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Abstract 

 

Essays on Entropy-based Robust Inference with Applications in Finance and Economics  

 

By Ke Wu 

 

The dissertation consists of three essays that center around entropy-based robust inference 

and its applications in the fields of asset pricing and labor economics.  

 

In the first essay, I propose to use a metric entropy to measure asymmetric dependence in 

asset returns, i.e. the tendency that stocks co-move with the market more strongly during the 

market downturn than during the upside market. Using the entropy measure, I construct a 

model-free test for asymmetric dependence in stock returns, which is shown to have greater 

power than the existing correlation-based test proposed by Hong, Tu, and Zhou (2007). In 

stock portfolios sorted by size, book-to-market ratio and momentum,  based on this new test 

I find statistically significant asymmetric dependence is much more pervasive than previously 

thought. 

 

The second essay is an empirical extension to my first chapter, which examines how 

asymmetric dependence between stock return and the market return is priced in the cross-

section of expected stock returns. Motivated by Ang, Chen, and Xing (2006), I construct 

proxies for the dependence with downside and upside market separately based on non-

parametric kernel estimated joint return distributions. Empirically, I find a risk premium 

(discount) for stocks with high downside (upside) dependence. Moreover, downside 

dependence premium is almost twice as large as downside beta premium. Asymmetric 

dependence leaning toward the downside also earns a premium. The findings suggest that 

investors' aversion to downside losses are stronger than their attraction to the upside gains. 

 

The third essay examines distributional wage gap between incumbents and newly hired 

workers in the US labor market from 1996 to 2012 based on metric entropy distances. We 

decompose the wage gap to structural and composition effects by identifying several 

counterfactual distributions using propensity score reweighting method as discussed in Firpo 

(2007). We consider weak uniform ranking of these counterfactual wage outcomes based on 

statistical tests for stochastic dominance as proposed in Linton, Maasoumi, and Whang 

(2005). Empirically, we find incumbent workers enjoy a better wage distribution, but the 

attribution of the gap to structural wage inequality and human capital characteristics varies 

among quantiles of the distribution.  
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1

Preface

The dissertation centers around theoretical development and empirical applications of entropy-

based statistical inference methods. Three essays in the dissertation can be categorized into

two parts, each of which demonstrates the usefulness and advantages of entropy-based in-

ference in the fields of asset pricing and labor economics, respectively.

Entropy, originated from physics and information theory as a measure of uncertain-

ty, has gained increasing popularity in finance and economics research during recent years.

Some recent notable papers with applications of entropy include Sims (2003); Backus, Cher-

nov, and Martin (2011); Hansen (2012); Cabrales, Gossner, and Serrano (2013); Backus,

Chernov, and Zin (2014) among others. In those studies, the usage of entropy has shown

improvements upon conventional moment-based methods. For example, Backus, Chernov,

and Zin (2014) use Kullback-Leibler relative entropy (Kullback, Leibler et al., 1951) to

measure the differences between physical and risk-neutral probabilities and derive appro-

priate bounds for stochastic discount factors that can be used to compare the performance

of popular theoretical asset pricing models. The entropy bounds show superior robustness

compared to the traditional moment-based Hansen-Jagannathan bound (Hansen and Ja-

gannathan, 1991), as it can easily extend to different time intervals and it is also robust

to departures from log-normality. In my dissertation, I choose to employ a metric entropy

measure proposed by Granger, Maasoumi, and Racine (2004) due to several desirable prop-

erties of the entropy. It belongs to a general K-class entropy family and mathematically it

is the only metric entropy within its class, because it satisfies the triangular inequality. It

is normalized to take values in-between 0 and 1. Moreover, the measure is invariant under

continuous and strictly increasing transformations, such as the commonly used logarithm

transformation.

The first part, comprised of two essays, answers an important question in empirical asset

pricing, whether there exist statistically significant asymmetric dependence in asset returns,

i.e. whether stocks co-move with the market more strongly during the market downturn

than during the upside market. Moreover, if such asymmetric co-movements are statistically
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significant, then how do such asymmetric characteristics affect asset prices cross-sectionally?

This question is very important because in asset management business, effective hedging

relies on the dependence between assets hedged and the financial instruments used. If the

dependence structure is varying with the state of the market, i.e. the dependence is stronger

during the market downturn, the portfolio diversification may provide very little protection

precisely when it is most needed, since there are very few places to hide when markets

collapse.

From an asset allocation perspective, a simple example given in Ang and Chen (2002)

has shown that when the underlying return generating process has asymmetric correlation

but an investor has a belief that the joint return distribution (between individual stock and

the market) follows bivariate normal, then she holds much more equity as a proportion of

her investment (overestimate the benefits of diversification) than the optimal weight in the

bad market state, while the investor holds too little equity (underestimate the benefits of

diversification) in the good market state. They has also shown that the utility loss due to

this mis-allocation is economically significant.

The first essay provides a metric entropy measure of asymmetric dependence in asset re-

turns and use this measure to develop a model-free test for asymmetric dependence between

stock and the market returns. The paper contributes to the literature in several aspects.

First of all, in terms of methodology, the new test extends a robust entropy-based test of

asymmetry for univariate process suggested by Racine and Maasoumi (2007) to bivariate

case that is of interest in the field of finance.

Secondly, the metric entropy measures directly the distance between the probability

density functions of the original joint distribution and the rotated distribution, so it could

capture any asymmetry existed in all the moments. In contrast, in the finance literature,

traditional tests of asymmetry only focus on testing for asymmetric correlation in the joint

distribution, i.e. the asymmetry existed in the second moment. For example, Ang and Chen

(2002) seems to be the first to propose a statistical test of asymmetric correlation in asset

returns. Their test compares the sample exceedance (conditional) correlations with those
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implied by a statistical model. If there is a large difference, then the observed asymmetric

correlations cannot be explained by the model. However, Ang and Chen (2002) test answers

only the question whether the asymmetry can be explained by a given model. Under their

joint normality assumption, a rejection of their test cannot rule out the possibility that the

data features unexplained by a normal model may be explained by another model. Hong,

Tu, and Zhou (2007) propose the first and the only model-free test of asymmetry to date.

Their test compares sample conditional correlations at the downside and upside of the joint

distribution. However, despite the novelty, their test detects only asymmetric correlations,

and does not address asymmetry beyond the second moment. Moreover, its power seems

low in empirical applications.

As is well known, the correlation coefficient is only a measure of linear dependence and

thus has limitations in measuring general dependence. For example, except for the joint

normal case, in general zero correlation does not imply independence, while several papers

documented that realized stock returns are non-normally distributed (see, e.g., Embrechts,

McNeil, and Straumann, 2002; Ang and Chen, 2002). Moreover, for heavy-tailed distribu-

tions without finite second moments, the correlation coefficient is not even defined, while

Cont (2001) documented that distributions of many financial time series indeed have heavy

tails and display nonexistence of higher order moments. Hence, conceptually the newly

proposed entropy-based test is better.

Thirdly, using Monte Carlo simulations, I find that the newly proposed entropy-based

test has correct empirical size and better finite sample power than the existing model-free

test proposed in Hong, Tu, and Zhou (2007). The superior finite sample performance of the

test is due to more information used, as the entropy measure summarizes all the informa-

tion in the joint density function that uniquely defines the distribution while conditional

correlation only uses the information in the second moment. Empirically, in commonly used

decile stock portfolios sorted by size, book-to-market ratio and momentum, based on this

new test I find statistically significant asymmetric dependence is much more pervasive than

previously thought. Specifically, of the ten decile portfolios sorted by book-to-market ratio,
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I find asymmetry in 2 portfolios at the 5% significance level, and 7 portfolios at the 10%

significance level, while Hong, Tu, and Zhou (2007) test fails to detect any asymmetry. My

findings are consistent with empirical findings documented in a strand of prior research,

like Ball and Kothari (1989); Bekaert and Wu (2000); Ang, Chen, and Xing (2006) among

others.

In the second essay, I further examine how the asymmetric dependence between individ-

ual stock return and market return is priced in the cross-section of expected stock returns.

Motivated by Ang, Chen, and Xing (2006), I construct proxies for the dependence with

downside and upside market separately based on non-parametric kernel estimated joint cu-

mulative return distributions. Asymmetric dependence is measured using the entropy test

statistic from the first essay, modified to reflect to which side the dependence is stronger.

All else being equal, stocks with stronger downside dependence than upside dependence

with the market is more risky, as those stocks face large downside risk while have limited

upside potential. Risk averse investors should require positive risk premium for holding

such stocks. Empirically, using monthly returns to U.S. common stocks traded on the

NYSE/AMEX/NASDAQ from January 1962 to December 2013, I indeed find a significant

risk premium (discount) for stocks with high downside (upside) dependence. Asymmetric

dependence leaning toward the downside also earns a risk premium. The positive risk pre-

mium associated with the downside dependence is higher than the discount due to upside

dependence.

The findings suggest that investors’ aversion to downside losses is stronger than their

attraction to the upside gains, which can be implied from a theoretical optimal asset al-

location example, where a representative agent with disappointment aversion utility (Gul,

1991) maximizes her utility by allocating wealth among one risk-free and two risky assets,

as described in Ang, Chen, and Xing (2006). Fama and MacBeth (1973) regressions show

that the contemporaneous impacts of the dependence measures cannot be explained by tra-

ditional risk factors, like the market beta (Sharpe, 1964; Lintner, 1965), downside or upside

betas (Ang, Chen, and Xing, 2006), coskewness (Harvey and Siddique, 2000), and cokurto-



5

sis (Dittmar, 2002). They are also different from the effects of firm level characteristics, like

size (Banz, 1981) and book-to-market ratio (Fama and French, 1992), illiquidity (Amihud,

2002), and the momentum (Jegadeesh and Titman, 1993).

The estimated cross-sectional excess return premium for bearing downside dependence

risk is approximately 11.6% per annum, almost twice as large as the downside beta premium

(6% as reported in Ang, Chen, and Xing (2006)). The downside asymmetric dependence is

not persistent over time and shows limited predictability (R-squared is very low). However,

a zero investment trading strategy that forms portfolios based on past asymmetric depen-

dence can still earn an average equal-weighted annualized return of 4.5%, significant both

economically and statistically. A similar trading strategy based on downside beta fails to

yield an economically meaningful return spread. Such comparisons with traditional linear

dependence measures (the betas) used in finance literature suggest that there exist gain

when going beyond linear risk framework. Entropy-based nonlinear dependence measures

may better capture the market risk than their linear counterparts.

The first part of the dissertation shows that entropy has the capacity to incorporate

more information in a distribution than traditional moment-based correlations and linear

regression coefficients (betas). Such capacity leads to statistical tests with higher power and

also empirically more significant risk premium. The second part, comprised of one essay,

demonstrates that the metric entropy can serve as an effective measure of distributional

wage gap, and can tell us whether two wage distributions are significantly different from

each other, while traditional methods focusing on the mean, median, or certain particular

quantile appear to place too much weight on a part of the population, or too equal a weight

everywhere.

Some recent papers have examined the wage differentials at the entire distribution level,

e.g. Maasoumi and Wang (2013) employs the same metric entropy measure to examine the

gender wage gap based on the metric distance between wage distributions of female and

male workers. Using similar methodologies, the third essay (a joint work with Esfandiar

Maasoumi and Melinda Pitts) examines distributional wage gap between incumbent and
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newly hired workers in the US labor market. We explore weak uniform rankings between

wage distributions based on the concept of stochastic dominance that allow assessments

over entire classes of welfare functions. Furthermore, we decompose observed gaps to those

differentials associated with discrimination in the wage structure, or to human capital com-

position effect.

The classic Oaxaca (1973) and Blinder (1973) decomposition is a regression based

method focusing only on linear conditional mean decomposition. One major limitation

of the Oaxaca-Blinder procedure as discussed by Barsky et al. (2002) is that the decom-

position provides consistent estimates of the structure and composition effects only under

the assumption that the conditional expectation is linear. However, such assumption is not

quite likely to hold in many empirical applications. As advocated in DiNardo, Fortin, and

Lemieux (1996), we use an alternative non-parametric decomposition based on propensity

score reweighting methods. A key advantage of this reweighting approach is that it identifies

the entire counterfactual distribution under much less restrictive assumptions, and hence

can easily be applied to more general distributional statistics besides the simple mean and

quantiles, such as the metric entropy.

The empirical analysis focuses on employees who work at least 35 hours per week using

monthly Current Population Survey (CPS) data from 1996 to 2012. Among others, we find

incumbent workers generally enjoy a better distribution of wages, but the attribution of

the gap to wage inequality and human capital characteristics varies between quantiles. For

instance, highly paid new workers are mainly due to human capital components, and in

some years, even better wage structure.
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Chapter 1

Asymmetric Dependence in Stock Returns: a

Robust Entropy-Based Test

Abstract

In this paper, I propose to use a metric entropy to measure asymmetric

dependence in asset returns, i.e. the tendency that stocks co-move with the

market more strongly during the market downturn than during the upside mar-

ket. Using the entropy measure, I construct a model-free test for asymmetric

dependence in stock returns, which is shown to have greater power than the ex-

isting correlation-based model-free test proposed by Hong, Tu, and Zhou (2007).

The new test extends a robust entropy-based test of asymmetry for univariate

process proposed by Racine and Maasoumi (2007) to bivariate case. In stock

portfolios sorted by size, book-to-market ratio and momentum, based on this

new test I find statistically significant asymmetric dependence is much more

pervasive than previously thought.

Keywords: Asymmetric dependence, metric entropy, copulas, GARCH,

simulation.

JEL Classification: C12, C15, C32, G12
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1.1 Introduction

Prospect theory and disappointment aversion preferences indicate that investors treat gains

and losses unequally and hence behave differently in different states of the market (Kahne-

man and Tversky, 1979; Kahneman, Knetsch, and Thaler, 1990; Gul, 1991). It may explain

why risk premia required by investors are different for assets that exhibit asymmetric co-

movements to the upside and downside changes of the market returns (see, e.g., Harvey

and Siddique, 2000; Ang, Chen, and Xing, 2006). Empirically, asymmetric characteristics

of asset returns, i.e. stocks tend to co-move more strongly during downside market than

during upside market, have been found by a number of studies. Ball and Kothari (1989);

Schwert (1989); Conrad, Gultekin, and Kaul (1991); Cho and Engle (1999), Bekaert and

Wu (2000); Ang and Chen (2002); Bae, Karolyi, and Stulz (2003); Ang, Chen, and Xing

(2006), among others, document asymmetries in covariances, correlations, volatilities, and

betas of stock returns.

Studying the phenomenon of asymmetric co-movements is important because effective

hedging relies on the dependence between assets hedged and financial instruments used. If

the dependence structure is varying with the state of the market, portfolio diversification

may provide little protection precisely when it is most needed. Furthermore, if all stocks

tend to fall with the market during bad times, the value of diversification may be exaggerated

for portfolio managers who do not take into account the increasing downside dependence.

Despite the importance of this topic, relatively few studies have proposed statistical tests

of asymmetric dependence. Furthermore, almost all prior studies are model dependent and

focus on the return asymmetry up to the second moment, i.e. asymmetric covariances,

correlations and betas. For example, Ang and Chen (2002) propose a model dependent test

and find correlation asymmetries among various portfolios under normality assumption,

which allows for the possibility that the asymmetry unexplained by the joint normal model

may be explain by some other symmetric models. Hong, Tu, and Zhou (2007) propose the

first and the only model-free test of asymmetry to date. Despite the novelty, Hong, Tu, and

Zhou (2007) test, however, has two major weaknesses. First, it detects only asymmetric cor-
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relations, and does not address asymmetry beyond the second moment. Second, the power

of the test seems to be low in empirical applications. For example, the test cannot detect

any asymmetry in portfolios sorted by book-to-market ratio and finds only one portfolio

among ten decile momentum sorted portfolios with statistically significant asymmetry.

In this paper, I propose an entropy-based model-free test for asymmetric dependence

between individual stock/portfolio return and the market return. The test statistic is a

normalized metric entropy measure proposed by Granger, Maasoumi, and Racine (2004)

that have been widely applied in many previous studies in econometrics (see, e.g., Maasoumi

and Racine, 2002, 2008). The test is a bivariate extension of a robust entropy-based test

of asymmetry for univariate processes proposed by Racine and Maasoumi (2007). The new

test improves upon Hong, Tu, and Zhou (2007) test in the following two aspects. Firstly,

Hong, Tu, and Zhou (2007) use asymmetric correlation to proxy for asymmetric dependence,

which has several issues. The correlation coefficient is only a measure of linear dependence

and thus has some well-known limitations in measuring dependence. For example, except

for the joint normal case, in general zero correlation does not imply independence, while

several papers documented that realized stock returns are non-normally distributed (see,

e.g., Embrechts, McNeil, and Straumann, 2002; Ang and Chen, 2002). Moreover, for heavy-

tailed distributions without finite second moments, the correlation coefficient is not even

defined, while Cont (2001) documented that distributions of many financial time series have

heavy tails and display nonexistence of higher order moments. In contrast, the entropy

measure summarizes all the information of a given distribution, and hence can capture

asymmetry that exist in all the moments. So conceptually, the newly proposed entropy-

based test is better. Secondly, with Monte Carlo simulations, I find that the entropy-based

test has correct empirical sizes and higher power than Hong, Tu, and Zhou (2007) test in

finite sample cases. Therefore, in terms of finite sample performance the entropy test is also

better.

Empirically, sorting portfolios based on size, book-to-market ratio and momentum, the

entropy test detects statistically significant asymmetry in all three groups of the portfolios.
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For example, in contrast to the Hong, Tu, and Zhou (2007) test, I find asymmetry in 2

portfolios at the 5% significance level, and 7 portfolios at the 10% significance level, out of

the ten decile portfolios sorted by the book-to-market ratio.

The rest of the paper is organized as follows. Section 1.2 reviews the literature and

introduces the entropy-based test for asymmetric dependence. Section 1.3 examines the

test size and power using Monte Carlo Simulations. Section 1.4 applies the entropy test to

investigate asymmetry in returns of commonly used stock portfolios. Section 1.5 concludes.

1.2 Tests of Asymmetry

For the ease of understanding, in this section I first review the standard asymmetric corre-

lation tests, then extend the concept to general asymmetry, and finally provide the entropy-

based test.

1.2.1 Asymmetric Correlation

In the finance literature, Ang and Chen (2002) and Hong, Tu, and Zhou (2007) provide tests

of asymmetry in bivariate return series, but they test only asymmetric correlation instead

of general asymmetric dependence.

To see why, let us consider two standardized strictly stationary return series denoted by

x̃i,t and ỹt.
1. Both of the tests rely on exceedance correlations defined as

ρ+(c) = corr(x̃, ỹ|x̃ > c, ỹ > c), (1.1)

ρ−(c) = corr(x̃, ỹ|x̃ < −c, ỹ < −c), ∀c ≥ 0. (1.2)

Clearly, both ρ+(c) and ρ−(c) measure conditional correlations between two return series

conditioning on both series are above or below a certain exceedance level c. The null

hypothesis of interest is

1In practice, they may stand for stock return and the market return series respectively
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H0 : ρ+(c) = ρ−(c), for all c ≥ 0.

Ang and Chen (2002) seems to be the first to propose a formal statistical test for the

asymmetric correlation hypothesis, whose test statistic H is defined as

H =

[
m∑
i=1

w(ci)(ρ(ci, φ)− ρ̂(ci))
2

]1/2

(1.3)

where c1, . . . , cm are m pre-selected exceedance levels, w(c1), ..., w(cm) are weights, ρ̂(ci)

stands for sample realization of ρ+(ci) or ρ−(ci) and ρ(ci, φ) is the population exceedance

correlation implied by a given model with parameters φ. Their test addresses the interesting

question whether the asymmetric correlations observed in the data can be explained by the

given model. Therefore, the test is model dependent and the testing results rely on the

choice of the pre-specified model. One weakness associated with the model-dependent test

is that the data may still have symmetric correlations, even if a given symmetric model,

like the normality model they used, cannot explain it.

To overcome the weakness, Hong, Tu, and Zhou (2007) propose a model-free test. Their

test statistic is defined as

Jρ = T (ρ̂+ − ρ̂−)′Ω̂−1(ρ̂+ − ρ̂−) (1.4)

where T is the sample size, ρ̂+ and ρ̂− arem×1 vectors of sample exceedance correlations,

and Ω̂ is a consistent estimator of the covariance matrix of
√
T (ρ̂+− ρ̂−). Under the null of

symmetric correlations and certain regularity conditions, the test has a simple asymptotic

chi-square distribution, Jρ
d→ χ2

m. The test answers the question whether there exists

asymmetric correlations at all in the data. In other words, if the test rejects the null, it

implies that no distributions with symmetric correlations can fit the data well.
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1.2.2 Asymmetric Dependence

Both existing tests try to test for asymmetric dependence in bivariate stock return data by

testing for asymmetric correlations. Yet, it is well known that linear correlation coefficient

is only a measure of linear dependence. In general, zero correlation does not imply indepen-

dence except for the joint normal case. Hence, testing for linear correlation ignores possible

higher order dependence entirely. On the other hand, it is also documented that financial

time series usually display heavy tails and have non-standard higher order moments (see,

e.g., Embrechts, McNeil, and Straumann, 2002; Cont, 2001). Therefore, it is of interest to

have a test for general asymmetric dependence that involves all the higher order moments.

Since the joint density function uniquely defines a joint distribution, directly testing

for asymmetry in the joint probability density function certainly involves all higher order

moments. Motivated by a univariate test of asymmetry proposed by Racine and Maasoumi

(2007), I focus on testing the symmetry of the joint density function.

Analogous to the exceedance correlations, I define exceedance densities by

f+(c) = f(x̃, ỹ|x̃ > c, ỹ > c or x̃ < −c, ỹ < −c), (1.5)

f−(c) = f(−x̃,−ỹ|x̃ > c, ỹ > c or x̃ < −c, ỹ < −c), (1.6)

where f(x̃, ỹ) is the joint probability density function of return series x̃i,t and ỹt in ranges

of x̃ > c, ỹ > c or x̃ < −c, ỹ < −c. Restriction to these ranges where both returns are

above or below certain exceedance level basically follows Ang and Chen (2002) and Hong,

Tu, and Zhou (2007), since we want to capture the co-movements of both returns. Since

x̃i,t and ỹt are standardized to have zero means, f(−x̃,−ỹ) denotes the joint probability

density function of the rotated return series around the mean.2 If the joint distribution is

truly symmetric, then the two densities should be the same almost everywhere. Intuitively,

2Note that when the data series are not standardized, the rotation can also be easily done by pre-
multiplying a rotation matrix P to the original series to get the new data pair (−xi,t + 2µ̂X ,−yt + 2µ̂Y ).
Specifically,
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the distance between the two density functions reflects the degree of asymmetry of the joint

return distribution. Hence, the null hypothesis for testing asymmetric dependence is

H0 : f+(c) = f−(c), for all c ≥ 0. (1.7)

If this hypothesis is rejected, then the data must possess asymmetry as their density

functions must be different at least in one of the two symmetric regions.

[Insert Figure 1.1 about here]

As an example, Figure 1.1 illustrates a case of symmetric dependence and compares it

with a case of asymmetric dependence. Subfigure (a) shows a scatter plot of 2000 data

points that are generated by a Clayton copula model, which is known to have stronger left

tail dependence than right tail dependence. Subfigure (b) is a similar plot but is generated

using a bivariate normal copula model that has symmetric dependence at both tails. When

I consider symmetric/asymmetric dependence, I examine the dependence structure over the

shaded areas that represent the first and third quadrants, i.e. I take the exceedance level

c = 0 here. In subfigure (a), it is clear that the data are more concentrated in the third

quadrant than in the first quadrant, indicating stronger dependence (greater mass of the

joint densities) in the lower tail. Subfigure (b) has roughly equal joint densities in both tails,

indicating symmetric dependence. The lines in both figures are fitted linear regression lines

that indicate overall linear dependence. With visual inspection, we can clearly see that the

linear dependence line does not differ very much in the two cases, but the actual dependence

P ·

 xi,1 y1
...

...
xi,T yT

 =

 −xi,1 + 2µ̂X −y1 + 2µ̂Y
...

...
−xi,T + 2µ̂X −yT + 2µ̂Y


where the rotation matrix P takes the following form

P =


−1 + 2

T
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· · · 2
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structures are quite different. Therefore, this example also highlights the danger of failing

to discover asymmetry when we focus only on linear dependence.

1.2.3 An Entropy Measure

The important question is how to test the above null hypothesis given in the null hypothesis

1.7. Intuitively, the joint distribution is symmetric if the distance between f+(c) and f−(c)

is zero almost everywhere and is otherwise asymmetric if the distance is not zero on a set

with positive measure. To do so, I have to rely on certain measures of distance between two

probability density functions.

In statistics and information theory, entropy has a long history of being used as a measure

of divergence between distributions. It was first introduced by Shannon (1948), and later

extended by Kullback, Leibler et al. (1951). Ullah (1996) and Maasoumi (1993) provide

excellent surveys of various entropy measures and their applications in econometrics. More

recently, entropy has drawn great attention from financial economists and has been more

and more applied in finance research, e.g. Backus, Chernov, and Zin (2014) use Kullback-

Leibler relative entropy (Kullback, Leibler et al., 1951) to measure the differences between

physical and risk-neutral probabilities and derive appropriate bounds for stochastic discount

factors that can be used to compare the performance of popular theoretical asset pricing

models.

The entropy measure I use belongs to the same K-class entropy as the Kullback-Leibler

divergence measure. First proposed by Granger, Maasoumi, and Racine (2004), the measure

is a special case of K-class entropy with K = 1/2, which is a normalization of the Hellinger

distance measure and is the only metric entropy within its class. Besides being a metric,

as shown by Granger, Maasoumi, and Racine (2004), this measure has been proved to have

many other desirable properties as a measure of distance between distributions.

Consider, for simplicity, first the case where we have only one exceedance level c. The

entropy measure of asymmetry is defined as
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Sρ(c) =
1

2

ˆ ∞
−∞

ˆ ∞
−∞

(f+(c)
1
2 − f−(c)

1
2 )2 dx̃ dỹ, (1.8)

which is clearly a function of the exceedance level c. In practice, c is chosen according

to empirical interests. For example, when c = 0, Sρ(0) measures asymmetric dependence in

the first quadrant (where both standardized returns are positive) and the third quadrant

(where both standardized returns are negative). If the asymmetric dependence in the tails

of the distribution are of interests, Sρ(c) can be measured at other exceedance levels, e.g.

0.5 or 1 standard deviations away from the mean.

The entropy measure Sρ(c) is well defined for both continuous and discrete data. It takes

values in-between 0 and 1, and equals 0 if and only if the densities are equal, which indi-

cates symmetric dependence. Mathematically, it is a true measure of “distance” because it

satisfies the triangular inequality. Moreover, the measure is invariant under continuous and

strictly increasing transformations, such as the commonly used logarithm transformation.

Consider now the case where we have multiple exceedance levels, c1, . . . , cm, which we

want to test whether there exists symmetric dependence at each exceedance level jointly.

For example, while the singleton set of c = {0} is usually of interest in the literature, the

set of the levels c = {0; 0.5; 1; 1.5} is also commonly used by previous studies, such as in

Ang and Chen (2002) and Hong, Tu, and Zhou (2007). For the multiple level case, I can

also apply the statistic in equation 1.8 for each of the individual levels, and then aggregate

the estimates using some function. Since Sρ(c) is a metric and always non-negative, we may

simply take arithmetic average,

Sρ =
Sρ(c1) + · · ·+ Sρ(cm)

m
, (1.9)

where Sρ(cj) is computed from equation 1.8 for j = 1, . . . ,m. Thus, the entropy test

statistic is well defined for either the singleton test case with one exceedance level or the

joint test case with multiple exceedance levels.
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To carry out the entropy test in practice, we need to estimate first the joint density

functions from the data, and then compute the integral in equation 1.8 to obtain the statistic

Ŝρ(c). Finally, we need to have a procedure to determine the distribution of the test

statistic under the null hypothesis and hence the P-values of the test statistic. The task

is unfortunately much more complex than that of the asymmetric correlation tests. These

issues are addressed in the following two subsections.

1.2.4 Non-parametric Estimation

Consider now how to estimate the density functions in equation 1.8 given the data. Fol-

lowing Maasoumi and Racine (2002); Racine and Maasoumi (2007) among others, I use

non-parametric kernel smoothing method to consistently estimate the unknown joint densi-

ties. Specifically, the popular “Parzen-Rosenblatt” kernel density estimator (see Rosenblatt,

1956; Parzen, 1962) is used. For the univariate case, the “Parzen-Rosenblatt” kernel density

estimator is defined as

f̂(x) =
1

nh

n∑
i=1

k

(
Xi − x
h

)
, (1.10)

where n is sample size of the data {Xi}, h is a smoothing parameter (commonly referred

to as the bandwidth) and k(·) is a nonnegative bounded kernel function. In this paper, we

have to deal with bivariate density functions, so in the kernel estimation we need to employ a

“product kernel function”, which is constructed as the product of univariate kernel functions.

That is, our candidate kernel density estimator of the data is given by

f̂(x, y) =
1

nh1h2

n∑
i=1

k

(
xi − x
h1

)
× k

(
yi − y
h2

)
(1.11)

where n is sample size, k(·) is a suitable univariate kernel function, h1 and h2 are

bandwidths for each of the two variables, and {(xi, yi)} are the observed data pairs. It

should be noted that n is equal to T , the length of the return series in the empirical

applications of this paper.
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Econometrically, the accuracy of the nonparametric kernel density estimator clearly

relies on the selection of both the kernel function and the bandwidth. It turns out that the

choice of kernel function plays a much less important role than the selection of bandwidth.

The return data are continuous, so I use standard Gaussian kernel, k(z) = 1√
2π
e−z

2/2, as

the univariate kernel function in the estimation. On selecting the bandwidth, I use the

well-known Kullback-Leibler cross-validation (the likelihood cross-validation method) (see

Li and Racine, 2007, for details). This cross-validation procedure minimizes the Kullback-

Leibler divergence measure between the actual density and the estimated one. Numerically,

it solves the following maximization problem of the log-likelihood function,

max
h1,h2

L =
n∑
i=1

ln
[
f̂−i(xi, yi)

]
, (1.12)

where

f̂−i(xi, yi) =
1

nh1h2

n∑
j 6=i

k

(
xj − x
h1

)
× k

(
yj − y
h2

)
, (1.13)

which is equal to f̂(x, y) without the i-th realization. Based on the efficient market

hypothesis (Fama, 1970), stock returns can be seen as i.i.d. or stationary and weakly

dependent series, and under such assumptions the estimated density converges to the actual

density. (see, e.g., Li and Racine, 2007, for technical details).

With the method described above, the density functions in equation 1.8 can be consis-

tently estimated. Then the test statistic Ŝρ(c) can be obtained by computing the integral

using a standard numerical procedure in the case of a single exceedance level. In the pres-

ence of multiple exceedance levels, the test statistic is computed from equation 1.9.

1.2.5 Distribution of the Test Statistic

To conduct statistical inference based on the entropy test of asymmetry, we need to know

the sampling distribution of the test statistic under the null hypothesis of symmetry. There

are in general two ways to derive the sampling distribution. One is to rely on asymptotic
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theory and the other way is to use bootstrap resampling method.

The asymptotic theory for the class of entropy measures with similar functional forms

has been developed by Skaug and Tjøstheim (1993); Tjøstheim (1996) and by Hong and

White (2005). Under certain regularity conditions, Ŝρ(c) follows asymptotically normal

distribution and the distribution derived under the null hypothesis does not depend on

the choice of the bandwidths. This is partially because the bandwidth is a quantity that

vanishes in the limit. However, for a given finite sample size, the computed value of the test

statistic depends critically on the bandwidth selection (Maasoumi and Racine, 2008, see).

It really raises concerns on using the simple asymptotic distribution to conduct statistically

inference in empirical applications, since the results of such asymptotic-based tests tend

to be highly sensitive to the bandwidth and there are many competing approaches for

bandwidth selection. Therefore, following the suggestions of Hong and White (2005) and

many others, rather than relying on asymptotic distribution for inference, I use a bootstrap

resampling approach to determine the empirical null distribution of Ŝρ(c) (see Efron, 1982;

Hall, 1992; Horowitz, 2001, for more discussions on bootstrap resampling approach).

To construct a sample under the null hypothesis in the bootstrap resampling, let

Z = {(xi,1, y1), (xi,2, y2), ...., (xi,T , yT ); (−xi,1,−y1), (−xi,2,−y2), ..., (−xi,T ,−yT )},

which is a vector obtained by stacking together the original data pairs (xi, yi) with the

rotated data pairs (−xi, −yi). Through bootstrapping samples from Z, we construct the

empirical distribution of Ŝρ(c). I repeat the bootstrapping draws B times from Z, and then

can obtain B resamples of Ŝρ(c).

There are many different kinds of bootstrap resampling procedures, e.g. the simple

bootstrap, wild bootstrap, block bootstrap, and so on. The choice of which bootstrap

resampling procedure to use depends on the nature of the data. As stock return are known

to be stationary and weakly dependent, the block bootstrap that takes such dependence

structure into account seems to be the natural choice (see Künsch, 1989).
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Politis and Romano (1994) shows that using overlapping blocks with lengths that are

sampled randomly from a geometric distribution, with the mean equal to the pre-selected

block length l, yields stationary bootstrapped data samples, while overlapping or non-

overlapping blocks with fixed lengths may not ensure the stationarity. This procedure

proposed by Politis and Romano (1994) is called stationary bootstrap, which is a special

kind of block bootstrap. Due to the merit of stationary bootstrap, I choose to employ the

procedure in this paper.

How to select the average block length l used in the stationary bootstrap is another

important issue. I apply the data-driven and automatic method suggested by Politis and

White (2004); Patton, Politis, and White (2009) to select the optimal block length. E-

conometrically, their method is beneficial as it minimizes the mean squared error of the

estimated long-run variance of the time series.

In terms of selecting B, the number of bootstrap samples, it is obviously true that the

greater the B, the more accurate the bootstrapped distribution is. However, unlike the

commonly used bootstrap procedures used in linear regressions, kernel estimation can be

enormously time-consuming. In some similar problems, Davidson and MacKinnon (2000)

suggest the use of B = 399 for simulations that compute the P-value of a test at the

5% nominal significance level. In this paper, although I find that a value of B = 199

yields similar results, following the suggestion of Davidson and MacKinnon (2000), I choose

to report the empirical testing results and all the simulation results based on stationary

bootstrap with B = 399.

After having computed B replications of Ŝρ(c)
∗, the sampling distribution of Ŝρ(c) can

be easily obtained. To find out the critical values for rejection at different confidence levels,

I can reorder the bootstrapped estimates from smallest to largest and denote the list by

Ŝρ,1(c)∗, Ŝρ,2(c)∗, ... , Ŝρ,B(c)∗, and then determining those percentiles from these ordered

statistics. For example, to conduct the symmetry test at the 5% level, the null hypothesis

H0 in 1.7 will be rejected if Ŝρ(c) > Ŝρ,379(c)∗, where Ŝρ,379(c)∗ is the 95th percentile of

the ordered bootstrapped estimates. Empirical p-values may also be obtained by counting
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the proportion of the ordered bootstrapped statistics that exceeds Ŝρ(c), the test statistic

estimated from the original sample.

1.3 Monte Carlo Simulations

In this section, using copula-GARCH based Monte Carlo simulation, I examine the size and

power of the entropy-based test and show that the entropy test has reliable sizes, and has

higher power in finite samples than the Hong, Tu, and Zhou (2007) test.

1.3.1 Modeling Dependence with Copulas

Since we are testing the joint distribution of two random variables, the simulation pro-

cedures involve in generating random samples from some joint distribution with certain

dependence structure. Copulas are probably the most commonly used method to model the

complete dependence structure between random variables (see Patton, 2004; Rodriguez,

2007; Okimoto, 2008, for some applications of copulas in finance). Sklar (1959) proves that

all bivariate distribution functions F (x1, x2) can be completely described by the univariate

marginal distributions F1(x1) and F2(x2) and a copula function C : [0, 1]2 7→ [0, 1]. Copula,

a word chosen by Sklar, is a multivariate probability distribution function that describes

such dependence structure between the two (or more) marginal distributions (see Nelsen,

1999, for a more detailed introduction to copulas).

Many copulas with different dependence structures have been developed and commonly

applied in the literature. Some of those parametric copulas, such as Gaussian, Student’s t

and Frank copulas, are known to have symmetric tail dependence structure. Some copulas

are constructed to have asymmetric tail dependence. For example, Clayton copula is known

for strong left tail dependence, whereas Gumbel copula shows strong right tail dependence.

As stock returns usually show stronger left tail dependence than right tail dependence

with the market return (see Ang and Chen, 2002), Clayton copula seems to be a natural

choice. However, it is not wise to completely rule out those copulas with symmetric de-

pendence. Figure 1.2 gives the scatter plots of random samples generated by Gaussian,
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Clayton and mixed Gaussian-Clayton copulas, as well as the actual data plots of the small-

est decile size portfolio returns. It is clear that Clayton copula generated data with strong

left tail dependence, as the plots are highly concentrated at the left tail, but the dependence

seems to be much stronger than that is actually reflected in the scatter plot of the smallest

decile size portfolio. Comparing to the smallest size portfolio, which has shown to have

the strongest asymmetric dependence in the following section and in Hong, Tu, and Zhou

(2007), the generated data plots do not look much like the actual data plots. As shown in

subfigure (C), the scatter plots generated by equal-weighted mixed Gaussian-Clayton cop-

ula look more similar to the actual data plots in subfigure (D). Therefore, I choose to use

those mixed copulas as the data generating process in simulations. Similar mixture copula

models are also used in Hong, Tu, and Zhou (2007).

[Insert Figure 1.2 about here]

A bivariate Gaussian copula is given by

Cnor(u, v; ρ) = Φρ(Φ
−1(u), Φ−1(v)) (1.14)

where ρ ∈ (−1, 1) is correlation coefficient between the marginal distributions. Φ−1 is

standard normal CDF inverse, and Φρ is the standard bivariate normal distribution function

with correlation ρ.

A bivariate Clayton copula is defined as

Cclay(u, v; τ) = (u−τ + v−τ − 1)−
1
τ (1.15)

where τ > 0 governs the dependence between the marginals. Higher τ indicates stronger

dependence. Tawn (1988) proves that every convex combination of existing copula functions

is still a copula.3 I can construct a mixture Gaussian-Clayton copula with pre-chosen weights

by a convex combination of the two copulas.

The mixture Gaussian-Clayton copula used in this paper takes the following specifica-

3The formal statement of the theorem is given in the appendix.
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tion.

Cmix(u, v; ρ, τ, κ) = kappaCnor(u, v; ρ) + (1− κ)Cclay(u, v; τ) (1.16)

where κ indicates the weight put on the bivariate normal (Gaussian) copula. The mix-

ture copula shown in equation (1.16) nests both Gaussian and Clayton copulas as special

cases. When κ = 1, the mixture copula reduces to Gaussian copula. When κ = 0, the mix-

ture copula reduces to Clayton copula. In the following simulation, I take different κ values

of 0, 0.25, 0.375, 0.5 and 1 to generate random samples with different levels of asymmetric

dependence from the highest to lowest.

1.3.2 Simulation with Copula-GARCH Model

The joint distribution of generated random samples is governed by the mixture Gaussian-

Clayton copula model. I still need to specify some model to best mimic the marginal

distributions of asset returns. GARCH(1,1) process is a well-known parsimonious model for

stock returns. Following Hong, Tu, and Zhou (2007), I model the marginal distributions of

the return series with a GARCH(1,1) with no ARMA components. Basically, the return

series is modeled to be equal to an expected return component plus a random error term that

follows a GARCH(1,1) process. I first fit the copula-GARCH model to the data to estimate

the related parameters using Maximum Likelihood (ML) approach. I then plug the ML

estimates back in the model and use it as the data generating process (DGP) in simulation.

To be conservative, instead of using portfolios that show clear asymmetric dependence, such

as the smallest stock portfolio or momentum portfolios, etc., I use the 5th smallest value-

weighted size portfolio and the market return to estimate copula and GARCH parameters.

Empirically, I do not find any evidence for asymmetric dependence for size 5 portfolio, hence

using it to calibrate the parameters impose a harder challenge for the tests. It is interesting

to see whether the tests have reasonable power under such parameter settings. Hong, Tu,

and Zhou (2007) has done a similar practice in their simulation exercises.
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[Insert Table 1.1 about here]

Table 1.1 gives the ML estimates from fitting the data to the GARCH(1,1) process

using the full sample period. Panel A lists the parameter estimates for return series of

value-weighted size 5 portfolio and Panel B lists the estimates for the market return series.

All the estimated parameters are statistically significant at 5% level.

Taking those estimates as the population parameters, I are able to simulate the data

with the copula-GARCH model using the following detailed steps.

1. For a given κ, draw a bivariate uniform random sample of size T from the mixture

Gaussian-Clayton copula model;

2. Apply inverse standard normal CDF transformation to get a bivariate standard normal

random sample with pre-specified dependence structure;

3. Feed each series of the joint normal random sample into the univariate GARCH(1,1)

process as the innovation terms to generate simulated joint return series;

4. The simulated data vectors will each follow a GARCH(1,1) process and the perceived

dependence structure governed by the mixture copula model.

5. Repeat step 1 to 4 for 1,000 times to get 1,000 simulated random samples.

6. Repeat step 1 to 5 with different sample sizes T . Specifically, I consider T=240, 420

and 600.

[Insert Table 1.2 about here]

The sample sizes follow common choices used in the literature. T = 240 stands for 20

years of monthly frequency data. T = 420 is the length of the subsample data period as

used in Hong, Tu, and Zhou (2007). T = 600 stands for 50 years of monthly frequency data

and is close to the full sample data length (T = 588) used in this paper. In simulation, I

use one fixed bandwidth for each 1,000 random samples generated from the same DGP. The
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fixed bandwidth is set to be equal to the average of the 1,000 bandwidths computed for each

of the 1,000 random samples via likelihood cross-validation. Similar practice is conducted

for the optimal block length selection. The expected block length for each 1,000 random

samples generated from the same DGP is fixed to be the average of the 1,000 optimal block

lengths computed using Patton, Politis, and White (2009) algorithm. Averaging bandwidth

and block length across random samples drawn from the same DGP could potentially reduce

some sampling randomness and make the simulation results more stable.

Table 1.2 reports the empirical size and power for both tests when the nominal size is

set at 5% based on 1,000 simulations. Powers are reported with different DGPs of different

degrees of asymmetric dependence levels (from κ = 1 to κ = 0) and at various sample sizes.

I report size and power of Hong, Tu, and Zhou (2007) test (HTZ test hereafter) computed

based on both asymptotic distribution and stationary bootstrap with 399 replications.

Based on the standard paired bootstrap procedure described in Cameron and Trivedi

(2005) and in Horowitz (2001), I construct a pivotal (standardized) statistic when bootstrap-

ping HTZ test statistic to achieve asymptotic refinement. I obtain the variance estimates of

HTZ test statistic via sub-bootstrap, i.e. within each bootstrap replication, I bootstrap the

replicated sample again to estimate the standard error based on a series of sub-bootstrapped

statistics. Since I am estimating the variance rather than tail quantiles or critical values,

a fairly small number of resamples is sufficient for consistent estimates. Following Racine

(1997), I set the number of sub-bootstrap replications at one tenth of the original number

bootstrap replications, i.e. Bsub = 20. But the bootstrap results of HTZ test does not yield

better power than their asymptotic counterparts. However, the empirical sizes are much

closer to the nominal values than those based on asymptotic theory.

The last column reports the power increase when inference of both tests is based on

stationary bootstrap and the exceedance level is set at 0. Since the inference method is the

same, we attribute this power increase to better information summarized by the entropy

measure. The average power increase is computed as mean of differences among all the

simulation scenarios considered in this paper.
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I find a pattern that the average power increase is getting more significant as the nominal

test size decreases, i.e. the entropy test gives better inference results when I want to report

the testing results in a more accurate manner. At nominal size of 10%, the average power

difference is only 0.03 or 4%. While at nominal size of 5%, the average power increase is

0.103 or 17.3% and when the nominal size is set at 1%, the the average power increase is

0.245 or a huge 84.6% increase. I can see that the role of information is very significant in

making better statistical inference.

It indicates that the entropy test on average has higher power than HTZ test for different

DGP that reflects various degree of asymmetric dependence. The difference in power varies

with the dependence structure of the DGP. When the simulated data have very strong

asymmetric dependence, the performance of both tests are close to each other. If the DGP

is a bivariate Clayton copula (κ = 0), the difference in power is quite small (about 0.14

for T = 240) and the difference vanishes as sample size increase to T = 600. The power

difference is most pronounced when the degree of asymmetric dependence is not very strong.

When the DGP is a 37.5% mixed Gaussian-Clayton copula, the power of the entropy test

is about 4 times higher than the power of HTZ test for smaller sample sizes (T = 240 or

T = 420). The difference shrinks as the sample size increases to 600, but the power of the

entropy test is still twice as large as the power of HTZ test.

The improvement of power for both tests with larger sample size is expected, especially

for HTZ test based on asymptotic distribution. I tried to make inferences of HTZ test using

stationary bootstrap, but the results do not show improvement upon inference based on

asymptotic distribution, so I report the size and power of their test based on asymptotic

theory. When the underlying DGP is of symmetric dependence, i.e. the bivariate Gaussian

case with κ = 1, the probability of rejection is the empirical size of the tests. The sizes of

both tests are reported in the top left panel in Table 1.2.

[Insert Table 1.3 about here]

Table 1.3 and Table 1.4 report the empirical size and power for both tests when the
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nominal size is set at 1% and 10% respectively based on 1,000 simulations. The results

reaffirm the conclusions drawn from Table 1.2. The entropy test shows higher power for

almost all different DGPs.

[Insert Table 1.4 about here]

1.4 Is Asymmetry Rare?

In this section, I apply the entropy measure to test whether there exists statistically sig-

nificant asymmetry in common portfolios sorted by size (market capitalization), book-to-

market ratio and momentum (past return).

1.4.1 Data

Following existing studies on testing for asymmetric correlations, I consider portfolios of

stocks sorted by popular characteristics, i.e. size, book-to-market ratio, and momentum.

As Ang and Chen (2002), I use value-weighted returns of for both size and book-to-market

decile portfolios, and use equal-weighted returns for decile momentum portfolios which

are formed based on prior 2 to 12 month cumulative return. Return on CRSP (Center

for Research in Security Prices) value-weighted market index based on stocks listed in

NYSE/AMEX/NASDAQ is used as a proxy for the market return. All returns are at the

monthly frequency and are in excess of the risk-free rate which is taken as the one-month

T-bill rate. The entire data are available from Kenneth French’s site.4 The sample period

is from January 1965 to December 2013 (588 observations in total).

1.4.2 Empirical Testing Results

Table 1.5 provides the testing results on the size portfolios. At the usual 5% level, the

entropy test rejects symmetry for all size portfolios from the 1st to 6th smallest size port-

4I are grateful to Kenneth French for making the data available at
http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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folios. In contrast, the existing model-free test of Hong, Tu, and Zhou (2007) can only

reject symmetry for the smallest size portfolio based on either the singleton exceedance lev-

el c = {0} or the multiple exceedance levels c = {0, 0.5, 1, 1.5}. It is interesting to observe

that the entropy test statistics decrease monotonically as the firm size increases with the

only exception of the 9th decile portfolio. Similar patterns also hold for the asymmetric

correlation test statistic. Intuitively, this should be true too. The larger the firm, the more

it resembles the market, and hence the asymmetry relative to the market reduces.

[Insert Table 1.5 about here]

Note that while the P-values of the entropy test are computed based on 399 station-

ary bootstraps, the P-values of the asymmetric correlation test are computed from the

asymptotic Chi-square distribution with degree of freedom 1 in the singleton and multiple

exceedance levels, respectively. For the entropy test, because consistent nonparametric k-

ernel estimation requires a fairly large sample size, I use only the single exceedance level.

This is also consistent with earlier Monte Carlo simulations that the entropy test based on a

singleton exceedance level yields uniformly better power and size properties than the multi-

ple exceedance level. In contrast, estimating correlations do not require as many samples as

in the density estimation case. Hence, it is not surprising that the asymmetric correlation

test yields similar results with the singleton or the multiple exceedance levels.

The empirical testing results from both tests for value-weighted book-to-market ratio

portfolios are reported in Table 1.6. In the shorter time period from 1965 to 1999 (the

same period as used in Hong, Tu, and Zhou (2007)), neither test detects any significant

asymmetry in value-weighted book-to-market ratio portfolios, nor the test statistics show

any clear pattern (See Table 1.B.2 in the appendix).

In the full sample, the singleton entropy test finds that the 9th highest book-to-market

ratio portfolio shows significant asymmetric dependence with the market return at 1% level.

The joint entropy test detects more significance in book-to-market ratio portfolios. The Sρ

measure shows a roughly increasing pattern when I go from low to high book-to-market ratio
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portfolios. In Ang and Chen (2002), they also find an increasing pattern of their H statistic

when moving from growth (low book-to-market ratio) stocks to value (high book-to-market

ratio) stocks.

[Insert Table 1.6 about here]

Table 1.7 gives the empirical testing results for equal-weighted momentum portfolios.

Both tests find significant asymmetry for the return of the highest momentum portfolio (the

highest past winner portfolio). The entropy test, in addition, finds statistically significant

asymmetric dependence in the return of the lowest momentum portfolio (the biggest past

loser portfolio). This finding is consistent with Ang and Chen (2002), which shows that

bivariate normal model is rejected when fitting to the past loser portfolio returns, i.e. the

returns exhibit asymmetric correlations. However, HTZ test fails to detect such asymmetric

correlation in the past loser portfolio. I also find that all of the equal-weighted decile

momentum portfolios shows significant asymmetric dependence at conventional significance

levels. The test statistic Sρ increases when I go to either lower or higher ends and is the

lowest in the middle deciles. The pattern is consistent with that of the J statistic in HTZ

test, but again due to lower power in finite samples, their test fails to attain statistical

significance.

[Insert Table 1.7 about here]

1.5 Conclusion

Asymmetric dependence in stock returns is important for both portfolio management and

risk hedging. However, existing tests focus only on asymmetric correlations, a special case

of asymmetric dependence because correlation coefficient is only a measure of linear de-

pendence that ignores higher order dependence. In this paper, I propose to use a metric

entropy to measure and construct a model-free test for asymmetric dependence in bivariate

return data. Econometrically, the test extends the univariate test of asymmetry proposed
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by Racine and Maasoumi (2007) to the bivariate case that is of interest in finance.

This paper makes several original contributions to the literature. First of all, the model-

free entropy test of asymmetric dependence extends the univariate test of asymmetry pro-

posed by Racine and Maasoumi (2007) to the bivariate case that is of interest in finance.

Secondly, with Monte Carlo simulations, I find that the entropy test has correct size,

and has greater power in finite samples than the existing model-free test of asymmetric

correlation proposed by Hong, Tu, and Zhou (2007).

Thirdly, I have find that based on the entropy test, statistically significant asymmetries

are detected for most common portfolios, such as those sorted on size, book to market ratio

and momentum. In contrast, Hong, Tu, and Zhou (2007) only identify a few. Specifically,

I find patterns that are more consistent with findings documented in prior studies. For

example, I find that smaller size portfolios show stronger asymmetric dependence, which is

consistent with the findings in Ang and Chen (2002) and Kroner and Ng (1998). I also find

that asymmetric dependence increases with the book-to-market ratio, which is consistent

with an empirical fact that “Value stocks are more asymmetric than growth stocks” as

described in Ang and Chen (2002).

Finally, the proposed entropy test is very flexible. It works well for both continuous

and discrete data types. It is also applicable to either i.i.d or stationary time series data.

Therefore, the test has great potentials to be applied to other studies. While the paper

applies the test of asymmetric dependence to the US stocks, it will be of interest to apply

the new method to the international markets to assess cross country asymmetric dependence

of stock returns. It will also be of interest to apply the methodology of this paper to bonds,

currencies and other asset classes. These will be potential topics of future research.
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1.A Appendix: Tawn (1988) Theorem

Theorem 1.A.1. Tawn (1988) If C1(u1, u2), C2(u1, u2), . . . , Cn(u1, u2) are bivariate

copula functions, then

C(u1, u2) = w1 · C1(u1, u2) + w2 · C2(u1, u2) + · · ·+ wn · Cn(u1, u2)

is again a copula for wi ≥ 0 and
∑n

i=1wi = 1.

1.B Appendix: Additional Tables

Table 1.B.1: Subsample Test Results of Asymmetric Dependence: Size Portfolios

Entropy-based Test HTZ Test
C={0} C={0} C={0, 0.5, 1,1.5}

Portfolio Sρ × 100 P-value Test-stat P-value Test-stat P-value

Size 1 1.820 0.105 2.458 0.117 9.728 0.045
Size 2 1.591 0.083 0.790 0.374 0.942 0.918
Size 3 1.473 0.175 0.549 0.459 0.856 0.931
Size 4 1.280 0.221 0.339 0.560 0.584 0.965
Size 5 1.385 0.165 0.252 0.616 4.878 0.300
Size 6 1.237 0.286 0.120 0.729 3.924 0.416
Size 7 0.971 0.561 0.016 0.898 0.706 0.951
Size 8 1.015 0.454 0.023 0.878 0.401 0.982
Size 9 0.881 0.526 0.001 0.972 0.008 1.000
Size 10 0.954 0.544 0.001 0.980 0.111 0.999

The sample period is from January 1965 to December 1999. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of HTZ (2007) test are computed
based on asymptotic Chi-square(4) distribution.
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Table 1.B.2: Subsample Test Results of Asymmetric Dependence: Book-to-Market Portfo-
lios

Entropy-based Test HTZ Test
C={0} C={0} C={0, 0.5, 1,1.5}

Portfolio Sρ × 100 P-value Test-stat P-value Test-stat P-value

BE/ME 1 0.820 0.516 0.022 0.883 0.341 0.987
BE/ME 2 0.928 0.391 0.020 0.887 0.208 0.995
BE/ME 3 0.704 0.739 0.042 0.837 0.251 0.993
BE/ME 4 1.054 0.411 0.117 0.733 1.716 0.788
BE/ME 5 1.164 0.451 0.167 0.683 2.638 0.620
BE/ME 6 0.866 0.714 0.102 0.749 1.500 0.827
BE/ME 7 1.410 0.356 0.121 0.728 1.008 0.909
BE/ME 8 1.523 0.185 0.278 0.598 2.570 0.632
BE/ME 9 1.623 0.183 0.504 0.478 1.180 0.881
BE/ME 10 1.420 0.308 0.588 0.443 2.896 0.575

The sample period is from January 1965 to December 1999. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of HTZ (2007) test are computed
based on asymptotic Chi-square(4) distribution.
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Table 1.B.3: Subsample Test Results of Asymmetric Dependence: Momentum Portfolios

Entropy-based Test HTZ Test
C=0 C=0 C=0, 0.5, 1,1.5

Portfolio Sρ × 100 P-value Test-stat P-value Test-stat P-value

L 2.526 0.000 2.162 0.141 4.449 0.349
2 1.503 0.080 1.231 0.267 3.009 0.556
3 1.402 0.123 0.946 0.331 4.572 0.334
4 1.434 0.133 0.758 0.384 4.412 0.353
5 1.779 0.033 0.694 0.405 4.088 0.394
6 1.563 0.063 0.722 0.396 0.794 0.939
7 1.505 0.108 0.585 0.444 3.445 0.486
8 1.431 0.123 0.670 0.413 0.911 0.923
9 1.528 0.110 1.088 0.297 1.636 0.802
W 1.750 0.100 1.648 0.199 10.266 0.036

The sample period is from January 1965 to December 1999. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of HTZ (2007) test are computed
based on asymptotic Chi-square distribution.
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Figure 1.1: Illustration of Asymmetric Dependence

This figure shows two scatter plots from two data-generating processes with different dependence

structures. Subfigure (a) shows a scatter plot of of 2000 points generated from a Clayton copula that is

known to have stronger left tail dependence than right tail dependence. Subfigure (b) is a similar plot

where the DGP is a bivariate normal distribution that has symmetric dependence at both tails. The blue

lines in both subfigures are linear regression lines fitted to the data.
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Figure 1.2: Copula Dependence Structures and Data Plots

This figure shows scatter plots of random samples generated by Gaussian copula (A), Clayton copula (B)

and mixed Gaussian-Clayton copula with mixing weights of 0.5 each (C), as well as the actual data plots of

the value-weighted returns of the smallest size portfolio and the market returns.
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Table 1.1: ML estimates for GARCH(1,1) processes

Panel A: Value-Weighted Size 5 Portfolio Return Series

Estimate S.E. t-value Pr(>|t|)
µ 0.94 0.23 4.02 0.00
ω 4.97 2.31 2.15 0.03
α 0.14 0.05 2.99 0.00
β 0.73 0.09 7.82 0.00

Panel B: Value-Weighted Market Return Series

Estimate S.E. t-value Pr(>|t|)
µ 0.56 0.17 3.29 0.00
ω 1.14 0.55 2.06 0.04
α 0.11 0.03 3.71 0.00
β 0.84 0.04 23.28 0.00

The table reports maximum likelihood estimates for parameters of GARCH(1,1) processes
used to fit the 5th smallest size portfolio return (Panel A) and the market return (Panel B)
data. The GARCH models are then used as the data-generating processes to simulate stock
return data. The specification is a standard GARCH(1,1) process: ri,t = µi + εi,t where
εi,t is normally distributed with a time-varying variance σ2

i,t = ωi + αiε
2
i,t−1 + βiσ

2
i,t−1. µ is

the unconditional mean for the stock return process. α is the autoregressive parameter and
β is the moving average parameter in the GARCH process. ω is the constant term in the
time-varying variance process.
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Table 1.2: Size and Power: Entropy-based test and HTZ test (5% nominal size)

Entropy
Test

HTZ Test Power
Increase

Asymptotic Theory Bootstrap
C={0} C={0} C={0,

0.5}
C={0,
0.5, 1}

C={0,
0.5,

1,1.5}

C={0} C={0}

Panel A: κ = 100% (size)

T = 240 0.022 0.000 0.000 0.003 0.023 0.039 N/A
T = 420 0.033 0.000 0.000 0.001 0.008 0.045 N/A
T = 600 0.044 0.000 0.000 0.000 0.004 0.043 N/A

Panel B: κ = 50%

T = 240 0.094 0.005 0.021 0.046 0.092 0.233 -0.139
T = 420 0.223 0.003 0.022 0.034 0.068 0.323 -0.100
T = 600 0.405 0.014 0.050 0.060 0.088 0.469 -0.064

Panel C: κ = 37.5%

T = 240 0.312 0.086 0.086 0.104 0.167 0.423 -0.111
T = 420 0.729 0.215 0.142 0.140 0.176 0.582 0.147
T = 600 0.937 0.426 0.299 0.249 0.263 0.758 0.179

Panel D: κ = 25%

T = 240 0.748 0.478 0.325 0.299 0.380 0.549 0.199
T = 420 0.991 0.791 0.618 0.504 0.510 0.725 0.266
T = 600 1.000 0.969 0.867 0.763 0.723 0.854 0.146

Panel E: κ = 0%

T = 240 0.952 0.857 0.742 0.690 0.717 0.614 0.338
T = 420 1.000 0.983 0.937 0.895 0.880 0.766 0.234
T = 600 1.000 0.993 0.982 0.972 0.958 0.859 0.141
Avg. Power 0.699 0.485 0.424 0.396 0.419 0.596 0.103

(17.3%)

The nominal size of the tests is set at 5%. The table reports the probabilities of rejecting the
null hypothesis of symmetric dependence based on 1,000 Monte Carlo simulations. Different values
of Îo governs the degree of left tail dependence of the underlying data generating process (DGP).
When κ = 100%, the DGP is a joint normal distribution and the respective rejecting probabilities
are empirical sizes. In all other cases, the rejection probabilities are powers. The last column
reports power increases when inferences of both tests are based on 399 stationary bootstraps and
the exceedance level is set at 0. The average power increase is computed as mean of differences
among all the simulation cases considered in this paper.
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Table 1.3: Size and Power: Entropy-based test and HTZ test (1% nominal size)

Entropy
Test

HTZ Test Power
Increase

Asymptotic Theory Bootstrap
C={0} C={0} C={0,

0.5}
C={0,
0.5, 1}

C={0,
0.5,

1,1.5}

C={0} C={0}

Panel A: κ = 100% (size)

T = 240 0.006 0.000 0.000 0.001 0.009 0.006 N/A
T = 420 0.005 0.000 0.000 0.000 0.000 0.007 N/A
T = 600 0.008 0.000 0.000 0.000 0.000 0.007 N/A

Panel B: κ = 50%

T = 240 0.013 0.003 0.003 0.011 0.039 0.074 -0.061
T = 420 0.055 0.000 0.003 0.004 0.024 0.092 -0.037
T = 600 0.129 0.000 0.006 0.009 0.025 0.133 -0.004

Panel C: κ = 37.5%

T = 240 0.084 0.010 0.026 0.034 0.074 0.145 -0.061
T = 420 0.380 0.032 0.029 0.035 0.054 0.241 0.139
T = 600 0.733 0.084 0.060 0.069 0.103 0.367 0.366

Panel D: κ = 25%

T = 240 0.370 0.159 0.111 0.113 0.204 0.221 0.149
T = 420 0.915 0.415 0.262 0.218 0.259 0.325 0.590
T = 600 0.998 0.740 0.537 0.419 0.401 0.507 0.491

Panel E: κ = 0%

T = 240 0.745 0.559 0.466 0.446 0.506 0.273 0.472
T = 420 0.992 0.865 0.754 0.668 0.668 0.437 0.555
T = 600 1.000 0.960 0.922 0.877 0.857 0.659 0.341
Avg. Power 0.535 0.319 0.265 0.242 0.268 0.290 0.245

(84.6%)

The nominal size of the tests is set at 1%. The table reports the probabilities of rejecting the
null hypothesis of symmetric dependence based on 1,000 Monte Carlo simulations. Different values
of Îo governs the degree of left tail dependence of the underlying data generating process (DGP).
When κ = 100%, the DGP is a joint normal distribution and the respective rejecting probabilities
are empirical sizes. In all other cases, the rejection probabilities are powers. The last column
reports power increases when inferences of both tests are based on 399 stationary bootstraps and
the exceedance level is set at 0. The average power increase is computed as mean of differences
among all the simulation cases considered in this paper.
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Table 1.4: Size and Power: Entropy-based test and HTZ test (10% nominal size)

Entropy
Test

HTZ Test Power
Increase

Asymptotic Theory Bootstrap
C={0} C={0} C={0,

0.5}
C={0,
0.5, 1}

C={0,
0.5,

1,1.5}

C={0} C={0}

Panel A: κ = 100% (size)

T = 240 0.058 0.000 0.003 0.005 0.035 0.085 N/A
T = 420 0.077 0.000 0.000 0.004 0.017 0.093 N/A
T = 600 0.107 0.000 0.000 0.000 0.008 0.100 N/A

Panel B: κ = 50%

T = 240 0.196 0.016 0.046 0.088 0.144 0.386 -0.190
T = 420 0.390 0.033 0.053 0.073 0.112 0.513 -0.123
T = 600 0.588 0.068 0.102 0.127 0.161 0.682 -0.094

Panel C: κ = 37.5%

T = 240 0.514 0.200 0.168 0.174 0.237 0.608 -0.094
T = 420 0.854 0.428 0.277 0.235 0.280 0.754 0.100
T = 600 0.979 0.731 0.484 0.403 0.411 0.907 0.072

Panel D: κ = 25%

T = 240 0.865 0.660 0.500 0.438 0.505 0.748 0.117
T = 420 1.000 0.932 0.770 0.686 0.660 0.871 0.129
T = 600 1.000 0.998 0.964 0.898 0.851 0.947 0.053

Panel E: κ = 0%

T = 240 0.982 0.944 0.864 0.794 0.830 0.807 0.175
T = 420 1.000 0.996 0.979 0.956 0.950 0.862 0.138
T = 600 1.000 0.998 0.992 0.986 0.981 0.926 0.074
Avg. Power 0.781 0.584 0.517 0.488 0.510 0.751 0.030

(4%)

The nominal size of the tests is set at 10%. The table reports the probabilities of rejecting the
null hypothesis of symmetric dependence based on 1,000 Monte Carlo simulations. Different values
of Îo governs the degree of left tail dependence of the underlying data generating process (DGP).
When κ = 100%, the DGP is a joint normal distribution and the respective rejecting probabilities
are empirical sizes. In all other cases, the rejection probabilities are powers. The last column
reports power increases when inferences of both tests are based on 399 stationary bootstraps and
the exceedance level is set at 0. The average power increase is computed as mean of differences
among all the simulation cases considered in this paper.
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Table 1.5: Empirical Test Results of Asymmetric Dependence: Size Portfolios

Entropy-based Test HTZ Test
C={0} C={0} C={0, 0.5, 1,1.5}

Portfolios Sρ × 100 P-value Test-stat P-value Test-stat P-value

Size 1 2.027 0.010 4.212 0.040 9.715 0.046
Size 2 1.963 0.000 2.049 0.152 3.281 0.512
Size 3 1.868 0.020 0.937 0.333 1.108 0.893
Size 4 1.689 0.013 0.613 0.434 2.095 0.718
Size 5 1.690 0.030 0.431 0.512 5.015 0.286
Size 6 1.596 0.045 0.234 0.629 3.134 0.536
Size 7 1.477 0.065 0.092 0.761 0.849 0.932
Size 8 1.510 0.085 0.099 0.753 0.146 0.997
Size 9 1.695 0.075 0.005 0.945 0.030 1.000
Size 10 1.511 0.055 0.008 0.930 0.029 1.000

The sample period is from January 1965 to December 2013. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of Hong, Tu, and Zhou (2007) test
are computed based on asymptotic Chi-square distribution.
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Table 1.6: Empirical Test Results of Asymmetric Dependence: Book-to-Market Portfolios

Entropy-based Test HTZ Test
C={0} C={0} C={0, 0.5, 1,1.5}

Portfolios Sρ × 100 P-value Test-stat P-value Test-stat P-value

BE/ME 1 1.248 0.115 0.023 0.880 0.341 0.987
BE/ME 2 1.208 0.085 0.024 0.876 0.093 0.999
BE/ME 3 1.003 0.263 0.060 0.807 0.066 0.999
BE/ME 4 1.626 0.138 0.064 0.800 1.829 0.767
BE/ME 5 1.610 0.055 0.145 0.703 2.769 0.597
BE/ME 6 1.815 0.025 0.054 0.817 1.099 0.894
BE/ME 7 1.805 0.058 0.082 0.774 0.590 0.964
BE/ME 8 1.571 0.098 0.226 0.634 2.954 0.566
BE/ME 9 2.162 0.005 0.447 0.504 1.667 0.797
BE/ME 10 1.657 0.075 0.805 0.370 2.133 0.711

The sample period is from January 1965 to December 2013. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of Hong, Tu, and Zhou (2007) test
are computed based on asymptotic Chi-square distribution.
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Table 1.7: Empirical Test Results of Asymmetric Dependence: Momentum Portfolios

Entropy-based Test HTZ Test
C={0} C=0 C={0, 0.5, 1,1.5}

Portfolios Sρ × 100 P-value Test-stat P-value Test-stat P-value

L 3.597 0.003 5.191 0.023 6.369 0.173
2 2.572 0.003 2.354 0.125 5.022 0.285
3 2.237 0.018 1.452 0.228 5.407 0.248
4 1.784 0.050 1.008 0.315 5.018 0.285
5 2.155 0.005 0.915 0.339 4.468 0.346
6 1.981 0.003 0.775 0.379 0.921 0.922
7 2.385 0.000 0.717 0.397 3.915 0.418
8 1.959 0.000 1.029 0.311 2.591 0.628
9 2.298 0.000 1.850 0.174 3.507 0.477
W 2.338 0.000 3.329 0.068 13.141 0.011

The sample period is from January 1965 to December 2013. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of Hong, Tu, and Zhou (2007) test
are computed based on asymptotic Chi-square distribution.
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Chapter 2

Asymmetric Dependence and the Cross-section of

Stock Returns

Abstract

This paper examines how non-linear asymmetric dependence between indi-

vidual stock return and market return is cross-sectionally priced. Motivated by

Ang, Chen, and Xing (2006), I construct proxies for the dependence with down-

side and upside market separately based on non-parametric kernel estimated

joint return distribution. Asymmetric dependence is measured using a metric

entropy proposed by Granger, Maasoumi, and Racine (2004). Empirically, I find

a risk premium (discount) for stocks with high downside (upside) dependence.

Asymmetric dependence leaning toward the downside also earns a premium. The

risk premia associated with downside dependence and asymmetric dependence

are higher than the discount associated with upside dependence. Furthermore,

downside dependence premium is almost twice as large as the downside beta

premium. The findings suggest that investors’ aversion to downside losses are

stronger than their attraction to the upside gains.

Keywords: Asymmetric dependence, metric entropy, non-parametric ker-

nel, asset pricing.

JEL Classification: C12, G11, G12, G17
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2.1 Introduction

Asymmetric dependence among stock returns, i.e. stocks co-move more strongly when

market goes down than when market goes up, have been documented by many prior stud-

ies, in the forms of asymmetric covariances, correlations and market betas (see, e.g., Ball

and Kothari, 1989; Conrad, Gultekin, and Kaul, 1991; Bekaert and Wu, 2000; Ang and

Chen, 2002; Bae, Karolyi, and Stulz, 2003; Ang, Chen, and Xing, 2006). Such asymmetric

characteristics of stock returns are important because effective hedging relies on the depen-

dence between assets hedged and financial instruments used. If the dependence structure

is varying with the state of the market, portfolio managers may need to worry about the

effectiveness of their hedges when they are most needed. Despite the importance, the as-

set pricing implications of asymmetric dependence on the cross-section of expected stock

returns have been less studied in the literature.

Ang, Chen, and Xing (2006) find asymmetric risk premia are associated with downside

and upside betas in the cross-section of stock returns. They show that stocks with higher

downside betas have on average higher returns, but have mixed evidence on whether higher

upside betas are associated with a discount. Since downside and upside betas are highly

correlated with market betas (the correlations are above 0.75 as shown in Ang, Chen, and

Xing (2006)), i.e. an increase in downside or upside betas are associated with an increase in

the market beta, it is hard to distinguish the effects of downside or upside covariation from

the overall covariation between stock and the market returns. Alcock and Hatherley (2013)

tries to overcome this problem by constructing a beta-invariant asymmetric dependence

measure that is a modified J statistic of an asymmetric correlation test proposed by Hong,

Tu, and Zhou (2007). Although beta-invariant, their measure still does not capture full

dependence structure since it is constructed based on exceedance correlations that can only

capture conditional dependence to the second moment (linear dependence).

Under classical Capital Asset Pricing Model (CAPM), it is sufficient to consider only

linear correlations (captured by the market beta) between individual stock returns and the

market portfolio return. (see Sharpe, 1964; Lintner, 1965). However, more recent studies
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find supporting evidence that features of the joint distribution of individual stock and

market returns beyond the linear correlation also determine the expected stock returns.

For example, Harvey and Siddique (2000), Dittmar (2002) among others show that higher

order co-moments, such as conditional coskewness and cokurtosis, also play important roles

in explaining the cross-sectional returns. The main reason is that returns are assumed

to be normally distributed for classical CAPM to hold,1 while several papers documented

that realized stock returns are non-normally distributed (see, e.g., Embrechts, McNeil, and

Straumann, 2002; Ang and Chen, 2002). It is well known that the correlation coefficient is

only a measure of linear dependence and cannot capture the full dependence structure of

non-normal distributions. Some recent papers start to examine cross-sectional asset pricing

implications of higher order dependence. Contemporary paper by Chabi-Yo, Ruenzi, and

Weigert (2014), in a non-normal distribution framework, uses parametric copula-based tail

dependence measure to explain the cross-sectional expected returns. My paper differs from

theirs in that they focus on extreme lower tail dependence, or the crash sensitivities of

stocks, while, muck like Ang, Chen, and Xing (2006), I focus on the downside and upside

dependence when market returns are above or below the mean.

In this paper, I use an entropy-based statistic to empirically measure asymmetric depen-

dence and study its asset pricing implications in the cross-section of expected stock returns.

The entropy measure is a modified statistic of an asymmetric dependence test proposed in

Chapter 1. Entropy is estimated using empirical probability densities, so it can summarize

all the information of a given distribution and capture asymmetric dependence structure

existed in all the moments. Ang, Chen, and Xing (2006) shows that under a simplistic

representative agent model with disappointment aversion (DA) utility (Gul, 1991) and with

certain parameter settings, agents require a premium to hold stocks with strong covariation

with the downside market, while are willing to hold stocks with high upside potential at a

discount, all else being equal. Motivated from this insight, we expect stocks with stronger

1Without normality assumption, CAPM also holds under the assumption of quadratic preferences, which
is even less likely to be true in reality. So the violation of normality condition should be held as the major
reason for the failure of CAPM.
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downside asymmetric dependence, i.e. the dependence with the downside market is stronger

than with the upside market, to earn higher average returns, because those stocks are highly

risky in the sense that they may incur large loss when the wealth level is low, meanwhile

they do not have high upside potential when the market goes up. Furthermore, as pointed

out by Ang, Chen, and Xing (2006), the DA utility is kinked at certainty equivalence wealth

level, so the higher-order co-moments derived from Taylor expansion, like coskewness and

cokurtosis, may not approximate the utility function well globally. This is a theoretical

motivation why there may exist asymmetric effects of downside and upside dependence.

In the empirical analysis, I also construct proxies for downside and upside dependence

using estimated probabilities that individual stock and market returns both fall below or

above the sample means. Using Center for Research in Securities Prices (CRSP) data from

1962 to 2013, I find empirical evidence that stocks with high downside (upside) dependence

earn a premium (discount). Both effects are statistically and economically significant after

controlling for other known characteristics in cross-sectional Fama and MacBeth (1973)

regressions. The value-weighted average return (Carhart (1997) four factor adjusted alpha)

of the top quintile portfolio sorted based on downside asymmetric dependence outperforms

the lowest quintile portfolio by 12.34% (12.89%) per annum. In Fama-Macbeth (1973)

regressions, the premium of downside asymmetric dependence cannot be explained by known

characteristics, such as CAPM beta, downside or upside betas, coskewness and cokurtosis,

size, book-to-market ratio, past returns and maximum daily return within a month. The

downside asymmetric dependence is time-varying and shows limited predictability using its

own lag. Yet when using the lagged asymmetric dependence to form a trading strategy,

the spread portfolio still earns an average equal-weighted annualized return of 4.5%. The

premium is both economically and statistically significant.

The rest of the paper is organized as follows. Section 2.2 introduces a modified entropy-

based measure of downside asymmetric dependence. Section 2.3 shows that downside asym-

metric dependence is associated with a risk premium contemporaneously using univariate,

dependent bivariate portfolio sorting and firm-level cross-sectional regressions, along with a
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battery of robustness checks. Section 2.4 examines the time-series persistence of downside

asymmetric dependence and evaluates whether lagged asymmetric dependence can predict

future stock returns cross-sectionally. Section 2.5 concludes.

2.2 Measuring Asymmetric Dependence

2.2.1 Downside Asymmetric Dependence

In finance literature, prior studies utilize exceedance correlations, i.e. the conditional cor-

relations evaluated when both individual stock and the market returns are below or above

certain exceedance levels, to construct measures of asymmetry of the joint return distribu-

tion. However, it is well known that the correlation coefficient is only a measure of linear

dependence and cannot reflect dependence structure beyond the second moment. To over-

come this shortcoming, in the first chapter I propose to use entropy to capture asymmetric

dependence existed in all the co-moments. Originated from physics and information theory

as a measure of uncertainty, entropy has gained increasing popularity in economics and fi-

nance. Some important applications of entropy include Sims (2003); Backus, Chernov, and

Martin (2011); Hansen (2012). Among most recent notable examples, Cabrales, Gossner,

and Serrano (2013) use Shannon’s entropy (Shannon, 1948) to quantify the informativeness

of a ruin-averse investor’s beliefs on the state of nature.

I have shown in Chapter 1 that the entropy test statistic Sρ(c), defined in equation 1.8,

can successfully capture the degree of asymmetric dependence as the entropy-based test

demonstrates higher finite sample power than the correlation-based test in Hong, Tu, and

Zhou (2007). However, Sρ(c) is a normalized metric that is always non-negative, so it gives

no direction of asymmetry dependence, i.e. it does not indicate whether the dependence

is stronger in the downside or upside. In finance, investors are more concerned about the

downside risk of an asset (see, e.g., Ang, Chen, and Xing, 2006). Therefore, we need a

measure to distinguish the direction of asymmetric dependence.

Graphically, the degree of concentration of return pairs in a given region reflects the
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degree of dependence of the two variables in the local area. For example, if the points are

more concentrated in the third quadrant than in the first quadrant, it indicates stronger

dependence during the downside market. A proxy for the direction of asymmetric depen-

dence can be constructed using joint probabilities of return pairs being in each region. The

proxy, excessive downside probability (EDP), can be defined as the difference between a

lower quadrant probability (LQP) and an upper quadrant probability (UQP). Specifically,

LQP and UQP are given by

LQPc = Pr(x̃ ≤ −c, ỹ ≤ −c) =

ˆ c

−∞

ˆ c

−∞
f(x̃, ỹ) dx̃dỹ, (2.1)

UQPc = Pr(x̃ ≥ c, ỹ ≥ c) =

ˆ +∞

c

ˆ +∞

c
f(x̃, ỹ) dx̃dỹ. (2.2)

They measure probabilities of individual stock and market return pairs being both above

or below the exceedance level c. When c = 0, higher LQP0 (UQP0) indicates higher

tendency for the stock to co-move with the market below (above) the average levels, and

hence is a good proxy for downside (upside) dependence with the market. The EDP is

defined as

EDPc = LQPc −UQPc

=
´ c
−∞
´ c
−∞[f(x̃, ỹ)− f(−x̃,−ỹ)] dx̃dỹ.

(2.3)

EDP is a function of exceedance level c. When c is taken to be 0, if EDP0 > 0,

the probability that the asset goes below the mean with the market is greater than the

probability that it goes up above the mean with the market, indicating stronger downside

dependence. When c equals other values, EDPc indicates the dependence difference in

farther tails. Everything else equal, intuitively, most investors dislike the excessive downside

probability defined above. From the viewpoint of utility theory, for example, investors

with the disappointment aversion (DA) preference, which is introduced by Gul (1991) and
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excellently analyzed by Ang, Bekaert, and Liu (2005), weigh outcomes below a certain

reference point strictly more heavily than those above it if the DA coefficient is of a usual

value less than 1. In other words, the greater the EDPc, the more they require to be

compensated for.

However, the degree of this asymmetric dependence is not fully reflected by EDPc. On

the other hand, as a distance measure of between the original and rotated distributions,

Sρ(c) captures the exact degree of asymmetric dependence. So a measure of downside

asymmetric dependence (DownAsy) can be defined as

DownAsyc = Sign(EDPc)Sρ(c), (2.4)

where Sign(x) is a sign function that takes the value of 1 if EDPc is positive and

equals −1 otherwise. It is interesting to exam the asset pricing implications of downside

asymmetric dependence measured at the sample means (c = 0), as it closely mimics the

way how Ang, Chen, and Xing (2006) define downside and upside betas, the conditional

linear dependence with the market. The empirical analysis mainly emphasizes on the case

of c = 0, so the results are directly comparable to Ang, Chen, and Xing (2006). The results

of asymmetric dependence measures at farther tails are also reported as robustness checks.

2.2.2 Non-parametric estimation

Empirically, estimating the downside asymmetric dependence measure requires consistent

estimation of the unknown joint density and cumulative distribution functions. Similar

as in the first chapter, I use the same “Parzen-Rosenblatt” kernel density estimator as in

1.10 and the “product kernel function” given in 1.11 to consistently estimate the density

functions in (1.8). Sρ(c) are then computed via numerical integration.

Besides the joint density functions, I also need to consistently estimate cumulative dis-

tribution functions in order to estimate LQPc, UQPc, and EDPc defined in (2.1), (2.2), and

(2.3). The cumulative distribution functions can be consistently estimated using either em-

pirical distribution functions or kernel smoothing method suggested by Li, Li, and Racine
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(2014). I choose to use kernel estimation method due to several advantages as shown in Li,

Li, and Racine (2014).2

2.3 Data and Empirical Results

In this section, I introduce data and empirical methodology used in the paper and report

the empirical findings.

2.3.1 Data and Research Design

Stock market data are from the CRSP that cover the sample period from January 1962

to December 2013. The data include all common stocks (with share codes of 10 or 11)

listed on NYSE, AMEX and NASDAQ. In order to make the trading volume in NASDAQ

comparable to NYSE and AMEX, volumes are adjusted based on the way proposed by Gao

and Ritter (2010). Turnover ratio is calculated as the adjusted monthly trading volume

divided by shares outstanding. Amihud (2002) ratio is also computed using the adjusted

trading volumes. Following Acharya and Pedersen (2005), I also normalize the Amihud

ratio to adjust for inflation and truncated it at 30 to eliminate the effect of outliers. The

detailed steps are given in appendix.

The book value information comes from COMPUSTAT and is supplemented by the

hand-collected book value data from Kenneth French’s web site.3 The book-to-market

ratio is calculated by the book value of equity (assumed to be available six months after the

fiscal year end) divided by current market capitalization. It is truncated at 0.5% percentile

and 99.5% percentile to eliminate the effect of extreme values. Following the literature, I

take natural logarithm of size, turnover ratio, and book to market ratio before controlling

them as firm characteristics.

Following Jegadeesh and Titman (1993), I use returns over past six months to control

2Note that the empirical distribution function is a non-smooth step function that jumps up by 1/n at
each of the n data points. As pointed out by Li, Li, and Racine (2014), the estimate is mechanically equal
to 0 (1) at the sample minimum (maximum), while the true population support may not be bounded by the
sample minimum and maximum. The problem is more prominent when the sample size is relatively small.

3The data are available at http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html.
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for the momentum effect. The sample is restricted to stocks with beginning-of-month prices

between $5 and $1,000 to eliminate stocks whose transaction cost is a huge part of their price

and those that have very high prices.4 I construct β−, β+, coskewness and cokurtosis using

the definitions given in Ang, Chen, and Xing (2006). Idiosyncratic volatility is calculated as

the standard deviation of the CAPM residuals over 12-month horizon. Max is the maximum

daily return in a month following the definition of Bali, Cakici, and Whitelaw (2011).

Factor pricing models focus on the contemporaneous risk return relationship. Classical

CAPM indicates that stocks that have higher exposure to the market risk earn higher

average returns over the same time period. The empirical research design of this paper

closely follows Ang, Chen, and Xing (2006); Lewellen and Nagel (2006); Chabi-Yo, Ruenzi,

and Weigert (2014) by investigating the contemporaneous relations between the realized

risk exposure and realized average returns. This approach may raise some concern that the

results may be driven by endogeneity. However, several papers documented that market risk

exposures may be time-varying (see,e.g., Fama and French, 1992; Ang and Chen, 2007). In

section 2.4, I also find evidence that the downside asymmetric dependence measure is time-

varying, since the past DownAsy is not a good predictor of current DownAsy. Following the

approach proposed by Ang, Chen, and Xing (2006), the dependence measures (LQP, UQP

and DownAsy) are estimated using realized daily return data over overlapping 12-month

periods. The estimates are updated monthly. Since the measures are estimated using

non-parametric kernel methods that require sufficient data points for reliable estimates, I

restrict the sample so that in each stock 12-month combination there are at least 100 daily

observations. Furthermore, using 12-month horizon could better capture the time-varying

feature of the dependence measures. Very long time intervals may lead to noisy estimates.

Other risk measures (β, β−, β+, Ivol, Coskew, Cokurt) are estimated using the same way.

As advocated by Ang, Chen, and Xing (2006); Lewellen and Nagel (2006), such estimation

procedure provides greater statistical power with possible time-varying risk measures.

Except for estimating the risk measures, all the empirical asset pricing analyses are done

4As a robustness check, I also repeated the same empirical analyses using stocks with prices in-between
$1 and $1,000, all the major results remain qualitatively the same.
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using CRSP monthly frequency data. After applying the data filters, the number of firms

in each month over the sample period ranges from 955 to 4364. In the empirical results to

follow, all the dependence measures (LQP, UQP and DownAsy) are evaluated at the sample

mean (c = 0), except for some cases that are specifically denoted.

Table 2.1 reports time series averages across months of the cross-sectional correlations

of main variables, lower quadrant probability (LQP), upper quadrant probability (UQP),

downside asymmetric dependence (DownAsy), CAPM beta (β), downside beta (β−), upside

beta (β+), log of market capitalization (Size), log of book-to-market ratio (Bm), turnover

ratio (Turn), normalized Amihud illiquidity measure (Illiq), past six-month return (Mom),

idiosyncratic volatility (Ivol), coskewness (Coskew), cokurtosis (Cokurt) and the maximum

daily return over the past one month (max), used in this study. At the beginning of each

month t, all risk characteristics (LQP, UQP, DownAsy, β, β− , β+, Ivol, Coskew, Cokurt)

are calculated using daily realized stock and market excess returns over the next 12-month

period. Size, Bm, Turn, Illiq, Mom and Max are calculated using information available at

the end of month t − 1. All the variables are updated monthly. A detailed description of

these variables is given in the appendix.

[Insert Table 2.1 about here]

From Table 2.1, we can tell how the new dependence measures are linearly related to

traditional variables that have explanatory powers on cross-sectional stock returns. The

average correlation between LQP and UQP is relatively modest, at -0.08, which means

that the tendency of stock to go up or down with the market may appear independently.

This finding also justifies the approach to separately estimate lower and upper quadrant

probabilities, which allows for asymmetric dependence in the lower and upper quadrants.

As expected, DownAsy has strong positive correlation (0.462) with LQP and negative cor-

relation (-0.515) with UQP, because mechanically the sign of DownAsy coincides with the

sign of (LQP−UQP). If a variable has similar correlations with LQP and UQP, DownAsy

will show little correlation with that variable. Hence we see that DownAsy has almost no
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correlation with all the other variables. It is more interesting to focus on the correlations

with LQP and UQP.

Both LQP and UQP are positively correlated with the CAPM β with correlation co-

efficients of 0.463 and 0.436 respectively. It is as expected because β captures the linear

dependence between individual stock return and market return, while quadrant probabilities

measure the general dependence that also captures linear dependence as one component.

Stocks with higher β will have high probabilities to be above (below) its sample mean when

the market is above (below) average.

On the other hand, β− and β+ both have very high positive correlations (around 0.8)

with β due to construction. β− and β+ are also highly positively correlated with correlation

coefficient equal to 0.528. This finding indicates that β− (β+) may not be clean measures of

downside risk (upside potential). A higher β− or β+ is most likely associated with a higher

CAPM β.

Interestingly, size is positively correlated with both LQP and UQP with fairly large

correlation coefficients of 0.299 and 0.473 respectively. It indicates that excess returns of

larger stocks are more likely to be above (below) the sample mean when market is above

(below) the average level. Note that UQP increases more strongly with size than LQP, which

indicates that larger stocks have less degree of downside asymmetry than small stocks. It

is also confirmed by the negative correlation between size and DownAsy. The finding is

consistent with Ang and Chen (2002); Hong, Tu, and Zhou (2007), who find that small size

portfolios show stronger asymmetric co-movements with the market using formal statistical

tests.

LQP and UQP has little correlation with coskewness, but they have high positive corre-

lations with the fourth co-moment, cokurtosis. The findings with coskewness seems odd, but

upon scrutiny, it is not surprising. Just like skewness for univariate distribution, coskewness

is more related with length of the tails in a joint distribution. LQP and UQP are measured

at the sample mean, where the probability mass is more concentrated. Compared to the

probability mass at the center, the probability difference at the tails are much less impor-
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tant. In unreported results, I find that LQP and UQP measured at 0.5 and 1 standard

deviations away from the sample mean have much higher correlations with coskewness.5

Cokurtosis measures the fatness of the tails in a given joint distribution. A fatter tail indi-

cates higher probability in that quadrant. It is natural to see that both LQP and UQP are

positively correlated with cokurtosis.

2.3.2 Portfolio Sorting

In this subsection, I study the impact of those dependence measures on the cross-section of

average stock returns using simple univariate portfolio sorting.

Univariate Portfolio Sorts

At the beginning of each 12-month period at time t, I sort stocks into five quintile portfolios

based on their realized LQP, UQP and DownAsy over the next 12 months. The portfolio

returns are also computed as the average realized excess returns over the same 12-month

period.

Table 2.2 shows the contemporaneous relationship between excess returns and LQP

(Panel A), UQP (Panel B), and DownAsy (Panel C). Both equal-weighted and value-

weighted excess returns and Carhart (1997) four factor adjusted alphas are reported. The

row labeled “High - Low” gives the difference between the returns of portfolio 5 and portfo-

lio 1, with corresponding statistical significance levels. Although I use a 12-month horizon,

the quintile portfolios are updated at a monthly frequency. Using overlapping information

to compute the returns/alphas is more efficient but the 12-month returns/alphas are au-

tocorrelated by construction. To account for the autocorrelations, I report t-statistics of

returns/alphas differences computed using Newey and West (1987) heteroskedasticity and

autocorrelation consistent (HAC) standardized errors with 12 lags.6 The sample covers

all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period

5The results are available upon request.
6Although the theoretical number of lags is 11, to follow the practice of Ang, Chen, and Xing (2006), I

use 12 lags. Adding one more lag is more conservative and leads to smaller t-statistics than using 11 lags.
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is from January 1962 to December 2013, with the last 12-month period starting in Jan-

uary 2013. For robustness checks, I also conduct cross-sectional regression analysis using

nonoverlapping yearly periods in the later subsection.

[Insert Table 2.2 about here]

Panel A of Table 2.2 shows an increasing pattern between realized LQP and average

annualized returns and Carhart alphas. For value-weighted returns/alphas, the increasing

pattern is monotonic. In the second column, Quintile 1 (5) shows an average equal-weighted

excess return of -5.89% (16.15%) per annum, and the spread in average excess returns is

a 22.03% per annum, with a corresponding Newey-West t-statistic of 10.31. In the fourth

column, Quintile 1 (5) shows an average value-weighted excess return of -9.16% (8.89%) per

annum, and the value-weighted spread is a 18.05% per annum, statistically significant at

the 1% level. Return spread is smaller when more weights are given to larger stocks, but

the reduction is not much, at about 4% per annum. The results only consider the effect of

one variable, while it is shown that LQP is correlated with other variables that also affect

returns, such as CAPM β, size and book-to-market ratio. To account for the effects of

market, size (SMB), book-to-market (HML), and momentum (UMD) factors, I calculate

the equal-weighted and value-weighted alphas from Carhart (1997) four factor model for

the quintile and spread portfolios. The results are listed in the third and fifth columns

respectively, with equal-weighted (value-weighted) four factor alpha for the spread portfolio

is equal to 19.89% (16.45%). Both alphas are economically large and statistically significant

at the 1% level.

Panel B of Table 2.2 shows a decreasing pattern between realized UQP and average

annualized returns. For Carhart alphas and value-weighted returns, such decreasing pattern

is monotonic. Quintile 1 (5) portfolios have an average equal-weighted excess return of

17.33% (-1.79%) per annum, and the spread in average excess returns is a -19.12% per

annum. The return difference is statistically significant at the 1% level and cannot be

explained by Carhart (1997) four factor model. The four factor equal-weighted alpha spread
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is -19.00% per annum. The return to the spread portfolio is much lower, at -8.22% per

annum, when the returns are weighted by firm’s market capitalization. The four factor

value-weighted alpha spread is -9.87% per annum. Both value-weighted returns and alphas

are still highly statistically significant, at the 1% level. However, the economic significance

is much reduced compared to the equal-weighted case.

As pointed out by Ang, Chen, and Xing (2006), asymmetric market risk exposure is

bigger among smaller stocks, so we choose to focus on equal-weighted results. Previous

studies on testing for asymmetric correlations (Ang and Chen, 2002; Hong, Tu, and Zhou,

2007) and my work on testing for asymmetric dependence in Chapter 1 all find that smaller

stocks tend to co-vary with the market more strongly during the downside market than

during the upside market. Such downside asymmetry is statistically significant according

to their testing results, but these studies do not find any statistically significant asymmetry

in large size portfolios.

The findings indicate that the joint return distribution is more symmetric for larger

stocks, which further indicates that the correlations between LQP and UQP should be

positive among large stocks.Indeed, among top 10 percentile biggest firms, I find that the

time series average correlation between LQP and UQP is 0.31, much larger than its full

sample counterpart, -0.08. Such large correlation leads to a reduction in the value-weighted

return spread, due to the opposite effects of LQP and UQP on contemporaneous returns.

For example, a very big firm with high UQP is sorted into quintile 5 portfolios, but it may

also have high LQP. High UQP leads to a lower excess return, but high LQP also leads to a

higher excess return, so the combined effect makes the stock to earn higher return than the

other stocks in the quintile with similar UQP. Value-weighted results put very large weights

on such biggest companies. Thus the average value-weighted return for quintile 5 portfolio

is higher than the average equal-weighted return. Similarly, very big stock may have both

low LQP and UQP, the combined effect makes the average value-weighted returns for lower

quintile portfolios to be smaller than the average equal-weighted returns. This is exactly

the case as shown in Panel B. A lower value-weighted return spread is also observed in
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Panel A, but empirically the reduction is not as large as in Panel B.

The patterns shown in Panel A and B are similar to the sorting patterns of realized

relative β− (defined as β− − β) and relative β+ (defined as β+ − β) as shown in Ang,

Chen, and Xing (2006). The patterns also coincide with the findings documented in Chabi-

Yo, Ruenzi, and Weigert (2014), who find a risk premium (discount) for stocks with high

extreme lower (upper) tail dependence with the market. Ang, Chen, and Xing (2006)

demonstrate that such patterns can be implied by a simplistic representative agent model

with DA utility. The DA preferences allow agents to put greater weights on losses than

gains. In equilibrium, a representative agent requires a premium to hold stocks with high

downside risk, but is willing to hold stocks with high upside potential at a discount, holding

other things equal. Empirically, I find that there is a positive premium for high LQP stocks

and a negative premium (discount) for stocks with high UQP. The effect is stronger for

LQP than for UQP (18.05% v.s. -8.22% for the value-weighted returns).

Given the opposite effects of LQP and UQP on returns and the fact that LQP and

UQP are only modestly correlated, we expect the downside asymmetric dependence mea-

sure (DownAsy) to be positively associated with returns, since higher DownAsy indicates

stronger dependence with the downside market while limited upside potential. Agents dis-

like this kind of stocks and should require a risk premium to hold them. The risk premium is

expected to be larger than that of LQP, because it also combines the effect of UQP. Panel C

of Table 2.2 shows average returns for portfolios sorted by DownAsy. We can see a monoton-

ically increasing pattern between realized DownAsy and average annualized returns as well

as Carhart alphas. In the second column, Quintile 1 (5) shows an average equal-weighted

excess return of -6.96% (21.21%) per annum, and the spread in average excess returns is

a 28.17% per annum, which is statistically significant at the 1% level. The equal-weighted

four factor alpha for the spread portfolio is 25.58% per annum. Both excess return and

alpha are higher compared to those for the spread portfolio sorted by either LQP or UQP.

The fourth and fifth columns show value-weighted results. The average value-weighted ex-

cess return (alpha) of the spread portfolio is 12.34% (12.89%) per annum, higher than the
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UQP return spread, but lower than the LQP spread. The reason is the same as for the UQP

sorted portfolios. While the direction and statistical significance of the relationship between

the dependence measures and returns hold for both an average stock (equal weighting) or

an average dollar (value weighting), the magnitude is smaller with value-weighting.

Since betas are wildly used in the literature as linear dependence measures with the

market, for comparison purposes, I also sort stocks into quintile portfolios based on their

contemporaneous realized β− (Panel A), β+ (Panel B) and β− − β+ (Panel C) over 12-

month periods. The method and sample used is the same as in Table 2.2. With a longer

sample period and with all stocks listed on NYSE/AMEX/NASDAQ, I have got similar

findings as Ang, Chen, and Xing (2006). The results are reported in Table 2.3.

[Insert Table 2.3 about here]

Panel A of Table 2.3 shows a monotonically increasing pattern between realized β− and

average annualized returns/alphas. The average equal-weighted excess return of the spread

portfolio in average is a 12.23% per annum, which is statistically significant at the 1%

level. However, after accounting for Carhart (1997) four factors, the alpha spread is only

5.49% per annum. Although the downside beta does not exactly reflect the exposure to

the market factor, the market, size, boot-to-market and momentum factors can still explain

more than half of the excess return difference. Compared to the LQP sorted portfolios,

the magnitude of downside beta premium is only about half, and the difference in Alpha is

even more prominent (5.49% vs. 19.89%). It is clear evidence that the non-linear downside

dependence measure, LQP, can better capture the downside risk than the downside beta.

While LQP is also estimated using information from the joint distribution of individual

stock and market returns, there is no linear structure involved. It may explain why the

market factor, combined with the other three factors, fail to explain much of the excess

return to the LQP sorted spread portfolio.

Panel B of Table 2.3 shows an increasing pattern between realized β+ and average annu-

alized returns/alphas. As noted in Ang, Chen, and Xing (2006), the pattern is inconsistent
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with their model predictions and the reason is due to high correlation between β+ and

CAPM β. They do find that when partially out the β effect, returns to portfolios sorted by

realized relative β+ (β+ − β) show a decreasing pattern. It indicates that β+ may not be

a clean measure of upside potential. In comparison, the excess return (four factor alpha)

to the spread portfolio sorted by UQP is negative and significant both economically and

statistically.

Panel C of Table 2.3 shows an increasing pattern in average annualized returns/alphas

with increasing realized (β− − β+). This measure gauges the effect of downside linear de-

pendence relative to upside linear dependence and can be considered as a linear downside

asymmetric dependence measure.7 Compared to the non-linear downside asymmetric de-

pendence measure, the spread in value-weighted returns is much smaller (6.33% v.s. 12.34%

per annum), and a large portion can be explained by Carhart (1997) four factors. The

findings suggest that the entropy-based downside asymmetric dependence measure better

captures the asymmetry in market risk exposure.

Dependent Portfolio Sorts

The univariate return patterns could be driven by differences in other risk measures or firm

characteristics known to affect contemporaneous returns. As shown in Table 2.1, LQP and

UQP are correlated with some other variables, such as CAPM β, size and cokurtosis. To

see a clearer picture of the composition of the other variables across the LQP and UQP

sorted portfolios, Table 2.4 presents summary statistics of the related variables for the

stocks sorted into decile portfolios by LQP (Panel A) and UQP (Panel B). Specifically, at

the beginning of each month t, I rank all stocks into decile portfolios based on realized

LQP and UQP measures over the next 12 months. The table reports for each decile the

time-series average across months of the cross-sectional mean values within each month of

the same set of variables as appeared in Table 2.1.

7Ang, Chen, and Xing (2006) report the portfolio sorting results based on (β+ − β−). They find a
decreasing pattern with a -7.81% equal-weighted excess return for the spread portfolio.
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[Insert Table 2.4 about here]

From Panel A of Table 2.4, we can see that there is enough dispersion in LQP across

the deciles, with the smallest being 0.224 and largest being 0.370. As we move from the low

LQP to the high LQP decile, all three betas increase monotonically. The pattern may raise

some concern that the positive risk premium in Table 2.2 may be driven by higher linear

dependence with the market or higher downside beta. We rule out this possibility using

dependent portfolio sorts that control for the variations in β in the analysis to follow.

As LQP increases across deciles, firm market capitalization (size) increases and illiquidity

(Illiq) decreases, indicating that high LQP stocks tend to be larger and more liquid. This

is good news for the univariate results reported in Panel A of Table 2.2, since previous

studies have documented that larger (Banz, 1981) and more liquid (Amihud, 2002) stocks

tend to earn a return discount, not the return premium observed in the data. The fact

that high LQP portfolios contain larger and more liquid stocks but still earn higher average

returns works to strengthen the effect of LQP. It is also observed that cokurtosis (cokurt)

is increasing with LQP. Dittmar (2002) document that stocks with higher cokurtosis earn

higher average returns. Therefore, the premium of LQP may be explained by the difference

in cokurtosis across the deciles. It motivates me to do dependent portfolio sorts with LQP

and cokurtosis. The book-to-market ratio (Bm) does not show a clear pattern, although

the high LQP portfolios seem to have more growth stocks. There is no clear pattern found

for other control variables, such as past six-month return (Mom), idiosyncratic volatility

(Ivol), coskewness (Coskew), and maximum daily return in the previous month (Max).

Panel B of Table 2.4 shows some interesting patterns for decile portfolios sorted by

UQP. As we move from the low UQP to the high UQP decile portfolio, the average across

months of the mean UQP of stocks increases from 0.201 in the Decile 1 to 0.361 in Decile

10. Similar as the LQP case, all three betas increase monotonically with UQP. This finding

works to strengthen the effect of UQP, because stocks with higher market β or β− tend to

have higher average returns instead of the lower average returns indicated by high UQP.

Size increases with UQP, which works to weaken the effect of UQP as larger firms tend to
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earn lower average returns. Illiquidity also decreases for the high UQP deciles, consistent

with the fact that these portfolios contain larger stocks. It may also be confounding the

effect of UQP, as more liquid stocks tend to have lower returns. The book-to-market ratio

decreases with UQP, so it may also explain part of the return discount of high UQP stocks.

Past six-month return and cokurtosis show increasing pattern as UQP increases, which

strengthens the effect of UQP since stocks with high momentum (Jegadeesh and Titman,

1993) and high cokurtosis (Dittmar, 2002) tend to earn higher average returns instead of

the observed lower returns. Idiosyncratic volatility seems to decrease with UQP, but the

variation in Ivol is not very large. Other variables, like coskewness and Max, do not show

a clear pattern.

Those control variables show almost identical co-movement patterns with either LQP

or UQP. Since I use excessive downside probability (EDP), defined as (LQP−UQP), to

determine the sign of downside asymmetric dependence (DownAsy), the opposite patterns

given by LQP and -UQP almost cancel out. There is no clear pattern for any of these control

variables, when decile portfolios are formed based on realized DownAsy, which means that

the return premium due to DownAsy should not be driven by other known characteristics

that affect cross-sectional returns. Therefore, the summary statistics for decile portfolios

sorted by DownAsy are not reported.8

Motivated by the patterns observed in Table 2.4, I conduct dependent portfolio sorts

to explicitly control for the effects of the other stock characteristics that co-vary most

with both LQP and UQP, i.e. the CAPM β, size, coskewness, and cokurtosis. I include

coskewness in the double sorts mainly due to theoretical consideration, since coskewness is

a moment-based measure of asymmetry. Although the linear beta exposure to market and

the size effect can be controlled by looking at the Carhart alphas in the univariate portfolio

sorts, dependent portfolio sorts can account for some potential nonlinear impact of these

control variables.

At each month, I first form quintile portfolios sorted on each of β, size, coskewness, and

8The results are available upon request.
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cokurtosis, then within each quintile, I further sort stocks into five portfolios based on their

realized lower quadrant probability (LQP). The results are reported in Table 2.5. The row

labeled “High - Low” reports the difference between the excess returns of portfolio 5 and

portfolio 1 in each β, size, coskewness and cokurtosis first-sort quintile with corresponding

statistical significance levels. The column labeled “Average” reports the average excess

return of stocks in each second-sort quintile. Newey-West (1987) 12-lag adjusted t-statistics

are reported in row labeled “t-stat”.9

[Insert Table 2.5 about here]

Panel A of Table 2.5 reports equal-weighted portfolio excess returns of β× LQP portfo-

lios. Within each β quintile, the return to the high LQP portfolio is larger than the return

to the low LQP portfolio. The return spreads are both economically and statistically signif-

icant. They range from 24.59% per annum in β quintile 1 to 17.39% per annum in β quintile

5. The average difference in excess returns is 20.57% per annum, only slightly smaller than

the return spread in the univariate sorting case. Therefore, market β, although correlated

with LQP, can only account for a tiny part of the premium associated with high LQP.

Panel B of Table 2.5 repeats the same analysis as Panel A, with β being replaced by

firm size. Within each size quintile, the equal-weighted return to the “How - Low” portfolio

is highly significant both economically and statistically, ranging from 32.51% to 14.26% per

annum. The return difference decreases as as we move to high size quintile. As mentioned

above, this is due to higher correlation between LQP and UQP among larger stocks. It is

difficult to purge the effect of UQP from LQP among large size quintile, which leads to a

shrunk return spread. Due to the same argument, we also observe similar pattern, among

size × UQP portfolios in Panel B of Table 2.6. Despite the decreasing pattern, the average

return difference among five size quintiles is still 24.95% per annum and highly significant

statistically. The magnitude is even higher than the return spread in the univariate sorting

case, which indicates that size cannot explain the risk premium associated with high LQP

9For tables to fit in one page, I only report results for the quintile 5 and quintile 1 second-sort portfolios,
and the “High - Low” portfolio. Detailed results are available upon request.
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either.

Panel C of Table 2.5 reports equal-weighted portfolio excess returns of coskewness ×

LQP portfolios. Empirically, I find coskewness is not much correlated with either downside

or upside dependence measures. The reason is that coskewness captures more of the asym-

metry in the length of the tails, while LQP and UQP are measured at the sample mean

and are less sensitive to the probability difference in the tails.10 Given the low correlation,

we do not expect coskewness to account for the risk premium due to LQP. Within each

coskewness quintile, the return of the spread portfolio is large and statistically significant

at 1% level, with an average spread of 22.09% per annum. Meanwhile, we can confirm that

coskewness has negative impact on returns as documented in Harvey and Siddique (2000).

Panel D of Table 2.5 reports equal-weighted cokurtosis × LQP double-sorted portfolio

excess returns. Within each cokurtosis quintile, the return of the spread portfolio is large

and statistically significant at the 1% level, ranging from 29.57% to 10.77% per annum.

Although we observe a decreasing return spread as cokurtosis increases, the average spread

is 21.89% and is highly significant at the 1% level, indicating that cokurtosis cannot account

for the return premium associated with LQP.

Table 2.6 repeats the same exercises as Table 2.5, only replacing LQP by UQP. In

general, none of β, size, coskewness or cokurtosis can account for the discount for holding

stocks with high UQP. Although if anything, firm market capitalization seems to reduce the

negative excess return earned by the UQP spread portfolio. Panel B of Table 2.6 shows that

the return spread within size quintile 1 is -19.26%. While within the highest size quintile,

the spread is narrowed to -5.48% due to the reason I mentioned above. The average return

spread across all size quintiles is -14.89%. The magnitude shrinks compared to -19.12%, the

return spread in the univariate sorting case. It is consistent with the finding that the value-

weighted UQP return spread is much smaller than the equal-weighted UQP return spread

in terms of absolute value. Therefore, size can explain a small part of the return discount

due to high UQP, but the unexplained part remains to be quite large. β, coskewness and

10When measured at 0.5 and 1 standard deviations away from the sample mean, LQP anf UQP do show
much higher correlations with coskewness.
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cokurtosis cannot account for any proportion of the return discount due to high UQP.

[Insert Table 2.6 about here]

Finally, in Table 2.7, I report the double-sorting results using the downside asymmetric

dependence measure (DownAsy) with β (Panel A), size (Panel B), coskewness (Panel C),

and cokurtosis (Panel D). By construction, DownAsy reflects the combined pattern of LQP

and UQP. For example, the magnitude of the return spread decreases as we move from small

to large size quintile for both LQP and UQP second-sort portfolios. We may expect similar

pattern in the size × DownAsy portfolios. Panel B of Table 2.7 shows that the return spread

within size quintile 1 is 30.86% and monotonically decreases to 12.08% in size quintile 5. It

is consistent with the findings in the existing literature that small stocks are more exposed

to asymmetric downside market risk. The average return difference 23.92%, although is

slightly smaller than the return difference in univariate sorts, is still highly significant both

economically and statistically. Patterns of return spreads for double-sorted portfolios with

β, coskewness and cokurtosis are much similar to the LQP case, as shown in Table 2.5.

None of the control variables can largely explain the risk premium earned for holding stocks

with high downside asymmetric dependence.

[Insert Table 2.7 about here]

In summary, the results of dependent portfolio sorts provide strong evidence that the

risks associated with LQP, UQP and DownAsy are weakly related to size, but clearly are

different from risks associated with CAPM β, size, coskewness and cokurtosis. Dependent

sorts allow us to control for potential nonlinear impact, but only one other stock charac-

teristic can be controlled for at one time. In the following subsection, I conduct a series

of Fama and MacBeth (1973) cross-sectional regressions at the firm level, which allows us

to examine the impact of the dependence measures while controlling for many other firm

characteristics at the same time.
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2.3.3 Fama-Macbeth Regressions

Following several prior studies (see, e.g., Brennan, Chordia, and Subrahmanyam, 1998;

Ang, Chen, and Xing, 2006; Ang, Liu, and Schwarz, 2010; Chabi-Yo, Ruenzi, and Weigert,

2014) that test asset pricing models with individual stock data, I run Fama-MacBeth (1973)

regressions at the individual stock level over the sample period from January 1962 to Decem-

ber 2013.11 I regress stock excess returns on realized dependence measures with respect to

the market risk (LQP, UQP, and DownAsy), realized betas (β, β−, and β+) and other firm

characteristics using 12-month rolling periods. Since the regressions are run at monthly fre-

quency with a 12-month horizon, I report t-statistics of the estimated coefficients computed

using 12 Newey-West (1987) lags. For each month, the risk characteristics (LQP, UQP,

DownAsy, β−, β+, Ivol, Coskew, Cokurt) are calculated contemporaneously over the same

12-month period as the excess returns. Log firm size, log book-to-market ratio, turnover

ratio, normalized Amihud (2002)illiquidity ratio, past six-month return, and maximum are

calculated at the beginning of each month t. All the independent variables are winsorized

at the 0.5% and 99.5% levels to avoid some extreme observations driving the results. All

the main findings hold no matter I choose to do winsorization or not. Table 2.8 report the

regression results with various sets of control variables. For easier interpretation, the second

to last column shows time series averages of cross-sectional mean and standard deviation

of each independent variable. To test whether the stock characteristics are still significant

after taking the effects of commonly used factors into account, I use 12-month Carhart

(1997) four factor adjusted excess return as the dependent variable in regressions (8) and

(9). The risk-adjusted returns are used by Brennan, Chordia, and Subrahmanyam (1998)

to test factor based asset pricing models. This method avoids the errors-in-variables bias

in estimating the risk premia of stock characteristics by putting the factor loadings on the

11Estimates of risk loadings, such as the realized betas, from individual stock data are less precise than
using portfolios as the test assets, which leads to well-known errors-in-variables (EIV) problem. However,
Ang, Liu, and Schwarz (2010) argue that with individual stock data, the estimated factor loadings have
greater dispersion that reduces the variance of the risk premium estimator and hence is statistically more
efficient. Furthermore, Lo and MacKinlay (1990); Lewellen, Nagel, and Shanken (2010) also argue that the
method used to form portfolios can lead to very distinct results in asset pricing tests, while using individual
stocks as test assets can avoid this arbitrary element in portfolio grouping choice.
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left hand side as the dependent variable. The last column reports the change in 12-month

Carhart (1997) four factor adjusted excess return given a one standard deviation increase

in the respective independent variable based on regressions (8) and (9).

[Insert Table 2.8 about here]

Regression (1) and (2) only include LQP and UQP respectively as the explanatory

variable to see the univariate effect. Both variables are highly significant economically and

statistically with opposite impacts on returns. A one standard deviation increase in LQP

is associated with 2.049×0.042 = 8.6% higher average excess returns per annum. UQP has

shown a significantly negative impact and a one standard deviation increase in UQP leads

to 1.471× 0.047 = 6.9% lower average excess returns per annum.

In regression (3), I include both LQP and UQP as the independent variables to see

the joint effects. The positive (negative) coefficient of LQP (UQP) remains unchanged

with even higher economic magnitude. Still we can see that UQP has a smaller impact

on returns than LQP, indicating that investors show stronger aversion to the downside

risk than preference for upside potential. Regression (4) includes only DownAsy as the

explanatory variable. Consistent with the findings in univariate portfolio sorts, the impact

of downside asymmetric dependence is negative and statistically significant at the 1% level.

A one standard deviation increase in DownAsy is associated with 2.443 × 0.046 = 11.2%

higher average excess returns per annum. The impact is economically more significant than

the univariate effect of LQP.

In regression (5), I check the effects of β− and β+, the linear counterparts of LQP and

UQP. With the sample used in this paper, I can confirm the results from Ang, Chen, and

Xing (2006) that downside beta earns a risk premium (5.0% per annum), and upside beta

earns a discount (-1.3% per annum), both impacts are statistically significant at the 1%

level. The economic magnitude of downside beta premium is much higher compared to the

upside beta discount. Regression (6) adds a full set of control variables along with LQP

and UQP. The results show that the effects of LQP and UQP are still highly significant
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with similar magnitudes compared to regression (3). The estimated return premium for

bearing one standard deviation downside dependence risk is 11.6% per annum. The impact

of upside dependence (UQP) is slightly lower, but still earns -6.3% discount with a one

standard deviation increase. In comparison, the effect of upside beta is no longer significant,

consistent with the findings in Ang, Chen, and Xing (2006). It indicates that the upside beta

may not be a good measure of upside risk, as the results are inconsistent with theoretical

model prediction.

The findings in regression (6) confirm many patterns that have been documented in

the literature. For example, small size stocks and stocks with high book-to-market ratios

have high average returns (Fama and French, 1993). Stocks with high past six-month

returns earn high average returns during the next 12 months (Jegadeesh and Titman, 1993).

Anomaly documented by Ang et al. (2006, 2009) is confirmed that high realized idiosyncratic

volatility is associated with low average returns. Less liquid stocks tend to earn lower average

returns (Amihud, 2002). Stocks with high coskewness earn low average returns (Harvey and

Siddique, 2000) and stocks with positive cokurtosis have high returns (Dittmar, 2002).

In regression (7), I replace the upside and downside dependence measures (LQP and

UQP) by the downside asymmetric dependence measure (DownAsy) and include the same

set of controls as in regression (6). We can see that the effect of DownAsy is highly significant

and the economic magnitude only slightly reduced compared to the univariate regression

(4). Interestingly, I find that the effects of Ivol and coskewness are no longer significant

statistically after including the entropy-based downside asymmetric dependence measure.

Even in regression (6), the effects are not economically significant. The finding suggests

that the anomalies due to volatility and coskewness may be explained by the nonlinear

dependence with the market risk. However, cokurtosis is still highly significant in both

regression (6) and (7).

Regression (8) and (9) use the same controls as in (6) and (7), but replace the dependent

variable as Carhart (1997) four factor adjusted return to see whether the characteristics still

have explanatory power after accounting for the effects of the four factors. It is clear that
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the effects of the nonlinear dependence measures are robust even using the risk-adjusted

return as the dependent variable. The economic significance of each independent variable is

reported in the last column mainly based on regression (9), except for LQP and UQP that

are based on regression (8). Among all the explanatory variables, the downside dependence

with the market (LQP) has the strongest impact, 9.08% higher adjusted return per annum

given a one standard deviation increase. The downside beta, although still negative and

significant statistically, has much lower impact (3.68% per annum) on adjusted return,

which suggests that LQP is a more accurate measure of downside risk. Downside asymmetric

dependence (DownAsy) is also positive and highly significant with 8.59% impact per annum.

The upside dependence (UQP) has a significant negative impact of -5.14% per annum on

the risk-adjusted return. The magnitude of the discount is much smaller than the risk

premium associated with the downside dependence risk or the downside asymmetry risk.

The evidence suggests that investors dislike stocks exhibiting strong dependence with the

downside market, while prefer stocks with strong upside potential. The aversion to downside

risk is stronger compared to the attraction to upside potential.

2.3.4 Robustness Checks

In this subsection, I run a series of Fama-Macbeth (1973) regressions using different weight-

ing schemes, samples and measures of asymmetric dependence at other exceedance levels to

check the robustness of the findings in Table 2.8. I use Carhart (1997) four factor adjusted

excess return as the dependent variable with the full set of controls in these regressions.

The results are reported in Table 2.9.

[Insert Table 2.9 about here]

Regression (1) and (2) report the value-weighted regression results with full set of con-

trols. The weighting variable is firm’s market capitalization at the beginning of each month.

The regression coefficients now reflect the impacts for each dollar invested. Similar as the

findings in the univariate portfolio sorts, the signs and statistical significance of LQP, UQP



76

and DownAsy remain intact, but the economic magnitude of the impacts are reduced for

LQP and DownAsy.

Regression (3) and (4) report the regression results when the sample is restricted to

NYSE stocks only. Since stocks listed on NYSE tend to be larger size stocks, the findings

are similar to value-weighted results.

Regression (5) and (6) report the regression results using non-overlapping yearly obser-

vations. Using non-overlapping periods are less efficient statistically, but do not cause the

returns to be autocorrelated, so the standard t-statistics are reported. The findings are

almost the same as the results using overlapping periods, with only small changes to some

coefficients.

Regressions (7) to (10) test whether the impacts of those nonlinear dependence measures

still hold when they are evaluated at other exceedance levels, such as 0.5 and 1 standard

deviations away from the mean. The measures evaluated at farther tails capture the ten-

dency of a stock to move drastically with large market movements and hence are proxies

for joint tail risks. The findings are largely consistent with the previous findings when the

measures are evaluated at the sample mean. The only exception is that the effect of UQP1

is no longer statistically significant as shown in regression (9), indicating that investors’s

attraction to stocks with high upper tail dependence with the market is not robust. On the

other hand, the aversion to downside risk is significant and robust at any exceedance level.

Similar findings are also documented by Chabi-Yo, Ruenzi, and Weigert (2014).

2.4 Past Downside Asymmetric Dependence and Future Re-

turns

The empirical results in Section 2.3 demonstrate significant positive relationship between

high downside (asymmetric) dependence with the market and the average stock returns over

the same period. If the dependence characteristics are stable or predictable over time, then

investors can exploit this cross-sectional return relationship and form investable trading
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strategies based on stocks’ asymmetric exposure to the downside risk and upside risk. Since

portfolios formed based on contemporaneous DownAsy gives the highest return spread

as shown in Table 2.2, in this section, I examine the time-series persistence of downside

asymmetric dependence and check if we can predict such asymmetric downside risk exposure

in a future period using prior information.

2.4.1 Determinants of Downside Asymmetric Dependence

I explore the determinants of DownAsy using cross-sectional Fama-MacBeth (1973) re-

gressions. Specifically, at each month, I regress realized downside asymmetric dependence

(DownAsy) over the next 12-month period on a set of past risk measures and firm char-

acteristics variables including the lagged DownAsy estimated over the previous 12-month

period. At the beginning of each month t, the past risk measures (β−, β+, Ivol, Coskew,

Cokurt) are estimated over the previous 12-month period (t− 12 to t− 1). Size, Bm, Turn,

Illiq, Mom and Max are calculated at the beginning of the month t. The regression results

are in Table 2.10.

[Insert Table 2.10 about here]

We can see that DownAsy is not persistent over time and hard to predict even with

all these past variables. When using lagged DownAsy as the only predictor variable, the

coefficient 0.058, although highly significant (t = 6.6), is far from 1. The corresponding R2 is

lower than 0.01, meaning most variations in current DownAsy cannot be explained by past

DownAsy. Size effect is still clear in the predictive setting. Large market capitalization

predicts low future downside asymmetric risk. The relationship between current book-

to-market ratio and future DownAsy is positive and significant. High current cokurtosis

predicts low DownAsy in the future. But the R2 is only 0.056 even if we put all these past

variables as predictors.

An alternative approach is to examine the average 12-month decile portfolio transition

matrix, i.e. the average probability pi,j that a stock in decile i during the previous 12-
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month period will be in decile j in the next 12-month. In the unreported results, I find that

stocks in decile 10 according to lagged 12-month DownAsy have 17.64% chance to be in the

same decile over the next 12-month period and the chance of staying in the top 3 deciles is

40.69%. It indicates that stocks with high downside asymmetric risk exposure tend to have

slightly higher chance to retain that characteristics over the next 12 months compared to

the case when DownAsy is totally random.

The findings indicate that there is limited predictability in a stock’s asymmetric exposure

to the downside risk and support time-varying risk exposures as suggested in Lewellen and

Nagel (2006).

2.4.2 Trading Strategy

Although the predictability is limited, yet it is still interesting to examine whether it is

possible to generate abnormal return spreads based on past realized DownAsy. At the

beginning of each month, I sort stocks into quintile (1-5) portfolios based on their realized

DownAsy over the previous 12 months. Then, I examine equal-weighted average returns

of these portfolios over the next 12-month period (Panel A) and over the next one month

period (Panel B). The data used in this paper range from January 1962 to December 2013.

As I use first 12-month data to estimate the first lagged DownAsy, the first portfolios are

formed in January 1963. Then I update those portfolios in a monthly frequency. The results

are reported in Table 2.11 below.

[Insert Table 2.11 about here]

Panel A of Table 2.11 shows 12-month holding period returns for portfolios sorted based

on lagged DownAsy. Newey-West (1987) standard errors with 12 lags are used to compute

the t-statistics (in parentheses) to account for autocorrelations in the 12-month cumulative

returns. In the second column, quintile 1 (5) shows an average equal-weighted excess return

of 10.63% (13.86%). The spread in average excess returns is a 3.22% per annum, which is

statistically significant at the 1% level. To purge any effect due to exposures to systematic
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risk factors, I regress the returns of each quintile portfolio and the spread portfolio on

the market factor, Fama and French (1993) three factors, and Carhart (1997) four factors

respectively. The alphas are reported in the third to fifth columns. CAPM alpha spread

is at 2.97% per annum, showing that a small part of the premium can be explained by the

market factor. After controlling for the size factor (SMB) and the book-to-market factor

(HML), alpha increases to 3.47% per annum. Adding the momentum factor (UMD) reduces

the alpha spread to only 1.23% per annum that is marginally significant at the 10% level.

It indicates that the part of the return based on the trading strategy is due to exposure to

the momentum factor.

We find that DownAsy is not persistent over time. During shorter holding period,

DownAsy may change less than during the longer period, so in Panel B, I show 1-month

holding period returns for portfolios sorted based on lagged DownAsy. Non-overlapping

1-month returns are usually considered to have no autocorrelations, so the standard t-

statistics are reported in parentheses. As expected, the trading strategy of investing in

high DownAsy stocks and shorting low DownAsy stocks yields an economically significant

one month return of 0.37% per month, which amounts to a compounded return premium

of 4.53% per annum. The return difference is also statistically significant at the 1% level.

The CAPM alpha spread is at 0.34% per month (4.16% per annum). Adding Fama-French

factors increase the alpha spread to 0.38% per month (4.66% per annum). When taking

the momentum factor into account, the alpha spread decreases to 0.19% per month (2.30%

per annum). Exposure to the momentum factor can explain part of the return spread, but

still the four factor alpha spread is statistically significant and economically meaningful.

In summary, DownAsy has limited predictability based on past information. It is difficult

to exploit the strong contemporaneous relation between downside asymmetry. Although the

return to the spread portfolio formed on lagged DownAsy is smaller than the contempo-

raneous return spread, it is still economically and statistically significant. In comparison,

Ang, Chen, and Xing (2006) find that a trading strategy based on past downside beta using

all stocks does not yield an economically significant return spread. It also suggests that the
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nonlinear asymmetric dependence measures can better capture the downside risk than the

downside beta does.

2.5 Conclusion

This paper examines whether a stock’s nonlinear dependence with the downside and upside

market have significant impact on the cross section of stock returns. Using dependence

measures constructed with a metric entropy and estimated quadrant probabilities of the

joint distribution of stock and the market returns, I find a risk premium (discount) for

stocks that are more likely to covary with the market during market declines (rises). The

asymmetry between the downside and upside dependence with the market is earns a risk

premium as well. The risk premia associated with the downside dependence and downside

asymmetric dependence are higher compared to the discount due to upside dependence.

The findings suggest that investors’ aversion to downside losses are stronger than their

attraction to the upside gains.

Fama-Macbeth (1973) regressions show that the contemporaneous impacts of the depen-

dence measures on cross-sectional returns cannot be explained by a set of well-known stock

characteristics, such as the market beta (linear exposure to the market risk), downside or

upside betas (asymmetric exposure to downside and upside market risk), size and book-to-

market effects, illiquidity risk, momentum effect, coskewness, cokurtosis, and stock’s lottery

feature as captured by the maximum daily return within a month. The estimated cross-

sectional excess return premium for bearing downside dependence risk is approximately

11.6% per annum, almost twice as large as the effect of the downside beta (6% as reported

in Ang, Chen, and Xing (2006)). The downside premium, downside asymmetry premium

and upside discount are robust across a battery of robustness checks. In addition, I also

find that the downside dependence and downside asymmetric dependence measures have low

cross-sectional correlations with coskewness, since coskewness captures more of the asym-

metry in the lengths of the tails. In Fama-Macbeth (1973) regressions, adding the downside

and upside dependence measures (or the downside asymmetric dependence measure) along
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with the downside and upside betas can empirically rule out the effect of coskewness. The

finding suggests that exploring the nonlinear dependence with the market factor may help

explain some CAPM anomalies.

The downside asymmetric dependence is not persistent over time and shows limited

predictability. However, a trading strategy that forms portfolios based on past asymmetric

dependence can still earn an average equal-weighted annualized return of 4.5%. Such a

premium is both economically and statistically significant. However, a similar trading

strategy based on downside beta fails to yield a economically meaningful return spread.

All the findings suggest that there are economic gains when going beyond traditional linear

dependence measures. Nonlinear dependence measures may better capture the market risk

than their linear counterparts. As part of future research, it will be of interest to develop

new models to explain observed risk premium in assets that have asymmetric comovement

with the market.
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2.A Appendix: Variable Definitions

Let us denote a stock i’s demeaned daily excess return as r̃i,d, and demeaned daily

market excess return as r̃m,d.

CAPM BETA: β is estimated at each month t over the next 12-month, using the fol-

lowing formula

β̂i,t =

∑d=Dt
d=1 r̃i,dr̃m,d∑d=Dt
d=1 r̃2

m,d

, (2.A–1)

where Dt is the number of trading days in a 12-month period starting from month t.

DOWNSIDE and UPSIDE BETAS: Denote the sample average of demeaned daily mar-

ket excess return during a 12-month period starting from month t as µ̂m,t. Further denote

demeaned excess return and demeaned market excess return conditional on market excess

return being below (above) µ̂m,t as r̃−i,d (r̃+
i,d) and r̃−m,d (r̃+

m,d) respectively. Following the

definitions in Ang, Chen, and Xing (2006),

β̂−i,t =

∑
rm,d<µ̂m,t

r̃−i,dr̃
−
m,d∑

rm,d<µ̂m,t
r̃−2
m,d

, and β̂+
i,t =

∑
rm,d>µ̂m,t

r̃+
i,dr̃

+
m,d∑

rm,d>µ̂m,t
r̃+2
m,d

. (2.A–2)

COSKEWNESS: Following Harvey and Siddique (2000), coskewness of stock i over a

12-month period starting at month t is given by

ĉoskewi,t =
1
T

∑d=Dt
d=1 r̃i,dr̃

2
m,d√

1
T

∑d=Dt
d=1 r̃2

i,d

(
1
T

∑d=Dt
d=1 r̃2

m,d

) , (2.A–3)

where Dt is the number of trading days in a 12-month period starting from month t.

COKURTOSIS: Cokurtosis of stock i over a 12-month period starting at month t is

similarly defined as

ĉokurti,t =
1
T

∑d=Dt
d=1 r̃i,dr̃

3
m,d√

1
T

∑d=Dt
d=1 r̃2

i,d

(
1
T

∑d=Dt
d=1 r̃2

m,d

)3/2
, (2.A–4)

where Dt is the number of trading days in a 12-month period starting from month t.
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IDIOSYNCRATIC VOLATILITY: Ivol of stock i at the beginning of each month t is

defined as the standard deviation of the CAPM residual series over the next 12 months.

SIZE: Following the existing literature, firm size at each month t is measured using the

natural logarithm of the market value of equity at the end of month t− 1.

BOOK-TO-MARKET: Following Fama and French (1992), a firm’s book-to-market ratio

in month t is calculated using the market value of equity at the end of December of the last

year and the book value of common equity plus balance-sheet deferred taxes for the firm’s

latest fiscal year ending in the prior calendar year.

MOMENTUM: Following Jegadeesh and Titman (1993), the momentum effect of each

stock in month t is measured by the cumulative return over the previous 6 months, with the

previous one month skipped, i.e. the cumulative return from month t− 7 to month t− 2.

TURNOVER: Turnover ratio is calculated monthly as the adjusted monthly trading

volume divided by shares outstanding.

ILLIQUIDITY: Following Amihud (2002), the proxy for the stock illiquidity is from

normalizing Li,t = |ri,t|/dvi,t. It is the ratio of absolute change of price ri,t to the dollar

trading volume dvi,t for stock i at day t. The monthly illiquidity ratios are the daily average

of the illiquidity ratio for each stock. To get an accurate estimate of monthly Amihud ratio,

we drop the months for stocks if the number of the monthly observations is smaller than 15.

Following Acharya and Pedersen (2005), we also normalize the Amihud ratio to adjust for

inflation and truncated it at 30 to eliminate the effect of outliers (the stocks with transaction

cost larger than 30% of the price).

ILLIQi,t = min

(
0.25 + 0.3Li,t ×

capitalization of market portfoliot−1

capitalization of market portfolioJuly1962

, 30

)
(2.A–5)

MAXIMUM: Following Bali, Cakici, and Whitelaw (2011), Max of stock i at month t is

defined as the maximum daily excess return within that month.
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Table 2.2: Univariate Portfolio Sorts: Dependence Measures

Panel A: Lower Quadrant Probability

Portfolio EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low -5.89% -11.92%*** -9.16% -13.85%***
2 11.68% -1.42% 1.37% -5.99%***
3 17.23% 5.59%*** 6.26% 0.19%
4 18.11% 8.39%*** 7.84% 1.40%**

5 High 16.15% 7.97%*** 8.89% 2.60%***

High - Low 22.03%*** 19.89%*** 18.05%*** 16.45%***
t-stat (10.31) (8.56) (8.11) (7.72)

Panel B: Upper Quadrant Probability

Portfolio EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low 17.33% 10.18%*** 12.46% 8.02%***
2 18.74% 8.66%*** 10.86% 4.72%***
3 15.61% 3.25%*** 9.08% 2.13%***
4 8.61% -3.11%*** 6.30% -0.42%

5 High -1.79% -8.82%*** 4.24% -1.85%***

High - Low -19.12%*** -19.00%*** -8.22%*** -9.87%***
t-stat (-12.55) (-12.06) (-4.09 ) (-5.79)

Panel C: Downside Asymmetric Dependence

Portfolio EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low -6.96% -12.80%*** -1.56% -7.54%***
2 8.37% -3.88%*** 5.17% -1.86%***
3 15.82% 4.08%*** 8.38% 1.66%***
4 20.27% 9.89%*** 10.61% 4.40%***

5 High 21.21% 12.78%*** 10.78% 5.35%***

High - Low 28.17%*** 25.58%*** 12.34%*** 12.89%***
t-stat (21.45) (16.54) (9.46) (8.84)

This table reports both equal-weighted and value-weighted average annualized returns and Carhart’s
(1997) four factor alphas of stock portfolios sorted by contemporaneous lower quadrant probability,
upper quadrant probability and downside asymmetric dependence evaluated at the mean (exceedance
c = 0). In each month, we rank stocks into quintile (1-5) portfolios based on the next 12 month
realized measures and report the average excess returns over the same 12 months for each portfolio.
The row labeled “High - Low” reports the difference between the returns of portfolio 5 and portfolio
1, with corresponding statistical significance levels. The sample covers all U.S. common stocks traded
on the NYSE/AMEX/NASDAQ, and the sample period is from January 1962 to December 2013,
with the last 12-month period starting in January 2013. Since the 12-month returns are computed
using overlapping periods, the t-statistics computed using Newey-West (1987) heteroskedastic-robust
standard errors with 12 lags are reported in parentheses. *, ** and *** indicate significance levels
at 0.1, 0.05 and 0.01 respectively.
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Table 2.3: Univariate Portfolio Sorts: Beta Measures

Panel A: Downside Beta (β−)

Portfolio EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low 7.36% 0.33% 4.36% -0.28%
2 8.54% 0.73% 5.02% 0.20%
3 10.08% 0.66% 6.45% 0.05%
4 12.94% 1.74%** 8.63% 0.33%

5 High 19.60% 5.82%*** 11.24% 1.31%

High - Low 12.23%*** 5.49%*** 6.88%** 1.59%
t-stat (4.08) (2.62) (2.40) (0.73)

Panel B: Upside Beta (β+)

Portfolio EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low 10.41% 1.55%* 5.71% -0.54%
2 10.53% 1.90%** 6.31% 0.18%
3 11.02% 2.03%*** 6.46% 1.03%*
4 11.91% 1.47%** 6.38% 0.04%

5 High 13.87% 1.86%* 6.60% -2.04%

High - Low 3.46% 0.30% 0.89% -1.50%
t-stat (1.58) (0.19) (0.38) (-0.68)

Panel C: Downside Beta - Upside Beta (β− − β+)

Portfolio EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low 7.67% -1.32% 3.16% -2.15%**
2 9.61% 1.15%* 6.69% 1.12%**
3 11.06% 2.08%*** 7.30% 1.36%***
4 13.12% 2.90%*** 8.59% 0.77%

5 High 16.80% 4.11%*** 9.49% -0.17%

High - Low 9.13%*** 5.43%*** 6.33%*** 1.99%
t-stat (6.87) (4.88) (3.24) (1.00)

This table reports both equal-weighted and value-weighted average annualized excess returns and
Carhart’s (1997) four factor alphas of stock portfolios sorted by contemporaneous β−, β+ and
β− − β+. In each month, we rank stocks into quintile (1-5) portfolios based on the next 12 month
realized beta measures and report the average excess returns over the same 12 months for each
portfolio. The row labeled “High - Low” reports the difference between the returns of portfolio
5 and portfolio 1, with corresponding statistical significance levels. The sample covers all U.S.
common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from January
1962 to December 2013, with the last 12-month period starting in January 2013. Since the 12-
month returns are computed using overlapping periods, the t-statistics computed using Newey-West
(1987) heteroskedastic-robust standard errors with 12 lags are reported in parentheses. *, ** and
*** indicate significance levels at 0.1, 0.05 and 0.01 respectively.
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Table 2.5: Dependent Portfolio Sorts: Lower Quadrant Probability (LQP)

Panel A: Beta (β) and LQP

Portfolio 1 Low β 2 3 4 5 High β Average

1 Low LQP -9.21% -7.66% -6.72% -4.55% 1.57% -5.32%
5 High LQP 15.39% 13.97% 13.87% 14.10% 18.96% 15.26%

High - Low 24.59%*** 21.63%*** 20.59%*** 18.65%*** 17.39%*** 20.57%***
t-stat (20.45) (13.34) (11.20) (9.17) (7.56) (13.40)

Panel B: Size and LQP

Portfolio 1 Low size 2 3 4 5 High size Average

1 Low LQP -6.27% -9.23% -8.44% -6.24% -2.81% -6.60%
5 High LQP 26.23% 20.83% 18.03% 15.23% 11.45% 18.36%

High - Low 32.51%*** 30.07%*** 26.47%*** 21.47%*** 14.26%*** 24.95%***
t-stat (17.92) (14.05) (11.87) (10.07) (7.26) (14.39)

Panel C: Coskewness and LQP

Portfolio 1 Low
coskew

2 3 4 5 High
coskew

Average

1 Low LQP -1.75% -3.68% -6.36% -7.46% -7.51% -5.35%
5 High LQP 20.89% 19.59% 17.03% 14.58% 11.59% 16.73%

High - Low 22.64%*** 23.27%*** 23.39%*** 22.04%*** 19.10%*** 22.09%***
t-stat (9.88) (11.24) (11.55) (11.09) (9.03) (11.44)

Panel D: Cokurtosis and LQP

Portfolio 1 Low
cokurt

2 3 4 5 High
cokurt

Average

1 Low LQP -10.16% -9.08% -6.00% -2.31% 4.79% -4.55%
5 High LQP 19.36% 18.04% 17.28% 16.44% 15.56% 17.33%

High - Low 29.57%*** 27.12%*** 23.28%*** 18.75%*** 10.77%*** 21.89%***
t-stat (23.96) (18.16) (12.31) (8.82) (5.00) (14.24)

This table reports equal-weighted average annualized excess returns of portfolios double-sorted by realized
lower quadrant probability (LQP) and realized CAPM β (Panel A), firm market capitalization (Panel B),
realized coskewness (Panel C) and realized cokurtosis (Panel D), respectively. LQP is evaluated at the
sample mean. For each month, we compute LQP, β, coskewness and cokurtosis using daily realized stock
and market excess returns over the next 12 months. Size is computed at the beginning of each month using
information at the end of previous month. First, we form quintile portfolios sorted on β, size, coskewness and
cokurtosis respectively. Then, we rank stocks within each first-sort quintile into additional quintiles based on
LQP. The row labeled “High - Low” reports the difference between the returns of portfolio 5 and portfolio
1 in each β, size, coskewness and cokurtosis first-sort quintile with corresponding statistical significance
levels. The column labeled “Average” reports the average return of stocks in each second-sort quintile. The
sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is
from January 1962 to December 2013, with the last 12-month period starting in January 2013. Newey-West
(1987) 12-lag adjusted t-statistics are reported in parentheses. *, ** and *** indicate significance levels at
0.1, 0.05 and 0.01 respectively.
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Table 2.6: Dependent Portfolio Sorts: Upper Quadrant Probability (UQP)

Panel A: Beta (β) and UQP

Portfolio 1 Low β 2 3 4 5 High β Average

1 Low UQP 16.26% 19.60% 20.44% 22.55% 26.54% 21.08%
5 High UQP -7.82% -7.16% -5.59% -2.60% 4.72% -3.69%

High - Low -24.37%*** -26.76%*** -26.03%*** -25.16%*** -21.82%*** -24.80%***
t-stat (-18.61) (-20.05) (-19.63) (-14.02) (-10.04) (-17.71)

Panel B: Size and UQP

Portfolio 1 Low size 2 3 4 5 High size Average

1 Low UQP 19.37% 16.04% 14.73% 12.06% 9.27% 14.29%
5 High UQP 0.11% -3.66% -2.65% -0.58% 3.79% -0.60%

High - Low -19.26%*** -19.70%*** -17.38%*** -12.63%*** -5.48%*** -14.89%***
t-stat (-7.83) (-9.12) (-8.54) (-6.69) (-3.11) (-8.57)

Panel C: Coskewness and UQP

Portfolio 1 Low
coskew

2 3 4 5 High
coskew

Average

1 Low UQP 19.44% 19.11% 17.44% 16.14% 14.58% 17.34%
5 High UQP 3.71% 0.55% -2.13% -4.38% -6.59% -1.77%

High - Low -15.72%*** -18.56%*** -19.57%*** -20.52%*** -21.17%*** -19.11%***
t-stat (-9.12) (-11.36) (-11.95) (-13.42) (-13.26) (-12.79)

Panel D: Cokurtosis and UQP

Portfolio 1 Low
cokurt

2 3 4 5 High
cokurt

Average

1 Low UQP 17.55% 18.51% 18.48% 18.55% 18.40% 18.30%
5 High UQP -10.86% -11.32% -7.95% -2.89% 6.23% -5.36%

High - Low -28.77%*** -29.84%*** -26.43%*** -21.43%*** -12.17%*** -23.67%***
t-stat (-23.40) (-18.91) (-15.57) (-14.16) (-8.81) (-18.53)

This table reports equal-weighted average annualized excess returns of portfolios double-sorted by realized
upper quadrant probability (UQP) and realized CAPM β (Panel A), firm market capitalization (Panel B),
realized coskewness (Panel C) and realized cokurtosis (Panel D), respectively. UQP is evaluated at the
sample mean. For each month, we compute LQP, β, coskewness and cokurtosis using daily realized stock
and market excess returns over the next 12 months. Size is computed at the beginning of each month using
information at the end of previous month. First, we form quintile portfolios sorted on β, size, coskewness and
cokurtosis respectively. Then, we rank stocks within each first-sort quintile into additional quintiles based on
LQP. The row labeled “High - Low” reports the difference between the returns of portfolio 5 and portfolio
1 in each β, size, coskewness and cokurtosis first-sort quintile with corresponding statistical significance
levels. The column labeled “Average” reports the average return of stocks in each second-sort quintile. The
sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is
from January 1962 to December 2013, with the last 12-month period starting in January 2013. Newey-West
(1987) 12-lag adjusted t-statistics are reported in parentheses. *, ** and *** indicate significance levels at
0.1, 0.05 and 0.01 respectively.
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Table 2.7: Dependent Portfolio Sorts: Downside Asymmetric Dependence (DownAsy)

Panel A: Beta (β) and DownAsy

Portfolio 1 Low β 2 3 4 5 High β Average

1 Low DownAsy -8.55% -7.77% -7.46% -6.28% -0.28% -6.07%
5 High DownAsy 16.90% 20.31% 21.77% 24.74% 28.68% 22.48%

High - Low 25.45%*** 28.08%*** 29.22%*** 31.01%*** 28.96%*** 28.55%***
t-stat (24.86) (26.14) (21.46) (18.83) (14.89) (23.35)

Panel B: Size and DownAsy

Portfolio 1 Low size 2 3 4 5 High size Average

1 Low DownAsy -4.74% -8.18% -7.24% -4.92% -1.13% -5.24%
5 High DownAsy 26.12% 22.47% 19.21% 14.63% 10.95% 18.68%

High - Low 30.86%*** 30.65%*** 26.46%*** 19.54%*** 12.08%*** 23.92%***
t-stat (22.50) (17.87) (15.04) (12.84) (11.33) (18.85)

Panel C: Coskewness and DownAsy

Portfolio 1 Low
coskew

2 3 4 5 High
coskew

Average

1 Low DownAsy -1.97% -5.25% -7.58% -8.83% -9.49% -6.62%
5 High DownAsy 24.89% 24.07% 21.63% 19.31% 16.17% 21.21%

High - Low 26.86%*** 29.32%*** 29.20%*** 28.14%*** 25.65%*** 27.83%***
t-stat (16.23) (21.83) (21.48) (21.59) (19.87) (22.36)

Panel D: Cokurtosis and DownAsy

Portfolio 1 Low
cokurt

2 3 4 5 High
cokurt

Average

1 Low DownAsy -10.28% -10.61% -7.89% -4.00% 3.69% -5.82%
5 High DownAsy 19.65% 21.83% 22.20% 21.94% 20.46% 21.22%

High - Low 29.93%*** 32.44%*** 30.09%*** 25.94%*** 16.77%*** 27.03%***
t-stat (30.12) (24.50) (18.90) (14.53) (10.44) (22.06)

This table reports equal-weighted average annualized excess returns of portfolios double-sorted by realized
downside asymmetric dependence (DownAsy) and realized CAPM β (Panel A), firm market capitalization
(Panel B), realized coskewness (Panel C) and realized cokurtosis (Panel D), respectively. DownAsy is
evaluated at the sample mean. For each month, we compute LQP, β, coskewness and cokurtosis using daily
realized stock and market excess returns over the next 12 months. Size is computed at the beginning of
each month using information at the end of previous month. First, we form quintile portfolios sorted on
β, size, coskewness and cokurtosis respectively. Then, we rank stocks within each first-sort quintile into
additional quintiles based on LQP. The row labeled “High - Low” reports the difference between the returns
of portfolio 5 and portfolio 1 in each β, size, coskewness and cokurtosis first-sort quintile with corresponding
statistical significance levels. The column labeled “Average” reports the average return of stocks in each
second-sort quintile. The sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ,
and the sample period is from January 1962 to December 2013, with the last 12-month period starting in
January 2013. Newey-West (1987) 12-lag adjusted t-statistics are reported in parentheses. *, ** and ***
indicate significance levels at 0.1, 0.05 and 0.01 respectively.



95

T
a
b

le
2.

8:
F

ir
m

-L
ev

el
C

ro
ss

-S
ec

ti
on

al
R

et
u

rn
R

eg
re

ss
io

n
s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

M
ea

n
E

co
n

S
ig

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

R
et

u
rn

4
-f

ct
R

a
d
j

4
-f

ct
R

a
d
j

(S
td

D
ev

)

L
Q

P
0

2
.0

4
9
*
*
*

2
.7

3
8
*
*
*

2
.7

5
5
*
*
*

2
.1

6
2
*
*
*

0
.3

1
1

9
.0

8
%

(1
1
.3

6
)

(1
2
.4

5
)

(1
5
.3

6
)

(1
5
.7

3
)

(0
.0

4
2
)

U
Q

P
0

-1
.4

7
1
*
*
*

-1
.7

0
6
*
*
*

-1
.3

3
9
*
*
*

-1
.0

9
3
*
*
*

0
.2

8
7

-5
.1

4
%

(-
1
2
.6

8
)

(-
6
.8

4
)

(-
4
.2

7
)

(-
4
.1

9
)

(0
.0

4
7
)

D
o
w

n
A

sy
0

2
.4

4
3
*
*
*

2
.3

3
0
*
*
*

1
.8

6
7
*
*
*

0
.0

1
3

8
.5

9
%

(1
1
.2

5
)

(1
1
.1

0
)

(1
1
.1

9
)

(0
.0

4
6
)

β
−

0
.0

7
1
*
*
*

0
.0

7
1
*
*
*

0
.0

7
0
*
*
*

0
.0

5
2
*
*
*

0
.0

5
2
*
*
*

0
.9

9
3

3
.6

8
%

(5
.1

4
)

(5
.9

5
)

(5
.6

0
)

(4
.9

8
)

(4
.6

4
)

(0
.7

0
8
)

β
+

-0
.0

1
7
*
*
*

-0
.0

0
9

-0
.0

0
8

-0
.0

0
6

-0
.0

0
5

0
.8

1
1

-0
.3

9
%

(-
2
.6

5
)

(-
1
.2

3
)

(-
0
.9

9
)

(-
0
.8

2
)

(-
0
.6

3
)

(0
.7

8
3
)

S
iz

e
-0

.0
3
1
*
*
*

-0
.0

2
5
*
*
*

-0
.0

2
2
*
*
*

-0
.0

1
7
*
*
*

5
.2

6
5

-2
.8

8
%

(-
7
.0

2
)

(-
6
.3

3
)

(-
6
.3

1
)

(-
5
.5

1
)

(1
.6

9
3
)

B
m

0
.0

1
3
*
*

0
.0

1
5
*
*
*

-0
.0

0
4

-0
.0

0
2

-0
.5

3
0

-0
.1

6
%

(2
.2

9
)

(2
.5

9
)

(-
0
.8

8
)

(-
0
.4

9
)

(0
.7

7
5
)

T
u

rn
-0

.4
7
0
*
*
*

-0
.4

2
3
*
*
*

-0
.3

8
3
*
*
*

-0
.3

4
9
*
*
*

0
.0

7
1

-2
.6

2
%

(-
6
.6

5
)

(-
6
.4

9
)

(-
5
.0

0
)

(-
4
.6

5
)

(0
.0

7
5
)

Il
li
q

0
.0

0
3
*
*
*

0
.0

0
3
*
*
*

0
.0

0
2
*
*
*

0
.0

0
2
*
*
*

5
.8

3
8

1
.7

2
%

(5
.6

8
)

(6
.4

6
)

(5
.0

7
)

(5
.8

5
)

(8
.5

9
1
)

M
o
m

0
.0

5
7
*
*
*

0
.0

5
6
*
*
*

0
.0

0
5

0
.0

0
3

0
.0

9
6

0
.0

8
%

(4
.0

1
)

(3
.8

3
)

(0
.3

4
)

(0
.2

6
)

(0
.2

7
7
)

Iv
o
l

-1
.8

6
9
*
*

-0
.8

4
5

-1
.1

1
6
*

-0
.3

1
4

0
.0

2
4

-0
.3

1
%

(-
2
.1

7
)

(-
0
.9

1
)

(-
1
.7

3
)

(-
0
.4

6
)

(0
.0

1
0
)

C
o
sk

ew
-0

.0
4
6
*

-0
.0

3
9

-0
.0

3
7

-0
.0

3
1

-0
.0

9
1

-0
.5

1
%

(-
1
.7

2
)

(-
1
.3

6
)

(-
1
.3

7
)

(-
1
.2

0
)

(0
.1

6
3
)

C
o
k
u

rt
0
.0

2
9
*
*
*

0
.0

6
1
*
*
*

0
.0

2
4
*
*
*

0
.0

4
7
*
*
*

1
.9

0
2

5
.3

3
%

(4
.0

0
)

(7
.4

9
)

(3
.2

5
)

(6
.1

0
)

(1
.1

3
3
)

M
a
x

-0
.0

4
5

-0
.0

3
2

-0
.3

2
6
*
*
*

-0
.3

1
5
*
*
*

0
.0

5
4

-1
.1

3
%

(-
0
.6

5
)

(-
0
.4

3
)

(-
5
.2

9
)

(-
4
.8

7
)

(0
.0

3
6
)

C
o
n

st
a
n
t

-0
.5

1
7
*
*
*

0
.5

3
9
*
*
*

-0
.2

1
1
*
*
*

0
.0

9
6
*
*
*

0
.0

5
5
*
*
*

-0
.1

9
1
*
*
*

0
.1

3
0
*
*
*

-0
.2

1
2
*
*
*

0
.0

2
7

(-
9
.5

2
)

(1
7
.3

8
)

(-
3
.4

8
)

(4
.8

3
)

(2
.9

8
)

(-
3
.3

6
)

(4
.6

3
)

(-
4
.7

6
)

(1
.1

7
)

O
b

s
1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

R
2

0
.0

8
2

0
.0

6
5

0
.1

3
1

0
.0

6
7

0
.0

6
1

0
.2

4
8

0
.2

0
2

0
.1

4
6

0
.1

1
6

T
h

is
ta

b
le

g
iv

es
th

e
re

su
lt

s
o
f

m
u

lt
iv

a
ri

a
te

F
a
m

a
-M

a
cB

et
h

(1
9
7
3
)

re
g
re

ss
io

n
s.

1
2
-m

o
n
th

fi
rm

-l
ev

el
ex

ce
ss

re
tu

rn
s

o
v
er

th
e

ri
sk

-f
re

e
ra

te
a
re

re
g
re

ss
ed

o
n

L
Q

P
,

U
Q

P
,

d
o
w

n
si

d
e

a
sy

m
m

et
ri

c
d

ep
en

d
en

ce
(D

o
w

n
A

sy
)

a
ll

ev
a
lu

a
te

d
a
t

th
e

sa
m

p
le

m
ea

n
a
n

d
a

se
t

o
f

o
th

er
ex

p
la

n
a
to

ry
v
a
ri

a
b

le
s

th
a
t

h
a
v
e

b
ee

n
sh

o
w

n
to

a
ff

ec
t

cr
o
ss

-s
ec

ti
o
n

a
l

st
o
ck

re
tu

rn
s

b
y

p
re

v
io

u
s

st
u

d
ie

s.
A

t
th

e
b

eg
in

n
in

g
o
f

ea
ch

m
o
n
th
t,

a
ll

ri
sk

ch
a
ra

ct
er

is
ti

cs
(L

Q
P

,
U

Q
P

,
D

o
w

n
A

sy
,
β
−

,
β
+

,
Iv

o
l,

C
o
sk

ew
,

C
o
k
u

rt
)

a
re

ca
lc

u
la

te
d

u
si

n
g

d
a
il
y

re
a
li
ze

d
st

o
ck

ex
ce

ss
re

tu
rn

s
a
n

d
m

a
rk

et
re

tu
rn

s
o
v
er

th
e

fo
ll
o
w

in
g

1
2
-m

o
n
th

p
er

io
d

.
T

h
e

d
ep

en
d

en
t

re
tu

rn
v
a
ri

a
b

le
s

a
re

co
m

p
u

te
d

co
n
te

m
p

o
ra

n
eo

u
sl

y
o
v
er

th
e

sa
m

e
p

er
io

d
.

S
iz

e,
B

m
,

T
u

rn
,

Il
li
q
,

M
o
m

a
n

d
M

a
x

a
re

ca
lc

u
la

te
d

a
t

th
e

b
eg

in
n

in
g

o
f

ea
ch

m
o
n
th

u
si

n
g

in
fo

rm
a
ti

o
n

a
v
a
il
a
b

le
a
t

th
e

en
d

o
f

m
o
n
th
t−

1
.

T
h

e
se

co
n

d
to

la
st

co
lu

m
n

d
is

p
la

y
s

th
e

ti
m

e
se

ri
es

a
v
er

a
g
es

o
f

cr
o
ss

-s
ec

ti
o
n

a
l

m
ea

n
a
n

d
st

a
n

d
a
rd

d
ev

ia
ti

o
n

o
f

ea
ch

in
d

ep
en

d
en

t
v
a
ri

a
b

le
.

T
h

e
la

st
co

lu
m

n
re

p
o
rt

s
th

e
ch

a
n

g
e

in
1
2
-m

o
n
th

C
a
rh

a
rt

(1
9
9
7
)

fo
u

r
fa

ct
o
r

a
d

ju
st

ed
ex

ce
ss

re
tu

rn
s

fo
r

a
o
n

e
st

a
n

d
a
rd

d
ev

ia
ti

o
n

in
cr

ea
se

in
th

e
re

sp
ec

ti
v
e

in
d

ep
en

d
en

t
v
a
ri

a
b

le
b

a
se

d
o
n

re
g
re

ss
io

n
s

(8
)

a
n

d
(9

).
T

h
e

d
ep

en
d

en
t

v
a
ri

a
b

le
is

th
e

1
2
-m

o
n
th

ex
ce

ss
re

tu
rn

in
m

o
d

el
(1

-7
)

a
n

d
C

a
rh

a
rt

(1
9
9
7
)

fo
u

r
fa

ct
o
r

a
d

ju
st

ed
re

tu
rn

in
m

o
d

el
(8

-9
).

T
h

e
a
d

ju
st

ed
re

tu
rn

s
a
re

ca
lc

u
la

te
d

fo
ll
o
w

in
g

th
e

m
et

h
o
d

su
g
g
es

te
d

b
y

B
re

n
n

a
n

,
C

h
o
rd

ia
,

a
n

d
S

u
b

ra
h

m
a
n
y
a
m

(1
9
9
8
).

T
h

e
sa

m
p

le
in

cl
u

d
es

a
ll

U
.S

.
co

m
m

o
n

st
o
ck

s
tr

a
d

ed
o
n

th
e

N
Y

S
E

/
A

M
E

X
/
N

A
S

D
A

Q
,

a
n

d
th

e
sa

m
p

le
p

er
io

d
is

fr
o
m

J
a
n
u

a
ry

1
9
6
2

to
D

ec
em

b
er

2
0
1
3
,

w
it

h
th

e
la

st
1
2
-m

o
n
th

p
er

io
d

st
a
rt

in
g

in
J
a
n
u

a
ry

2
0
1
3
.

N
ew

ey
-W

es
t

(1
9
8
7
)

1
2
-l

a
g

a
d

ju
st

ed
t-

st
a
ti

st
ic

s
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
*
,

*
*

a
n

d
*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

le
v
el

s
a
t

0
.1

,
0
.0

5
a
n

d
0
.0

1
re

sp
ec

ti
v
el

y.



96

T
a
b

le
2.

9:
F

ir
m

-L
ev

el
C

ro
ss

-S
ec

ti
on

al
R

et
u

rn
R

eg
re

ss
io

n
s:

R
ob

u
st

n
es

s
C

h
ec

k
s

V
a
lu

e-
w

ei
g
h
te

d
N

Y
S

E
o
n

ly
N

o
n

o
v
er

la
p

p
in

g
O

th
er

E
x
ce

ed
a
n

ce
le

v
el

s

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

(7
)

(8
)

(9
)

(1
0
)

L
Q

P
0

1
.5

5
5
*
*
*

1
.9

1
8
*
*
*

2
.3

2
3
*
*
*

(1
3
.7

7
)

(1
6
.7

8
)

(1
4
.1

9
)

U
Q

P
0

-1
.1

9
8
*
*
*

-1
.3

3
1
*
*
*

-1
.1

8
4
*
*
*

(-
5
.8

5
)

(-
5
.1

0
)

(-
4
.2

9
)

D
o
w

n
A

sy
0

1
.1

5
7
*
*
*

1
.7

0
5
*
*
*

1
.9

3
5
*
*
*

(1
0
.3

1
)

(1
0
.7

2
)

(1
0
.3

7
)

β
−

0
.0

5
2
*
*
*

0
.0

4
9
*
*
*

0
.0

6
3
*
*
*

0
.0

6
1
*
*
*

0
.0

5
0
*
*
*

0
.0

4
9
*
*
*

0
.0

0
6

0
.0

3
2
*
*

0
.0

3
1
*
*
*

0
.0

6
2
*
*
*

(4
.1

3
)

(3
.3

4
)

(5
.9

2
)

(5
.2

1
)

(3
.6

1
)

(3
.3

9
)

(0
.4

7
)

(2
.5

0
)

(2
.6

5
)

(4
.1

6
)

β
+

-0
.0

0
2

0
.0

0
3

-0
.0

1
7
*
*

-0
.0

1
4
*

-0
.0

0
4

-0
.0

0
2

0
.0

2
6
*
*
*

0
.0

1
8
*
*

0
.0

0
0

0
.0

1
8
*
*

(-
0
.1

6
)

(0
.2

7
)

(-
2
.0

7
)

(-
1
.7

8
)

(-
0
.4

8
)

(-
0
.1

7
)

(3
.4

8
)

(2
.5

2
)

(0
.0

1
)

(2
.0

4
)

S
iz

e
-0

.0
2
1
*
*
*

-0
.0

1
7
*
*
*

-0
.0

2
0
*
*
*

-0
.0

1
6
*
*
*

-0
.0

2
6
*
*
*

-0
.0

2
2
*
*
*

-0
.0

2
3
*
*
*

-0
.0

1
9
*
*
*

-0
.0

2
5
*
*
*

-0
.0

2
5
*
*
*

(-
6
.3

5
)

(-
5
.2

8
)

(-
6
.5

0
)

(-
5
.4

9
)

(-
7
.1

4
)

(-
6
.3

0
)

(-
6
.6

1
)

(-
6
.2

6
)

(-
7
.0

7
)

(-
6
.3

3
)

B
m

-0
.0

2
0
*
*
*

-0
.0

2
0
*
*
*

-0
.0

0
9
*
*

-0
.0

0
7

-0
.0

0
1

0
.0

0
0

-0
.0

0
2

-0
.0

0
0

0
.0

0
1

-0
.0

0
4

(-
3
.6

3
)

(-
3
.6

0
)

(-
2
.0

9
)

(-
1
.5

5
)

(-
0
.2

6
)

(0
.0

8
)

(-
0
.3

7
)

(-
0
.1

0
)

(0
.1

4
)

(-
0
.7

3
)

T
u

rn
-0

.2
0
4
*
*

-0
.1

7
3
*

-0
.3

1
4
*
*
*

-0
.2

9
5
*
*
*

-0
.5

9
9
*
*
*

-0
.5

5
2
*
*
*

-0
.4

0
8
*
*
*

-0
.3

6
5
*
*
*

-0
.4

0
1
*
*
*

-0
.3

1
1
*
*
*

(-
2
.1

2
)

(-
1
.8

5
)

(-
3
.9

0
)

(-
3
.7

5
)

(-
4
.8

7
)

(-
4
.7

2
)

(-
5
.3

1
)

(-
4
.7

6
)

(-
5
.0

9
)

(-
4
.0

0
)

Il
li
q

0
.0

0
4
*
*
*

0
.0

0
5
*
*
*

0
.0

0
3
*
*
*

0
.0

0
4
*
*
*

0
.0

0
1
*
*

0
.0

0
2
*
*
*

0
.0

0
2
*
*
*

0
.0

0
2
*
*
*

0
.0

0
2
*
*
*

0
.0

0
5
*
*
*

(3
.5

1
)

(4
.4

9
)

(3
.8

1
)

(5
.2

7
)

(2
.4

0
)

(2
.9

8
)

(5
.1

1
)

(5
.6

6
)

(4
.7

0
)

(4
.7

7
)

M
o
m

0
.0

2
4

0
.0

1
9

0
.0

0
0

-0
.0

0
2

-0
.0

2
3

-0
.0

2
4

0
.0

0
4

0
.0

0
2

-0
.0

0
0

0
.0

0
2

(1
.5

6
)

(1
.1

9
)

(0
.0

2
)

(-
0
.1

0
)

(-
0
.9

9
)

(-
1
.0

7
)

(0
.3

3
)

(0
.1

4
)

(-
0
.0

0
)

(0
.1

1
)

Iv
o
l

-6
.8

9
2
*
*
*

-6
.7

0
7
*
*
*

-3
.1

6
0
*
*
*

-2
.2

4
9
*
*
*

-0
.0

9
3

0
.6

3
4

-0
.1

9
2

-0
.8

9
5

0
.3

0
0

-2
.6

1
6
*
*

(-
7
.8

1
)

(-
7
.2

4
)

(-
3
.8

6
)

(-
2
.7

2
)

(-
0
.1

0
)

(0
.6

8
)

(-
0
.2

7
)

(-
1
.1

9
)

(0
.4

0
)

(-
2
.3

6
)

C
o
sk

ew
-0

.0
7
0
*

-0
.0

5
4

-0
.0

2
7

-0
.0

1
7

-0
.0

2
2

-0
.0

1
3

-0
.0

8
0
*
*
*

-0
.0

4
3

0
.0

1
6

-0
.0

0
2

(-
1
.7

8
)

(-
1
.4

5
)

(-
0
.7

4
)

(-
0
.5

3
)

(-
0
.5

9
)

(-
0
.3

2
)

(-
2
.8

8
)

(-
1
.5

4
)

(0
.6

2
)

(-
0
.0

6
)

C
o
k
u

rt
0
.0

0
7

0
.0

1
4

0
.0

2
0
*
*

0
.0

3
3
*
*
*

0
.0

3
2
*
*
*

0
.0

5
6
*
*
*

0
.0

3
4
*
*
*

0
.0

4
3
*
*
*

0
.0

2
7
*
*
*

0
.0

3
1
*
*
*

(0
.6

2
)

(1
.3

5
)

(2
.4

8
)

(3
.9

6
)

(3
.2

9
)

(6
.0

9
)

(4
.0

6
)

(5
.3

2
)

(3
.1

0
)

(3
.4

4
)

M
a
x

-0
.0

8
2

-0
.0

3
4

-0
.2

5
1
*
*
*

-0
.2

3
6
*
*
*

-0
.5

3
6
*
*
*

-0
.5

2
0
*
*
*

-0
.3

4
1
*
*
*

-0
.2

9
8
*
*
*

-0
.3

4
3
*
*
*

-0
.3

1
1
*
*
*

(-
0
.9

4
)

(-
0
.3

7
)

(-
3
.8

3
)

(-
3
.4

7
)

(-
6
.1

2
)

(-
6
.0

3
)

(-
5
.2

1
)

(-
4
.3

9
)

(-
5
.2

1
)

(-
4
.0

3
)

L
Q

P
0
.5

2
.7

1
5
*
*
*

(1
6
.6

8
)

U
Q

P
0
.5

-1
.7

6
6
*
*
*

(-
9
.3

1
)

D
o
w

n
A

sy
0
.5

0
.4

3
2
*
*
*

(1
1
.5

9
)

L
Q

P
1

2
.4

5
9
*
*
*

(1
0
.0

3
)

U
Q

P
1

0
.0

6
4

(0
.2

2
)

D
o
w

n
A

sy
1

0
.0

9
0
*
*
*

(5
.0

2
)

C
o
n

st
a
n
t

0
.0

8
3

0
.1

4
1
*
*
*

-0
.0

4
4

0
.0

6
3
*
*

-0
.2

1
5
*
*
*

0
.0

4
9
*

-0
.0

1
8

0
.0

5
8
*
*

0
.0

2
0

0
.1

1
3
*
*
*

(1
.3

7
)

(4
.4

8
)

(-
0
.8

2
)

(2
.3

6
)

(-
3
.7

9
)

(1
.7

6
)

(-
0
.7

0
)

(2
.2

8
)

(0
.7

8
)

(3
.1

4
)

O
b

s
1
,3

0
7
,4

2
3

1
,3

0
7
,4

2
3

7
0
2
,8

7
9

7
0
2
,8

7
9

1
0
8
,6

7
5

1
0
8
,6

7
5

1
,3

0
7
,4

2
3

1
,3

0
1
,5

9
7

1
,3

0
7
,4

2
3

8
2
3
,0

6
3

R
2

0
.2

0
3

0
.1

7
1

0
.1

6
2

0
.1

2
7

0
.1

5
1

0
.1

2
0

0
.0

9
6

0
.0

8
7

0
.0

8
7

0
.1

0
5

T
h

is
ta

b
le

re
p

o
rt

s
th

e
re

su
lt

s
o
f

a
b

a
tt

er
y

o
f

m
u

lt
iv

a
ri

a
te

F
a
m

a
-M

a
cB

et
h

(1
9
7
3
)

re
g
re

ss
io

n
s

u
n

d
er

d
iff

er
en

t
sp

ec
ifi

ca
ti

o
n

s
fo

r
ro

b
u

st
n

es
s

ch
ec

k
s.

C
a
rh

a
rt

(1
9
9
7
)

fo
u

r
fa

ct
o
r

a
d

ju
st

ed
re

tu
rn

s
is

u
se

d
a
s

th
e

d
ep

en
d

en
t

v
a
ri

a
b

le
in

a
ll

th
e

1
0

re
g
re

ss
io

n
s.

M
o
d

el
1

a
n

d
2

re
p

o
rt

th
e

v
a
lu

e-
w

ei
g
h
te

d
re

g
re

ss
io

n
re

su
lt

s
w

it
h

fu
ll

se
t

o
f

co
n
tr

o
ls

a
n

d
th

e
w

ei
g
h
ti

n
g

v
a
ri

a
b

le
is

fi
rm

’s
m

a
rk

et
ca

p
it

a
li
za

ti
o
n

.
M

o
d

el
3

a
n

d
4

re
p

o
rt

th
e

re
g
re

ss
io

n
re

su
lt

s
w

it
h

th
e

sa
m

e
sp

ec
ifi

ca
ti

o
n

b
u

t
th

e
sa

m
p

le
is

re
st

ri
ct

ed
to

N
Y

S
E

st
o
ck

s
o
n

ly
.

M
o
d

el
5

a
n

d
6

re
p

o
rt

th
e

re
g
re

ss
io

n
re

su
lt

s
u

si
n

g
n

o
n

-o
v
er

la
p

p
in

g
y
ea

rl
y

o
b
se

rv
a
ti

o
n

s.
M

o
d

el
7

to
1
0

re
p

o
rt

th
e

re
g
re

ss
io

n
re

su
lt

s
w

it
h

th
e

sa
m

e
se

t
o
f

co
n
tr

o
ls

,
b

u
t

lo
w

er
q
u

a
d

ra
n
t

p
ro

b
a
b

il
it

y
(L

Q
P

),
u

p
p

er
q
u

a
d

ra
n
t

p
ro

b
a
b

il
it

y
(U

Q
P

)
a
n

d
d

o
w

n
si

d
e

a
sy

m
m

et
ri

c
d

ep
en

d
en

ce
(D

o
w

n
A

sy
)

a
re

ev
a
lu

a
te

d
a
t

o
th

er
ex

ce
ed

a
n

ce
le

v
el

s,
i.
e.

0
.5

a
n

d
1

st
a
n

d
a
rd

d
ev

ia
ti

o
n

s
a
w

a
y

fr
o
m

th
e

m
ea

n
.

T
h

e
sa

m
p

le
in

cl
u

d
es

a
ll

U
.S

.
co

m
m

o
n

st
o
ck

s
tr

a
d

ed
o
n

th
e

N
Y

S
E

/
A

M
E

X
/
N

A
S

D
A

Q
,

a
n

d
th

e
sa

m
p

le
p

er
io

d
is

fr
o
m

J
a
n
u

a
ry

1
9
6
2

to
D

ec
em

b
er

2
0
1
3
,

w
it

h
th

e
la

st
1
2
-m

o
n
th

p
er

io
d

st
a
rt

in
g

in
J
a
n
u

a
ry

2
0
1
3
.

N
ew

ey
-W

es
t

(1
9
8
7
)

1
2
-l

a
g

a
d

ju
st

ed
t-

st
a
ti

st
ic

s
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

,
ex

ce
p

t
fo

r
m

o
d

el
5

a
n

d
6

w
h

er
e

st
a
n

d
a
rd

t-
st

a
ti

st
ic

s
a
re

re
p

o
rt

ed
.

*
,

*
*

a
n
d

*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

le
v
el

s
a
t

0
.1

,
0
.0

5
a
n

d
0
.0

1
re

sp
ec

ti
v
el

y.



97

T
a
b

le
2.

10
:

D
et

er
m

in
an

ts
of

D
ow

n
si

d
e

A
sy

m
m

et
ri

c
D

ep
en

d
en

ce

P
a
st

V
a
ri

a
b

le
s

D
o
w

n
A

sy
0

β
−

β
+

S
iz

e
B

m
T

u
rn

Il
li
q

M
o
m

Iv
o
l

C
o
sk

ew
C

o
k
u

rt
M

a
x

R
2

0
.0

5
8
*
*
*

0
.0

0
9

(6
.6

0
)

-0
.0

0
3
*
*
*

0
.0

0
9

(-
3
.8

2
)

-0
.0

0
3
*
*
*

0
.0

0
8

(-
4
.0

4
)

-0
.0

0
2
*
*
*

0
.0

1
7

(-
5
.3

0
)

0
.0

0
5
*
*
*

0
.0

1
3

(5
.7

2
)

-0
.0

5
*
*
*

0
.0

0
6

(-
3
.6

8
)

0
.0

0
0
*
*
*

0
.0

1
2

(3
.2

1
)

-0
.0

0
3
*
*

0
.0

0
4

(-
2
.5

0
)

0
.0

6
6

0
.0

1
3

(0
.9

6
)

0
.0

0
2

0
.0

0
4

(1
.2

4
)

-0
.0

0
4
*
*
*

0
.0

1
3

(-
4
.3

4
)

-0
.0

1
4

0
.0

0
6

(-
1
.0

8
)

0
.0

4
6
*
*
*

0
.0

0
0

-0
.0

0
1
*
*
*

-0
.0

0
1
*
*
*

0
.0

0
3
*
*
*

-0
.0

2
7
*
*
*

-0
.0

0
0
*
*

-0
.0

0
3
*
*
*

0
.0

5
2

0
.0

1
1
*
*
*

-0
.0

0
2
*
*

-0
.0

1
9
*
*
*

0
.0

5
6

(5
.5

2
)

(0
.3

1
)

(-
2
.8

3
)

(-
4
.0

9
)

(5
.5

6
)

(-
3
.7

7
)

(-
2
.5

0
)

(-
3
.4

3
)

(0
.7

8
)

(3
.4

3
)

(-
2
.0

9
)

(-
5
.1

0
)

T
h

e
ta

b
le

re
p

o
rt

s
th

e
re

su
lt

s
o
f

F
a
m

a
-M

a
cB

et
h

(1
9
7
3
)

re
g
re

ss
io

n
s

o
f

re
a
li
ze

d
d

o
w

n
si

d
e

a
sy

m
m

et
ri

c
d

ep
en

d
en

ce
(D

o
w

n
A

sy
)

o
v
er

a
1
2
-m

o
n
th

p
er

io
d

o
n

a
se

t
o
f

p
a
st

fi
rm

ch
a
ra

ct
er

is
ti

cs
a
n

d
ri

sk
m

ea
su

re
v
a
ri

a
b

le
s

in
cl

u
d

in
g

th
e

1
2
-m

o
n
th

la
g
g
ed

D
o
w

n
A

sy
.

A
t

th
e

b
eg

in
n

in
g

o
f

ea
ch

m
o
n
th
t,

th
e

p
a
st

ri
sk

m
ea

su
re

s
(β

−
,
β
+

,
Iv

o
l,

C
o
sk

ew
,

C
o
k
u

rt
)

a
re

es
ti

m
a
te

d
o
v
er

th
e

p
re

v
io

u
s

1
2

m
o
n
th

s
(t
−

1
2

to
t
−

1
)

th
a
t

d
o
es

n
o
t

o
v
er

la
p

w
it

h
th

e
cu

rr
en

t
1
2
-m

o
n
th

p
er

io
d

w
h

en
th

e
d

ep
en

d
en

t
v
a
ri

a
b

le
is

ev
a
lu

a
te

d
.

S
iz

e,
B

m
,
T

u
rn

,
Il

li
q
,
M

o
m

a
n

d
M

a
x

a
re

ca
lc

u
la

te
d

a
t

th
e

b
eg

in
n

in
g

o
f

th
e

m
o
n
th
t.

T
h

e
sa

m
p

le
in

cl
u

d
es

a
ll

U
.S

.
co

m
m

o
n

st
o
ck

s
tr

a
d

ed
o
n

th
e

N
Y

S
E

/
A

M
E

X
/
N

A
S

D
A

Q
,

a
n

d
th

e
sa

m
p

le
p

er
io

d
is

fr
o
m

J
a
n
u

a
ry

1
9
6
3

to
D

ec
em

b
er

2
0
1
3
,

w
it

h
th

e
la

st
1
2
-m

o
n
th

p
er

io
d

st
a
rt

in
g

in
J
a
n
u

a
ry

2
0
1
3
.

N
ew

ey
-W

es
t

(1
9
8
7
)

1
2
-l

a
g

a
d

ju
st

ed
t-

st
a
ti

st
ic

s
a
re

re
p

o
rt

ed
in

p
a
re

n
th

es
es

.
*
,

*
*

a
n

d
*
*
*

in
d

ic
a
te

si
g
n

ifi
ca

n
ce

le
v
el

s
a
t

0
.1

,
0
.0

5
a
n

d
0
.0

1
re

sp
ec

ti
v
el

y.



98

Table 2.11: Trading Strategy Based on Past Downside Asymmetric Dependence (DownAsy)

Panel A: Portfolios Returns with 12-month Holding Period

Portfolio Return CAPM-Alpha FF-Alpha Carhart-Alpha

1 Low 10.63% 4.89%*** 0.51% 1.38%**
2 9.66% 3.57%*** 0.48% 1.02%*
3 10.28% 4.16%*** 1.05%* 1.17%**
4 11.81% 5.47%*** 2.15%*** 1.47%***

5 High 13.86% 7.86%*** 3.98%*** 2.61%***

High - Low 3.22%*** 2.97%*** 3.47%*** 1.23%*
t-stat (3.73) (3.35) (3.52) (1.78)

Panel B: Portfolios Returns with 1-month Holding Period

Portfolio Return CAPM-Alpha FF-Alpha Carhart-Alpha

1 Low 0.65% 0.15% -0.12%* 0.02%
2 0.75% 0.17% -0.03% 0.06%
3 0.85% 0.27%*** 0.07%* 0.12%***
4 0.94% 0.36%*** 0.16%*** 0.16%***

5 High 1.03% 0.49%*** 0.25%*** 0.21%***

High - Low 0.37%*** 0.34%*** 0.38%*** 0.19%**
t-stat (4.39) (4.04) (4.61) (2.47)

This table reports equal-weighted average returns and alphas of stock portfolios sorted by past
DownAsy evaluated at the sample mean. In each month, we rank stocks into quintile (1-5) portfolios
based on the past 12-month realized DownAsy. we report the average excess returns/alphas over the
next 12 months for each portfolio in Panel A and the average excess returns/alphas over the next 1
month in Panel B. The row labeled “High - Low” reports the difference between the returns/alphas
of portfolio 5 and portfolio 1, with corresponding statistical significance levels. The sample covers
all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from
January 1963 to December 2013, with the last 12-month period starting in January 2013. The
t-statistics computed using Newey-West (1987) heteroskedastic-robust standard errors with 12 lags
are reported in parentheses for Panel A and standard t-statistics in parentheses for Panel B. *, **
and *** indicate significance levels at 0.1, 0.05 and 0.01 respectively.
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Chapter 3

The Gap Between the Conditional Wage
Distributions of Incumbents and the Newly Hired
Employees: Decomposition and Uniform Ordering
(joint with Esfandiar Maasoumi and Melinda Pitts)

Abstract

We examine the cardinal gap between wage distributions of the incumbents

and newly hired workers based on entropic distances which are well defined wel-

fare theoretic measures. Decomposition of several effects is achieved by identify-

ing several counterfactual distributions of different groups. These go beyond the

usual Oaxaca-Blinder decompositions at the (linear) conditional means. Much

like quantiles, these entropic distances are well defined inferential objects and

functions whose statistical properties have recently been developed. Going be-

yond these strong rankings and distances, we consider weak uniform ranking of

these wage outcomes based on statistical tests for stochastic dominance. The

empirical analysis is focused on employees with at least 35 hours of work in the

1996-2012 monthly Current Population Survey (CPS). Among others, we find

incumbent workers enjoy a better distribution of wages, but the attribution of

the gap to wage inequality and human capital characteristics varies between

quantiles. For instance, highly paid new workers are mainly due to human

capital components, and in some years, even better wage structure.

Keywords: Wage gap, metric entropy distance, stochastic dominance, wage
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distributions, counterfactual analysis, inequality, labor markets.

JEL Classification: I31, C43
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3.1 Introduction

Wage differentials among different types of workers, e.g. the gender earnings gap, wage

differences between immigrants and natives, etc., have drawn much attention from labor

economists and policy makers. There is an extensive literature on labor market outcomes,

much of it focused on the analysis of the wage gap at the mean, median and other quan-

tiles of the wage distribution. More recently, techniques have been provided for identifying

entire distributions and general function of the distributions. These techniques provide the

backdrop for the current paper’s approach. One central object of inference in this paper

is a summary measure of the “distance” between the entire distributions of interest. Our

proposed summary measure makes clear that all other measures of the gap between two

distributions are special, and all imply and are implied by well defined welfare functions.

Seen in this light, comparison at the mean, median, or any particular quantile would appear

to place too much weight on a part of the population, or too equal a weight everywhere.

For example, Blau and Kahn (2006) documented the slowing convergence of the gender gap

at the mean, median and 90th percentile levels. Albrecht, Björklund, and Vroman (2003)

looked at wages differentials at different parts of the distribution to see whether the gender

gap is larger in the upper tail than in the lower tail of the wage distribution due to a “glass

ceiling” effect in Sweden. Kampkötter and Sliwka (2011)investigated average wage differ-

ences between newly hired and incumbent employees. While these focused examinations

are informative and useful, recent papers have examined the wage differentials at the entire

distribution level. For example, Maasoumi and Wang (2013) employed a metric entropy

measure proposed by Granger, Maasoumi, and Racine (2004) to examine the gender wage

gap based on the metric distance between two distributions. The measure is the metric

member of the Generalized Entropy class of measures with very credible welfare theoretic

foundations.

All measures of the gap provide strong ranking of outcome distributions since they are

based on implicit “cardinal” welfare or weighting functions. They are inevitably subjective

even though some are less extreme than others. In view of this, we explore weak uniform
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rankings based on the concept of stochastic dominance which allow assessments over entire

classes of welfare functions. We do so by rigorous statistical tests for various orders of

dominance.

A key issue of interest is about decomposition of observed gaps and rankings in order to

identify the factors that underlie the overall wage differentials. Specifically, are those differ-

entials associated with inequality or discrimination in the wage structure, or are they due

to human capital composition effect. The classic decomposition method is due to Oaxaca

(1973) and Blinder (1973). It is a regression-based method focusing on linear conditional

mean decomposition. One major limitation of the Oaxaca-Blinder procedure discussed by

Barsky et al. (2002) is that the decomposition provides consistent estimates of the struc-

ture and composition effect only under the assumption that the conditional expectation

is linear. As advocated in DiNardo, Fortin, and Lemieux (1996), we take an alternative

non-parametric decomposition approach based on propensity score reweighting methods.

The key advantage of this reweighting approach is that it identifies the counterfactual dis-

tribution under less restrictive assumptions and hence can easily be applied to more general

distributional statistics, rather than the simple mean and quantiles.

Several recent papers, e.g. Firpo, Fortin, and Lemieux (2007), Maasoumi and Wang

(2013), have applied this reweighting method for wage gap decompositions. Following the

recent approach, this paper decomposes the wage gap between newly hired and incumbent

employees across the entire distribution. The wage differences between newly hired and

incumbent employees is a less studied topic in labor economics. The seminal work of

Doeringer and Piore (1985) provided a theoretical foundation in this area, claiming that

the incumbent wage could partially be determined by internal labor markets. Following the

work of Baker, Gibbs, and Holmstrom (1994), many empirical studies investigated the wage

structure of the internal labor markets. But very few studies have been done to examine

the difference between the wage structure of the internal labor markets and that of the

external labor markets. Studying the differential is very important because it sheds light

on how much external market forces could determine the wage formation within firms. It
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could also potentially serve as an indicator of competitiveness of labor markets, since wage

differentials between new hires and incumbents with identical characteristics should not

exist in perfectly competitive labor markets.

This paper’s analysis focuses on a sample of employed workers. As we do not address

the issue of selection into the labor market, this work is only generalizable to the work force

and not the population as a whole. The plan of the rest of the paper is as follows. In

section 3.2, the decomposition and counterfactual approach are explained. Subsection 3.2.1

introduces the idea of decomposition with a general distributional function. Subsection 3.2.2

discusses the Oaxaca-Blinder decomposition that employs linear conditional expectation as

the functional form. Section 3.3 first introduces a metric entropy measure and its welfare

implications, and then discusses the empirical and analytical methodologies in details, i.e.

the stochastic dominance tests and the propensity score reweighting method used to identify

counterfactual distributions. Section 3.4 explains how to construct the linked CPS monthly

data set used in the paper. Section 3.5 gives the results of the stochastic dominance tests

and counterfactual analysis. The conclusion is in Section 3.6.

3.2 The Decomposition Problem

A key question of interest in this paper is how to decompose the distributional wage gap

between incumbent and newly hired employees into a composition effect, corresponding to

differences in the covariates between the two groups, and a wage structure effect corre-

sponding to differences in the return to the covariates. In this section, we present a general

theoretical framework illustrating the decomposition at the distributional level. We also

link this decomposition to the more popular Oaxaca-Blinder decomposition method. We

then propose to apply an entropy metric, a distributional statistic that could summarize

differences between two distributions, to measure the structure and composition effects, and

present its welfare function underpinnings.
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3.2.1 Decomposition with General Distributional Function

The outcome variable of interest is the log hourly wage. We have two groups of workers,

the incumbent group denoted as group 0 and the new hire group denoted as group 1.

Let ln(w0) and ln(w1) denote the log wages of incumbent and newly hired employees,

respectively. We observe a random sample of N = N0 + N1 workers. N0 denotes the

sample size of incumbents and N1 is the sample size of the newly hired employees. Let

F0(y) ≡ Pr[ln(w0) ≤ y] represents the cumulative distribution function (CDF) of ln(w0)

and f0(y) is the corresponding probability density function (PDF). The same notations

apply to the log wages of newly hired employees.

The wage structure of the incumbent group is denoted by g0 and that of the newly hired

group is denoted by g1. Individual wages are determined non-parametrically by both ob-

served characteristics Xi and unobserved characteristics εi via the unknown wage structure

functions gd,

ln(wDi ) = gD(Xi, εi) for D = 0, 1 (3.1)

This non-parametric approach avoids imposing distributional assumptions or specific

functional forms, which allow for very flexible interactions among Xi and εi. We only assume

that (ln(w), X,D) have some unknown joint distribution. Under such specification, the wage

differential is assumed to be associated to two primary sources: (1) differences in observed

human capital characteristics Xi (e.g. education, age, etc.), and unobserved human capital

characteristics εi (e.g. innate ability). However, under the unconfoundedness assumption

elaborated in the next section, the composition effect only comes from differences in Xi and

differences in the wage structures, gD(·).

With observed data, we can identify the conditional distribution of a new hire’s log

hourly wage, ln(w1)|X,D = 1
d∼ F1|X , and the conditional distribution of the incumbent’s

log hourly wage, ln(w0)|X,D = 0
d∼ F0|X . With certain further assumptions discussed

later, we are able to identify the conditional counterfactual distribution of ln(w0)|X,D =



105

1
d∼ FC|X using the aforementioned propensity score reweighting method. The conditional

counterfactual distribution FC|X is the wage distribution that would have been observed

under the wage structure of group 0, but with the distribution of observed and unobserved

characteristics of group 1. Accordingly, the unconditional (on X) distributions are denoted

as F1, F0, and Fc. We analyze the distributional wage gap between groups 0 and 1 using

some distributional function. Following Firpo, Fortin, and Lemieux (2007), we denote ν as a

function of the conditional joint distribution of
(
ln(w1), ln(w0)

)
|D , i.e. ν : Fν → R , where

Fν belongs to a class of distribution functions that satisfy ∀ F ∈ Fν and ‖ ν(F ) ‖< +∞.

Under this specification, the distributional wage gap between two groups can be written in

terms of ν:

4ν
O = ν (F1)− ν (F0) = ν1 − ν0 (3.2)

We can then further decompose equation 3.2 into two parts, given that X is not evenly

distributed across the two groups:

4ν
O = (ν1 − νC) + (νC − ν0) = 4ν

S +4ν
X (3.3)

where the first term 4ν
S reflects the wage structure effect, meaning the effect caused by

changing g1 (·, ·) to g0 (·, ·) while holding characteristics (X, ε) |D = 1 constant. The other

term 4ν
X indicates the composition effect, which is the effect from changing the distribution

of characteristics from (X, ε) |D = 1 to (X, ε) |D = 1, while keeping the “wage structure”

g0 (·, ·) constant.

3.2.2 Oaxaca-Blinder Decomposition as a Special Case

With such settings, we can include Oaxaca-Blinder decomposition as a special case, where

the ν function is the mathematical expectation E. Under the assumption that the condi-

tional expectation takes linear form, we have
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E
[
ln(wDi )|X

]
≡ XiβD, for D = 0, 1 (3.4)

Then the expected wage gap between the “treated” and untreated group, 4µ
O, can be

written as

4µ
O = Ex[E[(ln(w)|X,D = 1)]− Ex[E[(ln(w)|X,D = 0)]

= E[ln(w)|D = 1]− E[ln(w)|D = 0]

= E[X|D = 1]β1 − E[X|D = 0]β0

= E[X|D = 1](β1 − β0) + (E[X|D = 1]− E[X|D = 0])β0

≡ 4µ
S +4µ

X

The second line follows from the Law of Iterated Expectations. Note that the decom-

position in the fourth line uses group 1 as the base group. The counterfactual outcome

indicates the mean wage that would have been observed under the wage structure of group

0, but with X from group 1, can directly be computed by E[X|D = 1]β0, which is the

counterpart of νC in equation 3.3. 4µ
S is the mean wage structure effect and accordingly

4µ
X stands for the mean composition effect. Oaxaca-Blinder decomposition is very appeal-

ing empirically due to its ease of estimation and interpretation. However, as Barsky et al.

(2002) pointed out, consistent estimates of both effects rely on the assumption of the lin-

ear structure, which is restrictive. Moreover, Kline (2011) showed that the counterfactual

mean identified by the Oaxaca-Blinder method constitutes a propensity score reweighting

estimator based upon a linear model for the conditional odds of being treated. Therefore,

Oaxaca-Blinder decomposition is indeed a special linear case of propensity score reweighting

method. By applying the reweighting method generally, we impose less structure and hence

lead to more robust inference.



107

3.3 Empirical Methodology

3.3.1 A Metric Entropy Measure of the Wage Gap

A comparison of means is implicitly based on a welfare/weighting function that is additive

and attaches equal weight to each wage earner. Among others, this implicit welfare function

imposes infinite substitutability. Assessment at the median, or any other quantile is justified

by even more radical welfare weighting schemes. To overcome these limitations we choose

more general distributional functions that could summarize information along the whole dis-

tribution. Several commonly used information-based entropy measures such as Shannon’s

entropy and Kullback-Leibler relative entropy are good candidates for such distributional

functions. They are well analyzed in the field of income inequality where the corresponding

welfare functions are identified. For instance, an axiomatic approach to “ideal” inequality

measures, equivalently welfare functions, or risk averse utility functions, renders the class

of Generalized Entropy as ideal. Further additive decomposition requirements render Shan-

non’s entropy, and Theil’s measures of inequality as “best”. (For example, see Bourguignon

(1979), Shorrocks (1978), and Maasoumi (1986)) Inequality measures are divergence mea-

sures between any distribution and a uniform (rectangular) size distribution representing

perfect equality. The latter is eliminated when the difference between the “inequalities” of

two wage distributions is computed. However, entropy divergence measures are generally

not metric since they violate the triangular inequality. Hence they are not proper measures

of distance. This paper uses a metric entropy measure Sρ proposed by Granger, Maasou-

mi, and Racine (2004) as the specific distributional ν function, which is a normalization of

the “Bhattacharya-Matusita-Hellinger” measure of distance. It is the one member of the

Generalized Entropy family that is a metric. It is given by

Sρ =
1

2

ˆ ∞
−∞

(f
1
2

1 − f
1
2

0 )2dy (3.5)

This measure has several desirable properties: 1. it is well defined for both continuous
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and discrete variables;1 2. it is normalized to 0 if two distributions are equal and lies

between 0 and 1; 3. it satisfies the properties of a metric and hence is a true measure of

distance; and 4. it is invariant under continuous and strictly increasing transformation on

the underlying variables. Note that the natural log of earnings is used through out this

paper. Since the logarithm is a strictly increasing function, the findings of this paper are

invariant whether using the raw wages or the log form. Following Granger, Maasoumi, and

Racine (2004) and Maasoumi and Racine (2002), we consider a kernel based nonparametric

implementation of the entropy measure shown in equation 3.5.

3.3.2 Stochastic Dominance

Using Sρ as the distributional distance measure, we can estimate the distance between

original wage distribution and counterfactual wage distribution, and thus the distributional

wage structure and composition effects. However, this analysis is still subjective as it would

reflect the social welfare based on the generalized entropy function.

In order to compare the different wage distributions robustly, and relative to large

classes of welfare functions, we need to examine Stochastic Dominance rankings. First

order Stochastic Dominance corresponds to a class (denoted as U1) of all (increasing) von

Neumann-Morgenstern type of social welfare functions u such that welfare is increasing in

wages (i.e. u′ > 0), and the second order Stochastic Dominance test corresponds to the

class of social welfare functions in U1 such that u′′ ≤ 0 (i.e. concavity), denoted as U2.

Concavity implies an aversion to higher dispersion (or inequality) of wages across workers.

In this paper, we focus on the one-dimensional social welfare function of only earnings.

Case 1. First Order Dominance: Incumbent employee wage distribution First Order S-

tochastically Dominates newly hired employee wage distribution (denoted as

ln(w0) FSD ln(w1)) if and only if

1. E[u(ln(w0))] ≥ E[u(ln(w1))] for all u ∈ U1 with strict inequality for some u;

2. Or, F0(y) ≤ F1(y) for all y with strict inequality for some y.

1For discrete variables, Sρ = 1
2

∑
(p

1/2
1 − p

1/2
0 ).
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Case 2. Second Order Dominance: Incumbent wage distribution Second Order Stochasti-

cally Dominates newly hired employee wage distribution (denoted as ln(w0) SSD

ln(w1)) if and only if

1. E[u(ln(w0))] ≥ E[u(ln(w1))] for all u ∈ U2 with strict inequality for some u;

2. Or,
´ y
−∞ F0(t)dt ≤

´ y
−∞ F1(t)dt for all y with strict inequality for some y.

The stochastic dominance tests used in this paper are based on a generalized Kolmogorov-

Smirnov test as discussed in Linton, Maasoumi, and Whang (2005). The test statistics for

FSD and SSD are given by

d =

√
N0N1

N0 +N1
min{sup[F0(y)− F1(y)], sup[F1(y)− F0(y)]} (3.6)

s =

√
N0N1

N0 +N1
min{sup

ˆ y

−∞
[F0(t)− F1(t)]dt, sup

ˆ y

−∞
[F1(t)− F0(t)]dt} (3.7)

When we report the empirical test results in Section 5, we denote sup[F0(y) − F1(y)]

as d1,max and sup[F1(y) − F0(y)] as d2,max. We report both d1,max and d2,max along with

the test statistic d for clarity of interpretation. s1,max and s2,max are similarly defined.

In empirical applications, the CDFs are replaced with their empirical counterparts. The

empirical CDFs are given by F̂d(y) = 1
Nd

∑Nd
i=1 I(ln(wdi ) ≤ y), d = 0, 1, where I(·) is an

indicator function. The underlying distribution of the test statistics are generally unknown

and depend on the data. Following Maasoumi and Heshmati (2000), simple bootstrap

technique based on 199 replications are employed to obtain the empirical distribution of the

test statistics.

3.3.3 Identification of the Counterfactual Distributions

The fundamental question this paper addresses is to identify the wage structure and compo-

sition effects through the identification of counterfactual wage distributions, and determine

which effect dominates the wage differential. We consider the following counterfactual situ-

ation: holding the human capital characteristics of the newly hired workers constant, if we
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change their wage structure to the wage structure of the incumbents, would the counterfac-

tual wage distribution be different from the original one? If so, would the counterfactual

wage distribution stochastically dominate the original one in terms of welfare? If we find

such dominance in the first or second order, we would conclude that the wage structures are

different and the internal wage structure is better. Similarly, we could also check whether

the wage gap is due to differences in human capital characteristics by changing the dis-

tribution of the newly hired employees’ characteristics to that of the incumbents, holding

their wage structure unchanged. To conduct such counterfactual analysis, we follow the

propensity score reweighting methods as discussed in Firpo (2007) to identify the coun-

terfactual distributions mentioned above. Simple bootstrap with replacement is applied to

obtain the statistical significance of the dominance tests. Specifically, we want to identify

the distributions of the following two counterfactual outcomes:

ln(wc1i ) = g0(Xi, εi)|D = 1 (counterfactual outcome #1) (3.8)

ln(wc2i ) = g1(Xi, εi)|D = 0 (counterfactual outcome #2) (3.9)

The benchmark outcome we considered is the conditional wage distribution of the new

hires ln(w1
i ) = g1(Xi1, εi1). The counterfactual outcome #1, ln(wc1i ), indicates the hypo-

thetical unobserved wage of the newly hired employees if they were paid under the incumbent

wage structure. Comparing the benchmark wage ln(w1
i ) to ln(wc1i ) using the Sρ measure

would yield the wage structure effect 4ν
S as in equation 3.3. Comparing distributional

distance between ln(wc1i ) and the incumbent wage ln(w0
i ) would give us the composition

effect, denoted by 4ν
X in equation 3.3. However, that would require using ln(w0

i ) as the

benchmark. For ease of interpretation, we choose to use ln(w1
i ) as the benchmark when

identifying both effects and construct counterfactual outcome #2 ln(wc2i ), which indicates

the hypothetical wage of the newly hired employees if they had the characteristics of the

incumbents. With the new hire wage as the benchmark, Sρ measure of ln(w1
i ) − ln(wc2i )
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gives the composition effect that are reported in empirical applications in Section 5.

Firpo (2007) proved that under certain assumptions, such counterfactual distributions

are identified. Following Firpo (2007) and Firpo, Fortin, and Lemieux (2007), we make

similar assumptions:

1. Unconfoundedness: Suppose (Y,D,X) have a joint distribution, where Y is the out-

come and D is a dummy indicating treatment: (Y1, Y0) and D are jointly independent

conditional on X = x.

2. Common support: For all x ∈ X, 0 < Pr{D = 1|X = x} := p(x) < 1.

Assumption 1 means that fixing the values of observable human capital characteristics

X, the distribution of the wage outcome or the error term ε is independent of whether one

is incumbent or newly hired. Assumption 2 rules out the possibilities that some specific

x belongs only to either one of the two worker groups and hence such x can predict the

probability of being treated perfectly.

The counterfactual distribution of ln(wc1i ) could be identified by the following propensity

score reweighting methods discussed in Firpo (2007).

Fc1 = E[ωc1(D1, X) · I[(ln(wi) ≤ y)] (3.10)

where ωc1(D1, X) =
(

p1(x)
1−p1(x)

)(
1−D1
p1

)
, D1 is a treatment dummy variable taking the

value of 1 for incumbent employees, p1(x) = Pr{D1 = 1|X = x} is the propensity score,

p1 = Pr{D1 = 1} = E[p1(X)] is the marginal probability of being treated. In practice, we

will estimate the propensity score parametrically using a logit model.2 Applying the weights

ωc1(D1, X) gives us the counterfactual distribution of ln(wc1i ). Identifying the distribution

of counterfactual outcome ln(wc2i ), Fc2, is similar, but we need to take newly hired employees

as the treated group. Let D2 be the treatment dummy taking the value of 1 for new hires.

2Nonparametric kernel regression can also be used to estimate the propensity score, which allows more
flexible dependence relations among independent and dependent variables.
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Fc2 = E [ωc2(D2, X) · I[(ln(wi) ≤ y)] (3.11)

where ωc2(D2, X) =
(

p2(x)
1−p2(x)

)(
1−D2
p2

)
, p2(x) and p2 are similarly defined as in the

previous case.3 Applying the weights ωc2(D2, X) gives us the counterfactual distribution of

ln(wc2i ). Once we identify the counterfactual distributions of interest, we can then perform

stochastic dominance tests to compare those counterfactual distributions with the original

distribution.

3.4 Data

The data used in this paper come from 1996-2012 monthly Current Population Survey

(CPS). The monthly CPS is a survey of a probability sample of housing units. Although

the CPS is designed to be a cross-sectional survey, it does not survey a completely new

set of housing units every month. The sample is divided into eight representative rotation

groups. Therefore, a typical housing unit in the sample is interviewed in 8 different months,

given no attrition during survey period. If a housing unit is randomly selected into monthly

CPS for the first time, it will be interviewed for four consecutive months, followed by an

8-month break, and then be surveyed for another four consecutive months. The rotation

group could be identified by the CPS variable “month in sample” (MIS).

The CPS sample design actually allows us to longitudinally link a household in sample

over 8 different months. Following methods as discussed in Madrian and Lefgren (1999),

we conducted one-month matching for all the eligible rotation groups (MIS = 2-4 or 6-8)

in each monthly sample, i.e. linking those eligible subsamples with their previous month

observations.4 In our sample, the matching rate for those eligible groups is over 90 percent

on average.5 Using this longitudinally linked data set, we could identify the incumbent and

3Note that under such setting, p1(x) + p2(x) = 1 and p1 + p2 = 1.
4In 1995, the Census made some changes to CPS sample ID variable, which leads to very poor matching

rates for that year, so we chose 1996 as the starting year to circumvent the problem.
5One shortcoming of this linked data is that we can only follow workers who remain in the same household.

Thus any new hire that moved in order to take a new job could not be matched in this data set.
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newly hired employees. Since we are interested in the wage differentials, we first restrict

our sample to individuals of working age, i.e. those who aged from 18 to 64. Then we

keep those who remained full-time employed (35 hours per week or above) in both month

t−1 and month t. Among those full-time workers, we define incumbent workers to be those

who stayed with the same employer from month t− 1 to t. The newly hired employees are

defined to be those who changed their employer from month t− 1 and t, i.e. workers that

switched to a new job with a new employer at time t.6

Following the literature (e.g. Maasoumi and Wang (2013)), we use the log of hourly

wages, measured by an individual’s weekly wage income divided by the number of hours

worked per week. Note that, as we mentioned above, the metric entropy measure of the wage

differential and stochastic dominance tests are invariant to the logarithm transformation,

while many conventional measures are not. The observed human capital variables used

in the counterfactual analysis include age, age squared, gender, education (five education

groups: less than high school, high school, some college, college, graduate), marital status,

ethnicity and region (Northeast, Midwest, South and West). Occupation variable is grouped

into three categories: high-skill (managerial and professional occupations); medium-skill

(technician, technical production, sales, and administrative support occupations); and low-

skill(other occupations such as maintenance, construction, and farming occupations).

3.5 Results

3.5.1 Baseline Analysis

Trend of the Wage Differential between Internal and External Labor Markets

Table 3.1 shows various measures of the log wage differences between the incumbent and

newly hired employees, i.e. ln(w0) − ln(w1). The second column in the table reports the

distributional measure of the wage gap Sρ. Since Sρ is a normalized metric taking on values

between 0 and 1, for easy interpretation we report the original results multiplied by 100

6We also exclude those with hourly wage less than or equal to 1 dollar, because those extremely low
wages are likely be due to misreporting.
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throughout the paper. Under the null hypothesis of no difference between incumbent and

new hire wage distributions, we calculate the statistical significance of the Sρmeasure using

199 simple bootstrap replications. The p values are reported in the third column. The

other columns in Table 3.1 report conventional measures (e.g. mean, median and quantiles

at various levels) of earning differentials commonly used in the literature. We can see that

both the traditional measures and the metric entropy measure Sρ imply that there exists

wage differentials between those two groups of workers for all the years in sample. The

distributional distances are statistically significant at 5% in 2011 and at 1% in remaining

years. The mean differences and all the quantile differences except for the 90th quantile in

2010, are all positive, clearly showing wage gaps that in favor of the incumbent employees.

However, it is hard to tell a clear trend over time for any of these measures and even harder

to tell whether our new measure shows a different pattern of the time trend from other

traditional measures.

[Insert Table 3.1 about here]

The Sρ measure and other conventional measures are not directly comparable. Thus,

to enable easy comparisons, we normalize all these measures by setting the value in the

year of 1996 to 100 and computing the normalized values. The plot of these normalized

values of Sρ, mean, median, 25th and 75th percentiles in Figure 3.1. As shown in the graph,

other than the 75th percentile, the traditional measures display similar time trends as the

Sρ entropy measure. In order to check how the wage differentials fit with macro business

cycles, we plot the recession periods with shaded vertical bars in the figure. During the

sample period, Mar 2001 to Nov 2001 and Dec 2007 to Jun 2009 are considered as recession

periods by the NBER. Since our measures are computed at yearly frequency, we roughly

pick 2001, 2008 and 2009 as the recession years and the three years are indicated by the

shaded bars in Figure 1. The line plots do not show very clear cyclical patterns, but all

measures, except the 75th percentile of wage differentials do seem to increase during the

recent great recession period from 2008 to 2009. During the great recession the level of
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payroll employment fell by 5.4%, more than four times the employment decline faced in the

2001 recession.7 Many firms reduced or halted hiring, which reduced the bargaining power

of those job seekers. So the newly hired employees may have had to accept lower wages,

which increases the wage gaps between the incumber and the newly hired workers.

[Insert Figure 3.1 about here]

Stochastic Dominance Test Results

As discussed above, these measures of the gender gap could not give a clear ranking of the

earnings distributions in terms of social welfare. Therefore, in Table 3.2 we present the

stochastic dominance test results. The second column labeled Observed Ranking details if

the distributions can be ranked in either the first or second order, where FSD is short for

First-order Stochastic Dominance and SSD stands for Second-order Stochastic Dominance.

The columns labeled Pr[d ≤ 0] and Pr[s ≤ 0] report the probabilities of the test statistics

(of the first and second order dominance tests respectively) to be non-positive based on the

simple bootstrap with replacement for 199 replications. The probability serves a similar

role as p-values in any hypothesis test, but the interpretation is reversed. For example, if

we observe FSD (SSD) and Pr[d ≤ 0] (Pr[s ≤ 0] ) is 0.95, then it means that the test

statistic is statistically significant at 5% level (p-value=0.05).

[Insert Table 3.2 about here]

From Table 3.2, we can see that the wage distribution of incumbents lies predominantly

to the right of the wage distribution of new hires, meaning that incumbent workers enjoy

higher level of wages. For all the years in sample, we find stochastic dominance relations

either in the first or second order. In 4 out of 17 years (1996, 2004, 2007 and 2008), we

find the wage distribution of incumbent workers to empirically dominates, in a first-order

sense, the wage distribution among newly hired workers, but such dominance relation is

not statistically significant in any of the 4 years. For the remaining years, highly significant

7Authors’ calculation; Source: BLS, Haver Analytics
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second-order dominance is found in the years of 1997, 2000-2002 and 2008, with confidence

level greater than 0.95. This suggests that any worker with a social welfare function in

the class U2 (increasing and concave in wage) would prefer the incumbent distribution to

the new hire distribution in those 5 years. Such dominance ranking is only possible when

we account for an aversion to higher dispersion in the welfare criteria. This finding is

quite interesting because those significant second-order dominance cases mainly occurred

around recession periods (2001 and 2008 are recession years). Second-order dominance

indicates that starting from the very left tail of the wage distribution, incumbent workers

are better paid than newly hired workers at most quantiles. This is in line with the findings

of Oreopoulos, Von Wachter, and Heisz (2006), which finds that young graduates entering

the labor market in a recession suffer significant initial earnings losses. SSD also suggests

that at the far right tail of the wage distribution, some newly hired workers could be paid

better than their incumbent counterparts. One possible explanation could be the differences

in human capital characteristics. Those who managed to find highly paid jobs during a

recession may have very strong human capital characteristics. We will further test this

hypothesis using counterfactual analysis in a latter section.

3.5.2 Counterfactual Analysis

Table 3.3 reports the estimated wage structure effect, i.e. the wage gap caused by the

inequality in the pay structure. Metric entropy and traditional measures of the log wage

differences between the newly hired employees and their counterfactual outcome #1, i.e.

ln(w1) − ln(wc1), are presented. The p values of Sρ measure are calculated using the

same bootstrap method as applied in Table 3.1. From Table 3.3, we can see that most

means and quantiles in almost all years except for 2011 are negative, which means that the

counterfactual wages under the incumbent’s wage structure while keeping new employee

characteristics unchanged are generally better than actual wages those new hires earn. The

distributional distance measured by Sρ is smaller and less significant than the distance

between ln(w0) and ln(wc1), as it only reflects the wage structure effect.
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[Insert Table 3.3 about here]

Table 3.4 reports dominance test results of the actual wage distribution of the new hires

versus the counterfactual wage distribution #1. Recall that this comparison identifies the

difference of the wage structures between the external and internal labor markets. Any

finding of stochastic dominance indicates the inequality in the pay structure instead of the

differences in human capital characteristics. We find the counterfactual wage distribution

#1 SSD the original wage distribution of the new hires for all the years in sample, except for

the year of 2011, which means that if the newly hired workers were paid under incumbent

wage structure, such outcomes are preferred at least for those with social welfare functions

in the class of U2. As indicated by the bootstrapped probabilities, those dominance relations

are statistically significant in 1997, 2006 and 2008, with confidence level greater than 0.9

and are close to significant in 2000 and 2001. Second-order dominance indicates that such

findings holds mainly at the lower tail of the wage distribution, while at the upper tail, the

wage structure of those new hires may actually be better than those of the incumbents, so

such counterfactual wages may be lower than their actual wages for those highly paid new

employees. To further test this finding, in the following subsection we divide our sample

into two sub groups, higher and lower wage groups, and conducted counterfactual analysis

respectively.

[Insert Table 3.4 about here]

Table 3.5 reports the estimated composition effect, i.e. the wage gap caused by the

differences human capital characteristics. Sρ and conventional measures of the log wage

differences between the newly hired employees and their counterfactual outcome #2, i.e.

ln(w1)− ln(wc2), are reported. From the table we can see that all the means and quantiles

in all the years in the sample are negative, which indicates that the counterfactual wages

under the incumbent characteristics while keeping new hire’s wage structure unchanged are

generally better than actual wages of the new hires. We conclude that the differences in

human capital characteristics between the incumbents and new hires also contributed to
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the their wage gap. The distributional distance measured by Sρ is a little smaller and less

significant than those reported in Table 3.3, which means that the estimated composition

effect is smaller compared to the estimated wage structure effect.

[Insert Table 3.5 about here]

Table 3.6 reports the stochastic dominance test results from the comparison between the

actual wage distribution of the new hires versus the counterfactual wage distribution #2.

Note that this comparison identifies the wage gap caused by differences in human capital

characteristics. As shown in the table, we find the counterfactual wage distribution #2

FSD the actual new hire wage distribution in all year. However, such first-order dominance

relations are not statistically significant. FSD always indicates SSD, but those second-order

dominance relations are largely insignificant as well. Hence we have found some evidence

for differences in human capital characteristics, but the evidence is not quite strong. The

data seem to tell us that even though there is some difference in human capital between

incumbent and newly hired workers, such a difference is not large enough to be statistically

meaningful.

[Insert Table 3.6 about here]

3.5.3 Counterfactual Analysis of Different Wage Groups

In this section, we report the findings of counterfactual analysis for different wage groups.

We used the weighted median wage of our sample, $18.5 per hour, as the cut-off point.

Higher wage group consists of workers with wages above the median, and the rest are in

the lower wage group.

Counterfactual Analysis of Higher Wage Group

We conducted the two kinds of counterfactual analysis again for the higher wage workers.

The findings are reported in Tables 3.7 and 3.8. In line with Table 3.6, Table 3.8 also

indicates a first-order distributional wage premium of human capital characteristics in favor
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of the incumbents. But still, among higher paid workers, such an edge is also not statistically

significant, neither is the second-order dominance relation significant for any year in sample.

We have our most interesting findings in Table 3.7, which summarize the wage gap caused

by inequality in wage structure for higher paid workers.

[Insert Table 3.7 about here]

In many years, we find that the newly hired worker’s wage distribution and the counter-

factual wage distribution # 1 are generally unrankable. However, we do find second-order

dominance relations in the years of 1997, 2000, 2001, 2003, 2008, 2010 and 2011. More

notably, the dominance relations reversed direction. The wage distribution of newly hired

workers empirically dominates, in a second-order sense, the counterfactual wage distribu-

tion # 1. Although they are largely statistically insignificant, the reverse of the dominance

relations, to some degree, confirmed our hypothesis that certain highly paid new workers

actually enjoyed a better wage structure than their incumbent counterparts, the so called

“new hire premium” in the literature. For workers with a social welfare function in the class

U2, the counterfactual case that replace new hire’s wage structure with that of incumber

workers, while keeping their characteristics constant, would actually make those new hires

worse off.

[Insert Table 3.8 about here]

Counterfactual Analysis of Lower Wage Group

The results of counterfactual analysis for the lower paid group are reported in Table 3.9 and

Table 3.10. Table 3.10 shows similar results as that in Table 3.6, indicating better human

capital characteristics among incumbent workers with hourly wage lower than $18.5.

[Insert Table 3.9 about here]

Table 3.9 reports the stochastic dominance test results between the original wage dis-

tribution of the new hires and the counterfactual wage distribution #1 among lower paid
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group. We have some interesting findings here. In the years of 1996, 1997, 2000-2003

and 2005-2009, the counterfactual wage distribution #1 empirically dominates, in a first-

order sense, the wage distribution of newly hired workers. In the years of 1998, 2004, 2010

and 2011, the counterfactual wage distribution #1 empirically dominates, in a second-order

sense, the wage distribution of newly hired workers. First-order dominance relation is large-

ly insignificant, but in 1997 and 2008, the second-order dominance relations are statistically

significant, with p-values less than 0.1. The findings indicate that for lower wage workers,

the counterfactual wage distribution #1 are preferred compared to the actual new hire wage

distribution for workers with a social welfare function in the class of U2 in both years. The

significant dominance relation in 2008, provides a strong evidence that during the recent

great recession year, lower wage new hired workers suffer from a much worse pay structure

than that of the incumbents. It is an indicator showing that the external labor market

deteriorates much more than the internal labor market during the recent recession.

[Insert Table 3.10 about here]

3.6 Conclusion

This paper employs a distribution based entropy metric to measure the wage differentials

between incumbent and newly hired employees. The entropy measure incorporates the dif-

ferences at the entire distribution level and thus gives a better picture on wage comparison.

We also use stochastic dominance tests to rank those wage distributions based on social

welfare. We find that the incumbent workers are generally paid better than the newly hired

worker in any year from 1996 to 2012. Further counterfactual analysis shows that the wage

gap could be attributed to both the inequality in wage structures and the differences in

human capital characteristics, depending on a worker’s wage level. For highly paid new

workers, the wage gap mainly comes from the differences in human capital characteristics

and those new hires tend to enjoy a better wage structure than the incumbents in certain

years. For lower paid new workers, the wage differential comes from both gap in human
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capital characteristics and the inequality in wage structure. Especially in the recent reces-

sion year 2008, those lower wage new hires suffer more from the significantly worse wage

structure than that of the incumbents.
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Figure 3.1: Time Trend of Wage Differential with Business Cycle Indicator
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Table 3.1: Entropy Measures of Wage Differentials

Year Sρ×100 p of Sρ mean 10th 25th 50th 75th 90th

1996 0.97 (0.00) 0.14 0.09 0.13 0.14 0.13 0.11
1997 1.47 (0.00) 0.15 0.13 0.16 0.18 0.17 0.08
1998 1.11 (0.00) 0.13 0.08 0.15 0.20 0.11 0.04
1999 1.14 (0.00) 0.13 0.15 0.12 0.17 0.13 0.07
2000 0.93 (0.00) 0.11 0.07 0.17 0.12 0.07 0.07
2001 0.69 (0.00) 0.10 0.07 0.12 0.11 0.08 0.04
2002 1.03 (0.00) 0.10 0.11 0.11 0.13 0.08 0.04
2003 0.95 (0.00) 0.11 0.13 0.12 0.14 0.10 0.04
2004 0.62 (0.00) 0.10 0.06 0.08 0.12 0.13 0.07
2005 0.97 (0.00) 0.12 0.06 0.14 0.12 0.12 0.12
2006 0.98 (0.00) 0.14 0.09 0.10 0.15 0.14 0.14
2007 0.50 (0.00) 0.10 0.09 0.15 0.11 0.08 0.06
2008 0.65 (0.01) 0.09 0.06 0.13 0.12 0.07 0.03
2009 1.24 (0.00) 0.11 0.11 0.18 0.16 0.06 0.09
2010 0.64 (0.00) 0.07 0.10 0.11 0.13 0.04 -0.08
2011 0.59 (0.03) 0.08 0.05 0.07 0.07 0.08 0.09
2012 0.65 (0.00) 0.09 0.06 0.13 0.11 0.08 0.05

Notes: Columns (2)-(3) report metric entropy measure of distributional distance and its p
values respectively. The p values are obtained from 199 simple bootstrap under the null
hypothesis of no difference between incumbent and new hire wage distributions.
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Table 3.2: Stochastic Dominance Test Results

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 FSD -0.03 5.15 -0.03 0.30 -0.04 104.05 -0.04 0.94
1997 SSD 0.06 6.30 0.06 0.25 -0.05 110.07 -0.05 0.99
1998 SSD 0.11 5.47 0.11 0.04 -0.05 98.14 -0.05 0.87
1999 SSD 0.06 5.78 0.06 0.19 -0.05 93.93 -0.05 0.81
2000 SSD 0.11 4.96 0.11 0.05 -0.06 86.00 -0.06 0.96
2001 SSD 0.01 4.39 0.01 0.43 -0.06 80.49 -0.06 0.97
2002 SSD 0.24 4.48 0.24 0.01 -0.06 76.70 -0.06 0.99
2003 SSD 0.07 4.20 0.07 0.14 -0.05 71.31 -0.05 0.87
2004 FSD -0.06 4.27 -0.06 0.41 -0.06 68.43 -0.06 0.79
2005 SSD 0.09 4.54 0.09 0.18 -0.09 73.32 -0.09 0.92
2006 SSD 0.08 4.62 0.08 0.21 -0.09 95.11 -0.09 0.94
2007 FSD -0.06 3.88 -0.06 0.55 -0.07 67.61 -0.07 0.87
2008 FSD -0.03 4.16 -0.03 0.48 -0.08 55.20 -0.08 0.98
2009 SSD 0.38 3.56 0.38 0.00 -0.04 61.14 -0.04 0.76
2010 SSD 0.45 2.76 0.45 0.01 -0.06 47.83 -0.06 0.93
2011 SSD 0.07 2.13 0.07 0.09 -0.07 35.03 -0.07 0.54
2012 SSD 0.01 3.34 0.01 0.21 -0.06 47.96 -0.06 0.64
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Table 3.3: Measures of Differences between New Hire and New Hire counterfactual #1
Distributions

Year Sρ×100 p of Sρ mean 10th 25th 50th 75th 90th

1996 0.34 (.03) -0.06 -0.05 -0.07 -0.06 -0.05 -0.02
1997 0.77 (.00) -0.07 -0.09 -0.11 -0.10 -0.08 0.00
1998 0.47 (.01) -0.05 -0.04 -0.06 -0.09 -0.03 0.04
1999 0.47 (.01) -0.06 -0.07 -0.06 -0.09 -0.04 0.00
2000 0.46 (.01) -0.03 -0.07 -0.11 -0.04 0.00 0.04
2001 0.32 (.05) -0.03 -0.00 -0.04 -0.04 -0.01 0.05
2002 0.47 (.00) -0.03 -0.07 -0.08 -0.05 0.00 0.00
2003 0.38 (.06) -0.02 -0.08 -0.05 -0.05 0.00 0.05
2004 0.23 (.25) -0.03 -0.05 -0.03 -0.05 -0.04 0.03
2005 0.36 (.04) -0.04 -0.06 0.00 -0.04 -0.03 -0.03
2006 0.28 (.17) -0.03 0.00 -0.04 -0.07 -0.02 -0.00
2007 0.19 (.58) -0.03 -0.05 -0.10 -0.03 -0.02 0.03
2008 0.37 (.17) -0.03 -0.06 -0.07 -0.05 0.00 0.07
2009 0.63 (.00) -0.04 -0.07 -0.09 -0.08 0.00 -0.00
2010 0.40 (.11) -0.00 -0.05 -0.04 -0.03 0.04 0.12
2011 0.47 (.00) 0.01 0.00 0.00 0.04 0.04 0.01
2012 0.33 (.06) -0.03 -0.02 -0.04 -0.03 0.01 0.00

Notes: Columns (2)-(3) report metric entropy measure of distributional distance and its
p values respectively. The p values are obtained from 199 simple bootstrap under the
null hypothesis of no difference between the new hire and their counterfactual #1 wage
distributions.
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Table 3.4: Stochastic Dominance Test Results, Counterfactual #1

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 SSD 14.22 0.58 0.58 0.05 240.39 -0.28 -0.28 0.85
1997 SSD 17.43 0.73 0.73 0.03 261.86 -0.25 -0.25 0.96
1998 SSD 16.37 2.39 2.39 0.01 206.92 -0.25 -0.25 0.71
1999 SSD 15.41 1.31 1.31 0.01 201.00 -0.46 -0.46 0.60
2000 SSD 11.39 1.92 1.92 0.00 156.57 -0.34 -0.34 0.88
2001 SSD 8.80 2.64 2.64 0.02 132.64 -0.30 -0.30 0.89
2002 SSD 9.60 2.66 2.66 0.00 136.40 -0.26 -0.26 0.81
2003 SSD 9.20 2.70 2.70 0.00 123.87 -0.26 -0.26 0.72
2004 SSD 8.55 1.16 1.16 0.01 109.38 -0.32 -0.32 0.61
2005 SSD 10.93 1.43 1.43 0.01 143.21 -0.34 -0.34 0.77
2006 SSD 12.29 1.38 1.38 0.01 159.84 -0.45 -0.45 0.91
2007 SSD 9.16 1.75 1.75 0.03 104.39 -0.33 -0.33 0.73
2008 SSD 11.21 3.73 3.73 0.00 113.81 -0.43 -0.43 0.94
2009 SSD 11.15 3.16 3.16 0.00 155.81 -0.28 -0.28 0.63
2010 SSD 5.33 7.22 5.33 0.00 98.05 -0.29 -0.29 0.46
2011 None 3.39 4.66 3.39 0.00 29.92 25.71 25.71 0.16
2012 SSD 8.42 0.85 0.85 0.00 80.50 -0.22 -0.22 0.43



130

Table 3.5: Measures of Differences between New Hire and New Hire counterfactual #2
Distributions

Year Sρ×100 p of Sρ mean 10th 25th 50th 75th 90th

1996 0.27 (0.53) -0.08 -0.04 -0.07 -0.07 -0.08 -0.08
1997 0.28 (0.59) -0.08 -0.09 -0.07 -0.10 -0.14 -0.08
1998 0.29 (0.64) -0.08 -0.04 -0.06 -0.13 -0.10 -0.06
1999 0.28 (0.44) -0.08 -0.07 -0.03 -0.09 -0.12 -0.11
2000 0.23 (0.48) -0.08 -0.06 -0.11 -0.05 -0.09 -0.08
2001 0.24 (0.08) -0.08 0.00 -0.05 -0.10 -0.09 -0.08
2002 0.28 (0.42) -0.09 -0.05 -0.11 -0.10 -0.10 -0.10
2003 0.23 (0.50) -0.07 -0.07 -0.05 -0.09 -0.10 -0.07
2004 0.27 (0.66) -0.08 -0.06 -0.03 -0.11 -0.12 -0.08
2005 0.26 (0.14) -0.08 -0.06 -0.01 -0.07 -0.10 -0.11
2006 0.29 (0.05) -0.09 -0.03 -0.04 -0.10 -0.11 -0.12
2007 0.26 (0.26) -0.08 -0.05 -0.10 -0.09 -0.10 -0.07
2008 0.20 (0.97) -0.07 -0.03 -0.08 -0.10 -0.11 -0.06
2009 0.25 (0.68) -0.09 -0.07 -0.09 -0.11 -0.11 -0.12
2010 0.19 (0.80) -0.08 -0.05 -0.07 -0.09 -0.10 -0.09
2011 0.19 (0.98) -0.07 -0.04 -0.05 -0.08 -0.09 -0.10
2012 0.20 (0.51) -0.07 -0.00 -0.06 -0.10 -0.09 -0.10

Columns (2)-(3) report metric entropy measure of distributional distance and its p values re-
spectively. The p values are obtained from 199 simple bootstrap under the null hypothesis of
no difference between between the new hire and their counterfactual #2 wage distributions.
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Table 3.6: Stochastic Dominance Test Results, Counterfactual #2

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 FSD 14.50 -0.30 -0.30 0.21 303.47 -0.30 -0.30 0.47
1997 FSD 14.80 -0.29 -0.29 0.18 303.02 -0.29 -0.29 0.38
1998 FSD 15.24 -0.26 -0.26 0.16 340.35 -0.30 -0.30 0.48
1999 FSD 14.62 -0.45 -0.45 0.21 293.55 -0.45 -0.45 0.51
2000 FSD 13.78 -0.25 -0.25 0.14 285.84 -0.37 -0.37 0.51
2001 FSD 14.62 -0.29 -0.29 0.17 295.95 -0.29 -0.29 0.52
2002 FSD 15.84 -0.33 -0.33 0.36 344.21 -0.41 -0.41 0.77
2003 FSD 13.85 -0.26 -0.26 0.15 301.62 -0.26 -0.26 0.43
2004 FSD 15.42 -0.25 -0.25 0.25 274.34 -0.32 -0.32 0.87
2005 FSD 15.22 -0.22 -0.22 0.31 255.04 -0.27 -0.27 0.58
2006 FSD 15.64 -0.26 -0.26 0.34 375.20 -0.26 -0.26 0.81
2007 FSD 15.40 -0.25 -0.25 0.10 281.80 -0.56 -0.56 0.53
2008 FSD 13.37 -0.34 -0.34 0.11 220.90 -0.46 -0.46 0.47
2009 FSD 13.66 -0.28 -0.28 0.20 297.15 -0.28 -0.28 0.54
2010 FSD 12.28 -0.22 -0.22 0.21 284.13 -0.22 -0.22 0.51
2011 FSD 11.90 -0.39 -0.39 0.22 244.62 -0.42 -0.42 0.59
2012 FSD 12.49 -0.25 -0.25 0.33 216.75 -0.25 -0.25 0.71
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Table 3.7: Stochastic Dominance Test Results for High Wage Workers, Counterfactual #1

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 None 2.09 3.17 2.09 0.00 0.26 40.10 0.26 0.26
1997 SSD 1.85 3.10 1.85 0.10 -0.30 49.34 -0.30 0.65
1998 None 0.80 6.16 0.80 0.06 0.80 118.62 0.80 0.18
1999 None 0.34 6.09 0.34 0.03 0.14 79.75 0.14 0.38
2000 SSD 1.05 3.50 1.05 0.15 -0.65 80.04 -0.65 0.47
2001 SSD 1.38 5.59 1.38 0.00 -0.39 100.11 -0.39 0.51
2002 None 0.23 4.42 0.23 0.07 0.23 118.22 0.23 0.23
2003 SSD 0.46 4.28 0.46 0.00 -0.61 102.91 -0.61 0.46
2004 None 1.72 5.78 1.72 0.00 3.52 30.94 3.52 0.16
2005 None 0.76 4.63 0.76 0.02 0.66 56.92 0.66 0.14
2006 None 2.59 2.61 2.59 0.00 11.49 38.30 11.49 0.23
2007 None 5.66 2.16 2.16 0.02 21.11 0.63 0.63 0.18
2008 SSD 0.44 7.88 0.44 0.03 -0.18 104.73 -0.18 0.59
2009 None 4.27 6.15 4.27 0.02 10.85 121.45 10.85 0.14
2010 SSD 0.33 11.37 0.33 0.00 -0.83 315.47 -0.83 0.82
2011 SSD 2.01 2.83 2.01 0.00 -0.35 18.44 -0.35 0.30
2012 None 4.34 1.83 1.83 0.00 15.58 0.55 0.55 0.13
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Table 3.8: Stochastic Dominance Test Results for High Wage Workers, Counterfactual #2

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 FSD 14.50 -0.30 -0.30 0.18 303.47 -0.30 -0.30 0.39
1997 FSD 14.80 -0.29 -0.29 0.12 303.02 -0.29 -0.29 0.37
1998 FSD 15.24 -0.26 -0.26 0.12 340.35 -0.30 -0.30 0.41
1999 FSD 14.62 -0.45 -0.45 0.21 293.55 -0.45 -0.45 0.42
2000 FSD 13.78 -0.25 -0.25 0.16 285.84 -0.37 -0.37 0.54
2001 FSD 14.62 -0.29 -0.29 0.19 295.95 -0.29 -0.29 0.42
2002 FSD 15.84 -0.33 -0.33 0.32 344.21 -0.41 -0.41 0.76
2003 FSD 13.85 -0.26 -0.26 0.19 301.62 -0.26 -0.26 0.49
2004 FSD 15.42 -0.25 -0.25 0.32 274.34 -0.32 -0.32 0.81
2005 FSD 15.22 -0.22 -0.22 0.36 255.04 -0.27 -0.27 0.66
2006 FSD 15.64 -0.26 -0.26 0.34 375.20 -0.26 -0.26 0.75
2007 FSD 15.40 -0.25 -0.25 0.12 281.80 -0.56 -0.56 0.41
2008 FSD 13.37 -0.34 -0.34 0.11 220.90 -0.46 -0.46 0.60
2009 FSD 13.66 -0.28 -0.28 0.15 297.15 -0.28 -0.28 0.49
2010 FSD 12.28 -0.22 -0.22 0.15 284.13 -0.22 -0.22 0.45
2011 FSD 11.90 -0.39 -0.39 0.22 244.62 -0.42 -0.42 0.59
2012 FSD 12.49 -0.25 -0.25 0.20 216.75 -0.25 -0.25 0.60
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Table 3.9: Stochastic Dominance Test Results for Lower Wage Workers, Counterfactual
#1

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 FSD 13.34 -0.13 -0.13 0.15 365.28 -0.22 -0.22 0.84
1997 FSD 18.51 -0.22 -0.22 0.83 544.61 -0.26 -0.26 0.92
1998 SSD 18.00 0.47 0.47 0.04 402.38 -0.20 -0.20 0.70
1999 None 15.13 0.19 0.19 0.13 388.87 0.64 0.64 0.21
2000 FSD 13.52 -0.17 -0.17 0.58 394.86 -0.23 -0.23 0.71
2001 FSD 10.85 -0.23 -0.23 0.55 287.80 -0.25 -0.25 0.84
2002 FSD 11.11 -0.26 -0.26 0.46 327.00 -0.29 -0.29 0.81
2003 FSD 10.37 -0.01 -0.01 0.29 293.57 -0.20 -0.20 0.68
2004 SSD 8.33 0.90 0.90 0.04 198.47 -0.23 -0.23 0.31
2005 FSD 8.71 -0.26 -0.26 0.11 202.16 -0.26 -0.26 0.40
2006 FSD 12.60 -0.31 -0.31 0.38 243.86 -0.52 -0.52 0.84
2007 FSD 10.71 -0.15 -0.15 0.17 222.28 -0.24 -0.24 0.36
2008 FSD 10.11 -0.03 -0.03 0.35 246.93 -0.17 -0.17 0.90
2009 FSD 10.45 -0.01 -0.01 0.34 268.62 -0.19 -0.19 0.71
2010 SSD 6.42 0.03 0.03 0.15 200.86 -0.21 -0.21 0.72
2011 SSD 6.46 1.14 1.14 0.01 148.40 -0.19 -0.19 0.39
2012 None 8.91 0.64 0.64 0.01 177.41 0.77 0.77 0.28
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Table 3.10: Stochastic Dominance Test Results for Lower Wage Workers, Counterfactual
#2

Year Obrank d1,max d2,max d Pr(d ≤ 0) s1,max s2,max s Pr(d ≤ 0)

1996 FSD 14.50 -0.30 -0.30 0.11 303.47 -0.30 -0.30 0.46
1997 FSD 14.80 -0.29 -0.29 0.10 303.02 -0.29 -0.29 0.36
1998 FSD 15.24 -0.26 -0.26 0.22 340.35 -0.30 -0.30 0.53
1999 FSD 14.62 -0.45 -0.45 0.20 293.55 -0.45 -0.45 0.46
2000 FSD 13.78 -0.25 -0.25 0.13 285.84 -0.37 -0.37 0.46
2001 FSD 14.62 -0.29 -0.29 0.22 295.95 -0.29 -0.29 0.62
2002 FSD 15.84 -0.33 -0.33 0.31 344.21 -0.41 -0.41 0.76
2003 FSD 13.85 -0.26 -0.26 0.12 301.62 -0.26 -0.26 0.48
2004 FSD 15.42 -0.25 -0.25 0.31 274.34 -0.32 -0.32 0.85
2005 FSD 15.22 -0.22 -0.22 0.30 255.04 -0.27 -0.27 0.65
2006 FSD 15.64 -0.26 -0.26 0.46 375.20 -0.26 -0.26 0.77
2007 FSD 15.40 -0.25 -0.25 0.11 281.80 -0.56 -0.56 0.41
2008 FSD 13.37 -0.34 -0.34 0.09 220.90 -0.46 -0.46 0.46
2009 FSD 13.66 -0.28 -0.28 0.19 297.15 -0.28 -0.28 0.55
2010 FSD 12.28 -0.22 -0.22 0.19 284.13 -0.22 -0.22 0.54
2011 FSD 11.90 -0.39 -0.39 0.17 244.62 -0.42 -0.42 0.65
2012 FSD 12.49 -0.25 -0.25 0.15 216.75 -0.25 -0.25 0.62
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