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Abstract 

Automatic Strut Detection of Bioresorbable Stent from Optical Coherence Tomography Images 

By Tianli Han 

 

Detection of stents is used for 3D reconstruction of vessel lumens which is important to provide 

reliable medical analysis. The detection is mainly based on medical images such as OCT. A huge 

set of image data from hundreds of patients make tedious manual detection unaffordable. In 

this paper, we propose a new automatic detection algorithm which has a considerable 

improvement. In most cases, the algorithm can automatically find all stent structures without 

any error. 
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1. Introduction

1.1 Bioresorable Stents

Angioplasty is an endovascular procedure to widen narrowed or obstructed arteries or

veins, typically to treat arterial atherosclerosis. An empty, collapsed balloon, known as a

balloon catheter, is passed over a wire into the narrowed locations and then inflated to a

fixed size. The balloon forces expansion of the stenosis within the vessel and the surrounding

muscular wall, opening up the blood vessel for improved flow, and the balloon is then deflated

and withdrawn. A stent may be inserted at the time of ballooning to ensure the vessel remains

open.

Figure 1: Balloon angioplasty

(Image source: http://virchicago.com/peripheral-artery-disease/)
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In the 1970s and 1980s, interventional cardiologists confronted two of the main problems

associated with angioplasty: elastic recoil and neointimal hyperplasia. Implantation of the

stent appeared to reduce the occurrence of these potential symptoms. The concept of using

an implantable prosthetic device to maintain the luminal integrity of diseased vessels came

much earlier when laureate Alexis Carrel delivered his 1912 Nobel lecture where he described

experiments with glass and metal tubes covered with paraffin that were inserted into canine

thoracic aortae.[1] The idea was reintroduced by Charles Dotter in 1964, when he suggested

that the temporary use of a silicone elastomer endovascular splint could maintain an adequate

lumen after the creation of a pathway in a previously occluded vessel.[2]

However, various challenges suppressed any optimism that early stents might have a role

to play in atherosclerotic vascular disease. One of them was the material chosen for the stent.

The advent of metallic stents reduced restenosis to 20-30% from 50% noted with plain old

balloon angioplasty. In the 1990s, metallic drug-eluting stents constrained restenosis within

10%. A drug-eluting stent (DES) is a scaffold placed into narrowed, diseased coronary ar-

teries that slowly releases a drug to block cell proliferation. This prevents fibrosis that,

together with thrombi, could otherwise block the stented artery, a process called restenosis.

Nonetheless, metal stents had their downside as well. Metal stents are associated with acute

and late thrombosis, need for long-term dual antiplatelet therapy and lasting impact of a

metal scaffold in the artery interfering with adequate computed tomography (CT) or mag-
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netic resonance imaging (MRI), vascular remodeling, and coronary vasomotion (including

endothelial function).

Extensive stenting also makes future coronary artery bypass graft (CABG) procedures

difficult, if not impossible.[3] CABG is one treatment for coronary heart disease (CHD).

During CABG, a healthy artery or vein from the body is connected, or grafted, to the

blocked coronary artery. The grafted artery bypasses the blocked portion of the coronary

artery. This creates a new path for oxygen-rich blood to flow to the heart muscle.

Figure 2: Coronary artery bypass graft

(Image source: http://www.kulvinderlall.com/coronary-artery-bypass-grafting.php)

For the last decade, initial experiences with different types of bioresorbable stents to

replace metal stents have been under intense study. A bioresorbable stent is a stent manu-
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factured from a material that may dissolve or be absorbed in the body. Bioresorbable stents

have potential advantages including reduced or abolished late stent thrombosis, improved

lesion imaging with computed tomography or magnetic resonance, facilitation of repeat treat-

ments (surgical or percutaneous) to the same site, restoration of vasomotion, and freedom

from side-branch obstruction by struts and from strut fracture-induced restenosis.[4] The

BVS (Bioresorbable Vascular Scaffold) everolimus-eluting stent from Abbott Vascular is the

first bioabsorbable stent to have clinical and imaging outcomes similar to those metallic

drug-eluting stent (DES) implantation for more than 5 years but with the potential possi-

bility of full-stent absorption. One of the Abbott’s products, the AbsorbTM Bioresorbable

Vascular Scaffold was used in the patients from whom the OCT images in our research were

attained.

Figure 3: Bioresorbable Vascular Scaffold

(Image source: http://hkhearts.com/en/coronary-heart-surgery.html)
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1.2 OCT

Optical coherence tomography (OCT) is a tissue-imaging modality of imaging the internal

cross-sectional microstructure of tissues using measurements of optical backscattering or

backreflection. It was first demonstrated in 1991.[5] OCT was initially applied for the eye

as an example of transparent, weakly scattering media in 1993.[6] In late 1990s, advances in

OCT technology have made it possible to image nontransparent tissues, thus enabling OCT

to be applied in a wide range of medical specialties.[7] One of the most important advances

was the use of longer wavelengths where optical scattering is reduced. By performing OCT

imaging at 1300-nm wavelengths, image penetration depth of 2 to 3 mm can be achieved

in most tissues. Studies have indicated that OCT is a useful method to assess both blood

vessel morphology and the response of a vessel to a deployed stent.[8] OCT enables the

noncontact, noninvasive imaging for a segment of blood vessel. These 2-dimension images can

be reconstructed to form a 3-dimension model which is more intuitive for medical diagnosis.
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Figure 4: OCT imaging of the bioresorbable scaffolds(A) and metallic platform stents(B).

(Image source: http://eurheartj.oxfordjournals.org/content/32/3/294)

1.3 Purpose of This Research

Detection of stent struts imaged in vivo by optical coherence tomography (OCT) after

percutaneous coronary interventions (PCI) and quantification of in-stent neointimal hyper-

plasia (NIH) are important. In a recent project led by Habib Samady from Emory University

and Georgia Tech, the results of the detection are used to reconstruct the 3D geometry of

a deployed stent in a vessel lumen. An accurate 3D model improves computational fluid

dynamics (CFD) simulations which can describe the wall shear stress (WSS) and other

quantities inside a stented coronary artery. This is useful to analyze the potential risk of the
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stent. The large set of OCT image data makes tedious manual detection unaffordable. Thus

an auto-detection algorithm is indispensable.

Researchers from Europe have observed that OCT cross-section images which contain

metallic stent struts, generally include shadows behind the struts (see Figure 4(B)).[9-10]

According to their discovery, analyzing the angular intensity energy distribution in the region

of interest (ROI) provides clues to these shadows. To build such an energy map, rays from

the image center are extended and the intersection points of these rays and the splines are

computed. Interpolation of these two intersection coordinates (Figure 5(a)) and summation

of corresponding image intensity values define the energy on a ray. Energy distribution over

all the rays are analyzed: falling and rising of energy on these rays indicates the presence

and absence of strut shadows. A strut on a shadow ray is the maximum bright intensity

pixel group (Figure 5(b)).
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(a) The ROI with start and end points (b) Detected struts

Figure 5: Related research from Europe[9-10]

However, in our OCT images of bioresorable stents, the kind of shadows exist only behind

a few struts and are generally obscure (see Figure 4(a)) which means the method mentioned

above may have a low accuracy in detecting struts in our cases. As a result, a new detection

algorithm aimed at bioresorable stents is necessary to be created. A first attempt is the work

by Shannon Buckley from Emory University. He created a MATLAB R© algorithm that uses

the image processing toolbox to automatically identify bioresorable stent structures in the

OCT images. Although the algorithm provided an innovative idea to use binary images for

the detection, it is not stable from image to image and does not eliminate error detection.

In this research, we improve the effectiveness of Buckley’s method.
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From section 2, we first discuss the pre-processing stage. Then a first time and a second

time detection algorithm are explained in details. After each of them, a different elimination

method is necessary to provide to correct the errors. Before showing the results, a brief

manual patching is presented as the last remediation. The following is a concise flow chart

for our algorithm.
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1.4 Related Work

Buckley’s work does not rely on the shadows typically in OCT images of metallic stents.

His code is modified from a publicly shared shape recognition program first written by Ahmed

Samieh Abd El-Wahab from Al-Azhar University. There are eight steps to identify the stent

structure locations in the artery.

Step 1: Read image into program

Step 2: Convert image from RGB into grayscale

Step 3: Find grayscale threshold and convert the image to binary

Step 4: Invert the binary image

Step 5: Find boundaries

Step 6: Determine object properties

Step 7: Plot stent boundaries and return the arrays of the boundaries’ coordination

Step 8: Plot centroids of the stent and return the arrays of centroid values

All these steps are part of the new algorithm and details will be discussed in Section 3.

Thanks to Buckley’s idea, our research can overcome the obstacles at an early stage.
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2. Pre-processing

Not all of an OCT image is the region of interest. The most important part lies along

the vessel wall where all the stents are located (see Figure 4(a)). Restricting the zone to a

small but critical area can avoid meaningless search and immensely reduce the uncorrected

detection.

2.1 Lower Part

The first step of our algorithm is to read in an image. One of the parameters of our auto-

detection function is ImageFile, which is the variable name of the OCT image to detect.

Then the function imread() saves the image as an RGB image named RGB ORIGINAL. We

have observed that in most images, the vessel wall is positioned at the upper center part.

Thus the lower part of the image as well as the margin, can be cut out at the pre-possessing

stage. We can easily use MATLAB R© built-in function imcrop(RGB ORIGINAL,[100 50 800

700]) to realize it. Here, 100 and 50 are the x and y values respectively as the coordination

of the upper left corner point for the cropped image. 800 and 700 are the length and width

of the new image.
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(a) Before cut (b) After cut

Figure 6: Lower Part Cut

2.2 Circle and Line

The center of every OCT image is also the center of a circle which is the image of the

catheter. The circle’s radius varies in different data sets of OCT images and remains the

same in one set. A typical OCT image comes with a line which enables the catheter to align

all the cross-sectional images. Similarly, in one set of images, the line keeps unchanged. Since

the circle and the line are definitely not part of the stents structure, they can be covered

by setting the areas black. Later in the main procedure, we only recognize the bright area.

Consequently, the circle and line region will be ignored.
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(a) Before cut (b) After cut

Figure 7: Circle and line cut

2.3 Bright Region

One important observation is that the blood vessel wall is always the most bright area in

an OCT image. By detecting the bright region, we can precisely extract the wall and thus

the stents nearby into the region of interest. First, the original image is transferred into the

gray scale. Then the grayscale image is changed to a binary image using the built-in function

im2bw(). im2bw() takes in a grayscale image and a threshold. The threshold is automatically

derived by the MATLAB R© function graythresh().[11] The input of the function should be a

grayscale image.

We can manipulate the grayscale image by MATLAB R© function imadjust(GRAY CROP,[0
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0.5],[0.5 1],1). The function has four input parameters and returns the adjusted grayscale

image as a variable. The first parameter is the image variable that a user wishes to adjust.

Here, it is GRAY CROP. The next two parameters are the range of intensity values from

the input image GRAY CROP and the the range of intensity values the user wishes to map

them to for the output image. For example, in our code we wish to map the values in the

range 0 to 0.5 to values in the range 0.5 to 1. These ranges were chosen through a trial and

error approach in order to adjust the image to a brighter contrast and bring out finer details

that were previously lost due to lower intensity values. The final parameter is a gamma value

that specifies the shape of the curve used to map the input intensity values to the output

intensity values. If gamma is equal to 1, the curve is linear. If gamma is less than 1, the

curve is weighted towards higher intensity values. If gamma is greater than 1, the curve is

weighted towards lower intensity values. A high gamma value helps to keep only the most

bright part and discard the rest. The resulted image eliminates all the noise and focuses

exclusively on the vessel wall region. Figure 8 compares the binary image of a high gamma

value with that of a low gamma value.
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(a) High Gamma Value (here used) (b) Low Gamma Value

Figure 8: Binary Image

Based on the binary image so far, we want to build a mask to form a region of interest

(ROI) for our stent detection. Because the first time detection is relatively accurate and

devoid of error, the black part can be increased as large as possible to enclose more area

into our ROI. The MATLAB R© function strel() creates a morphological structuring element.

It can be used as a handle for the built-in function imerode() to expand the binary image.

The first parameter of strel() is the shape of the structuring elements. Our code uses ’disk’

because it is most suitable for the vessel’s shape. The second parameter specifies the radius.

Here we use a relatively large number, 36 through a trial and error approach. The region is

then inverted to form a white ring which is used as the mask for the grayscale image.
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(a) The binary ring mask (b) Masked grayscale image

Figure 9: Mask of ROI

3. Detection Algorithm

3.1 From RGB to Binary

In an RGB image, each pixel contains three sets of information: hue, saturation and

intensity values. Hue values are the property of light by which the color of an object is

classified as red, green, or blue in reference to the color spectrum. Saturation values are

the colorfulness of a color. A high saturation value means the color looks bright whereas a

low value means the color appears dark. Intensity values are given in a range from 0 to 1,
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where 0 represents a complete absence of light(black) and 1 represents a complete presence

of light(white).

RGB image contains abundant information which makes the graph vivid. However, when

it comes to auto-detection, the majority of the information is redundant. We can simplify the

problem by converting a RGB image to a binary image in which each pixel is either 1(white)

or 0(black). The simplification reduces to a great extent the uncontrollability of the diverse

parameters in processing the image data obtained from assorted sources of patients.

In the pre-processing stage, a masked grayscale image called GRAY BOUNDARY has

already been generated. We can use imadjust() and im2bw() on it directly to construct a

masked binary image. We found through trial and error approach that an input intensity

range from 0 to 0.5, an output intensity range from 0.8 to 1 and a gamma value of 1 brings

out the best mapping for the image recognition purposes in the first time detection. The

new image variable ADJUST NOISE is the adjusted grayscale image that is converted to a

binary image BW NOISE N in the next step. Now the stent outlines have intensity values

of 1 so for the algorithm to recognize them, we need to invert the image and give the values

of 0. The ∼ symbol inverts all of the pixels’ intensity values turning 1’s into 0’s and 0’s into

1’s.

Furthermore, the bwareaopen() function is used to reduce background noise in our image.

It takes in a binary image and a threshold number. It uses this threshold to convert any
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grouping of contiguous white pixels, whose total number is less than the threshold, to black.

Our code uses the inverted binary image BW NOISE, and a threshold of 50 pixels. Thus

any white areas composed of fewer than 50 pixels will be converted to black. We know that

a stent structure’s interior will generally be composed of more than 50 pixels so any object

composed of fewer pixels is unnecessary for our computations and is just background noise.

(a) Before noise reduction (b) After noise reduction

Figure 10: Noise reduction
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3.2 Edge Detection

At this point we now have the image in the format of binary and can apply the MATLAB R©

boundary finding function bwboundaries():

[boundary stent,region stent] = bwboundaries(BW FINAL, ’noholes’);

It uses a binary image as its input parameter. The image must have the pixels of objects

contain the value 1 and background pixels contain the value 0. In our code, this is the finalized

inverted binary image BW FINAL. The function then returns two matrices containing the

boundary information. The first matrix is a cell array with Z cells, where Z is the number of

objects found in the image. Each cell contains a Y-by-2 matrix where each row contains the

row and column coordinates of a boundary pixel. Y is the number of boundary pixels found

for an object. In the code this matrix is designated as boundary stent. The second matrix

is a label matrix, which is designated as region stent. This is a two-dimensional array of

nonnegative integers that represents contiguous regions in the image. Region k is the set of

all elements of region stent that have the value k. This array is then used in the next step

to compute the properties of the objects that were found. The ’noholes’ parameter of this

function is used to specify for the algorithm not to search for objects within other objects

since there will be no stents inside other stents in our images.

The original boundary stent captures the outline of the entire image as its first object so

we need to remove it via the instruction:
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boundary stent = boundary stent(2:length(boundary stent));

Our code plots the outline of each labeled object which is neither too large nor too small

and returns the array of the outline’s coordination. This is realized by a simple for loop:

f o r i = 1 : l ength ( boundary stent )

G = boundary stent { i } ;

i f l ength (G) <= 250 && length (G) > 10

X = G( : , 2 ) ;

Y = G( : , 1 ) ;

p l o t (X, Y) ;

end

end

Any object with an edge longer than 250 or shorter than 10 will be eliminated from

our potential candidates. From Figure 6, it can be discovered that the code is helpful in

removing some wrong candidates but can not eradicate them. Moreover, by examining the

whole picture, as shown in Figure 7, there still exist numerous errors which cause the severe

inaccuracy of the auto-detection. This can be solved in the error elimination process.
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(a) Before elimination (b) After elimination

Figure 11: Edge Elimination

3.3 Centroid Plot

MATLAB R© offers a built-in function regionprops() that takes a label matrix, region stent,

and computes a set of properties about each labeled object:

STATS = regionprops(region stent, ’all’);

The function returns the properties in a P-by-1 array, STATS, where P is the number of

objects labeled in region stent. The property that is concerned here is the centroid of the

object, which will be used as the location of the stent structure for the creation of the 3D

geometry. It can be attained by the following for loop:
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f o r i = 2 : l ength (STATS)

cen t r o i d = STATS( i ) . Centroid ;

end

Again, the first element of STATS contains the properties of the whole image so it is

necessary to skip it. From Figure 12, it can be observed that besides the centroids of the

correct objects, copious wrong results are plotted as well. In the next critical stage, all the

errors can be automatically rejected.

Figure 12: Centroids from first time detection
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4. Error Elimination

4.1 Relative Distance

From Figure 12, it is clear that all objects of the stent structure are attached to the vessel

wall. If the wall is expanded towards inside slightly to include all the stent objects, these

objects are the nearest to the expanded inner vessel wall. All the wrong objects in the figure

are comparably far away from the inner wall. Thus we can compute the distance between

the centroid and the wall and eliminate those centroids whose distances are relatively longer

than others’. We define the distance to be the relative distance and the distance between

the centroid and the center of the vessel to be the absolute distance.

The trivial expansion of the vessel wall can be realized by the same method discussed

in the pre-possessing, imerode(). But this time, a small number is used for the radius in

the function strel(). Furthermore, the difference between a smaller eroded region and a

larger one can generate an artificial binary vessel wall area(Figure 13(a)). Our code uses

number 15 and 18 in strel() to form such two eroded regions. The consequent man-made wall

can be constructed via the MATLAB R© function imshowpair(A, B, method). The first two

parameters are the two eroded regions and the third is ’diff’ which displays the difference

of A and B. The thickness of the wall is perfect to make the relative distance stable and

reliable.
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The absolute distance depends on the choice of the center of the vessel. In a normal OCT

image of the blood vessel, the artificial wall is a integral part. It is reasonable to attain the

center of the wall as the center of the vessel. However, due to the irregularity and diversity

of the sources of the images, some walls may be divided into several parts(Figure 13(b)).

This brings the uncertainty to using the center of the artificial wall. Indeed, the code can

be modified to check whether the wall is an integral or not but the process is really verbose

compared to another way. We recall that the center position of the arthroscope in one set

of images remains unchanged. Fortunately, this center position is always inside the blood

vessel. Consequently, to simplify the problem, it can be assumed to be the center of the

vessel for the computation of the absolute distance and later the relative distance.

(a) Integral artificial vessel wall (b) Two-parts artificial vessel wall

Figure 13: Artificial vessel wall
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In our code, the relative distance is the overlapped part of the absolute distance within

the slightly expanded vessel wall. To compute it, numerous points are drawn along the line

between a centroid and the center of the wall. In figure 14, these points form several red lines.

The first point reaches the artificial wall from the center is recorded as a small red circle in

the graph. The relative distance is then calculated between the point and the centroid. The

choice of the center may affect the absolute distance. However, as long as the chosen center

is inside the expanded wall, the relative distance just suffers minor changes which can be

ignored. Centroids with long relative distances are abandoned. We decide to use 45 as a

threshold through the trial and error approach to keep only the centroids of the strut.

Figure 14: Distance from center to centroid
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4.2 Center Modification

In figure 14, the strut directly under the center has not been detected. In figure 15, we

zoom in that part and change the point color to white to make it more clear. This is because

the x or y coordinates of the center and the centroid are too close to each other which causes

loss of precision and the sparseness of the points. The group of points may skip the artificial

wall so that no intersection point is found.

Figure 15: Failure of the method
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Once the problem is discovered, it can be solved by changing the center position and

increasing the number of points. Since the relative distance barely changes due to such

procedures, the aforementioned threshold is still valid to produce the same result.

Figure 16: Amended result
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5. Second Detection to Obtain More Struts

As may be noticed in figure 14, there are several struts not successfully being detected.

In order to obtain more struts, a second detection is required. First, those already detected

should be ”white” out in the masked grayscale image before it is transfered into binary

because they should not be detected again (Figure 17). The white color is used here since

all the bright areas will be black after the transformation.

Figure 17: ”Whited” out grayscale image
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For the binary image conversion, a new set of inputs is used in function imadjust() to bring

out more obscure parts. More darker areas are transfered into black so that the ambiguous

strut boundaries can be catched. Through a trial and error approach, an original intensity

range from 0 to 0.5, an output intensity range from 0.5 to 1 and a gamma value of 0.4 are

the most suitable. As in the first detection process, the bwareaopen() function is used to

reduce background noise in our image. Again, a threshold of 50 pixels is applied here.

(a) Before noise reduction (b) After noise reduction

Figure 18: Noise reduction

As we may see from figure 19, although the three struts on the upper-right part which

were not detected at the first time are discovered now, more erroneous edges are brought

out as well. Most of these incorrect edges are more difficult to remove by the elimination
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procedure discussed above because they have the same property as the correct ones, alongside

the vessel wall. Hence, new elimination methods should be designed.

Figure 19: Edges from second time detection
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6. Final Error Elimination

6.1 Covered Edges

By examining more details from figure 19, we may find that the erroneous edges are

slightly farther from the vessel wall than the correct ones. Especially, if we check the far-

thest point of these edges, there exists a comparably more obvious discrepancy between the

incorrect one and the valid ones. Thus, we can expand the vessel wall to some extent to

cover all the correct edges while keeping out part of the unwanted ones. The expanded wall

can be built by the boundary of a binary image. Based on the image in Figure 8(a), we use

imerode() function again to enlarge it. Through test, we find strel(’disk’, 15) is the fittest

handle for imerode() here.

In figure 20(b), three examples are provided. The left edge is totally beyond the boundary.

The center edge crosses over the boundary. The right edge, also the correct one, is wholly

covered by the boundary. Only those covered by the boundary are reserved as the candidates

for the struts. The rest are discarded as errors. In figure 21, we can see that only the edges

of the three struts on the upper-right part are left after the elimination.
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(a) Whole picture of the boundary (b) Detailed picture of the boundary

Figure 20: Expanded wall’s boundary and edges

Figure 21: After elimination
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6.2 Nearby Area

In some images, there may be still some errors unremoved. In figure 22, the red points are

erroneous centroids after all the aforementioned elimination processes. A further elimination

method is to compare the nearby area of the detected centroid in a binary image (Figure 23)

created in section 2.3.

Figure 22: Errors represented by red points
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In figure 23, one important observation is that the nearby areas of the red points, par-

ticularly those towards the inner side are lack of white pixels compared to the right points,

here the green ones. Consequently, by setting a threshold of the white pixels in such areas,

we can effectively remove some of the errors. The yellow parts are the white pixels enclosed

in the nearby areas of the points. We see near most red points, four out of five, there are

few yellow regions, if exist.

Figure 23: Nearby area error elimination
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7. Manual Patching

The condition of an OCT image varies widely which causes algorithms with static pa-

rameters impossible to detect all the struts in the data set. We have to manually record the

missed struts to generate a 100% accurate result for 3D reconstruction. Importantly, when

we record a strut, a small image is saved to a ”missed struts” image date pool. The data

pool is used for the future machine learning algorithm to automatically find all the struts

position in the whole OCT images data set.

(a) (b) (c)

(d) (e) (f)

Figure 24: Examples of missed struts
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8. Results

Here we show three pairs of pictures to briefly compare previous work with ours to

measure the improvement.

(a) Our result (b) Previous result

Figure 25: Pair 1
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(a) Our result (b) Previous result

Figure 26: Pair 2
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(a) Our result (b) Previous result

Figure 27: Pair 3

The white points in pictures of our algorithm are the struts detected at th first time. The

green points are the ones found during the second time. In pair 1, our algorithm succeeded

in plotting all the struts without error. In pair 2, our algorithm missed two struts without

error. In pair 3, all struts were detected but with two errors. Most our results are like pair

1 and pair 3 where errors occurred is really a rare case. On the other hand, in all pictures

from the previous algorithm, a limited number of struts were discovered. Moreover, multiple

errors were incurred at the same time. To further confirm the improvement, we constructed a
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3D point cloud with our results in a full image data set (Figure 28). Since Buckley’s method

provides many errors, it is meaningless to built a comparable 3D point cloud by his code

here. Our algorithm automatically detected 564 correct struts with 105 struts missed. The

accuracy rate computed by the ratio of the detected struts to the total struts is 84.30%.
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Figure 28: 3D point cloud
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9. The Usage of The Strut Points in Stent Reconstruc-

tion And Blood Flow Simulation

In the project of Boyi Yang from Emory University, he is working on reconstructing the

3D geometry of the stented vessel lumen to quantitively simulate fluid dynamics inside it

and access the relationship between wall shear stress and neointimal thickness after stent-

ing. Without the stent geometry, true local hemodynamics conditions around the strut are

unavailable and research result would be very weak (see Figure 29). Part of Boyi’s work is

focused on using the point cloud to automatically generate a full stent structure. Then the

computed stent will be combined with the vessel lumen to produce a fluid dynamic simula-

tion. The simulation can provide a more reliable and useful tool to analyze the risk of the

stent and other concerned problems.
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Figure 29: Fluid simulation without stent[12]
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Figure 30: Fluid and WSS simulation with stent
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