� X/
√

log(X).

Proof. For g1 = 2, we wish to count the number of representations of d by quadratic

forms of discriminant 8. There are exactly two classes of such forms; namely±(2x2−
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y2). Hence, by a classical result (see Sections 11.4 and 12.4 of [12]), the number of

solutions to ±d = 2x2 − y2 with 0 < x <
√
d and 0 < y is given by

∑
l|d

(
8

l

)
=


τ(d) if p|d⇒ p ≡ ±1 mod 8

0 otherwise.

If d = 2x2 − y2 then −d = 2(x − y)2 − (2x − y)2, so R2(d) is either τ(d)/2 or

0 depending on the prime factorization of d. The condition d = 2x2 − y2 ≡ ±1

mod 8 corresponds to odd and even x, respectively. To show that CL(K) has at

least τ(d) elements of order four, we note that by Proposition 3.1 each solution to

d = 2m2 − t2 produces two elements of order four (counting inverses). Thus it is

sufficient to show that distinct solutions counted in R2(d) produce distinct order

four elements in CL(K). Let (m, t) and (u, v) be two such solutions, and a, b be

the corresponding elements of order four in CL(K). Substituting n1 = m2 − t2,

n2 = u2 − v2 in the proof of Proposition 3.1, we have

a4 = (m2 − t2 + t
√
−d),

b4 = (u2 − v2 + v
√
−d).

To reach a contradiction, we suppose a ∼ b. Then ab−1 = (a + b
√
−d) is a

principal ideal. Taking norms, we have d > mu = N(ab−1) = a2 + b2d, so b = 0.

Therefore

(a)4 = (ab−1)4 = (m2 − t2 + t
√
−d)(u2 − v2 − v

√
−d).

Comparing the
√
−d term on both sides, we have t(u2−v2) = v(m2−t2). Since d is

square free, it must be the case that gcd(m, t) = gcd(u, v) = 1 which implies t = v

and m = u. This contradicts our assumption that (m, t) and (u, v) are distinct.



Yan Sheng 20

The above arguments show that N4(X) exceeds the number of square free d ≡ 1

mod 8, where d ≤ X, that are composed entirely of primes p ≡ ±1 mod 8. An

application of Theorem 2.10 in [9] shows that there are � X/
√

log(X) such d. �

As a consequence of this proposition, we have Re(d) ≤ τ(d)/2 � dε, and so

Se,g(X) =
∑

d≤X
Re(d) 6=0

1 is not too different from
∑
d≤X Re(d). Along with Equation

(3.5), this implies the case of g ≡ 0 mod 4 in Theorem 1.3.

For odd g1, we define T = X(g1−2)/(g1+1), M = T 2/g1X1/g1/2, and N =

T
√
X/2g1+1. These are parameters to be optimized later in the counting argu-

ments to produce the bounds in Theorem 1.3. Denote by So,g(X) the number of

square free d ≤ X with at least one solution to

(3.7) mg1 − n2 = t2d, (m,nt) = (t, 6) = 1, m ≡ 1 mod 18, n ≡ 2 mod 18,

where T ≤ t ≤ 2T , M ≤ m ≤ 2M , N ≤ n ≤ 2N . With a straight forward

calculation to show mg1 ≤ (d+ 1)2, we can apply Proposition 3.1 to conclude that

CL(K) has an element of order g1 for each d counted in So,g(X). Since mg1 ≡

n2 ≡ 1 mod 3 and (t, 3) = 1, we know 3|d. And since d is square free and large,

we know d has at least two odd prime factors, which implies Ng(X) ≥ So,g(X).

Finally, by a counting argument involving quadratic residues, we obtain a bound

analogous to Equation (3.5) for the case of odd g1, which implies the g ≡ 2 mod 4

case of Theorem 1.3.

3.2. Counting arguments. The subsequent discussion makes use of Dirichlet

characters, which are arithmetic functions arising from completely multiplicative

characters on (Z/kZ)×. The relevant background on periodic arithmetic functions

and their Fourier expansions can be found in [17].



The Cohen-Lenstra Heuristics and Soundararajan’s thesis 21

Lemma 3.8 (Pólya-Vinogradov inequality). If χ is any primitive character mod k

then for all x ≥ 1 we have ∣∣∣∣∣∣
∑
m≤x

χ(m)

∣∣∣∣∣∣ < √k log(k).

Proof. Since χ(m) is periodic mod k and primitive, it has the finite Fourier expan-

sion

χ(m) =
τk(χ)√

k

k∑
n=1

χ̄(n)e−2πimn/k.

Summing over m we have

(3.9)
∑
m≤x

χ(m) =
τk(χ)√

k

k−1∑
n=1

χ̄(n)
∑
m≤x

e−2πimn/k,

since χ(k) = 0. Define the function

f(n) =
∑
m≤x

e−2πimn/k.

It is true that

f(k − n) =
∑
m≤x

e−2πim(k−n)/k =
∑
m≤x

e2πimn/k = f(n).

This shows |f(k − n)| = |f(n)|, so taking absolute values in Equation (3.9) and

multiplying by
√
k we obtain

(3.10)
√
k

∣∣∣∣∣∣
∑
m≤x

χ(m)

∣∣∣∣∣∣ ≤
k−1∑
n=1

∣∣∣∣∣∣
∑
m≤x

e−2πimn/k

∣∣∣∣∣∣ =

k−1∑
n=1

|f(n)| = 2
∑
n≤k/2

|f(n)| .

Writing y = e−2πin/k, and z = e−πin/k we see that y = z2 6= 1 since 1 ≤ n ≤ k− 1.

Furthermore, we have that f(n) =
∑r
m=1 y

m is a geometric series in y so we can

write

f(n) = y
yr − 1

y − 1
= z2 z

2r − 1

z2 − 1
= zr+1 z

r − z−r

z − z−1
,
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where r = bxc. Again, taking absolute values we have

|f(n)| =
∣∣∣∣zr − z−rz − z−1

∣∣∣∣ =

∣∣sin(πrnk )
∣∣∣∣sin(πnk )
∣∣ ≤ 1

sin(πnk )
.

Notice that in the interval 0 ≤ t ≤ π/2, we have sin(t) ≥ 2t/π and in the last sum

in Equation (3.10), n ≤ k/2, which means t = πn/k ≤ π/2. So substituting t for

πn/k, we see that

|f(n)| ≤ 1
2
π
πn
k

=
k

2n
.

Finally, applying this to Equation (3.10) we get

√
k

∣∣∣∣∣∣
∑
m≤x

χ(m)

∣∣∣∣∣∣ ≤ k
∑
n≤k/2

1

n
< k log(k),

which completes the proof. �

Lemma 3.11. Let t ∈ Z be such that (t, 6) = 1, and d > 1 be a square free divisor

of t. Then

(3.12)
∑

M≤m≤2M
m≡1 mod 18

(m,t)=1

(
m

d

)
� τ(t)

√
d log(d).

Additionally, for any odd m that is not a square and R ≥ 2,

(3.13)
∑
r≤R

(r,6m)=1

µ(r)2

(
m

r

)
� R1/2m1/4

√
log(m).

Proof. Let χ be a character mod 18. We have

∑
M≤m≤2M
m≡1 mod 18

(m,t)=1

(
m

d

)
=

1

ϕ(18)

∑
χmod 18

∑
M≤m≤2M

(m,t)=1

χ(m)

(
m

d

)

=
1

ϕ(18)

∑
χmod 18

∑
M≤m≤2M

∑
l|(t,m)

µ(l)χ(m)

(
m

d

)

≤ 1

ϕ(18)

∑
χmod 18

∑
l|t

∣∣∣∣∣∣
∑

M/l≤s≤2M/l

χ(s)

(
s

d

)∣∣∣∣∣∣ ,
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where we write m = ls in the last line. Since χ(s)
(
s
d

)
is a non-principal character

with conductor at most 18d, by the Pólya-Vinogradov inequality, the above sum in

s is �
√
d log(d), which implies Equation (3.12).

Next, note that

∑
r≤R

(r,6m)=1

µ(r)2

(
m

r

)
=
∑
r≤R

µ(r)2

(
36m

r

)
=
∑
r≤R

∑
l2|r

µ(l)

(
36m

r

)

≤
∑
l≤
√
R

∣∣∣∣∣∣
∑

s≤R/l2

(
36m

s

)∣∣∣∣∣∣ ,
where we write r = sl2 in the last line. Again, by the Pólya-Vinogradov inequality,

the above sum over s is �
√
m log(m). Thus

∑
r≤R

(r,6m)=1

µ(r)2

(
m

r

)
�

∑
l≤
√
R

min

(
R

l2
,
√
m log(m)

)
� R1/2m1/4

√
log(m),

since
∣∣∣∑s≤R/l2

(
36m
s

)∣∣∣ ≤ R/l2 trivially. This proves Equation (3.13). �

Lemma 3.14. Let

ρm(l) = #{n mod l : n2 ≡ mg1 mod l},

and t be as in Lemma 3.11, then

∑
M≤m≤2M
m≡1 mod 18

∑
T≤t≤2T
(t,6m)=1

ρm(t2) =
∑

M≤m≤2M
m≡1 mod 18

∑
T≤t≤2T
(t,6m)=1

1 +O(TM5/8 log(X)3) �MT.

Proof. Note that ρm(l) is a multiplicative function in l, so for a prime p - 2m and

odd g1 we have

(3.15) ρm(pα) = ρm(p) = 1 +

(
mg1

p

)
= 1 +

(
m

p

)
,
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for all α ≥ 1. Note that the first equality follows from Hensel’s lemma. If we write

t = pα1
1 · · · p

αk

k , then since t is odd,

ρm(t2) =
∏
i

ρm(p2αi
i ) =

∏
i

(
1 +

(
m

pi

))
=
∑
d|t

µ(d)2

(
m

d

)
.

The d = 1 term contributes the main term

∑
M≤m≤2M
m≡1 mod 18

∑
T≤t≤2T
(t,6m)=1

1 =
∑

M≤m≤2M
m≡1 mod 18

(
T
ϕ(6m)

6m
+O(τ(6m))

)

�MT +O((M + T ) log(M)).

It remains to show that the contribution by
∑
d|t, d>1 µ(d)2

(
m
d

)
is negligible. Let

D be a parameter to be fixed later, we will split the divisors d of t into two regions,

1 ≤ d ≤ D and d > D. Define

S1 :=
∑

M≤m≤2M
m≡1 mod 18

∑
T≤t≤2T
(t,6m)=1

∑
d|t

1≤d≤D

µ(d)2

(
m

d

)
,

S2 :=
∑

M≤m≤2M
m≡1 mod 18

∑
T≤t≤2T
(t,6m)=1

∑
d|t

d≤t/D

µ(t/d)2

(
m

t/d

)
.

The contribution we want to bound is S1 + S2. Expanding S1 over the sum in m

we have

S1 =
∑

T≤t≤2T
(t,6)=1

∑
d|t

1≤d≤D

µ(d)2
∑

M≤m≤2M
m≡1 mod 18

(m,t)=1

(
m

d

)
,

so if we apply Equation (3.12) we obtain

S1 �
√
D log(D)

∑
T≤t≤2T

τ(t)2 ≤ T
√
D log(X)4.
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Now we estimate

S2 =
∑

M≤m≤2M
m≡1 mod 18

∑
d≤2T/D
(d,6m)=1

∑
max(T/d,D)≤r≤2T/d

(r,6m)=1

µ(r)2

(
m

r

)
,

where we write t = dr. Using (3.13) we have

S2 �
∑

M≤m≤2M
m 6=�

∑
d≤2T/D

(
T

d

)1/2

M1/4
√

log(X) +
∑

M≤m≤2M
m=�

∑
d≤2T/D

T

d

� TM5/4

√
D

√
log(X) + T

√
M log(X).

Now if we fix D = M5/4/(log(X))7/2 we have S1, S2 � TM5/8(log(X))3, and

we’re done. �

Proposition 3.16. For a fixed square free d ≤ X, let Ro(d) denote the number of

solutions to (3.7). Then

∑
d≤X

Ro(d) � MN

T
+ o(MT 2/3X1/3)

� X1/2+1/g1T 2/g1 + o(X1/3+1/g1T 2/3+2/g1).(3.17)

Proof. We adopt the following notation: N1 is the number of of (m,n, t) satisfying

Equation (3.7) such that p2 - (mg1 − n2)/t2 = d for all primes p ≤ log(X); N2

is the number of (m,n, t) such that p2|d for some prime log(X) < p ≤ Z :=

X1/3T−1/3(log(X))2/3; N3 is the number of (m,n, t) with p2|d for some prime

p > Z. The goal is to show

N1 �
MN

T
+ o(MT 2/3X1/3),

N2 �
MN

T log(X)
+ o(MT 2/3X1/3),

N3 = o(MT 2/3X1/3).



Yan Sheng 26

The congruence conditions on m and n from (3.7) imply that 4, 9 - (mg1−n2)/t2.

Let P :=
∏

5≤p≤log(X) p. For some fixed M ≤ m ≤ 2M and T ≤ t ≤ 2T , with m ≡ 1

mod 18 and (t, 6m) = 1, we now count the number of N ≤ n ≤ 2N producing tuples

(m,n, t) counted by N1:

∑
N≤n≤2N, (n,m)=1

n≡2 mod 18
n2≡mg1 mod t2

∑
l2|((mg1−n2)/t2,P 2)

µ(l) =
∑
l|P

(l,m)=1

µ(l)
∑

N≤n≤2N
n≡2 mod 18

n2≡mg1 mod l2t2

1.

If we split the above sum in n into intervals of length 18l2t2, we see that it is

Nρm(l2t2)/(18l2t2) +O(ρm(l2t2)) = Nρm(l2t2)/(18l2t2) +O(Xε), since ρm(l2t2) ≤

τ(lt) � Xε. Using the fact that ρm is a multiplicative function and Equation

(3.15), we have

∑
l|P

(l,m)=1

µ(l)

(
N

18

ρm(l2t2)

l2t2
+O(Xε)

)
=
Nρm(t2)

18t2

∑
l|P

(l,m)=1

µ(l)

l2
ρm

(
l

(t, l)

)
+O(Xετ(P ))

=
Nρm(t2)

18t2

∏
p|P
p-m

(
1− ρm(p/(t, p))

p2

)
+O(Xε)

� N

T 2
ρm(t2) +O(Xε).

Now, using Lemma 3.14 and summing over all admissible m and t we obtain the

desired bound

N1 �
MN

T
+O(MTXε) � MN

T
+ o(MT 2/3X1/3),

as T �
√
X = o(X1−ε).
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We now estimate N2 using the same arguments as above. For a fixed m and t

with the appropriate constraints,

∑
log(X)≤p≤Z

∑
N≤n≤2N
n≡2 mod 18

n2≡mg1 mod p2t2

1�
∑

log(X)≤p≤Z

(
N

t2p2
ρm(t2p2) +O(ρm(t2))

)

� N

T 2

ρm(t2)

log(X)
+ o(X1/3T−1/3ρm(t2)).

Now if we once again use Lemma 3.14 and sum over all m and t, we have N2 �

MN/(T log(X))+o(MT 2/3X1/3). Finally, it remains to estimate N3. If (m,n, t)

is a tuple counted by N3, then by definition we have mg1 − n2 = αt2p2 for some

p > Z, so α� X/Z2 = X1/3T 2/3(log(X))−4/3. For a fixed m ∈ [M, 2M ] satisfying

the usual conditions and α � X1/3T 2/3(log(X))−4/3, the number of choices for n

and t is bounded above by the number of solutions to mg1 = x2+αy2, where (x, y) =

1. In Q(
√
−α) we have the ideal factorization (m)g1 = (x + y

√
−α)(x − y

√
−α).

Since m is odd and (m,x) = 1, the two ideals on the right hand side must be

co-prime as otherwise 2x ∈ (m)g1 , a contradiction. Hence (x + y
√
−α) = ag1 and

(x− y
√
−α) = bg1 , for some ideals a, b. Thus the number of choices for n and t is

bounded by the number of factorizations (m) = ab, which is � τ(m). Hence

N3 �
X

Z2

∑
M≤m≤2M

τ(m)� X

Z2
M log(X) = o(MT 2/3X1/3).

�

Proposition 3.18. Let Ro(d) be as in Proposition 3.16. Then

(3.19)
∑
d≤X

Ro(d)(Ro(d)− 1)� T 2+4/g1X2/g1+ε.
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Proof. Clearly,

Ro(d)� #

{
m ∈ [M, 2M ], n ∈ [N, 2N ], t ∈ [T, 2T ] :

mg1 − n2

t2
∈ Z

}
.

Then the desired sum is bounded by the number of (m1,m2, n1, n2, t1, t2) where

(m1, n1, t1) 6= (m2, n2, t2), (mi, ti) = 1 and t22(mg1
1 − n2

1) = t21(mg1
2 − n2

2). If we fix

m1,m2, t1, t2, then since (t1n2 − t2n1)(t1n2 + t2n1) = t21m
g1
2 − t22m

g1
1 we conclude

that n1 and n2 are fixed in � Xε ways, as long as t21m
g1
2 6= t22m

g1
1 . Now if this is

the case, we must have m1 = m2 and t1 = t2 since (mi, ti) = 1. Hence n1 = n2,

contradicting our assumption that (m1, n1, t1) 6= (m2, n2, t2). Finally, we have

∑
d≤X

Ro(d)(Ro(d)− 1)� Xε
∑

M≤m1,m2≤2M

∑
T≤t1,t2≤2T

1� T 2M2Xε.

Substituting for M , we obtain Equation (3.19). �

Sketch of proof of Equation (3.5). The proof of Equation (3.5) is very similar in

principle to that of the previous proposition. Since
∑
d≤X Re(d) exceeds the num-

ber of (m, t) with X1/g1/4 ≤ m ≤ X1/g1/2 and odd, and
√
X/2g1+1 ≤ t ≤

√
X/2g1

such that d = 2mg1 − t2 is square free, we consider two regions. Let M1 denote the

number of such pairs such that 2mg1 − t2 is not divisible by any prime p ≤ log(X),

and M2 denote the number of pairs for which this difference is divisible by the

square of a prime p > log(X). Using the same arguments as before, we have

M1 � X1/2+1/g1 and M2 � X1/2+1/g1/ log(X). This gives Equation (3.5). �

We now complete the proof of Theorem 1.3. By the Cauchy-Schwarz inequality,

we have ∑
d≤X

Ro(d)2

So,g(X) ≥

∑
d≤X

Ro(d)

2

,
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since So,g(X) =
∑

d≤X
Ro(d)6=0

1. The above expression gives that

So,g(X) ≥ (3.17)2

(3.17) + (3.19)
,

which completes the g ≡ 2 mod 4 case of Theorem 1.3.
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