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Abstract 

Alzheimer’s Disease Pathology Imputation and Risk Prediction Using Clinical Indices 
By Xizhu (Emilia) Liu 

 
Alzheimer’s disease (AD) is a chronic progressive disorder that develops over years before 
manifesting impaired cognition, and early detection and intervention before the onset of 
noticeable AD symptoms might slow down the progression of cognitive decline. Since existing 
AD biomarkers are problematics and not widely available, this study aimed to develop models 
for imputing AD brain pathology and predict the risk of AD using common clinical indices. Data 
used in this study included clinical indices and postmortem pathology data contributed by 
2000+ participants from two cohort studies who agreed on annual clinical visit and brain 
donation after death. In stage 1 of our study, we validated imputation models and chose the 
best-performing machine learning method: generalized linear regression model with elastic net 
regulation. In stage 2, we applied the imputation models to estimate baseline AD pathology 
using 57 clinical variables as predictors. In stage 3, we fitted Cox proportional hazard models 
and used the imputed pathology along with three demographic indices to predict the risk of 
cognitive impairment and AD dementia over years. Based on our data analysis results, imputed 
pathology was able to distinguish AD pathology-absent participants from AD pathology-present 
participants, and the clinical variables measured at baseline were effective predictors of 
baseline AD pathology. Moreover, imputed pathology along with three demographic indices 
were enough to make effective prediction on the risk of developing mild cognitive impairment 
or Alzheimer’s disease dementia. If the leveraged clinical indices—common, affordable, and 
convenient to be measured—can be used as new biomarkers that substitute the existing but 
problematic ones, many more elderly people would be able to benefit from early detection, 
intervention and prognosis of their potential risk of developing AD dementia or cognitive 
impairment. 
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1. Introduction  

1.1. Alzheimer’s disease 

Alzheimer’s disease (AD) is a chronic progressive disorder that develops over many years before 

manifesting impaired cognition. In its earliest asymptomatic stage, Alzheimer’s disease 

pathology accumulates in adults with normal cognition and higher levels of AD are associated 

with an increased risk of Alzheimer’s dementia (Ballard et al.). While AD is a pathological 

disease, dementia is a general term that summarizes a set of symptoms associated with 

memory loss, limited social skills, impaired thinking abilities, or declined daily functioning, etc. 

Accounting for approximately 70% of all dementia cases, AD is a type of and the most common 

cause of dementia (Boyle et al.). As complex brain changes develop and cell damage 

accumulates, dementia symptoms tend to occur and worsen over time (Yu et al.). Mild 

cognitive impairment (MCI) causes cognitive declines that are not yet severe enough to affect 

daily life or independent function. In terms of severity, MCI can be regarded as the precursor of 

AD dementia—which is a severer case—but does not necessarily lead to AD dementia if the 

progression is slow (Larson et al.).  

 

Of the total U.S. population, around 6.5 million people aged 65 and above are currently living 

with Alzheimer’s dementia in the U.S. in 2022. Among those, nearly 75% are of age 75 or older. 

About one in every nine people aged 65 and above suffers from Alzheimer’s dementia. 

According to recent studies, the population of age 65 and above with Alzheimer’s dementia is 

predicted to be as large as 12.7 million by year 2050. Because there could be nearly 20 years of 
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lagging from the start of pathological changes to the onset of AD symptoms, AD has been 

difficult to be predicted, diagnosed or treated in time (Alzheimer's Association).  

 

Although AD is currently considered an irreversible disease, scientists and physicians suggest 

that early intervention could slow down the development of cognitive decline and the 

progression to the final stage of AD (Karikari et al.). Therefore, it is important to make 

predictions and recognize early signs before the onset of noticeable AD symptoms. 

Consequently, there has been an intense focus on identifying AD biomarkers that can estimate 

the burden of AD to facilitate identification of at-risk adults who might benefit from early 

interventions to reduce the accumulation of AD and prevent the development of cognitive 

impairments due to AD (Lan et al.). 

However, existing AD biomarkers such as cerebrospinal fluid (Counts et al.) are not widely 

available due to their costs of advanced brain imaging and neuropsychological testing, 

invasiveness and difficultly to deploy at scale (Darst et al.). Therefore, it has been of our great 

interest to investigate and discover predictive and diagnostic methods that are more 

affordable, convenient, noninvasive, and easy to deploy at scale. 

 

1.2. Motivations 

Studies have so far based the biological understanding of AD on pathological changes in the 

brain. Brain pathology refers to the features, conditions, or typical behaviors of a disease that 

are reflected in the biological appearance or changes in the brain, including but not limited to 

the expression and accumulation of certain proteins. There are two neural proteins that signify 
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the presence of AD: an outside-neurons protein beta-amyloid and an inside-neurons protein 

tau (tangles) with twisted strands. These pathological changes are likely to be followed by the 

apoptosis of neurons and damage on brain tissues, and higher levels of accumulated pathology 

are associated with higher risk of AD. Besides beta-amyloid and tangles, there are two other 

pathology indices involved in this study: Global AD Pathology which is a quantitative summary 

of the expression of the two proteins beta-amyloid and tangles, and NIA-Reagan which is a 

dichotomous diagnosis criterion that defines and recodes the presence of AD pathology based 

on consensus recommendations for postmortem diagnosis of AD (Newell et al.). A high or 

intermediate likelihood of AD pathology is recoded as NIA-Reagan = 1, and a low or none 

likelihood of AD pathology is recoded as NIA-Reagan = 0 (Rush Alzheimer's Disease Center). 

 

Indices of AD pathology necessary for a pathologic diagnosis of AD can only be obtained after 

death via autopsy, which puts significant challenge for estimating the burden of AD pathology 

in living adults during the course of AD. Prior studies have used a combination of brain imaging 

and clinical metrics to impute the burden of AD pathology, but brain imaging is expensive and 

not widely available (Counts et al.). A wide variety of analytic strategies and machine learning 

techniques (Hastie et al.) have been employed in diverse areas of aging research to impute or 

estimate missing data and data that are difficult to collect. These analytical approaches have 

been extended to estimate transcriptomic data that are generally hard to profile due to high 

cost and limited accessibility to some human tissues such as brain and kidney tissues, by using 

genetic genotype data that can be easily profiled from whole blood with a low cost as 
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predictors (Gamazon et al.). As a result, integrative analysis with both transcriptomic and 

genetic data is practically feasible. 

 

Building on these prior studies to impute missing data due to limited accessibility, clinical-

autopsy studies which collect both clinical indices prior to death and postmortem AD indices 

might be used to develop imputation models with postmortem samples. These imputation 

models can then be applied in living adults using clinical measures as predictors to estimate the 

burden AD pathology. If successful, this approach may yield a more widely available AD 

biomarker, since once an imputation model for AD has been validated, the model can then be 

applied to estimate AD in any sample of living adults with analogous clinical indices.   

 

1.3. Study design  

The main purpose of this study was to develop models with sufficient predictive ability to 

estimate the levels of AD pathology in living adults without postmortem autopsy, and to predict 

the risk for low-risk adults to develop MCI or even ADD over years. This was an observational 

study that collected data from both annual clinical visits for living adults who continued annual 

clinical visit, as well as postmortem brain autopsy for people after death. A total of 57 clinical 

indices measured in living adults were initially considered as predictors or covariates to be used 

in our models, which were expected to be possible substitutes for postmortem AD pathology 

data. Meanwhile, experts were able to obtain through autopsy the quantitative levels of the 

four AD pathology of our interest that were observed in those postmortem brains: beta-

amyloid, tangles, Global AD Pathology, and NIA-Reagan. 
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Participants recruited for this research were community dwelling older persons enrolled in one 

of two ongoing cohort studies of aging and dementia, the Religious Orders Study [ROS, N = 

1104 (48.3%)] and Rush Memory and Aging Project [MAP, N = 1183 (51.7%)]. Both studies were 

approved by the Institutional Review Board of Rush University Medical Center. Participants 

were enrolled without known dementia and agreed to annual clinical follow-up evaluations and 

autopsy at the time of death. Both studies share a large common core of testing batteries and 

uniform structured clinical evaluations by the same staff facilitating combined analysis. A 

written informed consent and an anatomical gift act were obtained from each participant.   

 

1.4. Research goals and objectives 

In this study, we aimed to (1) derive imputation models for AD brain pathology using clinical 

variables as predictors, (2) estimate the level of AD pathology in living adults, and (3) develop 

risk prediction models that identify adults at risk for AD and cognitive impairment using clinical 

variables alone. The current study used clinical and postmortem indices from more than 2000 

decedents, who had participated in two community-based cohort studies and underwent brain 

autopsy at death, to train and validate imputation models that estimate the burden of AD 

pathology based on clinical measures alone. The estimated levels of AD pathology will be 

further used for creating models for AD risk prediction over years. 
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2. Methods 

2.1. Clinical variables 

The two main datasets that were used in this study included a longitudinal dataset and a cross-

sectional dataset. The longitudinal dataset tracked each participant’s annual clinical 

measurements from their baseline (or first) clinical visit to the last visit they were able to make. 

The cross-sectional dataset contained five groups of clinical indices across different 

measurement categories, composing a total of 57 individual clinical variables. 

 

The five groups of clinical variables were considered as predictors for the burden of AD: i) 

Parsimonious AD risk factors including age, sex, education, cognitive assessment based on Mini 

Mental State Examination (MMSE) (Tombaugh et al.) and APOE E4 genotype; ii) Clinic variables 

and chronic health variables conditions such as blood pressure, depression, and cardiovascular 

disease, besides; iii) Medication usage variables such as antibiotics, lipid lowering medicine, and 

antidepressants; iv) Variables uniquely profiled by ROS/MAP such as global cognition test scores 

based on 17 cognitive tests, self-reported physical and social activities (Bennett et al.); v) Motor 

and sleep variables measuring patients such as gait speed, hand strength, global parkinsonian 

score (Buchman et al.), and 4 survey questions about sleep status (Park et al.). These motor 

variables have the potential to confound the associations of motor abilities with total daily 

physical activity by degrading motor capacity or affect an individual’s propensity to engage in 

physical (Supplemental Table 1).  
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Table 2. Sample sizes per event type for the ROS/MAP cohorts used for fitting prediction 

models of the burden of AD pathology. 

 

Figure 1. Correlation heatmap of clinical variables as predictors of the burden of AD 

Pathology. 

The above heatmap displays the magnitudes of correlations between every two clinical 

variables, with each small grid representing the correlation of one pair of clinical variables. The 

lighter the grid color, the weaker the correlation; the darker the grid color, the stronger the 
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correlation. Most grids displayed light or even white colors indicating that most of our clinical 

variables exhibited weak to extremely weak correlations with other covariates, so 

multicollinearity was not likely to be a problem in the regression models. Only a few exceptions 

were present in the heatmap: some composite motor variables displayed dark red or dark 

purple near the top-right of this heatmap and indicates high collinearity. Three composite 

motor variables thus needed to be excluded from the regression models later in this study. 

 

2.2. Assessment of AD brain pathology 

Brain autopsy followed a standard protocol (Schneider et al.). Neuropathologic evaluations, 

blinded to clinical data, assessed the burden of four measures of AD. A modified Bielschowsky 

silver stain was used to visualize neuritic plaques, diffuse plaques, and neurofibrillary tangles in 

five cortical areas (hippocampus, entorhinal, midfrontal, middle temporal, and inferior 

parietal). Neuritic and diffuse plaques, and neurofibrillary tangles were counted in the region 

that appeared to have the maximum density of each pathology as previously described. A 

standardized score was created for each neuropathology in each region by dividing the raw 

count by the standard deviation of the mean for the same neuropathology in the same region. 

This standardization procedure puts the pathologic indices on a relatively common scale. They 

were averaged to create a composite measure as previously described (Bennett et al.). The 

National Institute on Aging-Reagan criteria were used with intermediate and high likelihood 

cases indicating a pathologic diagnosis of AD (The National Institute on Aging). 
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In addition, a summary global AD pathology score was made based on the greatest density of 

neuritic plaques, diffuse plaques, and neurofibrillary tangles in one mm2 (Bennett et al.). 

Amyloid-β was labeled with an N-terminus–directed monoclonal antibody (10D5; Elan, Dublin, 

Ireland; 1:1,000). Immunohistochemistry was performed as previously described using 

diaminobenzidine as the reporter, with 2.5% nickel sulfate to enhance immunoreaction product 

contrast. PHFtau was labeled with an antibody specific for phosphorylated tau (AT8; 

Innogenetics, San Ramon, CA; 1:1,000). Amyloid-β (Aβ) load and tangles (tau tangles) were 

quantified in 8 brain regions (anterior cingulate cortex, superior frontal cortex, mid frontal 

cortex, inferior temporal cortex, hippocampus, entorhinal cortex, angular gyrus/supramarginal 

gyrus, and calcarine cortex). Overall Aβ load was calculated through averaging mean percent 

area of Aβ deposition per region, across multiple brain regions. Tangles densities were derived 

by averaging tangles densities across corresponding brain regions. 

 

2.3. Data preparation  

Since the analysis of longitudinal clinical data relies on completeness of data in each clinical 

variable in each year, missing values due to participants’ occasional absence of clinical visits or 

some of the clinical examinations must be imputed and filled. For each participant, missing 

values after baseline visit were filled by the values of the nearest previous visit, while missing 

values at baseline visit were filled by the values of the nearest next visit. Besides imputing 

missing values, we prepared the data by standardizing all variables, including both the clinical 

variables and the four AD pathology. The variables were standardized at mean of 0 and 

standard deviation of 1. 
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2.4. Analytic approach 

2.4.1. Stage 1: Train and validate imputation models for AD pathology 

The first stage of this research was model validation. We applied cross validation and compared 

among several potential approaches and imputation models. We used near-death (last-visit) 

data from MAP participants to fit the training models and near-death data from ROS 

participants to test the fitted models. In the training models, the last-visit clinical variables in 

MAP were used as predictors and postmortem pathology data in MAP were used as responses. 

In the testing models, the last-visit clinical variables in ROS were used as predictors to estimate 

the postmortem pathology data in ROS (Figure 1). 

 
Figure 2. Stage 1 flowchart: model validation by training on near-death MAP cohort and 

testing on near-death ROS cohort 

 

To choose the optimal imputation model that returns the highest prediction accuracy, we 

experimented and compared four machine learning methods: Gradient Boost Machine (GBM), 

Support Vector Machine (SVM), Random Forest, and Generalized Linear regression Model with 

Elastic-Net penalty (GLM-EN). Among these four, we compared the prediction R2 and area 

under curve (AUC) values corresponding to each of the four brain pathologies yielded by each 

machine learning method. The comparison would give us the optimal method for fitting 

imputation models. We used last visit data in MAP participants to fit the training models and 
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last visit data in ROS participants to test the fitted models. Each model was fitted for one of the 

four brain pathologies: Tangles, Global AD Pathology, Beta-amyloid, and NIA-Reagan.  

 

In each GBM model, we isolated the target brain pathology and fitted that pathology on all 

other clinical variables except the other three brain pathologies. For the continuous pathologies 

Tangles, Global AD Pathology, and Beta-amyloid, we specified Gaussian distributions in the 

model fitting process. For the binary pathology NIA-Reagan, we specified Bernoulli distributions 

and found a threshold that produced ~80% sensitivity on predicted probabilities. We performed 

10-fold cross validation at the optimum number of trees/iterations in each model and then 

obtained the prediction R2 and AUC values.  

 

Within each SVM model, we compared among four different types of kernel used for training 

and predicting, including linear, polynomial, radial, and sigmoid. Linear kernel produced the 

highest AUC values across all models and was thus chosen to be the kernel type we used in 

SVM. The cost of constraints violation was set to its default value of 1, which gave us the best 

prediction R2 and AUC values. 

 

For GLM-EN, we used the “cv.glmnet” function to select the alpha and lambda levels which 

were later used in our model-fitting process with the “glmnet” and “predict” functions. We 

produced prediction R2 and AUC values for each model, as well as box plots with p-values 

obtained from two-sample hypothesis T tests. We chose the best-performing model and 

continued applying it to the pathology imputation process in stage 2, while the other three 

models were excluded from the rest of this study. 

 

2.4.2. Stage 2: Estimate AD pathology at study baseline 

GLM-EN was the best-performing method and was chosen as the approach for pathology 

imputation. Since AD brain pathologies are not measurable in living adults but can only be 

measured in postmortem brains, we trained imputation models with near-death brain 

pathology data and imputed for brain pathologies at baseline visit. In the training models, last-
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visit clinical variables in all (both MAP and ROS) participants were used as predictors, and 

postmortem pathology data in all participants were used as responses. Applying these fitted 

models, we then used baseline clinical variables in all participants as predictors to estimate all 

participants’ pathology levels at baseline, which cannot be obtained otherwise through autopsy 

in living adults (Figure 3).  

 
Figure 3. Stage 2 flowchart: AD pathology imputation by using GLM-EN models to train on 

near-death MAP & ROS cohort and to predict pathology level in MAP & ROS at baseline. 

 

For each model, we used 57 clinical metrics as predictors for the imputed pathology. The 

performance of each imputation model was measured by Pearson correlations, prediction R-

squared, 95% confidence intervals, and p-values. After each of the four brain pathologies was 

imputed for their baseline values, the newly estimated pathology data at baseline were stored 

as new vectors or variables, prepared for AD risk prediction later in the 3rd stage of the study. 

 

2.4.3. Stage 3: Predict AD risk by Cox proportional hazard model 

With AD pathology data imputed at baseline, we were further interested in whether the 

estimated level of baseline AD pathology was associated with incident MCI, incident AD 

dementia (ADD) and the risk of pathologic AD based on NIA-Reagan at autopsy. The main goal 

of stage 3 of this study was to examine whether the estimated levels of brain pathology (from 
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stage 1 and 2) together with some selected clinical variables could effectively and accurately 

predict the occurrence of incident ADD or MCI, and whether the prediction based on models 

involving both imputed pathology and clinical metrics would be improved as compared to 

models using only clinical indices (Figure 3). 

 

Figure 4. Stage 3 flowchart: risk prediction models by training on baseline clinical variables 

and imputed pathology and predicting occurrence of MCI and/or ADD events in year 3 and 5 

 

During follow-up years after the participants’ first visits at baseline (which was considered as 

year 0), some participants were identified with occurrence of Alzheimer’s dementia (ADD) or 

mild cognitive impairment (MCI) through annual cognitive status diagnosis. The year of first 

diagnosis of ADD or MCI was considered as the time when the event/incident occurs. For living 

participants, the last time of their annual visit were considered as the right censored time, 

while for dead participants, their last visit records were considered as their year of death. 
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We fitted respective Cox proportional hazard risk prediction models for the events of ADD and 

MCI while accounting for the competing risk of death. We evaluated the accuracy of the risk 

prediction models by constructing receiver operating characteristic (ROC) curves and calculating 

the area under curve (AUC) with respect to the participants’ observed ADD or MCI status in the 

given year. The covariates that were included in each of our final Cox regression models were 

chosen through backward selection, which was implemented during the training of the 

corresponding Cox models that involved more than one covariate. 

 

3. Results 

3.1. Stage 1: Train and validate imputation models for AD pathology 

We incorporated 16 individual models in the model validation process, applying each of the 

four potential machine learning methods on each of the four AD pathology. As shown in Table 

3, the predictive ability of each model was represented by either a value of prediction R2 or a 

value of area under ROC curve (AUC). For the three continuous variables Beta-Amyloid, Tangles, 

and Global AD Pathology, each prediction R2 value was obtained by squaring the correlation 

between the observed levels and the estimated levels of near-death AD pathology in the ROS 

testing cohort. For the binary variable NIA-Reagan, each model’s predictive ability was 

measured by the area under ROC curve, reflecting the performance the model in distinguishing 

between two diagnostic groups. 
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Table 3. Comparison of machine learning method performance: results of prediction R2 and 

AUC obtained from cross validation models in stage 1. 

Comparing among the four machine learning methods, we found that GLM-EN yielded the 

highest prediction R2 and AUC in all of the four AD pathology. Therefore, GLM-EN was chosen 

as the machine learning method for imputing the AD pathology levels at baseline in stage 2. 

 

Figure 5. Pathology estimation results using GLM-EN in ROS testing samples at death and 

their discrimination with respect to profiled NIA-Reagan at death for Tangles (A), Beta-

Amyloid (B), Global AD pathology (C), and NIA-Reagan (D). 

 

Machine learning method 

Prediction R2 AUC 

Beta-Amyloid Tangles Global AD Pathology NIA Reagan 

GLM-EN 0.170 0.332 0.248 0.761 

GBM 0.144 0.305 0.221 0.740 

SVM 0.113 0.270 0.190 0.632 

Random Forest 0.152 0.305 0.218 0.731 
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Figure 5 is a visualization of the performance of the GLM-EN imputation models corresponding 

to each of the four AD pathology. For the three continuous variables (A, B, C), observed 

pathology levels were plotted against estimated pathology levels. Each dot on the scatterplots 

represented an individual participant, belonging to either the pathology-absent group (red, NIA 

= 0) or the pathology-present group (blue, NIA = 1). For the binary variable (D), a scatterplot 

was replaced by a ROC curve with calculated AUC. In addition, a boxplot was plotted for each of 

the four AD pathology, showing how the mean level of a pathology differs between the 

pathology-absent group (red, NIA = 0) and the pathology-present group (blue, NIA = 1). We 

performed two-sample t tests and obtained the corresponding p-value for each boxplot, finding 

that the p-values are statistically significant in all of the four pathology. Therefore, our 

imputation models were able to significantly distinguish between the two diagnostic groups 

based on the estimated AD pathology levels. 

 

 

3.2. Stage 2: Estimate AD pathology at study baseline 

In stage 2 of this study, we imputed the AD pathology by fitting models on all near-death data 

and estimating the burden of AD pathology at baseline. Figure 6 summarized the effect sizes of 

some of the covariates that were selected by the GLM-EN model based on their significance in 

each pathology imputation model, with beta values on x-axis showing the covariate effect sizes 

of the standardized predictors. Longer bars in the plots represented greater magnitude and 
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stronger partial effect of a predictor on the estimated pathology levels, regardless in the 

positive or negative direction.  

 

 

Figure 6. Important covariates selected by GLM-EN in the prediction models for the burden of 

AD pathology.  

A few predictors were commonly selected across the four pathology. For instance, age and the 

APOE E4 gene were considered as important predictors that positively contribute to the 
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increase in AD pathology levels. Older ages might be associated with higher burden of AD 

pathology, and the expression level of APOE E4—a gene that increases the risk of developing 

AD—might also lead to higher estimated pathology levels. Moreover, global cognition score, 

MMSE (Mini Mental State Exam), and the APOE E2 gene were selected as influential covariates 

that negatively contribute to the burden of AD pathology. Higher scores in global cognition test 

and MMSE might indicate better thinking and memory ability and thus tended to decrease the 

estimated level of AD pathology. The expression level of APOE E2—a gene that is associated 

with low risk of developing AD—might also lead to lower estimated pathology levels. 

 

    
Beta-

Amyloid 
Tangles 

Global AD 

Pathology 

NIA-

Reagan 

Training 

Results 

Pearson Correlation  

or AUC 
0.470 0.627 0.542 0.832 

Prediction 

Results 

Pearson Correlation 

or AUC 
0.319 0.394 0.412 0.744 

Correlation test or t 

test P-value  
4.074e-27 5.539e-42  1.415e-47 7.956e-34 

Table 4. Training and testing results obtained from GLM-EN imputation models in stage 2. 

After using GLM-EN models to impute the baseline values of the four AD pathology, we 

measured the predictive ability of each model by computing either Pearson correlation or AUC, 

along with the corresponding p-values obtained from correlation tests or t tests. Each 

correlation compared imputed pathology levels at baseline with observed pathology levels 

profiled at death. Comparison across different time stages in the progression of AD was based 

on the fact that baseline AD pathology follows a certain pattern to develop into near-death AD 

pathology, and a significant correlation might suggest that the imputation model was able to 
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capture that pattern and thus make meaningful estimation on the burden of AD pathology at 

baseline. 

(A) Tangles (B) ß-Amyloid 

 

 

(C) Global AD Pathology (D) NIA-Reagan 

  

 

Figure 7. Imputation performance at baseline with respect to NIA-Reagan at death (stage 2). 

Boxplots of predicted AD pathology at baseline with respect to profiled NIA-Reagan at death. 
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To determine whether the mean in each estimated baseline AD pathology significantly differs 

between the two diagnostic groups that were categorized based on NIA-Reagan profiled at 

death, we plotted a boxplot for each AD pathology and computed the t test p-values. All of the 

four p-values were statistically significant, meaning that the imputed pathology was able to 

distinguish pathology-absent participants from pathology-present participants, and that the 

clinical variables measured at baseline were effective predictors of baseline AD pathology. 

 

3.3. Stage 3: Predict AD risk over years 

After imputing the burden of AD pathology at baseline in stage 2, the stage 3 of this study 

developed Cox proportional hazard regression models to predict the risk of MCI and ADD 

events occurrence at year 3 and year 5 after participants’ baseline visits. Each Cox model 

involved four predictors: age at baseline visit, sex, education, and one of the four imputed 

baseline pathology. Shown in Figure 8, we separated the occurrence of MCI and ADD events 

into three different scenarios: (A) participants with either NCI (no cognitive impairment) or MCI 

at baseline developing ADD in year 3 or 5, (B) participants with NCI at baseline developing ADD 

in year 3 or 5, and (C) participants with NCI at baseline developing MCI in year 3 or 5. Each cell 

with two ROC curves—the red curve representing year 3 and the blue curve representing year 

5—is a visualization of the ability of the Cox models to correctly distinguish and diagnose 

participants with MCI or ADD.  
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 ß-Amyloid + Age + Sex + 

Education 

Tangles + Age + Sex + 

Education 

Global AD Pathology + 

Age + Sex + Education 

NIA-Reagan + Age + Sex + 

Education 

(A)  

NCI/ 

MCI à 

ADD 

    

(B) 

NCI à 

ADD 

    

 

(C) 

NCI à 

MCI 

 
    

 

Figure 8. Risk prediction results of MCI and ADD events in year 3 and 5 by Cox proportional 

hazard regression models, using age, sex, education and imputed AD pathology as predictors. 

 

Each cell is also a comparison between the year-3 curve and the year-5 curve. The curve with 

larger area under the ROC curve was considered a better prediction, and the prediction model 

corresponding to that curve, either a year-3 model or a year-5 model, is considered a more 
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accurate model. As shown in Figure 8, in every cell across the three scenarios (rows) and the 

four models (columns), the red curve had a larger AUC compared to the blue curve. This might 

indicate that the Cox models had better predictive ability when predicting for the risk of MCI 

and ADD occurrence three years after baseline than five years after baseline. The risk prediction 

result would be more reliable for years that are closer to the year of baseline visit. 

 

4. Conclusions 

Leveraging novel clinical and postmortem AD measures from the two cohort studies, we trained 

and validated imputation models for AD pathology that estimated AD pathology at study 

baseline years before death. The imputation models worked by mathematically explaining the 

variation of observed AD pathology in autopsied adults by their equivalence, in clinical indices. 

Individuals with higher levels of estimated pathology at baseline were at higher risk of 

developing AD and of a postmortem diagnosis of AD. The imputation models learned the 

predictive information of postmortem AD from clinical indices of decedents undergoing 

autopsy, and were able to estimate the burden of AD pathology levels using clinical indices 

alone. Once an imputation model for AD pathology has been validated, this approach might 

yield a more widely available AD biomarker, and the imputation model could be applied to 

estimate AD in any sample of living adults with analogous clinical indices. Since the information 

provided by the clinical indices were already incorporated and reflected in the estimated levels 

of AD pathology, any imputed pathology with the addition of merely three demographic indices 

were enough to make effective prediction on the risk of developing mild cognitive impairment 

or Alzheimer’s disease dementia. 
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Moreover, if the leveraged clinical indices—common, affordable, and convenient to be 

measured—can be used as new biomarkers that substitute the existing but problematic ones, 

many more elderly people would be able to benefit from early detection, intervention and 

prognosis of their potential risk of developing AD dementia or cognitive impairment. Given that 

no cure has been invented to completely overcome Alzheimer's, predictive measures would 

play a significant role in lowering the risk of AD or slowing down the progression of the disease 

or related symptoms, which might bring elderly people higher life quality and even longer life 

span. 
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Appendix 

Group Variable Mean (SD) or N (%) 

Clinical and chronic health 
variables 

BMI (9.09, 62.91) 27.52 (5.50) 
Diastolic blood pressure (40, 122.5) 74.47 (11.90) 
Hypertension blood pressure (83, 

215.5) 134.13 (18.29) 

Depression score (0, 9) 0.94 (1.48) 
Hypertension (N) 1142 (49.93) 

Cancer (N) 719 (31.43) 
Diabetes (N) 277 (12.11) 

Head injury (N) 148 (6.47) 
Thyroid disease (N) 440 (19.23) 

Claudication (N) 138 (6.03) 
Heart disease (N) 208 (9.09) 

Stroke (N) 156 (6.82) 
Cardiovascular disease history counts 

(0, 3) 0.93 (0.78) 

Alcohol usage in the past year, grams 
per day (0, 116.55) 4.56 (11.14) 

Alcohol usage when drank most in 
lifetime (0, 6) 0.46 (0.98) 

Smoking (never smoked 0, former 
smoker 1, current smoker 2) 0.33 (0.51) 

Medication usage 

Mental health (N) 529 (23.13) 
Analgesic (N) 1677 (73.32) 
Antibiotic (N) 158 (6.90) 

Anti-hypertensive (N) 1394 (60.95) 
Cardiac (N) 228 (9.96) 

Anti-anxiety (N) 133 (5.81) 
Anti-inflammatory (N) 561 (24.52) 

Aspirin (N) 992 (43.37) 
Lipid lowering (N) 740 (32.35) 

Insomnia (N) 171 (7.47) 
Diabetes (N) 203 (8.87) 

 

Supplemental Table 1. Baseline characteristics of clinical variables by category 

 

 



  25 

References 

Alzheimer's Association. “2022 Alzheimer’s Disease Facts and Figures.” Alzheimers Dement 
 2022, 2022. 

Ballard C, Gauthier S, Corbett A, Brayne C, Aarsland D, Jones E. Alzheimer's disease. Lancet 
 2011;377:1019-1031. 

Bennett DA, Buchman AS, Boyle PA, Barnes LL, Wilson RS, Schneider JA. Religious Orders Study 
 and Rush Memory and Aging Project. J Alzheimers Dis 2018;64:S161-S189. 

Bennett DA, Wilson RS, Boyle PA, Buchman AS, Schneider JA. Relation of neuropathology to 
 cognition in persons without cognitive impairment. Ann Neurol 2012;72:599-609. 

Bennett DA, Wilson RS, Schneider JA, et al. Education modifies the relation of AD pathology to 
 level of cognitive function in older persons. Neurology 2003;60:1909-1915. 

Boyle PA, Yu L, Leurgans SE, et al. Attributable risk of Alzheimer's dementia attributed to age-
 related neuropathologies. Ann Neurol 2019;85:114-124. 

Buchman AS, Yu L, Oveisgharan S, et al. Cortical proteins may provide motor resilience in older 
 adults.  Scientific Reports 2021;11:11311. 

Consensus recommendations for the postmortem diagnosis of Alzheimer's disease. The 
 National Institute on Aging, and Reagan Institute Working Group on Diagnostic Criteria 
 for the Neuropathological Assessment of Alzheimer's Disease. Neurobiol Aging 
 1997;18:S1-2. 

Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection 
 and Progression of Alzheimer's Disease. Neurotherapeutics 2017;14:35-53. 

Darst BF, Lu Q, Johnson SC, Engelman CD. Integrated analysis of genomics, longitudinal 
 metabolomics, and Alzheimer's risk factors among 1,111 cohort participants. Genet 
 Epidemiol 2019;43:657-674. 

Gamazon ER, Wheeler HE, Shah KP, et al. A gene-based association method for mapping traits 
 using reference transcriptome data. Nature genetics 2015;47:1091-1098. 

Hastie T, Tibshirani R, Friedman JS. The Elements of Statistical Learning, 2 ed: Springer-Verlag 
 New York, 2009. 

Karikari TK, Benedet AL, Ashton NJ, et al. Diagnostic performance and prediction of clinical 
 progression of plasma phospho-tau181 in the Alzheimer's Disease Neuroimaging 
 Initiative. Mol Psychiatry 2021;26:429-442. 



  26 

Lan MJ, Ogden RT, Kumar D, et al. Utility of Molecular and Structural Brain Imaging to Predict 
 Progression from Mild Cognitive Impairment to Dementia. J Alzheimers Dis 2017;60:939-
 947. 

Larson, E B, et al. “Cognitive Impairment: Dementia and Alzheimer’s Disease.” Annual Review of 
 Public Health, vol. 13, no. 1, May 1992, pp. 431–449, 
 pubmed.ncbi.nlm.nih.gov/1599598/, 10.1146/annurev.pu.13.050192.002243. Accessed 
 10 Apr. 2021. 

Newell, Kathy L., et al. “Application of the National Institute on Aging (NIA)-Reagan Institute 
 Criteria for the Neuropathological Diagnosis of Alzheimer Disease.” Journal of 
 Neuropathology and Experimental Neurology, vol. 58, no. 11, Nov. 1999, pp. 1147–
 1155, pubmed.ncbi.nlm.nih.gov/10560657/, 10.1097/00005072-199911000-00004. 
 Accessed 10 Apr. 2022. 

Park M, Buchman AS, Lim AS, Leurgans SE, Bennett DA. Sleep complaints and incident disability 
 in a community-based cohort study of older persons. Am J Geriatr Psychiatry 
 2014;22:718-726. 

Rush Alzheimer's Disease Center. “Variable Details | RADC.” Www.radc.rush.edu, RADC 
 Research Resource Sharing Hub, 
 www.radc.rush.edu/docs/var/detail.htm?category=Pathology&subcategory=Alzheimer
 %27s+disease&variable=niareagansc. Accessed 10 Apr. 2022. 

Schneider JA, Arvanitakis Z, Leurgans SE, Bennett DA. The neuropathology of probable 
 Alzheimer disease and mild cognitive impairment. Annals of neurology 2009;66:200-
 208. 

Tombaugh TN, McIntyre NJ. The mini-mental state examination: a comprehensive review. J Am 
 Geriatr Soc 1992;40:922-935. 

Yu L, Wang T, Wilson RS, et al. Common age-related neuropathologies and yearly variability in 
 cognition. Annals of clinical and translational neurology 2019;6:2140-2149. 
�


