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Abstract 

 

Development and Evaluation of Concavity-Respecting ROC Curve Estimators  

 

By Xiwen Zhao 

 

 

Biomarkers are widely used for the diagnosis of a specific disease. To evaluate the 

diagnostic accuracy of a biomarker, the Receiver Operating Characteristic (ROC) curve 

analysis is one of the best developed statistical tools. In clinical context, typically higher 

biomarker value indicates larger possibility of the disease and then, the corresponding ROC 

curve should be strictly concave. However, the empirical ROC curve, as often adopted, 

does not necessarily respect the concavity property. In this study, we developed two 

methods to modify the empirical ROC curve in order to restore the concavity. Extensive 

simulations were conducted, and they showed that our modified ROC estimators for the 

area under curve (AUC) and the specificity at a fixed sensitivity have performance 

comparable to the empirical estimators.  
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1.Introduction 

In this era of precision medicine, many candidate biomarkers have been or are being 

discovered to assist in monitoring asymptomatic patients, disease detection and diagnosis, 

and prediction of treatment response. To validate these biomarkers, it is important to 

evaluate their accuracy to correctly classify one condition from another (i.e., diseased 

versus non-diseased) (Søreide, 2009). When the testing results of biomarkers are measured 

on ordinal or continuous scale, the sensitivity and specificity would be functions of a 

selected cut-off point “c” ranging over all the possible threshold values (Hajian-Tilaki, 

2013). In such a context, the Receiver Operating Characteristic (ROC) curve analysis is 

currently the best-developed method to describe the performance of biomarkers (Pepe, 

2003). 

 

The ROC curve was developed during WWII for analyzing classification accuracy in radar 

detection, before its principles later were expanded to improve medical decision making. 

Over the years, it has implemented to many fields including atmospheric science, biology, 

experimental psychology, and sociology etc. (Goncalves,2014). ROC analysis has also 

been increasingly applied in machine learning and data mining recently. Its advantages 

include testing accuracy across the entire range of test scores without requiring a 

predetermined cut-off point. In addition, ROC analysis allows comparison across different 

diagnostic tests or classifiers, by simply plotting the curves, or comparing the values of 

summary index (e.g., area under the curve). Furthermore, ROC does not require the 

knowledge of disease prevalence in population, which is very important in biomedical 

research as case-control studies are often conducted.   
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In diagnostic test with dichotomous outcomes, the conventional approach of diagnostic test 

evaluation uses sensitivity (proportion of true positives that are correctly classified by the 

test) and specificity (proportion of true negatives that are correctly classified by the test) as 

measure of accuracy, in comparison with gold standard. In situations that the test results 

are measured on continuous scales, the sensitivity and specificity can be ranged over all 

the possible threshold values (Hajian-Tilaki,2013). Sensitivity is also known as True 

Positive Rate (TPR) and 1- Specificity is known as False Positive Rate (FPR). The plot of 

TPR versus FPR gives rise to the Receiver Operating Characteristic (ROC) curve. The 

ROC curve is a monotone increasing function mapping (0,1) onto (1,0). For an 

uninformative test, whose probability of detecting positive disease status is unrelated to 

truly getting disease, we have TPR(c)=FPR(c) given any threshold c. The ROC curve for 

such a test will be just a line with slope=1. On the other hand, a perfect test can perfectly 

separate diseased subjects from non-diseased. Therefore, the ROC curve can reach the 

point TPR(c)=1 and FPR(c)=0 at certain value of c (Pepe, 2003). Many parametric, 

semiparametric, and nonparametric estimation methods have been established to construct 

the ROC curve and its associated summary indices. Among these methods, the simplest 

and commonly used one is the empirical estimator, which we will further discuss in the 

following section.  

 

When using biomarker for disease diagnosis, it is typically plausible that a higher level of 

test score always indicates a larger probability of the disease status. Then the corresponding 

ROC curve should be strictly concave, as will be shown in next section. However, the 
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empirical ROC curves do not respect concavity: see Figure1for illustration. Constructing 

strictly concave ROC curves has been studied in the machine learning literatures. Provost 

and Fawcett (2001) addressed this problem with an ROC convex hull algorithm, to obtain 

the convex hull of the empirical ROC curve. Flach and Wu (2005) further developed a 

concavity-respecting ROC estimator by approximately combining the Provost and 

Fawcett’s estimator and the empirical ROC curve. However, the statistical properties of 

these concavity-respecting estimators have not been investigated.  

 

In this study, we developed and evaluated two concavity-respecting estimators of the ROC 

curve. The empirical ROC is a step function (in the absence of tied biomarker observation 

between diseased and non-diseased). Each jump involves a top point and a bottom point. 

The first concavity-respecting ROC curve is the convex hull of these top points, and the 

second one is the convex hull of the bottom points; these two ROC estimators will be 

referred to as top concavity-respecting (TCR) estimator and bottom concavity-respecting 

(BCR) estimator, respectively. The TCR estimator coincides with the Provost-Fawcett’s 

method. We also conducted extensive simulation studies to investigate the statistical 

properties of these estimators in comparison with the empirical ROC curve. 
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Figure 1: Illustration of an empirical ROC 

 curve, which does not respect concavity. 

 

2.Problem and Notation 

Consider a continuous biomarker. Represent it in the diseased group (D=1) and the non-

diseased group (D=0) by 𝑌 and 𝑋, respectively. For a given cut-off point 𝑐, the test result 

is diseased if it is greater than 𝑐  and non-diseased otherwise. Let  𝐺  and 𝐹  be the 

distribution functions of the random variables 𝑌 and 𝑋. The sensitivity of the test is given 

by  𝑆𝑒(𝑐) = 1 − 𝐺(𝑐), and the specificity is defined as 𝑆𝑝(𝑐) = 𝐹(𝑐). A schematic plot is 

presented as Figure 2 (Gonçalves, 2014). 
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Figure 2: Distribution of the diagnostic test measures 

for the diseased and non-diseased populations. 

 

Therefore, the corresponding true and false positive factions at the threshold 𝑐 are  

𝑇𝑃𝑅(𝑐) = 𝑃𝑟(𝑌 > 𝑐) = 1 − 𝐺(𝑐)
𝐹𝑃𝑅(𝑐) = 𝑃𝑟(𝑋 > 𝑐) = 1 − 𝐹(𝑐)

 

The ROC curve is the entire set of possible true and false positive fractions computed by 

using different thresholds. It is easily to see that both FPR and TPR are a monotone 

decreasing function of c. Thus, the ROC curve is a monotone increasing curve that lies in 

the positive quadrant. We can write the ROC curve as: 

𝑅𝑂𝐶(𝑡) = 1 − 𝐺(𝐹−1(1 − 𝑡))，𝑡 ∈ [0,1] 
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with 𝑐 = 𝐹−1(1 − 𝑡) being the threshold values such that 𝑡 = 1 − 𝐹(𝑐) = 𝐹𝑃𝑅(𝑐) ; see 

Figure 3. 

Thus, the slope of 𝑅𝑂𝐶(𝑡) at 𝑡 is 

𝜕𝑅𝑂𝐶(𝑡)

𝜕𝑡
=

𝑓𝑌(𝐹−1(1 − 𝑡))

𝑓𝑋(𝐹−1(1 − 𝑡))
= 𝑟(𝑐)|𝑐=𝐹−1(1−𝑡), 

where 𝑓𝑌, 𝑓𝑋 denote the probability density functions of 𝑌 (Diseased Group) and 𝑋 (Non-

Diseased Group) respectively. In the biomedical settings that higher level of biomarker 

indicates larger probability of the disease status, the slope of ROC curve r(c) is a monotone 

increasing function of c. Since c is a function of 𝑡 = 𝑃𝑟(𝑋 ≥ 𝑐), the slope of the ROC 

curve is monotone decreasing as 𝑡 increases. Therefore, in such a context, the true ROC 

curve should be concave. It can also be explained by the second order derivative of ROR(t) 

with respect to t: 

𝜕𝑅𝑂𝐶(𝑡)2

𝜕2𝑡
=

𝜕𝑟(𝑐)

𝜕𝑐

𝜕

𝜕(1 − 𝑡)
(𝐹−1(1 − 𝑡))(−1) 

Obviously the second order derivative is negative, ROC(t) is concave respecting to t. 

 

The empirical estimator of the ROC curve is given by 

𝑅𝑂𝐶(𝑡)ˆ = 1 − �̂� (�̂�
−1

(1 − 𝑡)) 

where �̂�
−1

 and �̂�  denote the empirical quantile function and the empirical distribution 

function associated to non-diseased and diseased populations respectively. The empirical 

distribution function is the percentage of subjects' test scores smaller or equal to t at any 

given t, and the empirical quantile function is its inverse (Gonçalves, 2014). 
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To restore concavity, we developed two algorithms to modify the empirical ROC curve.  

3.Algorithm 

Constructing Empirical ROC Curve 

The empirical ROC curve preserves many properties of the empirical distribution function 

and it's uniformly convergent to the theoretical curve (Hsieh and Turnbull, 1996). 

Nevertheless, it has some drawbacks and may suffer from large variability, particularly for 

small sample size. In addition, the empirical ROC curve is not continuous, but a step 

function. 

Input: List of tuples (score, label), where: 

 

Score—numeric test results of each observation. 

Label—the true class of each observation. 

Output: Stepwise constant function 

 

1. Sort testing set instances increasing by score. 

2. Starting from the lowest score, calculate TPR(c) and FPR(c) by 

setting c equals to chosen score. 

3. Repeat step 2, use every score as threshold successively. 

4. Plot TPR(c)s vs. FPR(c)s. 

 

Identifying and Restoring Concavity 

To restore the concavity, firstly we should locate all the points candidates on the empirical 

ROC curve to act as bases for the modified ROC curve. Two categories of special points 

on the empirical curves first come to mind: 1) the points on top of each step, which would 

be on the boundary of convex hull (marked in red); 2) the points at the bottom of each step 

(marked in green), as Figure 4 shown below.  
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Figure 4: The candidate points of 

the two modification methods.  

TCR: chose from the points 

having highest TPR level among 

all the points with same FPR 

levels, which locate on the top of 

each step. (Red Circles) 

 BCR: chose from the points 

having lowest TPR level among 

all the points with same FPR 

levels, which locate at the bottom 

of each step. (Green Circles) 

 

Input: A candidate list, containing points at every top/bottom of the steps, whose 

locations are expressed as ( 𝐹𝑃𝑅(𝑐), 𝑇𝑃𝑅(𝑐)) 

Output: A list of points used to construct the modified ROC curve. 

 1. A true ROC curve always contains (0,0) and (1,1), so (0,0) is the 

first point on modified ROC curve. 

2. Define the first point as “prior point” and derive the slopes between 

the prior point and all the following points in our candidate list. 

3. Among all the slopes, find out the maximum. Adding the 

corresponding point into modified ROC curve list. Thereafter, let 

this new point take place the prior point, then repeat step 2. 

4. Keep doing step 2 and 3, until the newest selected point reaches 

TPR=1 or FPR=1. 

5. Use the points in modified ROC list to draw a ROC curve by 

connecting them with line segments. 
 

In the process of generating modified ROC curve estimators, we observed that the area 

under TCR curve always contains a positive bias. Such a phenomenon let us question 

TCR’s asymptotic properties. However, for BCR we did not have this concern. In the 
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following simulation studies, we expected to observe that the performance of BCR would 

be better than TCR. 

 

4.Simulation Study 

To evaluate the statistical properties of the two modified estimators of ROC curve, we 

investigated two commonly used summary indexes of ROC curves, the area under ROC 

curve and specificity at fixed level of sensitivity. Simulation studies have been conducted 

using different population distributions and sample sizes.  

Area Under Curve 

Numerical indices for ROC curves are often used to summarize the curves. When it is not 

feasible to plot the ROC curve itself, such summary measures convey important 

information about the curve (Pepe, 2003). The area under the ROC curve (AUC) is a single 

number summary of an ROC curve which can be used to compare the effectiveness of two 

separate diagnostic tests or procedures. It is easier to compare a single number than to 

compare both the sensitivities and specificities of the two tests (Zhou,2005). Also it may 

come out that the ROC curves of two tests are very similar making it hard to detect which 

is better. Therefore, instead of comparing two ROC curves visually, the AUC for the two 

ROC curves are compared. As such, the AUC is “the most common quantitative index 

describing an ROC curve” (Hanley, 1997). It is defined as  

𝐴𝑈𝐶 = ∫ 𝑅
1

0

𝑂𝐶(𝑡)𝑑𝑡 

A perfect test has the AUC value of 1. On the other hand, an uninformative test has 

AUC=0.5. The AUC is interpreted as “the probability that test results from a randomly 
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selected pair of diseased and non-diseased subjects are correctly ordered”, that is, 𝑃𝑟(𝑌 >

𝑋) (Pepe, 2003). 

 

AUC has been used as a summary measure in this study. We calculated the mean squared 

error (MSE), bias, and variance of AUCs of empirical estimator and the two modified ones, 

as well as the coverage accuracy of their bootstrap intervals (percentile intervals based on 

1000 bootstrapping resamples), using different population distributions and sample sizes. 

In every simulation studies, we generated 1000 random samples of size m from the 

distribution for test responses of diseased patients, and another independent random 

samples of the sample size n from the distribution for test responses of non-diseased 

patients. We considered (m, n) = (20, 20), (50, 50) and (100, 100) to represent small to 

moderate sample size settings. In addition, we added (m, n) = (40, 20) as an unequal sample 

size setting. The population distribution settings in these simulation studies, were chosen 

to represent normally distributed data with different populations means, and non-normally 

distributed data. The parameters of the population distributions are determined to represent 

four level of distribution overlapping, which is to say 4 levels of theoretical AUC values. 

The settings of the simulation studies were following the publication of Zhou et al (2005). 

The detailed distribution parameters and the theoretical AUC values for the true ROC 

curves corresponding to the settings are shown in Table 1. 

Empirical AUC(𝐴𝑈𝐶𝑒𝑚𝑝
ˆ ) = ∑ ∑

𝐼(𝑌𝑗>𝑋𝑖)+1/2𝐼(𝑌𝑗=𝑋𝑖)

𝑚𝑛

𝑛
𝑖=1

𝑚
𝑗=1  

𝑇ℎ𝑒𝑜𝑟𝑒𝑡𝑖𝑐𝑎𝑙 𝐴𝑈𝐶(𝐴𝑈𝐶0) = ∫ 𝑅
1

0

𝑂𝐶(𝑡)𝑑𝑡

= 𝑃𝑟(𝑌 > 𝑋)

 



 11 

𝑀𝑆𝐸ˆ (𝐴𝑈𝐶ˆ ) =
1

𝑛
∑(

𝑛

𝑖=1

𝐴𝑈𝐶ˆ
𝑖 − 𝐴𝑈𝐶0)2

𝐵𝑖𝑎𝑠ˆ (𝐴𝑈𝐶ˆ ) =
1

𝑛
∑ 𝐴𝑈𝐶ˆ

𝑖

𝑛

𝑖=1

− 𝐴𝑈𝐶0

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒ˆ (𝐴𝑈𝐶ˆ ) =
1

𝑛 − 1
∑(

𝑛

𝑖=1

𝐴𝑈𝐶ˆ
𝑖 − 𝐴𝑈𝐶ˆ )2

 

 

 

 

 

 

 

 

We display MSEs, Bias, Variances and Bootstrap Interval Coverage Probabilities for the 

empirical AUC and two modified AUCs, TCR for modified estimator based on convex 

hull, BCR for modified estimator constructing by the points at the bottom of each step, in 

Table 2 with (m,n)=(20,20), in Table 3 with (m,n)=(50,50), in Table 4 with 

(m,n)=(100,100), and in Table 5 with (m,n)=(40,20). With this series of comparison, we 

expected to see the advantages of our modified estimators under certain situations. From 

the results in Table 2-5, we find that for small sample size ((m,n)=(20,20)), TCR has the 

lowest MSE and variance than the empirical estimator when the theoretical AUC is close 

to 1, which means the diseased population distribution does not overlap with the non-

Table 1: Distribution Setting for the simulation study on AUCs estimated 

 by 3 methods, and the theoretical AUCs are calculated as below. 

Index 
Distribution of 

Diseased Group 

Distribution of 

non-Diseased Group 
Theoretical AUC 

1 N (2, 1) N (0, 1) 0.9214 

2 Beta (2, 1) Beta (1, 2) 0.8332 

3 N (1, 1) N (0, 1) 0.7603 

4 N (0.5, 1) N (0, 1) 0.6382 
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diseased population distribution very much. Generally, BCR has the best performance 

among all 3 estimators, especially when the theoretical AUC is between 0.7 to 0.9, which 

means the overlap between population distributions of the diseased and non-diseased 

groups are comparatively large. When the sample size increases, estimator BCR 

outperformed the other two in most situations, since it has a better balance of bias and 

variance, and the bias/standard deviation ratio converge to zero very quickly. However, 

though the bias of TCR does not shrink as much as the other two, it still works well when 

sample sizes are small, and most important, it always has the lowest variance.   
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Table 2: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage probability  

of the AUCs estimated by 3 methods.  Sample size (m, n) = (20, 20) 

Theoretical 

AUC 

Estimator MSE Bias Variance 

Coverage 

 Probability 

0.9214 

Emp 0.00175 0.00046 0.00175 0.898 

TCR 0.00162 0.02362 0.00106 0.726 

BCR 0.00585 -0.05893 0.00238 0.711 

0.8332 

Emp 0.00249 0.00137 0.00249 0.919 

TCR 0.00307 0.03505 0.00184 0.786 

BCR 0.00279 -0.02242 0.00230 0.906 

0.7603 

Emp 0.00574 -0.00248 0.00574 0.950 

TCR 0.00664 0.05152 0.004 0.745 

BCR 0.00547 -0.03297 0.00439 0.927 

0.6382 

Emp 0.00791 0.00065 0.00791 0.937 

TCR 0.01087 0.0744 0.01758 0.676 

BCR 0.02032 -0.05238 0.0214 0.953 
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Table 3: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage probability 

 of the AUCs estimated by 3 methods. Sample size (m, n) = (50, 50) 

Theoretical 

AUC 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9214 

Emp 0.00069 -0.00015 0.00069 0.919 

TCR 0.00076 0.01571 0.00052 0.746 

BCR 0.00087 -0.01651 0.0006 0.947 

0.8332 

Emp 0.00152 0.00116 0.00152 0.933 

TCR 0.00197 0.02722 0.00123 0.771 

BCR 0.00134 -0.008 0.00128 0.949 

0.7603 

Emp 0.00219 0.00123 0.00219 0.931 

TCR 0.003 0.03463 0.0018 0.747 

BCR 0.00189 -0.00132 0.00189 0.953 

0.6382 

Emp 0.003 0.00055 0.00305 0.933 

TCR 0.00461 0.04739 0.00238 0.749 

BCR 0.00494 -0.00393 0.00493 0.955 
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Table 4: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage probability 

 of the AUCs estimated by 3 methods.  Sample size (m, n) = (100, 100) 

Theoretical 

AUC 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9214 

Emp 0.00034 -0.00018 0.00034 0.932 

TCR 0.0004 0.01105 0.00028 0.788 

BCR 0.00033 -0.00564 0.0003 0.932 

0.8332 

Emp 0.00083 0.0016 0.00083 0.940 

TCR 0.0011 0.0193 0.00073 0.789 

BCR 0.00074 0.00119 0.00074 0.949 

0.7603 

Emp 0.0011 0.00178 0.0011 0.943 

TCR 0.00158 0.0245 0.00098 0.765 

BCR 0.00102 0.0058 0.00099 0.942 

0.6382 

Emp 0.00148 0.00006 0.00148 0.932 

TCR 0.00227 0.0319 0.00125 0.756 

BCR 0.0018 -0.0074 0.00175 0.930 
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Table 5: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage  

probability of the AUCs estimated by 3 methods.  Sample size (m, n) = (40, 20) 

Theoretical 

AUC 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9214 

Emp 0.00134 -0.00038 0.00134 0.891 

TCR 0.00129 0.02045 0.00087 0.718 

BCR 0.00284 -0.03932 0.00129 0.677 

0.8332 

Emp 0.00295 0.00156 0.00295 0.917 

TCR 0.0035 0.03726 0.00211 0.768 

BCR 0.00309 -0.02525 0.00245 0.906 

0.7603 

Emp 0.00452 0.00403 0.00451 0.930 

TCR 0.00582 0.04985 0.00334 0.751 

BCR 0.00374 -0.01452 0.00354 0.932 

0.6382 

Emp 0.00016 0.00093 0.00016 0.924 

TCR 0.00012 0.00675 0.00008 0.659 

BCR 0.01814 -0.08191 0.01144 0.943 
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Specificity at Fixed Level of Sensitivity 

In clinical research, the fundamental measure of diagnostic accuracy is sensitivity (i.e. True 

Positive Rate) and specificity (i.e. True Negative Rate). For the continuous scaled 

diagnostic tests, there is an inherent trade-off between sensitivity and specificity which can 

be demonstrated by varying the cut-off points. In practice, the cut-off point is usually 

chosen to achieve a fixed level of sensitivity or specificity. The motivation to do so is that, 

depending on clinical context physicians may desire for maintaining high sensitivity or 

specificity. For example, in aggressive prostate cancer research, the cost of false negative 

diagnosis is much higher than false positive diagnosis. In that case, we would fix the test 

sensitivity level at 95 per cent, and then look at the corresponding specificity level. Hence 

it is sometimes of interest to only focus on a small part of the entire ROC curve where the 

diagnostic test is intended to operate in practice. Particularly, we are interested in the 

specificities at a fixed high sensitivity, for example, 95 percent.  

 

In this part of the study, we fixed the sensitivity at 95 per cent, and evaluate the 

corresponding estimated specificity values based on empirical ROC curves and modified 

ROC curves, under population distribution and sample size settings similar to the previous 

section. Table 6 lists the detailed settings and theoretical specificities corresponding to 95 

per cent level of sensitivities. 
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Table 6: Distribution Setting for the simulation study on Specificity given  

Sensitivity fixed at 0.95.  

Index 
Distribution of 

Diseased Group 

Distribution of 

non-Diseased Group 

Specificity 

(Sensitivity=0.95) 

1 N (3, 1) N (0, 1) 0.9123 

2 N (2, 1) N (0, 1) 0.6388 

3 Beta (2, 1) Beta (1, 2) 0.3972 

4 N (1, 1) N (0, 1) 0.2595 

 

The empirical ROC curve is a step function.  Therefore, multiple specificity values 

correspond to the same sensitivity. We took the minimum specificity within identical 

sensitivity levels. In Tables 7,8,9, and 10, we display the MSEs, Bias, Variances and 

Bootstrap Interval Coverage Probabilities for the empirical Specificities and two modified 

Specificities when Sensitivities fixed at 95 percent. The properties of TCR and BCR are 

similar to what we observed from comparing AUCs. As we can see, when sample size is 

relatively large, the BCR ROC curve would be very close to the empirical ROC curve. 

Therefore, the point estimates of Specificity at 95 per cent level of Sensitivity generated 

from empirical ROC curve and BCR ROC curve are similar to each other. And generally, 

the Bootstrap coverage probability of BCR estimator is better than the empirical estimator.  
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Table 7: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage  

probability of Specificity estimated by 3 methods.  Sample size (m, n) = (20, 20) 

Theoretical 

Specificity 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9123 

Emp 0.00645 0.0137 0.00627 0.921 

TCR 0.00516 0.02518 0.00453 0.775 

BCR 0.2352 -0.37595 0.09395 0.648 

0.6388 

Emp 0.03178 0.07109 0.02676 0.933 

TCR 0.02978 0.09747 0.0203 0.770 

BCR 0.0656 -0.1689 0.03711 0.912 

0.3972 

Emp 0.03702 0.08875 0.02917 0.901 

TCR 0.03874 0.12501 0.02314 0.727 

BCR 0.03187 -0.09482 0.0229 0.967 

0.2595 

Emp 0.03741 0.0949 0.02842 0.916 

TCR 0.03952 0.13481 0.02136 0.689 

BCR 0.02451 -0.03895 0.02302 0.995 
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Table 8: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage  

probability of Specificity estimated by 3 methods.  Sample size (m, n) = (50, 50) 

Theoretical 

Specificity 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9123 

Emp 0.00384 -0.0027 0.00383 0.944 

TCR 0.00255 0.01962 0.00217 0.826 

BCR 0.01766 -0.06648 0.01325 0.897 

0.6388 

Emp 0.01547 0.00172 0.01548 0.940 

TCR 0.01353 0.05588 0.01042 0.811 

BCR 0.01538 -0.04114 0.0137 0.955 

0.3972 

Emp 0.01501 0.00946 0.01494 0.949 

TCR 0.01612 0.07125 0.01105 0.773 

BCR 0.01165 -0.01787 0.01135 0.967 

0.2595 

Emp 0.01181 0.01056 0.01171 0.958 

TCR 0.0143 0.07356 0.0089 0.748 

BCR 0.00794 -0.00766 0.00789 0.988 

 

  



 21 

 

 

  

Table 9: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage  

probability of Specificity estimated by 3 methods.  Sample size (m, n) = (100, 100) 

Theoretical 

Specificity 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9123 

Emp 0.00196 0.00075 0.00196 0.949 

TCR 0.00155 0.01035 0.00144 0.890 

BCR 0.0023 -0.01761 0.00199 0.966 

0.6388 

Emp 0.00753 0.0157 0.00729 0.924 

TCR 0.00711 0.0373 0.00572 0.837 

BCR 0.00665 -0.00757 0.0066 0.962 

0.3972 

Emp 0.00807 0.02142 0.00761 0.933 

TCR 0.00834 0.04928 0.00591 0.794 

BCR 0.00623 0.00343 0.00622 0.950 

0.2595 

Emp 0.00707 0.0251 0.00645 0.932 

TCR 0.00784 0.05329 0.00501 0.781 

BCR 0.00496 0.01194 0.00482 0.954 
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Table 10: MSE, Bias, Variance, and Bootstrap Quantile Interval coverage  

probability of Specificity estimated by 3 methods.  Sample size (m, n) = (40, 20) 

Theoretical 

Specificity 

Estimator MSE Bias Variance 

Coverage 

Probability 

0.9123 

Emp 0.00578 0.0116 0.00565 0.910 

TCR 0.00442 0.02682 0.0037 0.838 

BCR 0.1008 -0.19753 0.06188 0.722 

0.6388 

Emp 0.02293 0.04434 0.02098 0.914 

TCR 0.02148 0.07705 0.01556 0.788 

BCR 0.03065 -0.08137 0.02405 0.872 

0.3972 

Emp 0.02468 0.05445 0.02174 0.954 

TCR 0.02577 0.096 0.01657 0.818 

BCR 0.02041 -0.04704 0.01822 0.956 

0.2595 

Emp 0.02074 0.04175 0.01901 0.927 

TCR 0.02238 0.08546 0.01509 0.745 

BCR 0.02018 -0.03092 0.01925 0.956 
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The research of Hsieh and Turnbull showed that the empirical ROC curve converges to the 

sum of 2 independent Brownian bridges. And the asymptotic normality of summary 

measures of the empirical ROC curve, such as AUC and specificity at fixed level of 

sensitivity, can be derived from their work (Hsieh and Turnbull, 1996).   In this study, we 

plotted TCR and BCR versus standard normal distribution and modified AUCs versus 

empirical AUC. 

In Figure 5, 6, 7, and 8, the red line is a 45 reference line, which implies that the modified 

estimator asymptotically equals to the empirical estimator if the points fall along the 

reference line. As we can see, the difference between empirical estimates and BCR 

estimates decreased faster than TCR estimates with sample size went to large, even though 

TCR seems to be more robust when sample size is relatively small. This finding agrees 

with what we observed from the previous simulations. Referring the trend shown in these 

scatter plots, we speculate that BCR is asymptotically equivalent to the empirical estimator, 

and it is possible that TCR is also asymptotically equivalent to the empirical estimator. 

Figure 9 and 10 are the Q-Q plots of AUCs of the 2 modified ROC curves versus standard 

normal quantiles, under different sample sizes. These plots show that both TCR AUC and 

BCR AUC are approximately normal.  
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Figure 5: Diseased Group- N(2,1); Non-Diseased Group- N(0,1) 
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Figure 6: Diseased Group - N(2,1); Non-Diseased Group - N(0,1) 
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Figure 9: Diseased Group – N(2,1); Non-Diseased Group – N(0,1) 
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Figure 10: Diseased Group – N(2,1); Non-Diseased Group – N(0,1) 
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5.Real Data Application 

We illustrate the application of these two modified ROC curves in a real data study. The 

following data come from the ovarian cancer gene expression array study (Pepe, 2003). 

Ovarian cancer claims more lives than any other gynecological cancer in this century. It is 

the fifth most common cancer in American women and the fifth most common cause of 

cancer death. Though the 5-year survival for women diagnosed in early-stage is 90%, but 

the majority of patients are diagnosed with late-stage disease and have a 5-year survival of 

less than 30% (Lu, 2004). Furthermore, a considerable increase in the risk of catching 

ovarian cancer is observed in patients with a family history. Most cases of familial 

ovarian cancer are based on mutations in the BRCA1 and BRCA2 genes (Lux, 2006). 

Therefore, the early stage diagnosis of ovarian cancer has been very important and gene 

expression array data became critical indicator of early stage detection. The relative gene 

expression intensities of a particular gene are displayed below for 23 non-diseased 

ovarian tissues and 30 ovarian tumor tissues (Pepe, 2003). 

Normal Tissues: 

0.442, 0.500, 0.510, 0.568, 0.571, 0.574, 0.588, 0.595,0.595, 

0.595, 0.598, 0.606, 0.617, 0.628, 0.641, 0.641,0.680, 0.699, 

0.746, 0.793, 0.884, 1.149, 1.785 

Cancer Tissues: 

0.543, 0.571, 0.602, 0.609, 0.628, 0.641, 0.666, 0.694,0.769, 

0.800, 0.800, 0.847, 0.877, 0.892, 0.925, 0.943,1.041, 1.075, 

1.086, 1.123, 1.136, 1.190, 1.234, 1.315,1.428, 1.562, 1.612, 

1.666, 1.666, 2.127 

 

The empirical and modified ROC curves have been plotted using algorithm described 

before. (Figure 11) The sample size of diseased group is 30 and the sample size of non-

diseased group is 23. According to the simulation study results, it suggested that BCR may 
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have as good as or even better performance compared to empirical estimator under given 

observations. The point estimates and Bootstrap percentile confidence interval of estimated 

AUC and Specificity at 95 percent level of Sensitivity using the three methods are shown 

in Table 11. 

 

Figure 11: Empirical and Modified ROC Curves 

of Ovarian Cancer Gene Expression Data 

 

Table 11 Point estimates and Bootstrap percentile confidence 

interval using Ovarian Cancer gene expression data 

 
Estimated 

AUC 

Bootstrap Interval Estimated 

Specificity 

Bootstrap Interval 

Lower Upper Lower Upper 

Empirical 0.8121 0.6884 0.9275 0.3295 0.0434 0.7391 

TCR 0.8619 0.7615 0.9514 0.4598 0.2064 0.7826 

BCR 0.7761 0.6580 0.8783 0.2616 0.0978 0.6089 
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6.Discussion 

It is often the case that higher level of certain biomarker value indicates larger probability 

of a disease. Under this situation, the corresponding ROC curve should be always concave. 

In this study, we developed and evaluated two modification methods on empirical estimator 

of ROC curve, TCR and BCR, in order to restore concavity of the empirical ROC curve. 

As shown in the simulation studies, for bi-normal population distributions, when the 

difference between 2 normal means are relatively small, BCR estimator has better 

performance over TCR and empirical estimator. The MSE and variance of BCR AUCs are 

smaller and have fairly good bootstrap interval coverage. In clinical practice, a lot of 

biomarkers do not have perfect classification accuracy, and the empirical AUC would be 

far from 1. The BCR estimator has a promising potential in these situations. Also, referring 

to the Specificity at fixed level of Sensitivity, BCR’s Bootstrap percentile confidence 

interval generally has better coverage probability even when the mean difference is big, as 

long as the sample size is not too small. Sometimes the entire area under the curve may not 

be very informative, so people would use partial AUC instead. The specificity at fixed level 

of sensitivity (or sensitivity at fixed level of specificity) can be viewed as the ultimate 

partial AUC, so our modified estimator may also provide better estimates for partial AUC. 

One existing problem of our method is that, the bootstrap interval coverage probabilities 

of TCR were not as good as expected. We observed that the bias of TCR relative to its 

standard deviation (SD) was larger than the other two estimators. Nevertheless, the bias/SD 

ratio still decreased as sample size increased. That suggests that this might be a finite 

sample issue, rather than a large-sample one. Further investigation is warranted.   
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Figures 
 

 

 

Picture 3: How ROC Curves formed 

and the tangent of a point on curve 
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Figure 7: Diseased Group - N(1,1); Non-Diseased Group - N(0,1) 
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Figure 8: Diseased Group - N(1,1); Non-Diseased Group - N(0,1) 
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