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Abstract	

A	Connection	Between	K3	Surfaces	and	the	Conway	Moonshine	Module	
By	Qiyu	Zhang	

In	this	paper,	we	survey	an	interesting	duality	between	K3	surfaces	and	the	Conway	moonshine	
modules	via	Jacobi	forms.	K3	surfaces	are	studied	extensively	in	the	context	of	string	
compactification	since	they	are	manageable,	yet	non-trivial	kind	of	Calabi-Yau	manifold.	An	
important	topological	invariant	discovered	by	Witten	in	[1]	is	the	elliptic	genus.	The	elliptic	
genus	of	a	K3	surface	is	a	weak	modular	form	of	weight	zero	and	index	1.	In	this	text	we	show	
that	a	certain	graded	trace	associated	to	the	Conway	moonshine	module	coincides	with	the	K3	
elliptic	genus.
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1 Introduction

In this paper, we survey an interesting duality between K3 surfaces and the
Conway moonshine modules via Jacobi forms. K3 surfaces are studied exten-
sively in the context of string compactification since they are manageable, yet
non-trivial kind of Calabi-Yau manifold. An important topological invariant
discovered by Witten in [1] is the elliptic genus. The elliptic genus of a K3
surface is a weak modular form of weight zero and index 1. In this text we
show that a certain graded trace associated to the Conway moonshine module
coincides with the K3 elliptic genus.

2 Background

In this section, we review results on modular forms, K3 surfaces, and vertex
operator algebras that will be useful in Section 3.

2.1 Modular Forms

Modular forms are ubiquitous in mathematics. In this section, we look at
some general properties of certain modular forms. Our main reference for this
section will be [9].

Definition 2.1. Let H be the upper half complex plane, and let SL(2,Z) be
the group of matrices ✓

a b
c d

◆
2 SL(2,Z)

with integer entries such that ad� bc = 1. A modular form of weight k f(⌧) is
a holomorphic function on H such that

f(
a⌧ + b

c⌧ + d
) = (c⌧ + d)kf(⌧). (1)

and f(⌧) is bounded as Im(⌧) ! 1 where ⌧ 2 H, k 2 Z.
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By definition, f(⌧) is invariant under the transformation ⌧ ! ⌧ + 1 and thus
can be expanded into a Fourier series:

f(⌧) =
1X

n=�1
a(n)qn, q := e2⇡i⌧ . (2)

If the modular form vanishes at infinity, i.e. a(0) = 0, then it is called a cusp
form. If we weaken the growth condition to O(q�N ) instead of O(1) for some
N � 0, then it is called a weakly holomorphic modular form. The vector space
over C of holomorphic modular forms of weight k is referred to as M

k

, the
space of weakly holomorphic modular forms of weight k is referred to as M !

k

,
and the space of cusp forms is referred to as S

k

.
Some important modular forms of SL(2,Z) include Eisenstein series, the dis-
criminant function, and Dedekind eta-function.
The Einsenstein series E

k

2 M
k

(k � 4) For instance,

E4(⌧) = 1 + 240
1X

n=1

n3qn

1� qn
= 1 + 240q + 2160q2... (3)

E6(⌧) = 1� 504
1X

n=1

n5qn

1� qn
= 1� 504q � 16332q2... (4)

The discriminant function �(⌧) is a modular form of weight 12 given by

�(⌧) = q
1Y

n=1

(1� qn)24 = q � 24q2 + 252q3... (5)

, and the Dedekind eta function is defined as �1/24 with weight 1
2 :

⌘(⌧) := q1/24
1Y

n=1

(1� qn). (6)

A modular form of level N is defined as a modular form for �0(N)

�0(N) := {
✓
a b
c d

◆
2 SL(2,Z)|c = 0modN} (7)

which has the same definition as modular form of level 0, replacing SL2(Z)
with �0(N). But they have a di↵erent growth condition: f(a⌧+b

c⌧+d

)(c⌧ + d)�1

is bounded when Im(⌧) goes to 1, 8
✓
a b
c d

◆
2 SL(2,Z), and f is a cusp

form if f(a⌧+b

c⌧+d

)(c⌧ + d)�1 goes to zero as Im(⌧) goes to 1. And the functions
⇤
N

(⌧) are a family of modular forms of weight 2 with level N is defined as:

⇤
N

(⌧) =
N

2⇡i

d

d⌧
log(

⌘(N⌧)

⌘⌧
) =

N

24
(NE2(N⌧)� E2(⌧)) (8)
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2.2 Jacobi Forms

Jacobi forms are roughly a multivariate version of modular forms which is
modular in ⌧ and elliptic in z.

Definition 2.2. Consider a holomorphic funtion �(⌧, z) from H ⇥ C to C.
The function is a Jacobi form of weight k and index m if

�(
a⌧ + b

c⌧ + d
) = (c⌧ + d)ke

2⇡imcz2

c⌧+d �(⌧, z) (9)

for ✓
a b
c d

◆
2 SL(2,Z)

and transforms as

�(⌧, z + �z + µ) = e�2⇡im(�2
⌧+2�z)�(⌧, z) (10)

for any �, µ 2 Z with a growth condition described by the following Fourier
coe�cients. Then we define the growth condition. From the definition, we de-
duce that �(⌧ + 1, z) = �(⌧, z), and �(⌧, z + 1) = �(⌧, z), therefore � has the
Fourier expansion:

�(⌧, z) =
X
n,r

c(n, r)qnyr (11)

where q := e2⇡i⌧ and y := e2⇡iz. The periodicity condition can be recast as the
condition that:

c(n, r) = C(4nm� r2, r) (12)

where C(�, r) depends only on r mod 2m. If c(n, r) = 0 for � � 0, then the
the function is a holomorphic Jacobi form.
If c(n, r) = 0 for � > 0, then the the function is a Jacobi cusp form.
If c(n, r) = 0 unless n � 0, then the the function is a weak holomorphic Jacobi
form.

The Jacobi forms we are interested in are theta functions and the generator of
weak Jacobi forms of weight zero and index one �0,1.

Definition 2.3. The four Jacobi theta functions are Jacobi forms of weight
1/2 and index 1/2 defined as:

#1(⌧, z) := �i

X
n2Z

(�1)nyn+1/2q(n+1/2)2/2,

(13)

#2(⌧, z) :=
X
n2Z

yn+1/2q(n+1/2)2/2, (14)
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#3(⌧, z) :=
X
n2Z

ynqn
2
/2, (15)

#4(⌧, z) :=
X
n2Z

(�1)nynqn
2
/2, (16)

To prove these have the desired weight and index, we need theories of multi-
plier systems. However, we will not get in to the details here. And these func-
tions can be rearranged into product formulas:

#1(⌧, z) = �iq1/8y1/2
�
1� y�1

� Y
n>0

�
1� y�1qn

�
(1� yqn) (1� qn) , (17)

#2(⌧, z) = q1/8y1/2
�
1 + y�1

� Y
n>0

�
1 + y�1qn

�
(1 + yqn) (1� qn) , (18)

#3(⌧, z) =
Y
n>0

⇣
1 + y�1qn�1/2

⌘⇣
1 + yqn�1/2

⌘
(1� qn) , (19)

#4(⌧, z) =
Y
n>0

⇣
1� y�1qn�1/2

⌘⇣
1� yqn�1/2

⌘
(1� qn) , (20)

Furthermore, we define the weak Jacobi form of weight zero and index one
and the weak Jacobi form of weight �2 and index one as

�0,1(⌧, z) := 4

✓
#2(⌧, z)2

#2(⌧, 0)2
+

#3(⌧, z)2

#3(⌧, 0)2
+

#4(⌧, z)2

#4(⌧, 0)2

◆
(21)

��2,1(⌧, z) := �#1(⌧, z)2

⌘(⌧)6
(22)

We refer to [10] for the proof of the following lemma that we will use later:

Lemma 2.1. The following statements are true:

1

12
�0,1(⌧, z) + 2⇤2(⌧)��2,1(⌧, z) =

#2(⌧, z)2

#2(⌧, 0)2
(23)

1

12
�0,1(⌧, z)� ⇤2(⌧/2 + 1/2)��2,1(⌧, z) =

#3(⌧, z)2

#3(⌧, 0)2
(24)

1

12
�0,1(⌧, z)� ⇤2(⌧/2)��2,1(⌧, z) =

#4(⌧, z)2

#4(⌧, 0)2
(25)
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2.3 K3 Surfaces

In this section, we state some basic facts about K3 surfaces, the basic notions
can be found in [2][3]. First, we define the notion of the canonical bundle.

Definition 2.4. For any non-singular algebraic variety V of dimension n, the
canonical bundle is defined to be the n � th exterior power of the cotangeant
bundle ⌦ on V . For complex manifolds, the definition coincides with the de-
terminant bundle of holomorphic n-forms.

A (complex analytic) K3 surface is essentially defined to be a compact 2-
dimensional complex manifold with a nowhere vanishing two-form which is
not a complex torus.

Definition 2.5. A K3 surface is a compact two-dimensional complex mani-
fold S with trivial canonical bundle !

S

' O
S

and H1(S,O
S

) = 0.

An example of the K3 surfaces is Fermat quartic surface. It is defined as the
locus of the following polynomial of degree four in complex projective 3-space.

x4 + y4 + z4 + w4 = 0

An important fact about K3 surfaces is that all K3 surfaces are di↵eomor-
phic. Therefore, the topological invariants such as the Euler characteristic,
betti numbers etc. will be identical for all K3 surfaces. We start o↵ our study
with the Hodge diamond of K3, which refer to the dimensions of the Dolbeaut
cohomology groups. Dolbeaut cohomology groups are isomorphic to the co-
herent sheaf cohomology groups, with respect to the sheaf of holomorphic p-
forms.

Hp,q(S) ' Hq(S,⌦p) (26)

For a complex projective variety X, i.e. a closed submanifold of CPn, we have
the Hodge decomposition:

Hn(S,C) =
M

p+q=n

Hp,q(S) (27)

Therefore, the Hodge diamond which is a diamond that juxtaposes the dimen-
sion of hp,q := dim(Hp,q) encodes the information of the cohomology groups
of smooth complex algebraic varieties.The Hodge diamond of a complex sur-
face is as follows:

h2,2

h2,1 h1,2

h2,0 h1,1 h0,2

h1,0 h0,1

h0,0

For K3 surfaces, it computes to be,

5



1
0 0

1 20 1
0 0

1

A proof can be found in [4]. As we can see the only non-trivial cohomology
group is the second cohomology group. The study of moduli spaces states
that the structure of cohomology group determines the isomorphism class of
K3 surfaces, however, we will not get into the details in this paper. Equipped
with the Hodge diamond, we can compute the Euler characteristic of K3 sur-
faces,

�(S) =
X
i

(�1)ihi(S,O
S

) = 1 + 0 + 22 + 0 + 1 = 24. (28)

2.4 Elliptic Genus

Witten defined an important topological invariant called elliptic genus in [1].
We are going to show that the elliptic genus for K3 surfaces is 2�0,1, the weak
Jacobi form of weight zero and index one shown in equation (21). First of all,
we define characteristic classes that characterize vector bundles. Specifically,
we define Chern classes, the Chern character and the Todd class. We refer to
[5] for basic notions about characteristic classes.

Definition 2.6. Given a complex hermitian vector bundle V of rank n on a
smooth manifold M , a representative of each Chern class c

k

(V ) comes from
the coe�cients of the characteristic polynomial of the curvature form ⌦ of V

det(
it⌦

2⇡
+ I) =

X
k

c
k

(V )tk (29)

The right hand side of equation(29) is also called a Chern polynomial. The
determinant is taken over the rings of n ⇤ n matrix with entries of polyno-
mials in t, and the coe�cients are in the even di↵erentiable forms of M . The
expression of Chern class thus expands as:X

k

c
k

(V )tk = [I + i
tr(⌦)

2⇡
t+

tr(⌦2)� tr(⌦)2

8⇡2
t2 + ...] (30)

Now we introduce the Chern characters and the Todd classes:

Definition 2.7. For a line bundle L, the Chern character is defined as:

ch(L) = exp((c1(L))) =
1X

n=0

c1(L)n

n!
(31)

If a complex vector bundle can be written as direct sum of line bundles,

V = L(1)� L(2)� L(n) (32)
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, the Chern character is defined additively:

ch(E) = ec1(L(1)) + ec1(L(2)).. (33)

and thus Chern characters respect the tensor products and direct sums of vec-
tor bundles:

ch(V ⌦W ) = ch(V )ch(W ) (34)

ch(V �W ) = ch(V ) + ch(W ) (35)

Using the fact that c
i

(V ) are elementary symmetric polynomials in formal
variables x

i

and

V =
nX

i=0

c
i

(V ) =
nY

i=1

c(L
i

) =
nY

i=1

(1 + x
i

) (36)

Using theories of symmetric polynomials, we arrive at the following expan-
sion[5]:

ch(V ) = rk(V )+c1(V )+1/2(c1(V )2�2c2(V ))+1/6(c1(V )3�2c1(V )c2(V )+3c3(V ))
(37)

By the Riemann-Roch theorem, for S a K3 surface, c1(S) := c1(TS)

�(S) = 1/12(c1(S)
2 + c2(S)) = 24 (38)

and we know c1(S) = �c1(KS

) = 0, and thus

c2(S) = 24 (39)

Definition 2.8. The Todd class is defined as:

nY
i=1

a
i

1� e�ai
(40)

where a
i

:= c1(Li

) is defined as the Chern roots. We can expand Todd class
explicitly into:

td(V ) = 1 +
c1
2

+
c21 + c2
12

+
c1c2
24

... (41)

Definition 2.9. The elliptic genus of a complex manifold M is defined as

Z
M

=

Z
M

ch(E
q,y

)td(M) (42)

where ch(E
q,y

) is a the Chern character of the formal power series whose coef-
ficients are vector bundles

E
q,y

= y
d
2

1O
n=1

(
^

�y

�1
q

n�1

TM ⌦
^

�yq

n

T ⇤M ⌦
_
q

n

TM ⌦
_
q

n

T ⇤M) (43)

7



where ^
t

(V ) =
X
k�0

^k(V )tk

_
t

(V ) =
X
k�0

_k(V )tk
(44)

It has been shown that[7] since K3 surface S has c1 = 0, Z
M

(⌧, z) is a weak
Jacobi form of weight zero and index dim(S)/2 = 1. It is also known that
Z
M

specializes to Euler characteristic �(S) = 24 when z = 0[8]and that the
space of weak Jacobi forms of weight zero and index one is one dimensional.
Therefore, since �(⌧, 0) = 12,

Z
M

(⌧, 0) = 2�0,1 (45)

The main goal of this paper is to show that the K3 elliptic genus equals a
graded trace of Conway moonshine module.

2.5 Vertex Operator Algebra

In this section we review vertex operator algebras.
Below, we denote R[[z±1]] as the formal power series in z with coe�cients
in the ring R, R[[z]] denotes formal Taylor series with only non-negative co-
e�cients being non-zero, R[z] denotes the polynomial ring and R((z)) =
R[[z]][z�1] denotes the Laurent series in z with coe�cients in R. We are going
to briefly introduce the notion of vertex operator algebra. For further reading,
we refer to the text[11].

Definition 2.10. A super vertex algebra is a super vector space V = V0̄

L
V1̄

equipped with a vacuum 1 2 V0̄, a linear operator

V ! End(V )[[z±1]] (46)

a ! Y (a, z) =
X
n2Z

a(n)z
�n�1 (47)

satisfying the following axioms for a, b, c 2 V :
(1) Y (a, z)b 2 V ((z)) and, if a 2 V0̄ (respectively, a 2 V1̄), then a(n) is an
even (respectively, odd) operator for all n:
(2) Y (1, Z) = Id

V

and Y (a, z)1 2 a+ zV ((z))
(3) [T, Y (a, z)] = @

z

Y (a, z), T1 = 0, and T is an even operator.
(4) If a 2 V

p(a) and b 2 V
p(b) are Z2 homogeneous, there exists an element:

f 2 V [[z, w]][z�1, w�1, (z � w)�1]

depending on a, b, and c, such that

Y (a, z)Y (b, w)c, (�1)p(a)p(b)Y (b, w)Y (a, z)c

8



, and
Y (Y (a, z � w)b, w)c

are the expansions of f in V ((z))((w)), V ((w))((z)), and V ((w))((z � w)),
respectively.

Next we define the notion of a module over a super vertex algebra.

Definition 2.11. A module over a super vertex algebra V is a super vector
space M = M0̄

L
M1̄ equipped with a linear map

V ! End(M)[[z±1]] (48)

a ! Y
M

(a, z) =
X
n2Z

a(n),Mz�n�1 (49)

satisfying the following axioms for a, b 2 V , and u 2 M :
(1) Y

M

(a, z)u 2 M((z)) and, if a 2 V0̄ (respectively, a 2 V1̄), then a(n),M is an
even (respectively, odd) operator for all n:
(2) Y

M

(1, Z) = Id
M

and,
(3) If a 2 V

p(a) and b 2 V
p(b) are Z2 homogeneous, there exists an element:

f 2 M [[z, w]][z�1, w�1, (z � w)�1]

depending on a, b, and u, such that

Y
M

(a, z)Y
M

(b, w)u, (�1)p(a)p(b)Y
M

(b, w)Y
M

(a, z)u

, and
Y
M

(Y (a, z � w)b, w)u

are the expansions of f in M((z))((w)), M((w))((z)), and M((w))((z � w)),
respectively.

Then we can define modules that are twisted by an automorphism of the ver-
tex algebra. Now we consider the special case of ✓ := Id

V0̄

L�Id
V1̄
, a canoni-

cally twisted module over V is defined as follows.

Definition 2.12. A canonically twisted module over V is a super vector space
over V , M = M0̄

L
M1̄ equipped with a linear map:

V ! End(M)[[z±1/2]] (50)

a ! Y
tw

(a, z1/2) =
X
n2 1

2Z
a(n)twz

�n�1 (51)

equipped with twisted vertex operator Y
tw

(a, z1/2) such that satisfying the fol-
lowing axioms for a, b, c 2 V :
(1) Y

M

(a, z1/2)u 2 M((z1/2)) and, if a 2 V0̄ (respectively, a 2 V1̄), then a(n)tw
is an even (respectively, odd) operator for all n:
(2) Y

tw

(1, z1/2) = Id
M

and,

9



(3) If a 2 V
p(a) and b 2 V

p(b) , there exists an element:

f 2 M [[z1/2, w1/2]][z�1/2, w�1/2, (z � w)�1]

depending on a, b, and c, such that

Y
tw

(a, z1/2)Y
tw

(b, w1/2)u, (�1)p(a)p(b)Y
tw

(b, w1/2)Y
tw

(a, z1/2)u

, and
Y
tw

(Y (a, z � w)b, w1/2)u

are the expansions of f in M((z1/2))((w1/2)), M((w1/2))((z1/2)), and M((w1/2))((z�
w)), respectively.
(4)if ✓(a) = (�1)ma, then a(n),tw = 0 for n /2 Z+ (m/2)

We can also enrich the notion of super vertex algebra with representation of
Virasoro algebra. The Virasoro algebra is a Lie algebra spanned by L(m),m 2
Z and central element c, with Lie bracket:

[L(m), L(n)] = (m� n)L(m+ n) +
m3 �m

12
�
m+n,o

c (52)

Definition 2.13. A super vertex operator algebra is a super vertex algebra
containing a Virasoro element ! 2 V0̄ such that if L(n) := !

n+1 for n 2 Z,
then
(5) L(-1) = T
(6)

[L(m), L(n)] = (m� n)L
m+n

+
m3 �m

12
�
m+n,o

cId
v

(7)L(0) is a diagnolizable linear operator, with half-integer eigenvalues bounded
below, with finite dimensional eigenspaces.
(8)the superspace structure on V is recovered from the eigendata of L(0), i.e.
p(a) = 2n(mod2) for L(0)v = nv.

2.6 Cli↵ord Construction of VOA

Next, we construct super vertex operator algebras. There exists a standard
construction from Cli↵ord modules. Now we review some basic facts about
Cli↵ord modules. Consider a complex vector space of even dimension a with
a nondegenerate, symmetric bilinear form <,>. We call a subspace W < a
isotropic if < u, v >= 0, 8u, v 2 W .We call the decomposition into maximally
isotropic subspaces, a = a+ � a� a polarization of a. We define the Cli↵ord
algebra as the quotient algebra T (a)/I(a) and I(a) is the two-sided ideal <
u ⌦ u+ < u, u > 1 > where 1 denotes the unity element in the tensor algebra.
Suppose there is a family of isomorphisms a ! a(n + 1

2 ) for n 2 Z, and we
define the vector space

â =
M
n2Z

a(n+
1

2
) (53)

10



We can extend the nondegenerate, symmetric bilinear form to â by putting
< u(r), v(s) >=< u, v > �

r+s,0. Then, there exists a polarization of â, i.e. a
decomposition of â into maximal isotropic subspaces,â = â+ � â�, where

â+ =
M
n�0

a(n+
1

2
), â� =

M
n<0

a(n+
1

2
). (54)

Similar to the previous discussion, we can define a Cli↵ord algebra Cliff(â) =
T (â)/I(â). And we denote B+ and B� as subalgebras generated by â+ and
â�, respectively. The map �Id : â ! â naturally extends to a linear map
that satisfies (�Id(v))2 = � < v, v > 1 by the definition of Cli↵ord alge-
bra. Therefore, by the universal property of the Cli↵ord algebra, there exists
a unique involution ✓ : Cliff(â) ! Cliff(â). Decompose Cliff(â) according
to the eigenspace of the involution, Cliff(â) = Cliff(â)0 � Cliff(â)1, where
Cliff(â)j denotes the subalgebra with eigenvalue (�1)j .
Now we examine the tensor product of B�-modules: A(a) = Cliff(â)⌦

B

+Cv.
The B+ action of Cv, a one-dimensional vector space is defined as follows:
1v = v, and uv = 0 for u 2 â+. There exists a natural isomorphism:

A(a) '
^

(â�)v (55)

. Define a vertex algebra structure on A(a) by extending the vertex operator
on a(� 1

2 ):

Y (a(�1/2)v, z) =
X
n2Z

a(n+ 1/2)z�n�1 (56)

By reconstruction theorem [11], these vertex operators extend uniquely to a
super vertex algebra structure on A(a).The super space structure comes from
the parity decomposition of the exterior algebra, that is:

A(a)0 '
even^

(â�)v, A(a)1 '
odd^

(â�)v (57)

Choosing an orthonormal basis e
i

for a, the Virasoro element

! =
�1

4

dimaX
i=1

e
i

(
�3

2
)e

i

(
�1

2
)v (58)

gives the super vertex operator algebra structure of A(a) with central charge
c = 1

2dim(a).
A similar construction gives us the twisted A(a)-module A(a)

tw

. Given vector
space a, we have isomorphisms a ! a(n) for n 2 Z.
Define:

â =
M
n2Z

a(n) (59)

Picking the bilinear form and polarization as before. Given a polarization a =
a+ � a�, there is:

11



â+
tw

= a(0)+ �
M
n�0

a(n), â�
tw

= a(0)� �
M
n<0

a(n) (60)

And similarly,

A(a)
tw

'
^

(â�
tw

)v
tw

(61)

The twisted vertex operator

Y
tw

(!, z�1/2) =
X
n2Z

L(n)z�n�2 (62)

equips A(a)
tw

with representation of Virasoro algebra. By the axioms, L(0)
acts diagonizablly and the eigenvalues of the action can be computed to be
contained in Z+ 1

16dim(a).
We also notice that there is an embedding of Cliff(a) in Cliff(â

tw

) as the
subalgebra generated by a(0). Therefore, there is a Cliff(a) action on A(a)

tw

.
And the Cliff(a) sub-module generated by v

tw

is the unique nontrivial ir-
reducible representation of Cliff(a) in A(a)

tw

. We denote this subspace of
A(a)

tw

by CM. Restricting the isomorphism (61), we have:

A(a)
tw

'
^

(
M
n<0

a(n))⌦ CM,CM '
^

(a(0)�)v
tw

(63)

2.7 Spin Group

Spin group Spin(n) is defined as the simple-connected double cover of the Lie
Group SO(n), i.e. there exists a short exact sequence of Lie groups:

1 ! Z2 ! Spin(n) ! SO(n) ! 1 (64)

First we construct it as a subgroup of the group of invertible elements in the
Cli↵ord algebra Cliff(a). Define the main automorphism ↵ of Cliff(a) as an
automorphism such that ↵(u1....uk

) = u
k

....u1 where u
i

2 a. The spin group is
defined as the set of even invertible elements in Cliff(a) such that ↵(x)x = 1,
i.e. the invertible element x of Cliff(a) such that xux�1 2 a whenever u 2 a.
It is possible to construct elements of Spin(a) explicitly. Elements of the form
1
2 (uv � vu) 2 Cliff(a), spans a simple Lie algebra of type D

c

, where c =
1
2dim(a), and the exponential map generates the Lie group Span(exp( 12 (uv �
vu)). Choose a+, a� 2 a such that a+ and a� are isotropic and < a+, a� >=
1. The expression X := i

2 (a
�a+ + a+a�) satisfies X = �1. Therefore, the

Taylor expansion gives us e✓X = cos(✓)1+ sin(✓)X.
Define the map x that sends u 2 a to xux�1 that belongs to SO(a). Then the
assignment x ! x(�) is a group homomorphism from Spin(a) to SO(a) with
kernel ±1. We denote ĝ 2 Spin(a) as a lift of g 2 SO(a) if ĝ(�) = g.
Following the definition, X acts on a± as follows:

Xa± = ±ia± = �a±X (65)

12



, so
e✓X(a±) = e✓Xa±e�✓X = e±2✓ia± (66)

Therefore, e✓X is a lift of the orthogonal transformation that acts on a± by
multiplication by e±2✓i and acts as identity on other basis elements.
For future reference, by definition Xv

tw

= iv

tw

, so the action of eaX 2
Spin(a) on v

tw

is given by: eaXv

tw

= eaiv
tw

.
There is a natural action of Spin(a) on A(a). If a 2 A(a) has the form a =
u1(�n1 + 1/2)u2(�n2 + 1/2).., the spin group element x 2 Spin(a) acts as

xa = x(u1)(�n1 + 1/2)x(u2)(�n2 + 1/2)... (67)

Due to the isomorphism in equation (63), we can identify an element of A(a)
tw

as u1(�n1)u2(�n2)... ⌦ y where u
i

2 a and y 2 CM . Thus the natural action
is as follows,

x(u1(�n1)u2(�n2)...⌦ y) = x(u1)(�n1)x(u2)(�n2)...⌦ xy (68)

Observe that if x 2 Spin(a) is a lift of �Id(a), then v

tw

2 CM satisfies
xv

tw

= ±i

c

v

tw

. Thus there exists a polarization that distinguished one unique
lift z of �Ida such that zv

tw

= i

c

v

tw

.Therefore, z acts with order two on a 24
dimensional vector space, so its eigendata recovers the superspace structure of
A(a).
Next, we define the Conway group Co0. We first learn some properties of lat-
tices.
Lattices are can be understood as generalization of the center points of a
sphere packing, which are generated by finitely many number of points. The
main reference on this topic is [12]

Definition 2.14. A lattice in Rn is a discrete abelian group that is a free
Z-module of finite rank n, L ' Zn, equipped with symmetric bilinear form
< ., . > that takes values in Z.

Given a field k of characteristic zero, the bilinear form < ., . >: L ⌦Z L ! L
extends uniquely to the n-dimensional vector space over k: L⌦Z k. The signa-
ture of the lattice is a pair (r, s) where r refers to the maximal dimension of a
positive-definite subspace of L⌦Z R, and s refers to the maximal dimension of
the negative-definite subspace of L ⌦Z R. Call n the rank of L, if n = r + s,
then we call L non-degenerate. If s = 0, we call L positive-definite. If r = 0,
we call L negative-definite.
Then we define the dual of L as follows:

L⇤ := {� 2 L⌦Z Q|h�, �i 2 Z, for all � 2 L} . (69)

We call L self-dual if L⇤ = L.
Given � 2 L, we call < �,� > the square-length of �. A lattice L is called
even if all its square-lengths are even integers. The set of elements in an even
lattice L with square-length ±2 is called a root system. Some examples are
the D4 lattice and the Leech lattice.

13



Definition 2.15. A D4 lattice is a lattice whose vertices lie in Z4: (i,j,k,l)
such that the sum of coordinate components is even, i.e. i+ j + k + l 2 2Z.

Definition 2.16. The Leech lattice ⇤ is the unique self-dual positive definite
even lattice of rank 24 with no roots, and Conway group is defined as Co0 :=
Aut(⇤).

The uniqueness of Conway group was proven by Conway.[13] Conway group
has order 8,315,553,613,086,720,000. However, it is not simple, its quotient by
its center Co1 := Co0/± {Id} is the largest Conway sporadic simple group.
A choice of identification a = ⇤⌦C gives an embedding of Co0 in SO(a. Given
a choice of such identification, we write G for the subgroup of SO(a) isomor-
phic to Co0. We call �

g

the character of the corresponding representation of
G.

�
g

:= trag. (70)

Given a subgroup H < SO(a), we call Ĥ < Spin(a) is a lift of H if the nat-
ural map between Spin(a) and SO(a) restricts to an isomorphism between H
and Ĥ.

Theorem 2.2. Let G < SO(a), and suppose G is isomorphic to Co0, then
there is a unique lift of G to Spin(a).

For the proof, we refer to [12]. The theorem guarantees that there is a unique
action of the copy of Conway group G on A(a) and A(a)

tw

.

3 Main Result

3.1 Conway Moonshine Module

In this section, we are proving that the trace of the Conway moonshine mod-
ule is the elliptic genus. In order to compute the trace, we first construct the
Conway moonshine module. The Conway moonshine module is constructed
via the construction of a distinguished super vertex operator algebra V s\ and
its unique canonically twisted module V s\

tw

. There is an action of Conway
group on both V s\ and V s\

tw

and in this section we show that they indeed carry
the super vertex operator algebra structures. We recall that given a 24-dimensional
vector space a, there is a polarization a = a� � a+. Given such a polarization,
there is an associated lift of �Ida, z so that zv

tw

= v

tw

. The decomposition of
A(a)

tw

is given by the eigenspace of z, where zA(a)j
tw

= (�1)jA(a)j
tw

:

A(a)
tw

= A(a)0
tw

�A(a)1
tw

. (71)

Now, A(a)0 is a vertex operator algebra and A(a)
tw

is a A(a)0-module.Therefore,
we have the construction of A(a)0-modules.

V s\ = A(a)0 �A(a)1
tw

(72)

V s\

tw

= A(a)0
tw

�A(a)1 (73)
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The following theorem gives these modules super vertex operator algebra and
canonically twisted module structures, respectively. A proof can be found in
[12].

Theorem 3.1. The A(a)0-module structure on V s\ extends uniquely to a su-

per vertex operator structure on V s\, and the A(a)0-module on V s\

tw

extends
uniquely to a canonically twisted V s\-module structure

Now we note that there is an action of Conway group on V s\ and V s\

tw

. As we
see in the spin group section, there are natural actions of Spin(a) on V s\ and
V s\

tw

since there are natural actions of them on A(a)j and A(a)j
tw

. This action
repsects the super vertex algebra structure and the canonically twisted mod-
ule structure in the last theorem. Now, given the identification a = ⇤⌦Z C, we
have a copy of Conway group Aut(⇤) in SO(a), and thus lifted to Spin(a).
Since there is a unique natural isomorphism induced by the lifting map as
shown in Theorem 2.2 , the Spin(a) action restricts to the CO0 action.
We can consider the graded trace of actions associated of Spin(a since it pre-
serves the L(0)-grading. First we show that the supertrace of x 2 Spin(a)
is

str
A(a)(xq

L(0)�c/24) = tr
A(a)(xzq

L(0)�c/24) =
⌘
x̄

(⌧/2)

⌘
x̄

(⌧)
(74)

,where for g 2 SO(a)

⌘
g

(⌧) = q
24Y
i=1

Y
n>0

(1� ✏
i

qn) (75)

, where q = e2⇡i⌧ and ✏
i

is the eigenvalue of the action of g on a. First, we
introduce the grading by J(0) on A(a) and A(a)

tw

. For V a vertex operator
algebra, given an element | 2 V , and that L(0)| = |, and

[J(m), J(n)] = k�
m+n,0IdV , k 2 C (76)

, then J(0) is called a U(1) element of level k, and by definition, the grading
of L(0) is preserved. Therefore, if J(0) is diagonalizable, then there exists a
bigrading

V
n,r

:=
�
v 2 V | �L(0)� c

24

�
v = nv, J(0)v = rv

 
(77)

Similarly, for a canonically twisted module V
tw

(V
tw

)
n,r

:=
�
v 2 V

tw

| �L(0)� c
24

�
v = nv, J(0)v = rv

 
(78)

. Consider the isotropic element a±1 , a
±
2 such that < a±

i

, a⌥
j

>= �
i,j

, we have
the following lemma. A proof can be found in [10].

Lemma 3.2. For

| =
1

2

2X
i=1

a�
i

(�1/2)a+
i

(�1/2)v 2 A(a), (79)

it is a U(1) element of level 2, and J(0)v = 0, and J(0)vtw = vtw
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3.2 A Graded Trace of Conway Moonshine Module

Now we proceed to compute the following trace:

�
g

:= �tr
V

s\
tw
zbgyJ(0)qL(0)�c/24 (80)

for g 2 CO0. The main theorem of this paper is going to show that the trace
�
e

is the K3 elliptic genus Z
S

= 2�0,1(⌧, z). First we ought to show that it
can be written as a certain combination of theta functions and ⌘

g

s.

Theorem 3.3.

�
e

= � 1

2

✓
#4(⌧, z)2

#4(⌧, 0)2
⌘
e

(⌧/2)

⌘
e

(⌧)
� #3(⌧, z)2

#3(⌧, 0)2
⌘�e

(⌧/2)

⌘�g

(⌧)

◆
- 1

2(
#2(⌧,z)2

#2(⌧,0)2
C�e⌘�e(⌧))

Proof: To compute

tr
A(a)q

L(0)�c/24yJ(0) = tr^(a�)vq
L(0)�c/24yJ(0) (81)

We make use of the definition of â

tr^(a�)vq
L(0)�c/24yJ(0) = tr^(a(�1/2)�a(�3/2)...)vq

L(0)�c/24yJ(0) (82)

We make use of the fact that
V
(V �W ) =

V
(V )⌦V

(W )

tr^(a(�1/2)�a(�3/2)...)vq
L(0)�c/24yJ(0) = tr^(a(�1/2))v⌦^(a(�3/2))v⌦...

qL(0)�c/24yJ(0)

(83)
Since trace is additive and multiplicative

tr^(a(�1/2))v⌦^(a(�3/2))v⌦...

qL(0)�c/24yJ(0) = tr^(a(�1/2))vq
L(0)�c/24yJ(0)tr^(a(�3/2))vq

L(0)�c/24yJ(0)...
(84)

We expand the vector space in question into basis elements since we know how
these operators act on v and e

i

(�n
i

+ 1/2), make use of equation (19), we got

= tr^(
L24

i=1 <ei(�1/2)>)vq
L(0)�c/24yJ(0)tr^(

L24
i=1 <ei(�3/2)>)vq

L(0)�c/24yJ(0)...

(85)

= q�1/2
Y

n2Z+

(1 + y�1qn�1/2)2(1 + yqn�1/2)2(1 + qn�1/2)20

=
#3(⌧, z)2

#3(⌧, 0)2
⌘�e

(⌧/2)

⌘�e

(⌧)

Along the same line of logic, further decompose eigenspace into eigenspace of
J(0), we have

tr
A(a)zq

L(0)�c/24yJ(0) = q�1/2
Y
n>0

(1� yqn�1/2)2(1� y�1qn�1/2)2(1� qn�1/2)20

(86)
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tr
A(a)1q

L(0)�c/24yJ(0) =
#4(⌧, z)2

#4(⌧, 0)2
⌘
e

(⌧/2)

⌘
e

(⌧)
(87)

Therefore,

tr
A(a)1zq

L(0)�c/24yJ(0) =
1

2
(
#3(⌧, z)2

#3(⌧, 0)2
⌘�e

(⌧/2)

⌘�e

(⌧)
� #4(⌧, z)2

#4(⌧, 0)2
⌘
e

(⌧/2)

⌘
e

(⌧)
) (88)

Now, we consider the twisted case, we note that L(0)v
tw

= 3/2vtw, J(0)v
tw

=
v

tw

tr
A(a)twq

L(0)�c/24yJ(0) = trV(a�
tw)vtw

qL(0)�c/24yJ(0) (89)

= trV(a(0)��a(�1)�a(�2)...)vtw
qL(0)�c/24yJ(0) (90)

Follow similar logic, with L(0)a(n) = na(n), J(0)a±
i

= ±a
i

, i > 10, J(0)a±
i

=
0a

i

, i  10 , we get,

tr
A(a)twq

L(0)�c/24yJ(0) = qy
Y
n>0

(1+y�1qn�1)2(1+yqn)2
Y
n>0

(1+qn�1)10(1+qn)10

(91)

=
#2(⌧, z)2

#2(⌧, 0)2
C�e

⌘�e

(⌧)

where, C�e

(⌧) = 212 Similarly,

tr
A(a)twzq

L(0)�c/24yJ(0) = qy
Y
n>0

(1�y�1qn�1)2(1�yqn)2
Y
n>0

(1�qn�1)10(1�qn)10 = 0

(92)
Therefore,

tr
A(a)0tw

qL(0)�c/24yJ(0) = �1/2
#2(⌧, z)2

#2(⌧, 0)2
C�e

⌘�e

(⌧) (93)

Combining this with the trace of the A(a)1, we have proven the theorem.

Now the final step is to show that the expression indeed coincides with K3
elliptic genus.

Theorem 3.4.

�
e

(⌧, z) = 2�0,1(⌧, z) (94)

Proof: Consider the following construction:

F
e

(⌧) = 1/2⇤2(⌧/2)
⌘
e

(⌧/2)

⌘
e

(⌧)
� 1/2⇤2(⌧/2 + 1/2)

⌘�e

(⌧/2)

⌘�e

(⌧)
� ⇤2(⌧)C�e

⌘�e

(⌧)

(95)
To prove the theorem, we first need to show that:

�
e

(⌧, z) = 2�0,1(⌧, z) + F
e

(⌧)��2,1(⌧, z) (96)
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Plug in expression for F , we rearrange the right hand side to the following:

2�0,1(⌧, z) +
1

2
⇤2(⌧/2)

⌘
e

(⌧/2)

⌘
e

(⌧)
��2,1(⌧, z)

�1

2
⇤2(⌧/2 + 1/2)

⌘�e

(⌧/2)

⌘�e

(⌧)
��2,1(⌧, z)

�⇤2(⌧)C�e

⌘�e

(⌧)��2,1(⌧, z)

Now, we make use of the observation that:

48� ⌘�e

(⌧/2)

⌘�e

(⌧)
+

⌘
e

(⌧/2)

⌘
e

(⌧)
+ C�e

⌘�e

(⌧) = 0 (97)

Therefore, we subtract the previous expression by 1/24 ⇤ 0 ⇤ �
e

, with zero as
above we got right hand side of the expression as:

1

24
�0,1(⌧, z)� 1

2
⇤2(⌧/2)��2,1(⌧, z))

⌘
e

(⌧/2)

⌘
e

(⌧)
+✓

1

24
�0,1(⌧, z)� 1

2
⇤2(⌧/2 + 1/2)��2,1(⌧, z)

◆
⌘�e

(⌧/2)

⌘�e

(⌧)

�(
1

24
�0,1(⌧, z) + ⇤2(⌧)��2,1(⌧, z))C�e

⌘�e

(⌧)

Apply lemma 2.1, we can prove that the expression does coincide with the ex-
pression of �

e

that we have, it remains to show that F
e

(⌧) = 0
In order to prove this fact, we want to write everything in terms of ✓3 :=
✓3(⌧, 0) and ✓4 := ✓4(⌧, 0). In order to do that, we show some preliminary
formulas about theta-functions:

⌘�e

(⌧/2)

⌘�e

(⌧)
=

✓24
⌘(⌧)12

(98)

⌘
e

(⌧/2)

⌘
e

(⌧)
=

✓23
⌘(⌧)12

(99)

212⌘�e

(⌧) =
✓122

⌘(⌧)12
(100)

Also, since ⇤2(⌧) is theta series of D4 lattice and ⇤2(⌧/2) is theta series of
the dual D4 lattice, we know that:

⇤2(⌧/2) = ✓43 + ✓42 (101)

⇤2(⌧/2 + 1/2) = ✓44 � ✓42 (102)

⇤2(⌧/2) =
1

2
✓43 +

1

2
✓42 (103)
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Therefore,making use of the identity that ✓42 = ✓43 � ✓44, we deduce,

F
e

(⌧) ⇤ 2⌘(⌧)2 =
1

2
(✓43 + ✓44)� 1/2(2✓44 � ✓43)� 1/2(✓43 + ✓44)(✓

4
3 � ✓44)

3 = 0 (104)

q.e.d.

Therefore, we have shown that there is indeed a coincidence between Conway
moonshine module and K3 surfaces, namely

Z
K3 = �tr

V

s\
tw
zyJ(0)qL(0)�c/24 (105)

4 References

[1] P. S. Landweber (ed.), Elliptic curves and modular forms in algebraic topol-
ogy, Lecture Notes in Mathematics, vol. 1326, Springer-Verlag, Berlin, 1988.
MR 970278
[2] P. Gri�ths and J. Harris, Principles of Algebraic Geometry, Wiley-Interscience,
1978.
[3] Huybrechts, D.; Lehn, M. Moduli Spaces on K3 Surfaces. The Geometry of
Moduli Spaces of Sheaves 166–192.
[4]Aspinwall, P.S.: K3 surfaces and string duality. Fields. strings and duality
(Boulder, CO, 1996), pp. 421–540. World Sci. Publ, River Edge (1997)
[5] Allen Hatcher, Vector Bundles and K theory,
https://pi.math.cornell.edu/ hatcher/VBKT/VB.pdf
[6] Duncan, J.F.R., Gri�n, M.J., Ono, K.: Moonshine. Res. Math. Sci. 2, 11
(2015)
[7]. R. Dijkgraaf, G. Moore, E. Verlinde, and H. Verlinde, Elliptic genera of
symmetric products and second quantized strings, Commun. Math. Phys. 185
(1997), 197–209.
[8]. V. Gritsenko, Elliptic genus of Calabi-Yau manifolds and Jacobi and Siegel
modular forms, Algebra i Analiz 11 (1999), no. 5, 100–125. MR 1734348 (2001i:11051)
[9] Dabholkar, A., Murthy, S., Zagier, D.: Wall crossing, and mock modular
forms, Quantum Black Holes (2012)
[10]. J. F. R. Duncan and S. Mack-Crane, Derived Equivalences of K3 Sur-
faces and Twined Elliptic Genera, Research in the Mathematical Sciences vol-
ume 3, Article number: 1 (2016) (2015).
[11] E. Frenkel and D. B. Zvi, Vertex Algebras and Algebraic Curves, 2nd
edn, Mathematical Surveys and Monographs, 88 (American Mathematical So-
ciety, Providence, RI, 2004)
[12]. Duncan, J.F.R., Mack-Crane, S.: The Moonshine module for Conway’s
group. Forum of Math., Sigma, 3 (2014)
[13]. Conway, J.H.: A characterisation of Leech’s lattice. Invent. Math. 7,
137–142 (1969).

19


