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Abstract

The Hasse norm theorem and a local-global principle for multinorms
By Yazan Alamoudi

While a local-global principle for norms from cyclic extensions of number fields is
the classical Hasse Norm Theorem, such a local-global principle fails for non cyclic
extensions in general. There has been a host of results in the direction of a local-global
principle for multinorms, namely norms from a finite product of finite separable field
extensions, the so-called étale algebras. In this thesis, we prove the following.

Theorem:
Let E|k be a dihedral extension of degree 2n. Let Ei, 1 ≤ i ≤ n be the n dis-
tinct subextensions of E of degree n which are fixed fields under the reflections. Let
L =

∏
1≤i≤nEi and NL/k the norm from the étale algebra L to k. Then an element

c ∈ k is a value of NL/k if it is locally a norm at all places of k.

The proof is via the use of the Hasse norm theorem. We give an exposition of
some of the relevant class field theory results leading to the Hasse Norm Theorem in
the thesis. In addition, we also prove a weak approximation result as a consequence
of the above theorem.
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Chapter 1

Introduction

1.1 Setting and motivation

We begin with a general setting.

Let k be a number field and let Ω be the set of places of k. For v ∈ Ω, let kv

be the completion of k at v. Let X be a variety defined over k. One is interested in

the set of rational points. Such questions could be the existence of rational and how

many rational points are there. We have an inclusion X(k) ↪→ X(kv) for every v ∈ Ω.

A natural question is the following. If we have that X(kv) 6= ∅ for every v ∈ Ω,

does it follow that X(kv) is non Empty? Such an implication would be interesting

since solving for rational points of X over kv is somewhat easier because of things

like Hensel’s Lemma.

Unfortunately, we do not always have a Hasse principle for an arbitrary variety.

In fact, there are genus one curves to which this principle fails. Therefore we would

like to restrict ourselves with a more specific class.

One class we could look at are principal homogeneous spaces under connected

linear algebraic groups.
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More specifically, letG be a connected linear algebraic group defined over a number

field K. Let X be a principal homogeneous space under G, i.e., there is an action

G×X m−→ X

such that the action

G(k̄)×X(k̄)→ X(k̄)

is simply transitive.

However, upon examination, we see that even in this case the Hasse principle is

not always true.

For example, let T be the norm 1 torus associated to the extension Q(
√

13,
√

17)

over Q. Then the norm equationNQ(
√
13,
√
17)|Q(x) = 25 defines a principal homogeneous

space Xλ under T . Then X admits a point over Kv for every place v ∈ Ω but does

not admit a global point.

However, if L|K is a cyclic extension of number fields and TL|K is the associated

norm one torus, then the Hasse principle holds for principle homogeneous spaces

under TL|K so that if an element is a norm everywhere locally then it is a norm

globally.

In this thesis we present an exposition of a proof of the Hasse norm theorem

and extend some aspects of it to discuss multinorm equations. More specifically, for a

dihedral extension E|k, let L =
∏

1≤i≤nEi where Ei are the fields fixed by a reflection.

We will prove that a Hasse principal holds for the multinorm equation NL|k(x) = λ

for λ ∈ k×. We also prove a related weak approximation result.

This question was related to a study of Parimala and Suresh related to reduced

Whitehead Groups. Many other questions related multinorms have been studied

in the field. One example is a paper[1] by Eva Bayer-Fluckiger, Ting-Yu Lee, and

Raman Parimala which constructs obstructions to the Hasse principle for multinorm
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equations.

Interestingly, the Hasse principle for multinorms from L|k reduces to the Hasse

principle for norms coming from cyclic extensions which is characterized by the Hasse

norm theorem. We will give an exposition of the related class field theory to prove

the Hasse norm theorem.

1.2 Structure of paper

The thesis is structured as follows. Chapters two to five are expositions of relevant

notions of class field theory leading to the Hasse norm theorem. They are meant to

be somewhat self contained so as to require only basic algebraic number theory and

some background in group cohomology which can be found in chapter two of Milne’s

notes [5]. The last chapter is an application to multinorm equations.

In the last chapter we will introduce the multinorm equation associated to a certain

étale algebra. We prove a Hasse principle for a multinorm equation we associate to a

dihedral extension. We also prove as a consequence a weak approximation result.



4

Chapter 2

Some results on the cohomology of

groups

In this chapter we will follow Kedlaya [3] and Milne [5]. This chapter should be

supplemented by chapter 2 of Milne’s notes [5].

2.1 Homology, cohomology and Tate groups

In this section we recall some basic results from the cohomology of groups.

Definition. Let G be a group. A G-module M is a module over Z[G].

We start by defining the Tate cohomology group. This is an important sequence

of groups for our study.

Definition. For a finite group G the augmentation ideal IG ⊆ Z[G] is defined as

IG = {
∑
σ∈G

nσσ :
∑
σ∈G

nσ = 0}

.
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Let G be a finite group, M a G-module and MG the G invariant submodule. For

n ≥ 1 let Hn(G,M) and Hn(G,M) be the cohomology and homology groups for the

G-module M . For x ∈ M define NG(x) =
∑

σ∈G σ(x). The norm map induces a

homomorphism NG : H0(G,M) → H0(G,M). Then the Tate cohomology groups,

denoted Ĥn are defined as follows:

• Ĥn(G,M) = Hn(G,M) if n > 0

• Ĥ0(G,M) = MG/NG(M)

• Ĥ−1(G,M) = ker(NG)/IGM

• Ĥn(G,M) = H−n−1(G,M) if n ≤ −2.

We now introduce a computationally useful construction.

Definition. Let M be a G-module. The group Cn(G,M) of inhomogeneous n-

cochains of G with values in M is the group of all maps φ : Gn → M . Here we

define G0 = {1} from which we see that C0(G,M) = M .

Define the maps

dn : Cn(G,M)→ Cn+1(G,M)

by (dnφ)(g1, · · · , gn+1) =

g1φ(g2, · · · , gn+1) +
n∑
i=1

(−1)iφ(g1, · · · , gigi+1, · · · , gn+1) + (−1)n+1φ(g1, · · · , gn).

Define Zn(G,M) = Ker(dn) and Bn(G,M) = Im(dn−1) as the groups of n-

cocycles and n-coboundaries respectively. We have the following.

Proposition 2.1.1.

Hn(G,M) ' Zn(G,M)

Bn(G,M)
.

Proof. See [5].
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For the case H1(G,M) we have the following explicit description. It can be defined

as the set of functions f : G → M such that f(στ) = σf(τ) + f(σ) modulo the set

of functions hm(σ) = m − σm for m ∈ M . The first kind of functions will be

called crossed homomorphisms while the second will be called principal crossed

homomorphisms.

As a first observation we have the famous Hilbert 90 below.

Theorem 2.1.2 (Hilbert 90). Let L|K be Galois with G = G(L|K). Then

|H1(G,L×)| = 1.

Proof. For this proof we will use the multiplicative notation. Let φ be a crossed

homomorphism. For α ∈ L× define β =
∑

σ∈G φ(σ) · σα. Assume that β 6= 0. Then

τβ = φ(τ)−1β so that φ(τ) = β
τβ

and φ is indeed a principal crossed homomorphism.

It remains to show that there exists a α ∈ L× such that β 6= 0. This is a

consequence of the linear Independence of characters.

If 0 → A → B → C → 0 is an exact sequence of modules we get the following

three long exact sequences.

1- 0 → H0(G,A) → · · ·H i(G,A) → H i(G,B) → H i(G,C) → H i+1(G,A) · · · for

i ≥ 0.

2- · · ·Hi(G,A) → Hi(G,B) → Hi(G,C) → Hi−1(G,A) · · · → H0(G,C) → 0 for

i ≥ 0.

3- · · · Ĥ i(G,A)→ Ĥ i(G,B)→ Ĥ i(G,C)→ Ĥ i+1(G,A) · · · for i ∈ Z.

See [5] for more details.

The Hasse norm theorem concerns cyclic Galois groups. Thus, it makes sense to

focus on the case when G is a cyclic group which we now do. It turns out that the
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Tate groups exhibit a particularly simple pattern when G is cyclic.

Proposition 2.1.3. Let G be a cyclic group and M a G-module. Then, there are

isomorphisms

Ĥn(G,M)
∼−→ Ĥn+2(G,M).

The aforementioned isomorphisms are determined by the choice of generator of G.

Proof. Let σ be a generator of G. We have the following exact sequence.

0→ Z
n→

∑
g∈G gm−−−−−−−→ Z[G]

σ−1−−→ Z[G]
σi→1−−−→ Z→ 0

All the groups above are free Z modules and so is IG which is the kernel of the map

σi → 1. It follows that we may tensor with M over Z and still obtain an exact

sequence. Thus, the following sequence is exact.

0→M → Z[G]⊗Z M → Z[G]⊗Z M →M → 0

The terms in the middle are just IndG1 (M). Thus all the Tate groups for the middle

terms vanish. We get the desired result from the following general fact. If

0→ A
f−→ B

g−→ C
h−→ D → 0

is an exact sequence of G-modules, where the Tate groups for B and C all vanish, then

there is an isomorphism Ĥr+2(G,A)
∼−→ Ĥr(G,D). This is seen in the following way.

First, notice that the exact sequence gives rise to the following two exact sequences.

0→ A→ B → B/Im(f)→ 0

0→ B/Ker(g)→ C → D → 0
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But then the long exact sequences on the Tate groups gives

Ĥ i+2(G,A) ' Ĥ i+1(G,B/Im(f)) ' Ĥ i+1(G,B/Ker(g)) ' Ĥ i(G,D)

as claimed.

Another such pattern, when G is cyclic, is summarized in the proposition below

Theorem 2.1.4. Suppose that 1 −→ A −→ B −→ C −→ 1 is an exact sequence of

G-modules with G cyclic. Then, we obtain the following exact hexagon.

Ĥ0(G,B)

Ĥ0(G,C)

Ĥ−1(G,A)Ĥ−1(G,B)

Ĥ−1(G,C)

Ĥ0(G,A)

f2

f3

f4

f5

f6

f1

Proof. This follows directly from the periodicity of the Tate groups and the long exact

sequence in the Tate groups. For a proof that does not use the periodicity nor the

long exact sequence, see [7].

We now introduce the Herbrand quotient. A quantity that will play a crucial role

in many of our arguments.

Definition. Let G be a cyclic group. The Herbrand quotient for a G-module M is

the following number provided that its well defined in the sense that both groups in

the numerator and denominator are finite.

h(M) =
|Ĥ0(G,M)|
|Ĥ−1(G,M)|
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Theorem 2.1.5. Let G be a cyclic group. If 1 → A → B → C → 1 is an exact

sequence of G-modules then h(B) = h(A)h(C). Furthermore, if two are well defined

the so is the third.

Proof. (Outline)Let ni = |Im(fi)|. Then h(A) = n6n1

n3n4
, h(B) = n1n2

n4n5
and h(C) = n2n3

n5n6
.

The first conclusion follows. To see that second notice that any two of them contain

all six variables and hence if two are well defined so is the third.

When computing H i(G,M) it will often times be convenient to change G to G′

or M to M ′ possibly having to change both. For the remainder of this section, we

introduce two key tools that enable us to do just that. The first is Shapiro’s lemma

and the second is the inflation restriction exact sequence.

Given a G-modules M and a subgroup H ≤ G. We can construct an H module

as in the following definition.

Definition. Let H be a subgroup of G. Then IndGH(M) is defined as M ⊗Z[H] Z[G].

Furthermore, we say that a module is induced if M = IndGe (N) for some abelian

group N .

One notices that IndGH(M) =
∏

g∈G/HM
g. We now state a useful result regrading

modules of the form discussed in the previous definition.

Theorem 2.1.6 (Shapiro’s lemma). For H ≤ G and an H-module M then there are

canonical isomorphisms

Hn(G, IndGH(M))→ Hn(H,M)

for all n ≥ 0

Proof. (Outline) For the case n = 0 we have

MH ∼= HomH(Z,M) ∼= HomG(Z, IndGH(M)) ∼= IndGH(M)G.



10

Now, notice that if I is an injective H-module, then IndGH(I) is an injective G-module.

Furthermore, IndGH preserves exactness. Therefore, applying IndGH to an injective res-

olution of N gives an injective resolution of IndGH(N) from which we get the remaining

isomorphisms.

We call a G-module M acyclic if H i(G,M) = 0 of all i > 0. It directly follows

from Shapiro’s lemma that induced modules are acyclic.

We end this section by introducing an exact sequence that will be incredibly useful

for us. But first we need to introduce some terms.

Definition. Let M be a G-module and M ′ be a G′-module. Let α : G′ → G be a

homomorphism of groups and β : M → M ′ be a homomorphism of abelian groups.

We say that α and β are compatible if β(α(g)m) = gβ(m).

Proposition 2.1.7. Let M be a G-module and M ′ be a G′-module. Let α : G′ → G be

a homomorphism of groups and β : M → M ′ be a homomorphism of abelian groups.

If α and β are compatible then they define homomorphisms

H i(G,M)→ H i(G′,M ′).

Proof. See [5].

Definition. Let H be a subgroup of G. Let α be the inclusion map H ↪→ G and

β : M → M be the identity. The map Res : H i(G,M) → H i(H,M) given by the

previous proposition is called the restriction homomorphism.

Definition. Let H be a normal subgroup of G. Let α be the qoutient map G→ G/H

and β : MH → M be the inclusion map. The map Inf : H i(G/H,MH) → H i(G,M)

given by the previous proposition is called the inflation homomorphism.

We can now introduce the following key exact sequence.
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Proposition 2.1.8 (inflation-restriction exact sequence). Let M be a G-module and

let H be a normal subgroup of G. Suppose that H i(H,M) is zero for all i ∈ {1, .., n−

1}. Then we have the following exact sequence.

1 −→ Hn(G/H,M)
Inf−−→ Hn(G,M)

Res−−→ Hn(H,M)

Proof. See [5].

2.2 Tate’s theorem

In this section we prove Tate’s theorem. It is a very powerful result which we will

use to extract key information in Local class field Theory. Namely, it will allow us

to establish K×/NL|K(L×)
∼−→ Gal(L|K)ab for a finite Galois extension L|K of local

fields.

Theorem 2.2.1 (Tate’s theorem). Suppose that G is a finite solvable group and

suppose that we have the following for each subgroup H ≤ G.

a)H1(H,M) is zero.

b)H2(H,M) is cyclic of order |H|.

Then there are isomorphisms Ĥn(G,Z)
∼−→ Ĥn+2(G,M) that depend only on the choice

of generator for Ĥ2(G,M).

To prove Tate’s theorem we first need to show the following lemma.

Lemma 2.2.2. Let G be a finite solvable group and M a G-module. Suppose that

H i(H,M) = 0 for i ∈ {1, 2} for every subgroup H of G including G itself. Then

Ĥ i(G,M) is zero for every i ∈ Z.

Proof. For G cyclic this follows from the periodicity of the Tate groups. We will first

prove this for the H i, with i > 0, by strong induction and the inflation restriction

exact sequence. Since G is solvable there is a subgroup H such that G/H is cyclic.
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By the strong induction hypothesis H i(H,M) is zero. We have the following inflation

restriction exact sequence

0→ H i(G/H,MH)→ H i(G,M)→ H i(H,M).

Now the last term is zero so we get and isomorphism of the middle two terms for

all i > 0. On the other hand, H i(G/H,MH) is periodic and H i(G,M) is zero for

i ∈ {1, 2}. Hence, H i(G,M) is zero for all i > 0.

We now show that Ĥ0(G,M) is zero. Let x ∈ MG. Since Ĥ0(G/H,MH) is zero,

we have a y ∈ MH such that NG/H(y) = x. Moreover, since Ĥ0(H,M) is zero, we

have a z ∈M such that NH(z) = y. Thus,

NG(z) = NG/H(NG(z)) = x.

Since x was an arbitrary element in MG we get MG = NG(M) and so Ĥ0(G,M) is

zero as claimed.

We will now prove the lemma for general n. We proceed by dimension shifting.

Find a G-module N making the following sequence exact.

0→ N → IndG1 (M)→M → 0

Where the map IndG1 (M) → M sends M ⊗ [g] to mg. The term in the middle is

acyclic so we get isomorphisms Ĥ i+1(H,N) ' Ĥ i(H,M) for any subgroup H of G.

But then H i(H,N) is zero for i ∈ {1, 2} for any subgroup H of G. Then the previous

argument gives that Ĥ i(G,N) is zero for all i ≥ 0. Then Ĥ−1(G,M) = Ĥ0(G,N) is

zero. The same argument applies to N so Ĥ−1(G,N) is zero. Hence, Ĥ−2(G,M) is
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zero and so on.

Proof of Tate’s theorem. Let γ be a generator of H2(G,M). The fact that Cor ◦Res

is multiplication by [G : H] implies that Res(γ) generates H2(H,M) for any subgroup

H ⊆ G. Let φ be the cocycle representing γ. Now define the module M(φ) to be the

direct sum of M and the free abelian group consisting of symbols xσ for every σ ∈ G

with σ 6= 1. We extend the action on M to an action on M(φ) by setting

σxτ = xστ − xσ + φ(σ, τ)

and x1 should be interpreted as φ(1, 1). We, will first show that both H1(H,M(φ))

and H2(H,M(φ)) are zero for any subgroup H of G. First, consider the following

exact sequence.

0→ IG → Z[G]→ Z→ 0

From the fact that Z[G] is induced we see that the Hr(G,Z[G]) = 0 for all r > 0.

It follows that H1(H, IG) = H0(H,Z) = Z/|H|Z and H2(H, IG) = H1(H,Z) = 0.

Define the additive map α : M(φ)→ Z[G] to be such that α(m) = 0 for all m ∈M

and α(xσ) = σ − 1. We have the following exact sequence of G-modules.

0 −→M −→M(φ)
α−→ IG −→ 0

From the corresponding long exact sequence on the cohomology groups we get the

following exact sequence.

0→ H1(H,M(φ))→ H1(H, IG)→ H2(H,M)→ H2(H,M(φ))→ 0

Here we used the fact that H1(H,M) = 0 and H2(H, IG) = 0 to get the zero end
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terms. The map H2(H,M) → H2(H,M(φ)) is zero because H2(H,M) is generated

by Res(γ) and this maps to the restriction of the image of γ in H2(G,M(φ)), which

is zero. Thus, H1(H, IG)→ H2(H,M) is onto and hence an isomorphism since they

both have the same order. Then, both its kernel and cokernel, namely, H1(H,M(φ))

and H2(H,M(φ)) are both zero. Thus, the previous lemma gives Hn(H,M(φ)) is

zero for all n. This, combined with the splicing of the four term exact sequence

0→M →M(φ)→ Z[G]→ Z→ 0

(the same way we proved periodicity) gives the isomorphisms

Ĥn(G,Z)→ Ĥn+2(G,M)

as desired.

We will lastly make an essential observation that will supplement Tate’s theorem

in helping us with proving the important result in local class field theory mentioned

earlier.

Proposition 2.2.3. H1(G,Z) = G/[G,G]

Proof. From the exact sequence

1→ IG → Z[G]→ Z→ 1

we obtain a long exact sequence on the homology groups. From the long exact

sequence on the homology groups and the fact that H1(G,Z[G]) is zero, we obtain

the exact sequence

1→ H1(G,Z)→ H0(G, IG)→ H0(G,Z[G])



15

which can be rewritten as

1→ H1(G,Z)→ IG/I
2
G → Z[G]/IG.

The middle map IG/I
2
G → Z[G]/IG is induced by IG ↪→ Z[G] and is thus the zero

map. So we obtain an isomorphism

H1(G,Z)
∼−→ IG/I

2
G

However, G/[G,G] is isomorphic to IG/I
2
G via the map φ induced by g → g− 1 + I2G.

The conclusion follows.
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Chapter 3

Further preliminaries

The first section of this chapter mainly follows [5] and [3]. The second mainly follows

[7]. Both sections have arguments from [5] and [7].

3.1 Some results from local class field theory

We will first calculate the order of Ĥn(G(L|K), L×) for n ∈ {0,−1} when

G = Gal(L|K) is cyclic. This is already an important fact which Neukirch refers to

as the class field axiom.

Lemma 3.1.1. Let L|K be a finite Galois extension of local fields. Then there is an

open Galois stable subgroup V of OL such that H i(Gal(L|K), V ) = 0 for all i > 0.

Proof. By the normal basis theorem we have that there is an α ∈ L such that

{σ(α) : σ ∈ Gal(L|K)} is a basis of L over K. Clearing out the common denominator

we can ensure that α ∈ OL. Let V =
∑

σ∈Gal(L|K) σ(α)OL. Then V is open in OL.

Furthermore, V = IndGe (OK) and hence is acyclic. It follows that

H i(Gal(L|K), V ) = 0 for all i > 0 and thus V satisfies the claim of the proposition.
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Lemma 3.1.2. Let L|K be a finite Galois extension of local fields. Then there is an

open Galois stable subgroup W of UL such that H i(G(L|K),W ) = 0 for all i > 0.

Proof. We will prove this only for the case where the characteristic of K is zero. Let

V be as in the previous proof then then we can choose an integer n sufficiently large

so that πnV lies in the radius of convergence of

exp(x) =
∞∑
i=0

xi

i!

and set W = exp(πnV ).

Theorem 3.1.3. If L|K is a cyclic extension of local fields then the Herbrand quotient

satisfies

h(UL) = 1.

Proof. Let W be as in the last proof. From the exact sequence

1→ W → UL → UL/W → 1

we get h(UL) = h(W )h(UL/W ). However, since UL is compact UL/W is finite and

it follows that h(UL/W ) = 1 (cf [4] chapter 1 exercises 45.c ). However we had

H i(G(L|K),W ) = 0 for all i > 0 so h(W ) = 1. Thus, h(UL) = 1.

Theorem 3.1.4 (Local Class Field Axiom). Let L|K be a cyclic extension of local

fields. Then, we have

|Ĥn(G(L|K), L×)| =


[L : K] if n = 0

1 if n = −1
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Proof of the Local Class Field Axiom. From the exact sequence

1→ UL → L× → Z→ 1

we get h(UL)h(Z) = h(L×). However, we have h(UL) = 1 and

h(Z) = |G(L|K)| = [L : K]. Moreover, the fact that G is cyclic along with Hilbert

90 already tells us that |Ĥ−1(G(L|K), L×)| = |Ĥ1(G(L|K), L×)| = 1.

It follows that |Ĥ0(G(L|K), L×)| = [L : K]. This completes the proof of the

claim.

We know move to the main goal of this section which is to establish the isomor-

phism K×/NL|K(L×)
∼−→ Gal(L|K)ab. It is easiest to begin investigating the case

where L|K is unramified.

Theorem 3.1.5. Let L|K be an unramified extension. H1(Gal(L|K), UL) = 0.

Proof. Since L|K is unramified we can choose a uniformizer π ∈ K and write L× =

UL · π which is equivalent to saying that we have a decomposition of G modules

L× = UL×Z. It follows H1(Gal(L|K), UL) is a direct summand of H1(Gal(L|K), L×)

which is zero by Hilbert 90.

We actually directly obtain an important corollary

Corollary 3.1.6. Let L|K be unramified. Then the norm map NL|K : UL → UK is

surjective.

Proof. Since L|K is unramified it’s cyclic. But we have already shown thatH1(Gal(L|K), UL) =

Ĥ−1(G(L|K), UL) is zero. Furthermore, we also showed that h(UL) = 1 since L|K is

cyclic. It follows that Ĥ0(G(L|K), UL) is zero which is the desired conclusion.

We know prove another important result when L|K is unramified which will help

us prove that H2(Gal(L|K), L×) is always cyclic of order [L : K].
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Theorem 3.1.7. Let L|K be unramified. Then H2(Gal(L|K), L×) = Ĥ0(G(L|K), L×)

is cyclic of order [L : K]

Proof. From the exact sequence 1→ UL → L× → Z→ 1 we obtain an exact hexagon

from which we see that

Ĥ0(G(L|K), UL) = 1→ Ĥ0(G(L|K), L×)→ Ĥ0(G(L|K),Z)→ 1 = Ĥ−1(G(L|K), UL)

But Ĥ0(G(L|K),Z) is cyclic of order [L : K]. The conclusion follows.

Theorem 3.1.8. For any finite Galois extension of local fields |H2(Gal(L|K), L×)| ≤

[L : K].

Proof. We proceed by strong induction. We already have |H2(Gal(L|K))| = [L : K]

for cyclic extensions so we have a base case. If L|K is not cyclic then it’s solvable

since it is an extension of local fields. Then there is a Galois sub extension M |K. We

have the following exact sequence.

0→ H2(Gal(M |K),M×)
inf−→ H2(Gal(L|K), L×)

res−→ H2(Gal(L|M), L×)

Exactness gives |H2(Gal(L|K), L×)| ≤ |H2(Gal(L|M), L×)||H2(Gal(M |K),M×)| ≤

[L : M ][M : K] = [L : K]

Theorem 3.1.9. Let L|K be a Galois extension of local fields then H2(Gal(L|K), L×)

is cyclic of order [L : K].

Proof. It suffices to prove that H2(Gal(L|K), L×) has an element of order [L : K].

Let M |K be an unramified extension of order [L : K] consider the diagram below.
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H2(Gal(M |K),M×)

0 H2(Gal(L|K), L×) H2(Gal(ML|K),ML×) H2(Gal(ML|L),ML×)

Inf

Inf Res

The inflation-restriction exact sequence shows that the row is exact and it can be

used to show that the vertical arrow is injective. If we show that the diagonal arrow

is the zero map then the fact that H2(Gal(M |K),M×) ∼= Z/[L : K]Z and exactness

will give us an element in H2(Gal(L|K), L×) of order [L : K].

Let e, f and U be the ramification index, inertia degree and the maximal un-

ramified subextension of L|K. Then we have the following canonical isomorphism

Gal(ML|L) ∼= Gal(M |U) of cyclic groups of order e. By using the same generator for

both groups we can obtain the following commutative diagram.

Ĥ0(Gal(M |K),M×) Ĥ0(Gal(M |U),M×) Ĥ0(Gal(ML|L),ML×)

H2(Gal(M |K),M×) H2(Gal(M |U),M×) H2(Gal(ML|L),ML×)

Res

Res

In the above diagram the vertical arrows are isomorphisms we obtain from the fact

that all the aforementioned Galois groups are cyclic. The composition in the bottom

row is the same as the diagonal arrow which we want to be zero. To prove this it

suffices to check that the composition in the top row is zero. The map on the top

row is the canonical map K×/NM |K(M×) → L×/NML|L(ML)×. K×/NM |K(M×) is

cyclic of order ef and is generated by a uniformizer πK of K. On the other hand,

L×/NML|L(ML)× is cyclic of order e and is generated by a uniformizer πL of L.

However, πK = uπeL for some unit u ∈ UL. Thus, the map is indeed the zero map.

The conclusion follows.

Theorem 3.1.10. Let L|K be any finite Galois extension of local fields. Then there

is a canonical isomorphism

Ĥ i(Gal(L|K),Z)
∼−→ Ĥ i+2(Gal(L|K), L×).
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In particular,

K×/NL|K(L×)
∼−→ Gal(L|K)ab.

Proof. This follows from Tate’s theorem since we have already shown that

H2(Gal(L|M), L×) is cyclic of order [L : M ] and H1(Gal(L|M), L×) is zero by Hilbert

90.

We know state an important implication which we will use in our proof of the

second inequality.

Proposition 3.1.11. If K contains an n-th root of unity and if n is not divisible by

Char(K) then the extension L = K(K1/n)|K is finite and we have NL|K(L×) = (K×)n

Proof. By Kummer theory

Hom(G(L|K), µn) ' K×/(K×)n.

This gives that Gal(L|K) is finite because K×/(K×)n is finite. Since L is abelian

and finite over K, Gal(L|K) = K×/NL|K(L×) by the previous theorem. We have

K×/NL|K(L×) has exponent n so (K×)n ⊆ NL|K(L×). Now, the first isomorphism

already tells us that |K×/(K×)n| = |G(L|K)|. It follows that

|K×/(K×)n| = |G(L|K)| = |K×/NL|K(L×)|.

Hence NL|K(L×) = (K×)n as claimed.

3.2 The idèles and some facts about local fields

Recall that two absolute values on K are called equivalent if they define the same

topology on K.



22

Definition. A prime or place (denoted p or v) of an algebraic number field is a class

of equivalent absolute values on K. The nonarchimedean classes will be called finite

primes and the archimedean ones will be called infinite.

For a place p, denote by Kp the completion of K at p.

If p is finite, we write p|p if p is the characteristic of the residue class field κ(p).

If p is infinite, we write p|∞ and we also define κ(p) := Kp.

When p is finite, vp is the p-adic valuation which we normalize by requiring

vp(K
×) = Z. On the other hand, if p is infinite then we set

vp(a) = −log(|τ(a)|)

where τ is the associated embedding K ↪→ C that defines p.

Define fp = [κ(p) : κ(p)] and

N(p) =


pfp if p is finite that lies over p

efp if p is infinite

where e is just Euler’s number. We note that if p is infinite then fp = [Kp : R].

We now define the normalized absolute value for a ∈ K by

|a|p = N(p)−vp(a)

Let L|K be a finite extension. As a convention we will denote the primes of L be

P and we will write P|p whenever the restriction of P to K gives p. In the case the

prime is infinite we define the inertia degree to be fP|p = [LP : Kp] and eP|p = 1.

Remark. We will sometimes use w|v instead of P|p.

We have the following.
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Proposition 3.2.1. For any primes P|p

1.
∑

P|p fP|peP|p =
∑

P|p[LP : Kp] = [L : K],

2. N(P) = N(p)fP|p,

3. vP(a) = eP|pvP(a) for a ∈ K×,

4. vP(NLP|Kp(a)) = fP|pvP(a) for a ∈ L×,

5. |a|P = |NLP|Kp(a)|p for a ∈ L.

We first state a key result related to valuations normalized as above.

Proposition 3.2.2. Let x ∈ K× then |x|p = 1 for all but finitely many places and∏
p |x|p = 1 where the product runs over all places of the algebraic number field K.

Proof. First notice that we have that |x|p = 1 for any prime that does not appear in

the prime factorization of (x). So the first claim is true. Then,

∏
p

|a|p =
∏
p

∏
p|p

|a|p =
∏
p

∏
p|p

|NKp|Qp(a)|p =
∏
p

|NK|Q(a)|p = 1

We know introduce an object that is central to our arguments in the first and

second inequality.

Definition. The idèle group IK of K is given by

IK = {(ap) ∈
∏
p

Kp|ap ∈ O×Kp
for all but finitely many p}.

The above product runs over all places p of K.
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Let L|K be a finite Galois extension of number fields with Galois group G. We

make IL into a G-module by defining for α ∈ IL the element σ(α) ∈ IL whose

components are given by

σ(α)σ(P) = σ(αP)

For a finite set S we can specialize the idèles.

Definition. For and finite set of primes S define the group S-idèles, denoted IK,S as

IK,S =
∏

p∈SK
×
p ×

∏
p6∈S O

×
Kp

.

Let S∞ be the set of infinite primes. We relate the simplified notion to the original

notion via the lemma below

Lemma 3.2.3. Let S ⊃ S∞ be a finite set of primes containing the generators of the

ideal class group of K then IK = IK,S ·K×

Proof. The conditions on S imply the following. Every fractional ideal a can be

written as a = b · (c) with c ∈ K× and b in the group generated by S. Thus,

a = (c) in the group IS = I/〈S〉 where I is the group of fractional ideals. Now,

let i : K× → I be the map sending a ∈ K× to the principle ideal (a). Then the

previous observation gives IS/i(K) is the zero group. On the other hand, for such an

S ⊃ S∞ we get a natural map IK → IS which defines an isomorphism IK/IK,S ∼= IS.

Quotienting both sides by K× we get IK/(IS · K×) ∼= IS/i(K×) = 0. This directly

implies IS = IK,S ·K×.

We define the S units as KS = IS ∩ K. We have the following result extending

the Dirichlet unit theorem. Let H denote the (s− 1) dimensional vector spaces that

appears as the kernel of the trace map Tr :
∏

p∈S R→ R.

Proposition 3.2.4. If S contains all infinite primes then the homomorphism

ρ : KS −→
∏
p∈S

R ∼= Rs



25

given by ρ(x) = (log (|x|p))p∈S has kernel µ(K), and its image is a complete lattice in

H. In particular, KS
∼= Zs−1 × µ(K).

Proof. See [7].

A central object for the next two chapters is the following group.

Definition. The idèle class group of K is CK = IK
K×

.

We end this section by mentioning two results on fields that are equipped with

absolute values. Both of these will come handy in the proofs of the first and second

inequality.

Theorem 3.2.5 (Approximation theorem). Let | |1, . . . , | |n be n non equivalent

absolute values and let x1, . . . , xn ∈ K be given elements. Then for every ε > 0 there

exists an x ∈ K such that

|x− ai|i < ε

for all i ∈ {1, . . . , n}.

Proof. See [7].

For the proposition below let K be local field, different from R and C, whose

residue characteristic is p.

Proposition 3.2.6. Let gcd(p, n) = 1 and x ∈ K×. Then K( n
√
x)|K is unramified if

and only if x ∈ UKK×n.

Proof. Let x = uyn with u ∈ UK and y ∈ K×. In this case, K( n
√
x) = K( n

√
u). Let

κ′ be the splitting field for Xn− u mod p over the residue class field p. Furthermore,

let K ′|K be the unramified extension with residue class field κ′. By Hensel’s lemma,

Xn − u splits in to linear factors in K ′. It follows that K( n
√
x) is unramified. To

prove the converse suppose that K( n
√
x)|K is unramified and let L = K( n

√
x). Write

x = uπr with π a prime element in K and u ∈ UK . Then, vL( n
√
uπr) = vL(π

r)
n

= r
n
∈ Z.

It follows that n|r and so x ∈ UKK×n. This completes the proof.
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Chapter 4

The first inequality

This section is mainly based on Kedlayas notes[3] which itself also references both

Milne[5] and Neukirch[7].

4.1 The statement and the plan

We will show that for a cyclic extension L|K of number fields we have that

h(CL) = [L : K] when CL is regarded as a Gal(L|K)-module in the usual way. This

will imply the first inequality which is stated below.

Theorem 4.1.1 (The first inequality). Let L|K be a cyclic extension of number fields

then h(CL) = [L : K]. In particular

|Ĥ0(G(L|K), CL)| ≥ [L : K].

4.2 A relevant result on certain lattices

In this section we compute the Herbrand quotient of a G-lattice (which is just a

G-stable lattice) in R-vector space with a G action, for a finite group G. More

specifically, it will reduce the problem of computing h(LS̃), where S̃ is a set of places
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which we will specify in the following section, to computing a much simpler Herbrand

quotient.

Lemma 4.2.1. Let V be a Q-vector space with a G-linear action. Let L1, L2 ⊆ V

be full G-lattices so that rank(L1) = rank(L2) = dim(V ). Then if h(L1) exists then

h(L2) exists and h(L1) = h(L2).

Proof. Since L1 and L2 are G- lattices in V with rank(L1) = rank(L2) = dim(V ),

there is an integer n > 0 such that nL2 ⊆ L1 and so L1

nL2
= µ is a finite group. For a

finite group µ we always have h(µ) = 1 (cf [4] chapter 1 exercises 45.c ). Moreover,

since nL2
∼= L2 we have h(L2) = h(nL2).

Now, the sequence

1→ nL2 → L1 → µ→ 1

is exact so the Herbrand quotients multiply. Thus,

h(L1) = h(nL2)h(µ) = h(nL2) = h(L2)

as claimed.

We know state the main result which will help us compute the Herbrand quotient.

Theorem 4.2.2. Let V be a R-vector space with a G-linear action. Let L1, L2 ⊆ V

be full G-lattices so that rank(L1) = rank(L2) = dim(V ). Then if h(L1) exists then

h(L2) exists and h(L1) = h(L2).

Proof. We have L1 ⊗Z R ∼= V and L2 ⊗Z R ∼= V as G-modules. So there exists a

G-module isomorphism φ : L2 ⊗Z R → L1 ⊗Z R. Let HomZ(L1, L2) = M and note

that we can make M a G-module with G action given by φg(x) = gφ(g−1(x)).

Now, let

W = HomQ(L1 ⊗Z Q, L2 ⊗Z Q)
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and H ⊂ W be the linear subspace defined by the linear equations

y ∈ H ⇐⇒ y = g(y)∀g ∈ G.

We have HR ↪→ WR and HR contains a nonzero element φ; Hence, H 6= 0. The

determinant map on H,

f → ∧nf : ∧n(L1 ⊗Z Q)→ ∧n(L1 ⊗Z Q)

is a polynomial map and this map does not identically vanish on H. It follows that

H contains a G-isomorphism L1 ⊗Z Q ∼−→ L2 ⊗Z Q. Thus both L1 and L2 are full

lattices of L1 ⊗Z Q ' L2 ⊗Z Q. Hence we can apply the previous result.

4.3 The computation of the Herbrand quotients

Now we go back to the main problem of this section. Let L|K be a cyclic extension

of number fields.

Now pick a set S such that S contains the following:

a)S contains the primes vi underneath wi with {wi} a set generators of the ideal class

group of L.

b)S contains all infinite places.

c)S contains all the primes that ramify in L.

Let S̃ be the set of primes in L above the primes in S. Then for w ∈ S̃, we always

have σ(w) ∈ S̃ for every σ ∈ Gal(L|K). Furthermore, we have IL = IL,S̃ · L×.

Starting from the exact sequence
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1→ L→ IL → CL → 1

By choice of S̃ we have IL = IL,S̃ · L×. Since, by definition, LS̃ = IL,S̃ ∩ L×, we

get an exact sequence

1→ LS̃ → IL,S̃ → CL → 1

Since the Herbrand quotients in an exact sequence multiply, we get h(CL)h(LS̃) =

h(IL,S̃) or equivalently h(CL) =
h(I

L,S̃
)

h(L
S̃
)

.

Proposition 4.3.1. Let w0 be a prime above v0 and let G = Gal (L|K).We have

∏
w|v0

Lw = Ind G
Gw0

(L×w0
),

∏
w|v0

Uw = Ind G
Gw0

(U×w0
)

where Gw0 is the decomposition group of w0|v. (Here we identify Gw0 = Gal (Lw0|Kv0))

Proof.

L⊗K Kv0 '
∏
w|v0

Lw '
⊕

σ∈G/Gw0

Lw0 ' Ind G
Gw0

(L×w0
)

This yields ∏
w|v0

Lw = Ind G
Gw0

(L×w0
)

and ∏
w|v0

Uw = Ind G
Gw0

(U×w0
).

Now we write IL,S̃ =
∏

v∈S(
∏

w|v L
×
w)×

∏
v 6∈S(

∏
w|v Uw)

Corollary 4.3.2. For i ∈ {0,−1} we have that Ĥ i(G(L|K), IL,S̃) = ⊕v0∈SĤ i(Gw0 , L
×
w0

)

where for each v0 ∈ S we choose a w0 ∈ S̃ that lies above it.
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Proof. This follows directly from Shapiro’s lemma. We have

IL,S̃ =
∏
v∈S

(
∏
w|v

L×w)×
∏
v 6∈S

(
∏
w|v

Uw)

for a given v0 6∈ S,

Ĥ i(G(L|K),
∏
w|v0

Uw) ' Ĥ i(Gw0 , Uw0) = 0

by Shapiro’s lemma, Theorem 3.1.5, Corollary 3.1.6 and the fact that the Tate groups

are periodic in the case G = G(L|K) is cyclic.

Hence, Ĥ i(G(L|K), IL,S̃) = ⊕v0∈SĤ i(Gw0 , L
×
w0

) where for each v0 ∈ S we choose a

w0 ∈ S̃ that lies above it.

Corollary 4.3.3. For i ∈ {0,−1} we have that Ĥ i(G(L|K), IL) = ⊕v0Ĥ i(Gw0 , L
×
w0

)

where for each v0 we choose a w0 that lies above it and the sum is over all places v0

of K.

Proof. This follows directly from the previous result by taking direct limits as S̃

varies.

Corollary 4.3.4. We have that h(IL,S̃) =
∏

v0∈S[Lw0 : Kv0 ] where for each v0 ∈ S

we choose a w0 ∈ S̃ that lies above it.

Proof. From the earlier proposition we have |Ĥ i(G(L|K), IL,S̃)| =
∏

v0∈S |Ĥ
i(Gw0 , L

×
w0

)|

for i ∈ {0,−1}. However, from the Local Class Field Axiom we have |Ĥ0(Gw0 , L
×
w0

)| =

[Lw0 : Kv0 ] and |Ĥ−1(Gw0 , L
×
w0

)| = 1. Hence,

h(IL,S̃) =

∏
v0∈S |Ĥ

0(Gw0 , L
×
w0

)|∏
v0∈S |Ĥ−1(Gw0 , L

×
w0

)|
=

∏
v0∈S

[Lw0 : Kv0 ]

as claimed.
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Proposition 4.3.5. We have that h(LS̃) =
∏

v∈S [Lw:Kv ]

[L:K]
.

Proof. First recall that the map from proposition 3.2.4

ρ : KS −→
∏
v∈S

R ∼= Rs

has image a full lattice in the trace zero space H and has kernel µ(K). We thus

have h(LS̃) = h(ρ(LS̃))h(µ(K)) = h(ρ(LS̃)) since µ(K) is a finite G-module. Now

let v = (1, 1, .., 1) be the vector in Rs. Since v 6∈ H we have that ρ(LS̃) ⊕ vZ is a

full lattice in
∏

v∈S R. We make this into a G-module by giving ρ(LS̃) the action it

inherits from LS̃ and giving v the trivial action and extending by Z linearity. We

note that h(vZ) = h(Z) = |G| since vZ has the trivial action. We therefore get

h(ρ(LS̃) ⊕ vZ) = h(ρ(LS̃))h(vZ) = h(ρ(LS̃))|G| = h(ρ(LS̃))[L : K]. On the other

hand, we can define another lattice
⊕

w∈S̃ Z with G action given by permuting the co-

ordinates in accordance with how the places get permuted. This means that σ(ew) =

eσ(w). Now notice that for any w0 above v0 we have that
⊕

w|v0 ewZ = IndGGw0
(ew0Z).

Then for i ∈ {0,−1} we have h(
⊕

w∈S̃ Z) =
∏

v0∈S h(Gw0 , ew0Z) =
∏

v0∈S[Lw0 : Kv0 ].

But then by what we said earlier

h(ρ(LS̃))[L : K] = h(
⊕
w∈S̃

Z) =
∏
v0∈S

[Lw0 : Kv0 ]⇐⇒ h(LS̃) = h(ρ(LS̃)) =

∏
v∈S[Lw : Kv]

[L : K]

as claimed.

Corollary 4.3.6. h(CL) = [L : K].

4.4 Some implications

Corollary 4.4.1. Let L|K be a cyclic extension of prime power order. Then there

are infinitely many primes in K that do not split completely in L.
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Proof. Let X be the set containing all ramified primes as well as all primes that do

not split in L|K. Suppose X is finite and let M |K be the subextension of L|K of

degree p.

We will deduce from this that NM |K(CM) = CK which will contradict the first

inequality. Notice that Ck

NM|K(CM )
= Ik

K×NM|K(IM )
so it suffices to show that for every

x ∈ IK there is an a ∈ K× such that xa−1 ∈ NM |K(IM). Since X is finite the approx-

imation theorem tells us that xva
−1 is contained in an open subgroup of NMw|Kv(Mw)

for all v ∈ X. For v 6∈ X this is always true since Mw = Kv. Now the isomorphism

IK
NM |K(IM)

=
⊕
v

K×v
NMw|Kv(M×

w )

tells us that there is a y ∈ IM such that xa−1 = NM |K(y). This shows that

IK = K×NM |K(IM) and hence CK = NM |K(CM). This contradicts the first inequality.

The above result actually generalizes to a considerably wider context and is not

much more difficult to prove.

Corollary 4.4.2. Let L|K be a finite extension of algebraic number fields. If almost

all the primes of K split completely in L, then K = L.

Proof. See Neukirch [7].
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Chapter 5

The second inequality for cyclic

extensions and the Hasse norm

theorem

This section will mainly follow the presentation Neukirch[7] and Kedlaya[3] but will

also follow Milne[5] in some arguments.

5.1 The statement and the plan

Lets first state what we are trying to prove.

Theorem 5.1.1 (The second inequality for cyclic extensions). If L|K is a cyclic

extension of number fields then [IK : K×N(IL)] = Ĥ0(G(L|K), CL) is finite and

divides [L : K].

Lemma 5.1.2. If L|K is cyclic then the fallowing are equivalent:

a)[IK : K×N(IL)] is finite and divides [L : K].

b)|H2(G(L|K), CL)| is finite and divides [L : K].

c)H1(G(L|K), CL) = 0.
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Proof. Form the fact that the Tate groups are periodic for G cyclic we see that a)

and b) are equivalent. This is because Ĥ0(G(L|K), CL) = IK/K
×N(IL). The fact

that they are equivalent to c) follows from the first inequality.

The plan: We will reduce our theorem for the case where [L : K] = p for some

prime and K contains a p-th root of unity. We will prove the reduced case by explicitly

constructing a subgroup H ≤ CL such that [CK : H] = p and H ≤ NL|K(CL). This

means that [CK : NL|K(CL)] = [CK :H]
[NL|K(CL):H]

divides p. This also proves statement a)

from the lemma in the reduced case since [CK : NL|K(CL)] = [IK : K×N(IL)] which

will also prove all three statements since the reduced case has cyclic Galois group.

5.2 the reductions

Theorem 5.2.1. To establish the second inequality for cyclic extensions, it suffices

to prove it for the case for G = G(L|K) cyclic of prime order.

Proof. Assume that we already know this for cyclic groups of prime order. We proceed

by strong induction. Suppose, for the sake of induction, that we proved this for all

cyclic |G| < n. If n is prime then we are done by the reduction assumption. If n is

not prime take a subgroup H such that [G : H] is prime. Then, consider the exact

sequence

0→ H1(G/H,CK′)→ H1(G,CL)→ H1(H,CL)

where K ′ = LH . By our reduction assumption we have H1(G/H,CK′) is zero and

by the induction hypothesis we have H1(H,CL) is zero. It follows that H1(G,CL) is

zero.

Theorem 5.2.2. It suffices to prove the case for G cyclic of prime order and K

containing a p-th root of unity.
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Proof. Let L′ = L(ζ) and K ′ = K(ζ). Set G = Gal(L|K) and G′ = Gal(L′|K ′). We

check that the map Ĥ0(G,CL) → Ĥ0(G′, CL′) induced by the inclusion CL → CL′ is

injective. Both these groups have exponent dividing p since [L : K] = [L′ : K ′] = p.

Since [K ′ : K] = d|(p − 1) is coprime to p we have that the map x → xd is an

automorphism on Ĥ0(G,CL) and Ĥ0(G′, CL′). Consider a x̄ = x mod NL|K(CL)

that maps to the identity in Ĥ0(G′, CL′). There is a ȳ = y mod NL|K(CL) satisfying

x̄ = ȳd. Such a ȳ must also map to the identity and hence y = NL′|K′(z) with z ∈ CL′ .

Then we get

yd = NK′|K(y) = NL′|K(z) = NL|K(NL′|L(z)) ∈ NL|K(CK)

Hence, x̄ = ȳd = 1 and the map is injective. Since the map is injective |Ĥ0(G,CL)| =

[IK : K∗N(IL)] divides |Ĥ0(G′, CL′)| = [IK′ : (K ′)×N(IL)]. So if we prove that

[IK′ : (K ′)×N(IL)] divides [L′ : K ′] = p then so does [IK : K∗N(IL)]. Thus it suffices

to prove the latter as claimed.

5.3 The proof of the reduced case

We are now reduced to the case where [L : K] = p and K contains a p-th root of

unity.

Now pick a set S such that S contains the following:

a)S contains the generators of the ideal class group of K so that IK = IK,SK
×

b)S contains all infinite places.

c)S contains all the primes that ramify in L.

d)S contains all the primes over (p) with p = [L : K].

Theorem 5.3.1. Let ∆ = (L×)p ∩KS. We have L = K(∆1/p)
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Proof. Since [L : K] = p and K contains a p-th root of unity, Kummer theory gives

us that L = K(D1/p) for D = (L×)p ∩ K×. It is clear that ∆ ⊆ D and the fact

that [L : K] is prime gives no room for an intermediate extension. Thus, it suffices

to prove K 6= K(∆1/p). First we can write L = K(x1/p). Then for v 6∈ S we have

that Kv(x
1/p)|Kv is unramified. Hence, we can we can write x as a unit times a p-th

power so that x = uvy
p
v . Define an idèle y ∈ IK as follows.

(y)v =


yv if v 6∈ S

1 if v ∈ S

Then since IK = K×IK,S we can write y = zw for z ∈ K× and w ∈ IK,S. Then, for

v 6∈ S, we have (x/zp)v = uvy
p
v/z

p = uvw
p
v ∈ O×Kv

. Thus x/zp ∈ (L×)p ∩KS = ∆ but

x 6∈ (K×)p since L = K(x1/p) and it follows that L = K(∆1/p)

Theorem 5.3.2. There exists a set of places T that is disjoint from S with |T | = s−1

such that ∆ is the kernel of the map KS →
∏

v∈T K
×
v /(K

×
v )p;

Proof. Let N = K(K
1/p
S ) then Kummer theory gives us that

Gal(N/K) = Hom(KS/K
p
S,Z/pZ)

the unit theorem gives us that KS = Zs−1 × µ(K). Since K contains an p-th root

of unity p | |µ(K)|. It follows that KS/K
p
S = (Z/pZ)s and hence Gal(N/K) =

Hom(KS/K
p
S,Z/pZ) = (Z/pZ)s. Now let σ1, ..., σs−1 be a generating set forGal(N/L)

and let Ni = Nσ
i for i ∈ {1, ..., s − 1}. By the corollary to the first inequality there

are infinitely many primes of Ni that do not split completely in N . So we can choose

for each Ni a place wi, that does not split in N , such that the restrictions vi to K are

all distinct, and not contained in S. Let T = {v1, ..., vs−1}.
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Now we show that such a T satisfies the claim. To do this we first show that the

Ni are the decomposition field of N |K at the unique w′i in N that above wi. First,

since wi is non split the decomposition field Zi is contained in Ni and in particular

Gal(N |Ni) ⊆ Gal(N |Zi). On the other hand, vi is unramified in N so Gal(N |Zi) is

cyclic. Since every element of Gal(N |K) has order p we get Gal(N |Ni) = Gal(N |Zi)

and Zi = Ni.

From L = ∪s−1i=1Ni we see that L|K is the largest subextension of N |K such that

all the vi split completely. Thus, for x ∈ KS we have

x ∈ ∆⇔ Kvi = Kvi(x
1/p) for all vi ∈ T ⇔ x ∈ (K×vi)

p for all vi ∈ T

This shows that ∆ is the kernel of the map KS →
∏

v∈T K
×
v /(K

×
v )p. We note also

that under this map KS maps to the units.

For the set of primes T in the previous theorem let

J =
∏
v∈S

(K×v )p ×
∏
v∈T

K×v ×
∏

v 6∈S∪T

O×Kv
.

Lemma 5.3.3. J ∩K× = (KS∪T )p

Proof. The inclusion (KS∪T )p ⊆ J ∩K× is clear. To show the other inclusion we need

to show that for any y ∈ J ∩K× we have CK = NM |K(CM) ⇔ IK = K×NM |K(IM)

where M = K(y1/p). From IK = K×IK,S we are reduced to showing that for any

α ∈ IK,S there is an x ∈ K× such that α/x ∈ NM |K(IM). The map

KS →
∏
v∈T

Uv
Up
v

is surjective and |KS/∆| = ps−1. This is also the order of the product so we get an

isomorphism. Thus, we can find an x ∈ KS such that (a/x)v = (uv)
p for every v ∈ T .

These are all norms of their p-th root. For v ∈ S we already had y ∈ J ∩K× ⊆ (K×v )p
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so Mw = Kv. For v 6∈ S ∪ T we have that Mw|Kv is unramified so every unit is a

norm. It follows that α/x is a norm. Hence CK = NM |K(CM) and M = K by the

first inequality. Thus, J ∩K× = (KS∪T )p as claimed.

Theorem 5.3.4. Let T be as in the previous theorem and set CK,S,T = JK×/K×.

Then we have that [CK : CK,S,T ] = p.

Proof.

1 −→ (IK,S∪T ∩K×)/(J ∩K×) −→ IK,S∪T/J −→ (IK,S∪TK
×)/(JK×) −→ 1

From the lemma and definitions this exact sequence can be rewritten as

1 −→ KS∪T/(KS∪T )p −→
∏
v∈S

K×v /(K
×
v )p −→ CK/CK,S,T −→ 1

By the generalization of the unit theorem we have that KS∪T ∼= Z2s−2 × µ(K)

so KS∪T/(KS∪T )p ∼= (Z/pZ)2s−1. The group in the middle has order
∏

v∈S
p2

|p|v =

p2s
∏

v∈S
1
|p|v = p2s. It follows that the order of the last group is p2s

p2s−1 = p as

claimed.

Theorem 5.3.5. Let CK,S,T be as in the previous theorem. Then CK,S,T ⊆ NL|K(CL).

Proof. It suffices to check J ⊆ NL|K(IL). We can check this component by component.

This is true for places v 6∈ S ∪ T as all such places are unramified and hence every

unit is a norm. For the places v ∈ S proposition 3.1.11 tells us that every element of

(K×v )p is a norm from Kv(K
1/p
v ) and hence a norm from Lw|Kv. For the places v ∈ T

we see that ∆ ∈ (K×v )p so Lw = Kv so that every element of Kv is a norm.

We have already outlined the proof earlier but its good to be explicit.
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Proof of the second inequality in the reduced case. By the previous two results

[CK : CK,S,T ] = p and CK,S,T ⊆ NL|K(CL). Thus,

p = [CK : CK,S,T ] = [CK : NL|K(CL)][NL|K(CL) : CK,S,T ]

from which it follows that |Ĥ0(G(L|K), CL)| = [CK : NL|K(CL)] is finite and

divides p as claimed.

5.4 An implication and the Hasse Norm

We immediately obtain what Neukirch calls the Global class field axiom.

Theorem 5.4.1 (Global Class Field Axiom). Let L|K be a cyclic extension of alge-

braic number fields. Then we have

|Ĥn(G(L|K), CL)| =


[L : K] if n = 0

1 if n = −1

Proof. Form the first and second inequality we get that |Ĥ0(G(L|K), CL)| = [L : K].

This, combined with the fact that h(CL) = [L : K] gives the desired result.

The Hasse norm theorem follows straight away

Theorem 5.4.2 (The Hasse norm theorem). Let L|K be a cyclic extension of alge-

braic number fields. An element x ∈ K× is a norm if and only if it is a norm locally

everywhere.

Proof of the Hasse norm theorem. The short exact sequence

1 −→ L× −→ IL −→ CL −→ 1
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Gives an exact Hexagon on the Tate cohomology groups and thus we get an exact

sequence

Ĥ−1(G(L|K), CL) −→ Ĥ0(G(L|K), IL) −→ Ĥ0(G(L|K), L×).

However, we have |Ĥ−1(G(L|K), CL)| = 1 by the Global Class Field Axiom.

Moreover, we have already shown Ĥ0(G(L|K), IL) =
⊕

v Ĥ
0(Gw, L

×
w) in chapter 4.

It follows that the map

K×/NL|KL
× −→

⊕
v

K∗v/NLw|KvL
×
w

is injective which is the claim of the theorem.
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Chapter 6

The multinorm application

In this chapter we introduce some of the key definitions and facts and our main

results.

6.1 The multinorm result

Definition. An étale algebra over a field k is a finite product of separable field

extensions of k. It is also an algebra over k.

Definition. For an étale algebra L, the variety Xλ determined by the equation

NL|k(x) = λ will be called a norm variety. In the case λ = 1 we will call the a

norm one torus and denote it as TL|k.

One observes TL|k acts transitively on Xλ for any λ. Indeed if x, y ∈ Xλ then

z = xy−1 ∈ TL|k and zy = x. Furthermore, this action is simply transitive since the

stabilizer group of any element is the identity.

Definition. Let L =
∏n

i=1Ei be an etale algebra over k. Then the norm from L to

k is defined as NL|k(x) =
∏n

i=1NEi|k(xi). This norm is also called a multinorm.

Definition. Let L =
∏n

i=1Ei be an etale algebra over k. An element x ∈ k is said

to be a local norm for the place v if it is a multinorm from L⊗k kv.
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Theorem 6.1.1 (Main Theorem). Let E/k be a dihedral extension of degree 2n. Let

Ei for 1 ≤ i ≤ n be the fields fixed by a reflection and let L be the étale algebra given

by L =
∏

1≤i≤nEi. Then an element x ∈ k is in the image of NL/k if it is a norm at

every place of k.

Before we prove this we state the following lemma and theorem which we will use

in the proof.

Lemma 6.1.2. Suppose that λ ∈ kv is a norm from Ei ⊗ kv. Then λ ∈ K ⊗ kv is a

norm from E ⊗ kv

Proof. For an element α ∈ k the norm could be thought of as the determinant of the

transformation x → xα. But the representation of this transformation remains the

same under base change kv → K ⊗ kv and hence the determinant also remains the

same.

We know introduce one of our key results which will help us prove our main

theorem.

Theorem 6.1.3. Let E|k be a Galois extension with Galois group the dihedral group

of order 2n so that Gal(E|k) =< σ, τ > with relations σn = τ 2 = 1 and στ = τσ−1.

Let K = Eσ, E1 = Eτ and E2 = Eτσ. Then if c ∈ k with c = NE|K(α) there is an

x ∈ E1 and y ∈ E2 such that

c = NE|K(α) = NE1|k(x)NE2|k(y)

Moreover, we can choose x and y so that α = xy.

Proof. Let f(x) =
∏n

i=1 σ
i(x) and g(x) = xτ(x).

We have c = NE|K(α) = NE|K(τ(α)) = τ(c) = c

It follows that NE|K( α
τ(α)

) = 1 but then Hilbert 90 gives α
τ(α)

= y′

σ(y′)
for some y′ ∈ E
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Now

τ(
α

τ(α)
) =

τ(α)

α
=

τ(y′)

τσ(y′)
=
σ(y′)

y′

But then

y′

τσ(y′)
=
σ(y′)

τ(y′)
=

σ(y′)

στσ(y′)
= σ(

y′

τσ(y′)
)

It follows y′

τσ(y′)
∈ K. Now notice that τ( y′

τσ(y′)
) = τ(y′)

σ(y′)
= τσ(y′)

y′
so we get

NK|k(
y′

τσ(y′)
) = g(

y′

τσ(y′)
) = 1

then Hilbert 90 gives y′

τσ(y′)
= β

τ(β)
for some β ∈ K. Now β = σ(β) so we actually

have y′

τσ(y′)
= β

τσ(β)
so that τσ(y

′

β
) = y′

β
∈ E2. Set y = y′

β
.

Then

α

τ(α)
=

y′

σ(y′)
=

y′(1/β)

σ(y′)(1/β)
=

y

σ(y)

Now notice that y ∈ E2 = Eτσ gives σ(y) = στσ(y) = τ(y).

Then we have

α

τ(α)
=

y

σ(y)
=

y

τ(y)
=⇒ τ(α)

τ(y)
=
α

y
∈ E1

Set x = α
y

then α = xy and it follows that

c = NE|K(α) = f(α) = f(xy) = f(x)f(y) = NE1|k(x)NE2|k(y)

Remark. We actually also get {α ∈ E|NE|K(α) ∈ k} = {ab|a ∈ E1, b ∈ E2}.



44

Proof of the main theorem. Suppose that λ ∈ k is a norm locally from L for every

place v of k. Then the lemma implies that its also a norm locally from E for every

place v′ of K. Now, the Hasse norm theorem implies implies that λ is a norm from

E|K. Lastly, the previous theorem implies that λ is a norm from L|k.

6.2 Weak approximation

Let k be a number field and X a variety defined over k.

Definition. We say that X satisfies weak approximation, if given a finite set of places

S of k, the map

X(k)→
∏
v∈S

(X(kv))

has a dense image.

Here, for v ∈ S we give X(kv) the v-adic topology.

Example. Suppose that X|k is a rational variety, i.e. k(X) is a rational function

field. Then X satisfies weak approximation.

We are interested in the question of which families of connected linear algebraic

groups satisfy weak approximation.

Example. The group PGLn is k-rational and hence satisfies weak approximation.

Example. Let L|k be a cyclic extension of number fields and TL|k the norm 1 torus

associated to L|k. Then TL|k is rational and satisfies weak approximation.

Unfortunately, even among the class of tori, there are examples of non-rational

tori. For instance, the torus TL|Q associated to Q(
√

13,
√

17)|Q is not rational. We

now state the main result of this section.

Theorem 6.2.1 (Main weak approximation result). Let E|k be a dihedral extension

of degree 2n and Ei, for 1 ≤ i ≤ n, be the fields fixed by reflection in G = Gal(E|k).

Let L =
∏

1≤i≤nEi. Then, the norm one torus TL|k satisfies weak approximation.
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This is a direct consequence of the main theorem in [2]. We indicate the main fact

which enables us to use [2] and our theorem on the Hesse principle for multinorm to

conclude the theorem above.

Definition. Let Γk denote the absolute Galois group of k so that Γk = Gal(ks/k)

with ks the separable closure of k. A lattice is a finitely generated free abelian group.

Given a finite group G, a G lattice is a lattice which is a Z[G]-module. A Galois

lattice is a lattice M on which Γk acts on continuously. Here we give Γk the pro-finite

topology and we give M the discrete topology.

Given a torus T defined over k there is a Galois lattice over k namely the character

lattice T ∗ = Hom(T,Gm). The torus T is determined by the the lattice T ∗ and this

is an equivalence of categories between the category of k-tori and the category of Γk

lattices. There is a minimal Galois extension E|k which splits T . This extension has

Galois group G = Gal(E|k) which is a finite quotient of Γk. Then the character lattice

M becomes a G-lattice. Thus, to T we associated the algebraic object, namely, the

G-lattice M , where G is a finite group.

Theorem 6.2.2 (Bayer-Fluckiger, Parimala). Let G be a finite group and M a G-

lattice. Suppose for every torus T over a number field k with Galois splitting field

L|k with an isomorphism φ : G→ Gal(L|k) and character lattice M , Hasse principle

holds for principal homogeneous space under T . Then weak approximation holds for

T .

We apply the theorem in the following set up. Let G be a dihedral group of order

2n and let E|k be a dihedral extension and φ : G → Gal(L|k) an isomorphism. Let

Ei for 1 ≤ i ≤ n be the fields fixed by a reflection and let L be the étale algebra

over k given by L =
∏

1≤i≤nEi and let TL|k be the associated norm torus. Then E|k

is the minimal Galois splitting field over of TL|k. Let M be the character lattice of

TL|k which is a G-lattice. For any dihedral extension E ′|k′ with G(E ′|k′) ∼−→ G the
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lattice associated to the associated multinorm torus is isomorphic to M . In view of

this, along with the theorem of Bayer-Parimala and our Hasse principle theorem we

get the main weak approximation result.
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Appendix A

Kummer theory

This section will closely follow chapter 1 section 5 of [6]. In fact, it will essentially be

a summery of that chapter specializing to what we need for the thesis. The reader is

certainly encouraged to read that section for a more in depth presentation.

Definition. Let K be a field containing the group µn of n-th roots of unity with n

relatively prime to the characteristic of K. Then by a Kummer extension we mean

an extension taking the form L = K(∆1/n) with ∆ a subgroup of K× such that

(K×)n ⊆ ∆.

One sees that the Kummer extension L of K is generated by α1/n with α ∈ ∆.

A Kummer extension is abelian of exponent n. This means that it is Galois with an

abelian Galois group of exponent n. As a converse, we have the following proposition.

Proposition A.0.1. If L|K is an abelian extension of exponent n, then L = K(∆1/n)

with ∆ = (L×)n ∩K×

Proof. It’s clear that K(∆1/n) ⊆ L so all we have to do is prove L ⊆ K(∆1/n).

We claim that that L|K is the composite of its cyclic subextensions. Indeed, this is

because it is the composite of all its abelian subextensions L′|K each of which is the

composite of its cyclic subextensions. This follows from the fact that Gal(L′|K) is
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a direct product of cyclic groups by the fundamental theorem of finitely generated

abelian groups. Now, let M |K be a cyclic subextension of L|K. Since Gal(L|K)

has exponent n, we have |Gal(M |K)| divides n. It follows that M = K(α1/n) with

α ∈ (L×)n ∩K×. Thus, M ⊆ K(∆1/n) and we get L ⊆ K(∆1/n).

We know state the main result which we use in this thesis.

Theorem A.0.2. The Kummer extensions L|K are in one to one correspondence

with subgroups ∆ of K× that contain K×n. If L = K(∆1/n) then ∆ = L×n ∩K and

we have the following canonical isomorphism.

Hom(Gal(L|K), µn) ∼= ∆/K×n

Proof. See Neukirch [6].
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