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Abstract 

On the Fairness of Rent Division Among Roommates 

By Haoyang Cui 

In this study, we aim to find a method for assigning rooms and dividing rent among roommates 

who wish to rent a house together. We assume there are n rooms to be allocated to the same 

number of roommates with quasi-linear utility functions. Our primary focus is on identifying 

different procedural algorithms that can generate an allocation meeting specific fairness criteria, 

including envy-freeness, equitability, individual rationality, and efficiency, among others. We 

demonstrated the incompatibility between envy-freeness and equitability in certain scenarios 

by proving a necessary and sufficient condition for the existence of an equitable and envy-free 

allocation. We also analyzed some main trade-offs in a rent division problem and the lack of 

incentive compatibility in our model. Besides deriving conclusions based on the valuation 

matrix, we developed a graph representation of the model that visualizes the envy network and 

guarantees the functionality of graph-based algorithms. By referencing previous studies in the 

field of fair division, we designed a procedure that generates an allocation that is individually 

rational, utilitarian, envy-free, and whenever possible, equitable.  
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1. Introduction 

Consider a group of individuals who wish to rent a house together and become roommates. They 

need to assign each person a room and divide the rent in a way that everyone agrees to be fair. In 

this paper, we study the approaches to fairly assign the rooms and divide the rent among these 

roommates. In our case, an allocation is defined as a one-to-one matching between individuals and 

available rooms with an assigned price for each room under the assumption that there are the same 

number of rooms as roommates. We are concerned about the following criteria for fairness for an 

allocation:  

(i) Individual Rationality: An allocation is individually rational if all individuals agree that the 

rooms they are assigned to are worth no less than the prices they pay. 

(ii) Equitability: An allocation is equitable if all individuals have the same utility.  

(iii) Envy-freeness: An allocation is envy-free if no individual wishes to exchange room with 

anybody else under the assigned prices.  

(iv) Utility Maximization: An allocation is utilitarian if the utility sum of all roommates is 

maximized. 

We made several key assumptions concerning individuals’ utility and their preferences over 

the rooms. We assume the individuals have cardinal valuations, which means they can provide 

monetary bids to signal how much they value the rooms. We also assume that they have quasi-

linear utility functions, meaning an individual who values a room as 𝑞 and pays a price of 𝑝 

would have a utility of 𝑞 − 𝑝. Finally, we add a condition that for any individual, the sum of her 

valuations of all rooms must exceed the cost of the entire house. These three key assumptions 
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guarantee the existence of an allocation that is individually rational, utilitarian, and envy-free or 

equitable.  

Past studies in the field of fair allocation mainly focus on achieving envy-free results because 

of the inherent complexity, wide applicability, and incentive compatibility associated with envy-

freeness. The concept of envy-freeness was introduced by Foley (1967) and further formalized and 

popularized by Brams and Tylor (1996). Based on the study of Foley (1967), Varian (1974) 

formulates a fair allocation as one that is both envy-free and Pareto-efficient and shows the 

existence of fair allocations under the key assumption that the goods to be allocated are infinitely 

divisible. The problems for indivisible goods were first handled by Maskin (1987) and Svensson 

(1983), both of whom point out that an envy-free allocation does not always exist in the cases of 

indivisible goods. They formulate independently two models in which there are some indivisible 

goods to be allocated to the same number of individuals and prove the existence of fair allocations 

under different assumptions: either there exists sufficient money to be allocated to some 

individuals as compensation or the preference relations satisfy certain constraints. Based on the 

results presented by Maskin (1987), Alkan et al. (1991) propose a more generalized model in 

which any number of people and objects are allowed and the objected and money to be allocated 

can be undesirable (e.g., assignments that must be completed or costs that must be shared). They 

assume quasi-linear utility functions of the individuals and use the duality theorem to prove the 

existence of fair allocations while proposing a value-Rawlsian allocation that maximizes the utility 

of the individual who is the worst off.  

Notably, the rent division problem we consider is essentially an allocation problem for discrete 

goods in which there is an equal number of agents and goods and a fixed cost to be divided. An 
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ordinal version of this problem has been directly addressed by Su (1999), who assumes that the 

roommates can tell which room they prefer for a given price vector but do not have the exact 

monetary valuations for the rooms. Su (1999) named this problem “Rental Harmony” and applied 

Sperner’s Lemma to find an envy-free allocation with non-negative rents for all roommates. As 

previously mentioned, we assume that the roommates have cardinal instead of ordinal valuations, 

which is less general but enables more in-depth discussions concerning equitability and optimality.  

There have been several studies that introduce algorithms for finding fair allocations of 

indivisible objects, assuming cardinal valuations and quasi-linear utility functions. Aragones 

(1995) presents a cubic-time algorithm that produces the same envy-free and value-Rawlsian 

allocation given by Alkan et al. (1991), but this algorithm is not procedural in that Aragones only 

provides a general description rather than specific procedures for implementation. Klijn (2000) and 

Haake et al. (2002) introduce two procedural algorithms for solving the fair allocation problem of 

indivisible objects. Both algorithms are polynomial-time and graph-based and they are directly 

applicable to rent division problems that focus on envy-freeness. On the other hand, 

Abdulkadiroǧlu et al. (2004) developed a market-like auction mechanism for solving the room 

assignment and rent division problem, which is polynomial-time and ensures non-negative rents 

whenever possible conditional on envy-freeness. Additionally, Gal et al. (2016) propose a linear 

programming (LP) framework that achieves envy-freeness in the rent division problem while 

optimizing certain criteria of social justice (e.g., maximin solution). Their framework has been 

utilized by Spliddit, an online platform that offers free solutions for fair division, since April 2015. 

Our procedure for fair rent division is primarily based upon the study of Haake et al. (2002) 

because the algorithm they present is the most manageable and intuitive among all that guarantee 
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envy-freeness. Compared to the algorithm of Haake et al. (2002), our procedure makes the 

following improvements: 

(i) The procedure incorporates the Hungarian method in identifying a utilitarian (i.e., max-

utility) allocation efficiently.  

(ii) The procedure generates an equitable allocation whenever possible conditional on envy-

freeness.  

To begin with, we define a rent division problem and introduce our rent division model. The 

introduction will include definitions of key concepts (e.g., an assignment, a price vector, and an 

allocation) and specifications of model assumptions. We also provide mathematical definitions of 

several properties related to fair allocations, including individual rationality, envy-freeness, 

equitability, efficiency, and utility maximization.  

To continue, we introduce a procedure for finding an equitable allocation for an arbitrary 

number of roommates, followed by an extra step that guarantees the eventual allocation to be 

efficient and utilitarian using the Hungarian method.  

The core section of this paper focuses on envy-freeness. We start this section by offering 

procedures for finding an envy-free allocation for the 𝑛 = 2 and 𝑛 = 3 cases, such as the 

Selfridge-Conway procedure. We also demonstrate the incompatibility between equitability and 

envy-freeness for 𝑛 ≥ 3 by proving a necessary and sufficient condition for the existence of an 

envy-free and equitable allocation. We continue to propose a graph representation of the model 

that visualizes the envy network for a given allocation with a complete weighted directed graph, 

followed by some explanations concerning the properties of the graph. We then introduce the 
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graph-based algorithm proposed by Haake et al. (2002) for finding an envy-free room allocation 

for an arbitrary number of roommates, followed by an extension of their procedure, which includes 

extra steps to guarantee equitability whenever possible and incorporate the Hungarian algorithm in 

identifying a utilitarian assignment. 

In the last section, we discuss truthfulness and non-negativity. We start by looking at the 

model from the game theory perspective and analyze why the roommates might intend to conceal 

their true utilities. We also analyze a special example in which our procedure generates an 

allocation where some roommates must pay negative rent to ensure envy-freeness. 

2. Model and Fairness Criteria  

2.1 Model Specification  

Consider a finite set of individuals 𝐼 = {1, 2, 3, … , 𝑛} renting a house with a finite set of rooms 

𝑅 = {1, 2, 3, … , 𝑛} together. Following Abdulkadiroǧlu et al. (2004), we define 𝑉 =

[𝑣𝑖𝑟𝑖
]𝑖∈𝐼,𝑟𝑖∈𝑅 as a valuation matrix in which 𝑣𝑖𝑟𝑖

∈ ℝ+ represents how much individual 𝑖 

values room 𝑟𝑖 . Following Aragones (1995), we define an assignment as a bijection 𝜎: 𝐼 → 𝑅 

that matches each individual 𝑖 ∈ 𝐼 with a specific room 𝑟𝑖 ∈ 𝑅. Following Gal et al. (2016), we 

represent the rent division with a price vector 𝑃 ∈  ℝ𝑛 such that ∑ 𝑝𝑟𝑖𝑟𝑖∈𝑅 = 𝐶, where 𝑝𝑟𝑖
∈ ℝ 

is the price assigned to room 𝑟𝑖  and 𝐶 ∈ ℝ+ is the total rent of the house. Following Klijn (2000) 

and Gal et al. (2016), we make two key model assumptions: 

Assumption 1. (Gal et al., 2016) Every individual agrees that the sum of the values of all rooms is 

no less than the rent of the house. Thereby for any 𝑖 ∈ 𝐼, ∑ 𝑣𝑖𝑟𝑖𝑟𝑖∈𝑅 ≥ 𝐶. 

Assumption 2. (Klijn, 2000) The utility of any 𝑖 ∈ 𝐼 assigned to any room 𝑟𝑖 ∈ 𝑅 is denoted as 
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𝑈𝑖(𝑟𝑖, 𝑝𝑟𝑖
) = 𝑣𝑖𝑟𝑖

− 𝑝𝑟𝑖
, where 𝑈𝑖: 𝑅 × ℝ → ℝ is a quasi-linear utility function.  

Assumption 1 ensures that all roommates agree the house is worth at least as much as the total 

rent, while Assumption 2 states that all roommates have quasi-linear utility functions. We formally 

define a rent division problem as follows:  

Rent Division Problem: Given an ordered 4-tuple 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉) where 𝐶 ∈ ℝ+  is the house 

rent, 𝐼 is the set of individuals, 𝑅 the set of rooms, and 𝑉 the valuation matrix, find an ordered 

pair 𝐴 = (𝜎, 𝑃) where 𝜎 is an assignment and 𝑃 a price vector that fulfills certain given 

constraints (i.e., certain fairness criteria).  

We refer to the ordered 4-tuple 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉) as a roommate system and the ordered pair 

𝐴 = (𝜎, 𝑃) as an allocation. Note that besides 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
), an alternative representation of the 

utility of an individual 𝑖 ∈ 𝐼 under an allocation 𝐴 = (𝜎, 𝑃) is 𝑈𝑖(𝐴). 

2.2 Different Criteria for Fairness  

We continue to introduce some common criteria for a fair allocation. The first is individual 

rationality, which states that no individual should pay more than her valuation for an assigned 

room under a given allocation: 

Definition 1. Given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉), an allocation 𝐴 = (𝜎, 𝑃) is individually 

rational if for any 𝑖 ∈ 𝐼 with an assigned room 𝑟𝑖 =  𝜎(𝑖), 𝑣𝑖𝑟𝑖
≥ 𝑝𝑟𝑖

. 

Note that individual rationality can be phrased equivalently as no individuals should endure a 

negative utility under the current allocation, because for any 𝑖 ∈ 𝐼 and 𝑟𝑖 ∈ 𝑅, the condition 

𝑣𝑖𝑟𝑖
≥ 𝑝𝑟𝑖

 is equivalent to 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
) = 𝑣𝑖𝑟𝑖

− 𝑝𝑟𝑖
≥ 0. 
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Next, we define equitability, which states that all individuals should have the same utility under a 

given allocation: 

Definition 2. Given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉), an allocation 𝐴 = (𝜎, 𝑃) is equitable if 

for any 𝑖, 𝑗 ∈ 𝐼 with 𝑟𝑖 =  𝜎(𝑖) and 𝑟𝑗 =  𝜎(𝑗), 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
) = 𝑈𝑗 (𝑟𝑗 , 𝑝𝑟𝑗

). 

Then, we follow the definition introduced by Foley (1967) to define envy-freeness: 

Definition 3. Foley (1967) Given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉), an allocation 𝐴 = (𝜎, 𝑃) 

is envy-free if for any 𝑖, 𝑗 ∈ 𝐼 with 𝑟𝑖 =  𝜎(𝑖) and 𝑟𝑗 =  𝜎(𝑗), 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
) ≥ 𝑈𝑖 (𝑟𝑗 , 𝑝𝑟𝑗

). 

Envy-freeness ensures that under a given allocation, no individual wishes to exchange room 

with anybody else. 

After that, we define efficiency (i.e., Pareto efficiency), which states that given the current 

allocation, it is impossible to increase the utilities of some individuals without decreasing the 

utilities of others: 

Definition 4. Given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉), an allocation 𝐴 = (𝜎, 𝑃) is efficient if 

there exists no other allocation 𝐴′ = (𝜎′, 𝑃′) in which there exists some 𝑖 ∈ 𝐼 with 𝑟𝑖 = 𝜎(𝑖) 

under 𝐴 and 𝑟𝑖
′ = 𝜎′(𝑖) under 𝐴′ such that 𝑈𝑖(𝑟𝑖

′, 𝑝𝑟𝑖
′) > 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖

), while for all 𝑗 ∈ 𝐼, 𝑗 ≠ 𝑖 

with 𝑟𝑗 = 𝜎(𝑗) under 𝐴 and 𝑟𝑗
′ = 𝜎′(𝑗) under 𝐴′, 𝑈𝑗 (𝑟𝑗

′, 𝑝𝑟𝑗
′) ≥ 𝑈𝑗 (𝑟𝑗 , 𝑝𝑟𝑗

). 

 Notably, the efficiency of an allocation does not depend on the price vector. Given a room 

assignment, it is impossible to decrease the prices of some rooms without increasing the prices of 

others, as the prices of all rooms must sum to a constant that equals the house rent. Thereby, it is 

always impossible to increase the utilities of some roommates without decreasing the utilities of 
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others under a given assignment, and whether an allocation is efficient depends only on the room 

assignment, not on the price vector.  

Finally, we define utility maximization, which states that the utility sum of all individuals is 

maximized under the current allocation: 

Definition 5. Given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉), an allocation 𝐴 = (𝜎, 𝑃) is utilitarian if 

for any allocation 𝐴′ = (𝜎′, 𝑃′), where any 𝑖 ∈ 𝐼 is assigned 𝑟𝑖 =  𝜎(𝑖) under A and 𝑟𝑖
′ =

 𝜎′(𝑖) under 𝐴′, ∑ 𝑈𝑖(𝑟𝑖
′, 𝑝𝑟𝑖

′)𝑖∈𝐼 ≤ ∑ 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
)𝑖∈𝐼 . 

We end this section by proving the following useful lemma: 

Lemma 1. (Haake et al., 2002) A utilitarian allocation must have an underlying room assignment 

that maximizes the sum of the valuations of all individuals. 

Proof. Let 𝒜 represent the set of all allocations, 𝒬 represent the set of all assignments and 𝒫 

represent the set of all price vectors. We can verify: 

𝑎𝑟𝑔  𝑚𝑎𝑥𝐴∈𝒜  ∑ 𝑈𝑖(𝐴)
𝑖∈𝐼

= 𝑎𝑟𝑔  𝑚𝑎𝑥𝜎∈𝒬,𝑃∈𝒫 ∑ 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
)

𝑖∈𝐼
 

                                                  = 𝑎𝑟𝑔  𝑚𝑎𝑥𝜎∈𝒬,𝑃∈𝒫 ∑ (𝑣𝑖𝑟𝑖
− 𝑝𝑟𝑖

)
𝑖∈𝐼

 

                                                  = 𝑎𝑟𝑔  𝑚𝑎𝑥𝜎∈𝒬 ∑ 𝑣𝑖𝑟𝑖
𝑖∈𝐼

− 𝑎𝑟𝑔  𝑚𝑎𝑥𝑃∈𝒫 ∑ 𝑝𝑟𝑖
𝑖∈𝐼

 

                                                  = 𝑎𝑟𝑔  𝑚𝑎𝑥𝜎∈𝒬 ∑ 𝑣𝑖𝑟𝑖
𝑖∈𝐼

− 𝑎𝑟𝑔  𝑚𝑎𝑥𝑃∈𝒫  𝐶 

                                                  = 𝑎𝑟𝑔  𝑚𝑎𝑥𝜎∈𝒬 ∑ 𝑣𝑖𝑟𝑖
𝑖∈𝐼

 

According to Lemma 1, whether an allocation is utilitarian is independent of the price vector 

and depends solely on the underlying assignment. A similar argument applies to efficiency, as has 

been justified under Definition 4. From here on, we refer to an assignment that maximizes the 
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valuation sum of all roommates as a utilitarian assignment. Additionally, as proven by Svensson 

(1983), an envy-free allocation necessarily has an underlying utilitarian assignment, which we will 

prove again in section 4. 

3. Equitability and Utility Maximization 

3.1 Equitable Allocation for Arbitrary 𝒏 

In section 3.1, we focus on the procedure for finding an equitable allocation. Intuitively, for any 

given room assignment (i.e., a one-to-one matching between roommates and rooms), we can 

always find a unique price vector that generates an equitable allocation. Inspired by the Adjusted 

Winner (AW) Procedure developed by Brams and Tylor (1996), we present a procedure that 

guarantees equitability, which works as follows: 

Procedure 3.1 

Step 1. Given an assignment 𝜎, calculate the sum of valuations of all roommates ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 .  

Step 2. Subtract the house rent 𝐶 from the valuation sum ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼  to obtain the utility sum, 

then divide the sum by 𝑛 to obtain the average utility 
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
. 

Step 3. For any individual 𝑗 ∈ 𝐼, ask her to pay her valuation of the assigned room minus the 

average utility, which is 𝑣𝑗𝜎(𝑗) −
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
. 

The procedure above guarantees equitability because it divides total utility equally among all 

roommates so that they have the same utility of 
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
. Whether such a common utility is 

positive depends on the room assignment given. More specifically, the utility 
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
 is 

positive if the sum of valuations of all roommates ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼  is greater than the house rent 𝐶 

under room assignment 𝜎. Notably, the price vector that guarantees such an equitable allocation 
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always exists and must be unique because given any room assignment 𝜎, we can find a unique 

price vector 𝑃 = (𝑣𝜎−1(1)1 −
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
, 𝑣𝜎−1(2)2 −

∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
, . . . , 𝑣𝜎−1(𝑛)𝑛 −

∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
) ∈ ℝ𝑛 

that generates the common utility of 
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
. Since a unique equitable allocation exists for 

every given room assignment, the procedure for finding an equitable allocation depends only on 

the price vector and not on the underlying room assignment. 

3.2 Utilitarian Room Assignment for Arbitrary 𝒏 

In section 3.2, we focus on finding utilitarian allocations. According to Lemma 1, whether an 

allocation is utilitarian depends on whether its underlying room assignment maximizes the total 

valuation of all roommates and is independent of the price vector. Finding a utilitarian allocation is 

thereby equivalent to finding a valuation-maximizing room assignment (i.e., a utilitarian 

assignment), and we need a method for finding a utilitarian assignment given the valuation matrix.  

In fact, we can apply the Hungarian method, which solves balanced assignment problems 

efficiently. Since we have an 𝑛 × 𝑛 valuation matrix and aim to find a one-to-one matching 

between roommates and rooms, our utilitarian assignment problem is clearly balanced. However, 

since finding a utilitarian room assignment is a maximization problem while the Hungarian 

method solves minimization problems, we need to transform the valuation matrix by replacing 

every element with its difference from the largest element in the matrix. After that, we can directly 

apply the Hungarian method to the transformed matrix to find a utilitarian room assignment.  

Details on how the Hungarian method works are omitted and left for the readers to consider if 

interested. Note that there might be multiple utilitarian room assignments depending on the 

valuation matrix given, while the Hungarian method finds only one of them.  
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Finally, there’s an equivalence between efficiency and utility maximization as shown in the lemma 

that follows: 

Lemma 2. An allocation is efficient if and only if it is utilitarian. 

Proof.  Note that it is impossible to increase the utilities of some individuals without decreasing 

the utilities of others under an allocation that is already maximizing the utility sum. Thereby the 

fact that a utilitarian allocation is necessarily efficient is self-evident. 

 To prove that an efficient allocation is necessarily utilitarian, we use proof by contrapositive 

and assume there exists an allocation 𝐴 = (𝜎, 𝑃) that is not utilitarian. We also assume that there 

exists a utilitarian allocation 𝐴′ = (𝜎′, 𝑃′). Recall that we have justified in section 3.1 that we can 

find a unique price vector that guarantees equitability for any given room assignment. We have 

also justified in section 2.2 that whether an allocation is utilitarian or efficient is independent of the 

price vector. Therefore, we can assume without losing generality that 𝐴 and 𝐴′ are equitable 

allocations for price vectors 𝑃 and 𝑃′ respectively, so that all roommates have equal utilities 

under either 𝐴 or 𝐴′. We assumed that 𝐴 is not utilitarian while 𝐴′ is utilitarian, so the utility 

sum of all roommates under 𝐴′ must be greater than the utility sum under 𝐴. It follows that the 

equal utility shared by all roommates under allocation 𝐴′ must be larger than the equal utility they 

share under allocation 𝐴. It is therefore possible to increase the utilities of all roommates if we 

switch from 𝐴 to 𝐴′, which shows that 𝐴 is not efficient. Therefore, an allocation that is not 

utilitarian is necessarily not efficient, and it follows that an efficient allocation must be utilitarian.  

 According to Lemma 2, efficiency and utility maximization are equivalent in our rent division 

model. We will thus only discuss utility maximization in the following sections for the simplicity 
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of its definition and proof.   

3.3 Equitable and Utilitarian Allocation for Arbitrary 𝒏 

In section 3.3, we combine our findings in sections 3.1 and 3.2 to present a procedure that yields 

an allocation that is both equitable and utilitarian. We have demonstrated that a unique equitable 

allocation exists for any given room assignment, and whether an allocation is utilitarian depends 

only on the room assignment and not on the price vector. Therefore, we can address equitability 

and utility maximization independently by finding a utilitarian room assignment first, and then 

finding the price vector that guarantees equitability. The complete procedure contains two more 

initial steps compared to Procedure 3.1: 

Procedure 3.3 

Step 1. Transform the valuation matrix by replacing every element with its difference from the 

largest element in the matrix. 

Step 2. Apply the Hungarian method to the transformed matrix to find a utilitarian room 

assignment 𝜎.  

Step 3. Under the utilitarian room assignment 𝜎, calculate the sum of valuations of all roommates 

∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 .  

Step 4. Subtract the house rent 𝐶 from the valuation sum ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼  to obtain the utility sum, 

then divide the sum by 𝑛 to obtain the average utility 
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
. 

Step 5. For any individual 𝑗 , ask her to pay her valuation of the assigned room minus the average 

utility, which is 𝑣𝑗𝜎(𝑗) −
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
. 
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Steps 1 and 2 guarantee a utilitarian room assignment, while steps 3, 4, and 5 guarantee an 

equitable allocation based on a utilitarian room assignment. The resulting allocation is thereby 

both equitable and utilitarian. 

The procedure also guarantees individual rationality (all roommates have non-negative utilities), 

which can be proved as follows:  

Proof. According to assumption 1, for any individual 𝑗 ∈ 𝐼, we have ∑ 𝑣𝑗𝑟𝑗𝑟𝑗∈𝑅 ≥ 𝐶. As a result, 

the sum of the entries in every row of the valuation matrix is a constant that is no less than the 

house rent 𝐶. Under a utilitarian room assignment 𝜎, the valuation sum ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼  is maximized, 

and it follows that ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 ≥ ∑ 𝑣𝑗𝑟𝑗𝑟𝑗∈𝑅 ≥ 𝐶. Thus, we have  
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
≥ 0, so the common 

utility shared by all roommates is non-negative and individual rationality is satisfied.  

Therefore, we have justified that Procedure 3.3 is individually rational, equitable, and 

utilitarian.  

We proceed to give an example to illustrate Procedure 3.3: 

Example 1. An Illustration of Procedure 3.3: 

Suppose there are four roommates: Amy, Betty, Charlie, and Danny, renting a house with 4 rooms 

together, whose total rent is $1000. The following is their valuation matrix: 

Table 1. The Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

Amy $200 $400 $350 $150 

Betty $400 $250 $300 $200 
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Charlie $200 $450 $250 $250 

Danny $300 $300 $200 $200 

Note that in the valuation matrix, the minimum row sum is $1000, thereby assumption 1 is 

satisfied. Following step 1 of Procedure 3.3, we replace every element with its difference from the 

largest element in the valuation matrix: 

Table 2. The Transformed Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

Amy $250 $50 $100 $300 

Betty $50 $200 $150 $250 

Charlie $250 $0 $200 $200 

Danny $150 $150 $250 $250 

Next, following step 2, we apply the Hungarian method to the transformed valuation matrix to 

find a utilitarian assignment.  

The Hungarian method yields the utilitarian assignment {(Amy, Room 3), (Betty,

Room 1), (Charlie, Room 2), (Danny, Room 4)}.  

We mark this assignment in the original valuation matrix using boxes: 

Table 3. The Utilitarian Assignment  

 Room 1 Room 2 Room 3 Room 4 

Amy $200 $400 $350 $150 
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Betty $400 $250 $300 $200 

Charlie $200 $450 $250 $250 

Danny $300 $300 $200 $200 

Then, following steps 3 and 4, we calculate the sum of valuations of all roommates under the 

utilitarian assignment ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 = $400 + $450 + $350 + $200 = $1400, subtract from it the 

house rent 𝐶 = $1000, then divide by 𝑛 = 4 to obtain the common utility, which yields 

∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
=

$1400−$1000

4
= $100. 

Finally, we ask the four roommates to pay their valuations of the assigned room minus the 

average utility of $100, which yields the price vector 𝑃 = ($300, $350, $250, $100) 

corresponding to the prices of rooms 1, 2, 3, and 4.  

We have therefore found the allocation 𝐴 = ({(Betty, Room 1), (Charlie, Room 2), 

(Amy, Room 3), (Danny, Room 4)}, ($300, $350, $250, $100)) as required. This allocation is 

equitable and individually rational as it guarantees every roommate an equal utility of $100. It is 

also utilitarian as it yields a maximum group utility of $400.  

4 Envy-freeness 

4.1 Envy-free Allocations for 𝒏 = 𝟐 and 𝒏 = 𝟑. 

We start section 4 by introducing the procedures for finding envy-free allocations for the toy cases 

where 𝑛 = 2 and 𝑛 = 3.  

For 𝑛 = 2, we can ensure envy-freeness through a basic divide-and-choose method: randomly 

choose one roommate to divide the house rent between the two rooms so that she is indifferent 

between living in either room, then let the other roommate choose which room she prefers at the 
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given prices. 

 The roommate who divides the prices does not envy the other roommate because she is 

indifferent between living in either room at the prices she sets; the roommate who chooses the 

room also does not envy the other roommate because she gets to choose the room that she prefers 

at the set prices. The method thereby guarantees envy-freeness. 

 For 𝑛 = 3, we can apply a modified version of the Selfridge-Conway procedure (Brams and 

Tylor, 1996) to find an envy-free allocation. An advantage of this procedure is that it generates an 

envy-free allocation without requiring the roommates to disclose their exact valuations of the 

rooms. The procedure works as follows: 

The Selfridge-Conway Procedure 

Step 1. Randomly choose a roommate (marked as A) among the three and let her divide the rent in 

a way that she is indifferent about living in any of the three rooms.  

Step 2. Randomly choose another roommate (marked as B), let her determine the room she likes 

the most (marked as R1) and the 2nd most (marked as R2) at the given prices, then let her increase 

the price of R1 until she is indifferent between choosing R1 or R2 (mark the room other than 

R1 and R2 as R3).   

Step 3. Let the last roommate (marked as C) choose a room at the set prices.  

Step 4. Let B choose between the two rooms left at the set prices, with the limitation that if C 

didn’t choose R1, B now must choose it.  

Step 5. Let A get the room left at the set prices. 
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Step 6. Calculate the total price of the three rooms, subtract the house rent from it, and mark the 

difference by 𝐷, then decrease the price of each room by 𝐷/3. 

The procedure will result in an envy-free allocation since: 

1. C envies nobody since she gets her most desired room at the set prices as the first person to 

choose.  

2. B envies nobody since she will get either R1 or R2, between which she is indifferent at 

the set prices, and she does not prefer R3 to either R2 or room R1.   

3. A envies nobody since she is indifferent between getting R2 or R3, and she will never 

get R1. 

 Note that since increasing/decreasing the prices paid by all roommates by the same amount 

will not affect the envy of any roommates, step 6 is presented here only to make sure the total 

price paid equals the house rent. The procedure thereby generates an envy-free allocation. A more 

rigorous proof concerning the envy-freeness guaranteed by the Selfridge–Conway procedure can 

be found in the appendix of Fair Division: From Cake-Cutting to Dispute Resolution by Brams 

and Tylor (1996).  

 Besides envy-freeness, the two procedures we presented for 𝑛 = 2 and 𝑛 = 3 both 

guarantee individual rationality and utility maximization. In fact, we will show in section 4.2 that 

in our rent division model, an envy-free allocation is necessarily individually rational and 

utilitarian.  

4.2 The Incompatibility Between Equitability and Envy-freeness 

In this section, we aim to prove the incompatibility between equitability and envy-freeness by 
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providing a necessary and sufficient condition for the existence of an equitable and envy-free 

allocation. We start by proving two important lemmas: 

Lemma 3. An envy-free allocation is necessarily individually rational.  

Proof. We use proof by contradiction. Assume that given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉) 

with 𝑛 roommates, we have an envy-free allocation 𝐴 = (𝜎, 𝑃) that is not individually rational. 

It follows that we can find some specific 𝑖 ∈ 𝐼 with the assigned room 𝑟𝑖 = 𝜎(𝑖) such that 

𝑣𝑖𝑟𝑖
< 𝑃𝑟𝑖

. It follows that the utility of 𝑖 is 𝑈𝑖(𝑟𝑖 , 𝑃𝑟𝑖
) = 𝑣𝑖𝑟𝑖

− 𝑃𝑟𝑖
< 0. Since the allocation is 

envy-free, for any individual 𝑗 ∈ 𝐼 with the assigned room 𝑟𝑗 = 𝜎(𝑗), we must have 

𝑈𝑖 (𝑟𝑗 , 𝑃𝑟𝑗
) ≤ 𝑈𝑖(𝑟𝑖, 𝑃𝑟𝑖

) < 0, thereby 𝑈𝑖 (𝑟𝑗 , 𝑃𝑟𝑗
) = 𝑣𝑖𝑟𝑗

− 𝑃𝑟𝑗
< 0 and 𝑣𝑖𝑟𝑗

< 𝑃𝑟𝑗
. It follows 

then ∑ 𝑣𝑖𝑟𝑗𝑟𝑗∈𝑅 < ∑ 𝑃𝑟𝑗𝑟𝑗∈𝑅 = 𝐶, which contradicts assumption 1 that for any 𝑖 ∈ 𝐼, ∑ 𝑣𝑖𝑟𝑖𝑟𝑖∈𝑅 ≥

𝐶. Therefore, an envy-free allocation is necessarily individually rational. 

Lemma 4. Svensson (1983) An envy-free allocation necessarily has an underlying utilitarian 

assignment. 

Proof. We use proof by contrapositive and assume that given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉) 

with 𝑛 roommates, we have a utilitarian assignment 𝜎′ and an allocation 𝐴 = (𝜎, 𝑃) where 𝜎 

is not a utilitarian assignment. It follows then there must exist some individual 𝑖 ∈ 𝐼 with 

assigned rooms 𝑟𝑖 =  𝜎(𝑖) under 𝜎 and 𝑟𝑖
′ =  𝜎′(𝑖) under 𝜎′ such that 𝑈𝑖(𝑟𝑖

′, 𝑝𝑟𝑖
′) >

𝑈𝑖(𝑟𝑖, 𝑝𝑟𝑖
). Otherwise, we would have ∑ 𝑈𝑖(𝑟𝑖

′, 𝑝𝑟𝑖
′ )𝑖∈𝐼 ≤ ∑ 𝑈𝑖(𝑟𝑖, 𝑝𝑟𝑖

)𝑖∈𝐼  so that either 𝜎′ is not 

utilitarian or 𝜎 is utilitarian, which contradicts the assumption that 𝜎′ is a utilitarian assignment 

and 𝜎 is not a utilitarian assignment. Given that 𝑈𝑖(𝑟𝑖
′, 𝑝𝑟𝑖

′) > 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
) for some specific 𝑖 ∈

𝐼, roommate 𝑖 must be envious under allocation 𝐴 since by switching from room 𝑟𝑖  to 𝑟𝑖
′ 
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under the given price vector, 𝑖 can obtain a larger utility. Therefore, 𝐴 is not an envy-free 

allocation, and it follows that an allocation with an underlying assignment that is not utilitarian 

must not be envy-free. We have thereby proved that an envy-free allocation necessarily has an 

underlying utilitarian assignment.  

Having proved Lemma 3 and Lemma 4, we proceed to prove the following theorem, which 

gives a necessary and sufficient condition for the existence of an equitable and envy-free 

allocation. 

Theorem 1. Given a roommate system 𝑆 = (𝐼, 𝑅, 𝑉, 𝐶), an equitable and envy-free allocation 

exists if and only if there is an assignment 𝜎 such that for any individuals 𝑖, 𝑗 ∈ 𝐼 with assigned 

rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗), 𝑣𝑖𝑟𝑖
≥ 𝑣𝑗𝑟𝑖

. 

Proof. We start by proving the “if” statement. Assume that we have an assignment 𝜎 such that for 

any individuals 𝑖, 𝑗 ∈ 𝐼 with the assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗), 𝑣𝑖𝑟𝑖
≥ 𝑣𝑗𝑟𝑖

. We can 

apply Procedure 3.1 to assignment 𝜎 to find a price vector 𝑃 such that the allocation 𝐴 = (𝜎, 𝑃) 

is a unique equitable allocation given assignment 𝜎. Since 𝐴 is equitable, we have 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
) =

𝑈𝑗(𝑟𝑗 , 𝑝𝑟𝑗
) so that 𝑣𝑖𝑟𝑖

− 𝑝𝑟𝑖
= 𝑣𝑗𝑟𝑗

− 𝑝𝑟𝑗
. We also assumed 𝑣𝑖𝑟𝑖

≥ 𝑣𝑗𝑟𝑖
, so that 𝑣𝑖𝑟𝑖

− 𝑝𝑟𝑖
≥

𝑣𝑗𝑟𝑖
− 𝑝𝑟𝑖

. Therefore, we have 𝑣𝑗𝑟𝑗
− 𝑝𝑟𝑗

= 𝑣𝑖𝑟𝑖
− 𝑝𝑟𝑖

≥ 𝑣𝑗𝑟𝑖
− 𝑝𝑟𝑖

, and it follows that 

𝑈𝑗(𝑟𝑗 , 𝑝𝑟𝑗
) = 𝑣𝑗𝑟𝑗

− 𝑝𝑟𝑗
≥ 𝑣𝑗𝑟𝑖

− 𝑝𝑟𝑖
= 𝑈𝑗(𝑟𝑖 , 𝑝𝑟𝑖

), which proves that 𝑗 does not envy 𝑖. Since 

both 𝑖 and 𝑗 are arbitrarily chosen, all roommates must be unenvious under allocation 𝐴, so 𝐴 

is both equitable and envy-free. Thereby an equitable and envy-free allocation must exist under 

our assumption. 

 We proceed to prove the “only if” statement. Assume that there exists an equitable and envy-
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free allocation 𝐴 = (𝜎, 𝑃). It follows from the equitability that for any roommates 𝑖, 𝑗 ∈ 𝐼 with 

assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗), we have 𝑈𝑖(𝑟𝑖 , 𝑝𝑟𝑖
) = 𝑈𝑗(𝑟𝑗 , 𝑝𝑟𝑗

) so that 𝑣𝑖𝑟𝑖
− 𝑝𝑟𝑖

=

𝑣𝑗𝑟𝑗
− 𝑝𝑟𝑗

. It also follows from the envy-freeness that 𝑈𝑗(𝑟𝑗 , 𝑝𝑟𝑗
) ≥ 𝑈𝑗(𝑟𝑖, 𝑝𝑟𝑖

) so that 𝑣𝑗𝑟𝑗
−

𝑝𝑟𝑗
≥ 𝑣𝑗𝑟𝑖

− 𝑝𝑟𝑖
. Therefore, we have 𝑣𝑖𝑟𝑖

− 𝑝𝑟𝑖
= 𝑣𝑗𝑟𝑗

− 𝑝𝑟𝑗
≥ 𝑣𝑗𝑟𝑖

− 𝑝𝑟𝑖
, so that 𝑣𝑖𝑟𝑖

≥ 𝑣𝑗𝑟𝑖
. We 

have thus proved that if there exists an equitable and envy-free allocation, then for any roommates 

𝑖, 𝑗 ∈ 𝐼 with assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗), we must have 𝑣𝑖𝑟𝑖
≥ 𝑣𝑗𝑟𝑖

. 

This theorem can be verbally interpreted as follows: an equitable and envy-free allocation 

exists if and only if there exists an assignment in which every room is assigned to the individual 

that values it the most. We define such an assignment as a dominant assignment: 

Definition 6. An assignment 𝜎 is a dominant assignment if for any individuals 𝑖, 𝑗 ∈ 𝐼 with 

assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗), 𝑣𝑖𝑟𝑖
≥ 𝑣𝑗𝑟𝑖

. 

Theorem 1 demonstrates the incompatibility between equitability and envy-freeness, stating 

that in the absence of a dominant assignment, an equitable and envy-free allocation does not exist. 

It is worth noting that since a dominant assignment derives an envy-free allocation according to 

the proof of Theorem 1, any dominant assignment must be utilitarian based on Lemma 4.  

We continue to prove a corollary concerning dominant assignments： 

Corollary 1. If dominant assignments exist in a roommate system, then all utilitarian assignments 

are necessarily dominant assignments.  

Proof. Assume we have a dominant assignment 𝜎 and some utilitarian assignment 𝜎′. Since 𝜎 is 

a dominant assignment, it follows that for any 𝑖 ∈ 𝐼 with the assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 

𝑟𝑖
′ = 𝜎′(𝑖), we have 𝑣𝑖𝑟𝑖

≥ 𝑣𝑖𝑟𝑖
′. Since 𝜎′ is a utilitarian assignment, it follows from Lemma 1 
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that ∑ 𝑣𝑖𝑟𝑖𝑖∈𝐼 ≤ ∑ 𝑣𝑖𝑟𝑖
′𝑖∈𝐼 . Note that we have 𝑣𝑖𝑟𝑖

≥ 𝑣𝑖𝑟𝑖
′ for any 𝑖 ∈ 𝐼 and ∑ 𝑣𝑖𝑟𝑖𝑖∈𝐼 ≤

∑ 𝑣𝑖𝑟𝑖
′𝑖∈𝐼 , therefore 𝑣𝑖𝑟𝑖

= 𝑣𝑖𝑟𝑖
′ for all 𝑖 ∈ 𝐼, and 𝜎′ is a dominant assignment. We have therefore 

proved that if dominant assignments exist, then all utilitarian assignments are necessarily dominant 

assignments. 

Note that according to Corollary 1, either dominant assignments do not exist or all utilitarian 

assignments are dominant assignments. We therefore have the following efficient procedure to 

determine whether an equitable and envy-free allocation exists and to identify if it does: 

Procedure 4.2 

Step 1. Given a roommate system, we apply the Hungarian method to find a utilitarian assignment 

𝜎. 

Step 2. Determine whether 𝜎 is a dominant assignment by checking whether 𝑣𝑖𝑟𝑖
≥ 𝑣𝑗𝑟𝑖

 for all 

individuals 𝑖, 𝑗 ∈ 𝐼 with assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗).  

Step 3. If 𝜎 is not a dominant assignment, then an equitable and envy-free allocation does not 

exist. If 𝜎 is a dominant assignment, then we apply Procedure 3.1 to 𝜎, which is guaranteed to 

yield an equitable and envy-free allocation based on the justification in the proof for Theorem 1.  

 We end this section by providing two examples, one in which a dominant assignment exists 

and the other in which a dominant assignment does not exist, to demonstrate how Procedure 4.2 

works: 

Example 2. A case in which a dominant assignment exists: 

Suppose there are four roommates: Amy, Betty, Charlie, and Danny, renting a house with 4 
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rooms together, whose total rent is $1000. The following is their valuation matrix: 

Table 4. The Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

Amy $200 $400 $350 $150 

Betty $400 $250 $300 $200 

Charlie $200 $450 $250 $250 

Danny $300 $300 $200 $300 

The Hungarian method yields the following utilitarian assignment:  

Table 5. The Utilitarian Assignment  

 Room 1 Room 2 Room 3 Room 4 

Amy $200 $400 $350 $150 

Betty $400 $250 $300 $200 

Charlie $200 $450 $250 $250 

Danny $300 $300 $200 $300 

Note that the utilitarian assignment in Table 5 is clearly a dominant assignment because every 

boxed element in Table 5 is the largest in its column. Therefore, an equitable and envy-free 

allocation exists under this dominant assignment, and we can find it by applying Procedure 3.1. 

More specifically, we calculate the sum of valuations of all roommates under the utilitarian 

assignment ∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 = $400 + $450 + $350 + $300 = $1500, subtract from it the house rent 

𝐶 = $1000, then divide by 4 obtain the common utility, which yields 
∑ 𝑣𝑖𝜎(𝑖)𝑖∈𝐼 −𝐶

𝑛
=

$1500−$1000

4
=
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$125. 

Finally, we ask the four roommates to pay their valuations of the assigned room minus the 

average utility of $125, which yields the price vector 𝑃 = ($275, $325, $225, $175) 

corresponding to the prices of rooms 1, 2, 3, and 4.  

We have therefore found the allocation 𝐴 = ({(Betty, Room 1), (Charlie, Room 2), 

(Amy, Room 3), (Danny, Room 4)}, ($275, $325, $225, $175)) as required. This allocation is 

equitable and envy-free as it guarantees every roommate an equal utility of $125 while ensuring 

no roommate wishes to exchange room with anybody else. 

Example 3. A case in which a dominant assignment does not exist: 

Suppose there are four roommates: Amy, Betty, Charlie, and Danny, renting a house with 4 rooms 

together, whose total rent is $1000. Following is their valuation matrix: 

Table 6. The Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

Amy $200 $400 $350 $150 

Betty $400 $250 $300 $200 

Charlie $200 $450 $250 $250 

Danny $300 $300 $200 $200 

The Hungarian method yields the following utilitarian assignment:  
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Table 7. The Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

Amy $200 $400 $350 $150 

Betty $400 $250 $300 $200 

Charlie $200 $450 $250 $250 

Danny $300 $300 $200 $200 

Note that in the utilitarian assignment, Danny is assigned to Room 4. However, Charlie has a 

larger valuation than Danny for Room 4 (i.e., $250 > $200 ). Therefore, a dominant assignment 

does not exist according to Corollary 1, and it follows from Theorem 1 that there exist no equitable 

and envy-free allocations.    

4.3 Graph Representation of the Envy Network 

This section presents a graph representation of the envy network given an allocation, which is 

necessary for our graph-based procedure for finding an envy-free allocation.  

Alkan et al. (1991) showed the existence of envy-free allocations in a more general model 

compared to ours, where any number of people and objects are allowed; Aragones (1995) also 

showed in a similar setting that envy-free allocations of objects exist under any given utilitarian 

assignment of objects. Also, according to Lemma 4, an envy-free allocation must have an 

underlying utilitarian assignment. It follows that finding an envy-free allocation is equivalent to 

finding a price vector that guarantees envy-freeness under any given utilitarian room assignment.  

To find such a price vector, we proceed to present a complete weighted directed graph to 
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illustrate an envy network consisting of all roommates. Given a roommate system of 𝑛 

roommates with an allocation 𝐴 = (𝜎, 𝑃), we can construct a unique complete weighted directed 

graph 𝐺 = (𝑉, 𝐸, 𝑊), where: 

1. 𝑉 is the set of 𝑛 vertices where each vertex 𝑣𝑖 ∈ 𝑉 represents a roommate 𝑖 ∈ 𝐼. 

2. 𝐸 is the set of directed edges, where each edge 𝑒𝑖𝑗 ∈ 𝐸 represents an envy relation directed 

from roommate 𝑖 toward roommate 𝑗 (i.e., an edge 𝑒𝑖𝑗 pointing from 𝑣𝑖 to 𝑣𝑗 represents 

the relation “𝑖 envies 𝑗”).  

3. 𝑊: 𝐸 → ℝ is a function that assigns a weight (i.e., a real number) to each edge, where each 

weight represents the amount of monetary compensation required to eliminate envy (i.e., a 

weight 𝑤𝑖𝑗 assigned to an edge 𝑒𝑖𝑗 means we need to compensate roommate 𝑖 a minimum 

dollar amount of 𝑤𝑖𝑗 to eliminate her envy toward 𝑗).  

Note that we allow negative weights to be assigned to edges. In this case, a negative weight 

𝑤𝑖𝑗 assigned to an edge 𝑒𝑖𝑗 means we need to detract from roommate 𝑖 a minimum dollar 

amount of |𝑤𝑖𝑗| for her to become envious of roommate 𝑗. We assign a pair of edges pointing in 

the opposite direction between every two vertices to represent the envy relation between two 

roommates. 

 The envy network can be derived following the steps below: 

Step 1. Given an allocation 𝐴 = (𝜎, 𝑃), for every 𝑖 ∈ 𝐼 with assigned room 𝑟𝑖 = 𝜎(𝑖), calculate 

𝑈𝑖(𝑟𝑗 , 𝑃𝑟𝑗
) for all 𝑗 ∈ 𝐼 with assigned room 𝑟𝑗 = 𝜎(𝑗). 

Step 2. For each 𝑖 ∈ 𝐼, calculate 𝑤𝑖𝑗 = 𝑈𝑖(𝑟𝑗 , 𝑃𝑟𝑗
)−𝑈𝑖(𝑟𝑖 , 𝑃𝑟𝑖

) for all 𝑗 ∈ 𝐼. 

Step 3. Create a complete weighted directed graph, representing each individual 𝑖 ∈ 𝐼 with a 
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vertex 𝑣𝑖, drawing a pair of edges 𝑒𝑖𝑗 and 𝑒𝑗𝑖 pointing from 𝑣𝑖 to 𝑣𝑗 and from 𝑣𝑗 to 𝑣𝑖, 

respectively, and assigning 𝑒𝑖𝑗 the weight 𝑤𝑖𝑗 and 𝑒𝑗𝑖 the weight 𝑤𝑗𝑖. 

 To illustrate how to derive such an envy network given an allocation, we show the following 

example: 

Example 4. Derivation of an Envy Network 

Suppose we have a roommate system of three individuals: A, B, and C, with the total rent 

𝐶 = $600 and the following valuation matrix. 

Table 8. The Valuation Matrix 

 Room 1 Room 2 Room 3 

A $200 $400 $350 

B $400 $250 $300 

C $200 $450 $250 

Let’s start with a random allocation 𝐴 = (𝜎, 𝑃), where 𝜎 = {(A, Room 3), (B, Room 2),  

(C, Room 1)} and a price vector 𝑃 = ($200, $200, $200):  

Table 9. The Assignment 

 Room 1 Room 2 Room 3 

A $200 $400 $350 

B $400 $250 $300 

C $200 $450 $250 
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Following step 1, we replace the valuation matrix with a utility matrix by subtracting from 

each column the price of the room corresponding to the column index:  

Table 10. The Utility Matrix  

 Room 1 Room 2 Room 3 

A $0 $200 $150 

B $200 $50 $100 

C $0 $250 $50 

 Following step 2, subtract from each row the utility of the corresponding roommate (i.e., the 

value in this row that is boxed), and change the column indices from the rooms to the roommates 

that are assigned to the rooms to obtain the labeled adjacency matrix: 

Table 11. The Labeled Adjacency Matrix  

 C B A 

A $ − 150 $50 $0 

B $150 $0 $50 

C $0 $250 $50 

Now that the value in the row of roommate 𝑖 and column of roommate 𝑗 of the adjacency 

matrix represents the minimum dollar amount needed to compensate 𝑖 to eliminate her envy 

toward 𝑗 and is thus the weight assigned to edge 𝑒𝑖𝑗. Following step 3, we proceed to generate 

the envy network based on the adjacency matrix: 
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Figure 1. The Envy Network 

 Room 1 Room 2 Room 3 

Roommate C B A 

Price $200 $200 $200 

 

Note that the table above the graph keeps track of the room assignment and the price of each 

room. A non-positive weight 𝑤𝐴𝐶 = −150 assigned to the edge 𝑒𝐴𝐶 suggests that A does not 

envy 𝐶 under the current allocation. Since a positive weight suggests the presence of envy in the 

network, we can obtain an envy-free allocation if and only if all positive weights in the envy 

network are eliminated. 

Having clarified how to construct an envy network given an allocation, we continue to analyze 

some of its properties. We start by proving the following lemma: 

Lemma 5. Given an envy network 𝐺 under the allocation 𝐴 = (𝜎, 𝑃) , for any two roommates 𝑖,

𝑗 ∈ 𝐼 with the assigned rooms 𝑟𝑖 = 𝜎(𝑖) and 𝑟𝑗 = 𝜎(𝑗), moving 𝑖 from 𝑟𝑖  to 𝑟𝑗  increases the 

utility of 𝑖 by 𝑤𝑖𝑗.  

Proof. Recall that the weight assigned to edge 𝑒𝑖𝑗 is calculated as 𝑤𝑖𝑗 = 𝑈𝑖 (𝑟𝑗 , 𝑃𝑟𝑗
) − 𝑈𝑖(𝑟𝑖 , 𝑃𝑟𝑖

) 

for 𝑖, 𝑗 ∈ 𝐼. Thereby, if we move roommate 𝑖 from 𝑟𝑖  to 𝑟𝑗 , her utility will change from 
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𝑈𝑖(𝑟𝑖 , 𝑃𝑟𝑖
) to 𝑈𝑖(𝑟𝑗 , 𝑃𝑟𝑗

) so she gains a utility of 𝑈𝑖(𝑟𝑗 , 𝑃𝑟𝑗
) − 𝑈𝑖(𝑟𝑖 , 𝑃𝑟𝑖

), which is exactly equal to 

the weight 𝑤𝑖𝑗 .  

Lemma 5 can be used to prove the following important theorem: 

Theorem 2. (Aragones, 1995) Any allocation 𝐴 = (𝜎, 𝑃) where 𝜎 is a utilitarian assignment 

derives an envy network in which no cycle has a positive total weight.   

Proof. We use proof by contrapositive. Assume we have an allocation 𝐴 = (𝜎, 𝑃) and derive 

based on 𝐴 an envy network 𝐺 = (𝑉, 𝐸, 𝑊) that contains a cycle with a positive total weight. It 

follows that there exist some vertices 𝑣1, 𝑣2, . . . , 𝑣𝑘 ∈ 𝑉 such that 𝑤12 + 𝑤23+. . . +𝑤(𝑘−1)𝑘 +

𝑤𝑘1 > 0.  

Suppose roommate 𝑖 is assigned to room 𝑟𝑖 = 𝜎(𝑖) for any 𝑖 ∈ {1,2, . . . 𝑘}. Then, according 

to Lemma 5, if we move roommate 1 from 𝑟1 to 𝑟2 , roommate 2 from 𝑟2 to 𝑟3, …, roommate 

𝑘 − 1 from 𝑟𝑘−1 to 𝑟𝑘, and roommate 𝑘 from 𝑟𝑘 to 𝑟1, we can increase the utility of 

roommate 1 by 𝑤12, the utility of roommate 2 by 𝑤23, …, the utility of roommate 𝑘 − 1 by 

𝑤(𝑘−1)𝑘, and the utility of roommate 𝑘 by 𝑤𝑘1. This will increase the total utility by an amount 

𝑤12 + 𝑤23+. . . +𝑤(𝑘−1)𝑘 + 𝑤𝑘1 > 0. Therefore, 𝜎 is not a utilitarian assignment since the total 

utility under 𝜎 can be further increased. We have thus proved that an envy network derived from 

an allocation with a utilitarian assignment does not contain a cycle with a positive total weight. 

Aragones (1995) managed to prove a stronger version of this theorem, but in the context of 

our study, Theorem 2 itself is sufficient. 

We proceed to examine the effect that a change in room price has on the envy network. From here 

on, we forsake the assumption that the sum of the prices of all rooms must equal the house rent 
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and define a price vector 𝑃 ∈  ℝ𝑛 as feasible if ∑ 𝑝𝑟𝑖𝑟𝑖∈𝑅 = 𝐶. In other words, we allow the 

existence of infeasible price vectors in which ∑ 𝑝𝑟𝑖𝑟𝑖∈𝑅 ≠ 𝐶. 

We start by proving the following property of an envy network, which illustrates how a 

change in the price paid by a roommate affects the weights of the edges in an envy network:  

Property 1. Given an envy network 𝐺 = (𝑉, 𝐸, 𝑊), if we increase the price paid by some 

roommate 𝑖 ∈ 𝐼 by an amount 𝑐 ∈ ℝ, then for vertex 𝑣𝑖 ∈ 𝑉, the weights of all its out-edges will 

increase by 𝑐, and the weights of all its in-edges will decrease by 𝑐. 

Proof. Given an envy network 𝐺 = (𝑉, 𝐸, 𝑊), suppose we increase the price paid by some 

roommate 𝑖 ∈ 𝐼 by an amount 𝑐 ∈ ℝ. Recall that the weight of any out-edge of vertex 𝑣𝑖 is 

expressed as 𝑤𝑖𝑗 = 𝑈𝑖(𝑟𝑗 , 𝑃𝑟𝑗
)−𝑈𝑖(𝑟𝑖 , 𝑃𝑟𝑖

) where 𝑗 ≠ 𝑖, 𝑗 ∈ 𝐼 is some other roommate. Note that 

𝑤𝑖𝑗 = 𝑈𝑖(𝑟𝑗 , 𝑃𝑟𝑗
)−𝑈𝑖(𝑟𝑖, 𝑃𝑟𝑖

) = 𝑣𝑖𝑟𝑗
− 𝑃𝑟𝑗

− 𝑣𝑖𝑟𝑖
+ 𝑃𝑟𝑖

, so when 𝑃𝑟𝑖
 is increased by 𝑐, 𝑤𝑖𝑗 is also 

increased by 𝑐.  

 Also, recall that the weight of any in-edge of vertex 𝑣𝑖 is expressed as 𝑤𝑗𝑖 =

𝑈𝑗(𝑟𝑖 , 𝑃𝑟𝑖
)−𝑈𝑗(𝑟𝑗 , 𝑃𝑟𝑗

) where 𝑗 ≠ 𝑖 ∈ 𝐼 is some other roommate. Note that 𝑤𝑗𝑖 =

𝑈𝑗(𝑟𝑖 , 𝑃𝑟𝑖
)−𝑈𝑗(𝑟𝑗 , 𝑃𝑟𝑗

) = 𝑣𝑗𝑟𝑖
− 𝑃𝑟𝑖

− 𝑣𝑗𝑟𝑗
+ 𝑃𝑟𝑗

, so when 𝑃𝑟𝑖
 is increased by 𝑐, 𝑤𝑗𝑖 is decreased 

by 𝑐. 

 We have thus proved Property 1. 

Following Property 1, we can prove another property of an envy network: 

Property 2. Given an envy network 𝐺, the total weight of any cycle in 𝐺 will stay constant 

regardless of the changes in prices paid by any roommates. 
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Proof. Given an envy network 𝐺 = (𝑉, 𝐸, 𝑊), suppose we increase the price paid by some 

roommate 𝑖 ∈ 𝐼 by an amount 𝑐 ∈ ℝ. Based on Property 1, for vertex 𝑣𝑖 ∈ 𝑉, the weights of all 

its out-edges will increase by 𝑐, and the weights of all its in-edges will decrease by 𝑐.  

Consider any cycle in 𝐺: if the cycle does not contain vertex 𝑣𝑖, then the change in the price 

paid by 𝑖 will not affect the total weight of this cycle; if the cycle contains vertex 𝑣𝑖, then it must 

contain the same number of in-edges as the number of out-edges of 𝑣𝑖, and since the weights of all 

in-edges are decreased by 𝑐 while the weights of all out-edges are increased by 𝑐, the total 

weight of this cycle will not change either. 

We have therefore proved that the total weight of any cycle in 𝐺 will not change as a result of 

the changes in prices paid by any roommates. 

Recall that our aim is to eliminate all positive weights in the envy network to obtain an envy-free 

allocation. According to Property 2, changes in prices paid by any roommates do not change the 

total weight of any cycle. It follows that if there exists some cycle in an envy network 𝐺 with a 

positive total weight, then we can never eliminate all positive weights by changing the prices 

because the weights in the cycle must sum to a positive constant. Therefore, given a cycle with a 

positive total weight, it is impossible to obtain an envy-free allocation through price changes.  

 Fortunately, according to Theorem 2, an envy network derived based on a utilitarian 

assignment must contain no cycle with a positive total weight. It follows that based on the 

existence of envy-free allocations under any utilitarian assignments, an envy network derived 

based on a utilitarian assignment can always generate an envy-free allocation through some 

changes in room prices. More specifically, given a utilitarian assignment, we can always construct 
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an envy network based on any initial price vector and eliminate all positive weights through some 

price operations (i.e., increasing/decreasing the prices paid by some roommates). In section 4.4, we 

will introduce an algorithm proposed by Haake et al. (2002) that generates an envy-free allocation 

through price operations starting from any utilitarian room assignment. 

4.4 Procedure for Finding an Envy-free Allocation  

We start this section by introducing an adjusted version of the compensation procedure 

developed by Haake et al. (2002), which is a graph-based procedural algorithm for finding envy-

free allocations. This algorithm yields an envy-free allocation for indivisible goods through 

monetary compensation and can be applied to our model after some minor adjustments since both 

of us make the same fundamental assumptions as many other related studies (e.g., quasi-linear 

utility function). For this algorithm to function, we need to first identify a utilitarian assignment 

and ask all roommates to pay their valuations. The adjusted algorithm works as follows:  

The Compensation Procedure 

Step 1. Given a roommate system 𝑆 = (𝐶, 𝐼, 𝑅, 𝑉), find an allocation with a utilitarian assignment 

and a price vector where all roommates pay their valuations of the assigned rooms. Note that the 

initial price vector may not be feasible (i.e., the sum of the room prices can be greater than the 

house rent 𝐶).  

Step 2. Construct an envy network based on the utilitarian allocation. There always exists at least 

one roommate who envies nobody (i.e., a vertex that has no out-edges with positive weights), as 

stated by Haake et al. (2002) in Theorem 1 of their paper.  
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Step 3. For each roommate (i.e., vertex), mark an out-edge with the maximum positive weight as 

the max-envy edge. Note that a roommate (i.e., vertex) does not have a max-envy edge if all her 

out-edges have non-positive weights. 

Step 4. Compensate each roommate (i.e., vertex) with a max-envy edge pointing to a roommate 

who envies nobody (i.e., a vertex that has no out-edges with positive weights) by decreasing the 

price she pays by the weight of her max-envy edge.  

Step 5. Examine whether the current allocation is envy-free by checking if all max-envy edges in 

the envy network have been removed. Note that this is equivalent to checking if all edges have 

non-positive weights. If not, go to step 3 and repeat. Haake et al. (2002) state in Theorem 2 of their 

paper that at most 𝑛 − 1 repetitions are needed to remove all edges with positive weights. 

Step 6. After eliminating all edges with positive weights, calculate the sum of the room prices and 

denote it as 𝑄, then decrease the price of each room by 
𝑄−𝐶

𝑛
 to ensure the total amount of money 

paid by the roommates equals the rent 𝐶 while maintaining envy-freeness. Haake et al. (2002) 

state in Theorem 4 of their paper that 𝑄 − 𝐶 is guaranteed to be positive.  

This algorithm generates an envy-free allocation because it removes all the positive weights in 

an envy network within 𝑛 − 1 repetitions. Based on Lemma 3, the allocation generated using this 

algorithm is also individually rational. In their paper, Haake et al. (2002) proved some important 

properties of this algorithm that ensure its functionality given an initial utilitarian assignment. 

Details concerning the proof of these properties can be found in section 4 of their paper and are 

thus omitted here and left for the readers to discover if interested. We continue to provide an 

example to demonstrate how this algorithm functions: 
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Example 5. Demonstration of the Compensation Procedure 

 Suppose we have a roommate system of four individuals: A, B, C, and D with the total rent 

𝐶 = $ 1000 and the following valuation matrix: 

Table 12. The Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

A $550 $350 $450 $350 

B $550 $450 $400 $400 

C $400 $400 $350 $350 

D $500 $300 $400 $350 

 Applying the Hungarian method yields the following utilitarian assignment: 

Table 13. The Utilitarian Assignment 

 Room 1 Room 2 Room 3 Room 4 

A $550 $350 $450 $350 

B $550 $450 $400 $400 

C $400 $400 $350 $350 

D $500 $300 $400 $350 

 Let each roommate pay her valuation of the assigned room so that we have the price vector 

𝑃 = ($500, $400, $450, $400). We replace the valuation matrix with a utility matrix by 

subtracting from each column the price of the room corresponding to the column index: 
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Table 14. The Utility Matrix 

 Room 1 Room 2 Room 3 Room 4 

A $50 $ − 50 $0 $ − 50 

B $50 $50 $ − 50 $0 

C $ − 100 $0 $ − 100 $ − 50 

D $0 $ − 100 $ − 50 $ − 50 

Then, subtract from each row the utility of the corresponding roommate (i.e., the value in this 

row that is boxed), and change the column indices from the rooms to the roommates that are 

assigned to the rooms to obtain the labeled adjacency matrix. Note that since all boxed values are 

0, the labeled adjacency matrix looks exactly the same as the utility matrix: 

Table 15. The Labeled Adjacency Matrix 

 D C A B 

A $50 $ − 50 $0 $ − 50 

B $50 $50 $ − 50 $0 

C $ − 100 $0 $ − 100 $ − 50 

D $0 $ − 100 $ − 50 $ − 50 

Based on the adjacency matrix, we can derive the following envy network: 
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Figure 2. The Envy Network 

 Room 1 Room 2 Room 3 Room 4 

Roommate D C A B 

Price $500 $400 $450 $400 

 

 Based on the envy network, we notice that D envies nobody because all her out-edges have 

non-positive weights. Then we examine the max-envy edges of all roommates and check which of 

these max-envy edges point toward D.  

All the out-edges of C have negative weights so C does not have a max-envy edge; A has a 

max-envy edge that points to D with a weight of 50; B has two out-edges with a weight of 50 

that point to D and C respectively, so we mark the edge that points to D as the max-envy edge. 

It follows that we have identified two max-envy edges: 𝑒𝐴𝐷  and 𝑒𝐵𝐷, so we compensate A and 

B the weights of their max-envy edges respectively. That is, we decrease the price that A pays by 

$50 and the price that B pays by $50.  

After completing this round of compensation, we can refer to Property 1 to examine the effect 
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that a change in prices has on the envy network and redraw the envy network.  

Figure 3. The Updated Envy Network  

 Room 1 Room 2 Room 3 Room 4 

Roommate D C A B 

Price $500 $400 $400 $350 

 

Note that after the first round of compensation, there are no more edges with positive weights 

in the envy network. Therefore, the algorithm terminates, and we have found an envy-free 

allocation. To ensure the feasibility of the price vector, we calculate the sum of all prices 𝑄 =

$500 + $400 + $400 + $350 = $1650, subtract from it the house rent 𝐶 = $1000, and divide 

the difference by 𝑛 = 4 to obtain the average surplus 
𝑄−𝐶

𝑛
=

$1650−$1000

4
 

= $162.5. Finally, we subtract the average surplus from the original price vector to obtain the 

feasible price vector 𝑃 = ($337.5, $237.5, $237.5, $187.5). We have therefore found an envy-

free allocation: 𝐴 = ({(D, Room 1), (C, Room 2), (A, Room 3), (B, Room 4)}, 

 ($337.5, $237.5, $237.5, $187.5)). 

Notably, the compensation procedure does not explicitly state how to find a utilitarian assignment 
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to start with since they do not assume their allocation problem to be balanced; it also does not 

consider equitability of the allocation. We can improve this algorithm by adding the following two 

extra steps: 

(1). Identify a utilitarian assignment to start with using the Hungarian method. 

(2). Examine whether the utilitarian assignment is a dominant assignment to check whether there 

exists an equitable and envy-free allocation and identify it if it exists. 

Then, it follows that we can design the following procedure, which yields an allocation that is 

utilitarian, individually rational, envy-free, and whenever possible, equitable: 

Procedure 4.4 

Step 1. Given a roommate system 𝑆 = (𝐼, 𝑅, 𝑉, 𝐶), apply the Hungarian method to find a 

utilitarian assignment 𝜎. 

Step 2. Check whether assignment 𝜎 is a dominant assignment. 

Step 3. If 𝜎 is a dominant assignment, we apply Procedure 3.1 to 𝜎, which yields an equitable 

and envy-free allocation; if 𝜎 is not a dominant assignment, we derive an envy network based on 

𝜎 and apply the compensation procedure, which yields an envy-free allocation. 

5 Discussion  

5.1 A Discussion on Truthfulness  

An assumption we have been making throughout our study is that individuals will truthfully report 

their valuations. In practice, however, individuals might be incentivized to misreport their 

valuations to obtain a larger utility. The following is an example: 
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Example 6. Truthfulness Analysis 

Suppose we have a roommate system of three individuals: A, B, and C with the total rent 

𝐶 = $1002 and the following valuation matrix: 

Table 16. The Valuation Matrix 

 Room 1 Room 2 Room 3 

A $1000 $1 $1 

B $1 $1000 $1 

C $1 $1 $1000 

 Following Procedure 4.4, we can find the equitable and envy-free allocation 𝐴 =

({(A, Room 1), (B, Room 2), (C, Room 3)}, ($334, $334, $334 )).  

Notably, given the valuations reported by B and C, A has the incentive to report a lower 

valuation for Room 1. For instance, A can report the valuations ($502, $250, $250) for Rooms 

1, 2, and 3, respectively, which results in the following valuation matrix: 

Table 17. The Untruthfully Reported Valuation Matrix 

 Room 1 Room 2 Room 3 

A $502 $250 $250 

B $1 $1000 $1 

C $1 $1 $1000 

Following Procedure 4.4, we find the equitable and envy-free allocation 𝐴′ =

({(A, Room 1), (B, Room 2), (C, Room 3)}, ($2, $500, $500 )), in which A pays only $2. 
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Roommate A therefore can gain a utility of $998 by misreporting her valuation, while B and C 

both gain a utility of $500 by reporting their true valuations. Similarly, given the truthful 

valuations reported by others, both B and C have the incentive to report lower valuations for 

their assigned rooms.  

 For this specific example, we can find a symmetric Nash Equilibrium under the dominant 

assignment, where each player reports ($334, $334, $334 ) as her valuations for Rooms 1, 2, and 

3 respectively, which yields the following valuation matrix: 

Table 18. The Reported Valuation Matrix Under Symmetric NE  

 Room 1 Room 2 Room 3 

A $334 $334 $334 

B $334 $334 $334 

C $334 $334 $334 

Following Procedure 4.4, we can find the equitable and envy-free allocation 𝐴′′ =

({(A, Room 1), (B, Room 2), (C, Room 3)}, ($334, $334, $334 )), which happens to be the same 

as the allocation achieved under the truthful report of valuations. 

Example 6 demonstrates how individuals may have the incentive to misreport their valuations to 

obtain a higher utility. In example 6, we can find a symmetric Nash Equilibrium that yields the 

same allocation as achieved under the truthful report of valuations. However, in most cases, such a 

symmetric Nash Equilibrium in which all individuals report the same valuations for all rooms does 

not exist.  
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When applying Procedure 4.4 to reality, we need to ensure that the valuations of all 

roommates are private information and that the procedure is only implemented once, so that no 

roommate can adjust her bids based on her knowledge of the valuations of others.  

However, each individual can still make inferences concerning the valuations of others based 

on her own valuations. For instance, in example 6, knowing that her valuation for Room 1 is 

exceptionally high, roommate A can make a reasonable inference that others wouldn’t value 

Room 1 as much as she does. Thus, A can still slightly lower her bids for Room 1 while ensuring 

that she gets assigned to Room 1 at a lower price.  

5.2 A Discussion on Non-Negativity   

We end our discussion by analyzing a special example in which some roommate pays a 

negative rent in the resulting envy-free allocation: 

Example 7. An Inevitable Negative Rent  

Suppose we have a roommate system of four individuals: A, B, C, and D, with the total rent 

𝐶 = $1000 and the following valuation matrix: 

Table 19. The Valuation Matrix 

 Room 1 Room 2 Room 3 Room 4 

A $1000 $1 $1 $0 

B $1 $1000 $1 $0 

C $1 $1 $1000 $0 

D $501 $501 $501 $1 
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We can notice the existence of a dominant assignment:  

Table 20. The Dominant Assignment 

 Room 1 Room 2 Room 3 Room 4 

A $1000 $1 $1 $0 

B $1 $1000 $1 $0 

C $1 $1 $1000 $0 

D $501 $501 $501 $1 

 Then, following Procedure 4.4, we choose this dominant assignment and ask each roommate 

to pay her valuation minus the average surplus under the dominant assignment. The average 

surplus is calculated as 𝑄 = ($1000 + $1000 + $1000 + $1 − $1000) ÷ 4 = $500.25.  

Then we compensate each roommate an amount of $500.25 to obtain the price vector 𝑃 =

($499.75, $499.75, $499.75, −$499.25). We therefore have the allocation 𝐴 = ({(A, Room 1),

(B, Room 2), (C, Room 3), (D, Room 4)}, ($499.75, $499.75, $499.75, −$499.25)). This 

allocation must be both equitable and envy-free, as backed by Procedure 4.4. Notably, roommate 

D is paying negative rent, which means besides covering all the rent, roommates A, B, and C 

must pay an extra amount of money to compensate D. This makes sense as Room 4 is considered 

the most undesirable choice for all four roommates according to the valuation matrix. In such an 

extreme case where nobody values Room 4 more than a dollar, whoever ends up being assigned to 

Room 4 should be given some monetary compensation to guarantee envy-freeness and equitability. 

However, in example 7, roommates A, B, and C can choose to collude with each other by 

excluding D from the house and distributing the rent among the three of them. Excluding D will 
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yield the following valuation matrix and dominant assignment: 

Table 21. The Valuation Matrix and Dominant Assignment (excluding D) 

 Room 1 Room 2 Room 3 Room 4 

A $1000 $1 $1 $0 

B $1 $1000 $1 $0 

C $1 $1 $1000 $0 

Similarly, following Procedure 4.4, we can find an envy-free and equitable allocation in which 

each of A, B, and C pays one-third of the rent and obtains a common utility of 𝑈 = $1000 −

$333.33 = $666.67. Recall in example 7, A, B, and C all obtain a common utility of $500.25, 

which is smaller than a common utility of $666.67 under collusion. Therefore, A, B, and C all 

have the incentive to exclude D from the house to obtain a larger utility.  

Additionally, even if we give up equitability, it is still impossible to find an envy-free 

allocation in which everybody pays a non-negative rent in example 7. This is known as the 

incompatibility between envy-freeness and non-negativity. Following is a proof for such 

incompatibility in example 7: 

Proposition 1. In example 7, there exists no envy-free allocation with a feasible non-negative price 

vector.  

Proof. We use proof by contradiction. Suppose there exists an envy-free allocation 𝐴 with a non-

negative price vector 𝑃. Since an envy-free allocation must have an underlying utilitarian 

assignment, allocation 𝐴 must have the assignment 𝜎 =  {(A, Room 1), (B, Room 2),
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(C, Room 3), (D, Room 4)}, since 𝜎 is the only utilitarian assignment.  

 Then, since 𝑃 is non-negative, the utility of roommate D must not exceed 1 since one’s 

utility cannot be greater than her valuation of the assigned room under a non-negative price (i.e., 

𝑈𝐷(𝑅𝑜𝑜𝑚 4, 𝑝𝑅𝑜𝑜𝑚 4) = $1 − 𝑝𝑅𝑜𝑜𝑚 4 ≤ $1 ∀ 𝑝𝑅𝑜𝑜𝑚 4 ∈ ℝ ≥ 0). Also, since D values each of 

Rooms 1, 2, and 3 at $501 and is unenvious, the price of each of these three rooms must be no 

less than $501 − $1 = $500. Otherwise, D must be envious: suppose 𝑝𝑟 < $500 for some 𝑟 ∈

{Room 1, Room 2, Room 3}, then 𝑈𝐷(𝑟, 𝑝𝑟) = $501 − 𝑝𝑟 > 1 ≥ 𝑈𝐷(𝑅𝑜𝑜𝑚 4, 𝑝𝑅𝑜𝑜𝑚 4), and D 

will envy whoever lives in room 𝑟.  

 Therefore, the prices of Rooms 1,2, and 3 must all be greater than or equal to $500, and the 

sum of the prices of all 4 rooms must be greater than $1500 so that the price vector 𝑃 is not 

feasible, contradicting the assumption that 𝑃 is a feasible price vector. Therefore, in example 7, 

there exists no envy-free allocation with a feasible non-negative price vector. 

In fact, Brams (2008) demonstrated in a similar setting that for 𝑛 ≥ 4, envy-free allocations with 

non-negative prices might not exist. An issue that arises from the incompatibility between envy-

freeness and non-negativity is that we cannot always find a stable allocation. In example 7, if we 

want to ensure envy-freeness, then we cannot eliminate the incentives of A, B, and C to collude 

with each other and exclude D from the house resulting from the negative price that D pays; if 

we want to ensure non-negative prices, then we cannot eliminate the envy of D toward some 

other roommates. In either case, the allocation lacks stability, which makes it difficult to sustain 

the current allocation because some roommates will have the incentive to negotiate for changes in 

either prices or room assignments.  
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Procedure 4.4 guarantees envy-freeness but not non-negativity. An implicit assumption made 

in our model is that the roommates have agreed in advance that they will live together, leaving no 

potential to exclude any roommates from the house. Under such an assumption, negative prices 

paid by some roommates no longer imply a lack of stability in the allocation, because the 

possibility of collusion has been eliminated. Therefore, it becomes reasonable to make monetary 

compensation to roommates who are assigned to the least desirable rooms, if necessary, to 

guarantee envy-freeness.  

In reality, our model is most appropriate for situations where there exist some external factors 

that contribute to an agreement among the roommates to live together before they decide on the 

exact room assignment and prices (e.g., roommates are very close friends, relatives, or coworkers). 

In cases where such an agreement does not exist in advance, a more complex model that considers 

the roommate matching process is needed. We argue that it is never applicable to simply abandon 

envy-freeness in exchange for non-negativity in a rent division problem because envy-freeness, as 

a core measure of fairness, is highly correlated with the long-term stability of an allocation. 

6 Conclusion 

Our study focuses on identifying procedures that can generate an allocation meeting specific 

criteria for fairness. We start by giving mathematically rigorous definitions for fairness criteria 

such as individual rationality, envy-freeness, and equitability. We demonstrate that a utilitarian 

allocation implies a utilitarian assignment and that an efficient allocation is equivalent to a 

utilitarian allocation. We proceed to propose a procedure that generates an equitable, utilitarian, 

and individually rational allocation based on the Hungarian method and justify that the price 

vector that guarantees equitability is unique. 
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Then, we present modified versions of the divide-and-choose method and the Selfridge-

Conway procedure, which can generate an envy-free allocation for 𝑛 = 2 and 𝑛 = 3 

respectively. We continue to demonstrate the incompatibility between equitability and envy-

freeness for 𝑛 ≥ 3 by proving Theorem 1, which provides a necessary and sufficient condition 

for the existence of an envy-free and equitable allocation. Based on Theorem 1, we define a 

dominant assignment, prove that either all utilitarian assignments are dominant assignments or 

none of them is a dominant assignment, and derive an efficient procedure that determines whether 

an equitable and envy-free allocation exists and identifies it if it does. Apart from Theorem 1, we 

also prove that an envy-free allocation is necessarily individually rational and that an envy-free 

allocation necessarily has an underlying utilitarian assignment.  

To guarantee the functionality of graph-based algorithms in generating an envy-free allocation, 

we develop a graph representation of the envy network. More specifically, given any allocation, 

we can derive an envy network consisting of all roommates represented as a complete weighted 

directed graph. We prove that if the given allocation is utilitarian, then the envy network contains 

no cycles with a positive total weight. We also illustrated two important properties of the envy 

network: 1. Increasing the price paid by a roommate by a specific amount will increase the weights 

of all out-edges and decrease the weights of all in-edges of the corresponding vertex by the same 

amount. 2. The total weight of any cycle will stay constant regardless of the changes in prices paid 

by any roommates.  

Based on the envy network, we introduce an adjusted version of the compensation procedure 

developed by Haake et al. (2002) and demonstrate how it can be directly applied to generate an 

envy-free allocation for arbitrary 𝑛. By including two extra steps, we combine Procedure 3.3 with 
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the compensation procedure into Procedure 4.4, which yields two improvements: 1. The procedure 

incorporates the Hungarian method in identifying a utilitarian assignment. 2. The procedure 

generates an equitable allocation whenever possible conditional on envy-freeness.  

Finally, we discuss truthfulness and non-negativity. We demonstrate that roommates have the 

incentive to misreport their valuations for the rooms to obtain a larger utility, which shows that our 

model cannot guarantee roommates’ truthfulness in reporting true valuations. Additionally, we 

demonstrate the incompatibility between non-negativity and envy-freeness, which shows that our 

procedure will inevitably assign negative rents to some roommates under specific circumstances. 

Intuitively, under the existence of such negative rents, some roommates will have the incentive to 

collude with one another and exclude the roommates who are paying negative rents from the house 

to obtain a larger utility. However, if we accept the implicit assumption in our model that there 

exist some external factors that contribute to an agreement among some roommates to live 

together before they decide on the exact room assignment and prices, then it becomes reasonable 

to make monetary compensation to roommates who are assigned to the least desirable rooms, if 

necessary, to guarantee envy-freeness.  
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