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Abstract 

 
Computer-Assisted Drug Discovery 

Part I: Design, Development, Validation and Application of FRESH, a 

Novel In-Silico High-throughput Screening Program 

Part II: Monocarbonyl Curcumin Analogues: Heterocyclic Pleiotropic 

Kinase Inhibitors that Mediate Anticancer Properties 

Part III: Development of 2nd Generation NAMFIS Software Program 

by Java 

By Qi Shi 

 
There is an ever growing effort to apply computational power as a routine component of 

medicinal chemistry and drug discovery. In Part I of this dissertation, a novel in-silico 

high-throughput screening program was developed and applied to several drug discovery 

projects. The program, termed FRESH (FRagment-based Exploitation of modular 

Synthesis by virtual High Throughput Screening), combines virtual library enumeration, 

rapid vHTS (virtual High Throughput Screening), pharmacological property prioritizing 

and 2D/3D QSAR (Quantitative Structure-activity Relationship) construction. It is 

designed to address the issue of balancing multiple factors during drug lead-optimization 

of the drug discovery process. The workflow programming platform Pipeline Pilot and 

the corresponding programming language PilotScript were used to construct the program. 

The second part of the dissertation explores the mechanism behind the pleiotropic 

properties of mono-carbonyl curcumin analogues by molecular modeling calculations and 

protein sequence alignment. The last part of the dissertation reveals the mathematical 

principles and the Java programming approach behind the new generation of the 

NAMFIS (Nuclear magnetic resonance Analysis of Molecular Flexibility in Solution) 

software program, together with improvements on the old version. 
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Part I: Design, Development, Validation and 

Application of FRESH, a Novel In-Silico High-

throughput Screening Program 

 

This part of the dissertation describes the design, development, validation and application 

of a computational program that is capable of proposing novel, potent and 

property/ADMET (Adsorption, Distribution, Metabolism, Elimination and Toxicity)-

adjusted synthetic candidate structures based on synthetic schemes devised by practicing 

chemists: FRESH. This program is constructed by the Pipeline Pilot programing platform 

together with the PilotScript programming language. The application of FRESH in the 

early stages of a drug discovery project in addition to the traditional medicinal chemistry 

exploration is expected to encourage and facilitate a closer collaboration between 

computational and synthetic chemists.
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Chapter 1: Introduction 
 
    This introductory chapter lays the background for the construction of crucial features 

of the FRESH program.  

 

1.1. Drug molecules 

1.1.1 Available chemical space    

    The identification of therapeutic targets is often the starting point for modern drug 

discovery projects. These targets are frequently cellular proteins. Depending on the 

specific disease, the target can be derived either from the host (human) or the pathogens 

like viruses, bacteria or fungi. To access the therapeutic effect in early stages, various in-

vitro and/or in-vivo cell-based bio-assays are subsequently developed. The majority of 

therapeutic agents are chemicals, and medicinal chemists play a crucial role at this stage 

by providing various chemicals, either natural products or synthetic analogs, to the 

corresponding bio-assay tests to identify bio-active compounds. Multiple 

pharmacological properties are also tuned-up at this stage to provide suitable clinical 

candidates for further development. 

High-throughput screening (HTS) technology is a milestone of drug discovery history. 

It has significantly accelerated the screening process compared to the past. Nowadays, 

thousands of compounds can be screened against a biological target within a modest 

time-frame. Nevertheless, the available chemical space remains vastly unexplored. 

According to an estimation by Bohacek et al., even with a constraint of molecular weight 

(MW) less than 500 amu, the number of possible structures still reaches the scale of ~1060, 
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which far exceeds the total number of atoms on the earth.1 Exploring the entire chemical 

space is obviously infeasible even with the development of HTS methodology. In 

addition, medicinal chemists still have to use synthetic methods to access chemical space 

beyond the immediate commercially available ones, which is time-consuming and labor-

intensive in the pre-clinical stage of the drug discovery process.  

Therefore, it is more feasible and efficient to identify and focus on small and discrete 

compound series with possibly enriched potential drug candidates rather than simply 

searching hopefully in the vast ocean of chemical space. 

1.1.2. The concept of drug likeness 

    Potency is definitely a crucial criterion for a drug molecule. However, since the drug 

molecule is administered into the body, it also has to be delivered to a specific site and 

minimize side effects, which usually requires additional pharmacological properties. 

Ideally, the drug molecule will remain at an effective concentration within the therapeutic 

window for a period of time after administration to ensure the desired efficacy while 

minimizing potential side effects. Those pharmacological property factors are also crucial 

for a molecule to be administered as a drug.  

    Several retrospective statistical studies on the existing pharmacological space have 

revealed several contributing physical/ADMET (Adsorption, Distribution, Metabolism, 

Elimination and Toxicity) factors. Among these, the “Rule of Five” derived by Lipinski 

for assessing oral availability is still the most widely applied one. Based on ~2,200 

compounds that have passed phase I and entered phase II clinical trials, the statistic 

showed that 90% of the compounds process no more than 5 total N-Hs and O-Hs 

(hydrogen-bond donors) and no more than 10 hydrogen-bond acceptor atoms (N and O). 
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The MW stays within 500, while logP values, a measure of lipophilicity, are generally 

less than 5. 2  In 2009, Jorgensen proposed a “Rules of Three” which was based on 

~1,700 known neutral drugs.3 The result revealed that 90% of the drugs have solubility 

(measured by the logarithm of solubility in the unit of mol/L) no less than -6, greater than 

30 nm/s Caco-cell permeability and no more than 6 predicted primary metabolites. 

Compared to the previous Lipinski rule, the Jorgensen rules addressed additional 

ADMET issues like cell permeability and metabolism. In 2011, Morelli et al. performed a 

study based on a small dataset (~40) of protein-protein interaction inhibitors. 4 

Complementary to the guidelines of the Lipinski Rules of Five, Morelli’s Rules of Four 

posits that the average value for MW is larger than 400, logP greater than 4, number of 

rings above 4 and number of H-bonds more than 4. Accordingly, the new rules have 

expanded the concept of what constitutes a drug-like molecule. 

It is worth noting the review by Leeson et al., which summarized the trends of 

properties based on the current medicinal chemistry literature.5  It reveals increasing 

trends on MW and lipophilicity, which are likely the consequence of enhanced organic 

synthesis skills and development of drug formulation technologies. For example, the 

mean cLogP and MW values are 4.0 and 435 for a list of 1,680 compounds from the 

recent literature according to Morphy et al..6 Oprea el al also revealed higher cLogP 

values ( > 4.25) and MW (>425) in more than 50% of compounds with high potency.7 It 

appears that the more recent compounds tend to deviate from the traditional drug-like 

space. Nonetheless, as compounds progress through later stages, the MW and 

lipophilicity often decline. Developmental selection pressures are likely the contributing 

factors, as larger and more lipophilic molecules have augmented risks for bioavailability, 
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solubility, toxicity, synthesis and formulation. The chance of success decreases for these 

larger and lipophilic compounds as the project proceeds. Therefore, it is still reasonable 

to adopt the traditional rules during the pre-clinical stage of a drug discovery project. 

    It is important not to overlook the limitation of these rules. There are exceptions to 

them. For example, compounds from the category of natural products frequently lie 

beyond the chemical space of the Lipinski “Rules of Five”, providing successful drugs 

like Taxol. Thus, these rules should be treated as “rules of thumb” rather than accurately 

defining the boundary between “drug” and “non-drug”. For a drug discovery project, 

since exploring the entire chemical space is not an option, focusing on the boundaries of 

the above-cited rules is more likely to result a successful drug. In other words, these rules 

prioritize synthetic candidates for medicinal chemists among the vast available chemical 

space. They are useful selection criteria, especially if the drug discovery project has 

originated from target-based HTS and focused on small organic inhibitors. 

1.1.3. CNS drug likeness 

    CNS drugs act on the central nervous system. One major difference between an CNS 

active drug and a peripherally active one is that, in the absence of damaged and leaky 

brain tissues, the former has to penetrate an additional barrier, the blood-brain-barrier 

(BBB), before reaching the desired therapeutic target. The transfer of drugs and other 

materials from the blood stream into the cell and the reverse direction are controlled by 

endothelial cells inside the BBB. These epithelial cells form tight junctions, possess few 

pinocytotic vesicles and lack fenestration. Also, even if the molecule manages to cross 

this endothelial cell layer barrier, it can still be pumped back into the blood by p-

glycoprotein dependent active transfer processes. Penetrating the BBB for a molecule 
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raises additional challenges compared to just the gastric intestinal (GI) membrane. The 

requirements for physical/ADMET properties for CNS drugs, therefore, are generally 

more stringent. Designing a CNS drug requires more attention to physical/ADMET 

properties. 

    From a general perspective, CNS drugs tend to possess lower MW, higher lipophilicity 

in terms of calculated logP, less flexibility measured by the total number of rotatable 

bonds and reduced polarity (measured by polar surface area). According to the study by 

Levin et al. in 1980, the suggested MW cutoff of for CNS drugs is 400.8 Another study in 

2002 by van de Waterbeemd et al. suggested 450.9 Both of these cutoff values are lower 

than the one suggested by Lipinski Rules of Five, which is 500. Kelder et al. discovered 

that CNS drugs have lower polar surface area (PSA, cutoff is 70 Å2) compared to non-

CNS drugs (120 Å2). 10 Leeson and Davis performed a comparison between CNS and 

non-CNS drugs in 2004. 11 They analyzed ~70 CNS drugs vs ~260 peripherally acting 

drugs, respectively and concluded that the average percent of polar surface area (PSA) for 

CNS drugs is 16.3, while the value for all drugs is 21. The average number of rotatable 

bond for CNS drugs is 4.7, compared to 6.4 for all drugs. Hansch and Leo’s quantitative 

analysis demonstrated that cLogP correlates nicely with LogBB (log ratio of drug 

concentration in the brain to the one in the blood). However, as stated in the last section, 

increased lipophilicity can reduce the chance of success as the project proceeds, so the 

balance of increased LogBB and chance of success in later stages of drug refinement is 

crucial. 12 The more stringent requirements of physical and ADMET properties for CNS 

drugs definitely pose additional challenges in the CNS drug discovery process. 
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1.2. Computer assisted drug discovery 

1.2.1 Estimation of ligand-protein interactions in-silico 

    With the development of computer technologies, various computational strategies are 

available to provide the estimation of ligand-protein interactions, thus enabling the 

screening of large virtual libraries of molecules for the activity against certain protein 

receptors. Computational methods like molecular dynamics (MD), molecular mechanics 

(MM), quantum mechanics (QM) and hybrid QM/MM are employed to assess the ligand-

protein interaction. QM and MD can provide more accurate results and dynamic 

information, but generally consume considerably greater computational resources. MM, 

on the other hand, is usually less computationally expensive. It can provide excellent 

molecular geometries. The hybrid QM/MM methodology is a balanced approach between 

computational cost and accuracy, which applies the more accurate but computationally 

demanding QM approach to protein regions around the binding pocket and less accurate 

but relatively fast MM for the rest of the protein-ligand model.  

    Computational programs like DOCK, FlexX, Glide, GOLD and ICM perform 

quantitative and semi-quantitative calculations of the ligand-protein interaction in-silico. 

Comparison studies have been performed to evaluate the accuracy of these programs. 

13,14,15,16 Such studies evaluated reproduction of the available crystal structure of protein-

ligand complex by extracting the ligands from the complex structure and then docking 

them back into the corresponding proteins. The comparison studies have revealed that the 

Glide program, which is included in the Maestro package developed by Schrodinger Inc., 

remains the most accurate method. Glide had the highest portion of top-ranking poses 

within 2Ả of the original crystal structures, which is comparatively the best overall match. 
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Further detailed analyses also revealed that Glide showed the best enrichment factors, the 

least susceptibility to increased ligand flexibility and is less sensitive to hydrogen 

bonding and binding pocket burial.13,15 

   Glide adopts a hierarchical protocol for predicting possible poses of ligands. The 

protein receptors are first prepared by removing water molecules, adding missing 

hydrogen atoms, optimizing hydrogen bonds and assigning amino-acid residues with 

appropriate protonation state before performing a ligand docking. A docking grid which 

constraints the available docking space of the ligand is subsequently selected by users via 

the specified selection methods and grid size (absolute 3D coordinates, auto-selection 

centered at a residue, auto selection centered at a molecule, etc). Glide also performs a 

moderately extensive conformational search for the ligand structures based on the 

OPLS2005 force-field. The ligands are subjected to a thorough exploration of possible 

positions and orientations within the designated binding grid of the receptor, followed by 

energy minimization on pre-computed OPLS Vander Waals and electrostatic grids to 

generate various docking poses. These poses are ranked by the Glide score, which is an 

energy-based function. Poses with favored hydrophobic, hydrogen bond or metal-ligation 

features are prioritized, while those with unfavorable steric clashes and protonation states 

are penalized. 

    The enhanced performance of Glide is achieved by several factors. The protein side 

chains are often flexible. To accommodate this flexibility without consuming large 

computational resources, Glide adopts reduced vdW scaling parameters (default is 0.85 

instead of 1.0), which softens the penalty for unfavorable steric repulsive interactions and 

consequently increases the likelihood of discovering active ligands. In addition, Glide 
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implements higher conformational space coverage for the ligands, which may also 

contribute to discovering active ligands. Perola et al. revealed that relative to ICM and 

GOLD, the performance of Glide also benefits from post-refinement by OPLS-based 

energy-minimization.13  

   While Glide docking procedures are generally able to reproduce X-ray crystal 

structures of the complexes and provide valuable information in the docking of novel 

ligands, it still needs improvement for predicting binding affinities under some 

circumstances. The rescoring by physics-based methods like MM-GBSA (Generalized 

Born/Surface Area, included in the Prime program in the same Maestro package) 

circumvents some limitations of the Glide scoring functions, especially the ones 

associated with desolvation and entropy penalties for the ligands upon binding. 

Guimaraes and Cardozo performed a comparison study on several types of protein 

receptors. It revealed that, relative to the Glide score, the MM-GBSA score can produce 

remarkable correlations between calculated results and experimental data under some 

situations.17 In the following sections, Glide was chosen to generate the poses of ligands 

docked in the receptors, while both the Glide scores and Prime MM-GBSA scores are 

applied to estimate the non-covalent interactions between ligands and receptors. 

1.2.2. In-silico estimation of physical/ADMET properties 

    As stated in the previous section, a successful drug should also possess favorable 

physical/ADMET properties. Developing drug candidates without the consideration of 

these properties can result in significant failure in the later stages. According to Kubinyi 

et al, poor bioavailability problems led to 40% clinical failure in the early 90s. 18 The 

assessments of ADMET have gradually become routine since then, and the failure rate 
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dropped to 11%. Kola et al. reported that the major causes for drug failure have now 

shifted to lack of efficacy and toxicity.19 Experimental determination of these properties 

is costly and time-consuming, and some properties may never be determined at early 

stages at all. For this reason, various computer programs are designed to prioritize 

molecules based on predicted physical/ADMET properties. 

    The “Qikprop” program developed by the Jorgensen group and provided by 

Schrodinger Inc. provides estimation of some physical/ADMET properties. 20  This 

program is also available in the same Maestro package as Glide and MM-GBSA. The 

input molecule requires a 3D structure with explicit hydrogens added, therefore, a ligand 

preparation job must be performed if the input files are 2D structures. For some basic 

properties like MW, number of H-bond donors/acceptors, number of primary metabolites 

and number of rotatable bonds, they can be directly derived from the input structures. 

Others are estimated based on existing statistical models constructed on various 2D or 3D 

descriptors and statistical methods (partial least square), like the predicted octanol/water 

partition coefficient (LogP), solubility (LogS), blood-brain-barrier penetration (logBB), 

Cell permeability (Pcaco, MDCK), hERG blockage and serum protein binding. In 

addition to the estimated values for each input structures, QikProp provides the 

corresponding ranges for the specific property obtained from 95% of known drugs, which 

is a useful reference for evaluating a new molecule. It also displays warning messages to 

the users by flagging ~30 reactive functional groups which are known or likely to trigger 

false positive results in screening tests. Qikprop provides normal and fast mode as two 

different calculation options. Their speeds differ about 30 fold. For the fast mode, it skips 

the PM3 calculation so that the dipole moment, ionization potential and electron affinity 



 

 

11

descriptors are not available. As a result, some predictions under the fast mode may use 

different sets of descriptors and, thus, results may vary from the normal mode. 

    Other commercial entities also provide physical/ADMET prediction programs based 

on similar principles. In the Pipeline Pilot programming platform developed by BIOVIA 

(former Accelrys), components for simple property calculations are available like MW 

and the number of H-bond donors/acceptors. In the 8.5 version release, components are 

also available for estimating blood-brain-barrier penetration, cytochrome P450 2D6 

inhibition, hepatotoxicity and plasma protein binding.21 Unlike the previously mentioned 

Qikprop, it takes 2D structures and use 2D descriptors. The platform also allows users to 

incorporate additional user-derived data to parameterize for improved accuracy. The 

software package provided by ACD lab includes estimation of the octanol/water partition 

coefficient, pKa, solubility, blood-brain-barrier penetration, cytochrome P450 inhibition 

and hERG inhibition.22 It also allows user-supplied training set data. Some other online 

programs are listed at http://www.vcclab.org/online.html. The estimated results from 

these programs are routinely referenced in the drug discovery project. They are crucial 

components in the FRESH program to be discussed in detail in Chapter 2. 

 

1.3. Lead optimization challenges 

1.3.1. Multi-target/site therapies 

    The generally accepted design principle for a drug can be summarized as “the magic 

bullet”. Alternatively speaking, these drugs are designed selectively for a single 

therapeutic target. Nevertheless, many diseases remain ineffectively treated with the 

single magic bullet. Since modulating multiple targets simultaneously can potentially 
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enhance the efficacy compared to single target drugs, there is an increased interest on 

designing a “magic shot-gun”, or a “dirty drug” to have effect on several targets 

simultaneously instead of a “magic bullet” on a single target. This is particularly true for 

anti-cancer and CNS agents. The serotonin norepinephrine reuptake inhibitors (SNRIs) to 

be demonstrated in Chapter 4 and curcumin analogs in Chapter 6 are such examples in 

which multiple protein receptors are likely to be beneficially targeted. 

    Several strategies are available for developing multi-target drugs in the current drug-

discovery atmosphere. The widely accepted “cocktail therapy” in a number of diseases is 

one example of targeting multiple proteins. It combines more than one therapeutic 

mechanism and requires two or more individual tablets administered simultaneously. 

This approach is effective in diseases such as AIDS and various cancers. However, it can 

suffer from poor patient compliance, particularly in situations where the drug is used 

against asymptomatic diseases like hypertension or for life-improvement purposes. An 

improved solution to the cocktail therapy is the fixed dose combination (FDC). In this 

approach, a single tablet is formulated with two or more agents together to improve 

patient compliance. Vytorin, which combines ezetimibe (cholesterol absorption inhibitor) 

and simvastatin (a type of statin, HMG-CoA reductase inhibitors), are examples of the 

FDC strategy. In addition, for both the cocktail therapy and the FDC approach, the patent 

life of old drugs can be prolonged. However, these two approaches require administration 

of multiple components. Variations in the pharmacokinetics/pharmacodynamics (PK/PD) 

profiles of multiple components require more extensive clinical studies compared to a 

single component, let alone the discrepancies of relative rates of metabolism between 

patients which increase the complexity of PK/PD relationships. Additionally, drug-drug 
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interactions are always a concern when more than one component is administered 

simultaneously. Another disadvantage of FDC over cocktail therapy is the commercial 

uncertainty. In practice, clinicians might still prefer the “cocktail therapy” for greater 

dose flexibility and lower cost in the case of generic drugs.23  

    The advantage of using a single component drug against multiple targets is obvious. 

Like the FDC approach, patient compliance will be less of an issue relative to the cocktail 

therapy. Additionally, the single chemical component frees researchers from 

complications like complex PK/PD correlations and drug-drug interactions during the 

research and development stage. The knowledge-based method, like framework 

combination (either using a linker for two scaffolds or completely merged scaffold; see 

below), has also offered interesting drug leads. As illustrated in Figure 1, the neuro-

protective agent Ladostigil combines the framework of Rasagiline (monoamine oxidase 

inhibitor) and Rivastigmine (acetylcholinesterase inhibitor). As expected, it demonstrates 

dual inhibition effect against both monoamine oxidase and acetylcholinesterase.24  

 
Figure 1. Ladostigil is derived from the framework combination of Rivastigmine and Rasagiline. 

 

1.3.2. Balancing multiple factors 

Despite the benefits of using a single agent for multiple targets, one major drawback for 

developing such multi-target ligand (MTL) drugs is that it is considerably more 
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complicated to simultaneously gain acceptable activity at two or more targets/sites. In 

addition, whether an optimal potency ratio exists remains a question, and precisely 

adjusting the ratio is even more difficult.  

Meanwhile, as stated in the sections above, other physical/ADMET factors like 

lipophilicity, solubility, metabolic stability and BBB permeability (for CNS drugs) also 

require attention. Some of these factors may act against each other so the drug has to stay 

in a relatively narrow chemical space in which the “conflicting” factors are all acceptable. 

Balancing all these factors is already challenging for a single target drug, let alone the 

MTL drugs.   

At this stage, synthetic feasibility is also a concern. Synthetic processes generally 

consume considerable time and are always labor intensive. This is particularly a big 

concern for academic institutions with limited funding, labor and resources. 25  Thus, 

synthetic chemists are generally reluctant to invest large amounts of time pursuing just 

one compound that may eventually fail. Although lead optimization occurs at an earlier 

and less expensive stage of the entire drug discovery process, balancing multiple factors 

is nonetheless a challenging task. In this part of the dissertation, I intended to address this 

problem by developing a novel program called FRESH, which combines knowledge-

based rational design and virtual high-throughput screening (vHTS).   
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Chapter 2: Design and Development of the FRESH Program 
 

2.1. Overall design strategy 

The knowledge-driven rational design approach can provide some interesting 

candidates during the lead optimization stage, but there are certain limitations. The 

knowledge-driven empirical approach alone generally addresses only one aspect of the 

requirement, like biological activity, solubility, metabolic stability or selectivity. The 

situation is more complicated when it is necessary to balance multiple factors. In such a 

case, the method applied (see FRESH below) should be structured so as to introduce 

constraints for each of the factors simultaneously consistent with the needs of the 

therapeutic endpoint. 

It is obvious from the astronomical number in Section 1.1.1 that exploring the entire 

chemical space is not feasible. Thus, medicinal chemists will usually investigate the 

chemical space around a lead molecule and, hopefully, come up with at least one 

development candidate with both improved activity and some ADMET properties. 

However, due to the relatively slow rate of organic synthesis, the coverage of chemical 

space around a lead by actual organic synthesis is still limited. To increase the number of 

compounds investigated without significantly compromising the synthesis speed, 

medicinal chemists frequently pursue modular syntheses based on hit compounds 

originating from external discoveries as well as low- and high-throughput screening. In 

this process, a core structure is preserved while exploring one or more substitution 

patterns by using different building blocks but the same or similar synthetic method. 

Modular synthesis enables chemists to obtain a series of analogs in a relatively short 
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period. Nevertheless, the total number of possible synthesis candidates in this context is 

still well beyond the reach of any academic or pharmaceutical group.  On the one hand, 

medicinal chemists face numerous choices. The chemical space around a drug lead, 

which is just a tiny portion of the total space, still represents astronomical numbers of 

possible synthetic candidates. On the other hand, a molecule has to meet various 

requirements to be considered as a drug. The fundamental design principle for the 

FRESH program presented here is thus generated: First, construct a diverse and tailored 

virtual compound library by an in-silico modular synthesis. Second, apply a set of 

prioritizing criteria to identify molecules with improvements in potency and 

physical/ADMET properties. 

 
2.2. Screening software program selection 

The construction of the initial virtual compound library requires combinatorial 

enumeration over a large dataset. Both Pipeline Pilot (BIOVIA, Dassault) and 

CombiGlide (Maestro package, Schrodinger) are able to perform combinatorial library 

enumeration. The fundamental principle behind the two programs is the same. First, 

supply the program with a core structure with marked attachment points. Second, 

fragments from previously prepared fragment libraries are covalently connected to the 

core structure to form the molecular structure. For CombiGlide, the enumeration 

procedure is already pre-defined and relatively easy to follow. However, it performs 

poorly in terms of speed. Loading one file of about ~70,000 fragments consumes over 40 

minutes. Additional problem also arises when the enumeration scale reaches 7,000. While 

suitable for processing small sets of data, CombiGlide was not chosen to construct the 

initial library in the present work. 
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Pipeline Pilot, in contrast, provides little pre-defined procedures. This platform is 

actually a workflow programming interface which provides various components. Each 

component encapsulates codes specifically designed for a task (for example: sorting) at 

the backend. While the detailed implementation of the backend codes are hidden from the 

users, the platform still requires considerable knowledge on procedure-based paradigm 

programming and designing workflows to complete specific tasks. However, its major 

advantage over CombiGlide is the speed performance. A typical initial fragment 

processing from a 7 million compound library usually consumes less than one hour. The 

ability to handle over a billion potential drug candidates per day is easily achieved, 

demonstrating excellent speed performance and an efficient use of FRESH to probe great 

swaths of chemical space. In addition, the lack of pre-defined procedures can sometimes 

become an advantage. It allows greater flexibility when adjusting the existing program to 

a specific requirement is needed. 

Other available components in Pipeline Pilot for relational database management and 

processing also allow the program to perform other tasks required in FRESH.  In addition, 

during execution, each pipeline displays a concurrent number (Figure 2) reflecting the 

progress of the job. The numbers provide crucial information for estimating execution 

time, program feasibility, parameter optimization and, most importantly, program 

debugging. Given all the advantages, Pipeline Pilot was chosen not only to perform the 

initial library enumeration, but also process the data and present the results of the FRESH 

program. For the incorporation of calculation results from other programs, FRESH 

includes the corresponding junctions to accept the result files. To minimize the potential 
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problem of converting files in different formats, it is conceivable to utilize one shared file 

format. 

 
Figure 2. An example of a working Pipeline Pilot program. 

  

The initial combinatorial library generally contains numerous compound structures. 

The total number frequently reaches the scale of thousands, and it is not uncommon to 

encounter scaling to hundred million or even over billions. Obviously, it is impractical to 

include a procedure which requires manual processing of each individual structure.   

FRESH is designated as a virtual high throughput screening (vHTS) program. 

Consequently, all the software programs involved in FRESH need to support batch 

calculations. 

As discussed in Section 1.2, Glide and Prime MM-GBSA included in the Maestro 

package are both valuable tools for estimating ligand-receptor interactions. In addition, 

both programs support batch processing, so the Glide scores and MM-GBSA scores were 

chosen for evaluating ligand-protein interactions. For physical and ADMET property 

estimates, Qikprop was employed in FRESH instead of the ACD program since it is 

designed to perform batch-mode calculations. All the programs mentioned above support 

the sdf file format, which can be regarded as a relational database with chemical structure 

support. Consequently, the sdf file format serves as the “communication language” 
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between Pipeline Pilot and other involved software programs throughout the entire 

FRESH program.    

2.3. Construction of the FRESH program 

The FRESH program consists of four major steps. Since potency is frequently a 

selection criterion, the program has to establish QSARs based on existing data for 

predicting the potency of new compounds. The input/training set for QSAR is generally 

an external library (ChEMBL, BindingDB), which includes published historical testing 

data. In addition, previously synthesized and tested compounds within the research group 

can also be added as additional data points. As stated in Section 2.2, the results from 

Glide and MM-GBSA programs are possible candidates for evaluating potency. In 

addition, Pipeline Pilot also provides various components to calculate other descriptors or 

perform statistical analysis. The QSARs generated in this step are applied for potency 

evaluation in the later stages of FRESH.  

The second step is construction of a virtual molecule library, the basis of which is 

strictly based on a practical modular synthetic scheme derived by a collaborating chemist 

for a given target series. This step can be regarded as an in-silico synthesis mimic 

corresponding to wet-lab synthesis. Take the intended synthesis of amides as an example. 

Amides are formed by acid chloride and amine building blocks, among others. In the 

bench-top synthetic process, building block compounds from commercial vendors are 

purchased and the corresponding amides are obtained by a nucleophilic reaction. In the 

FRESH program for virtual library construction, building block structures are queried 

against a virtual compound library. The source of such a library may be a commercial 

compound electronic database provided by various vendors like Chem-Navigator, Zinc, 
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Maybridge etc., a pharmaceutical company’s own electronic inventory or a research 

laboratory’s list of all the previously obtained compound and intermediate structures. 

Thus, the building block structures obtained at this step are regarded as immediately 

available or easily obtainable ones. In addition, to avoid the drawback of missing possible 

interesting fragments, the program can be easily manipulated to allow incorporation of 

additional fragments. For example, users can supply additional members to the fragment 

library with output from shape and electro-similarity matches by isosteric replacement or 

any other candidate deemed important for the project team to explore. The fragment 

structures are then covalently attached to the core by the “Perform Reaction” and “RG 

reader/writer” components in Pipeline Pilot to obtain the corresponding target molecule 

structures. 

As stated in the previous section, favorable physical/ADMET properties are crucial 

components of a successful drug discovery campaign. FRESH routinely makes use of 

these as additional filters in the selection of fragments and molecules. The widely 

accepted Lipinski “Rules of Five” and Jorgensen’s “Rules of Three” are generally 

included in the selection scheme. Depending on the specific project, the users may add 

additional rules or adjust the acceptance range for these properties. An example would be 

a polar surface area (PSA) cutoff specific to the treatment of potential CNS agents. As 

mentioned in Section 1.1.2, there are specific scaffolds that violate these rules. In case a 

particular scaffold proves to be an outlier of these rules or the rules remove all possible 

candidates, the selection criteria based on the corresponding properties can be modified 

or simply dropped from the FRESH filtering scheme.       
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The final part of the FRESH protocol is the processing and merging of the calculated 

results and the selecting of structures of interest, which satisfy the desired properties. The 

“Merge Data” module in Pipeline Pilot spares users from writing complex structured 

query languages (SQL) for joining results from different files. The resulting novel target 

structures can be viewed and stored by various viewer/writer components. The end-game 

prioritized structures are considered highly interesting synthesis candidates. Figure 3 

demonstrates the general outline of a FRESH program.  

 

Figure 3. The general outline of a FRESH program. 
 

2.4. Algorithm design and optimization 

As stated in the last section, FRESH has to be organized to perform large scale jobs. 

The chemical space around a drug lead, though not as large as 1060, can still reach an 

astronomical scale, mainly due to combinatorial explosion. For example, assume that the 

target molecule structures are obtained from three building blocks from modular 

synthesis and each building block has over 1000 choices. The total number of possible 

molecule structures in the initial enumerated library is already above 1 billion. Popular 

building blocks like aldehydes and amines, depending on the commercial library, can go 
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over 10,000. Hence, the algorithm for the FRESH program, particularly the construction 

of the initial screening library, still requires informed selection.  

For the optimization of any algorithm, the first round of improvements usually results 

from resolving the conundrum between the reduction of execution time for a given 

computational task and the increase in size of a given data set. Time complexity analysis 

describes the situation mathematically by means of the big O notation. For example, 

insertion-sort and merge-sort are two algorithms for sorting an integer array. The 

complexity time-frame for the former is O(n2) and O(n*lgn) for the latter. In other words, 

insertion-sort is a quadratic algorithm while merge-sort is linearithmic, a product of linear 

and logarithmic functions. Obviously, merge-sort performs better when encountering 

large scale tasks as it demonstrates reduced time complexity. The fragments or structures 

in FRESH are not initially sorted. Therefore, the FRESH program requires that all 

fragments and structures be processed individually, resulting in a complexity of at least 

O(n). Under this circumstance, no fragment or structure can be skipped by adopting 

algorithms like binary search. The O(n) is the lower bond of the time complexity for 

FRESH. Therefore, it is impossible to derive an algorithm for FRESH with reduced 

complexity such as O(lgn). Enhancing the performance of FRESH by reducing the time 

complexity is not a feasible solution. 

Alternatively, another optimization option can be exploited by reducing the number of 

fragments/structures to be processed. The combinatorial enumeration process for 

constructing the initial library is often the rate limiting step during which the fragments 

generated from the corresponding building blocks are covalently attached to the core 

structure according to the modular synthesis route. Reducing the number of fragments 
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before the attachment step can lower the burden of enumerating the initial library. Thus, a 

number of fragment selection filters are employed prior to the construction of the initial 

library.  One important first-pass filter depends on the creation of a check-list that 

identifies and eliminates functional groups and substructures that are reactive, unstable in 

plasma, prone to cause false-positives in screening assays or induce toxicity.26 In addition, 

the “Rules of Three” for prioritizing appropriate fragments is incorporated as a valuable 

second filter.27 A third round of fragment selection depends on the specific synthetic 

route. Functional groups or substructures that produce regio- or enantio-selectivity 

environments are presently flagged as low priority fragments and are not passed to the 

enumeration step. Reducing the fragment numbers before enumeration is the most crucial 

optimization feature for the FRESH program. Without this optimization step, the FRESH 

program is extremely susceptible to run time errors due to the available time and system 

resources. 

The speed of the numerous programs utilized in the entire FRESH program varies. For 

example, Pipeline Pilot can process ~ 1 billion drug-like structures per day on a 3GHz 

Intel i3 CPU.  The estimated daily speed for Qikprop is around several million, while 

MM-GBSA scoring can only handle several thousands. In situations where one or more 

steps can’t process all structures in a reasonable time-frame, the faster calculation steps 

are arranged ahead of the relatively slower steps to reduce the work load and improve 

efficiency. In addition, several numerical identification systems are employed along the 

processing pathway for easy identification and merging operations of specific structures, 

and filters for removal of duplicate structures are applied at various points to avoid 

unnecessary repeated calculations.  
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Altogether, these optimization efforts ensure the smooth execution of FRESH with 

large scale input. However, for specific projects, new problems may still arise. The user 

is advised to frequently monitor the displayed numbers on the pipelines of the program 

and the execution time to discover and avoid problems like insufficient system resources. 

  

2.5. Advantages of FRESH 

  The advantages of this novel program are obvious. Compared to traditional lead-

optimization strategies, FRESH can cover a much larger chemical space within an 

acceptable time period and at lower cost due to the enhanced speed. With three years of 

effort spent on combating technical difficulties, bugs, defects and optimization of the 

prioritizing scheme, the program can now process up to several billion structures in a 

single run. Recent modifications in which iterations are incorporated will be discussed in 

details in the following Chapter. At the output port, instead of producing only a single 

molecule, a complementary set of structures is generated simultaneously, each of which 

can potentially serve as backup to the others. The candidates provided by the program are 

also synthesis-friendly, as the library construction originates from the chemists’ synthetic 

routes, and building blocks are obtained directly from a commercial database or other 

reliable sources. The problem of multi-dimensional optimization mentioned in the last 

chapter is also addressed, since bioactivity and drug-like physical/ADMET properties are 

incorporated into the output structures. 
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Chapter 3: FRESH Validation Case Studies  
 

3.1. Introduction 

    To validate the FRESH program, three case studies were performed. The purpose of 

these cases studies is to demonstrate how FRESH can capture at least one of the literature 

reported potent compounds. The three cases were chosen based on five criteria: (1) the 

protein target involved in each case has confirmed or potential therapeutic effect. (2) The 

data in the literature involved in each case should be recent, preferably within 5 years. (3) 

The compounds are derived from modular synthesis from a core structure. (4) The 

starting compound or core structure should not already be a potent ligand. In terms of 

IC50 or Ki value, it must be above 100 nM. (5) The literature contains at least one potent 

compound with IC50 or Ki value less than 10 nM. Additional structured query language 

(SQL) programming was involved to select possible cases for further investigation.  

    It is important to acknowledge that all QSAR methods, whether they are ligand-based 

or receptor-based, have their own limitations. The universal QSAR method which can 

accurately predict the potency of all the unknown compounds currently does not exist. 

Considering the shortcomings and limitations of each QSAR method, the FRESH 

selection scheme for these three cases was designed in two stages. In the first stage, all 

the possible QSAR scores were used to select the compounds based on consensus voting. 

The consensus scoring method trades some false negatives with false positives. In other 

words, some potent compounds may be predicted to be inactive during this stage. 

However, this is not expected to be a serious concern for FRESH considering the large 

chemical space it probes (thousands to billions of structures). After obtaining a candidate 
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compound structure list from the first stage and synthesis of the proposed compounds, if 

a potent molecule is identified, subsequent information derived from such a molecule will 

contribute to the next iteration stage of FRESH selection and hopefully recover some of 

the rejected compounds in the first stage. 

All three cases require the evaluation of potency. As stated in Section 2.3, the Glide 

scores and MM-GBSA scores are possible QSAR parameters. A third approach takes 

ECFP (Extended Connectivity Finger Prints) as the molecular portrait and Bayesian 

statistics (an estimate of probability based on the presence/absence of specific features 

from the binary data input) as the modeling method. Unlike Glide or MM-GBSA, this 

descriptor is a 2D-based one. Intuitively, a 2D-based method should be less accurate. 

However, it has been suggested that sufficient information may already be available in a 

2D structure to enable extraction of a useful QSAR and compete favorably with 

traditional 3D approaches. 28, 29 In addition, one significant advantage for the 2D-based 

method is the speed of calculation. The ECFP descriptor is generated orders of magnitude 

fold faster than Glide or MM-GBSA. Unlike some 3D-based methods (COMFA, Field-

based QSAR in Maestro), it does not require pre-alignment of 3D structures. This 

descriptor is particularly useful in the FRESH program when probing a large chemical 

space. QSAR selections based on ECFP are placed ahead of the more computationally 

expensive Glide or MM-GBSA programs to prioritize candidate structures. 

   Data points for historical compounds which serve as the training and test sets for the 

QSAR in the FRESH program are collected from the ChEMBL database for the specific 

protein target.30 The data in ChEMBL is extracted from the primary published literature 

on a regular basis, then further curated and standardized. It currently contains over 1 
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million compounds for 5.4 million bioactivity measurements against 5200 protein targets. 

The database used here to acquire building blocks in the library enumeration step is the 

“Zinc bb now” database, which is a collection from several suppliers and claimed to be 

building blocks immediately available.31 All chiral molecules were excluded because of 

the potential concerns for the uncertainty of the chiralities of the compounds in the 

database, the inability of ECFP descriptors to differentiate chirality and the synthesis 

challenge. 

 

3.2. Case I: Phosphoinositide 3-Kinase, α isoform. (PI3Kα) – Homology 

receptor model case 

3.2.1. Case Background     

Phosphatidylinositol 3-kinase (PI3K) phosphorylates the 3-hydroxyl group of the 

inositol ring of phosphatidylinositol and converts phosphatidylinositol (3,4)-biphosphate 

(PIP2) to phosphatidylinositol (3,4,5)-triphosphate (PIP3). PI3K is a crucial component in 

a number of pathways, which regulates cell proliferation, survival, chemotaxis and 

differentiation. 32 , 33 , 34  Amongst all the isoforms, PI3Kα is an interesting cancer 

therapeutic target. It has been recognized that the up-regulation of PI3K signaling 

pathway promotes angiogenesis and is associated with development of human cancers. In 

addition, it has been implicated in conferring resistance to conventional therapies.35 

Currently, there is no FDA approved anti-PI3K drug available. 

    The present PI3K-based case study originates from the literature by Kim et al. in 2011. 

36 They have explored the side chains of the particular scaffold in Figure 4.  The initial 

hit compound (R2 = H) is a 360 nM (IC50) agent that emerged from scaffold screening at 
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a concentration of 10 μM. Various aromatic substituents on the R2 group were tested. The 

R2 group has been modified by Suzuki coupling. 

    

Figure 4. PI3K inhibitor scaffold. 
    

3.2.2. Design of FRESH program, 1st round 

   All the PI3Kα inhibitors in the ChEMBL database were employed to generate training 

and test sets for establishing the QSAR in the FRESH program to predict potencies of 

novel chemical structures. To make the retro-study more realistic, two filters were used in 

this section of FRESH. These excluded all compounds with either the same structure as 

those in the Kim paper or those that appeared after 2010. Thus, the QSAR derived from 

the ChEMBL database is based strictly on the available data points at the time of the 

project. 

    The performance of a given scoring function is evaluated by the receiver operating 

characteristic (ROC) curve.  The latter curve is constructed by plotting the rate of true 

positives against the rate of false positives. It demonstrates how well a particular scoring 

function (For example: Glide score) can differentiate active compounds from the 

inactives. The performance is measured by the area under the curve or AUC. The closer 

AUC is to 1, the better. An AUC under 0.6 is generally considered unacceptable. 
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   10 nM was chosen as a cutoff value to differentiate “Active” and “Inactive” analogs for 

constructing the ligand-based Bayesian model using ECFP as the descriptor. The selected 

ChEMBL database compounds were divided by a 2:1 ratio for training and test sets to 

build the QSAR. The training set contains ~500 compounds with ~70 actives and the test 

set contains ~250 compounds with ~30 actives. The resulting AUC of the ROC curve 

(Figure 5) for the test set compounds is 0.93, which is excellent. Thus, the Bayesian 

score with ECFP as the descriptor is one of the filters for evaluating activity.  

    

Figure 5. ROC curve for the ECFP method. AUC = 0.93 
 

At the time of this project, there was no crystal structure of PI3Kα available. However, 

the authors mentioned a homology model based on PI3Kγ, another isoform of PI3K with 

41% sequence identity and 51% similarity at the kinase domain. The original homology 

model is not available, so an Emory homology model using the same template (PDB code: 

1E8Z 37) was constructed and used consequently for receptor-based docking analysis. The 

ChEMBL database compounds were prepared by LigPrep in the Maestro package and 

processed for both Glide and MM-GBSA scores. The corresponding AUC values of ROC 
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curves (Figures 6 and 7) are 0.64 and 0.72 (acceptable), so the Glide and MM-GBSA 

scores were also used as complementary criteria for potency evaluation. 

 

Figure 6. ROC curve for the Glide Score. AUC = 0.64 
 

 

Figure 7. ROC curve for the MM-GBSA score. AUC = 0.72 
 

According to the synthesis route, the aromatic R2 group is attached to the core structure 

by Suzuki coupling in which the arylboronic acids (or bromides) are the building blocks. 
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To obtain the fragment library for enumerating virtual structure libraries, the building 

block structures were queried against the “Zinc bb now” commercial compound database, 

and ~44, 000 fragments were initially obtained. The R2 fragment was first filtered by 

“Fragment Rules of 3”, groups with potential liability and reactivity concerns as 

described in Section 2.4 for the crucial algorithm optimization step. The remaining 

fragments were then covalently connected to the core structure in Figure 4 to generate 

structures of all possible PI3Kα inhibitors. Subsequently, a series of widely-accepted 

drug-like filters (Rules of Five, Rules of Three) was applied and structures with desirable 

drug-like properties were established for further processing. Finally, the Bayesian, Glide 

and MM-GBSA scores were obtained for the remaining structures. Using the 

corresponding scores of the hit compound (R2 = H, 360 nM) as a reference, structures 

with all three scores better than the hit compound were allowed into the final list for this 

round. Only ~40 structures remained from this round of selection. 

Because the ROC curve of the Bayesian score has the highest AUC, it was used to rank 

and prioritize the remaining ~40 structures. Upon examination of the prioritized structure 

list, the 3rd structure appeared as compound 19d (Figure 8) in the literature with an 

oxadiazole ring at the R2 group. With an IC50 value at 2 nM, 19d is a potent inhibitor 

against PI3Kα. It is also featured in the Table of Contents graphic of the paper. 

    

Figure 8. Compound 19d 
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3.2.3. Design of FRESH program, iterations 

    After initial identification of 19d, the FRESH program then incorporated this newly-

available information in order to perform the second round of virtual screening (iteration 

step). Figure 9 demonstrates the docking pose of 19d into the PI3Kα kinase domain. 

From the docking pose, the aryl-side chain points towards the solvent accessible area. 

This may also explain the improved activity from phenyl (IC50 is 720 nM) to the 

oxadiazole at the R2 position. Thus, one direction for further exploration is to increase the 

number of heteroatoms on the 5-membered ring. The tetrazole group with 4 heteroatoms 

is a reasonable synthetic target that would be a potentially fruitful direction for the 

medicinal chemist. This structure turned out to be another of the reported potent 

compounds with IC50 of 0.8 nM (19f, Figure 10). 

    

Figure 9. Docking pose of 19d on PI3Kα 
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Figure 10. Compound 19f 
 
 
    However, the polar surface area of 19d is very close to 120 Å2, and this may explain 

the relatively low oral bioavailability (24%). Additional heteroatoms are likely to further 

decrease the cell-permeability as supported by the cell-based anti-proliferation cell-based 

assay results of 19f (IC50 > 10 μM). An alternative direction to explore for the second 

round of FRESH is to reduce the number of heteroatoms in the ring. As depicted in 

Figure 9, the docked structure demonstrates that the aryl ring is exposed to the solvent 

accessible area, so at least one heteroatom should be included at this location in order to 

retain some activity. Therefore, the decision to pursue a second round of FRESH iteration 

seeks to investigate the aryl ring with only one heteroatom. This will reduce the polar 

surface area, while hopefully retaining some activity. The FRESH program was thus 

designed to identify aryl rings with only one heteroatom. These structures were then 

ranked for similarities with 19d and higher similarity structures are prioritized. After a 

round of iteration, the 5th structure in the list with 4-pyridine substitution at the R2 group 

proved to be another potent reported compound (19k, Figure 11, left) with an IC50 value 

of 4 nM. It is reasonable to believe that in a real drug discovery project, the 3-pyridine 

compounds would also be pursued along with the 4-pyridine compound, which is another 

potent reported compound (19j, Figure 11, right) with IC50 of 7 nM. 
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Figure 11. Compounds 19k (left) and 19j (right) 
 
     

In summary, the application of the FRESH program in this case study identified potent 

19d in the first round, while further iterations led to 19k, 19f and 19j. FRESH located 

both 19d and 19k among its top 5 candidates. 

 

3.3. Case II: Carbonic Anhydrase 2 (CA II) – Crystal structure model 

case 

3.3.1. Case Background     

Carbonic anhydrases (CAs) are ubiquitously expressed in all organisms. This family of 

enzymes catalyzes the reversible hydration of CO2 to bicarbonate and a proton. CAs are 

categorized as metalloenzymes, as the catalytic center contains a zinc ion. They are 

involved in many physiological processes, and their inhibitors are explored clinically for 

various therapeutic effects such as anti-glaucoma, anti-convulsants, anti-obesity, pain-

killer and anti-tumor activities. The physiologically dominant isoform, CA II, is one of 

the most extensively studied proteins among all known protein targets. 38 

Pacchiano et al. has investigated CA inhibitors with the ureido-benzenesulfonamide 

scaffold shown in Figure 12, which is derived from the popular sulfonamide scaffold.39,40 
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The R1 group contains at least one phenyl ring. The corresponding building blocks for the 

R1 group are iso-cyanates or acid chlorides.   

 

 

Figure 12. CA II Inhibitor Scaffold 
 

3.3.2. Design of FRESH program, 1st round 

The construction of a FRESH program for the 1st round is similar to the previous case 

study on PI3Kα inhibitors. The training and test sets are also obtained from the ChEMBL 

database. Filters are placed to ensure the QSAR derived from the ChEMBL database is 

based strictly on the biological data points at the time of the projects. This case study 

involves two publications; thus, the publication cut off year was selected to be the earlier 

one (2010).   

For the Bayesian model using ECFP as descriptors, the training set contains ~1100 

compounds with ~350 actives (10 nM is the cutoff for active) and the test set contains 

~560 compounds with ~170 actives. The resulted AUC of the ROC curve (Figure 13) for 

the test set compound is above 0.88, indicating an excellent separation of actives and 

inactives. The Bayesian score with ECFP as the descriptor was selected as one of the 

filters for evaluating activity.  
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Figure 13. ROC curve for the ECFP method. AUC = 0.88 
 

Unlike the PI3Kα case, this protein has many crystal structures available for receptor-

based docking/modeling. Therefore, the crystal structure with the publication year prior 

to 2010 with the highest resolution (PDB code: 1LUG) was chosen to be the receptor for 

estimating Glide and MM-GBSA scores. 41 In the Glide docking, restraints were imposed 

to enforce the crucial ligand-receptor interactions with the zinc atoms and Residue 198 

within the catalytic pocket. The Glide score gave an acceptable AUC of 0.63 (Figure 14), 

while the MM-GBSA score fails (AUC < 0.6).  Therefore, only the Glide score was 

included in the FRESH program to assess potency.   
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Figure 14. ROC curve for the Glide score. AUC = 0.63 
 

The two publications involved in this case study did not explicitly specify a starting 

compound to be used as a reference when comparing QSAR scores. However, since the 

authors mainly investigated the phenyl substitution effect on activity, the un-substituted 

phenyl compound (Ki is 3730 nM) was selected as the reference structure. The FRESH 

program was designed to retain structures with both improved Bayesian scores and Glide 

scores compared to the reference compounds. The same selection scheme for 

physical/ADMET properties in the previous case study was also applied.  

Starting from ~1300 R1 fragments, only ~40 structures survived the selection scheme. 

Similar to PI3Kα (highest AUC), the Bayesian score was chosen to rank and prioritize the 

final list of molecules. Examination of the latter for the 1st round of FRESH revealed that 

30 (Figure 15) with a Ki value of 8.9 nM (2011 paper) is the 4th structure in the final list. 

The program has successfully captured a potent CA II inhibitor. 
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Figure 15. Compound 30. 
 

3.3.3. Design of FRESH program, iteration steps 

The 1st FRESH iteration was constructed on the basis of structure 30. Compared to the 

phenyl group, the indan-5-yl group increases the hydrophobicity. From the docking pose 

shown in Figure 16, the indan-5-yl group is directed towards a hydrophobic pocket 

surrounded by Phe130, Leu140, Leu197, Pro201 and Leu203. A hypothesis was 

formulated that retaining the hydrophobicity at R1 group can lead to additional potent 

compounds. Thus, the iteration was designed to identify structures with retained 

hydrophobicity (measured by logP of the R1 group) while retaining similarity to 30. After 

examining the search list for this iteration, the 3rd structure was identified as 3 (Figure 

17) with an IC50 of 3.3 nM as in the 2010 publication. The crystal structure of 3 was 

obtained by the same research group. As shown in Figure 18, the R1 group points to the 

hydrophobic pocket as expected. 
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Figure 16. Docking pose of 30 at the catalytic pocket of CA II. 
 

 

Figure 17. Compound 3. 
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Figure 18. Crystal structure of 3 at the catalytic pocket of CA II. 
 

 

A second search iteration was performed with the information from 3. From the crystal 

structure shown in Figure 18, the 2-substitution appears to be the most favorable position 

to pick up hydrophobic interactions. Thus, all the 2-substituted structures were put 

through the filtering scheme and consequently ranked by similarity with 3. The 5th 

structure on the list is 24 (Figure 8) with an IC50 of 9.7 nM in the literature.  

 

Figure 19. Compound 24. 
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In summary, the application of FRESH in this case study has identified a potent 

compound 30 in the first round, while further searching led to the additional potent agents 

3 and 24. The ranks of all three compounds generated by FRESH analysis are again 

among the top 5. 

3.3.4. Further experiments 

    To further test whether the FRESH program can provide additional potent inhibitors 

previously undiscovered by the research group, a collaboration project was initiated. 

Together with lab members Dr. Thomas Kaiser and Dr Zackery Dentmon, we selected 

10-15 additional compounds for synthesis from the output list of FRESH analysis. 

Compounds which appear in the ChEMBL or PubMed database were excluded to 

guarantee novelty. The original author of the two publications (Dr. Supuran, University 

of Florence, Italy) was also engaged in this project to perform the bio-testing using the 

same method described in the paper. 

 

3.4. Case III: Histone Deacetylase 1. (HDAC 1) – Ligand-only example 

3.4.1. Case Background 

HDAC enzymes catalyze the removal of acetyl groups from acetylated lysine amino 

acids on a histone. This allows histones to be more tightly wrapped around the DNA and 

consequently regulates DNA expression. HDAC enzymes fall in four different classes. 

Among these, Class I and II isozymes have been associated with uncontrolled tumor 

growth. 42   An example knockdown study on HDACs performed by Glaser et al. 

suggested that HDAC 1 is essential to the proliferation and survival of mammalian 

carcinoma cells.43  In 2006, FDA approved suberoylanilide hydroxamic acid (SAHA, 
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vorinostat, Figure 20) for the treatment of cutaneous T-cell lymphoma.44 This validated 

HDAC inhibitors as a strategy for cancer therapy. 

 

Figure 20. FDA approved HDAC inhibitor SAHA Inhibitor Scaffold 
 

This particular case study is based on the publication by Wang et al. in 2010. 45 The 

authors explored the urea scaffold shown in Figure 21. Like the SAHA molecule, the 

right part of this scaffold is a hydroxamic acid group, which is designed to bind to the 

zinc dication within the catalytic pocket. The length of the aliphatic chain linker varies 

and the left part of the scaffold consists at least one aromatic ring. The corresponding 

building blocks for the R1 group are aryl acid chlorides.  

 

Figure 21. HDAC1 Inhibitor Scaffold 
     

This particular case was chosen as a “ligand-based-method-only case” to demonstrate 

the usefulness of FRESH under some difficult circumstances where only limited 

information is available. In addition to the R1 group, the FRESH program was 

constructed to vary the linker length from 1 to 7 simultaneously with variation in the R1 

group to intentionally worsen the situation. 

3.4.2. Design of FRESH program, 1st round 

Construction of the FRESH program for the 1st round was similar to the previous two 

case studies on PI3Kα and CA II inhibitors. The ChEMBL database served as data source 
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for the training and test sets. The rules of “no presence of identical literature structures” 

and “no future structures” were strictly enforced.  Since only ligand-based methods are 

allowed in this case study, the Glide and MM-GBSA scores were not applied. For the 

Bayesian model using ECFP as descriptors, the training set contains ~580 compounds 

with ~50 actives (10 nM is the cutoff for active) and the test set contains ~290 

compounds with ~30 actives. The resulted AUC of the ROC curve (Figure 22) for the 

test set compound is 0.87; again excellent. The Bayesian score with ECFP as the 

descriptor will be the only filter for evaluating activity. Other filters such as drug-likeness, 

potential liability groups and Fragment Rules of Three remained the same. 

 

Figure 22. ROC curve for the ECFP method, AUC = 0.87 
 

About 1,200 R1 fragments were generated from the corresponding commercial 

building blocks. The value of n varies from 1 to 7, so the total number of possible 

structures generated by combinatorial enumeration was around 8,400. The structure list 

for the 1st round was selected by physical/ADMET properties and then ranked and 
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prioritized by the Bayesian score. The 3rd structure in the list is 5n (Figure 23) with a 

reported IC50 of 6 nM. 5n is the most potent one in this publication. 

 

Figure 23. Compound 5n. 
 
3.4.3. Design of FRESH program, iterations 

With the hint from 5n, structures with 5 carbon atoms as the linker should receive 

higher priority. Similar to the situation for the PI3K inhibitors discussed in Section 3.2.3, 

the PSA of this scaffold is already very high (close to 120 Å2), so structures with no 

additional N or O atoms should receive higher priority to maximize the oral 

bioavailability. The next iteration of the FRESH program for this case was thus designed 

to collect structures with n=5 and without additional N or O atoms. This round led to the 

identification of 5f and 5g (Figure 24) with IC50 values of 26 nM and 13n, respectively. 

They are 4th and 5th on the list. Although 5i (Figure 25) with an IC50 of 8 nM is the 15th 

on the list, in a real project it would be prioritized after 5f and 5g were acquired and 

tested, since it would complete the heavy halogen series. 

 

Figure 24. Compounds 5f (left) and 5g (right). 
 

 

Figure 25. Compounds 5i. 
 



 

 

45

In summary, the application of FRESH in this case study has identified potent 5n in the 

first round. Further iterations led to additional actives 5f and 5g with the inclusion of 5i in 

the final step. The ranks of all three compounds uncovered by FRESH analysis are all 

among top 5.  

3.5. Conclusion and Future Work 

As demonstrated by all three case studies, the FRESH workflow is able to provide a set 

of synthetic candidates containing at least one potent compound. Iterations based on the 

information from the newly-identified potent compounds subsequently led to additional 

potent agents. The ranks of all reported potent compounds are among the top 5 candidates 

derived by FRESH. One additional finding is that the QSAR approaches based on 2D-

descriptors like ECFP can perform equally well or even better than 3D methods. 

It is worth noting that there are still certain situations FRESH are unable to handle. In 

the case of a project where a receptor structure is lacking and not even a single compound 

has been made previously, there is no way to construct a QSAR for direct incorporation 

into FRESH. While using bio-datasets for ligands bound a structurally/functionally 

similar receptor may offer a solution, it introduces additional uncertainties. In this 

situation, FRESH can only provide candidates with favorable predicted physical 

properties, which may not be so attractive at this stage. Traditional medicinal chemistry 

exploration is still needed before a valid QSAR can be generated. In this situation, rather 

than completely replacing the traditional med-chem exploration, FRESH should be used 

as a complement to it. 

In conclusion, the FRESH program is a useful scheme in assisting drug lead 

optimization. In all the three case studies, a potent molecule among the top five highly 
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predictions was identified in the 1st round of virtual screening. Furthermore, iterations 

flowing from the first identified molecule proved to be valuable starting points for 

discovery of other potent candidates. The program also proposed directions for improving 

physical properties. Further work on constructing a universal FRESH program template 

with ease of use for the synthetic chemist is in progress. 
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Chapter 4: Application I: Designing novel SNRIs 
 

4.1. Project background 

    Chronic pain initiated by disease or injured nerves remains a prevalent problem in the 

US. Johannes et al. performed an Internet-based statistical study and revealed that the 

prevalence of chronic pain is more than 30% based on ~30,000 adults.46 Half of these 

adults experienced daily pain, and the three-month-averaged pain intensity was severe (≥ 

7 on a scale ranging from 0 to 10) for 32%. Lower back pain is the most common form of 

chronic pain, followed by osteoarthritis pain, Rheumatoid arthritis and migraine 

headaches. Though the pain itself is generally not lethal, the chronic pain condition 

obviously reduces life quality and sometimes leads to a debilitating life-style and loss of 

ability to work. In the US, an estimated $61.2 billion per year vanishes as a result of lost 

productivity from chronic pain. In addition, treating patients who experience such 

debility adds an annual cost of ~$6,000.47,48 Therefore, chronic pain remains a large 

health, social and economic burden on the US that requires effective medical solutions. 

Such therapies will not only improve the quality of patients’ life but also exert an 

enormous impact on the entire society.  

    Repair of damaged nerves continues to be a challenging medical condition, as there is 

no definite clinical treatment currently available to reverse the damaged tissue. 49 

However, as the condition is generally not lift-threatening, medications that alleviate 

severe pain syndrome are feasible alternative solutions.  Opioid therapy, which inhibits 

the release of neurotransmitters and subsequently blocks the corresponding pain signaling 

pathway, has been adopted and remain an effective therapy against severe pain. However, 



 

 

48

addiction and drug abuse are major problems for the opioid-based therapy. In addition, 

the potential threat from easy access to prescription opioids for illegal use is not trivial. 

Medical needs for alternative chronic and severe pain therapies beyond opioids are still 

unmet. 

Monoamine transporters like the norepinephrine transporter (NET) and the serotonin 

transporter (SERT) are another class of potential therapeutic targets against neuropathic 

pain. As shown in Figure 26, these transporters pump the corresponding monoamine 

neurotransmitters in the synaptic clefts back to the presynaptic neurons. 50 By blocking 

these transporters, the amount of neurotransmitters in the synaptic clefts increases. This 

consequently induces stronger signals transmitted to the postsynaptic neurons and 

subsequently suppresses the pain pathways.51 Previous studies have revealed that NET 

inhibitors are effective against neuropathic pain. In addition, the simultaneous inhibition 

of SERT appears to enhance the efficacy, although the SSRIs (selective serotonin 

reuptake inhibitor) alone are not effective against pain.52 A therapy targeting both NET 

and SERT may offer an alternative solution to the opioid-based therapy.  
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Figure 26. Mechanism of monoamine transporter/reuptake inhibitors. 
 

Administering separate inhibitors for NET and SERT by a cocktail therapy, as 

discussed in Section 1.3.1, can be problematic due to different PK/PD properties of each 

component and the potential drug-drug interaction threat. Therefore, a dual target ligand, 

which inhibits both NET and SERT simultaneously, would be more favorable. Several 

dual NET/SERT inhibitors (referred to as serotonin norepinephrine transporter inhibitor 

or SNRI below) have demonstrated efficacy against chronic pain, one of which is 

milnacipran (Figure 27).53  

H2N
N
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Figure 27. Milnacipran.  
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However, whether an optimal ratio of NET to SERT potency exists has not been 

determined yet. Dr. Davies’ group at Emory University has synthesized a series of 

arylcyclopropylamine compounds (Table 1) based on the milnacipran scaffold.50 These 

analogs demonstrated significant potency for both NET and SERT. The intended plan is 

to use them as guide to obtain additional analogs to probe the effect of potency ratio. The 

FRESH program was applied in this project to provide synthetic collaborators with 

specific arylcyclopropylamine candidates with suitable variations of the potency ratio of 

NET/SERT while retaining the overall potency. 

 

Table 1. Six arylcyclopropylamine compounds with clogP and IC50 values. 
 

 

 

4.2. Challenges in the lead optimization step 

Substitutions on this particular arylcyclopropylamine scaffold readily remain within 

the chemical space of drug-likeness. For example, the MW of compound 1 is ~300 and 

the value of logP is 2.2. There is still sufficient chemical space available to accommodate 
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additional modifications before the structure reaches the “drug-likeness” threshold. 

However, the main focus of this project at the moment is the potency (measured by Ki) 

ratio of antagonists bound to SERT and NET receptors. The team is interested in a series 

of potent compounds that probe a wide variation of potency ratios in order to identify an 

“ideal” ratio for treating neuropathic pain. The knowledge-based rational design method 

would experience difficulty in predicting compound structures with specific ratios.  By 

contrast, the FRESH program implements systematic and focused screening that can 

readily identify an easily synthesized library of novel analogs with the ability to scan a 

wide range of SERT/NET ratios.   

    

4.3. Receptor-based QSAR models of NET and SERT 

    At the time of this work, no crystal structure of NET or SERT was available. An 

alternative strategy to obtain a receptor structure for the Glide and MM-GBSA programs 

is to utilize homology models. Ravna et al. established such homology models in 2009 

for both NET and SERT based on a Leucine transporter.54  The sequence similarity 

between NET and the Leucine transporter is 39% and for SERT 35%. These two receptor 

structures provided by the homology models, together with the preliminary biological 

data listed in Table 1 provide a good starting point for a localized QSAR model. Initial 

attempts to develop such models were made by Dr. Spandan Chennamadhavuni in the 

spring of 2011 before his Ph.D. dissertation defense.  However, the modeling work had 

not proceeded to the development of a quantitative QSAR model suitable for FRESH.50 

The homology modeling study performed by Ravna et al. revealed two possible 

binding sites (Site 1 and Site 2) on both the NET and SERT homology models. Site 1 can 



 

 

52

accommodate relatively small molecules like cocaine, while Site 2 generally 

accommodates larger tricyclic compounds.  Site 1 was chosen to initiate the modeling 

work.54  

However, an initial attempt to dock the ligands to the Site 1 pocket using the standard 

version of Glide docking program failed to yield any pose. The flexibility of the receptor 

structure provided by the default scale-factor of 0.85 of the Glide program was not 

enough to perform the docking. Induced-fit docking program included in the Maestro 

package was considered to provide the protein receptor side chains with additional 

flexibility. However, the induced-fit docking program is a computationally expensive 

method. While it may be useful for a specific data set of structures, it is definitely less 

ideal for the vHTS step involved in the FRESH program. In addition, the use of induced-

fit docking also introduces a technical problem: the induced-fit docking output pose file 

contains only one receptor and one ligand and manual separation steps are required 

before subsequent application of other programs. No manual operation is suitable for the 

highly automated FRESH program operated on large scale data sets.  

With all these considerations, a decision was made that induced-fit docking would be 

used to generate docking receptors only once. After this step, the resulting receptor 

structure was submitted for standard Glide docking. This two-step strategy captures a 

degree of protein flexibility without sacrificing library processing speed required by the 

FRESH program. Among the ligands in Table 1, the two bulkiest ones, 5 and 6 were 

chosen for induced-fit docking to maximize the flexibility. For each compound, only one 

pose was requested. The receptor structures derived from the resulting poses were 
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extracted and subsequently used as the receptors for the standard Glide docking 

procedures. 

The poses generated by the Glide docking were then rescored by the MM-GBSA 

program. The top pose for each ligand was submitted for QSAR analysis. Construction of 

a linear regression based on the equation ΔE = -RTln Ki was attempted.  Note: the ΔE 

term represents the MM-GBSA score and the Ki term is the experimental Ki values.  

    Figures 28 to 31 illustrate correlations of ΔE to the experimental Ki values.  The 

comparison between Figures 28 and 29 (data points for the NET receptor) reveals that 

the receptor structure derived from 6 delivers better correlation (judged by the R2 value) 

than that from 5. Similar conclusion can also be drawn by comparing Figures 30 with 31. 

Consequently, receptor structures derived from the induced-fit docking of Compound 6 

were employed for subsequent analysis in the FRESH program. It is worth mentioning 

that these correlations were based on preliminary results in which only six ligands are 

involved. Nevertheless, they provided a good starting point for generating prospective 

compounds for further synthesis. 
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Figure 28. Correlations of estimated binding NET affinity with experimental Ki for six ligands. Docking 
receptor was generated from induced fitting of 5. 
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Figure 29. Correlations of estimated binding NET affinity with experimental Ki for six ligands. Docking 
receptor was generated from induced fitting of 6. 
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Figure 30. Correlations of estimated binding SERT affinity with experimental Ki for six ligands. Docking 
receptor was generated from induced fitting of 5. 
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Figure 31. Correlations of estimated binding SERT affinity with experimental Ki for six ligands. Docking 
receptor was generated from induced fitting of 6. 
 

4.4. Application of the FRESH program 

4.4.1. The FRESH Program design 

    The FRESH program for this project was constructed in accordance with the synthetic 

route in Figure 32 provided by Dr. Davies’ group. The R1 and R2 groups originate from a 

carbene precursor which contains an aromatic ring (R1) and an ester group (R2), while the 

R3 group is from the amine building block. Before the project was stalled by lack of 

federal funding, the primary interest was the bio-effect of R2. Therefore, R2 was chosen 

to serve as the only structural variable in this round. Accordingly, the corresponding 

building blocks with phenyl or pyridine rings were screened. The results in Table 1 

demonstrate that the RR ligands show better activity. Thus, these analogs were assigned a 

higher priority and investigated first. The corresponding core structure in this round of 

FRESH is RR. 
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Figure 32. Synthetic route for the arylcyclopropylamine analogs. 
 

Figure 33 demonstrates the general outline of the FRESH program. Starting from the 

commercial library, the corresponding building blocks were screened and the R2 

fragments were extracted. As stated in Section 2.4, a sub-protocol was placed before the 

enumeration of the initial library to prioritize fragments without unfavorable functional 

groups. Similarly, physical/ADMET property selections were also applied in the program 

to prioritize molecules with drug-like properties. The Ki values for potential NET and 

SERT antagonists were predicted using the correlations in Section 4.3. At this stage, the 

cutoff for the predicted Ki value for both SERT and NET was set at 50 nM. 
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Figure 33. The FRESH protocol (main interface) for prioritizing arylcyclopropylamine analogs. Some sub-
protocol components are not shown. 
 

4.4.2. Resulting structures 
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FRESH identified ~30 output structures at the final output port. After discussion with 

the collaborators in Dr. Davies’ laboratory, five structures were chosen as synthetic 

targets. Table 2 depicts the selected structures with the corresponding predicted 

SERT/NET ratio. The predicted SERT to NET ratio values were around 3 which is at 

least 10 time higher than the corresponding ratio of Milnacipran.  

 

Table 2. Structures selected to pursue synthesis and the predicted result 

 

 
4.4.3. Test result and comparison 

The experimental Ki values for both the NET and SERT were later obtained and listed 

in Table 3. Among the five compounds in the table, 69 is the best match with both 
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predicted Ki values and the predicted ratio within 2-folds of the experimental ones. 68 

also matches the experimental values reasonably well, providing both Ki values within 

10-fold of the experimental ones. 8, 140 and 155 deliver either one or two Ki values 

outside the 10-fold prediction window.  Nonetheless, the predicted ratio remains within 

10-fold that of the experimental values.  

  

Table 3. Comparison of predicted results to experimental results. 

 

 
4.5. Conclusion and future direction 

The FRESH program has provided at least two desired candidates out of 5 for this 

round of structure prediction. Considering the fact that the QSAR models were 

constructed on just six historical data points, the target receptors are rigid homology 

models and a revised “induced-fit” method was adopted, the performance of this 

particular FRESH analysis is unexpectedly successful.   
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Further work on the FRESH program is needed to improve performance, mainly on the 

QSAR model component. Additional QSAR models based on alternative methods might 

well reduce the chances of “false positives”. For example, given the fact that the Ki 

values are sensitive to the substitution patterns on the phenyl ring, 2D ligand-based 

methods, like those involving Hammett sigma constants, are worth investigating. 3D 

ligand-based methods like COMFA, which use calculated electrostatic and steric terms as 

molecular descriptors are also possible candidates for inclusion in the FRESH program. 

Additional biological data can also be included in the QSAR training/test sets as derived 

from other compounds. For example, the ChEMBL database contains several thousand 

data points for both SERT and NET. 

Additional structural modifications of the ligands are also required to minimize the 

appearance of potential problems in the context of oral bioavailability, although 

intrathecal administration (IT, injection into the spaces surrounding the spinal cord or brain) 

was the route of administration at that time when the project was active. Two moieties in the 

current lead candidates probably need further modification before the compounds qualify as 

potential orally-available drugs. Thus, the ester bond can be hydrolyzed in a living organism 

resulting in formation of a carboxylic acid with a low capacity to cross the BBB, an 

undesired outcome. The amine moiety, which is basic, also presents a barrier for BBB 

penetration. This usually requires additional FRESH program for other side chain 

modifications to probe additional chemical space.  
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Chapter 5: Application II: Identification of novel KCN1 
analogs to block the p300/KCN1 interaction 
 

5.1. Project background     

Hypoxia is a condition in which tissues suffer from insufficient oxygen supply. It is a 

prevalent phenomenon in solid tumor tissues due to inadequate development of the 

vascular blood supply.55  The hypoxia inducible factor (HIF) pathway is found to be 

crucial for tumor cell growth under hypoxic conditions, and hypoxic tumors are 

associated with resistance to chemo- and radio-therapies.56,57 Along the HIF pathway, the 

HIF-1α subunit associates with the CH1 domain of cofactor p300 to form a functional 

transcription factor.  

The p300/HIF-1α complex, therefore, has become a potential therapeutic target against 

hypoxic cancer. Our collaborators at Georgia State University (GSU) have synthesized a 

series of aryl sulfonamide analogs, which demonstrate sub-micromolar potency against 

the p300/HIF-1α interaction. 58 These analogs were derived from the lead compound 

KCN1 (Figure 34). FRESH was applied in this project to perform lead optimization. 

Potential synthesis candidates from the program are anticipated to have improvements in 

potency against the p300/HIF-1α interaction and to introduce ADMET characteristics 

into the target compounds. Since one of the targeted cancers is glioblastoma, it is 

desirable that molecules also process favorable CNS drug-likeness properties.  
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Figure 34. Structure of KCN1 with three highlighted substituent groups 
 

5.2. Challenge in the lead optimization step 

KCN1 was the lead molecule at the time of the project. However, if evaluated by the 

“Rules of lead-likeness”, it is clearly a violator. The MW of 465 is already close to the 

suggested cutoff of 500 from the Lipinski Rule of Five. This MW value is significantly 

higher than the suggested cutoff of 350 for lead-likeness, let alone the general trend for 

CNS drugs to possess a smaller MW.59 Therefore, in terms of ligand efficiency, KCN1 is 

not an ideal lead with capacity for alternative substituent decoration in the lead 

optimization process.  

The experimental IC50 value for KCN1 is approximately 650 nM.58 If the targeted IC50 

range is 5 nM or less, it requires an improvement of ~100 fold. Even considering the 500 

MW threshold from the Lipinski rule, there is little chemical space available for 

exploration of additional heavy atoms. For some small molecules it is possible reach an 

approximate 1.5 kcal/mol ligand efficiency. However, as the molecular size increases, the 

likelihood of encountering one such “magic methyl” decreases rapidly.60 Thus, there is a 

remote possibility that by simply adding extra groups, the IC50 value can be improved by 

~100 fold while the MW still remains within the 500 amu window.  
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In addition, as pointed out in Section 1.1.1, the lipophilicity tends to increase during 

the lead optimization process.59 A desired cLogP cutoff for a lead molecule is therefore 

suggested to be 3 to ensure the final clinical candidate can stay within the threshold of 

5.59 However, the cLogP value for KCN1 is already close to 5. In fact, previous attempts 

to use structure-based methods alone failed to provide structures with a predicted potency 

increase while retaining the required properties and ease of synthesis.  

 

5.3. Receptor-based QSAR approach 

5.3.1. Binding receptor selection1 

    The FRESH program requires a QSAR scoring function to estimate the potency of 

novel structures. Initial attempts were made to develop a receptor-based model. In idea is 

that KCN1 can interrupt the p300/HIF-1α interaction by binding separately to p300 or 

HIF-1α, or by interfering with the p300/HIF-1α complex formation to attenuate its 

function. De Guzman et al. has performed an NMR study on the two proteins and 

revealed that p300 is able to maintain its 3D-architecture without the presence of HIF-1α, 

while HIF-1α is disordered when uncomplexed with p300.61 Therefore, a reasonable 

hypothesis is that the binding partner of KCN1 is p300.  

A series of experiments by collaborators at the Winship Cancer Institute (WCI) at 

Emory and GSU were conducted to test the hypothesis.62 Figure 35 demonstrates the 

results from an affinity pull-down analysis (Dr. Erwin van Meir and colleagues; WCI). 

The input lane and the – lane were control groups: The former used a fraction of the cell 

extract before being pulled down to verify protein expression; the latter employed 

                                                 
1 This section introduces the work from my collaborators and is directly from my master thesis. 
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uncoupled beads for non-specific binding (- lanes). The figure illustrates that while 

KCN1 can pull down a fraction of p300, no detectable interaction between KCN1 and 

HIF-1α is observed.   

 

Figure 35. Affinity pull-down analysis of p300 and HIF-1α proteins using KCN1-coupled agarose beads. 
 

A radio labeling experiment has also been performed. Recombinant fusion peptides, 

which contain Glutathione S-transferase (GST) and the CH1 domain of p300 (GST-p300-

CH1) were incubated with 14C-KCN1. In Figure 36 (left), the bound activity for GST-

p300-CH1 was shown to be significantly greater than that obtained with GST-only 

peptides. The size of GST-p300-CH1 was verified by Coomassie stained gel as shown in 

Figure 36 (right). Once again, this experiment demonstrates the direct interaction 

between KCN1 and p300. 

 
Figure 36. 14C-KCN1 binding experiment result. 
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Another experiment based on surface plasmon resonance measurements was 

performed by the GSU portion of the team under the guidance of Dr. Binghe Wang to 

certify the direct KCN1-p300 interaction. KCN1 was attached covalently to a gold 

surface (Figure 37).  The p300-CH1 peptides were streamed over the surface in a series 

of concentrations as illustrated by Figure 38. SPR signals show response to the p300-

CH1 peptides and changes with variations of concentration. Analysis of the curve shapes 

and concentration dependence results in a Kd value of ~345 nM for KCN1 binding to 

p300-CH1 which is comparable for the bio-assay value.58 Altogether, these findings have 

supported the hypothesis that KCN1 can bind to p300-CH1. Based on these results, a 

binding model of the p300-CH1/KCN1 complex was initiated.  

 
 
 
 

 
Figure 37. KCN1 attached to the gold surface. 
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Figure 38. SPR sensorgrams for KCN1 binding to p300. 
 

5.3.2. Binding site selection 

    Although the results in the previous section support the hypothesis that KCN1 binds to 

p300, they do not provide additional binding site information. In addition, no crystal 

structure of a small molecule in complex with p300 is available in the PDB database at 

the time. Therefore, the possible binding sites were derived from the structure of p300/ 

HIF-1α complex (PDB code: 1L3E) and a previously reported mutagenesis study.63,64  

    Figure 39 illustrates the structure of the p300-CH1 domain extracted from the 

p300/HIF-1α complex. The p300-CH1 structure consists of three major helices which are 

nearly perpendicular to each other. Four residues on p300 (Leu344, Leu345, Cys388 and 

Cys393) were determined to be crucial for forming the complex with HIF-1α according 

to the random mutagenesis study by Gu et al..64 Among the four residues, Cys388 and 

Cys393 form a zinc finger and coordinate to a zinc ion. Consequently, disruption of the 

p300 zinc finger interrupts the p300 structure and consequently prevents the p300/HIF-1α 
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interaction. Leu344 and Leu345 are located in the region where the three helices are 

adjacent to one another. Therefore, four possible clefts, at which KCN1 can interact with 

at least 2 helices, were investigated (Figure 41, left). Each was subjected to KCN1 Glide 

docking followed by Prime MM-GBSA rescoring. Figure 41 (right) depicts the top two 

sites with the best predicted binding energy values. These two sites are hypothesized to 

be the possible binding sites for KCN1. 

 

Figure 39. p300-CH1 extracted from the complex. 
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Figure 40. Crucial residues Leu344, Leu345, Cys388 and Cys393 on p300 CH1. Leu344 is hidden under 
the helix behind Leu345. 
 

 
Figure 41. Four clefts chosen for the docking sites(left)  The top two sites with docked KCN1 (right) 
     

    Remarkably, the top two best-scoring sites (Sites 1 and 2) are coincident with the 

binding locus of the two HIF-1α helices (Figure 42). Furthermore, the mutagenesis study 

revealed four crucial residues on the HIF-1α part, namely Leu795, Cys800, Leu818 and 

Leu822.64 Coincidently, Leu818 and Cys822 are located on helix A, while Leu795 and 

Leu800 are found on helix B (Figure 43). The coincidence provides further confidence 
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that KCN1 is likely to bound to p300-CH1 at these two sites. Accordingly, these two 

centers have been employed in the following receptor-based docking study. 

 

Figure 42. Two helices on HIF-1α (purple) superimpose with docked KCN1 at Site 1 and Site 2 
 

 

Figure 43. Crucial residues on HIF-1α, namely Leu795, Cys800, Leu818 and Leu822 
 

5.3.3. Validate the scoring functions 
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At this point in the project, there were ~30 KCN1 analogs with the corresponding IC50 

values available (structures and IC50 values are included in the Appendix I).58 It is worth 

noting the structure-activity relationship of these compounds appears “flat”. Nevertheless 

they were used in the event they might provide some preliminary guidance. An initial 

QSAR construction was attempted and each analog were subjected to Glide docking at 

each of the two proposed binding sites (Figure 41, Site 1 and Site 2) followed by energy 

rescoring with Prime MM-GBSA.65,66  

Most of the experimental IC50 values were from a single run and no average value was 

available. To minimize possible biological variability over time and different cell batches, 

the corresponding KCN1 IC50 value determined in the same run was used as a reference 

in order to uniformly scale the IC50 value for each analog. Instead of directly applying the 

IC50 value, the ratio of the IC50 values of the analog and the same plate KCN1 sample 

was used as a measurement of activity (ΔIC50 ~ K) and applied to the linear regression 

analysis. However, no acceptable linear regression result could be obtained for the 30 

compounds. Alternative approaches were considered to construct a QSAR-like scheme 

for prioritizing the structures generated by FRESH.   

Thus, receiver operator curves (ROCs) for the binding sites were obtained to assess 

whether the estimated binding energy values at Site 1 and 2 two sites might be useful for 

predicting enrichment of the active compounds. The compounds listed in Table 4 which 

possess averaged IC50 values no greater than KCN1 were defined as actives. Figures 44 

and 45 illustrate the ROCs at Sites 1 and 2.   
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Table 4. KCN1 and active analogs with multiple experimental measurement repeats 
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Figure 44. ROC at Site 1. AUC = 0.68 
 
 

 

Figure 45. ROC at Site 2. AUC = 0.70 
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The AUCs for both sites are around 0.7, indicating that both the estimated energy 

values at Sites 1 and 2 can differentiate active compounds from inactive analogs to some 

extent. Therefore, the intended plan for the FRESH program was to incorporate the MM-

GBSA scores at both sites for prioritizing. A test run for this plan was performed on the 

existing 30 compounds, with the MM-GBSA scores for KCN1 as the cutoffs (Site 1: -

26.5 kcal/mol, Site2: -27.5 kcal/mol). Structures with better MM-GBSA scores at both 

sites were retained. Only 3 compounds remained: KCN1, 1601 and 2609, all of which are 

true positives and included in Table 4. It is noteworthy that 1601 and 2609 were the two 

most potent analogs at this point in the project. This result further supports the plan to 

incorporate the MM-GBSA at both sites into FRESH. 

 

     

5.4. Application of the FRESH program 

5.4.1. The FRESH program design 

The FRESH program was designed according to the synthetic route in Figure 46. The 

R1 group originates from a sulfonyl chloride building block, the R2 group from an amine 

and the R3 group from an aldehyde. For this particular FRESH program, the R1 group 

was kept constant (the same as KCN1). The fragments for the R3 group were only chosen 

from the compounds in Table 4. The R2 groups were obtained from the corresponding 

building blocks in the commercial library.  
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Figure 46. Synthetic route for KCN1 and its analogs 
 

    Within the context described above, the FRESH program for KCN1 analogs based on 

Figure 46 was thus designed as shown in Figure 47 (illustration interface only, detailed 

sub-protocol components are hidden). Starting from the commercial library, the 

corresponding building blocks for R2 (amine) were screened and collected. For this 

particular step of the entire program, all the amides also appear in the list. However, 

according to the synthesis route, amides cannot serve directly as the desired building 

blocks, so the fragments arising from amides should not be included. Additional 

components were thus incorporated in the pipeline to treat and eliminate amides. Like all 

other FRESH programs, fragments were prioritized by filtering with potential liability, 

stability or synthesis concerns. Other properties such as the Rules of Five were also 

incorporated. The polar surface area cutoff was set at 90 Å2 and the log of BBB was set at 

-0.5 to ensure the desired CNS drug-likeness. For the potency criteria, as discussed in the 

last section, the threshold for the MM-GBSA values of the two docking sites was -26.5 

kcal/mol (Site 1) and -27.5 kcal/mol (Site 2). 
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Figure 47. The FRESH program (illustration interface only) for prioritizing KCN1 analogs. Some sub-
protocol components are not shown. 
 
 

5.4.2. Resulting structures 
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Table 5 illustrates the final list of illustrates the final list of novel structures output by 

FRESH. All six compounds are chiral except 270.  Upon further investigation on the 

Internet for the commercial vendors, the building blocks for 95 and 98 are available both 

as racemates and optically-pure enantiomers. The decision was made to pursue the 

synthesis and testing of racemic mixtures considering the cost of the building blocks. 
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Table 5. Result of the FRESH approach for KCN1 analogs 
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Figure 48 demonstrates the bio-assay results for the racemic mixtures, the single 

predicted structure so far tested. Compared to the smooth diving curve of 2609, 95 

demonstrates an abnormal wave-shaped curve. The compound is likely to be a false 

positive.  

It is worth noting that for all previous FRESH cases, the false positives were always 

present. Nevertheless, other active compounds were identified successfully. Since the 

only result available at the time of the project was a racemic mixture, it was too early to 

simply reject this particular QSAR. Additional compounds still need to be synthesized 

and tested before commenting on these particular QSAR selection criteria. However, as 

the project proceeded, the team decided to abandon this particular scaffold and receptor 

model as new evidence and discoveries emerged. For example, the GSU collaborators 

found that 1609 does not bind to p300 as expected by SPR experiments, suggesting 

alternative receptor targets may be operating. A new scaffold has now been identified 

which is discussed in the next section. 
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Figure 48. The initial bio-test results for 95 (blue). 2609 (red) was used as a reference. 
 
 

5.5. Application of FRESH to the new scaffold 

5.5.1. New compound scaffold 

As the project progressed, the GSU collaborators discovered a new diarylalcohol 

scaffold shown in Figure 49 (left). The lead compound BW-HIF-84 (to the right of the 

figure) has an IC50 of 300 nM, which is comparable to 1609. Compared to the original 

lead KCN1, this scaffold is more “lead-like”.  For example, the MW of BW-HIF-84 is 

344, which is more than 100 amu lower than KCN1. The predicted logP value of the new 

lead is around 3.6, which is 1 log unit lower than KCN1. The relatively low MW and 

logP values offer a larger chemical space to explore. The FRESH program discussed 

below will focus on this scaffold. 
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Figure 49. New scaffold for p300/HIF-1α inhibitor and BW-HIF-84. 
 
 
5.5.2. Construction of QSAR 

As stated in the last section, the team found contradictory evidence for the p300-based 

receptor model, suggesting one or more unknown protein targets. Therefore, a ligand-

based model independent of any particular receptor was pursued. This round of QSAR 

took ~50 structures with their corresponding IC50 values as the biological data and 

divided them roughly by a 2:1 ratio for training set and test set compounds. Linear 

regressions using various descriptors were attempted, and only the ECFP molecular 

descriptor discussed in Chapter 3 delivered acceptable correlations. Figure 50 

demonstrates the linear regression result for the training set with an R2 value of 0.83. The 

predicted IC50 values for the test set compound were plotted against the corresponding 

experimental values and a satisfactory predictive Q2 value of 0.73 was obtained (Figure 

51). The QSAR line in Figure 50 will be employed in the FRESH program. 
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Figure 50. Linear regression results for the training sets. 
 
 

 

Figure 51. Q2 results for the test set compounds. 
 

5.5.3. The FRESH program and the resulting structures 

The FRESH program was designed according to the synthetic route in Figure 52. The 

R1 group originates from a bromide building block and the R2 group from an aldehyde. 

Both R groups were screened against the commercial library.  
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Figure 52. Synthetic route for the diarylalcohol analogs 
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Within the context described above, FRESH applied to the diarylalcohol analogs was 

designed in a manner similar to that for the old scaffold. The estimation for potency 

applied the QSAR line in the last section. It is worth noting that at the time of the project, 

no compounds has a predicted logBB value greater than 0 which is desirable for blood 

brain barrier penetration. Compounds with KCN1-similar IC50’s but significantly 

improved logBB values would definitely be more attractive. As stated in Section 5.5.1, 

this particular scaffold offers larger chemical space to explore. For this round of FRESH, 

the logBB cutoff was determined to be 0 and the IC50 cutoff was set at 2 μM following 

discussion with GSU collaborators. After obtaining the final list, another meeting was 

held with GSU collaborators and together the Emory and GSU collaborators selected the 

compounds in Table 6 for synthesis and testing. Currently, the GSU chemists are 

working on the syntheses. 
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Table 6. Result of the FRESH program for KCN1 analogs 

 

 

5.5.4. Future directions 

Two possible future directions are proposed depending on the testing results of the 

compounds in Table 6. If at least one compound demonstrates improved IC50 as expected, 

further iterations will be performed based on this result in a manner similar to the case 

studies described in Chapter 3. Additional structures with high similarity will be 

prioritized for synthesis. 

It is also possible that all the compounds in Table 6 are inactive and, thus, they are all 

false positives. Were this to be the outcome, it may still be possible that additional 

compounds from the FRESH program will prove to be active and able to penetrate the 

BBB. Nonetheless, it would be more practical to consider revising the QSAR for potency 
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selection. One reason to suspect the failure of the current QSAR line in Section 5.5.2 is 

that it most likely lacks sufficient bio-information to discriminate between actives and 

inactives (compounds with IC50 values higher than the experimental cutoff, currently at 5 

μM). Inactives were not included in the training set due to the lack of precise IC50 values. 

At this time of the project, over 150 compounds are available with ~40 compounds 

having IC50 values lower than 5 μM. A Bayesian model with ECFP as the descriptor, 

which is able to incorporate inactive analogs with imprecise bio-values in the training set, 

should be considered for the new QSAR. 
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Part I: Conclusions and Future Directions 
 

Chapter 4 and Chapter 5 describe how the FRESH approach is able to provide a list of 

structures for a specific lead-optimization task which satisfy multiple requirements 

including predicted potency, physical properties and ADMET aspects. For the SNRI dual 

inhibitor project in Chapter 4, the program has successfully provided at least two valuable 

compounds out of a total of five using a relatively rough receptor-based model. 

Additional work on the QSAR part is needed to better eliminate false positives. For 

p300/HIF-1α project in Chapter 5, the program provided interesting candidate for 

synthesis and additional testing work has to be performed before drawing a conclusion.  



 

 

86

 

Part II: Monocarbonyl Curcumin Analogues: 

Heterocyclic Pleiotropic Kinase Inhibitors That 

Mediate Anticancer Properties 

 

In this part of the dissertation, a series of monocarbonyl curcumin analogues are 

investigated for their anti-inflammatory and anticancer properties. Mechanism has been 

examined by exploring kinase inhibition trends. In particular, among the 50 screened 

kinases relevant to many forms of cancer, the binding of curcumin analogues to AKT-2 

were analyzed in detail by molecular modeling at the kinase ATP pocket. In addition, the 

most extensively studied compound (EF31, 4) was further investigated for potency 

variations against a series of kinases by protein sequence comparisons. 
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Chapter 6: Curcumin analogs as Pleiotropic Kinase Blockers 
 

6.1. Project background2 

Curcumin (Figure 53) is the major component of the root powder of Curcuma longa. 

It is consumed world-wide as a spicy flavor ingredient (curry powder). It has also been 

used as a food coloring agent due to its distinctive turmeric yellow color. In addition, 

curcumin plays a crucial role in traditional medicine for its therapeutic effects against 

rheumatoid arthritis, indigestion, liver disease like jaundice and insect bites.67 Curcumin 

has attracted the attention of medicinal chemists recently due to its anti-tumor activity, 

relatively low toxicity and its pleiotropic properties, which fits the “magic shot-gun” drug 

design strategy. Unfortunately, low potency, poor bioavailability and fast metabolism 

have limited its clinical application.  

 

Figure 53. The structure of curcumin. 
 

In attempts to improve the solubility, bioavailability and stability of curcumin, our 

research group previously prepared a series of curcumin analogs by modifying both the 

central and terminal moieties of the molecule. The central keto–enol functionality of was 

replaced by a monocarbonyl group embedded in a heterocyclic six-membered ring 

conjugated with a pair of flanking C═C bonds. The terminal oxygenated aromatic rings 

were exchanged for fluorophenyl and pyridine moieties. A representative set of analogues 

                                                 
2 This background section is from both my master thesis and my publication 
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are portrayed by structures 3–7 in Figure 54. These analogs have demonstrated enhanced 

anti-tumor activity relative to curcumin while being tolerated to the cell.68 67 

 

Figure 54. Structures of curcumin analogs. 
  

Our collaborators at WCI (Professor Shim and Dr. Andrew Brown) have explored the 

mechanism of action for the analogs depicted in Figure 54.69 The compounds were 

evaluated against a series of kinases that appear crucial for various tumor cell signaling 

pathways. According to the results listed in Table 7, AKT-1 and AKT-2 appear to be the 

most inhibited kinases as reflected by 4 with an IC50 value of 20 nM against both AKT-1 

and AKT-2. Molecular modeling studies described in the next section were performed to 

understand the variation of the ligand IC50 values.  
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Table 7. IC50 values (unit: μM) of a series of curcumin analogs against various kinases. 

 

 

6.2. Modeling of curcumin analogs3
 

6.2.1. Comparison of AKT-1 and AKT-2 

The kinase domains of AKT-1 and AKT-2 demonstrate 82% identity and 93% 

similarity. In addition, comparison of the residues surrounding the ATP pockets for AKT-

1 and AKT-2 reveals that the residues are identical (Figure 55 squared in black). It is 

therefore not surprising that the IC50 values of AKT-1 and AKT-2 are almost identical.  

Additional analysis for 4 by Dr. Andrew Brown (WCI) has revealed that competition 

with ATP dominates drug action against AKT-2.69 Accordingly, the crystal structure of the 

corresponding kinase domain of AKT-2 (PDB code 3E8870) was selected as the receptor 

structure for ligand docking.  Once adjusted by the Maestro Protein Preparation Wizard, the 

ATP binding pocket of AKT-2 was subjected to Glide docking by 3–7. 

 

                                                 
3 This section is directly from my publication69 
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Figure 55. Sequences of aligned AKT-1(lower row) and AKT-2 (upper row with residue numbers). The 
residues around the ATP pocket are squared in black. 
 

     

6.2.2. Docking pose analysis 

Figure 56 illustrates the best-scored docking pose for protonated 4 in the ATP binding 

pocket of AKT-2 in which several non-covalent interactions anchor the ligand to the 

protein. Hydrogen bonds are established between one of the pyridine nitrogen atoms and 

side chain Thr292 on the receptor and between the ligand carbonyl group and Lys181. A 

salt bridge between Glu236 and the protonated nitrogen within the central ring of the 

ligand is evident. In this project, it is assumed that the curcumin mimics with pKa values 

around 6.5-7.0 are protonated at physiological pH, a phenomenon consistent with 

creation of a ligand-Glu236 salt bridge. In addition, the docking models for 4 sustain a 

pyridine ring in a relatively hydrophobic pocket circumscribed by Ala179, Met229, 

Glu230, Tyr231, Ala232, and Met282.  

 



 

 

91

 

Figure 56. Top predicted pose from Glide docking of N-protonated 4 to AKT-2. 
 

For fluorinated 3, the top Glide pose is similar to that of 4 (Figure 57). H-bonds with 

Glu236 and Lys181 are maintained, and one of the phenyl rings resides in the same 

hydrophobic pocket. However, consistent with the higher IC50 values of 3, the favorable 

hydrogen bond with Thr292 is lost. To some extent the latter is compensated by 

electrostatic association between the aromatic fluorines and the proton of the axial 

NH+ bond in the central ring, although the associations are weak (r(aro) F(δ)···Hδ(N) of 

3.1 Å). 

 



 

 

92

 

Figure 57. Top predicted pose from Glide docking of N-protonated 3 to AKT-2. 
 

Figure 58 shows that the N-methyl analogue of protonated 5, like 4, forms a hydrogen 

bond between one of the pyridine nitrogen atoms and Thr292. The N-methyl group on the 

central ring assumes an equatorial conformation, causing the NH+ to form a salt bridge 

with Glu236 from the axial position. The latter obligates the ligand to move toward 

Glu236 and away from Lys181 by comparison with 3 and 4, essentially deleting the 

hydrogen bond interaction with this residue. In addition, two hydrogen atoms in 5 are 

separated by only 2.0 Å (black stippled line), somewhat below the sum of van der Waals 

radii (2.4 Å) and thereby introducing internal ligand strain energy. The same H···H 

distance for 4 (2.3 Å) is at the minimum acceptable van der Waals contact. The 

diminished hydrogen bonding and ligand strain energy can explain the relatively higher 

IC50 values of 5 relative to 4. 
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Figure 58. Top predicted pose from Glide docking of N-protonated 5 to AKT-2. 
     

Partially saturated 6 exists as two enantiomers, 6R and 6S. As shown in Figures 59a 

and 59b, respectively, the left half of each ligand and the equatorial N-methyl 

orientations are identical to those of 5. While the stereoisomer poses retain the non-

covalent interactions with Thr292 and Glu236, the hydrogen bond with Lys181 is lost as 

observed for 5. Critical new contacts arise, however, because the C═C saturation 

in 6 requires the CH2-pyridine moiety to be relocated, placing the relatively hydrophobic 

edge of the pyridine ring into a polar sector of the protein’s glycine-rich loop. 

Furthermore, in 6R the pendent CH2-pyridine group fits into the pocket only by adopting 

a near eclipsed conformation with the adjacent C–H bond of the central six-membered 

ring. Thus, the loss of a key H-bond, the predicted placement of the benzylic pyridine 

rings into unfavorable regions and in one case in an unfavorable conformation appear to 

contribute to the significantly reduced activity of the enantiomers of 6 on AKT-2.  
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Figure 59. Top predicted poses from Glide docking of of N-protonated 6 to AKT-2: (a) 6R; (b) 6S. 
 

Analog 7 possesses a sulfur atom in the central ring instead of nitrogen. In the most 

favorable pose depicted by Figure 60, the hydrogen bond shared between ligand and 

Thr292 remains, while association between C═O and Lys181 NH increases to 2.7 Å, 

weakening the H-bond significantly. The NH to S replacement naturally not only 

eliminates the salt-bridge with Glu236 but also causes the ligand to retreat as a 

consequence of the unfavorable electrostatic contact between the bulky electron-pair 

bearing sulfur atom and Glu236. The lack of two anchoring H-bonds and the electrostatic 

disconnect are believed to contribute to the increased IC50 values of 7 compared to 4.  
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Figure 60. Top predicted pose from Glide docking of 7 to AKT-2 
 

It is worth noting that all the curcumin analogues investigated herein carry an α,β-

unsaturated ketone Michael acceptor. Thus, reversible covalent bonds might be formed 

between kinase cysteines and these compounds. For example, Figure 61 shows that a 

cysteine (Cys311 AKT2) is located near the substrate binding site. Consistent with the 

design of the bioassay, the formation of a covalent bond between ligand and cysteine 

would most likely interrupt substrate binding, making the target peptide reagent 

susceptible to cleavage as monitored by subsequent separation of the FRET pairs. Such 

an event can hinder quantification of the non-covalent binding affinity of the ATP 

competitive inhibitor unless this mechanism is a small contribution to the overall 

blockade. However, as mentioned in the last section, the binding analysis by Dr. Brown 

suggests that the competition with ATP dominates action against AKT-2.69  This is 

consistent with the fact that the docking pose at the ATP-binding site provides a semi-

quantitative explanation of the various IC50 values for AKT-2 inhibition. 
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Figure 61. Cys311 in the AKT-2 cleft where the substrate binds 
     

6.2.3. Sequence Comparison of Kinase Binding Sites 

Further analysis to understand the pleiotropic aspects of 4 by sequence alignment and 

identity/similarity comparison of the residues around the ATP binding sites for various 

kinases was performed. The 3D structures of the proteins were aligned using the protein 

structure alignment tool in the Schrodinger Maestro software package. By employment of 

the docking pose of 4 in AKT-2, key residues within the ATP binding sites were selected 

for comparison with the corresponding residues in other kinases: Ala179, Met229, 

Glu230, Tyr231, Ala232, Met282, Glu236, Lys181, and Thr292.  

Figure 62 demonstrates the sequence comparison result. It reveals that most of the 

active kinases share >55% identity and >75% similarity with these residues in the AKT-2 

binding environment. KDR is an exception to this rule, i.e., 33% and 67%, respectively. 

Further examination of the KDR binding center reveals two cysteines, Cys919 and 

Cys1045, which can form covalent Michael addition to the α,β-unsaturated ketone moiety. 

It is conceivable that covalent binding dominates the binding affinities in this case and 

thereby rationalizes the similar KDR IC50 values for the four curcumin analogues 3, 4, 5, 
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and 7 (Table 7). However, examination of other kinases with low activity in Figure 

62 also reveals similar cysteines at the ATP binding sites (example, KIT), suggesting that 

the corresponding cysteines alone do not contribute the majority of the observed activity 

of KDR. Further work is still required to understand why exceptions like KDR exist. 

 

Figure 62. Key residues around the ATP binding sites of various kinases. Residue type and number 
according to AKT2:   1: Ala179  2: Met229, Glu230, Tyr231, Ala232  3: Met282 4: Glu236  5:Lys181 
6:Thr292. Upper panel, >85% inhibition; lower panel, <10% inhibition 
 

6.3. Conclusion 

Molecular modeling at the ATP binding site of AKT-2 provides a qualitative explanation 

for the observed ligand activity consistent with the fact that competitive inhibition 

dominates the action against AKT-2. At the same time, reversible Michael addition can 

possibly occur between the curcumin analogs and the cysteine residues on the kinases. 
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The sequence comparisons revealed that most of kinases which are active to 4 have a 

relatively high similarity with AKT-2, although exceptions exist. 
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Part III: Development of 2nd Generation NAMFIS 

Software Program by Java  

 

The NAMFIS (NMR Analysis of Molecular Flexibility in Solution) program was 

originally developed by Cicero et al. using Python 2.4.71 It takes a conformational pool of 

an organic ligand molecule and its NMR spectrum as the input and provides useful 

conformation information for the ligand. In this part, the author redesigned the entire 

NAMFIS program in Java which is less susceptible to the cross-platform issue. The 2nd 

generation of NAMFIS program also provides a user-friendly GUI input and incorporates 

additional validation procedures to handle exceptions and capture the user input errors. 

The new NAMFIS also provides solutions to the “mathematical infeasible” situation 

which is untreated in the old Python version.  
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Chapter 7: Design and Improvement of the NAMFIS Program 
 
7.1. NAMFIS background 

7.1.1. The Problem of Force Field Methods 

The conformation of a ligand, either bond or free in solution, is useful information for 

structure-based ligand-protein inhibitor design. Assuming the protein-bound bio-active 

conformation of a ligand molecule is known, when modifying the lead structures 

medicinal chemists can constrain the ligand molecule into that bio-active conformation 

while still in solution. In theory, this can reduce the entropic penalty upon binding and 

hopefully improve binding affinity. Obtaining an x-ray crystal structure of the ligand-

protein complex provides a way of acquiring the conformational information, but 

unfortunately protein crystallization remains a challenge for many proteins of therapeutic 

interest.  

Systematic in-silico conformational search of a ligand molecule with a single or 

combined force fields provides an approach to obtain considerable conformational 

information. However, the output of such a search can include several hundreds to 

thousands of conformers. One possible solution to limiting the task is to rank the 

conformers by the force-field-based energy calculations and select the top ones for 

further investigation. This solution appears completely feasible and logically 

implemented. However, different force fields can assign different partial charges to polar 

groups. As a result, force field equations remain somewhat semi-empirical. The 

calculated energies are actually force field dependent and the variation between force 

fields differences can lead to different relative energy values and rankings for the same 
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set of conformations. This observation was made by Lakdawala, Snyder et al. in 2001. 72 

During the investigation of seven taxol conformers, neither molecular mechanics nor 

semi-empirical quantum chemical methods presented a consistent energy ranking.  

7.1.2. Mathematical Background for NAMFIS 

       Small molecule NMR spectroscopy provides another approach to extract 

conformational information in solution. Two elements of geometry are the key. On the 

one hand, is the proton-proton coupling constant, 3JH-H, which is related to the 

corresponding atom types and dihedral angles by various Karplus equations. A second 

valuable source of information from NMR analysis is the distance (within 5 Å) between 

protons, which is acquired by the NOESY (Nuclear Overhauser Effect Spectroscopy). 

Taken together, the dihedral angles and the inter-proton distances provide a powerful set 

of parameters for determining ligand conformation. 

The NAMFIS program was developed to obtain conformational information from the 

experimental 3JH-H and NOESY distance values. NMR signals for most organic molecules 

at room temperature and below is an averaged signal from all the rapidly interconverting 

conformations. Instead of assigning a single conformer, the NAMFIS program provides a 

set of conformers to fit the averaged NMR signal. NAMFIS requires two input files. One 

contains the experimental NMR information, while the other is a conformational 

ensemble of ligand conformers generated by a conformational search. For each input 

conformer, the NAMFIS program calculates the corresponding proton-protein distances 

using the included 3D atom coordinates, and 3JH-H values from the conformer input 

geometries by the corresponding Karplus equations. 73  Consequently, a constrained 

minimization is performed to vary the mole fractions of each conformer, calculate the 
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averaged coupling constants and distances, and compare these to the corresponding 

experimental input. The constraints are listed in Figure 63. Ai
exp

 stands for the 

experimental input and ∆Ai represents the experimental errors. The first constraint 

requires the averaged calculated value Ai
calc

 to remain in a window defined by Ai
exp

 and 

∆Ai . The second and third constraints specify that the mole fraction must be non-

negative and the sum of the mole fractions should equal to 1.0. The minimization target 

function (a Sum of Square Differences, SSD) is shown in Figure 64, where the sum of 

relative errors is added for each selected parameter. The J terms (J coupling constants) 

are assigned a weight value w(j) with a default value of 1.0 . 

 

 

Figure 63. Constraints imposed in the minimization. 
 

 

Figure 64. Equation for calculating SSD. 
 
 
7.1.3. Problem with the Current Version of NAMFIS 

The current version of the NAMFIS program was written in Python 2.4 which is 

already 10 years old. Unfortunately, it is not compatible with the latest release of Python 

version, even in syntax. The NAMFIS program requires several external libraries to run, 
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which are also upgraded and not back-compatible. In addition, Python is a scripting 

language. It is not capable of compiling all the dependency libraries together and then 

executing. Each time when the NAMFIS program is executed, all the dependent libraries 

must be present at the designated locations. The user therefore must resolve the 

dependencies of all the old versions of libraries before executing the program. This 

renders the program extremely susceptible to the cross-platform problem. The 

inconvenient result is that program-sharing can require considerable work to establish a 

running version. 

The current version of the NAMFIS program also lacks necessary procedures to 

capture user input errors. In most of the situations sustaining an error, the program runs 

normally, but the calculated results are not the user-intended ones. The input file for the 

experimental NMR data is a text file in a pre-defined format. The user inputs the 

empirical values and generates a new input file. The latter is susceptible to user input 

errors like wrong atom mappings, duplicate input, wrong atom numbers and illegal 

formats. For example, the J coupling constant requires atom input in the order H1, C1, C2 

and H2. If the user accidentally writes H1, C2, C1 and H2 instead (already happened to one 

on-going project and previously undetected), the program still runs normally, but the 

calculated dihedral angles are obviously not the user-intended ones, and the final result is 

consequently affected. Input errors like this can be difficult to identify and should be 

captured at an early stage. 

While the above-mentioned issues can possibly be avoided by the user, the following 

problem requires further attention by the developers. If the input NAMFIS case is 

mathematically infeasible, or in other words there is no feasible space to the specific 
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NAMFIS case under all the constraints, the program should detect this and warn the user 

about the situation. For example, assume the input conformational pool consists of 5 

conformers with calculated J values of 4.0, 4.1, 4.2, 4.3 and 4.4. If the upper bond 

derived from the experimental input is 3.5, there is no solution to this NAMFIS case 

under all the constraints in Figure 63, because the averaged calculated J values from the 

5 conformers can never go below 4.0.  However, the current version of NAMFIS lacks 

this function. It still produces an output with an SSD value just like a normal run, but 

clearly the result will violate at least one constraint and thus compromise reliability. In 

this situation, the user should be informed by the program in order to decide whether to 

re-run the NMR experiment to obtain a new experimental value for this particular 

parameter or improve the conformational search result. However, without proper 

acknowledgement from the current version of the program, the user can rarely discover 

that the input case is mathematically infeasible. The program needs improvement on 

dealing with mathematical infeasible cases. 

 

7.2. New Generation of NAMFIS 

7.2.1. Java VS Python  

The new generation of NAMFIS program is being developed using Java programming 

language instead of Python. Unlike Python, which is susceptible to the cross-platform 

problem, the Java program is platform-independent as long as the proper Java Runtime 

Environment (JRE) is properly installed on the machine. Java is also a programming 

language which requires compiling before execution. The compiling step packs all the 

dependent libraries together for runtime use, avoiding end users having to resolve the 
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dependency issue by searching all the required libraries online. In addition, various Java 

libraries are also available for different tasks which minimizes the job of “re-inventing 

the wheel” during the development period. For this version of NAMFIS program, Java 

was chosen as the programming language.  

 

7.2.2. GUI and Backend Design  

    Instead of modifying an old input file to generate a new one, the new program uses a 

GUI as the input. This avoids the problem of ill-formatted input text file and simplifies 

the capture of various user input error. The GUI was constructed by using the Swing 

components of the Java library. It complements a similar GUI written by Aaron Padwa in 

our laboratory during a summer internship. 

Figure 65 demonstrates the GUI for the new NAMFIS program. At the data input 

regions, four tabs are available for inputting atom indexes, permutations, experimental 

NOE distances and J coupling constants. A table is placed besides the input area to list 

the added inputs and a button is available to select and remove wrong inputs. The input 

parameters can be saved to a file which is compatible with the old program’s format and 

then later reloaded for calculation or modification. Conformational files (currently only 

sdf format is supported) are chosen by clicking the button and select the desired input 

files from the pop-out dialog box. After completing the experimental input and selecting 

the conformational file, the NAMFIS job can be executed by clicking the “Execute 

NAMFIS” button. The text area below serves as a notification board to provide end users 

with the current status, progress, results and error messages.  
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At the backend of the program, the atom mapping, permutations, various experimental 

input and other required parameters are stored in a specific class “NAMFISAllData” 

which includes regular data structures like ArrayList, Array, HashMap or other defined 

classes. The data inside the class are updated simultaneously with the tables on the GUI. 

When executing a NAMFIS calculation, the program reads directly from this class and 

processes the data instead of reading from an input file. The external library for 

processing chemistry-related information is JChem developed by ChemAxon. 74  The 

library contains classes for structure import/export, geometry calculation, structure 

comparison, sdf file modification and so on. The library performing the constraint non-

linear minimization is discussed in the following section. After the calculation completes, 

if a feasible solution with the best fit (lowest SSD) is identified, the corresponding set of 

conformers and their mole fractions are extracted into a new sdf output file. 
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Figure 65. The GUI for the new NAMFIS program. 
  

 

7.2.3. Minimization Step  

  The most important and challenging part of designing this program is implementing the 

constrained minimization of SSD. This task is executed using the Java interface from the 

IPOPT library.75 In this program, the “NAMFISOptimizer” class extends the abstract 

“Ipopt” class and then overrides the required abstract method by supplying the target 

minimization function f(x) (in this case SSD), the gradient matrix of f(x), the constraint 



 

 

108

functions g(x) (in this case the inequality and equality constraints in Figure 63), the 

Jacobian matrix of g(x) and the Hessian matrix for the Lagrangian function f(x) + λ*g(x). 

The output for mole fractions is provided by an array, and the index of the array element 

corresponds to the conformer index in the input conformation file. 

7.2.4. Exception Handling  

  A significant portion of this program consists of exception handling and error checking. 

At the four input regions of the GUI, each input must be valid before being added to the 

table. For every input of atom index, the program checks for and then rejects duplicates. 

For the input of permutations, NOE distances and J couplings, the corresponding atom 

index must be a valid atom index (included in the “atom index” tab). In addition, no 

duplicate or negative experimental value is allowed. There are also codes for dealing with 

the wrong formatted input files with hints specifying the locations of the errors. 

   When the “Execute NAMFIS” button is pressed, the program will first check to see if it 

lacks any required input parameter. Then, the first structure from the conformation pool 

input file is extracted and used as a reference to check for mismatching input J coupling 

types or atom order. The input error mentioned in the second paragraph of 7.1.3 (wrong 

order of atom set for dihedral angle calculation) can be identified at this step. The 

program will also ensure the other structures in the conformation pool file are the same 

molecule. Any error captured during this process will terminate the execution of 

NAMFIS and provide the end user information on how to correct it. Figure 66 

demonstrates an error detected at the input tab region (duplicated input) and another in 

the notification text area when trying to execute the NAMFIS. For the first error, as 

shown in Figure 66, the user has put the NOE coupling pairs “19 23” again, although the 
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NOE distance value is different. The program captures the duplicate and reminds the user. 

For the second error, the correct order for that input J coupling atom set should be 23 9 

10 25. The NAMFIS execution is discontinued. 

 

Figure 66. Input errors identified by the program. 
 

   As stated in Section 7.1.3, the old version needs improvement on handling the 

“mathematical infeasible” situation. This is often caused by the tight constraints imposed 

by at least one experimental parameter. In the new Java version of NAMFIS, the user will 

notice this in the notification area if the “Optimization Status” is not equal to 0. Before 
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executing NAMFIS, the program will also perform a check to see if there are some 

parameters where all the calculated values are already off the boundaries. Use the same 

example in Section 7.1.3. Assume the input conformational pool consists of 5 conformers 

with calculated J values of 4.0, 4.1, 4.2, 4.3 and 4.4. If the allowed upper bond derived 

from the experimental input is 3.5, the program will detect this obvious violation even 

before running the minimization and list the information at the notification text area. In 

addition, the user will also know which constraints are the possible problems by 

examining all the parameters when the calculated values are precisely at the allowed 

boundaries. The experimental data can then be re-examined easily. 

 

7.3. Conclusion and Future Work 

   The second generation of NAMFIS program written in Java avoids several pitfalls in 

the old python version, which can result in run-time errors or incorrect results. The cross-

platform ability for this version of NAMFIS is improved significantly due to Java’s 

excellent cross-platform ability. In addition, it successfully captures some previously 

unnoticed user input errors in the old NAMFIS input files. It also provides solutions to 

the mathematical infeasibility issue, which is not addressed in the old version of the 

program. 

Some features still need to be implemented before release to the public. For example, 

the Java version currently does not support the input of chemically equivalent atom sets 

(example: three protons on a methyl group). Implementing this function requires 

changing the fundamental data structures and additional exception handling codes. The 

permutation feature, which is currently turned off in the Python version, is also not 
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available in the Java version. Additional work may also be needed for the instructions 

and layout of the GUI. Nevertheless, the newer version provides a friendly user interface 

that is less susceptible to user input errors and cross-platform issues. The author expects a 

wider usage of the new NAMFIS program once published. 
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Chapter 8: Experimental Details 
 

    This chapter provides a detailed description of the techniques, software, codes and 

algorithms employed for the computational procedures in this dissertation. Since the 

procedures are essentially identical for a specific task across different projects, rather 

than repeating the same description for each project, this chapter is focused mainly on 

providing general but applicable descriptions of specific tasks. Each captures enough 

detail for a properly-trained person to perform the computational manipulations. 

 

8.1. Pipeline Pilot Tasks 

This section covers the critical settings for Pipeline Pilot to execute FRESH 

applications.  

8.1.1. Filter for desirable fragments/compounds by substructure matching  

    One frequently executed task in the FRESH program is substructure matching. For 

example, when querying for building blocks in a commercial database, searching for 

groups with potential liability, stability or reaction concerns, excluding literature 

structures as described in the FRESH validation case studies and obtaining the rank of 

literature structures, an input file is queried against one or multiple structures. 

Substructure matching is accomplished with the “Substructure Filter from File” 

component in Pipeline Pilot. Two parameters need setup before the execution of the 

program. First, the file containing the queried structures (building blocks, literature 

structures etc.) must be specified by the “Source” parameter. The queried structure file 

can be manually prepared by ChemDraw in 2D format and saved as an sdf format file. 

Second, depending on the specific task, the “MatchType” option has to be correctly 
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selected. The default “AllQueries” option is actually never used in FRESH. For building 

block collection, literature compound identification or any other tasks which require 

saving matched structures to be further processed, the correct option is “AnyQuery”. On 

the other hand, for tasks like excluding literature compounds or removing structures with 

liability concerns, the “NoQueries” option should be used. Figure 67 lists the 

substructures with potential liability, stability and reactivity concerns that are used in all 

the appropriate FRESH actions. 
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Figure 67. Substructures with potential liability, stability and reactivity concerns. 
 

8.1.2. Select fragments/compounds according to physical/ADMET property values 

Selections based on particular property values are the most frequent operations in the 

FRESH program. A selection based on Rules of Thumb (3, 4, 5 etc.), calculated 

physical/ADMET properties or QSAR scores is implemented by this operation. When 

establishing QSARs, the grouping of training and test sets also requires this operation. 
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The “Property Range Filter” and “Property Value Threshold Filter” are two possible 

components to employ for this task. However, the use of PilotScript in a “Custom Filter 

(PilotScript)” component provides a more flexible and convenient approach. For example, 

if the property to be selected is molecular_weight (less than 500) and logP (between 3.0 

and 3.5, both inclusive), the PilotScript can be formatted as: “molecular_weight < 500 

and logP >= 3.0 and logP <= 5.0;”. 

The general fragment selection filter is expressed by the following PilotScript language: 

“molecular_weight < 301 and (N_Count + O_Count) <= 3 and Num_H_Donors <= 3 and 

Num_positiveatoms == 0 and Num_negativeatoms == 0 and alogP <= 3;”, which 

implements the Fragment Rules of Three and requires no permanent charges. The 

building blocks containing bridghead atoms and spiro atoms are usually costly and 

frequently require “made on request”, so additional filters are added by 

“Num_BridgeHeadAtoms == 0 and Num_SpiroAtoms == 0;”. 

 The general compound selection filter is expressed by the following PilotScript 

language: “Molecular_weight < 501 and (N_Count + O_Count) <= 10 and 

Num_H_Donors <= 5 and AlogP <= 5 and Num_rotatablebonds <= 10 and 

Molecular_solubility >= -6 and i_qp_qplogPotow <= 5 and r_qp_PSA <= 120 and 

i_qp_nummetab <= 6 and r_qp_qplogS >= -6;”, which covers the Lipinski Rules of Five, 

Jorgensen Rules of Three and polar surface area. They are routinely incorporated in 

FRESH unless one specific term removes all the structures or uses another range required 

in the project. The property name for the calculated blood brain barrier penetration is 

“r_qp_qplogBB”, which is preferably greater than 0 for CNS drugs. 
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8.1.3. Process the commercial library to obtain synthetic fragments 

Obtaining synthetic fragments from a commercial library requires marking the 

connecting point at the specific site according to the synthetic scheme provided by the 

chemists. As required by FRESH, no manual operation step should be involved at this 

point. The “Perform Reaction on each Molecule” component is designed to accomplish 

this task.  

Like the “Substructure Filter from File” component, it requires a source file to specify 

how to transform the structure from a building block to the corresponding fragment. 

Figure 68 demonstrates an example (from HDAC1 case study) of how to specify the 

transformation from a phenyl acid chloride to the required fragment. This transformation 

can be prepared in ChemDraw and then saved as an .rxn format file. The Z1 specifies the 

attachment point to be connected to the core structure (see the section below). The 

parameter for “IfMultipleReactionsPossible” should be set as “PerformEachReaction”. 

For a symmetrical molecule, this setting may generate duplicate fragments, which are 

removed afterward (see section 8.1.5).  

 

 

Figure 68. An example of a transformation file. 
 

8.1.4. Covalently attach fragments to the core structure 

    The attachment sites on the core structure are marked with R1, R2, R3 etc.. They 

correspond to the attachment points for fragments marked with Z1, Z2, Z3 etc.. The core 
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structure is usually prepared directly with ChemDraw and saved as an .sdf file. Figure 69 

illustrates the core structure for the CA II case study. 

 

Figure 69. The core structure for the CA II case study. 
 
 

The covalent attachment of fragments to the core structure is performed by the “RG 

Writer” and “RG Reader” components. First, the core structure and all fragments are 

stored together in an .rg format file by the “RG Writer” component at the specified 

location. Then, the “RG Reader” component takes the saved rg file and enumerates the 

combinatorial library. The parameter for “WhatToOutput” should be specified as 

“EnumeratedMolecules” to obtain the desired molecule structures. The initial library 

construction is completed once this step is finished, and the generated sdf output file 

(each structure is properly numbered) is applicable to various computational software 

programs or filters further down the pipeline. 

8.1.5. Remove duplicate structures 

Duplicate structures should be removed routinely along the workflow to avoid 

unnecessary computational cost. In addition, if one structure contains multiple result 

entries and only one should be kept for further processing (example: select the best 

docking pose among all 5 poses), it requires removal of other entries with the same 

structure. The removal of duplicates can be achieved by the “Remove Duplicate 

Molecules” component. This component employs a short PilotScript to detect and remove 
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duplicates. The default judgment criterion for duplication is the calculated 

“Canonical_Smiles”, which is a unique 2D string representation of a specific structure. 

However, the criterion can be adjusted to other terms like the unique molecule ID number 

implemented in the FRESH program.  

8.1.6. Merge data 

   At some point in the FRESH workflow, the calculated results for the same molecule 

from various software programs need to be merged. This task is accomplished by the 

“Merge Data” component. The most crucial parameter for this component is 

“MergeUsing”, which specifies the shared property name between different files. 

Incoming data records are merged into a single data record if they have the same value 

for the specified “MergeUsing” property. Similar to the “Remove Duplicate Molecules” 

component, the “MergeUsing” can be set to use the calculated canonical_smiles or the ID 

numbering system implemented in FRESH. 

8.1.7. Program debugging examples 

As stated in Section 2.2, the numbers displayed along the pipeline provide crucial 

information for program debugging. Two debugging examples are provided in this 

section to demonstrate the usefulness of the displayed number. The two examples are the 

most frequent errors a user will encounter during the construction of a FRESH workflow 

for a particular project.  It is worth mentioning that this section only covers a tiny portion 

of the debugging options. An end user of FRESH is advised to participate in the 

professional Pipeline Pilot training or acquire procedure-based paradigm programming 

experience to be prepared. 
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As illustrated in Figure 70, the intended task is filtering of molecule fragments and 

removing those with unfavorable substructures specified in the FlaggedGroup.sdf file. 

However, in this example all structures went to the “fail” port of the Substructure Filter 

as demonstrated by the red number “2670”, which is extremely unlikely. Upon further 

examination, the “MatchType” parameter was incorrectly set at the “AllQueries”, which 

is the default option. The correct setting, as stated in Section 8.1.1, should be 

“NoQueries”. 

 

Figure 70. Debugging case 1: wrong parameter setting. 
 
 

Figure 71 illustrates a more tricky case involving an undesirable runtime without 

obvious symptoms. The workflow attaches three fragment pieces to the core structure and 

then enumerates all molecule structures to perform some calculations. The workflow 

appears to be running smoothly. Nevertheless, a serious problem can be identified based 

on the information provided by the numbers. The estimated number of structures to be 

enumerated is approximately 3 * 1010 derived from the product of 1133, 9831 and 2440. 

In this example, roughly 103 structures have already been processed in 86 seconds, so the 

daily processing speed is approximately 106 structures. However, the 3 * 1010 target 

structures would require ~30,000 days (longer than a typical life span of a man) to 

complete the program, which is obviously erroneous. Runtime errors like this should be 

avoided at the early stage. Possible solutions include performing fragment filtering before 

enumeration, arranging other components with fast calculation speed ahead of the slow 

one and clustering of fragments. 
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Figure 71. Debugging case 2: extremely long runtime. 
 

8.2. Glide Task 

8.2.1. Prepare protein receptor for docking and sequence comparisons 

The X-ray crystal structure from the PDB database requires preparation work before it 

can be employed by Glide or MM-GBSA for evaluation of ligand-protein interactions. 

The preparation is performed by the Protein Preparation Wizard workflow included in the 

Schrodinger Maestro package. The corresponding PDB structure is downloaded directly 

from the PDB database or imported from the local file system. All water molecules are 

deleted. For PDB structures with multiple identical chains, only one chain is kept for 

further processing. The structure is then pre-processed by adding hydrogens, replacing 

missing side chains and assigning bond orders using the default options.  Optimization of 
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the protein’s hydrogen bond network and assigning the ionization state of the protein side 

chains are then performed by the H-bond refinement tool using the default options. A 

final minimization step is performed with OPLS 2005 force field. The resulting structure 

is now suitable for Glide, MM-GBSA and sequence comparisons. 

8.2.2. Generate receptor docking grids around ligand binding sites 

    The receptor docking grid specifies the location for the ligands to be docked. 

Generation of the grid is completed by the “Receptor Grid Generation” program 

embedded in Glide. The ligand included in the crystal structure is then selected for the 

“enclosing box” option under the “Site” tab. The “Centroid of Workspace ligand” and 

“Dock ligands similar in size to the Workspace ligand” options are selected. For the CA 

II FRESH validation case (Section 3.3.2), additional constraints were added under the 

“Constraints” tab. These required an H-bond with the NH backbone of Thr198 and the 

nitrogen of the sulfonamide to coordinate with the zinc atom at the catalytic site. All the 

remaining options used the defaults. 

8.2.3. Set ligand docking parameters to control output 

    The setup of Glide ligand docking parameters is the last step before executing a Glide 

docking. The generated receptor docking grid was selected under “Receptor grid”. The 

SP (standard precision) option was chosen for the docking precision.  The ligands were 

docked flexibly for all Glide docking tasks in the dissertation.  

 

8.3. MM-GBSA Task 

8.3.1. Parameter settings for energy refinement 
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    The MM-GBSA tasks were performed after the Glide docking exercise and took the 

output pose files directly from the Glide docking output. All the other parameters were 

the default values.  

 

8.4. Miscellaneous Schrodinger Tasks  

8.4.1. LigPrep – 2D to 3D structure conversion 

   The structures originating from a commercial library or FRESH initial library are 

generally in 2D format without explicit hydrogens. The LigPrep program takes these 

structures as input and generates 3D ligand structures suitable for QikProp, Glide and 

MM-GBSA. The ionization state is generated by Epik at the physiological pH (7.4). For 

generating the input file for QikProp, the option “Do not change” is selected. The output 

format is specified as “SDF”. All other parameters used the defaults. 

8.4.2. QikProp – physical/ADMET property estimates 

    The QikProp program requires neutral 3D input ligand structures. The ligands prepared 

by LigPrep are used as input for QikProp and the “Fast mode” was selected. 

8.4.3. Protein sequence alignment 

Sequence comparison for protein receptors (Section 6.2) requires the 3D structure 

alignment of the receptors. This is completed automatically by the Protein Structure 

alignment tool included in the Maestro package. The “Reference residues” option is set at 

“all”. To facilitate the sequence comparison around the binding sites (Section 6.2.3), the 

selected residues 7 Å away from the bound ligand are colored red while other residues 

are colored black.  

8.4.4. Homology modeling 
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    For the PI3Kα case study (Section 3.2.1), a homology model was generated using the 

Prime – Homology Modeling program. The task followed the established “Structure 

Prediction Wizard” procedure. The sequence of PI3Kα was obtained from uniprot (id: 

P42336 76) and the structural template employed was the crystal structure of PI3Kγ (PDB 

code :1E8Z 37). The default alignment and the “model built” method were used. 

8.4.5. Induced fit docking – Flexible ligand and protein interaction 

The SNRI project (Section 4.3) involves induced fit docking. This task was performed 

by the established “Induced Fit Docking” workflow included in the Maestro package. 

The pdb-formatted structures of NET and SERT provided by Dr. Spandan 

Chennamadhavuni were used as the receptor structures. For NET, the grid box was 

centered at (27.1, 31.6, 21.4). For SERT, the corresponding coordinates were (27.1, 32.2, 

21.6). Two ligands, 5 and 6 in Table 1, were used for the docking. All other options were 

taken as default. 

 

8.5. Case-specific Details 

8.5.1. PI3Kα case study 

The FRESH protocol for this case study starts with the construction of QSARs. All the 

Pipeline Pilot components are in version 7.0. The molecular data set for establishing 

training and test sets was obtained from the ChEMBL database. The corresponding 

ChEMBL ID for PI3Kα is CHEMBL4005 and the UniProt accession code is P42336. The 

“Activity Type for Target” was selected as “IC50
”. The data set file was downloaded in 

“xls” format, which included ~2,200 available activity records at the time of the project. 

The “xls” file format can be directly accessed by the Microsoft Excel program (Version 
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2010), but it is not suitable for the FRESH workflow as the required format is “sdf”. The 

component “Molecule from SMILES” was thus employed to convert the “xls” file into 

the desired “sdf” format by using the property “Canonical_smiles” included in the 

database. A numeric ID was assigned to each structure with the property “Name” starting 

from 1. 

In the ChEMBL database, the activity value is recorded under the 

“STANDARD_VALUE” property in nM units. The entire data set was then sorted by the 

“STANDARD_VALUE” in increasing order to facilitate subsequent processing. As 

required, the literature compounds should be excluded when generating QSARs except 

when the compound is either the starting molecule or generated earlier than the 

publication year. They were removed from the data set by applying the corresponding 

“PubmedID” property, which in this case equals 21388141. Compounds generated in or 

after the publication year of the article (2011) were also excluded by the property 

“YEAR”. Duplicate molecules were then removed using the default “Canonical_smiles”. 

The activity record sometimes appears as an inequality, for example, IC50 > 100 nM and 

is specified in the “RELATION” property (“=” for equality and “>” or “<” for greater or 

smaller) in the ChEMBL database. For defining active vs. inactives in this case study, 

molecules with an “=” or “<” relationship and a “STANDARD_VALUE” < 10 nM were 

defined as actives, while molecules accompanied by an “=” relationship and 

“STANDARD_VALUE” > 10 nM plus those with a “>” relationship and a 

“STANDARD_VALUE” no less than 10 nM and were defined as inactives. A new 

property named “Activity” was added for both the actives (value is 1) and inactives 

(value is 0) to facilitate further processing. 
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The data records for actives and inactives were combined and then sorted by 

“STANDARD_VALUE” in ascending order. All chiral molecules were excluded and the 

rest of the data records were numbered increasingly starting from 1 (Property name 

“BayesianGroup”). The following PilotScripts group the records to training and test sets 

in a 2:1 ratio: “BayesianGroup:= #BayesianGroup_id ; #BayesianGroup_id ++ ; if 

(#BayesianGroup_id == 4) then #BayesianGroup_id := 1; end if; ” and 

“BayesianGroup <= 2” for the training set. The hit compound (3e in the article) was also 

added to the training set and defined as “inactive”. The neutral form of each molecule in 

the training set was then submitted for the “Learn Good From Bad” components for 

generating Bayesian activity scores. The “TestForGood” option was set at “Activity == 

1” and the molecular descriptor was assigned as ECFP_4. After executing this step, a new 

Pipeline Pilot component was generated, which can be directly incorporated like all other 

components into the workflow to calculate the Bayesian scores. 

All calculations using the Schrodinger Maestro package (Glide, MM-GBSA, QikProp, 

LigPrep, etc.) were performed in the 2012 released. The Glide and MM-GBSA scores for 

these ChEMBL molecules were obtained using the procedure described in Sections 8.2. 

and 8.3. The receptor structure was obtained directly from the PDB database (PDB code: 

1LUG). After obtaining the results from Glide or MM-GBSA, only the best score for 

each molecule was retained and used for further evaluation. This was achieved by first 

sorting the corresponding score ( “r_i_docking_score” for Glide and 

“r_psp_MMGBSA_dG_Bind” for MM-GBSA) and the “Name” property, then removing 

the duplicate records by the “Remove Duplicate Molecules” component with the “Name” 
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property as the criterion for duplication. The QSARs generated in these steps were then 

employed for potency evaluations. 

The next step for FRESH is processing building blocks from the commercial database 

to obtain the corresponding fragment. The commercial database for this case is the 

“ZINC bb now”, which is available at http://zinc.docking.org/subsets/zbb-now. One 

major difference in the implementation of FRESH for this case study is the substructure 

matching for building blocks. As stated in Section 3.3.2, the building blocks are aromatic 

bromides, in which the bromine atom is attached directly to the aromatic ring (mentioned 

as Ar-Br below). In this case study, the heterocyclic and fuse-aromatic rings in addition 

to the phenyl ring were explored. However, the “Substructure Filter from File” 

component does not support a query structure like “Ar-Br”. At the time of this project, 

the solution was to use “C-Br” as the query structure with an additional PilotScript filter 

“Num_aromaticrings > 0”. However, this also allowed structures like “Ar-CH2Br” to be 

included. These structures were removed at a later stage of FRESH by another 

“Substructure Filter from File” component as structures with only “phenyl-CH2Br” 

showed up. A more recent solution is to use the case-sensitive regular expression 

matching provided by the PilotScript, since the atoms in an aromatic system are lower-

case letters in the Canonical_smiles string of the structure. The PilotScript code is 

provided here: Canonical_smiles CASE LIKE '%c[1-9](Br)%' or Canonical_smiles 

CASE LIKE '%c(Br)%' or Canonical_smiles CASE LIKE 'Brc%' or Canonical_smiles 

CASE LIKE 'Brc)%' or Canonical_smiles CASE LIKE '%c[1-9]Br' or Canonical_smiles 

CASE LIKE '%c[1-9]Br)%' or Canonical_smiles CASE LIKE '%cBr' or 

Canonical_smiles CASE LIKE '%cBr)%'. After obtaining the building blocks, the 
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conversion from building blocks to the corresponding fragment is straightforward by 

using the “Perform Reaction on each Molecule” component. Unfavorable fragments were 

removed by the procedures discussed in Sections 8.1.1 and 8.1.2. For this particular case, 

additional criteria for selecting a fragment were added by: “I_count + Cl_count + 

Br_count = 0 and S_count == 0” to reduce the chance of a failed Suzuki coupling. Some 

silicon-containing compounds appeared on the list during the test stage. They were 

removed due to potential toxicity concerns by the PilotScript “Si_count == 0”. 

The corresponding molecular structures were obtained by covalently attaching the 

fragments to the core structure shown in Figure 4 following the procedures in Section 

8.1.4. The list of molecules were prepared by Ligprep (Section 8.4.1) then subjected to a 

series of filters based on physical/ADMET property calculation results from Pipeline 

Pilot and Qikprop following the procedures described in Sections 8.1.3 and 8.4.2. The 

Bayesian and Glide scores were obtained using procedure similar to that for the 

ChEMBL molecules when establishing the QSARs. The final list was sorted by the 

Bayesian score in ascending order and 19d was the 3rd on the list. 

The iteration step permitting identification of 19k was performed by first calculating 

the Tanimoto similarity using the “Fingerprint Similarity” component. All structures 

were subjected to the same filters as the initial stage with the exception of “N_count + 

O_count <= 7”, which was designed for this particular iteration.  

8.5.2. CA II case study 

The FRESH workflow was constructed similar to the PI3Kα case study. All the 

Pipeline Pilot components were in version 7.0, and all calculations using the Schrodinger 

Maestro package (Glide, MM-GBSA, QikProp, LigPrep, etc.) were performed in the 
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2012 release. The corresponding ChEMBL ID for CA II is CHEMBL205 and the UniProt 

accession code is P00918. The “Activity Type for Target” was selected as “Ki”. The 

downloaded “xls” data set file contained ~6,200 available activity records at the time of 

the project. The data set was converted to “sdf” format using the same method for the 

PI3Kα case by the “Molecule from SMILES” component. A numeric ID was assigned to 

each structure with the property “Name” starting from 1. Some data records had an empty 

canonical_smiles, so they were excluded by the PilotScript “smiles != ''”. All literature 

compounds were excluded from the QSARs by the “Pubmed_ID” property (not equals to 

21361354 or 20922253) except one historical compound AAZ (Name == 5906). The 

publication year cutoff is 2010 (Year < 2010) and all duplicate structures were removed 

by the “canonical_smiles” property. Treatment of the inequality relationship, defining 

actives vs. inactives, grouping molecules for training/test set and collection Glide and 

MM-GBSA scores was identical to the PI3Kα case.  

After construction of QSARs, the next step for FRESH is to query building blocks in 

the commercial database to obtain the corresponding fragments. As indicated in Section 

3.3.1, the building blocks are phenyl iso-cyanates or acid chlorides. Two separate 

“Substructure Filter from File” components with two “Perform Reaction on Each 

Molecule” were employed to obtain the corresponding fragments and duplicates were 

removed. A temporary fragment file was saved for the 2nd iteration. Unfavorable 

fragments were removed as discussed in Section 8.1.1. 

Target molecular structures were then obtained by covalently attaching the fragments 

to the core structure. All molecular structures were then subjected to the QSAR score 
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filters and calculated physical/ADMET properties similar to the PI3Kα case.  Compound 

30 emerged from the final list as one of the top 5 compounds. 

During the first iteration step (Section 3.3.3), the logP of the side chain for each input 

structure was obtained. Unfortunately, the calculation of side chain logP is currently not 

supported. The present work-around is to extract the side chain from the entire structure, 

perform the calculation, then merge the results back into the final target structures. The 

workflow in Figure 72 demonstrates the process. Each input structure is assigned a 

unique numeric ID named “MergelogPID”. The workflow then diverges. The bottom part 

extracts the side chain structure by a “Perform Reaction on each Molecule” component 

introduced in Section 8.1.3. After the calculation of logP completes, the result is merged 

to the upper part of the workflow by a “Merge Data” component. The previously created 

“MergelogPID” property is used to merge data. With the available side chain logP values, 

all the structures are submitted for further processing. 

 

Figure 72. CA II, first iteration demo 
 

The 2nd iteration prioritized all the 2-substitution-only structures with retained 

hydrophobicity and similarity. The fragments were obtained directly from the saved 

temporary files and subjected to the same selection criteria for the fragment except the 
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alogP term was adjusted to “alogp >= 2.873 (value from the fragment for 3)” to fit the 

“retained hydrophobicity” requirement. All 2-substitution-only fragments were 

covalently attached to the core structure using the “Enumerate using RGroups” 

components to obtain the target molecular structure. The structures were selected by the 

same physical/ADMET property requirements (Section 8.1.2) and sorted by Tanimoto 

similarity with 3.  

8.5.3. HDAC1 case study 

The FRESH workflow was constructed similar to with the other two case studies. All 

the Pipeline Pilot components are in version 7.0. The corresponding ChEMBL ID for 

HDAC1 II is CHEMBL325 and the UniProt accession code is Q13547. The “Activity 

Type for Target” was selected as “IC50
”. The downloaded “xls” data set file included 

~2,300 available activity records at the time of the project. The data set records were 

converted to “sdf” format using the same method employed for the PI3Kα case by the 

“Molecule from SMILES” component, and numeric ID was assigned to each structure 

with the property “Name” starting from 1. All literature compounds were excluded from 

the QSARs by the “Pubmed_ID” property (not equals to 20451378). The publication year 

cutoff is 2010 (Year < 2010) and all duplicate structures were removed by the 

“canonical_smiles” property. Treatment of the inequality relationship, definition of 

actives vs. inactives, grouping of molecules for training/test set and gathering of Bayesian 

scores was identical to the PI3Kα case. This is a ligand-only case study, so Glide and 

MM-GBSA scores were not involved in building QSARs. 

The core structure for this case is shown in Figure 73. This case study explored R1 and 

R2 fragments simultaneously. The R1 fragments were prepared using an approach 
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identical to the CA II case by querying the phenyl acid chloride building blocks in the 

“ZINC bb now” commercial database and removing the unfavorable fragments. The R2 

fragment linker chain lengths vary from 1 to 7 (Figure 74 for an example) and were 

prepared manually by Chemdraw 2013. The “RG Writer” and “RG Reader” components 

mentioned in Section 8.1.4 are able to enumerate R1 and R2 fragments simultaneously. 

 

Figure 73. The core structure for the HDAC1 case study 
 

 

Figure 74. The fragment for the R2 group with a carbon linker length of 5  
 

    The enumerated molecular structures were selected similar to the physical/ADMET 

criteria discussed in Section 8.1.2, and Bayesian scores were obtained from the 

constructed of QSARs. No Glide or MM-GBSA scores were involved in this case. 

     The iteration step prioritized structures with 5 carbon length linkers as the R2 group. 

The length of the linker is calculated by the number of rotatable bonds. Pipeline Pilot 

does not support such calculation for a particular side chain. However, an effective  

solution is similar to the first iteration of the CA II case. As demonstrated in Figure 75, 

the workflow diverges. The bottom part extracts the corresponding R2 side chain by a 

“Perform Reaction on Each Molecule” component with a reaction shown in Figure 76. 

The structures with the desired 5 carbon length were selected by the PilotScript  

“Num_rotatablebonds == 5” and marked with a new property named “isFiveCarbon”. 
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The results were merged into the upper workflow and structures with the desired carbon 

linker length were selected by using “isFiveCarbon is defined”.  

 

Figure 75. The iteration for HDAC1 case  
 

 

Figure 76. The fragment for the R2 group with a carbon linker length of 5  
 

8.5.4. SNRI application case 

The FRESH workflow for the SNRI project was constructed in a fashion similar to the 

case studies. The version of Pipeline Pilot used in this project was 6.0 (student version 

under academic license), and the Schrodinger Maestro Package was the 2009 release.  

The QSAR in this application case was constructed from the MM-GBSA scores of the 

six preliminary compounds listed in Table 1. The six ligand structures were manually 

prepared by Chemdraw 2012 and submitted to LigPrep (see Section 8.4.1) to generate 3D 

structures. Glide SP docking was performed to generate docking poses for each ligand. 

The receptor structure used in this Glide docking was generated from the induced-fit 

docking (See Section 8.4.5). The Glide docking pose file was then submitted to MM-
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GBSA program, and the best MM-GBSA score for each ligand was used to establish the 

QSAR lines depicted in Figures 29 and 31. 

Construction of the target molecular library started from a query of building block 

structures in the ChemNavigator building block library (available in our lab, requested by 

previous lab member Dr. Andrew Prussia from ChemNavigator). The building block 

structures are listed in Figure 77. After converting the building blocks to the fragments, 

duplicates were removed by the “Canonical_Smiles” property and fragments with 

unfavorable substructures were removed. The remaining fragments were covalently 

attached to the core structure depicted in Figure 78. 

 

Figure 77. The building block structures for the SNRI project  
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Figure 78. The core structure for SNRI project 
 

 

The enumerated library was subjected to the following criteria : “(N_Count + O_Count) 

<= 10 AND Num_H_Donors <= 5 AND AlogP <= 5 AND Molecular_PolarSurfacearea 

<= 90 And Molecular_solubility >= -5.0 And Molecular_weight < 501” and “ 

i_qp_nummetab <= 3 and r_qp_qplogbb >= 0 and r_qp_qppmdck >= 500 and 

r_qp_qppcaco >= 500 and i_qp_CNS > 1 and r_qp_percenthumanoralabsorption >= 80” 

One additional filter was employed to prioritize structures with no less than 40% sp3 

carbon. It was implemented by the following Perl code (use “Perl Molecule Calculator” 

component, developed by former lab member Serdar Kurtkaya) and PilotScript:  

 

use strict; 

use pilot(':constants'); 

use pilot::chem(':all'); 

sub onInitialize { 

     my $context = shift; 

     my $params = $context->getComponentParameters(); 
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     #my @output = $params->getByName("Output")->getValue(); 

     #my %hash; 

     #@hash{@output} = @output; 

     #$::do_spiroAtoms = defined $hash{"Num_SpiroAtoms"}; 

     #$::do_freeSpiroAtoms = defined $hash{"Num_FreeSpiroAtoms"}; 

     return READYFORINPUTDATA; 

} 

sub onProcess { 

     my $context = shift; 

      my $data = shift; 

     # get molecule and props 

     my $mol = getMolecule($data); 

     my $props = $mol->getProperties()->getHashRef();      

     my $sp3 = 0; 

        my @atoms = $mol->getAtoms()->getArray(); 

     foreach my $atom (@atoms) { 

   # skip if not Carbon 

         if ($atom->getType() != CARBON) { 

               next; 

         }    

   if ($atom->getHybridization() == SP3_HYBRIDIZATION) { 

    $sp3++;    

   } 
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      }  

     $props->{"sp3"} = $sp3;          

     return READYFORINPUTDATA; 

} 

sub onFinalize { 

     my $context = shift; 

} 

“sp3/c_count >= 0.40” 

 

The remaining structures were then subjected to Glide docking and MM-GBSA 

rescoring. The predicted Ki values were calculated by the QSAR correlations in Figures 

29 and 31. After discussion with the collaborators, the structures listed in Table 2 were 

synthesized and tested. 

8.5.5. KCN1 application case – old scaffold 

The FRESH workflow for the p300/HIF-1α antagonist project on the old KCN1 

scaffold was constructed in a fashion similar to the case studies. The version of Pipeline 

Pilot used in this project was 6.0 (student version under academic license), and the 

Schrodinger Maestro Package was the 2009 release. The QSAR in this case used MM-

GBSA scores derived from the two-site binding model discussed in Section 5.3. 

As stated in Section 5.4.1, the R2 group was fully explored (building block is primary 

amine) while the R3 group was only chosen from those in Table 4. Like the HDAC1 case, 

the R2 group was queried in the commercial database (ChemNavigator, identical to the 

SNRI project) for fragments while the R3 fragments were manually prepared in 
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Chewdraw. Unfavorable fragments for the R2 group were excluded, and the MW cutoff 

was adjusted to 150 to ensure that the MW of the entire structure stays within 500 amu.  

After enumeration of the target molecular structure, the following physical/ADMET 

property selection criteria were applied: “Molecular_Weight <= 500 AND (N_Count + 

O_Count) <= 10 AND Num_H_Donors <= 5 AND AlogP <= 5 AND 

Molecular_PolarSurfacearea <= 90 And Molecular_solubility >= -6.0;” and 

“i_qp_nummetab <= 6 and r_qp_QPPMDCK >= 500 AND r_qp_qpPCaco >= 500 AND 

r_qp_qplogbb >= -0.5;”. The ligands were then prepared by LigPrep, docked into both 

predicted binding sites by Glide and rescored by MM-GBSA. The best MM-GBSA score 

for each ligand was used for selection by the following PilotScript: 

“r_psp_Prime_MMGBSA_DG_bind <= -26.5;” for Site 1 and 

“r_psp_Prime_MMGBSA_DG_bind <= -27.5;” for Site 2. Only six structures (Table 5) 

survived the final list. 

8.5.6. KCN1 application case – new scaffold 

   The FRESH workflow for the p300/HIF-1α antagonist project on the new diarylalcohol 

scaffold was constructed in a fashion similar to the case studies. The version of Pipeline 

Pilot used in this project was 7.0, and the Schrodinger Maestro Package was the 2012 

release. The QSAR was constructed based on ~50 structures. They are listed in Appendix 

II. The training set structures were submitted to the “learn R PLS model” components for 

a partial least squares (PLS) analysis by using log IC50 as the property to be learned and 

ECFP_6 as the molecular descriptor. This produced the QSAR line in Figure 50.  Like 

the Bayesian model, a new Pipeline Pilot component based on the QSAR correlation was 

generated for further calculation. 
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    The building blocks for this case were phenyl bromides and benzaldehydes, which 

were used to query the ChemNavigator commercial library and obtain fragments. 

Unfavorable fragments were removed and the rest were covalently attached to form the 

diphenylalcohol structure. The molecular structures were subjected to physical/ADMET 

criteria similar to those in Section 8.1.2 with an additional logBB >= 0 

(r_qp_qplogBB >=0;) requirement. The predicted IC50 values were calculated using the 

newly-generated PLS components based on the QSAR line in Figure 50 with 2 μM as 

the cutoff. After discussion with GSU collaborators, the structures listed in Table 6 were 

further pursued for synthesis and testing. 

 

8.6. Java Programming Language Implementation for NAMFIS 

    This section of the dissertation reveals some Java implantation details for the NAMFIS 

software program. The entire length of the Java code for this version is over 2,500 lines. 

However, most of it (GUI construction, File parsing, data collection etc.) is within the 

normal scope of any person with basic Java knowledge. Therefore, this section is focused 

on the newly implemented features of NAMFIS. The user input validation section only 

provides a description of the algorithm (coding requires only basic level of Java), while 

the minimization part requires the entire Java code. 

8.6.1. Perform user input validation 

The validation of NAMFIS user input is initiated by checking the required input 

parameters. The HashSet which stores all the involved atom indexes cannot be empty. 

Meanwhile, the ArrayLists for experimental NOE inputs and J couplings cannot be 
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simultaneously empty. If either is detected, the user is warned. If the input conformation 

pool file is empty or in an illegal format, the program will also notify the user.  

The next round of validation performs a check of all the input experimental parameters. 

Duplication and invalid inputs are captured at this stage. For atom indices, since the 

HashSet data structure has already prohibited duplicates, no further validation step is 

involved. For the NOE pairs, no equal atom index pair or non-positive distance can be 

present, and all the atom indices should be included in the HashSet. Similar requirements 

also apply to J couplings and permutations. It should be noted that for comparison of 

permutation inputs to detect duplicates, overriding the inherited “equals” method is 

incorrect, as this violates the transitivity (if A equals to B and B equals to C, then A must 

equal to C) requirement. Thus, a separate method should be adopted by comparing each 

atom index in the two atom index lists of the two permutation inputs for equal elements. 

With available molecular structures from a valid conformation pool file, the first 

conformer is selected as a reference. The program then performs a check for all the J 

coupling input. The J coupling constant requires atom input in the order H1, C1, C2 and 

H2. Thus, a connectivity check is initiated to verify that H1 is connected to C1, C1 is 

connected to C2 and C2 is connected to H2. An atom type matching validation is also 

performed to guarantee that the input atom index for the J coupling matches the 

corresponding input J coupling type. For example, if input atoms are HCCH but the type 

is selected as HCNH, the input is rejected. After validation of all the experimental input, 

the entire conformation pool file is screened for conformers with different structures by 

comparing the calculated canonical_smiles string. 
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Finally, a procedure is performed to check obvious constraint violations for 

mathematically infeasible cases. The program examines each input NOE and J coupling 

to see if the calculated values are all greater/smaller for all conformers. The NAMFIS 

input must pass all the validation steps before conformer pool minimization. 

8.6.2. Perform constrained geometry and population minimization 

   This step is accomplished by the “NAMFISOptimizer” class which extends the “Ipopt” 

class as required. In this step, the input and calculated NOE distances and J couplings are 

placed in the same array to facilitate processing. The calculatedResult[i][j] term 

represents the jth calculated value for the ith conformer. The experimentalResult[i], 

experimentalError[i] and weight[i] stands for the ith input experimental value, 

experimental error and the weight factor (default value 1.0).  

    Several integer variables need to be initialized before the minimization. The variable 

“n” represents the number of conformers in the conformation pull file, while “m” equals 

the number of constraints (the number of J couplings and NOEs plus 1 for the mole 

fraction constraint). The variable “nele_jac” stores the number of non-zero terms in the 

Jacobian matrix of the constraints, which equals m*n. The variable “nele_hess” holds the 

number of non-zero terms in the lower triangular part of the Hessian Matrix of the 

Lagrangian function, which equals n * (n+1) / 2. The detailed Java implementation code 

for this class is demonstrated in Appendix III.  
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Appendix I: A series of KCN1 analog with experimental IC50 
values and predicted MM-GBSA values 
 

Unit for MMGBSA: kcal/mol, IC50: μ M   KCN1 is Compound 1. 
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Appendix II: QSAR training and test sets for p300/HIF-1α 
antagonists 
 

Unit for IC50_p300:  μM. 
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Appendix III: The Java implementation of the 
“NAMFISOptimizer” class 
 

package namfis.processing.dataprocess; 

import java.util.ArrayList; 

import org.coinor.Ipopt; 

import namfis.commonclassandmethod.CommonConstant; 

import namfis.processing.NAMFISAllData; 

 

public class NAMFISOptimizer extends Ipopt implements CommonConstant { 

 

 /** All the NAMFIS input data */ 

 private NAMFISAllData namfisAllData; 

 

 /** Number of variables */ 

 private int n; 

 

 /** Number of Constrains */ 

 private int m; 

 

 /** Number of Non Zero in the Jacobian Matrix of the constraints */ 

 private int nele_jac; 

 

 /** 
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  * Number of Non Zero in the Hessian of the Lagrangian (lower or upper 

  * triangual part only) 

  */ 

 private int nele_hess; 

 

 /** Calculated NOE Distances and Coupling Constants for each Conformer */ 

 private double[][] calculatedResult; 

 

 /** Experimental NOE Distances and Coupling Constants */ 

 private double[] experimentalResult; 

 

 /** Experimental NOE Distance Errors and Coupling Constant Errors */ 

 private double[] experimentalError; 

 

 /** Weight Factor */ 

 private double[] weight; 

 

 /** 

  * Initialize the bounds and create the native Ipopt problem. 

  */ 

 public NAMFISOptimizer(NAMFISAllData namfisAllData) { 

 

  this.namfisAllData = namfisAllData; 
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  boolean enforceBond = false;   

  boolean isRemove = false; 

  ArrayList<Integer> outOfBondList = null; 

   

  if (enforceBond) { 

   isRemove = false; 

   outOfBondList = new DetectOutOfErrorBoundValues( 

     namfisAllData, isRemove).getOutOfBondValueIndexList(); 

  }   

 

  this.n = namfisAllData.getNAMFISConformersList().size(); 

  /* 

   * the "+1" for this.m represents one additional constraint : 

   * x1+x2+...+xn = 1.0 (sum of mole fraction is 1) 

   */ 

  this.m = namfisAllData.getInputDataList().size() + 1; 

  this.nele_jac = this.n * this.m; 

  this.nele_hess = this.n * (this.n + 1) / 2; 

 

  this.calculatedResult = new double[m - 1][n]; 

  this.experimentalResult = new double[m - 1]; 

  this.experimentalError = new double[m - 1]; 

  this.weight = new double[m - 1]; 
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  obtainCalculatedAndExperimentalMatrix(); 

 

  double x_L[] = new double[n]; 

  double x_U[] = new double[n]; 

  for (int i = 0; i <= n - 1; i++) { 

   x_L[i] = 0.0; 

   x_U[i] = 1.0; 

  } 

 

  /* set the values of the constraint bounds */ 

  double g_L[] = new double[m]; 

  double g_U[] = new double[m]; 

 

  /* 

   * All the calculated values should fall within a error bar window 

   * compared to the experimental ones 

   */ 

 

  for (int i = 0; i <= m - 1 - 1; i++) { 

   if (enforceBond) { 

    g_L[i] = experimentalResult[i] - experimentalError[i]; 

    g_U[i] = experimentalResult[i] + experimentalError[i]; 

   } else { 
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    g_L[i] = Double.NEGATIVE_INFINITY; 

    g_U[i] = Double.POSITIVE_INFINITY; 

   } 

  } 

 

  /* 

   * For the calculated values that are out of error bar window, if they 

   * are chosen to be kept, their constraint conditions are removed 

   */ 

  if (enforceBond && !isRemove && outOfBondList != null 

    && !outOfBondList.isEmpty()) { 

   for (int outOfBondIndex : outOfBondList) { 

    g_L[outOfBondIndex] = Double.NEGATIVE_INFINITY; 

    g_U[outOfBondIndex] = Double.POSITIVE_INFINITY; 

   } 

  } 

 

  /* All mole fractions should add to 1 */ 

  g_L[m - 1] = 1.0; 

  g_U[m - 1] = 1.0; 

 

  /* Index style for the irow/jcol elements */ 

  int index_style = Ipopt.C_STYLE; 
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  /* create the IpoptProblem */ 

  create(n, x_L, x_U, m, g_L, g_U, nele_jac, nele_hess, index_style); 

 } 

 

 /** 

  * Provide the calculated results (NOE distance and Coupling constants, 

  * derived from the input conformation file, experimental results and 

  * experimental errors. These arrays will be used in the following methods 

  * in IPOPT 

  *  

  * @return void 

  */ 

 private void obtainCalculatedAndExperimentalMatrix() { 

 

  for (int i = 0; i <= m - 1 - 1; i++) { 

   for (int j = 0; j <= n - 1; j++) { 

    calculatedResult[i][j] = namfisAllData 

      .getNAMFISConformersList().get(j) 

      .getCalculatedValuesList().get(i); 

   } 

   experimentalResult[i] = namfisAllData.getInputDataList().get(i) 

     .getExperimentalValue(); 
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   experimentalError[i] = namfisAllData.getInputDataList().get(i) 

     .getErrorValue(); 

   weight[i] = namfisAllData.getInputDataList().get(i) 

     .getWeightFactor(); 

  } 

 } 

 public double[][] getCalculatedResult() { 

  return this.calculatedResult; 

 } 

 

 public double[] getExperimentalResult() { 

  return this.experimentalResult; 

 } 

 

 public double[] getExperimentalError() { 

  return this.experimentalError; 

 } 

 

 /** Initialize the mole fraction array x[] */ 

 public double[] getInitialGuess() { 

  double x[] = new double[n]; 

  x[0] = 1.0; 

  for (int i = 1; i <= n - 1; i++) { 
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   x[i] = 0.0; 

  } 

  return x; 

 } 

 

 @Override 

 protected boolean eval_f(int n, double[] x, boolean new_x, 

   double[] obj_value) { 

  assert n == this.n; 

  double sum = 0.0; 

  for (int i = 0; i <= m - 1 - 1; i++) { 

 

   double resultForOneSum = 0.0; 

   for (int j = 0; j <= n - 1; j++) { 

    ; 

    resultForOneSum = resultForOneSum + x[j] 

      * calculatedResult[i][j]; 

   } 

   resultForOneSum = resultForOneSum - experimentalResult[i]; 

   resultForOneSum = resultForOneSum / experimentalError[i]; 

   resultForOneSum = resultForOneSum * weight[i]; 

   resultForOneSum = resultForOneSum * resultForOneSum; 
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   sum = sum + resultForOneSum; 

  } 

  obj_value[0] = sum; 

  return true; 

 } 

 

 @Override 

 protected boolean eval_grad_f(int n, double[] x, boolean new_x, 

   double[] grad_f) { 

  assert n == this.n; 

 

  for (int i = 0; i <= n - 1; i++) { 

 

   double sum = 0.0; 

   for (int j = 0; j <= m - 1 - 1; j++) { 

 

    double sumK = 0.0; 

    for (int k = 0; k <= n - 1; k++) { 

     sumK = sumK + x[k] * calculatedResult[j][k]; 

    } 

    sumK = sumK - experimentalResult[j]; 

    sumK = sumK / experimentalError[j]; 

    sumK = sumK * weight[j]; 
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    sumK = 2.0 * sumK * calculatedResult[j][i]; 

 

    sum = sum + sumK; 

   } 

   grad_f[i] = sum; 

 

  } 

 

  return true; 

 } 

 

 @Override 

 protected boolean eval_g(int n, double[] x, boolean new_x, int m, double[] g) { 

  assert n == this.n; 

  assert m == this.m; 

 

  /* 

   * All the calculated values should fall within a error bar window 

   * compared to the experimental ones 

   */ 

  for (int i = 0; i <= m - 1 - 1; i++) { 

   double sum = 0.0; 

   for (int j = 0; j <= n - 1; j++) { 



 

 

169

    sum = sum + x[j] * calculatedResult[i][j]; 

   } 

   g[i] = sum; 

  } 

  /* All mole fractions should add to 1 */ 

  double sum = 0.0; 

  for (int i = 0; i <= n - 1; i++) { 

   sum = sum + x[i]; 

  } 

  g[m - 1] = sum; 

 

  return true; 

 } 

 

 @Override 

 protected boolean eval_jac_g(int n, double[] x, boolean new_x, int m, 

   int nele_jac, int[] iRow, int[] jCol, double[] values) { 

  assert n == this.n; 

  assert m == this.m; 

 

  /* 

   * iRow[index] and jCol[index] can be regarded as a index converter 

   * function for 1D array index to 2D array index. The "index" term in 
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   * "iRow[index] and jCol[index]" stands for the 1D array index, and 

   * iRow[index] stands for its corresponding 2D array row index 

   */ 

 

  if (values == null) { 

   int index = 0; 

   for (int i = 0; i <= m - 1; i++) { 

    for (int j = 0; j <= n - 1; j++) { 

     iRow[index] = i; 

     jCol[index] = j; 

     index++; 

    } 

   } 

  } else { 

   /* 

    * return the values of the jacobian of the constraints regarding 

    * calculated values 

    */ 

   for (int i = 0; i <= m - 1 - 1; i++) { 

    for (int j = 0; j <= n - 1; j++) { 

     values[i * n + j] = calculatedResult[i][j]; 

    } 

   } 
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   /* 

    * return the values of the jacobian of the constraint regarding the 

    * sum of mole fraction 

    */ 

   for (int j = 0; j <= n - 1; j++) { 

    values[(m - 1) * n + j] = 1.0; 

   } 

 

  } 

 

  return true; 

 } 

 

 @Override 

 protected boolean eval_h(int n, double[] x, boolean new_x, 

   double obj_factor, int m, double[] lambda, boolean new_lambda, 

   int nele_hess, int[] iRow, int[] jCol, double[] values) { 

 

  if (values == null) { 

   int index = 0; 

   for (int i = 0; i <= n - 1; i++) { 

    for (int j = 0; j <= i; j++) { 
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     iRow[index] = i; 

     jCol[index] = j; 

     index++; 

    } 

   } 

 

  } else { 

   for (int i = 0; i <= n - 1; i++) { 

    for (int j = 0; j <= i; j++) {  

 

     double sum = 0.0; 

     for (int k = 0; k <= m - 1 - 1; k++) { 

      sum = sum + 2.0 * calculatedResult[k][i] 

        * calculatedResult[k][j] / experimentalError[k] 

        * weight[k]; 

     } 

     /* Note: should not be values[i * n + j] */ 

     values[(1 + i) * i / 2 + j] = obj_factor * sum; 

    } 

   } 

  } 

  return true; 

 } 
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} 

 @Override 

 protected boolean eval_grad_f(int n, double[] x, boolean new_x, 

   double[] grad_f) { 

  assert n == this.n; 

 

  for (int i = 0; i <= n - 1; i++) { 

 

   double sum = 0.0; 

   for (int j = 0; j <= m - 1 - 1; j++) { 

 

    double sumK = 0.0; 

    for (int k = 0; k <= n - 1; k++) { 

     sumK = sumK + x[k] * calculatedResult[j][k]; 

    } 

    sumK = sumK - experimentalResult[j]; 

    sumK = sumK / experimentalError[j]; 

    sumK = sumK * weight[j]; 

    sumK = 2.0 * sumK * calculatedResult[j][i]; 

 

    sum = sum + sumK; 

   } 
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   grad_f[i] = sum; 

 

  } 

 

  return true; 

 } 

 

 @Override 

 protected boolean eval_g(int n, double[] x, boolean new_x, int m, double[] g) { 

  assert n == this.n; 

  assert m == this.m; 

 

  /* 

   * All the calculated values should fall within a error bar window 

   * compared to the experimental ones 

   */ 

  for (int i = 0; i <= m - 1 - 1; i++) { 

   double sum = 0.0; 

   for (int j = 0; j <= n - 1; j++) { 

    sum = sum + x[j] * calculatedResult[i][j]; 

   } 

   g[i] = sum; 

  } 
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  /* All mole fractions should add to 1 */ 

  double sum = 0.0; 

  for (int i = 0; i <= n - 1; i++) { 

   sum = sum + x[i]; 

  } 

  g[m - 1] = sum; 

 

  return true; 

 } 

 

 @Override 

 protected boolean eval_jac_g(int n, double[] x, boolean new_x, int m, 

   int nele_jac, int[] iRow, int[] jCol, double[] values) { 

  assert n == this.n; 

  assert m == this.m; 

 

  /* 

   * iRow[index] and jCol[index] can be regarded as a index converter 

   * function for 1D array index to 2D array index. The "index" term in 

   * "iRow[index] and jCol[index]" stands for the 1D array index, and 

   * iRow[index] stands for its corresponding 2D array row index 

   */ 
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  if (values == null) { 

   int index = 0; 

   for (int i = 0; i <= m - 1; i++) { 

    for (int j = 0; j <= n - 1; j++) { 

     iRow[index] = i; 

     jCol[index] = j; 

     index++; 

    } 

   } 

  } else { 

   /* 

    * return the values of the jacobian of the constraints regarding 

    * calculated values 

    */ 

   for (int i = 0; i <= m - 1 - 1; i++) { 

    for (int j = 0; j <= n - 1; j++) { 

     values[i * n + j] = calculatedResult[i][j]; 

    } 

   } 

 

   /* 

    * return the values of the jacobian of the constraint regarding the 

    * sum of mole fraction 
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    */ 

   for (int j = 0; j <= n - 1; j++) { 

    values[(m - 1) * n + j] = 1.0; 

   } 

 

  } 

 

  return true; 

 } 

 

 @Override 

 protected boolean eval_h(int n, double[] x, boolean new_x, 

   double obj_factor, int m, double[] lambda, boolean new_lambda, 

   int nele_hess, int[] iRow, int[] jCol, double[] values) { 

 

  if (values == null) { 

   int index = 0; 

   for (int i = 0; i <= n - 1; i++) { 

    for (int j = 0; j <= i; j++) { 

     iRow[index] = i; 

     jCol[index] = j; 

     index++; 

    } 



 

 

178

   } 

 

  } else { 

   for (int i = 0; i <= n - 1; i++) { 

    for (int j = 0; j <= i; j++) { // j<= i or j<= n-1 

 

     double sum = 0.0; 

     for (int k = 0; k <= m - 1 - 1; k++) { 

      sum = sum + 2.0 * calculatedResult[k][i] 

        * calculatedResult[k][j] / experimentalError[k] 

        * weight[k]; 

     } 

     /* Note: should not be values[i * n + j] */ 

     values[(1 + i) * i / 2 + j] = obj_factor * sum; 

    } 

   } 

  } 

  return true; 

 } 

}
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