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Abstract

Killing Forms of Lie Algebras
By Audrey Lynne Malagon

One approach to the problem of classifying Lie Algebras is to find in-
variants. One such invariant is the Killing form. In this dissertation, I give
a formula for computing the Killing form of any semisimple isotropic Lie
algebra defined over an arbitrary field of characteristic zero, based on the
Killing form of a subalgebra containing its anisotropic kernel. I then explic-
itly compute the Killing form for several Lie algebras of exceptional type
and give a general formula for the Killing form of all Lie algebras of inner
type E6, including the anisotropic ones.
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Chapter 1

Introduction

Lie algebras have been of interest since Sophus Lie began studying them

in the mid-1800s. In attempting to classify Lie algebras, several invariants

have been studied. One invariant is their root system, described in detail

for algebraic groups in [28]. Another such invariant is their Killing form,

a symmetric bilinear form given by the trace of the adjoint representation.

Today Lie algebras are classified into classical and exceptional types. While

much is known about the classical types, several properties of the exceptional

type algebras have remained open problems. Nathan Jacobson computes the

Killing form for certain exceptional Lie algebras in [18]. Jean-Pierre Serre

has also given a formulas for Lie algebras of type F4 and G2 [10, p.67]. While

Jacobson’s methods cover the exceptional Lie algebras over R, his methods

are quite complicated and omit many cases over arbitrary fields. By study-

ing Lie algebras via their root systems, we have a more streamlined method

for computing Killing forms which allows us to find Killing forms for many

exceptional Lie algebras over arbitrary fields of characteristic zero. Com-

puting Killing forms of these exceptional Lie algebras also involves studying

central simple algebras defined by Tits in [29] and Galois cohomology and co-

homological invariants, including the work of Jean-Pierre Serre and Markus

Rost.
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Chapter 2

Background Information I

2.1 Quadratic Forms

Quadratic forms can be defined over any field of characteristic not 2, but we

will work strictly in characteristic zero. A quadratic form of dimension n

over a field F is a homogenous polynomial of degree 2 in n variables:

f(X) =
n∑

i,j=1

aijXiXj

We typically write a quadratic form with symmetric coefficients a′ij = 1
2
(aij +

aji). By doing so, we can associate to f(X) a symmetric matrix of the coeffi-

cients (a′ij). This matrix is called the Gram matrix for f(X). A quadratic

form f(X) is nonsingular if its Gram matrix is nonsingular. Two quadratic

forms are said to be equivalent if their Gram matrices are congruent. The

Gram matrix also allows us to define the determinant of a quadratic form.

Specifically det q is the determinant of the Gram matrix of q. We will often

make use of the signed determinant, or discriminant of q. This is defined

as

disc q := (−1)
n(n−1)

2 det q

for an n-dimensional form q.

Clearly a quadratic form f(X) defines a quadratic map q : F n → F or

from any n-dimensional vector space V over F . Such a vector space V will

be called a quadratic space. The map q has the property that q(ax) = a2x
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for any a ∈ F, x ∈ V , and q(x) defines a symmetric bilinear form B on V ×V
by

B(x, y) =
q(x+ y)− q(x)− q(y)

2

Notice that B(x, x) = q(x). The Gram matrix can also be defined as the

matrix (B(xi, xj)). When the Gram matrix is nonsingular, we know that

B(x, y) = 0for ally ∈ V implies that x = 0, and the quadratic form is

regular. From this point on we will write q to denote a quadratic form. The

one dimensional quadratic form dX2 will be written 〈d〉
One can easily define orthogonal sums of quadratic forms and quadratic

spaces. If V1, V2 are each quadratic spaces with associated quadratic forms

q1, q2 (and symmetric bilinear forms B1, B2) we define a quadratic form q :

V1 ⊕ V2 → F and symmetric bilinear form B by

q(v1, v2) = B((v1, v2), (v1, v2)) = B1(v1, v1) +B2(v2, v2) = q1(v1) + q2(v2)

We will use the notation q = q1 ⊥ q2 to denote the orthogonal sum of two

quadratic forms and the notation mq to denote the orthogonal sum of m

copies of a quadratic form q.

We say that a quadratic form q represents an element d ∈ F if there exists

a vector v ∈ V such that q(v) = d. The elements represented by q are defined

only up to square classes since q(av) = a2d. The Representation Criterion

[21, I.2.3] states that if q : V → F represents d, then V decomposes as the

orthogonal sum

V = 〈d〉 ⊕ V ′

Using this criterion, we obtain a diagonalization of any quadratic form q.

Proposition 2.1.1. ([21, 1.2.4]) Any quadratic form q over F of dimension

n can be written as

q = 〈a1, a2, · · · , an〉

for ai ∈ F/F 2.
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From this point, we will use the notation 〈a1, · · · , an〉 to denote a quadratic

form. Notice that for a diagonal form the determinant, which is determined

only up to squares, is

det q = a1a2 · · · an

The orthogonal sum of two diagonal forms is again a diagonal form:

〈a1, a2, · · · , an〉 ⊥ 〈b1, b2, · · · , bn〉 = 〈a1, a2, · · · , an, b1, b2, · · · , bn〉

In addition to the orthogonal sum of quadratic forms, we can also define a

multiplication of forms q1 ⊗ q2. For diagonal forms

〈a1, a2, · · · , an〉 ⊗ 〈b1, b2, · · · , bn〉

= 〈a1b1, · · · , an, a2b1, · · · a2bn, · · · , · · · , anb1, · · · anbn〉

Notice that the product of a one-dimensional form 〈a〉 with q simply scales

each diagonal entry of q by a. We use the notation 〈a〉q to denote the product

〈a〉 ⊗ q.
A quadratic form is said to be isotropic if there exists v ∈ V such that

q(v) = 0. Otherwise, q is anisotropic. An important two dimensional

isotropic form will be the hyperbolic plane. This is the form 〈1,−1〉 and

is denoted H. In fact, any isotropic form must contain a copy of H as an

orthogonal summand [21, I.3.4]. It is a theorem of Witt [21, I.4.1] that any

nonsingular quadratic form decomposes as

q = qan ⊕mH

where qan is an anisotropic form. Witt’s Cancellation theorem [21, I.4.2] tells

us that two forms q1, q2 are equivalent (isometric) if and only if the have the

same dimension and their anisotropic parts are equivalent. For this reason,

we are often only concerned with the anisotropic part of a quadratic form.

The Witt Ring W (F ) is the set of isometry classes of anisotropic forms.



5

If two quadratic forms are Witt equivalent, they differ only by hyperbolic

planes. When we give the formula for Killing forms in the later sections,

however, we will prove give the Killing forms up to isomorphism, not simply

Witt equivalence.

One particular class of quadratic forms which we will use in future chapters

is that of Pfister forms. A Pfister form is a product of binary forms 〈1, a〉.
We use the notation below for an n-fold Pfister form.

〈〈a1, a2, · · · , an〉〉 = 〈1,−a1〉 ⊗ 〈1,−a2〉 ⊗ · · · ⊗ 〈1,−an〉

Notice that if even one of the summands above is a hyperbolic plane, the

entire Pfister form is hyperbolic, so any istropic Pfister form must be hyper-

bolic. Another useful property of Pfister forms is that they always represent

1, so any Pfister form q can be written as 1 ⊥ q0, and we say q0 is the pure

part of q. In the Witt ring W (F ), the ideal InF is the ideal of all even-

dimensional forms. This ideal is generated by the n-fold Pfister forms [21,

X.1.2].

2.2 Central Simple Algebras and The Brauer Group

A central simple algebra over a field F is an algebra A which is simple,

i.e. has no two-sided non-trivial ideals, and whose center is the field F . We

say A is division if each non-zero element of A has an inverse. Wedder-

burn’s theorem [12, 2.1.3] tells us that any central simple algebra over F is

isomorphic to the matrix algebra of a uniquely determined division algebra.

That is

A ∼= Mr(D)

for some integer r and division algebra D which is uniquely determined up

to isomorphism. If D = F , we say that the algebra A is split and call F a
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splitting field of A. It is clear that over an algebraic closure Falg of F .

A⊗ Falg ∼= Mn(Falg)

so every central simple algebra over F splits over Falg. The dimension of

A is then n2 and the degree of A is n.

We can define an equivalence relation on central simple algebras over F . We

first note that the tensor product of two central simple algebras is again cen-

tral simple [12, 2.4.4]. Two central simple algebras A,B over F are Brauer

equivalent if

A⊗F Mn(F ) ∼= B ⊗F Mn′(F )

for some n, n′. The Brauer group B(F ) of F is the set of equivalence classes

of central simple algebras over F given by this relation. For a central simple

algebra A write [A] for its Brauer class. Then B(F ) is an abelian group

under the tensor product whose identity element is [Mn(F )]. The inverse of

[A] in the Brauer group is Aop. This is the algebra A with multiplication

given by a ∗ b = ba where ba is the usual multiplication in A. Furthermore,

each Brauer class contains a unique division algebra.

2.3 Clifford Algebras and Merkurjev’s Theorem

We are often interested in invariants of quadratic forms. One invariant that

will be of particular use to us is the even Clifford invariant of a quadratic

form. We first define the Clifford algebra of a quadratic form. Let q be a

quadratic form on a vector space V . Let T (V ) be the tensor algebra of V and

let I(q) be the ideal generated by {v ⊗ v − q(v) | v ∈ V }. The the Clifford

algebra of V (and of q) is C(q) = T (V )/I(q). The Clifford algebra of an

n-dimensional quadratic form has dimension dimC(q) = 2n and decomposes

into an odd and even part.

C(q) = C0(q)⊕ C1(q)
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via the natural Z/2Z gradation on T (V ). For even dimensional forms, we

have some very nice properties of the Clifford algebra. In this case, C(V ) is

a central simple algebra over F , and there is a map

c : W (F )→ B(F )

sending q → [C(q)]. The Brauer class C(q) is the Clifford invariant of q

for q of even dimension. (In the case that q has odd dimension, we define this

map to take q to the even Clifford algebra C0(q) which is a central simple

algebra over F .) Furthermore for dim q even, [21, V.2.5] tells us that for

C(q) ∼= Mt(D),

C0(q) ∼= Mt/2(D)×Mt/2(D)

Merkurjev’s theorem allows us to tell when an even dimensional form is

Pfister based on its Clifford invariant.

Theorem 2.3.1 (Merkurjev). [21, p.138] A form q is in I3F if and only if

dim q = 2m, det(q) = (−1)m, and c(q) = 1.

Furthermore, any 8-dimensional form in I3 must be a scalar multiple of a

Pfister form [21, X.5.6]

2.4 Cohomological Invariants

One of the main results of this dissertation involves relating the Killing form,

a quadratic form invariant of Lie algebras to the Rost invariant, a cohomo-

logical invariant. In this section we describe the cohomological invariants of

Lie algebras that will be used in later chapters.

We say that an algebra B′ defined over F is a twisted form of an algebra

B defined over F if B′ ⊗ Fsep ∼= B ⊗ Fsep. There is a natural automorphism

between the set of isomorphism classes of twisted forms of an algebra B

and H1(F,Aut(B)) where Aut(B) denotes algebra automorphisms of A [12,
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2.2.3]. This allows us to classify algebras over F which become isomorphic to

B over Fsep using elements of the cohomology group H1(F,Aut(B)). Given

a cocycle bσ ∈ H1(F,Aut(B)), we define the twisted Galois action σ′ on B

by

σ′(b) = bσσ(b)

where σ(b) is the usual Galois action defined on B and the multiplication on

the right is the usual multiplication in B. Then the elements of B′⊗K fixed

under the twisted Galois action of Γ give a twisted form of B [12, 2.3.3].

In particular we have the following classification of n-dimensional quadratic

forms over F (up to isometry), where O(q) is the orthogonal group of q [20,

29.28].

{n-dimensional quadratic forms q over F} ↔ H1(F,O(q))

The Brauer group gives us a nice description of H2(F,A). If A = F ∗sep, then

H2(F,A) = Br(F ) [12, 4.4.7].

We can also define cohomological invariants of algebraic structures. We

begin by describing the Arason invariant e3 of a 3-fold Pfister form. Let F

be our base field of characteristic not 2, and let q = 〈〈a1, a2, a3〉〉 be a 3-fold

Pfister form over F . The Arason invariant is a group homomorphism

e3 : I3F → H3(F,Z/2Z)

sending

〈〈a1, a2, a3〉〉 → (a1) · (a2) · (a3)

Since I3 is generated by 3-fold Pfister forms, this completely determines the

group homomorphism.

We will also make use of the Rost invariant of a Lie algebra. The Rost

invariant is, strictly speaking, only defined for simply connected semisimple

algebraic groups, but we will make use of a generalization of the invariant
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by Garibaldi and Gille [9]. The Rost Invariant of a simply connected

semisimple group G is a map

RG := H1(∗, G)→ H3(∗,Q/Z(2)) = H3(∗, µ⊗2
δ )

where δ depends on the group G. We will be particularly interested in the

case 1E6 where δ = 6. Let G be any group of type 1E6. Garibaldi and Gille’s

invariant r(G) is defined as follows. First, take G to be the adjoint group

associated to G and let G̃ be the simply connected cover of G. By [9, Prop

5.2], there exists a unique invariant

rG := H1(∗, G)→ H3(∗, µ⊗2
2 )

such that

rG = π ◦RG̃

with π = H3(∗, µ⊗2
6 )→ H3(∗, µ⊗2

2 ) the natural projection. Then

r(G) := rG(θ−1
η (0))

where θη is the twisting homomorphism taking G to the quasi-split group

of type E6. (For any seimsimple group G there is a unique inner form of

the quasi-split group of that type equal to ηG for a uniquely determined

η ∈ H1(F,G)[20, 31.5, 31.6].)
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Chapter 3

Background Information II

3.1 Introduction to Lie Algebras

Lie Algebras were introduced by Sophus Lie in the mid-1800s. Formally, a

Lie algebra L is a vector space over a field F with an additional multiplication

called the bracket that satisfies the following identities:

1. The bracket multiplication is bilinear.

2. [xx] = 0

3. [x[yz]] + [y[zx]] + [z[xy]] = 0 (Jacobi identity)

In characteristic not 2, the bracket is anti-commutative.

Any vector space with a trivial bracket multiplication of course defines a Lie

algebra, known as an abelian Lie algebra. Another simple example of a Lie

algebra is the cross product of vectors in R3. It is well known that the cross

product is anti-commutative and non-associative, and it is straightforward

to check that it satisfies the Jacobi identity. We may also define a bracket

multiplication on Mn(F ) in the following manner

[AB] = AB −BA

where AB and BA are the usual matrix multiplication. With this operation,

Mn(F ) becomes a Lie algebra over F . The subspace of Mn(F ) consisting of

trace zero matrices is known as the special linear Lie algebra sln(F ).
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Every Lie algebra acts on itself via the adjoint representation, defined

by the bracket operation, i.e.

ad(x)(y) = [xy].

We will work exclusively with semisimple Lie algebras in this dissertation.

An element in the Lie algebra is semisimple if the endomorphism ad(x) is

semisimple (diagonalizable over an algebraic closure of the base field). Every

semisimple Lie algebra contains a subalgebra consisting entirely of semisimple

elements. Such a subalgebra is abelian and is called a toral subalgebra.

These subalgebras act on the Lie algebra via the adjoint representation as

well. In the case that all endomorphisms ad(h) for h ∈ H are diagonalizable

over the base field of the Lie algebra, we say H is split (or F -split to

emphasize the fact that the endomorphisms are split over the base field F ). A

maximal toral subalgebra is known as a Cartan subalgebra. In the special

linear Lie algebra sln(F ), the trace zero diagonal matrices form a split Cartan

subalgebra. Over an algebraically closed field, any Cartan subalgebra is split,

but since we are working with Lie algebras defined over arbitrary fields, we

will not always have a split maximal toral subalgebra.

3.2 Root Systems and Dynkin Diagrams

We will begin by defining the roots and root spaces of a split Lie algebra.

Since the Cartan subalgebra H is split, we have a basis that simultaneously

diagonalizes all ad(h). We can therefore decompose the Lie algebra into

generalized eigenspaces based on the action of H. That is, L can be written

as a direct sum of subspaces

Lα = {x ∈ L | [hx] = α(h)x for all h ∈ H}

where α ∈ H∗. The α’s can be thought of as generalized eigenvalues and the

nonzero α’s are called the roots of L. The collection of all non-zero roots is
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denoted Φ and the decomposition of L into Lα’s is known as the root space

decomposition.

Example 3.2.1. sl4(F ) gives a nice example of the root space decomposition.

The Cartan subalgebra here is diagonalizable over F . One basis is given

below.

H = 〈


1 0 0 0

0 −1 0 0

0 0 0 0

0 0 0 0

 ,


0 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 0

 ,


0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 −1

〉

A typical element in H can be written as

h =


h1 0 0 0

0 h2 − h1 0 0

0 0 h3 − h2 0

0 0 0 −h3


Then

ad(h)(x) = [hx] = hx− xh

=


0 (2h1 − h2)∗ (h1 + h2 − h3)∗ (h1 + h3)∗

−(2h1 − h2)∗ 0 (−h1 + 2h2 − h3)∗ (−h1 + h2 + h3)∗
−(h1 + h2 − h3)∗ −(−h1 + 2h2 − h3)∗ 0 (−h2 + 2h3)∗
−(h1 + h3)∗ −(−h1 + h2 + h3)∗ −(−h2 + 2h3)∗ 0


where * denotes the original entry in x. The root h1 +h3 ∈ H∗, for example,

is the map that sends h to its first diagonal entry minus its fourth diagonal

entry. Notice that every root above the diagonal can be written as a positive

sum of

α1 = h→ 2h1 − h2

α2 = h→ −h1 + 2h2 − h3

α3 = h→ −h2 + 2h3
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and every root below the diagonal can be written as a negative sum of these

three roots. The roots α1, α2, α3 are called simple roots. The collection of

simple roots is denoted ∆. In terms of the simple roots the roots from the

previous matrix are
0 α1 α1 + α2 α1 + α2 + α3

−α1 0 α2 α2 + α3

−(α1 + α2) −α2 0 α3

−(α1 + α2 + α3) −(α2 + α3) −(α3) 0


The roots above the diagonal can all be written as positive sums of the

simple roots and are called positive roots and are denoted Φ+. Those

below the diagonal can be written as strictly negative sums of simple roots

and are negative roots, Φ−. The root in the upper right hand corner of the

matrix, here α1 + α2 + α3, is known as the highest root.

One notices immediately the symmetry of the roots. In particular, roots

occur in positive, negative pairs. If α is a root of L relative to H, then so

is −α. (But notice that no other multiple of α is a root). This is not mere

coincidence for sl4(F ) but is in fact true for all root systems. [15, 8.3] gives

the following properties of roots.

1. Φ spans H∗

2. If α ∈ Φ, then −α ∈ Φ.

As in sln(F ), the zero root space is precisely the Cartan subalgebra H

and all other root spaces are 1-dimensional.With L0 = H, the root space

decomposition of a Lie algebra with respect to a Cartan subalgebra H is

L = H ⊕α∈Φ+ (Lα ⊕ L−α) (3.1)

The roots of a Lie algebra form a finite dimensional subspace of Euclidean

space known as a root system. There is a bijection between elements of H

and roots which can be described as follows:
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For any α ∈ Φ, let tα be the unique element of H with the property that

κ(tα, h) = α(h)for all h ∈ H.

Using this identification of roots with elements of H, we can define a sym-

metric bilinear form on the roots using the Killing form:

(α, β) = κ(tα, tβ)

It will always be the case that for any α, β ∈ Φ, 2(β,α)
(α,α)

∈ Z [15, Theorem

8.5]. This integer is denoted 〈α, β〉. For distinct positive roots 〈α, β〉〈β, α〉 =

0, 1, 2, 3 [15, 9.4]. The Cartan matrix of a split Lie algebra gives the

relations 〈αi, αj〉 for the simple roots under a fixed ordering. By definition

the Cartan matrix is the matrix (aij) = 〈αi, αj〉. Some examples are given

below.
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D4


2 −1 0 0

−1 2 −1 0

0 −1 2 0

0 0 −1 2



E6



2 0 −1 0 0 0

0 2 0 −1 0 0

−1 0 2 −1 0 0

0 −1 −1 2 −1 0

0 0 0 −1 2 −1

0 0 0 0 −1 2



E7



2 0 −1 0 0 0 0

0 2 0 −1 0 0 0

−1 0 2 −1 0 0 0

0 −1 −1 2 −1 0 0

0 0 0 −1 2 −1 0

0 0 0 0 −1 2 −1

0 0 0 0 0 −1 2


Table 3.1: Cartan Matrices
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An (n ≥ 1) 1 2 3 n− 2

n− 1

n
p p pr r r r r r

Bn (n ≥ 3) 1 2 3 n− 2

n− 1

n
p p p >r r r r r r

Cn (n ≥ 2) 1 2 3 n− 2

n− 1

n
p p p <r r r r r r

Dn (n ≥ 4) 1 2 3 n− 3
n− 2p p p
@
@@

�
��r r r r r
r
r

n− 1

n

Table 3.2: Classical Dynkin diagrams

A Dynkin Diagram depicts the simple roots of a root system and their

relations with respect to the 〈,〉. Each simple root is denoted by a vertex in

the Dynkin diagram, and the vertices αi, αj are connected by 〈αi, αj〉〈αj, αi〉
edges. By [15, 9.4], any two vertices will be connected by at most 3 edges. A

root system in which any adjacent vertices are connected by only one edge

is called simply laced. In this case, all roots have the same length. When

more than one root length occurs, an arrow is added to the Dynkin diagram

pointing to the shorter of the two roots. An irreducible root system is one

with a connected Dynkin Diagram.
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E6
r r r r r
r

1 3 4 5 6

2

E7
r r r r r r
r

1 3 4 5 6 7

2

E8
r r r r r r r
r

1 3 4 5 6 7 8

2

F4
r r r r>
1 2 3 4

G2
r r<
1 2

Table 3.3: Exceptional Dynkin diagrams

These allow us to completely classify Lie algebras over the complex num-

bers. However, over arbitrary fields, it is often the case that two distinct Lie

algebras will have the same root system. It is for this reason that we are

interested in other invariants, particularly the Killing form.
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3.3 Killing Form

The Killing form is a quadratic form invariant that aids in the classification of

Lie algebras. The Killing form κ of a Lie algebra L is the symmetric bilinear

form given by the trace of the adjoint representation. That is for x, y ∈ L:

κ(x, y) = tr(ad x ad y)

For simplicity, the Killing form will often be denoted (x, y). The Killing

form is associative with respect to the bracket operation:

([xy], z) = (x, [yz])

When L is semisimple, the Killing form is nondegenerate. In fact κ non-

degenerate is a necessary and sufficient condition to have L semisimple ([15,

Theorem 5.1]).

We can compute the Killing form directly for some Lie algebras.

Example 3.3.1 (Quaternion Algebras). Let Q = (a,b)
F

be a quaternion

algebra with basis {1, i, j, k} and let Q0 = {q ∈ Q | tr(q) = 0}. Let

x = x0 + x1i + x2j + x3k ∈ Q. Then tr(x) = x + x̄ = 2x0 so for x ∈ Q0,

x0 = 0, and a basis for Q0 is {i, j, k}. Let x = x1i + x2j + x3k be in Q0.

Then the matrix for ad(x) is given by

[
ad(x)(i)| ad(x)(j)| ad(x)(k)

]
= 2


0 bx3 −bx2

−ax3 0 ax1

−x2 −x1 0


The form κ is given by κ(x) = trace(adx adx)

= tr(4


0 bx3 −bx2

−ax3 0 ax1

−x2 −x1 0


2

)
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= tr(4


−x2

3ab+ x2
2b ∗ ∗

∗ −x2
3ab+ x2

1a ∗
∗ ∗ x2

2b+ x2
1a

)

= 4(2ax2
1 + 2bx2

2 − 2abx2
3)

and so

κ = 〈8a, 8b,−8ab〉

or up to squares

κ = 〈2a, 2b− 2ab〉

Example 3.3.2 (Orthogonal Group of a Quadratic Form). Let q = 〈a1, ..., an〉
be a quadratic form with Gram matrix A. Let

o(q) = {g ∈ gln | gtA+ Ag = 0}.

We can calculate the Killing form of o(q) as follows.

Let Mij be the n × n matrix with 1 in position ij, − ai
aj

in position ji and

0s elsewhere. Then the collection {Mij | i < j} forms an orthogonal basis

for o(q) with respect to κ.The matrix for ad(Mij)(x) has 2(n − 2) non-zero

columns. In addition, the product of the mth row of this matrix with the

mth column is either 0 or − ai
aj

:

To compute the matrix for ad(Mij) we use the following table for values of

ad(Mij)(x) when x is another basis vector (k 6= i, j, l 6= i, j)

x Mij Mki Mik(k<j) Mik(k>j) Mkj(k<i) Mkj(k>i) Mjk Mkl

ad(Mij)(x) 0 −Mkj
ai
ak
Mkj

−ai
aj

Mjk
ai
aj
Mki

−ak
aj

Mik Mik 0

Since ad(Mij)(Mkl) is zero unless k or l equals i or j (but kl 6= ij), the matrix

for ad(Mij) then has only(
n

2

)
−
(
n− 2

2

)
− 1 = 2(n− 2)
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nonzero columns.

We now compute the product of a row with column of the same index.

1. Row Mik times Column Mik, k < i:

Only column Mkj gives a non-zero entry in row Mik; this value is −ak
aj

.

Column Mik has a nonzero entry only in row Mkj, this value is ai
ak

. So

in ad(Mij)
2, the product of row Mik and column Mik is −ai

aj
.

2. Row Mik times Column Mik k > i:

Only column Mjk gives a non-zero entry in row Mik; this value is 1.

Column Mik has a nonzero entry only in row Mjk, this value is ai
aj

. So

in ad(Mij)
2, the product of row Mik and column Mik is −ai

aj
.

3. Row Mki times Column Mki k < i:

Only column Mkj gives a non-zero entry in row Mki; this value is ai
aj

.

Column Mki has a nonzero entry only in row Mkj, this value is −1. So

in ad(Mij)
2, the product of row Mki and column Mki is −ai

aj
.

4. Row Mjk times Column Mjk k > j:

Only column Mik gives a non-zero entry in row Mjk; this value is −ai
aj

.

Column Mjk has a nonzero entry only in row Mik, this value is 1. So

in ad(Mij)
2, the product of row Mjk and column Mjk is −ai

aj
.

5. Row Mkj times Column Mkj k < i:

Only column Mki gives a non-zero entry in row Mkj; this value is −1.

Column Mkj has a nonzero entry only in row Mki, this value is ai
aj

. So

in ad(Mij)
2, the product of row Mkj and column Mkj is −ai

aj
.

6. Row Mkj times Column Mkj k > i:

Only column Mik gives a non-zero entry in row Mkj; this value is ai
ak

.

Column Mkj has a nonzero entry only in row Mik, this value is −ak
aj

. So

in ad(Mij)
2, the product of row Mkj and column Mkj is −ai

aj
.
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7. All other products of row Mkl with column Mkl are zero since these

columns are all zero.

Since {Mij} form an orthogonal basis, we only need to compute κ(Mij) =

trace((ad(Mij))
2). We saw that the diagonal entries in ad(Mij)

2 are either

0 or −ai
aj

and there are precisely 2(n − 2) non-zero entries on the diagonal.

Thus

κ(Mij) = trace((ad(Mij))
2) = −2(n− 2)

ai
aj
.

And therefore

κ = 〈−2(n− 2)〉〈a1

a2

, ...,
ai
aj
, ...

an−1

an
〉

= 〈−2(n− 2)〉〈a1a2, ...aiaj, ...an−1an〉

= 〈−2(n− 2)〉λ2q.

3.4 Chevalley Basis and Killing Form

In the previous section we computed the Killing form by finding an orthogonal

basis that simplified the computation. For any split Lie algebra, there is a

canonical basis arising from a decomposition of the Lie algebra with respect

to its split maximal toral subalgebra. This basis is known as a Chevalley

basis.

Given a basis ∆ of Φ, we define

∆̌ = {α̌i =
2αi

(αi, αi)
| αi ∈ ∆}

Elements in the root system Φ̌ with basis ∆̌ are called coroots, and we have

a map Φ̌→ H. For each α̌ ∈ Φ̌, let hα be the unique element of H satisfying

α̌(h) = κ(hα, h) for all h ∈ H. This gives a bijection between the coroot

lattice Λ̌r and the Z-form of H. The image of ∆̌ under this map gives a basis

for H:

{hαi | αi ∈ ∆}
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Notice that hα = 2tα
(α,α)

where tα corresponds to the root α in under the

analogous map from Φ→ H defined in section 3.2.

We construct a Chevalley basis is the following manner. First, recall that

the zero root space L0 is precisely the Cartan H and we have given a basis

for H above. Recall also that each root space Lα is one dimensional. By

[15, Proposition 25.2], it is possible to choose generators xα of Lα such that

[xαx−α] = hα. Then

{hαi | αi ∈ ∆} ∪ {xα | α ∈ Φ+} ∪ {x−α | α ∈ Φ+}

form a basis for L known as the Chevalley basis. The following properties

hold for a Chevalley basis [15, 25.2](Chevalley).

1. [xαx−α] = hα

2. [hαihαj ] = 0

3. [hαixα] = 〈α, αi〉xα

4. For α, β ∈ Φ such that α + β ∈ Φ, [xαxβ] = cαβxα+β for a scalar cαβ.

5. The elements xα, x−α, hα generate a subalgebra isomorphic to sl2.

6. Every hα is in the Z span of the hαi (αi ∈ ∆).

We can use the decomposition given in 3.1 together with the properties of

a Chevalley basis to simplify the computation of the Killing form. Let

L = H ⊕
⊕
α∈Φ+

(Lα ⊕ L−α)

be the root space decomposition of L.

Lemma 3.4.1. If α, β ∈ H∗ with α+β 6= 0, then Lα is perpendicular to Lβ

relative to the Killing form of L.
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Proof. Since α + β 6= 0, we must have h ∈ H such that (α + β)(h) 6= 0. Let

v1 ∈ Lα and v2 ∈ Lβ. The Killing form is associative so we have

α(h)κ(v1, v2) = κ([hv1], v2) = −κ([v1h], v2)

= −κ(v1, [hv2]) = −β(h)κ(v1, v2)

(α(h) + β(h))κ(v1, v2) = 0

Since (α + β)(h) = α(h) + β(h) 6= 0, we must have

κ(v1, v2) = 0

This means that in the root space decomposition, the sums outside the

parenthesis are perpendicular with respect to the Killing form. The next

lemma describes the Killing form on each orthogonal summand using a

Chevalley basis.

Lemma 3.4.2. Let L be a simple Lie algebra with Chevalley basis {hαi | αi ∈
∆} ∪ {xα | α ∈ Φ+} ∪ {x−α | α ∈ Φ+}. The Killing form κ is hyperbolic on∑

α∈Φ+(Lα⊕L−α) and on H, κ is given by the Weyl-invariant inner product

on the dual root space. Specifically

κ(hα, hβ) = 2m∗(L)(α̌, β̌)

where (α̌, β̌) is the Weyl-invariant inner product with (α̌, α̌) = 2 for a long

root α and m∗(L) is the dual Coxeter number of the algebra.

Proof. Let xα, yα be in Lα. Since α + α 6= 0, by Lemma 3.4.1 κ(xα, yα) = 0,

and Lα is totally isotropic with respect to κ. Since dim(Lα) = 1
2

dim(Lα ⊕
L−α) and Lα⊕L−α is non-degenerate, κ restricts to be hyperbolic on Lα⊕L−α
([21, I.3.4(1)]). Let α̌, β̌ ∈ Φ̌. Define a symmetric bilinear form f on Φ̌ by

f(α̌, β̌) = κ(hα, hβ)
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This form is Weyl-invariant. (By [15, Lemma 9.2], 〈α, β〉 is Weyl-invariant,

and since the Weyl group action preserves root length, this implies the inner

product on the root space (α, β) is Weyl-invariant. But σα̌(β̌) = ˇ(σαβ), which

implies that the form f on the dual root system is also Weyl-invariant.) If Φ

is an irreducible root system, then Φ is an irreducible representation of the

Weyl group. If not, Φ decomposes uniquely as a direct sum of irreducible

root systems ([4, Prop 6, VI.1.2]) so it suffices to work in the irreducible

case. Then Schur’s lemma states that there is at most one Weyl-invariant

symmetric form on Φ up to scalars. Take the scalar multiple of f that gives

(α̌, α̌) = 2 for a long root α so that the form may be computed from the

literature (see for example [4]). By [26, p.14] for a long root α

κ(hα, hα) = 4m∗(L)

Therefore

κ(hα, hα) = 2m∗(L)(α̌, α̌)

Note: In the case of a simply laced root system, α̌ = α and 〈α, β〉 = (α, β)

so the Killing form on H is given by the Cartan matrix.

Example 3.4.3. In the case of sl4(F ), we have κ|H given by

=


2 −1 0

−1 2 −1

0 −1 2


By decomposing the Lie algebra into root spaces, we simplified the calcu-

lation of the Killing form to the calculation on the Cartan subalgebra. This

process is quite useful, but is only applicable for split Lie algebras. In Chapter

4, we will examine a similar decomposition that simplifies the computation

of the Killing form for isotropic Lie algebras.
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Chapter 4

Isotropic Lie Algebras

Much of the work on classification of Lie algebras has been done over alge-

braically closed fields. In this section, we examine Lie algebras defined over

arbitrary fields which may not have a split Cartan subalgebra. Calculating

the Killing form without a split Cartan subalgebra proves to be more diffi-

cult. We will often make use of the theory of algebraic groups, which applies

to these Lie algebras (see [2, I.3], [16, III.9]).

4.1 Tits Indices

When studying Lie algebras over arbitrary fields, it is preferable to use Tits

indices instead of Dynkin diagrams. A Tits index includes the Dynkin dia-

gram of the root system together with information about split toral subalge-

bras and the action of the Galois group of F on the Lie algebra. Tits indices

were described and classified by J. Tits in [28] for algebraic groups.

To understand the Tits index, it is important to first understand the Weyl

group of a root system. Let E denote the rational vector space spanned by

Φ. The Weyl group is the subgroup of GL(E) generated by Weyl reflections

wα for α ∈ Φ where for β ∈ Φ

wα(β) = β − 〈β, α〉α

Notice that wα fixes all roots orthogonal to α under the usual inner product

on the root system and sends α to −α. In particular, the image of a basis ∆

under the Weyl group will again be a basis ∆′, and there is a unique element
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w : ∆ → ∆′ [17, VIII.1, Theorem 2]. Tits describes an action on the root

system that combines the usual Galois action on L with the action of the

Weyl group on roots.

Let L be a Lie algebra defined over a field F , and let Γ be the Galois group

of Fsep/F . There is a natural action of Γ on H∗ since over Fsep, H is split.

The image of ∆ under the action of an element σ ∈ Γ will be another basis

for L, and since the Weyl group permutes basis, we have a unique element

w in the Weyl group such that w ◦ σ(∆) = ∆. The ∗-action of Γ is the

composition of the usual action with this element of the Weyl group. That

is for σ ∈ Γ

σ∗ := w ◦ σ

The resulting action will be a graph automorphism of the Dynkin diagram.

The Tits index is drawn from the Dynkin diagram by placing vertices of the

Dynkin diagram which are in the same orbit close together in the Tits index.

A Lie algebra is called inner if the *-action is trivial and outer if there are

non-trivial orbits.

In addition to depicting the *-action of Γ on ∆, the Tits index also gives

information about split toral subalgebras and the anisotropic kernel. The

(semisimple) anisotropic kernel of a Lie algebra is roughly the part con-

taining no split toral subalgebra. Precisely, it is the derived group of the

centralizer of a maximal F -split toral subalgebra. A Tits index in which all

vertices are circled indicates that the Lie algebra is split, or in the outer case,

quasi-split.

Example 4.1.1. One common example of an isotropic Lie algebra is sl2(Q)

for Q a quaternion algebra defined over a field F . It has Tits index below

for Q division.
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r r rf

This is a Lie algebra of inner type with trivial ∗-action. Here the anisotropic

kernel is A = sl1(Q)× sl1(Q), which sits inside sl2(Q) as

=

(
∗ 0

0 ∗

)

and an F -split toral subalgebra is

S = F

(
1 0

0 −1

)

The uncircled vertices correspond to the anisotropic kernel, and the circled

vertex in the center tells us there is a one-dimensional F -split toral subalge-

bra.

Example 4.1.2. The Tits index of a Lie algebra of type 2E6 with anisotropic

kernel of type 2D4 is given below. The *-action permutes vertices 1, 6 and

vertices 3, 5.

r rr rr r�
 ��
�
�

This is a Lie algebra of outer type. Its anisotropic kernel has simple roots

corresponding to the uncircled vertices of the Tits index. This will be an

important example in the computation of the Killing form of Lie algebras of

outer type E6.
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4.2 Tits Indices and F -Split Tori

It is important to note that the ∗-action of Γ on the Tits index (and hence

on L) is not the same as the usual Galois action on L. In fact, elements fixed

under the ∗-action may not be fixed under the usual Galois action and vice

versa. We will often want to know the fixed elements under the usual Galois

action since, for example, the elements of a (twisted) Cartan subalgebra fixed

by Γ form an F -split toral subalgebra.

We begin by defining the weight lattice and co-weight lattice of a root

system Φ. A weight λ is an element of the Euclidean space containing Φ

such that

(λ, α̌) ∈ Z

for all α ∈ Φ. The weight lattice of Φ is written Λ. A weight is dominantif

(λ, α̌) ≥ 0

The root lattice Λr generated by Φ is contained in Λ since (β, α̌) ∈ Z [15,

Theorem 8.5]. We define the fundamental dominant weights as the dual

basis to ∆̌ = {α̌i | i ∈ I}. These are the weights

{λj | j ∈ I, (λj, α̌i) = δij}

where δij is the Kronecker delta, and they form a basis for the weight lattice

Λ [15, 13.1]. Let Λ̌ be the dual lattice to Λr. Elements of Λ̌ are called co-

weights. Notice that the coroot lattice Λ̌r ⊂ Λ̌. Define the fundamental

dominant co-weights as the dual basis to ∆. These are the co-weights

{λ̌j | j ∈ I, (λ̌j, αi) = δij}

which form a basis for the co-weight lattice. Since Λ̌r ⊂ Λ̌, each co-root α̌ can

be written as an integer combination of fundamental co-weights, and each

fundamental co-weight can be written as a rational combination of simple
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co-roots. Let c = |Λ/Λr|. Then each cλ̌j can be written as an integer

combination of co-roots. Suppose cλ̌j =
∑

α̌∈∆̌ aiα̌i. Then using the map

Φ̌↔ H sending α̌→ hα, let

hcλ̌j =
∑

aihαi

Borel and Tits [3, Corollary 6.9] describe precisely which elements of Λ̌ are

fixed under the Galois action and therefore which elements of H are fixed

under the Galois action. This allows us to construct a basis for F -split toral

subalgebras from the Tits index.

Let {αi1 , ..., αir} be a circled orbit in the Tits index (so that the αij are not

in the anisotropic kernel). Associate to this orbit the element cλ̌i1 + · · · +
cλ̌ir ∈ Λ̌r where c = |Λ/Λr|. Then the subspace of the co-root lattice fixed

under the usual Galois action is generated by elements of the form

{cλ̌i1 + · · ·+ cλ̌ir | {αi1 , ..., αir} is a Tits orbit in ∆ \∆0}

(over Q) [3, Corollary 6.9].

In the case that the ∗-action on the Tits index is trivial (so all orbits contain

only one vertex),

Λ̌Γ ⊗Q = 〈cλ̌i | αi ∈ ∆ \∆0〉

and an F -split toral subalgebra has basis given by elements of the form

{hcλ̌i | vertex i is circled in the Tits index} (4.1)

In particular, the dimension of a maximal F -split toral subalgebra is equal

to the number of circled vertices in the Tits index.

Suppose now that L is type 2. The ∗ action gives a map

∗ : Γ→ Aut∆

K = (Fsep)
ker(∗) is a finite extension of F of degree |im(∗)| = 2 for which the

Tits Index of L ⊗ K is of inner type. Letting K = F (
√
a) and using [25,
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p.279], a basis for the maximal F -split toral subalgebra in L is given by

{hcλ̌i + h ˇcλj
,
√
ahcλ̌i −

√
ahcλ̌j | {αi, αj} a circled Tits orbit} (4.2)

In the case that all roots have the same length, weights and co-weights are

equal since we adopt the bilinear form with (α, α) = 2. Formulas for the

fundamental dominant weights written as sums of the simple roots can be

found in [15, Sec. 13, Table 1].

In Example 4.1.2, the subspace of ΛΓ fixed by the usual Galois action is

generated by 3λ1 + 3λ6 and Γ permutes 3λ1 and 3λ6. A basis for the F -split

toral subalgebra is {h3λ1 + h3λ6 ,
√
ah3λ1 −

√
ah3λ6}.

4.3 Tits Algebras

Associated to each orbit in the Tits index is a central simple algebra known

as a Tits Algebra. These were defined by Tits in [29] and are also described

in [23]. These central simple algebra invariants give us information about the

Lie algebra which will be necessary for the results on Killing forms in Chap-

ters 7.3 and 7.3. Tits defines these algebras by giving a bijection between

dominant weights fixed under the ∗-action and algebra representations of L.

An algebra representation of a Lie algebra L defined over F is simply a map

ρ : L→ GL1(A) for a central simple algebra A over F (see [23]).

It is well known that there exists a bijection between dominant weights of

a split Lie algebra and irreducible representations of the Lie algebra ([29,

Lemma 2.2]). Let

β : Λ+ → irreducible representations of L.

Tits extends this notion to non-split algebras by restricting β to just the

elements of Λ+ fixed under the ∗-action of Γ. In this case by [29, Theorem

3.3], we have a bijection

ΛΓ
+ ↔ {irreducible algebra representations of L}
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Let λ ∈ ΛΓ
+ be a dominant weight associated to an orbit in the Tits index,

and let ρ : G → GL1(A) be the algebra representation assigned to λ under

this bijection. Then A defines the Tits algebra associated to that orbit. We

denote this by A(λ). In the case that L is split or quasi-split, we will always

have A(λ) split [29, 3.3]. In addition we have the following properties of Tits

algebras.

Let A(λ), A(µ) be the Tits algebras associated to λ, µ ∈ ΛΓ
+ and let [A]

denote the Brauer class. By [23, Proposition 7.4] we have

1. If λ is in the root lattice of L, then the A(λ) is split.

2. [A(λ+ µ)] = [A(λ)] + [A(µ)]

Notice that these properties allow us to define a homomorphsim

α : (Λ/Λr)
Γ → Br(F ).

We will define the Tits algebra only up to Brauer equivalence. So for any

λ ∈ Λ+ associated to an orbit in the Tits index, α(λ) will be the Tits algebra

associated to λ.

In the case of an inner type Lie algebra, associated to vertex iis the Tits

algebra α(λi) for the fundamental dominant weight λi. We will denote this

algebra by A(i). In the type 2 case, let B be the Tits algebra associated to

the orbit containing vertices i, j and let K be the quadratic extension of F .

which splits the quasi-split Lie algebra. Then B is a central simple algebra

over K and

B ⊗F K = (B ⊗K K)⊗F K = B ⊗K (K ⊗F K) = B ⊗K (K × ιK)

B ⊗K K ×B ⊗K ιK = B × ιB = A(i)× A(j)
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4.4 Weight Space Decomposition

For this section S is a (not necessarily maximal) F -split toral subalgebra,

which sits inside a Cartan subalgebra H. It acts on the Lie algebra via

the adjoint representation, and we can decompose the Lie algebra into the

eigenspaces induced by this action just as we did for the action of H. When

we decompose with respect to a non-maximal split toral subalgebra, we call

the generalized eigenvalues weights and refer to this as the weight space

decomposition of L with respect to S. A weight space Lµ is defined below.

Lµ := {x ∈ L | [hx] = µ(h)x for all h ∈ S}

Just as we had a highest root, we will also have a highest weight. Using

the weight spaces, L decomposes as

L = L0 ⊕
⊕

µ∈S∗,µ 6=0

(Lµ ⊕ L−µ)

A weight space decomposition is similar to a root space decomposition in

that the nonzero weight spaces occur in positive and negative pairs. If µ is

a weight, −µ is also a weight, and furthermore Lµ and L−µ have the same

dimension. It is not true, however, that Lµ must be one dimensional. In

addition, the zero weight space is not the same as the zero root space. It will

contain the Cartan subalgebra H, but it is often larger than H alone.

Example 4.4.1. We return to the example of sl2(Q) for Q a quaternion

algebra defined over a field F

r r rf
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Recall an F -split toral subalgebra is

S = F

(
1 0

0 −1

)
Decomposing with respect to this toral subalgebra in sl2(Q) gives

[hx] =

(
0 2∗
−2∗ 0

)
and our weights are 0, 2,−2.

The weight space decomposition is useful for computing the Killing form

because the properties of weights mirror the advantageous properties of roots

described in Chapter 2.4. Specifically, we restate Lemma 3.4.1 and part of

Lemma 3.4.2 in terms of weights. The proofs are analogous.

Lemma 4.4.2. If µ, λ are weights of L such that µ + λ 6= 0, then Lµ is

perpendicular to Lλ relative to the Killing form of L.

Lemma 4.4.3. For any µ a weight of L, Lµ⊕L−µ is hyperbolic with respect

to κ.

Notice that we cannot restate all of Lemma 3.4.2 in terms of the weight

space decomposition because the weight space decomposition does not give

us a Chevalley basis. That basis is unique to split Lie algebras. In this case,

we must work harder to compute the Killing form on the zero weight space,

which is larger than simply H. The next lemma describes the zero weight

space.

Lemma 4.4.4. Let S be an F -split toral subalgebra of L and let A be the

derived subalgebra of ZL(S). Let H be a (not necessarily split) Cartan sub-

algebra of L. Then in the weight space decomposition of L with respect to

S

L0 = ZH(A)⊕ A



34

where ⊕ is an orthogonal sum with respect to the Killing form. Furthermore,

A is semisimple and A contains the anisotropic kernel of L.

Proof. It is clear that L0 = ZL(S). Since L is semisimple, L0 is the centralizer

of a toral subalgebra, so L0 is reductive [16, Corollary A 26.2] and by [17,

Theorem 11] decomposes as

L0 = Z(L0)⊕ [L0L0]

By definition we have A = [L0L0]. Let us now examine Z(L0). Let x ∈
L0. Clearly [xZ(L0)] = 0 so x ∈ Z(L0) if and only if [xA] = 0. By [17,

Theorem 11] Z(L0) is a toral subalgebra and is therefore contained in a

maximal toral subalgebra. Since all maximal toral subalgebras are conjugate,

Z(L0) is contained in all maximal toral subalgebras, and in particular Z(L0)

is contained in H. Therefore Z(L0) is precisely the elements of H which

centralize A.

Z(L0) = ZH(A)

If S is a maximal F -split toral subalgebra, A is precisely the semisimple

anisotropic kernel of L with simple roots corresponding to the non-circled

vertices in the Tits index ([28]). If S is contained in a maximal F -split toral

subalgebra, then A will contain the semisimple anisotropic kernel.

To summarize, any isotropic Lie algebra with split toral subalgebra S and

subalgebra A containing the anisotropic kernel of L decomposes as

L = A⊕ ZH(A)⊕
⊕

µ∈S∗,µ 6=0

(Lµ ⊕ L−µ)

where the sums oustide the parenthesis are orthogonal with respect to κ

This decomposition simplifies the computation of the Killing form. As in

the split case, we are reduced to computing on the zero weight space only,

however here we must compute the Killing form on two parts - a subalgebra A
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Table 4.1: 1E6 Tits Indices

containing the semisimple anisotropic kernel and on a split toral subalgebra

ZH(A). The goal will be to select S in such a manner that the Killing form

on A is well known or easy to compute.
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Chapter 5

Previous Results on Killing Forms of Lie Algebras

As we showed in Chapter 3, the Killing form of any split Lie algebra is well

known thanks to the work of Killing and Cartan subalgebra. In this case, one

needs only to know the dimension of the Lie algebra and its Cartan matrix,

information that is readily available in the literature. In the non-split case,

however, the Killing form is not as straightforward to compute especially in

the case of exceptional Lie algebras. N. Jacobson has done work in the area

of Killing forms of exceptional Lie algebras [18], and additionally Serre has

given formulas for Lie algebras of type F4 and G2 [10, p.67].

We begin by examining Jacobson’s results from [18, Chapter 11] for Lie

algebras of type E6. Following his notation, let J = H(C3, γ) be the set of

3×3 matrices over a Cayley algebra C which are γ-hermitian for the diagonal

matrix γ = diag[γ1, γ2, γ3]. Let J ′ be the set of trace 0 elements of J and let

R(J ′) = {Ra | a ∈ J ′}) the collection of right multiplication maps. Then

J is a reduced simple Jordan algebra, and DerJ = InderJ = F4 is a Lie

algebra of type F4. Furthermore L′ = R(J ′)⊕F4 is a Lie algebra of type E6.

Jacobson gives the following formula for the Killing form of such an E6 [18,

p.113]. Here Ra ∈ R(J ′) and D = D0+[Re1Rb12 ]+[Re2Rc23 ]+[Re3Rd31 ] where

D0 ∈ D0 ⊂ F4, the subalgebra which annihilates the diagonal idempotents.

The ei, b12, c23, d31 come from the basis given by the Pierce decomposition of

J = Fe1⊕Fe2⊕Fe3⊕J12⊕J13⊕J23 relative to ei = eii of the usual matrix

basis for J . The value n(a) is the norm of the element a ∈ C. T (, ) is the

trace form on R(J ′) and κD4 is the Killing form on D0 of type D4. Then for

Ra ∈ R(J ′), D ∈ F4, κ is given by
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κ(Ra +D,Ra +D) = 12T (a, a) + 2κD4(D0, D0)−

6(γ−1
2 γ1n(b) + γ−1

3 γ2n(c) + γ−1
1 γ3n(d))

The above formula also applies to certain Lie algebra of type 2. Let α ∈ F
such that α is not a square. Then the subalgebra of C⊗ F (

√
α) of elements

of the form
√
αRa +D is a Lie algebra of type 2E6 [18, p.114] and its Killing

form is the same as above replacing 12T (a, a) by 12αT (a, a).

Jacobson also gives a formula for the Tits Lie algebra T = C⊗A1 ⊕D of

type E7 where C is as before, A1 a 3-dimensional Lie algebra of type A1 and

D = InderC. Here x, x′ ∈ C, a, a′ ∈ A1, D,D
′ ∈ D.

κ(x⊗ a+D, x⊗ a+D′) =
1

2
T (x, x′)κA1(a, a

′) + κD(D,D′)

These formulas rely heavily on knowledge of the underlying Jordan and

Cayley algebras. The formula we give for type 1E6 is much more straightfor-

ward and can be computed from the Tits index of E6 together with the Rost

invariant. Jacobson also gives some results for certain other exceptional Lie

algebras (including F4), but the formulas are again complicated and we leave

those to the reader to explore (see [18, p. 118-121]).

J.P. Serre has also given formulas for the Killing form of Lie algebras of

type F4 and G2 over arbitrary fields of characteristic not 2 or 3. Here we let A

be an octonion algebra over F and G2 the Lie algebra of its derivations or we

take A to be an Albert algebra with Lie algebra of derivations F4. In either

case, Serre has defined cohomological invariants q3(A), q5(A) in H3(F,Z/2),

H5(F,Z/2) respectively. (See [22] for precise definitions of these invariants.)

He then gives the Killing form in terms of these invariants [10, p.67].

κG2 = 〈−1,−3〉(q3 − 1)
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κF4 = 〈−2〉(q5 − q3) + 〈−1,−1,−1,−1〉(q3 − 1)
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Chapter 6

Killing Forms of Isotropic Lie Algebras

In this chapter, we give a method for computing the Killing form of any

semisimple isotropic Lie algebra based on the Killing form of a subalgebra

containing the anisotropic kernel. The main result is given below.

6.1 Main Result

Theorem 6.1.1. Let L be a semisimple isotropic Lie algebra of dimension

n defined over a field of characteristic zero with simple roots ∆ (all of the

same length) and Cartan subalgebra H. Let A be a subalgebra of dimension

n′ containing the anisotropic kernel of L with simple roots ∆′ ⊂ ∆ . If

A = ⊕li=1Ai with each Ai simple, then the Killing form κ on L is given by

κ = 〈 m(L)

m(A1)
〉κ1 ⊥ ... ⊥ 〈 m(L)

m(Al)
〉κl ⊥ κ|ZH(A) ⊥

n− n′ − |∆ \∆′|
2

H

where m is the Coxeter number of the algebra.

Proof. Since A contains the anisotropic kernel of L, we know that ZH(A) is

F -split. Decomposing with respect to ZH(A) gives

L = A⊕ ZH(A)⊕
⊕

µ∈S∗,µ 6=0

(Lµ ⊕ L−µ)

where the sums outside the parenthesis are orthogonal with respect to κ

(Lemma 3.4.1). Furthermore, each Ai is orthogonal with respect to the

Killing form so κ|A is the sum of the κ|Ai . Let κi denote the Killing form of

the subalgebra Ai. We first note that κ|Ai is Ai-invariant by the properties
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of trace. Since κi is also Ai-invariant, and the nonzero Ai-invariant bilinear

form on Ai is unique up to a scalar multiple ([13, Theorem 5.1.21]), we must

have

κ|Ai = 〈c〉κi

for some scalar c. Now let α ∈ ∆′ ⊂ ∆ so hα ∈ Ai. Then by Lemma 3.4.2

κ(hα, hα) = 4m(L)

κi(hα, hα) = 4m(Ai)

forcing c = m(L)
m(Ai)

.That is,

κ|A =
m(L)

m(A1)
κ1 ⊥ ... ⊥ m(L)

m(Al)
κl

On the subspaces Lµi ⊕ L−µi , we know that κ restricts to be hyperbolic

(Lemma 4.4.3) and the dimension of the nonzero (hyperbolic) weight space

is dimL− dimL0 = n− (n′ + |∆ \∆′|). This gives the result.

Note: In the case that L has roots of different lengths, the above theorem

holds by simply replacing the Coxeter number with the dual Coxeter number,

except in the following case. Suppose there exists α ∈ ∆′ ⊂ ∆ such that α

is short in Ai but long in L. Then according to [26, p.14-15]

κ′(hα, hα) = 4m∗(Ai)

κ(hα, hα) = 4cm∗(L)

where c is the square of the ratio of the root lengths and m∗ is the dual

Coxeter number of the algebra. Then the scalar is cm∗(L)
m∗(Ai)

.

The only remaining subspace of the decomposition for which we have not

computed the Killing form is ZH(A). The next section discusses computing

the Killing form on a toral subalgebra by calculating dimensions of appro-

priate irreducible representations.
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6.2 Calculating the Killing form on ZH(A)

In this section we discuss a streamlined method for computing the Killing

form on a split toral subalgebra, specifically the centralizer of a subalgebra

containing the anisotropic kernel. We will assume our root system is simply

laced so that coroots equal roots and coweights equal weights. Since A con-

tains the anisotropic kernel of L, ZH(A) is split or quasi-trivial. We use the

results of Section 4.2 to see the basis of a maximal F -split toral subalgebra

containing ZH(A). Since the Killing form on a toral subalgebra of outer type

can be computed in terms of basis elements for the inner type toral subal-

gebra, we will work only in the case that L is of inner type and Φ is simply

connected.

Proposition 6.2.1. Let A have basis ∆′ ⊂ ∆. Then a basis for ZH(A) is

{hcλj | αj ∈ ∆ \∆′}

Proof. A basis for ZH(A) is contained in the basis 4.1. Let hcλj be a basis

element from 4.1. Then hcλj ∈ ZH(A) if and only if

[hcλjxαk ] = 〈αk, cλj〉 = 0

for all αk ∈ ∆′. For each such αk define

φk : Λr → Z : αk → 〈αk, λ〉

Then hλ ∈ ZH(A) if and only if λ ∈
⋂
k

kerφk. Clearly each basis element

given above is in
⋂
k kerφk, and from Section 4.2 we know the rank of ZH(A)

is |∆ \∆′|.

We can compute the Killing form on ZH(A) using this basis. Let hcλj =∑
αi∈∆ aihαi First note that

[hcλjxα] = α(hcλj)xα = 〈α, cλj〉cajxα
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so ad(hcλj) is a diagonal matrix with entries c(coefficient of αj). Using the

symmetry of positive and negative roots we have

tr(ad(hcλi) ad(hcλj)) = 2c2
∑
α∈Φ+

(coefficient of αi in α)(coefficient of αj in α)

(6.1)

or in the case i = j

tr(ad(hcλi) ad(hcλi)) = 2c2
∑
α∈Φ+

(coefficient of αi in α)2 (6.2)

To compute κ(hcλi , hcλj), we need only those roots in Φ+ with nonzero αi

and αj coefficients. To count these roots we introduce the notation of [1].

Fix a subset ∆J ⊂ ∆. The level of a positive root β =
∑
i∈I

ciαi with respect

to ∆J is the sum of the coefficients of the αi ∈ ∆ \∆J . The shape of β is∑
i∈I\J ciαi. The goal is to grade the Lie algebra according to the level and

shape of its roots. Then the Killing form of an element hnλi can be given in

terms of the dimension of an irreducible representation of a subalgebra.

Let MI\J(l) denote the product of all root spaces L−β with level(β) = l.

By [1, Theorem 2],

MI\J(l) =
∏

S a shape of level l

VS

where each VS is an irreducible representation of the Lie algebra LJ generated

by basis ∆J .

Furthermore, the highest weight of VS is the negative of the root with shape

S and minimal height (in L) ([1]). In the case ∆\∆J = αi, the only possible

shape for a fixed level l is lαi so Mi(l) is a standard cyclic representation of

LJ with highest weight −lαi−βl, denoted VLJ (−lαi−βl). The dimension of

this representation can be used to compute κ(hnλi , hnλi).

Proposition 6.2.2.

κ(hnλi , hnλi) = 2n2
∑
l>0

l2 dimVLJ (−lαi − βl)
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Proof.

tr(ad(hnλi) ad(hnλi)) = 2n2
∑
β∈Φ+

(coefficient of αi in β)2

= 2n2
∑
l>0

l2 dimLJ M{i}(l).

The same method can be used in some cases to compute κ(hnλi , hnλj) for

i 6= j. In this case, take ∆J = ∆\{αi, αj}. A root β contributes to the above

sum if only if both its αi and αj coefficients are nonzero. In the E6 case with

L′ = D4, this condition states level(β) = 2 with respect to ∆\∆J = {α1, α6}.
The notation makes this process appear more complicated than necessary.

A few illustrative examples in the next section should clarify that this is

really a straightforward process.
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Chapter 7

Classical Results with New Method

In this chapter, we compute the Killing form of some classical isotropic Lie

algebras using the new methods described in the previous sections. While

these Killing forms were previously known, this more streamlined method

produces clean results in a straightfoward manner.

For these examples, we use λi to denote a fundamental dominant weight of

the larger Lie algebra L and ωi to denote a fundamental dominant weight of

the subalgebra LJ with simple roots ∆J .

7.1 Type An

Example 7.1.1 (sl2(Q)). Recall the example of an isotropic Lie algebra of

type A3 given earlier. Here L = sl2(Q) for Q = (a, b) a quaternion algebra

defined over F .

r r rf

Let A be the anisotropic kernel of L of type A1 × A1. We compute the

Killing form of A = sl(Q) × sl(Q) by computing the Killing form on each

(isomorphic) sl(Q). Since each A1 is anisotropic it is sl(Q) where Q is a

quaternion algebra ([28]). These are precisely the trace 0 elements of Q

and we computed the Killing form on this Lie Algebra in Chapter 1 to be

〈2a, 2b, 2ab〉 where Q = (a, b). Thus, the Killing form of sl(Q) is

〈−2〉q0
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where 1 ⊥ q0 is the norm form of Q. Since the ratio of the Coxeter number

of sl2(Q) (type A3) and sl(Q) (type A1) is 2, we have

κ|A = 〈−4〉2q0

Here ZH(A) is generated by h4λ2 , the fundamental dominant weight corre-

sponding to the circled vertex. The Killing form on ZH(A) can be computed

by finding the dimension of V (−α2) in the anisotropic kernel.

κ(h4λ2 , h4λ2) = 2(42) dimA1×A1 V (−α2)

Since the fundamental weights also form a basis for the root system, we can

rewrite α2 in terms of the fundamental weights of sl2(Q).

κ(h4λ2 , h4λ2) = 2(42) dimA1×A1 V (λ1 − 2λ2 + λ3)

As a weight of each A1, λ1 − 2λ2 + λ3 is just ω1, the fundamental dominant

weight of A1 so

κ(h4λ2 , h4λ2) = 2(42)(dimA1(ω1)× dimA1(ω1))

= 2(42)(4)

= 27

≡ 2mod F ∗2

By Theorem 6.1.1 we have

κ = 〈−4〉2q0 ⊥ 〈2〉 ⊥ 4H

Note

trM2(Q) |sl2(Q) = 〈−2〉2q0 ⊥ 〈1〉 ⊥ 4H

which agrees with [5, Chapter VIII,Ex. 12].

Knowing the Killing form of sl(Q) of anisotropic type A1 allows us to

compute the Killing forms of many type An Lie algebras as the following

example illustrates.
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Example 7.1.2 (sl3(Q)). Consider the Lie Algebra of type A5 with Dynkin

diagram below. Here we have a slightly larger F -split toral subalgebra.

r r r r rf f

Here the anisotropic kernel is of type A1×A1×A1. In this case, ZH(A) has

basis {h6λ2 , h6λ4}.

κ(h6λ2 , h6λ2) = 2(36) dimA1×A3 V (−α2)

= 2(36) dimA1×A3 V (λ1 − 2λ2 + λ3)

= 2(36) dimA1 V (ω1)× dimA3 V (ω1)

= 2(36)2× 4

= 26 ∗ 32

κ(h6λ4 , h6λ4) = 2(36) dimA1×A3 V (−α4)

= 2(36) dimA3×A1 V (λ3 − 2λ4 + λ5)

= 2(36) dimA3 V (ω3)× dimA1 V (ω1)

= 2(36)4× 2

= 26 ∗ 32

κ(h6λ2 , h6λ4) = 2(36) dimA1×A1×A1 V (−α2 − α3 − α4)

= 2(36) dimA1×A1×A1 V (λ1 − λ2 − λ4 + λ5)

= 2(36) dimA1 V (ω1)× dimA1 V (ω1)

= 2(36)2× 2

= 25 ∗ 32
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The Gram matrix is then

25 ∗ 32

(
2 1

1 2

)
= 25 ∗ 32

(
3 0

0 1

)
=

(
6 0

0 2

)
(up to squares)

The ratio of the Coxeter numbers here is 3. This gives the Killing form on

sl3(Q) as

κ = 〈−6〉3q0 ⊥ 〈6, 2〉 ⊥ 12H

7.2 Type Dn

Example 7.2.1 (so(q)). Consider the Killing form on so(q) with Tits index

below, where q is a 2n-dimensional isotropic quadratic form.

f p p p
@
@@

�
��r r r r r
r
r

Since q is isotropic we can write q = q0 ⊕ H. Letting J = I \ {1} (so

A = so(q0) of type Dn−1), Theorem 3.1 gives the Killing form on so(q) as

κso(q) = 〈2n− 2

2n− 4
〉κso(q0) ⊥ κ|ZH(A) ⊥ (2n− 2)H

Since ZH(A) is generated by h2λ1 , Proposition 6.2.2 gives the Killing form

on ZH(A) as

〈8 dimVDn−1(−α1)〉 = 〈8 dimVDn−1(ω1)〉

= 〈8(2)(n− 1)〉 ∼= 〈n− 1〉

We know from Example 3.3.2 that

κso(q0) = 〈−2(2n− 4)〉λ2q0
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so we have

κso(q)
∼= 〈

2n− 2

2n− 4
(−2)(2n− 4)〉λ2q0 ⊥ 〈n− 1〉 ⊥ (2n− 2)H

= 〈−2(2n− 2)〉λ2q0 ⊥ 〈n− 1〉 ⊥ (2n− 2)H
∼= 〈−(n− 1)〉λ2q0 ⊥ 〈n− 1〉 ⊥ (2n− 2)H

Calculating κso(q) as in Example 3.3.2

κso(q) = 〈−2(2n− 2)〉λ2q

But since q = 〈a1, ...a2n−2, 1,−1〉, λ2q = λ2q0 ⊥ (2n − 2)H ⊥ 〈−1〉 and we

have

κso(q) = 〈−2(2n− 2)〉(λ2q0 ⊥ (2n− 2)H ⊥ 〈−1〉)
∼= 〈−2(2n− 2)〉λ2q0 ⊥ (2n− 2)H ⊥ 〈2(2n− 2)〉
∼= 〈−(n− 1)〉λ2q0 ⊥ 〈n− 1〉 ⊥ (2n− 2)H

We can see in this example that the two methods agree.

7.3 Real Lie Algebras

Before computing the Killing form on an isotropic real Lie algebra, we first

describe the Killing form on a non-trivial orbit in the Tits index.

Lemma 7.3.1. Let L be a Lie algebra of type 2 over F and let {αi, αj} be

an orbit in the Tits index of L not contained in ∆0. The Killing form on the

2 dimensional toral subalgebra associated to this orbit is given by

〈2(x+ y), 2a(x− y)〉

where x = κ(hcλi , hcλi) = κ(hcλj , hcλj) and y = κ(hcλi , hcλj). The field K =

F (
√
a) is the quadratic extension over which L is type 1. Furthermore x >

y > 0.
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Proof. By 4.2, an F -basis for the quasi-split toral subalgebra corresponding

to the orbit {αi, αj} is

{hcλi + hcλj ,
√
ahcλi −

√
ahcλj}

We can compute the Killing form as follows.

(hcλi + hcλj , hcλi + hcλj) = (hcλi , hcλi) + 2(hcλi , hcλj) + (hcλj , hcλj)

(
√
ahcλi −

√
ahcλj ,

√
ahcλi −

√
ahcλj) =

a(hcλi , hcλi)− 2a(hcλi , hcλj) + a(hcλj , hcλj)

(hcλi + hcλj ,
√
ahcλi −

√
ahcλj) =

√
a(hcλi , hcλi)−

√
a(hcλj , hcλj)

Because of the symmetry of the root system (hcλi , hcλi) = (hcλj , hcλj). Let

x = (hcλj , hcλj) and let y = (hcλi , hcλj) giving the Killing form as

〈2(x+ y), 2a(x− y)〉

Since x, y are dimensions of irreducible representations x, y > 0. Furthermore

roots with positive αi and αj coefficients contribute the sum in 6.1, while

those with only positive αi (or αj) coefficient contribute only to the sum in

6.2. Since αi, αj are roots themselves, the latter sum will always be larger

giving x > y.

Example 7.3.2 (Real Lie Algebras). We can use Theorem 6.1.1 to calculate

the Killing form of any real Lie algebra given its Tits index. (Here κ ∈ Z,

the signature of the Killing form).

Let L be a Lie algebra over R with anisotropic kernel A. L decomposes as

L = ZH(A)⊕ A⊕
⊕

µ∈S∗,µ 6=0

(Lµ ⊕ L−µ)
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By Lemma 4.4.3, we know that κ|(Lµ⊕L−µ) is hyperbolic so the signature here

is 0. The subalgebra A is compact, so κA = (dimA)〈−1〉 [14, Proposition

6.6]. Since m∗(L), m∗(A) are positive, m∗(L)
m∗(A)

= 1 ∈ R∗/R∗2 and κ|A =

(dimA)〈−1〉. This leaves only κ|ZH(A). Since A is the anisotropic kernel of

L, ZH(A) is split or quasi-split.

Suppose ZH(A) contains non-trivial orbits so that L is type 2. By Lemma

7.3.1, the Killing form on a non-trivial orbit is 〈2(x+ y),−2(x− y)〉 where

x > y > 0. Up to squares this is hyperbolic, so its signature is also zero. The

trivial orbits of ZH(A) are split. By Lemma 3.4.2, the non-hyperbolic part of

the Killing form on a trivial orbit is a positive multiple of the Weyl-invariant

bilinear form on coroots, which is positive definite [15, 8.5]. This gives the

Killing form on a trivial orbit as 〈1〉. Since each orbit in ZH(A) is orthogonal

with respect to κ we have κ|ZH(A) = n〈1〉 where n is the number of circled

single vertices in the Tits index. This gives the Killing form on L:

κ = (# of circled single vertices in Tits index)− (dim of the anisotropic kernel)
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Chapter 8

Results for Lie algebras of type 1E6

One of the main goals for this new method of calculating Killing form of

isotropic Lie algebras is to be able to give a formula for the Killing form of

the lesser understood exceptional Lie algebras. This method allows us to

build up a Killing form for an exceptional Lie algebra based on the Killing

form of a classical subalgebra. In the E6 case, we utilize our knowledge of its

D4 subalgebra. Understanding D4 together with the methods developed in

the previous chapter allows us to give an explicit formula for any Lie algebra

of inner type E6 based on its Rost invariant. The critical case here is the E6

Lie algebra whose anisotropic kernel is of type D4. We first show that we

can achieve this case (or the split case) over an odd degree extension for any
1E6 Lie algebra.

Lemma 8.0.3. For any Lie algebra L of type 1E6 (inner type) over F , there

exists an odd degree extension K/F such that the Tits index of L ⊗F K is

one of the following:

r r r r rrf ffff f r r r r rrf f

Proof. It suffices to prove this in the case L is an algebraic group of type 1E6.

We first show that there exists an odd-degree extension of F for which the

Tits algebras of L are trivial. Recall that L has Tits algebras A(2) = A(4) =
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F and A(1) = A(5) = A(3)op = A(6)op. The Tits algebra A(1) has order

dividing 27 in Br(F ) ([29, 6.4.1])and so there exists an odd degree extension

K that splits A(1).

Over K then, L ∼= Inv(A), the group of isometries of the cubic norm form

of an Albert algebra A ([7, Theorem 1.4]). We will show that there exists

an odd degree extension of K for which A is reduced and that over this

extension, the Tits index of L has vertex 1 circled. By Tits’ classification

([28]), the Tits index will be one of the two given.

By [20, 40.8], A is reduced if and only if the invariant g3(A) ∈ H3(∗,Z/3Z)

is zero. But g3(A) is a symbol inH3(∗,Z/3Z) ([27, p.303]), so writing g3(A) =

(a) · (b) · (c), it is enough to show that res(a) ∈ H1(∗,Z/3Z) = Hom(∗,Z/3Z)

is zero over an odd-degree extension of K. Let Ka be the Galois extension

of K corresponding to ker(a). Then [Ka : K] = | im(a)| divides 3 and clearly

res(a) = 0 in H1(Ka,Z/3Z). Therefore, over Ka, A is reduced.

We have a bijection between homogeneous varieties L-varieties over F and

∗-invariant subsets of the Dynkin diagram [3, 6.4,2]. Furthermore, such a

variety has a point if and only if this subset consists of circled vertices [3,

6.3,1]. In this case, we have an explicit description of the variety associated

to vertex 1 in [8, 7.10]. It is {Kv | v ∈ A with v 6= 0 and v] = 0}. Consider

the diagonal matrix (1, 0, 0) ∈ A. Using the formula for v] given in [19,

p.385, (6)] we have (1, 0, 0)] = 0. Since this element is nonzero, it is in the

variety associated to vertex 1 and hence vertex 1 is circled in the Tits index

of L ⊗ Ka. Since [Ka : K] and [K : F ] are both odd, we have proven the

proposition.

Lemma 8.0.4. Let L be a Lie algebra of type 1E6 with one of the two Tits

indices below.

r r r r rrf ffff f r r r r rrf f
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Then the D4 subalgebra is so(q), where q is a 3-fold Pfister form and e3(q) =

r(L), the mod 2 part of the Rost invariant of L as defined in [9].

Proof. Again we may prove this in the algebraic group case. Let L be an

algebraic group wth Tits index above and let D4 denote the D4 subgroup

with roots α2, α3, α4, α5. Let A′(2) denote the Tits algebra associated to

vertex 2 as a Tits algebra of D4. In the first case, it is clear that A′(2) is

split. In the second, D4 is the anisotropic kernel of L and so A′(2) is the

same as the Tits algebra A(2) associated to vertex 2 in L [29, 5.5.2,5.5]. In L,

λ2 ∈ Λr indicating that A(2) is split over F and the irreducible 8-dimensional

representation of D4 with highest weight λ2, V (λ2), is defined over F . By

[13, 5.1.21, 5.1.24 and proof of 2.5.5], there exists a non-zero D4-invariant

symmetric bilinear form q on V (λ2) and a representation π : D4 → so(q).

Since D4 is simple with dimD4 = dim so(q), π is an isomorphism. By [29,

6.2], C0(q) = A(3) × A(5). Furthermore, λ5 ≡ −λ3 ≡ λ1 modulo Λr and

since A(1) is split, C0(q) = M8(F ) ×M8(F ) and C(q) = M16(F ) giving the

Clifford invariant c(q) = 1 ([21, V.3.12]). Since dim q = 8, disc(q) = (−1)4

and c(q) = 1, we have q ∈ I3F by Merkuryev’s Theorem.

Let E6 denote the split simply connected Lie algebra of type 1E6. Then there

is a unique η ∈ H1(F,E6) such that E6 twisted by η is L ([20, Proposition

31.5]). But L is also isomorphic to the algebra obtained by twisting E6 by

η′ ∈ H1(F, so8) ⊂ H1(K,E6) where so8 twisted by η′ is so(q) ([28, Theorem

2.2]). Furthermore η′ ∈ H1(F, spin8) since q is Pfister ([20, 31.41]). Then

the quadratic form q is uniquely associated to η by Arason-Pfister Haupstatz

[21, X.5.1]. Consider the following sequence:

H1(F, spin8)
i−−−→ H1(F,E6)

Rost−−−→ H3(F, µ⊗2
6 )

p−−−→ H3(F,Z/2Z)

The Rost multiplier of the inclusion spin8 → E6 is 1 ([6, 2.2]). Therefore

RostE6(η) = Rostspin8
(η′) = e3(q) ∈ H3(F,Z/2Z).
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By [9, Prop. 5.2 and Def. 5.3], RostE6(η) projected to H3(F,Z/2Z) is pre-

cisely the r-invariant r(L).

Theorem 8.0.5. The Killing form of a Lie Algebra of inner type E6 is

κ ∼= 〈−24〉4q0 ⊥ 〈2, 6〉 ⊥ 24H

where e3(1 ⊥ q0) is r(L), the mod 2 part of the Rost invariant of L as defined

in [9].

Proof. Let L be a Lie algebra of type 1E6 over F and let K/F be the odd

degree extension described in Lemma 8.0.3. We will show that over K, L has

a subalgebra of type D4 = so(q) where q is a Pfister form defined over F .

By Lemma 8.0.4, L ⊗ K has a D4 subalgebra of the form so(q) where q

is a K-Pfister form and e3(q) ∈ H3(K,Z/2Z) is r(L ⊗K) = res(r(L ⊗ F )).

Since res(r(L ⊗ F )) is a symbol in H3(K,Z/2Z), r(L ⊗ F ) is a symbol in

H3(F,Z/2Z) ([24, Proposition 2]). Therefore q is in fact a Pfister form over

F .

We now compute the Killing form of L ⊗ K using Theorem 6.1.1. By

Springer’s Theorem, this is isomorphic to the Killing form of L ⊗ F since

[K : F ] is odd. We have computed the Killing form of so(q) in previous

examples as κ ∼= 〈−2(2n− 2)〉λ2q. In the case q is 3-fold Pfister form, the

Killing form of so(q) is

〈−3〉4q0

where q ∼= 1 ⊥ q0.

Let A = so(q), the subalgebra of type D4 in this E6. Then ZH(A) is

generated by h3λ1 , h3λ6 and we compute the Killing form using the methods

described in the previous chapter. Again, we use λi to denote a fundamental

dominant weight of L⊗K and ωi to denote a fundamental dominant weight
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of LJ ⊗K. In these calculations we will use J = {1, 2, 3, 4, 5}, {2, 3, 4, 5, 6},
and {2, 3, 4, 5} so LJ ⊗K is of type D5, D5, and D4, respectively.

κ(h3λ1 , h3λ1) = 18 dimVD5(−α1) = 18 dimVD5(−2λ1 + λ3)

= 18 dimVD5(−ω4) = 18 ∗ 24 = 288

κ(h3λ6 , h3λ6) = 18 dimVD5(−α6) = 18 dimVD5(λ5 − 2λ6)

= 18 dimVD5(ω5) = 18 ∗ 24 = 288

κ(h3λ1 , h3λ6) = 18 dimVD4(−(α1 + α3 + α4 + α5 + α6))

= 18 dimVD4(−λ1 + λ2 − λ6) = 18 dimVD4(ω2)

= 18 ∗ 8 = 144

This form diagonalizes to 〈2, 6〉. Using Theorem 6.1.1 and the fact that
m(E6)
m(D4)

= 12
6

= 2 gives the result.

The table below gives the results for each type of 1E6 where r(L) = 1 ⊥ q0.

We need only know the Rost invariant to compute these forms. Notice how

streamlined these formulas are compared to Jacobson’s results in Chapter

5. In the split case r(L) = 4H, so we can give the formula with no q0. In

the third case, Lemma 8.0.3 shows that the Killing form is isomorphic to the

Killing form of the split Lie algebra.
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Tits Index Killing form

r r r r rrf ffff f 〈1, 1, 1, 1, 2, 6〉 ⊥ 36H

r r r r rrf f 〈−6〉4q0 ⊥ 〈2, 6〉 ⊥ 24H

r r r r rrff 〈1, 1, 1, 1, 2, 6〉 ⊥ 36H

r r r r rr 〈−6〉4q0 ⊥ 〈2, 6〉 ⊥ 24H

Table 8.1: Results for 1E6
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Chapter 9

Results for Lie algebras of type 2E6

Theorem 6.1.1 also yields results for some outer type E6 Lie algebras. For

this section L refers to a Lie algebra of outer type E6 with one of the following

Tits indices: r rr rr r�
f f ��
�
�
�
�
�
�r rr rr r�
f �
�
�
�r rr rr r�
 ��
�
�

As in the inner type case, the subalgebra of type 2D4 plays a crucial role.

We begin by describing this subalgebra.

Lemma 9.0.6. Let Γ = Gal(Fsep/F ) and let ∗ : Γ→ S3 be the map from Γ

into the automorphism group of the Tits index of 2D4 given by the ∗-action

of Γ. Let K = (Fsep)
ker ∗. Then K = F (

√
(a)) for some a ∈ Ḟ and

2D4 = so(1 ⊥ 〈a〉q0)

where 1 ⊥ q0 is a Pfister form over K.

Proof. Over F , the fundamental weight λ2 is in the root lattice of E6 so A(2)

is split as a Tits algebra of E6. When vertex 2 is circled in the Tits index of a

Lie algebra of type 2E6, A(2) is split as a Tits algebra of D4. When D4 is the

anisotropic kernel of E6, the Tits algebras for the vertices in D4 are the same

as those for the vertices 2,3,4,5 in E6 above [29, p.211]. This covers all Tits
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indices of type 2E6 except the anisotropic case. Since A2 is split in each of

these cases, V (λ2), the 8-dimensional irreducible representation of D4 with

highest weight λ2, is defined over the base field F . There exists a D4 invariant

symmetric bilinear form on V (λ2) by [13, 5.1.21, 5.1.24 and Proof of 2.5.5] so

we have a representation π : D4 → so(q) for some 8-dimensional quadratic

form q. Since D4 is simple, π is injective, and since dimD4=dimso(q)=28, π

is an isomorphism.

The image of the map ∗ : Γ → S3 has order 2 since our D4 is of type 2

[28]. Therefore [K : F ] = 2 and so K = F (
√
a) for some a ∈ Ḟ . Notice

that L⊗K is of inner type. We now describe the Tits algebras of L over K.

Let B be the Tits algebra associated to the orbit {α3, α5} over F (using the

number of the vertices in E6). Then over K

B ⊗F K = (B ⊗K K)⊗F K = B ⊗K (K ⊗F K) = B ⊗K (K × ιK)

B ⊗K K ×B ⊗K ιK = B × ιB = A(3)× A(5)

where A(3) and A(5) are Tits algebras associated to vertices 3, 5 in the inner

type D4 ⊂ E6. The even Clifford algebra of q⊗K = A(3)⊗A(5) [29, 6.2]. But

we are in the inner case over K, so there exists an odd degree extension of K

for which all Tits algebras are trivial. (See proof of Lemma 8.0.3.) Over this

extension K ′ then C0(q⊗K ′) = M8(K ′)⊗M8(K ′) and C(q⊗K ′) = M16(K ′)

[21, V.2.5] so c(q ⊗K ′) = 1 and since also dim q = 8, disc q = 1, q ⊗K ′ is a

Pfister form. But then q ⊗K is Pfister [24, Proposition 2] and

q ⊗ F = 〈1〉 ⊥ 〈a〉q0

where 1 ⊥ q0 = q ⊗K [21, VII.3.3].

Theorem 9.0.7. Let L be a Lie algebra of outer type E6 with one of the

following Tits indices
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r rr rr r�
f f ��
�
�
�
�
�
�r rr rr r�
f �
�
�
�r rr rr r�
 ��
�
�

The Killing form of L is

κ ∼= 〈−24〉(3q0 ⊥ 〈a〉q0) ⊥ 〈6, 2a〉 ⊥ 24H

where 〈1 ⊥ q0〉 is r(L⊗K).

Proof. Let A be the subalgebra of type 2D4. The ratio of the Coxeter numbers

of L and A is 2 so Theorem 6.1.1 gives

κ = 2κA ⊕ κ|ZH(A) ⊕ 24H

Since A = so(1 ⊥ 〈a〉q0), the Killing form of A is

κA = −2(6)λ2q = 3q0 ⊥ 〈a〉q0

The quasi-split toral subalgebra ZH(A) has F -basis {h3λ1 + h3λ6 ,
√
ah3λ1 −√

ah3λ6} [3, 6.9]. We calculate the Killing form using results from the 1E6

case which are restated below.

κ(h3λ1 , h3λ1) = 288

κ(h3λ6 , h3λ6) = 288

κ(h3λ1 , h3λ6) = 144

The Killing form for ZH(A) in the type 2 case is then:

κ(h3λ1 + h3λ6 , h3λ1 + h3λ6) = 3(288)

κ(h3λ1 + h3λ6 ,
√
ah3λ1 −

√
ah3λ6) = 0
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κ(
√
ah3λ1 −

√
ah3λ6 ,

√
ah3λ1 −

√
ah3λ6) = a(288)

This form diagonalizes to

〈6, 2a〉.

Combining these results gives the formula for outer type E6.

In the quasi-split case, 1 ⊥ q0 = 4H so 3q0 = 〈−1〉 ⊥ 3H giving the Killing

form on 2D4 as

〈−1〉〈1, 1, 1, a〉 ⊥ 12H

The table below summarizes the Killing form for the other cases.

Tits Index Killing formr rr rr r�
f f ��
�
�
�
�
�
� 〈6〉〈1, 1, 1, a〉 ⊥ 〈6, 2a〉 ⊥ 36Hr rr rr r�
f �
�
�
� 〈−6〉(3q0 ⊥ 〈a〉q0) ⊥ 〈6, 2a〉 ⊥ 24Hr rr rr r�
 ��
�
� 〈−6〉(3q0 ⊥ 〈a〉q0) ⊥ 〈6, 2a〉 ⊥ 24H

Table 9.1: Results for 2E6

Garibaldi and Petersson [11, 11.1] describe a bijection between pairs (C,K)

of octonion F -algebras C and quadratic étale algebras K and simply con-

nected groups of type E6. In the above formulas 1 ⊥ q0 is the norm form of

C and K = F (
√
a).

It should also be noted that Jacobson’s methods also give the above results,

although his formulas are much more compliacted (see [18, p.114]).
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Chapter 10

Results for Lie algebras of type E7

For Lie algebras of type E7 we have only inner type. Theorems 6.1.1 and

8.0.5 give us immediate results for isotropic Lie algebras of type E7 when

the anisotropic kernel is contained in the subalgebra of type E6. The Killing

form for these Lie algebras is obtained by letting A = E6 in Theorem 6.1.1

and using the results from Theorem 8.0.5 to give the Killing form on A.

Theorem 10.0.8. Let L be an isotropic Lie algebra of type E7 whose anisotropic

kernel is contained in the subalgebra of type E6 generated by the simple roots

∆ \ {α7}. Let q0 denote the invariant r(E6). Then the Killing form on L is

κ ∼= 〈2, 1, 1〉 ⊥ 4〈−1〉q0 ⊥ 51H

Proof. Let A = E6. ZH(A) is a one dimensional F -split toral subalgebra

corresponding to vertex 7. A basis for ZH(A) is just h2λ7 and the Killing

form on ZH(A) can be computed as follows.

κ(h2λ7 , h2λ7) = 2(22) dimVE6(−α7) = 8 dimVE6(λ6 − 2λ7)

= 8 dimVE6(ω6) = 8 ∗ 27 = 216

≡ 6mod F ∗2

The Coxeter number of E7 is 18 and the Coxeter number of E6 is 12 so

Theorem 6.1.1 and the computations above give

κ = 〈3
2
〉(〈−24〉4q0 ⊥ 〈2, 6〉 ⊥ 24H) ⊥ 〈6〉 ⊥ 27H
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Simplifying the form and reducing modulo squares gives

κ = 4〈−1〉q0 ⊥ 〈3, 1, 6〉 ⊥ 51H

But

〈3, 6〉 ∼= 〈1, 2〉

since they have the same discriminant and both represent 9 [21, I.5.1]. This

gives

κ = 〈2, 1, 1〉 ⊥ 4〈−1q0〉 ⊥ 51H

The following table summarizes the results for E7. Here 1 ⊥ q0 is the r-

invariant of the E6 subalgebra. In the split case 1 ⊥ q0 = 4H so q0 = 〈−1〉 ⊥
3H.

Tits Index Killing form

r r r r r rrf ffff f f 〈2, 1, 1, 1, 1, 1, 1〉 ⊥ 63H

r r r r r rrf f f 〈2, 1, 1〉 ⊥ 4〈−1〉q0 ⊥ 51H

r r r r r rr f 〈2, 1, 1〉 ⊥ 4〈−1〉q0 ⊥ 51H

Table 10.1: Results for E7
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