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Abstract

Essays on Entropy-based Robust Inference with Applications in Finance and Economics
By Ke Wu

The dissertation consists of three essays that center around entropy-based robust inference
and its applications in the fields of asset pricing and labor economics.

In the first essay, I propose to use a metric entropy to measure asymmetric dependence in
asset returns, i.e. the tendency that stocks co-move with the market more strongly during the
market downturn than during the upside market. Using the entropy measure, I construct a
model-free test for asymmetric dependence in stock returns, which is shown to have greater
power than the existing correlation-based test proposed by Hong, Tu, and Zhou (2007). In
stock portfolios sorted by size, book-to-market ratio and momentum, based on this new test
I find statistically significant asymmetric dependence is much more pervasive than previously
thought.

The second essay is an empirical extension to my first chapter, which examines how
asymmetric dependence between stock return and the market return is priced in the cross-
section of expected stock returns. Motivated by Ang, Chen, and Xing (20006), I construct
proxies for the dependence with downside and upside market separately based on non-
parametric kernel estimated joint return distributions. Empirically, I find a risk premium
(discount) for stocks with high downside (upside) dependence. Moreover, downside
dependence premium is almost twice as large as downside beta premium. Asymmetric
dependence leaning toward the downside also earns a premium. The findings suggest that
investors' aversion to downside losses are stronger than their attraction to the upside gains.

The third essay examines distributional wage gap between incumbents and newly hired
workers in the US labor market from 1996 to 2012 based on metric entropy distances. We
decompose the wage gap to structural and composition effects by identifying several
counterfactual distributions using propensity score reweighting method as discussed in Firpo
(2007). We consider weak uniform ranking of these counterfactual wage outcomes based on
statistical tests for stochastic dominance as proposed in Linton, Maasoumi, and Whang
(2005). Empirically, we find incumbent workers enjoy a better wage distribution, but the
attribution of the gap to structural wage inequality and human capital characteristics varies
among quantiles of the distribution.
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Preface

The dissertation centers around theoretical development and empirical applications of entropy-
based statistical inference methods. Three essays in the dissertation can be categorized into
two parts, each of which demonstrates the usefulness and advantages of entropy-based in-
ference in the fields of asset pricing and labor economics, respectively.

Entropy, originated from physics and information theory as a measure of uncertain-
ty, has gained increasing popularity in finance and economics research during recent years.
Some recent notable papers with applications of entropy include |Sims| (2003); Backus, Cher-
nov, and Martin (2011)); Hansen| (2012)); Cabrales, Gossner, and Serrano| (2013)); Backus,
Chernov, and Zin| (2014) among others. In those studies, the usage of entropy has shown
improvements upon conventional moment-based methods. For example, [Backus, Chernov,
and Zin (2014) use Kullback-Leibler relative entropy (Kullback, Leibler et al., [1951)) to
measure the differences between physical and risk-neutral probabilities and derive appro-
priate bounds for stochastic discount factors that can be used to compare the performance
of popular theoretical asset pricing models. The entropy bounds show superior robustness
compared to the traditional moment-based Hansen-Jagannathan bound (Hansen and Ja-
gannathan) [1991)), as it can easily extend to different time intervals and it is also robust
to departures from log-normality. In my dissertation, I choose to employ a metric entropy
measure proposed by |Granger, Maasoumi, and Racine, (2004)) due to several desirable prop-
erties of the entropy. It belongs to a general K-class entropy family and mathematically it
is the only metric entropy within its class, because it satisfies the triangular inequality. It
is normalized to take values in-between 0 and 1. Moreover, the measure is invariant under
continuous and strictly increasing transformations, such as the commonly used logarithm
transformation.

The first part, comprised of two essays, answers an important question in empirical asset
pricing, whether there exist statistically significant asymmetric dependence in asset returns,
i.e. whether stocks co-move with the market more strongly during the market downturn

than during the upside market. Moreover, if such asymmetric co-movements are statistically



significant, then how do such asymmetric characteristics affect asset prices cross-sectionally?
This question is very important because in asset management business, effective hedging
relies on the dependence between assets hedged and the financial instruments used. If the
dependence structure is varying with the state of the market, i.e. the dependence is stronger
during the market downturn, the portfolio diversification may provide very little protection
precisely when it is most needed, since there are very few places to hide when markets
collapse.

From an asset allocation perspective, a simple example given in |Ang and Chen| (2002
has shown that when the underlying return generating process has asymmetric correlation
but an investor has a belief that the joint return distribution (between individual stock and
the market) follows bivariate normal, then she holds much more equity as a proportion of
her investment (overestimate the benefits of diversification) than the optimal weight in the
bad market state, while the investor holds too little equity (underestimate the benefits of
diversification) in the good market state. They has also shown that the utility loss due to
this mis-allocation is economically significant.

The first essay provides a metric entropy measure of asymmetric dependence in asset re-
turns and use this measure to develop a model-free test for asymmetric dependence between
stock and the market returns. The paper contributes to the literature in several aspects.
First of all, in terms of methodology, the new test extends a robust entropy-based test of
asymmetry for univariate process suggested by Racine and Maasoumi (2007) to bivariate
case that is of interest in the field of finance.

Secondly, the metric entropy measures directly the distance between the probability
density functions of the original joint distribution and the rotated distribution, so it could
capture any asymmetry existed in all the moments. In contrast, in the finance literature,
traditional tests of asymmetry only focus on testing for asymmetric correlation in the joint
distribution, i.e. the asymmetry existed in the second moment. For example, |Ang and Chen
(2002) seems to be the first to propose a statistical test of asymmetric correlation in asset

returns. Their test compares the sample exceedance (conditional) correlations with those



implied by a statistical model. If there is a large difference, then the observed asymmetric
correlations cannot be explained by the model. However, Ang and Chen (2002)) test answers
only the question whether the asymmetry can be explained by a given model. Under their
joint normality assumption, a rejection of their test cannot rule out the possibility that the
data features unexplained by a normal model may be explained by another model. [Hong,
Tu, and Zhou (2007) propose the first and the only model-free test of asymmetry to date.
Their test compares sample conditional correlations at the downside and upside of the joint
distribution. However, despite the novelty, their test detects only asymmetric correlations,
and does not address asymmetry beyond the second moment. Moreover, its power seems
low in empirical applications.

As is well known, the correlation coefficient is only a measure of linear dependence and
thus has limitations in measuring general dependence. For example, except for the joint
normal case, in general zero correlation does not imply independence, while several papers
documented that realized stock returns are non-normally distributed (see, e.g., [Embrechts,
McNeil, and Straumann) 2002; |Ang and Chenl, [2002). Moreover, for heavy-tailed distribu-
tions without finite second moments, the correlation coefficient is not even defined, while
Cont, (2001) documented that distributions of many financial time series indeed have heavy
tails and display nonexistence of higher order moments. Hence, conceptually the newly
proposed entropy-based test is better.

Thirdly, using Monte Carlo simulations, I find that the newly proposed entropy-based
test has correct empirical size and better finite sample power than the existing model-free
test proposed in Hong, Tu, and Zhou (2007)). The superior finite sample performance of the
test is due to more information used, as the entropy measure summarizes all the informa-
tion in the joint density function that uniquely defines the distribution while conditional
correlation only uses the information in the second moment. Empirically, in commonly used
decile stock portfolios sorted by size, book-to-market ratio and momentum, based on this
new test I find statistically significant asymmetric dependence is much more pervasive than

previously thought. Specifically, of the ten decile portfolios sorted by book-to-market ratio,



I find asymmetry in 2 portfolios at the 5% significance level, and 7 portfolios at the 10%
significance level, while Hong, Tu, and Zhou (2007) test fails to detect any asymmetry. My
findings are consistent with empirical findings documented in a strand of prior research,
like Ball and Kothari (1989); Bekaert and Wu| (2000); |Ang, Chen, and Xing| (2006 among
others.

In the second essay, I further examine how the asymmetric dependence between individ-
ual stock return and market return is priced in the cross-section of expected stock returns.
Motivated by |Ang, Chen, and Xing (2006), I construct proxies for the dependence with
downside and upside market separately based on non-parametric kernel estimated joint cu-
mulative return distributions. Asymmetric dependence is measured using the entropy test
statistic from the first essay, modified to reflect to which side the dependence is stronger.
All else being equal, stocks with stronger downside dependence than upside dependence
with the market is more risky, as those stocks face large downside risk while have limited
upside potential. Risk averse investors should require positive risk premium for holding
such stocks. Empirically, using monthly returns to U.S. common stocks traded on the
NYSE/AMEX/NASDAQ from January 1962 to December 2013, I indeed find a significant
risk premium (discount) for stocks with high downside (upside) dependence. Asymmetric
dependence leaning toward the downside also earns a risk premium. The positive risk pre-
mium associated with the downside dependence is higher than the discount due to upside
dependence.

The findings suggest that investors’ aversion to downside losses is stronger than their
attraction to the upside gains, which can be implied from a theoretical optimal asset al-
location example, where a representative agent with disappointment aversion utility (Gul,
1991) maximizes her utility by allocating wealth among one risk-free and two risky assets,
as described in [Ang, Chen, and Xing| (2006). Fama and MacBeth| (1973) regressions show
that the contemporaneous impacts of the dependence measures cannot be explained by tra-
ditional risk factors, like the market beta (Sharpe, |1964; Lintner, 1965)), downside or upside

betas (Ang, Chen, and Xing}, 2006), coskewness (Harvey and Siddiquel 2000), and cokurto-



sis (Dittmar, 2002)). They are also different from the effects of firm level characteristics, like
size (Banz, 1981) and book-to-market ratio (Fama and French, 1992), illiquidity (Amihud),
2002), and the momentum (Jegadeesh and Titman, |1993)).

The estimated cross-sectional excess return premium for bearing downside dependence
risk is approximately 11.6% per annum, almost twice as large as the downside beta premium
(6% as reported in|Ang, Chen, and Xing (2006))). The downside asymmetric dependence is
not persistent over time and shows limited predictability (R-squared is very low). However,
a zero investment trading strategy that forms portfolios based on past asymmetric depen-
dence can still earn an average equal-weighted annualized return of 4.5%, significant both
economically and statistically. A similar trading strategy based on downside beta fails to
yield an economically meaningful return spread. Such comparisons with traditional linear
dependence measures (the betas) used in finance literature suggest that there exist gain
when going beyond linear risk framework. Entropy-based nonlinear dependence measures
may better capture the market risk than their linear counterparts.

The first part of the dissertation shows that entropy has the capacity to incorporate
more information in a distribution than traditional moment-based correlations and linear
regression coefficients (betas). Such capacity leads to statistical tests with higher power and
also empirically more significant risk premium. The second part, comprised of one essay,
demonstrates that the metric entropy can serve as an effective measure of distributional
wage gap, and can tell us whether two wage distributions are significantly different from
each other, while traditional methods focusing on the mean, median, or certain particular
quantile appear to place too much weight on a part of the population, or too equal a weight
everywhere.

Some recent papers have examined the wage differentials at the entire distribution level,
e.g. Maasoumi and Wang| (2013)) employs the same metric entropy measure to examine the
gender wage gap based on the metric distance between wage distributions of female and
male workers. Using similar methodologies, the third essay (a joint work with Esfandiar

Maasoumi and Melinda Pitts) examines distributional wage gap between incumbent and



newly hired workers in the US labor market. We explore weak uniform rankings between
wage distributions based on the concept of stochastic dominance that allow assessments
over entire classes of welfare functions. Furthermore, we decompose observed gaps to those
differentials associated with discrimination in the wage structure, or to human capital com-
position effect.

The classic (Oaxaca (1973) and Blinder| (1973)) decomposition is a regression based
method focusing only on linear conditional mean decomposition. One major limitation
of the Oaxaca-Blinder procedure as discussed by Barsky et al.| (2002) is that the decom-
position provides consistent estimates of the structure and composition effects only under
the assumption that the conditional expectation is linear. However, such assumption is not
quite likely to hold in many empirical applications. As advocated in |DiNardo, Fortin, and
Lemieux (1996), we use an alternative non-parametric decomposition based on propensity
score reweighting methods. A key advantage of this reweighting approach is that it identifies
the entire counterfactual distribution under much less restrictive assumptions, and hence
can easily be applied to more general distributional statistics besides the simple mean and
quantiles, such as the metric entropy.

The empirical analysis focuses on employees who work at least 35 hours per week using
monthly Current Population Survey (CPS) data from 1996 to 2012. Among others, we find
incumbent workers generally enjoy a better distribution of wages, but the attribution of
the gap to wage inequality and human capital characteristics varies between quantiles. For
instance, highly paid new workers are mainly due to human capital components, and in

some years, even better wage structure.
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Chapter 1

Asymmetric Dependence in Stock Returns: a
Robust Entropy-Based Test

Abstract

In this paper, I propose to use a metric entropy to measure asymmetric
dependence in asset returns, i.e. the tendency that stocks co-move with the
market more strongly during the market downturn than during the upside mar-
ket. Using the entropy measure, I construct a model-free test for asymmetric
dependence in stock returns, which is shown to have greater power than the ex-
isting correlation-based model-free test proposed by |Hong, Tu, and Zhou (2007)).
The new test extends a robust entropy-based test of asymmetry for univariate
process proposed by Racine and Maasoumi| (2007) to bivariate case. In stock
portfolios sorted by size, book-to-market ratio and momentum, based on this
new test I find statistically significant asymmetric dependence is much more
pervasive than previously thought.

Keywords: Asymmetric dependence, metric entropy, copulas, GARCH,
simulation.

JEL Classification: C12, C15, C32, G12
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1.1 Introduction

Prospect theory and disappointment aversion preferences indicate that investors treat gains

and losses unequally and hence behave differently in different states of the market (Kahne-

man and Tversky, |1979; [Kahneman, Knetsch, and Thaler} [1990; Gul, |1991). It may explain

why risk premia required by investors are different for assets that exhibit asymmetric co-

movements to the upside and downside changes of the market returns (see, e.g.,

land Siddique, [2000; |/Ang, Chen, and Xing, 2006). Empirically, asymmetric characteristics

of asset returns, i.e. stocks tend to co-move more strongly during downside market than

during upside market, have been found by a number of studies. Ball and Kothari| (1989);

Schwert| (1989)); |Conrad, Gultekin, and Kaul (1991)); Cho and Engle] (1999), Bekaert and|

(Wul (2000); |Ang and Chen| (2002); Bae, Karolyi, and Stulz (2003)); |Ang, Chen, and Xing

, among others, document asymmetries in covariances, correlations, volatilities, and
betas of stock returns.

Studying the phenomenon of asymmetric co-movements is important because effective
hedging relies on the dependence between assets hedged and financial instruments used. If
the dependence structure is varying with the state of the market, portfolio diversification
may provide little protection precisely when it is most needed. Furthermore, if all stocks
tend to fall with the market during bad times, the value of diversification may be exaggerated
for portfolio managers who do not take into account the increasing downside dependence.

Despite the importance of this topic, relatively few studies have proposed statistical tests
of asymmetric dependence. Furthermore, almost all prior studies are model dependent and

focus on the return asymmetry up to the second moment, i.e. asymmetric covariances,

correlations and betas. For example,|Ang and Chen| (2002) propose a model dependent test

and find correlation asymmetries among various portfolios under normality assumption,

which allows for the possibility that the asymmetry unexplained by the joint normal model

may be explain by some other symmetric models. Hong, Tu, and Zhou| (2007)) propose the

first and the only model-free test of asymmetry to date. Despite the novelty,
(2007)) test, however, has two major weaknesses. First, it detects only asymmetric cor-
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relations, and does not address asymmetry beyond the second moment. Second, the power
of the test seems to be low in empirical applications. For example, the test cannot detect
any asymmetry in portfolios sorted by book-to-market ratio and finds only one portfolio
among ten decile momentum sorted portfolios with statistically significant asymmetry.

In this paper, I propose an entropy-based model-free test for asymmetric dependence
between individual stock/portfolio return and the market return. The test statistic is a
normalized metric entropy measure proposed by (Granger, Maasoumi, and Racine, (2004)
that have been widely applied in many previous studies in econometrics (see, e.g., Maasoumi
and Racine, 2002, 2008). The test is a bivariate extension of a robust entropy-based test
of asymmetry for univariate processes proposed by |[Racine and Maasoumi (2007). The new
test improves upon [Hong, Tu, and Zhou (2007) test in the following two aspects. Firstly,
Hong, Tu, and Zhou! (2007)) use asymmetric correlation to proxy for asymmetric dependence,
which has several issues. The correlation coefficient is only a measure of linear dependence
and thus has some well-known limitations in measuring dependence. For example, except
for the joint normal case, in general zero correlation does not imply independence, while
several papers documented that realized stock returns are non-normally distributed (see,
e.g., [Embrechts, McNeil, and Straumann [2002; |Ang and Chenl |2002). Moreover, for heavy-
tailed distributions without finite second moments, the correlation coefficient is not even
defined, while Cont| (2001) documented that distributions of many financial time series have
heavy tails and display nonexistence of higher order moments. In contrast, the entropy
measure summarizes all the information of a given distribution, and hence can capture
asymmetry that exist in all the moments. So conceptually, the newly proposed entropy-
based test is better. Secondly, with Monte Carlo simulations, I find that the entropy-based
test has correct empirical sizes and higher power than |Hong, Tu, and Zhou (2007) test in
finite sample cases. Therefore, in terms of finite sample performance the entropy test is also
better.

Empirically, sorting portfolios based on size, book-to-market ratio and momentum, the

entropy test detects statistically significant asymmetry in all three groups of the portfolios.
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For example, in contrast to the Hong, Tu, and Zhou| (2007) test, I find asymmetry in 2
portfolios at the 5% significance level, and 7 portfolios at the 10% significance level, out of
the ten decile portfolios sorted by the book-to-market ratio.

The rest of the paper is organized as follows. Section 1.2 reviews the literature and
introduces the entropy-based test for asymmetric dependence. Section 1.3 examines the
test size and power using Monte Carlo Simulations. Section 1.4 applies the entropy test to

investigate asymmetry in returns of commonly used stock portfolios. Section 1.5 concludes.

1.2 Tests of Asymmetry

For the ease of understanding, in this section I first review the standard asymmetric corre-
lation tests, then extend the concept to general asymmetry, and finally provide the entropy-

based test.

1.2.1 Asymmetric Correlation

In the finance literature, Ang and Chen|(2002) and Hong, Tu, and Zhou (2007)) provide tests
of asymmetry in bivariate return series, but they test only asymmetric correlation instead
of general asymmetric dependence.

To see why, let us consider two standardized strictly stationary return series denoted by

Z; ¢ and gtﬂ Both of the tests rely on exceedance correlations defined as

pt(c) = corr(z,§|T >c, §>c), (1.1)

p (c) = corr(z,9|lz < —c, § < —c), Ve > 0. (1.2)

Clearly, both p™(c) and p~(c) measure conditional correlations between two return series
conditioning on both series are above or below a certain exceedance level ¢. The null

hypothesis of interest is

1n practice, they may stand for stock return and the market return series respectively
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Hy : pt(c)=p(c), foralle>0.

Ang and Chen (2002) seems to be the first to propose a formal statistical test for the
asymmetric correlation hypothesis, whose test statistic H is defined as

1/2

H = Z}MQ)(P(%@ — plei))? (1.3)

where c1, ..., ¢, are m pre-selected exceedance levels, w(cy), ..., w(cy,) are weights, p(c;)
stands for sample realization of p™(¢;) or p~(¢;) and p(c;, ¢) is the population exceedance
correlation implied by a given model with parameters ¢. Their test addresses the interesting
question whether the asymmetric correlations observed in the data can be explained by the
given model. Therefore, the test is model dependent and the testing results rely on the
choice of the pre-specified model. One weakness associated with the model-dependent test
is that the data may still have symmetric correlations, even if a given symmetric model,
like the normality model they used, cannot explain it.

To overcome the weakness, Hong, Tu, and Zhou (2007)) propose a model-free test. Their

test statistic is defined as

Ty =T = p7 ) (p" = p7) (1.4)

where T is the sample size, p™ and p~ are mx 1 vectors of sample exceedance correlations,
and () is a consistent estimator of the covariance matrix of VT (pt — 7). Under the null of
symmetric correlations and certain regularity conditions, the test has a simple asymptotic
chi-square distribution, J, A x2,. The test answers the question whether there exists
asymmetric correlations at all in the data. In other words, if the test rejects the null, it

implies that no distributions with symmetric correlations can fit the data well.
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1.2.2 Asymmetric Dependence

Both existing tests try to test for asymmetric dependence in bivariate stock return data by
testing for asymmetric correlations. Yet, it is well known that linear correlation coeflicient
is only a measure of linear dependence. In general, zero correlation does not imply indepen-
dence except for the joint normal case. Hence, testing for linear correlation ignores possible
higher order dependence entirely. On the other hand, it is also documented that financial
time series usually display heavy tails and have non-standard higher order moments (see,
e.g., [Embrechts, McNeil, and Straumann, |2002; |Cont), 2001). Therefore, it is of interest to
have a test for general asymmetric dependence that involves all the higher order moments.

Since the joint density function uniquely defines a joint distribution, directly testing
for asymmetry in the joint probability density function certainly involves all higher order
moments. Motivated by a univariate test of asymmetry proposed by [Racine and Maasoumi
(2007)), I focus on testing the symmetry of the joint density function.

Analogous to the exceedance correlations, I define exceedance densities by

ffle) = f@glt>c g>cor®<—c, §j<—c), (1.5)

f () = f(=z,—-glz>¢c, g>cor < —c, §<—c), (1.6)

where f(Z,7) is the joint probability density function of return series Z; ; and g, in ranges
of Z >c¢, J>cor i< —c, § < —c. Restriction to these ranges where both returns are
above or below certain exceedance level basically follows |/Ang and Chen| (2002) and Hong,
Tu, and Zhou| (2007), since we want to capture the co-movements of both returns. Since
Zit and g, are standardized to have zero means, f(—Z,—y) denotes the joint probability
density function of the rotated return series around the meanﬂ If the joint distribution is

truly symmetric, then the two densities should be the same almost everywhere. Intuitively,

ZNote that when the data series are not standardized, the rotation can also be easily done by pre-
multiplying a rotation matrix P to the original series to get the new data pair (—z;: + 2fix, —y: + 2fiy).
Specifically,



16

the distance between the two density functions reflects the degree of asymmetry of the joint

return distribution. Hence, the null hypothesis for testing asymmetric dependence is

Hy: ff(e)=f"(c), forallc>0. (1.7)

If this hypothesis is rejected, then the data must possess asymmetry as their density

functions must be different at least in one of the two symmetric regions.

[Insert Figure |1.1] about here]

As an example, Figure illustrates a case of symmetric dependence and compares it
with a case of asymmetric dependence. Subfigure (a) shows a scatter plot of 2000 data
points that are generated by a Clayton copula model, which is known to have stronger left
tail dependence than right tail dependence. Subfigure (b) is a similar plot but is generated
using a bivariate normal copula model that has symmetric dependence at both tails. When
I consider symmetric/asymmetric dependence, I examine the dependence structure over the
shaded areas that represent the first and third quadrants, i.e. I take the exceedance level
¢ = 0 here. In subfigure (a), it is clear that the data are more concentrated in the third
quadrant than in the first quadrant, indicating stronger dependence (greater mass of the
joint densities) in the lower tail. Subfigure (b) has roughly equal joint densities in both tails,
indicating symmetric dependence. The lines in both figures are fitted linear regression lines
that indicate overall linear dependence. With visual inspection, we can clearly see that the

linear dependence line does not differ very much in the two cases, but the actual dependence

i1 Y1 —zin+20x =y + 20y

TiT YT —xir +20x  —yr + 20y |
where the rotation matrix P takes the following form

2 2 2 2 T
gt t, 1 7
T T T, 7
pP= T T l+7 T
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Sl
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\
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structures are quite different. Therefore, this example also highlights the danger of failing

to discover asymmetry when we focus only on linear dependence.

1.2.3 An Entropy Measure

The important question is how to test the above null hypothesis given in the null hypothesis
Intuitively, the joint distribution is symmetric if the distance between f*(c) and f~(c)
is zero almost everywhere and is otherwise asymmetric if the distance is not zero on a set
with positive measure. To do so, I have to rely on certain measures of distance between two
probability density functions.

In statistics and information theory, entropy has a long history of being used as a measure
of divergence between distributions. It was first introduced by |Shannon| (1948), and later
extended by Kullback, Leibler et al. (1951). Ullah/ (1996) and [Maasoumi| (1993) provide
excellent surveys of various entropy measures and their applications in econometrics. More
recently, entropy has drawn great attention from financial economists and has been more
and more applied in finance research, e.g. Backus, Chernov, and Zin| (2014]) use Kullback-
Leibler relative entropy (Kullback, Leibler et al 1951) to measure the differences between
physical and risk-neutral probabilities and derive appropriate bounds for stochastic discount
factors that can be used to compare the performance of popular theoretical asset pricing
models.

The entropy measure I use belongs to the same K-class entropy as the Kullback-Leibler
divergence measure. First proposed by Granger, Maasoumi, and Racine (2004)), the measure
is a special case of K-class entropy with K = 1/2, which is a normalization of the Hellinger
distance measure and is the only metric entropy within its class. Besides being a metric,
as shown by |Granger, Maasoumi, and Racine (2004), this measure has been proved to have
many other desirable properties as a measure of distance between distributions.

Consider, for simplicity, first the case where we have only one exceedance level c¢. The

entropy measure of asymmetry is defined as
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5@ = 5[ [ k- rebrad (1)

which is clearly a function of the exceedance level c. In practice, c¢ is chosen according
to empirical interests. For example, when ¢ = 0, S,(0) measures asymmetric dependence in
the first quadrant (where both standardized returns are positive) and the third quadrant
(where both standardized returns are negative). If the asymmetric dependence in the tails
of the distribution are of interests, S,(c) can be measured at other exceedance levels, e.g.
0.5 or 1 standard deviations away from the mean.

The entropy measure S,(c) is well defined for both continuous and discrete data. It takes
values in-between 0 and 1, and equals 0 if and only if the densities are equal, which indi-
cates symmetric dependence. Mathematically, it is a true measure of “distance” because it
satisfies the triangular inequality. Moreover, the measure is invariant under continuous and
strictly increasing transformations, such as the commonly used logarithm transformation.

Consider now the case where we have multiple exceedance levels, ci, ..., ¢y, which we
want to test whether there exists symmetric dependence at each exceedance level jointly.
For example, while the singleton set of ¢ = {0} is usually of interest in the literature, the
set of the levels ¢ = {0;0.5;1;1.5} is also commonly used by previous studies, such as in
Ang and Chen| (2002) and [Hong, Tu, and Zhou| (2007). For the multiple level case, I can
also apply the statistic in equation for each of the individual levels, and then aggregate
the estimates using some function. Since S,(c) is a metric and always non-negative, we may

simply take arithmetic average,

5= | 1.9)

where S,(c;) is computed from equation for j = 1,...,m. Thus, the entropy test
statistic is well defined for either the singleton test case with one exceedance level or the

joint test case with multiple exceedance levels.
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To carry out the entropy test in practice, we need to estimate first the joint density
functions from the data, and then compute the integral in equation [I.8|to obtain the statistic
Sp(c). Finally, we need to have a procedure to determine the distribution of the test
statistic under the null hypothesis and hence the P-values of the test statistic. The task
is unfortunately much more complex than that of the asymmetric correlation tests. These

issues are addressed in the following two subsections.

1.2.4 Non-parametric Estimation

Consider now how to estimate the density functions in equation given the data. Fol-
lowing [Maasoumi and Racine| (2002); Racine and Maasoumi (2007) among others, I use
non-parametric kernel smoothing method to consistently estimate the unknown joint densi-
ties. Specifically, the popular “Parzen-Rosenblatt” kernel density estimator (see Rosenblatt],
1956; [Parzen, [1962)) is used. For the univariate case, the “Parzen-Rosenblatt” kernel density

estimator is defined as

fz) = nlhgk <th_ x) , (1.10)

where n is sample size of the data {X;}, h is a smoothing parameter (commonly referred
to as the bandwidth) and k(-) is a nonnegative bounded kernel function. In this paper, we
have to deal with bivariate density functions, so in the kernel estimation we need to employ a
“product kernel function”, which is constructed as the product of univariate kernel functions.

That is, our candidate kernel density estimator of the data is given by

5 1 - Ti— X Yi—y
f(w,y)—nhlhzzk< " >><k<h2 > (1.11)

i=1
where n is sample size, k(-) is a suitable univariate kernel function, h; and hg are
bandwidths for each of the two variables, and {(z;,y;)} are the observed data pairs. It
should be noted that n is equal to T, the length of the return series in the empirical

applications of this paper.



20

Econometrically, the accuracy of the nonparametric kernel density estimator clearly
relies on the selection of both the kernel function and the bandwidth. It turns out that the
choice of kernel function plays a much less important role than the selection of bandwidth.
The return data are continuous, so I use standard Gaussian kernel, k(z) = \/%6_22/ 2 as
the univariate kernel function in the estimation. On selecting the bandwidth, I use the
well-known Kullback-Leibler cross-validation (the likelihood cross-validation method) (see
Li and Racinel 2007, for details). This cross-validation procedure minimizes the Kullback-

Leibler divergence measure between the actual density and the estimated one. Numerically,

it solves the following maximization problem of the log-likelihood function,

max L = 4 In [f,z(ml,yz)} , (1.12)

where

. 1 - Tj—x Yi — Y
—i\ X, Yi) = k J k 22 1.1
Pt = S (25 r(20), (113)

which is equal to f (z,y) without the i-th realization. Based on the efficient market
hypothesis (Famal, 1970), stock returns can be seen as i.i.d. or stationary and weakly
dependent series, and under such assumptions the estimated density converges to the actual
density. (see, e.g., Li and Racine, 2007, for technical details).

With the method described above, the density functions in equation can be consis-
tently estimated. Then the test statistic S’p(c) can be obtained by computing the integral
using a standard numerical procedure in the case of a single exceedance level. In the pres-

ence of multiple exceedance levels, the test statistic is computed from equation

1.2.5 Distribution of the Test Statistic

To conduct statistical inference based on the entropy test of asymmetry, we need to know
the sampling distribution of the test statistic under the null hypothesis of symmetry. There

are in general two ways to derive the sampling distribution. One is to rely on asymptotic
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theory and the other way is to use bootstrap resampling method.

The asymptotic theory for the class of entropy measures with similar functional forms
has been developed by [Skaug and Tjgstheim! (1993); [Tjostheim! (1996) and by Hong and
White (2005). Under certain regularity conditions, Sp(c) follows asymptotically normal
distribution and the distribution derived under the null hypothesis does not depend on
the choice of the bandwidths. This is partially because the bandwidth is a quantity that
vanishes in the limit. However, for a given finite sample size, the computed value of the test
statistic depends critically on the bandwidth selection (Maasoumi and Racine, [2008, see).
It really raises concerns on using the simple asymptotic distribution to conduct statistically
inference in empirical applications, since the results of such asymptotic-based tests tend
to be highly sensitive to the bandwidth and there are many competing approaches for
bandwidth selection. Therefore, following the suggestions of Hong and White| (2005) and
many others, rather than relying on asymptotic distribution for inference, I use a bootstrap
resampling approach to determine the empirical null distribution of gp(c) (see [Efron, 1982}
Hall, 1992; Horowitz, 2001, for more discussions on bootstrap resampling approach).

To construct a sample under the null hypothesis in the bootstrap resampling, let

Z =A{(zi,1,91), (®i2,92)s ooy (X1, y7); (0,1, —y1), (=i 2, —¥y2), -y (=251, —y7) }

which is a vector obtained by stacking together the original data pairs (z;, y;) with the
rotated data pairs (—x;, —y;). Through bootstrapping samples from Z, we construct the
empirical distribution of Sp(c). I repeat the bootstrapping draws B times from Z, and then
can obtain B resamples of S’p(c).

There are many different kinds of bootstrap resampling procedures, e.g. the simple
bootstrap, wild bootstrap, block bootstrap, and so on. The choice of which bootstrap
resampling procedure to use depends on the nature of the data. As stock return are known
to be stationary and weakly dependent, the block bootstrap that takes such dependence

structure into account seems to be the natural choice (see Kinsch, 1989).
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Politis and Romano| (1994) shows that using overlapping blocks with lengths that are
sampled randomly from a geometric distribution, with the mean equal to the pre-selected
block length [, yields stationary bootstrapped data samples, while overlapping or non-
overlapping blocks with fixed lengths may not ensure the stationarity. This procedure
proposed by |Politis and Romano| (1994)) is called stationary bootstrap, which is a special
kind of block bootstrap. Due to the merit of stationary bootstrap, I choose to employ the
procedure in this paper.

How to select the average block length [ used in the stationary bootstrap is another
important issue. I apply the data-driven and automatic method suggested by |Politis and
White, (2004); |[Patton, Politis, and White (2009) to select the optimal block length. E-
conometrically, their method is beneficial as it minimizes the mean squared error of the
estimated long-run variance of the time series.

In terms of selecting B, the number of bootstrap samples, it is obviously true that the
greater the B, the more accurate the bootstrapped distribution is. However, unlike the
commonly used bootstrap procedures used in linear regressions, kernel estimation can be
enormously time-consuming. In some similar problems, Davidson and MacKinnon (2000))
suggest the use of B = 399 for simulations that compute the P-value of a test at the
5% mnominal significance level. In this paper, although I find that a value of B = 199
yields similar results, following the suggestion of Davidson and MacKinnon| (2000), I choose
to report the empirical testing results and all the simulation results based on stationary
bootstrap with B = 399.

After having computed B replications of Sp(c)*, the sampling distribution of gp(c) can
be easily obtained. To find out the critical values for rejection at different confidence levels,
I can reorder the bootstrapped estimates from smallest to largest and denote the list by
§p71(c)*, gpg(c)*, ey SAB(C)*, and then determining those percentiles from these ordered
statistics. For example, to conduct the symmetry test at the 5% level, the null hypothesis
Hy in will be rejected if Sp(c) > 5%379(0)*, where S’p,gm(c)* is the 95th percentile of

the ordered bootstrapped estimates. Empirical p-values may also be obtained by counting
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the proportion of the ordered bootstrapped statistics that exceeds S’p(c), the test statistic

estimated from the original sample.

1.3 Monte Carlo Simulations

In this section, using copula-GARCH based Monte Carlo simulation, I examine the size and
power of the entropy-based test and show that the entropy test has reliable sizes, and has

higher power in finite samples than the [Hong, Tu, and Zhou (2007 test.

1.3.1 Modeling Dependence with Copulas

Since we are testing the joint distribution of two random variables, the simulation pro-
cedures involve in generating random samples from some joint distribution with certain
dependence structure. Copulas are probably the most commonly used method to model the
complete dependence structure between random variables (see Patton, 2004; Rodriguez,
2007; |Okimoto|, 2008, for some applications of copulas in finance). Sklar (1959) proves that
all bivariate distribution functions F'(z1, z2) can be completely described by the univariate
marginal distributions Fy(z1) and Fy(z2) and a copula function C : [0, 1]? ~ [0, 1]. Copula,
a word chosen by Sklar, is a multivariate probability distribution function that describes
such dependence structure between the two (or more) marginal distributions (see |[Nelsen),
1999, for a more detailed introduction to copulas).

Many copulas with different dependence structures have been developed and commonly
applied in the literature. Some of those parametric copulas, such as Gaussian, Student’s t
and Frank copulas, are known to have symmetric tail dependence structure. Some copulas
are constructed to have asymmetric tail dependence. For example, Clayton copula is known
for strong left tail dependence, whereas Gumbel copula shows strong right tail dependence.

As stock returns usually show stronger left tail dependence than right tail dependence
with the market return (see |Ang and Chenl [2002), Clayton copula seems to be a natural
choice. However, it is not wise to completely rule out those copulas with symmetric de-

pendence. Figure gives the scatter plots of random samples generated by Gaussian,
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Clayton and mixed Gaussian-Clayton copulas, as well as the actual data plots of the small-
est decile size portfolio returns. It is clear that Clayton copula generated data with strong
left tail dependence, as the plots are highly concentrated at the left tail, but the dependence
seems to be much stronger than that is actually reflected in the scatter plot of the smallest
decile size portfolio. Comparing to the smallest size portfolio, which has shown to have
the strongest asymmetric dependence in the following section and in Hong, Tu, and Zhou
(2007), the generated data plots do not look much like the actual data plots. As shown in
subfigure (C), the scatter plots generated by equal-weighted mixed Gaussian-Clayton cop-
ula look more similar to the actual data plots in subfigure (D). Therefore, I choose to use
those mixed copulas as the data generating process in simulations. Similar mixture copula

models are also used in |Hong, Tu, and Zhou, (2007)).

[Insert Figure [1.2{ about here]

A bivariate Gaussian copula is given by

Chor(u, v; p) = (I)p(q)il(u)a (I)il(v)) (1.14)

where p € (—1,1) is correlation coefficient between the marginal distributions. ®~1 is
standard normal CDF inverse, and ®,, is the standard bivariate normal distribution function
with correlation p.

A bivariate Clayton copula is defined as

Cotay(ty v; 7) = (u ™ + 077 = 1)77 (1.15)

where 7 > 0 governs the dependence between the marginals. Higher 7 indicates stronger
dependence. Tawn| (1988]) proves that every convex combination of existing copula functions
is still a copulaﬂ I can construct a mixture Gaussian-Clayton copula with pre-chosen weights
by a convex combination of the two copulas.

The mixture Gaussian-Clayton copula used in this paper takes the following specifica-

3The formal statement of the theorem is given in the appendix.
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tion.

Crniz(u, v; p, T, k) = kappaChor(u, v; p) + (1 — K)Celay(u, v; T) (1.16)

where x indicates the weight put on the bivariate normal (Gaussian) copula. The mix-
ture copula shown in equation nests both Gaussian and Clayton copulas as special
cases. When k = 1, the mixture copula reduces to Gaussian copula. When x = 0, the mix-
ture copula reduces to Clayton copula. In the following simulation, I take different x values
of 0, 0.25, 0.375, 0.5 and 1 to generate random samples with different levels of asymmetric

dependence from the highest to lowest.

1.3.2 Simulation with Copula-GARCH Model

The joint distribution of generated random samples is governed by the mixture Gaussian-
Clayton copula model. T still need to specify some model to best mimic the marginal
distributions of asset returns. GARCH(1,1) process is a well-known parsimonious model for
stock returns. Following Hong, Tu, and Zhou/ (2007), I model the marginal distributions of
the return series with a GARCH(1,1) with no ARMA components. Basically, the return
series is modeled to be equal to an expected return component plus a random error term that
follows a GARCH(1,1) process. I first fit the copula-GARCH model to the data to estimate
the related parameters using Maximum Likelihood (ML) approach. I then plug the ML
estimates back in the model and use it as the data generating process (DGP) in simulation.
To be conservative, instead of using portfolios that show clear asymmetric dependence, such

5th smallest value-

as the smallest stock portfolio or momentum portfolios, etc., I use the
weighted size portfolio and the market return to estimate copula and GARCH parameters.
Empirically, I do not find any evidence for asymmetric dependence for size 5 portfolio, hence
using it to calibrate the parameters impose a harder challenge for the tests. It is interesting

to see whether the tests have reasonable power under such parameter settings. [Hong, Tu,

and Zhou (2007)) has done a similar practice in their simulation exercises.
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[Insert Table about here]

Table gives the ML estimates from fitting the data to the GARCH(1,1) process
using the full sample period. Panel A lists the parameter estimates for return series of
value-weighted size 5 portfolio and Panel B lists the estimates for the market return series.
All the estimated parameters are statistically significant at 5% level.

Taking those estimates as the population parameters, I are able to simulate the data

with the copula-GARCH model using the following detailed steps.

1. For a given k, draw a bivariate uniform random sample of size T from the mixture

Gaussian-Clayton copula model;

2. Apply inverse standard normal CDF transformation to get a bivariate standard normal

random sample with pre-specified dependence structure;

3. Feed each series of the joint normal random sample into the univariate GARCH(1,1)

process as the innovation terms to generate simulated joint return series;

4. The simulated data vectors will each follow a GARCH(1,1) process and the perceived

dependence structure governed by the mixture copula model.
5. Repeat step 1 to 4 for 1,000 times to get 1,000 simulated random samples.

6. Repeat step 1 to 5 with different sample sizes T'. Specifically, I consider T=240, 420

and 600.

[Insert Table |1.2| about here]

The sample sizes follow common choices used in the literature. T = 240 stands for 20
years of monthly frequency data. T = 420 is the length of the subsample data period as
used in |Hong, Tu, and Zhou| (2007). 7' = 600 stands for 50 years of monthly frequency data
and is close to the full sample data length (7" = 588) used in this paper. In simulation, I

use one fixed bandwidth for each 1,000 random samples generated from the same DGP. The
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fixed bandwidth is set to be equal to the average of the 1,000 bandwidths computed for each
of the 1,000 random samples via likelihood cross-validation. Similar practice is conducted
for the optimal block length selection. The expected block length for each 1,000 random
samples generated from the same DGP is fixed to be the average of the 1,000 optimal block
lengths computed using [Patton, Politis, and White| (2009) algorithm. Averaging bandwidth
and block length across random samples drawn from the same DGP could potentially reduce
some sampling randomness and make the simulation results more stable.

Table reports the empirical size and power for both tests when the nominal size is
set at 5% based on 1,000 simulations. Powers are reported with different DGPs of different
degrees of asymmetric dependence levels (from k = 1 to k = 0) and at various sample sizes.
I report size and power of Hong, Tu, and Zhou (2007) test (HTZ test hereafter) computed
based on both asymptotic distribution and stationary bootstrap with 399 replications.

Based on the standard paired bootstrap procedure described in [Cameron and Trivedi
(2005)) and in|[Horowitz (2001)), I construct a pivotal (standardized) statistic when bootstrap-
ping HTZ test statistic to achieve asymptotic refinement. I obtain the variance estimates of
HTZ test statistic via sub-bootstrap, i.e. within each bootstrap replication, I bootstrap the
replicated sample again to estimate the standard error based on a series of sub-bootstrapped
statistics. Since I am estimating the variance rather than tail quantiles or critical values,
a fairly small number of resamples is sufficient for consistent estimates. Following Racine
(1997)), I set the number of sub-bootstrap replications at one tenth of the original number
bootstrap replications, i.e. Bgy, = 20. But the bootstrap results of HTZ test does not yield
better power than their asymptotic counterparts. However, the empirical sizes are much
closer to the nominal values than those based on asymptotic theory.

The last column reports the power increase when inference of both tests is based on
stationary bootstrap and the exceedance level is set at 0. Since the inference method is the
same, we attribute this power increase to better information summarized by the entropy
measure. The average power increase is computed as mean of differences among all the

simulation scenarios considered in this paper.
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I find a pattern that the average power increase is getting more significant as the nominal
test size decreases, i.e. the entropy test gives better inference results when I want to report
the testing results in a more accurate manner. At nominal size of 10%, the average power
difference is only 0.03 or 4%. While at nominal size of 5%, the average power increase is
0.103 or 17.3% and when the nominal size is set at 1%, the the average power increase is
0.245 or a huge 84.6% increase. I can see that the role of information is very significant in
making better statistical inference.

It indicates that the entropy test on average has higher power than HTZ test for different
DGP that reflects various degree of asymmetric dependence. The difference in power varies
with the dependence structure of the DGP. When the simulated data have very strong
asymmetric dependence, the performance of both tests are close to each other. If the DGP
is a bivariate Clayton copula (k = 0), the difference in power is quite small (about 0.14
for T = 240) and the difference vanishes as sample size increase to T' = 600. The power
difference is most pronounced when the degree of asymmetric dependence is not very strong.
When the DGP is a 37.5% mixed Gaussian-Clayton copula, the power of the entropy test
is about 4 times higher than the power of HTZ test for smaller sample sizes (T = 240 or
T = 420). The difference shrinks as the sample size increases to 600, but the power of the
entropy test is still twice as large as the power of HTZ test.

The improvement of power for both tests with larger sample size is expected, especially
for HTZ test based on asymptotic distribution. I tried to make inferences of HTZ test using
stationary bootstrap, but the results do not show improvement upon inference based on
asymptotic distribution, so I report the size and power of their test based on asymptotic
theory. When the underlying DGP is of symmetric dependence, i.e. the bivariate Gaussian
case with k = 1, the probability of rejection is the empirical size of the tests. The sizes of

both tests are reported in the top left panel in Table

[Insert Table |1.3| about here]

Table and Table report the empirical size and power for both tests when the
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nominal size is set at 1% and 10% respectively based on 1,000 simulations. The results
reaffirm the conclusions drawn from Table The entropy test shows higher power for
almost all different DGPs.

[Insert Table about here]

1.4 1Is Asymmetry Rare?

In this section, I apply the entropy measure to test whether there exists statistically sig-
nificant asymmetry in common portfolios sorted by size (market capitalization), book-to-

market ratio and momentum (past return).

1.4.1 Data

Following existing studies on testing for asymmetric correlations, I consider portfolios of
stocks sorted by popular characteristics, i.e. size, book-to-market ratio, and momentum.
AsAng and Chen| (2002), I use value-weighted returns of for both size and book-to-market
decile portfolios, and use equal-weighted returns for decile momentum portfolios which
are formed based on prior 2 to 12 month cumulative return. Return on CRSP (Center
for Research in Security Prices) value-weighted market index based on stocks listed in
NYSE/AMEX/NASDAQ is used as a proxy for the market return. All returns are at the
monthly frequency and are in excess of the risk-free rate which is taken as the one-month
T-bill rate. The entire data are available from Kenneth French’s siteﬁ The sample period

is from January 1965 to December 2013 (588 observations in total).

1.4.2 Empirical Testing Results

Table provides the testing results on the size portfolios. At the usual 5% level, the

entropy test rejects symmetry for all size portfolios from the 1st to 6th smallest size port-

41 are grateful to Kenneth French for making the data available at
http://mba.tuck.dartmouth.edu/pages/faculty /ken.french /data_library.html.
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folios. In contrast, the existing model-free test of |Hong, Tu, and Zhou (2007) can only
reject symmetry for the smallest size portfolio based on either the singleton exceedance lev-
el ¢ = {0} or the multiple exceedance levels ¢ = {0,0.5,1,1.5}. It is interesting to observe
that the entropy test statistics decrease monotonically as the firm size increases with the
only exception of the 9th decile portfolio. Similar patterns also hold for the asymmetric
correlation test statistic. Intuitively, this should be true too. The larger the firm, the more

it resembles the market, and hence the asymmetry relative to the market reduces.

[Insert Table [1.5[ about here]

Note that while the P-values of the entropy test are computed based on 399 station-
ary bootstraps, the P-values of the asymmetric correlation test are computed from the
asymptotic Chi-square distribution with degree of freedom 1 in the singleton and multiple
exceedance levels, respectively. For the entropy test, because consistent nonparametric k-
ernel estimation requires a fairly large sample size, I use only the single exceedance level.
This is also consistent with earlier Monte Carlo simulations that the entropy test based on a
singleton exceedance level yields uniformly better power and size properties than the multi-
ple exceedance level. In contrast, estimating correlations do not require as many samples as
in the density estimation case. Hence, it is not surprising that the asymmetric correlation
test yields similar results with the singleton or the multiple exceedance levels.

The empirical testing results from both tests for value-weighted book-to-market ratio
portfolios are reported in Table In the shorter time period from 1965 to 1999 (the
same period as used in Hong, Tu, and Zhou (2007)), neither test detects any significant
asymmetry in value-weighted book-to-market ratio portfolios, nor the test statistics show
any clear pattern (See Table in the appendix).

In the full sample, the singleton entropy test finds that the 9th highest book-to-market
ratio portfolio shows significant asymmetric dependence with the market return at 1% level.
The joint entropy test detects more significance in book-to-market ratio portfolios. The S,

measure shows a roughly increasing pattern when I go from low to high book-to-market ratio
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portfolios. In|Ang and Chen| (2002), they also find an increasing pattern of their H statistic
when moving from growth (low book-to-market ratio) stocks to value (high book-to-market

ratio) stocks.

[Insert Table about here]

Table gives the empirical testing results for equal-weighted momentum portfolios.
Both tests find significant asymmetry for the return of the highest momentum portfolio (the
highest past winner portfolio). The entropy test, in addition, finds statistically significant
asymmetric dependence in the return of the lowest momentum portfolio (the biggest past
loser portfolio). This finding is consistent with Ang and Chen| (2002), which shows that
bivariate normal model is rejected when fitting to the past loser portfolio returns, i.e. the
returns exhibit asymmetric correlations. However, HTZ test fails to detect such asymmetric
correlation in the past loser portfolio. I also find that all of the equal-weighted decile
momentum portfolios shows significant asymmetric dependence at conventional significance
levels. The test statistic S, increases when I go to either lower or higher ends and is the
lowest in the middle deciles. The pattern is consistent with that of the J statistic in HTZ
test, but again due to lower power in finite samples, their test fails to attain statistical

significance.

[Insert Table [1.7] about here]

1.5 Conclusion

Asymmetric dependence in stock returns is important for both portfolio management and
risk hedging. However, existing tests focus only on asymmetric correlations, a special case
of asymmetric dependence because correlation coefficient is only a measure of linear de-
pendence that ignores higher order dependence. In this paper, I propose to use a metric
entropy to measure and construct a model-free test for asymmetric dependence in bivariate

return data. Econometrically, the test extends the univariate test of asymmetry proposed
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by Racine and Maasoumi (2007) to the bivariate case that is of interest in finance.

This paper makes several original contributions to the literature. First of all, the model-
free entropy test of asymmetric dependence extends the univariate test of asymmetry pro-
posed by [Racine and Maasoumi| (2007)) to the bivariate case that is of interest in finance.

Secondly, with Monte Carlo simulations, I find that the entropy test has correct size,
and has greater power in finite samples than the existing model-free test of asymmetric
correlation proposed by [Hong, Tu, and Zhou (2007)).

Thirdly, I have find that based on the entropy test, statistically significant asymmetries
are detected for most common portfolios, such as those sorted on size, book to market ratio
and momentum. In contrast, Hong, Tu, and Zhou (2007) only identify a few. Specifically,
I find patterns that are more consistent with findings documented in prior studies. For
example, I find that smaller size portfolios show stronger asymmetric dependence, which is
consistent with the findings in |/Ang and Chen| (2002) and Kroner and Ngj (1998). I also find
that asymmetric dependence increases with the book-to-market ratio, which is consistent
with an empirical fact that “Value stocks are more asymmetric than growth stocks” as
described in |Ang and Chen| (2002).

Finally, the proposed entropy test is very flexible. It works well for both continuous
and discrete data types. It is also applicable to either i.i.d or stationary time series data.
Therefore, the test has great potentials to be applied to other studies. While the paper
applies the test of asymmetric dependence to the US stocks, it will be of interest to apply
the new method to the international markets to assess cross country asymmetric dependence
of stock returns. It will also be of interest to apply the methodology of this paper to bonds,

currencies and other asset classes. These will be potential topics of future research.
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1.A  Appendix: Tawn (1988) Theorem

Theorem 1.A.1. Tawn (1988) If Ci(uq, ug), Cao(uy, uz),..., Cp(u1, uz) are bivariate

copula functions, then
C(u1, ug) = wy - C1(u1, uz) + wa - Couy, ug) + -+ + wy - Cp(u1, uz)

s again a copula for w; > 0 and Z?:l w; = 1.

1.B Appendix: Additional Tables

Table 1.B.1: Subsample Test Results of Asymmetric Dependence: Size Portfolios

Entropy-based Test HT7Z Test

C={0} C={0} C={0, 0.5, 1,1.5}
Portfolio S, x 100 P-value Test-stat P-value Test-stat P-value
Size 1 1.820 0.105 2.458 0.117 9.728 0.045
Size 2 1.591 0.083 0.790 0.374 0.942 0.918
Size 3 1.473 0.175 0.549 0.459 0.856 0.931
Size 4 1.280 0.221 0.339 0.560 0.584 0.965
Size 5 1.385 0.165 0.252 0.616 4.878 0.300
Size 6 1.237 0.286 0.120 0.729 3.924 0.416
Size 7 0.971 0.561 0.016 0.898 0.706 0.951
Size 8 1.015 0.454 0.023 0.878 0.401 0.982
Size 9 0.881 0.526 0.001 0.972 0.008 1.000
Size 10 0.954 0.544 0.001 0.980 0.111 0.999

The sample period is from January 1965 to December 1999. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of HTZ (2007) test are computed
based on asymptotic Chi-square(4) distribution.
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Table 1.B.2: Subsample Test Results of Asymmetric Dependence: Book-to-Market Portfo-
lios

Entropy-based Test HTZ Test

C={0} C={0} C={0, 0.5, 1,1.5}
Portfolio S, x 100 P-value Test-stat  P-value Test-stat  P-value
BE/ME 1 0.820 0.516 0.022 0.883 0.341 0.987
BE/ME 2 0.928 0.391 0.020 0.887 0.208 0.995
BE/ME 3  0.704 0.739 0.042 0.837 0.251 0.993
BE/ME 4  1.054 0.411 0.117 0.733 1.716 0.788
BE/ME 5  1.164 0.451 0.167 0.683 2.638 0.620
BE/ME 6  0.866 0.714 0.102 0.749 1.500 0.827
BE/ME 7 1410 0.356 0.121 0.728 1.008 0.909
BE/ME 8  1.523 0.185 0.278 0.598 2.570 0.632
BE/ME 9  1.623 0.183 0.504 0.478 1.180 0.881
BE/ME 10 1.420 0.308 0.588 0.443 2.896 0.575

The sample period is from January 1965 to December 1999. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of HTZ (2007) test are computed
based on asymptotic Chi-square(4) distribution.
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Table 1.B.3: Subsample Test Results of Asymmetric Dependence: Momentum Portfolios

Entropy-based Test HTZ Test

C=0 C=0 C=0, 0.5, 1,1.5
Portfolio S, x 100 P-value Test-stat P-value Test-stat P-value
L 2.526 0.000 2.162 0.141 4.449 0.349
2 1.503 0.080 1.231 0.267 3.009 0.556
3 1.402 0.123 0.946 0.331 4.572 0.334
4 1.434 0.133 0.758 0.384 4.412 0.353
5 1.779 0.033 0.694 0.405 4.088 0.394
6 1.563 0.063 0.722 0.396 0.794 0.939
7 1.505 0.108 0.585 0.444 3.445 0.486
8 1.431 0.123 0.670 0.413 0.911 0.923
9 1.528 0.110 1.088 0.297 1.636 0.802
W% 1.750 0.100 1.648 0.199 10.266 0.036

The sample period is from January 1965 to December 1999. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of HTZ (2007) test are computed
based on asymptotic Chi-square distribution.
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Figure 1.1: Tllustration of Asymmetric Dependence

X X
(a) Asymmetric Dependence (b) Symmetric Dependence

This figure shows two scatter plots from two data-generating processes with different dependence
structures. Subfigure (a) shows a scatter plot of of 2000 points generated from a Clayton copula that is
known to have stronger left tail dependence than right tail dependence. Subfigure (b) is a similar plot
where the DGP is a bivariate normal distribution that has symmetric dependence at both tails. The blue

lines in both subfigures are linear regression lines fitted to the data.
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Figure 1.2: Copula Dependence Structures and Data Plots
A: Gauss-copula B: Clayton-copula

o —

T T T T T T T T T T T T T
-2 0 1 2 3 -3 2 A1 0 1 2
C: 0.5 mixture Clayton-Gauss copula D: VW size 1 portfolio and market

This figure shows scatter plots of random samples generated by Gaussian copula (A), Clayton copula (B)
and mixed Gaussian-Clayton copula with mixing weights of 0.5 each (C), as well as the actual data plots of

the value-weighted returns of the smallest size portfolio and the market returns.
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Table 1.1: ML estimates for GARCH(1,1) processes

Panel A: Value-Weighted Size 5 Portfolio Return Series

Estimate S.E. t-value Pr(>|t|)
M 0.94 0.23 4.02 0.00
w 4.97 2.31 2.15 0.03
o 0.14 0.05 2.99 0.00
B 0.73 0.09 7.82 0.00

Panel B: Value-Weighted Market Return Series

Estimate S.E. t-value Pr(>|t|)
p 0.56 0.17 3.29 0.00
w 1.14 0.55 2.06 0.04
a 0.11 0.03 3.71 0.00
B 0.84 0.04 23.28 0.00

The table reports maximum likelihood estimates for parameters of GARCH(1,1) processes
used to fit the 5th smallest size portfolio return (Panel A) and the market return (Panel B)
data. The GARCH models are then used as the data-generating processes to simulate stock
return data. The specification is a standard GARCH(1,1) process: 75+ = p; + €;+ where
€;¢ is normally distributed with a time-varying variance ai%t = w; + aiait_l + ,Biai%t_l. 1 is
the unconditional mean for the stock return process. « is the autoregressive parameter and
[ is the moving average parameter in the GARCH process. w is the constant term in the
time-varying variance process.
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Table 1.2: Size and Power: Entropy-based test and HTZ test (5% nominal size)

Entropy HTZ Test Power
Test Increase
Asymptotic Theory Bootstrap
c={0} C={0} Cc={0, C={0, c={o, c={0} C={0}
0.5} 0.5, 1} 0.5,
1,1.5}
Panel A: x = 100% (size)
T = 240 0.022 0.000 0.000 0.003 0.023 0.039 N/A
T = 420 0.033 0.000 0.000 0.001 0.008 0.045 N/A
T = 600 0.044 0.000 0.000 0.000 0.004 0.043 N/A
Panel B: « = 50%
T = 240 0.094 0.005 0.021 0.046 0.092 0.233 -0.139
T = 420 0.223 0.003 0.022 0.034 0.068 0.323 -0.100
T = 600 0.405 0.014 0.050 0.060 0.088 0.469 -0.064
Panel C: k = 37.5%
T = 240 0.312 0.086 0.086 0.104 0.167 0.423 -0.111
T = 420 0.729 0.215 0.142 0.140 0.176 0.582 0.147
T = 600 0.937 0.426 0.299 0.249 0.263 0.758 0.179
Panel D: x = 25%
T = 240 0.748 0.478 0.325 0.299 0.380 0.549 0.199
T = 420 0.991 0.791 0.618 0.504 0.510 0.725 0.266
T = 600 1.000 0.969 0.867 0.763 0.723 0.854 0.146
Panel E: k = 0%
T = 240 0.952 0.857 0.742 0.690 0.717 0.614 0.338
T = 420 1.000 0.983 0.937 0.895 0.880 0.766 0.234
T = 600 1.000 0.993 0.982 0.972 0.958 0.859 0.141
Avg. Power 0.699 0.485 0.424 0.396 0.419 0.596 0.103
(17.3%)

The nominal size of the tests is set at 5%.

The table reports the probabilities of rejecting the

null hypothesis of symmetric dependence based on 1,000 Monte Carlo simulations. Different values
of I° governs the degree of left tail dependence of the underlying data generating process (DGP).
When k = 100%, the DGP is a joint normal distribution and the respective rejecting probabilities

are empirical sizes.

In all other cases, the rejection probabilities are powers.

The last column

reports power increases when inferences of both tests are based on 399 stationary bootstraps and
the exceedance level is set at 0. The average power increase is computed as mean of differences
among all the simulation cases considered in this paper.
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Table 1.3: Size and Power: Entropy-based test and HTZ test (1% nominal size)

Entropy HTZ Test Power
Test Increase
Asymptotic Theory Bootstrap
c={0} C={0} Cc={0, C={0, c={o, c={0} C={0}
0.5} 0.5, 1} 0.5,
1,1.5}
Panel A: x = 100% (size)
T = 240 0.006 0.000 0.000 0.001 0.009 0.006 N/A
T = 420 0.005 0.000 0.000 0.000 0.000 0.007 N/A
T = 600 0.008 0.000 0.000 0.000 0.000 0.007 N/A
Panel B: « = 50%
T = 240 0.013 0.003 0.003 0.011 0.039 0.074 -0.061
T = 420 0.055 0.000 0.003 0.004 0.024 0.092 -0.037
T = 600 0.129 0.000 0.006 0.009 0.025 0.133 -0.004
Panel C: k = 37.5%
T = 240 0.084 0.010 0.026 0.034 0.074 0.145 -0.061
T = 420 0.380 0.032 0.029 0.035 0.054 0.241 0.139
T = 600 0.733 0.084 0.060 0.069 0.103 0.367 0.366
Panel D: x = 25%
T = 240 0.370 0.159 0.111 0.113 0.204 0.221 0.149
T = 420 0.915 0.415 0.262 0.218 0.259 0.325 0.590
T = 600 0.998 0.740 0.537 0.419 0.401 0.507 0.491
Panel E: k = 0%
T = 240 0.745 0.559 0.466 0.446 0.506 0.273 0.472
T = 420 0.992 0.865 0.754 0.668 0.668 0.437 0.555
T = 600 1.000 0.960 0.922 0.877 0.857 0.659 0.341
Avg. Power 0.535 0.319 0.265 0.242 0.268 0.290 0.245
(84.6%)

The nominal size of the tests is set at 1%.

The table reports the probabilities of rejecting the

null hypothesis of symmetric dependence based on 1,000 Monte Carlo simulations. Different values
of I° governs the degree of left tail dependence of the underlying data generating process (DGP).
When k = 100%, the DGP is a joint normal distribution and the respective rejecting probabilities

are empirical sizes.

In all other cases, the rejection probabilities are powers.

The last column

reports power increases when inferences of both tests are based on 399 stationary bootstraps and
the exceedance level is set at 0. The average power increase is computed as mean of differences
among all the simulation cases considered in this paper.
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Table 1.4: Size and Power: Entropy-based test and HTZ test (10% nominal size)

Entropy HTZ Test Power
Test Increase
Asymptotic Theory Bootstrap
c={0} C={0} Cc={0, C={0, c={o, c={0} C={0}
0.5} 0.5, 1} 0.5,
1,1.5}
Panel A: x = 100% (size)
T = 240 0.058 0.000 0.003 0.005 0.035 0.085 N/A
T = 420 0.077 0.000 0.000 0.004 0.017 0.093 N/A
T = 600 0.107 0.000 0.000 0.000 0.008 0.100 N/A
Panel B: « = 50%
T = 240 0.196 0.016 0.046 0.088 0.144 0.386 -0.190
T = 420 0.390 0.033 0.053 0.073 0.112 0.513 -0.123
T = 600 0.588 0.068 0.102 0.127 0.161 0.682 -0.094
Panel C: k = 37.5%
T = 240 0.514 0.200 0.168 0.174 0.237 0.608 -0.094
T = 420 0.854 0.428 0.277 0.235 0.280 0.754 0.100
T = 600 0.979 0.731 0.484 0.403 0.411 0.907 0.072
Panel D: x = 25%
T = 240 0.865 0.660 0.500 0.438 0.505 0.748 0.117
T = 420 1.000 0.932 0.770 0.686 0.660 0.871 0.129
T = 600 1.000 0.998 0.964 0.898 0.851 0.947 0.053
Panel E: k = 0%
T = 240 0.982 0.944 0.864 0.794 0.830 0.807 0.175
T = 420 1.000 0.996 0.979 0.956 0.950 0.862 0.138
T = 600 1.000 0.998 0.992 0.986 0.981 0.926 0.074
Avg. Power 0.781 0.584 0.517 0.488 0.510 0.751 0.030
(4%)

The nominal size of the tests is set at 10%. The table reports the probabilities of rejecting the
null hypothesis of symmetric dependence based on 1,000 Monte Carlo simulations. Different values
of I° governs the degree of left tail dependence of the underlying data generating process (DGP).
When k = 100%, the DGP is a joint normal distribution and the respective rejecting probabilities

are empirical sizes.

In all other cases, the rejection probabilities are powers.

The last column

reports power increases when inferences of both tests are based on 399 stationary bootstraps and
the exceedance level is set at 0. The average power increase is computed as mean of differences
among all the simulation cases considered in this paper.
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Entropy-based Test

HT7Z Test

C={0} C={0} C={0, 0.5, 1,1.5}
Portfolios S, x 100 P-value Test-stat P-value Test-stat P-value
Size 1 2.027 0.010 4.212 0.040 9.715 0.046
Size 2 1.963 0.000 2.049 0.152 3.281 0.512
Size 3 1.868 0.020 0.937 0.333 1.108 0.893
Size 4 1.689 0.013 0.613 0.434 2.095 0.718
Size 5 1.690 0.030 0.431 0.512 5.015 0.286
Size 6 1.596 0.045 0.234 0.629 3.134 0.536
Size 7 1.477 0.065 0.092 0.761 0.849 0.932
Size 8 1.510 0.085 0.099 0.753 0.146 0.997
Size 9 1.695 0.075 0.005 0.945 0.030 1.000
Size 10 1.511 0.055 0.008 0.930 0.029 1.000

The sample period is from January 1965 to December 2013. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of Hong, Tu, and Zhou (2007) test
are computed based on asymptotic Chi-square distribution.
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Table 1.6: Empirical Test Results of Asymmetric Dependence: Book-to-Market Portfolios

Entropy-based Test HTZ Test

C={0} C={0} C={0, 0.5, 1,1.5}
Portfolios S, x 100  P-value Test-stat  P-value Test-stat  P-value
BE/ME 1  1.248 0.115 0.023 0.880 0.341 0.987
BE/ME 2 1.208 0.085 0.024 0.876 0.093 0.999
BE/ME 3  1.003 0.263 0.060 0.807 0.066 0.999
BE/ME 4  1.626 0.138 0.064 0.800 1.829 0.767
BE/ME 5  1.610 0.055 0.145 0.703 2.769 0.597
BE/ME 6  1.815 0.025 0.054 0.817 1.099 0.894
BE/ME 7 1.805 0.058 0.082 0.774 0.590 0.964
BE/ME 8  1.571 0.098 0.226 0.634 2.954 0.566
BE/ME 9  2.162 0.005 0.447 0.504 1.667 0.797
BE/ME 10 1.657 0.075 0.805 0.370 2.133 0.711

The sample period is from January 1965 to December 2013. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of Hong, Tu, and Zhou (2007) test
are computed based on asymptotic Chi-square distribution.
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Table 1.7: Empirical Test Results of Asymmetric Dependence: Momentum Portfolios

Entropy-based Test HTZ Test

C={0} C=0 C={0, 0.5, 1,1.5}
Portfolios S, x 100 P-value Test-stat  P-value Test-stat P-value
L 3.597 0.003 5.191 0.023 6.369 0.173
2 2.572 0.003 2.354 0.125 5.022 0.285
3 2.237 0.018 1.452 0.228 5.407 0.248
4 1.784 0.050 1.008 0.315 5.018 0.285
5 2.155 0.005 0.915 0.339 4.468 0.346
6 1.981 0.003 0.775 0.379 0.921 0.922
7 2.385 0.000 0.717 0.397 3.915 0.418
8 1.959 0.000 1.029 0.311 2.591 0.628
9 2.298 0.000 1.850 0.174 3.507 0.477
\W% 2.338 0.000 3.329 0.068 13.141 0.011

The sample period is from January 1965 to December 2013. P-values of entropy test are
computed based on 399 stationary bootstraps. P-values of Hong, Tu, and Zhou (2007) test
are computed based on asymptotic Chi-square distribution.
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Chapter 2

Asymmetric Dependence and the Cross-section of
Stock Returns

Abstract

This paper examines how non-linear asymmetric dependence between indi-
vidual stock return and market return is cross-sectionally priced. Motivated by
Ang, Chen, and Xing (2006), I construct proxies for the dependence with down-
side and upside market separately based on non-parametric kernel estimated
joint return distribution. Asymmetric dependence is measured using a metric
entropy proposed by |Granger, Maasoumi, and Racine| (2004). Empirically, I find
a risk premium (discount) for stocks with high downside (upside) dependence.
Asymmetric dependence leaning toward the downside also earns a premium. The
risk premia associated with downside dependence and asymmetric dependence
are higher than the discount associated with upside dependence. Furthermore,
downside dependence premium is almost twice as large as the downside beta
premium. The findings suggest that investors’ aversion to downside losses are
stronger than their attraction to the upside gains.

Keywords: Asymmetric dependence, metric entropy, non-parametric ker-
nel, asset pricing.

JEL Classification: C12, G11, G12, G17
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2.1 Introduction

Asymmetric dependence among stock returns, i.e. stocks co-move more strongly when
market goes down than when market goes up, have been documented by many prior stud-
ies, in the forms of asymmetric covariances, correlations and market betas (see, e.g., Ball
and Kothari, [1989; |Conrad, Gultekin, and Kaul, [1991; Bekaert and Wul, |2000; /Ang and
Chenl, 2002; |Bae, Karolyi, and Stulz, 2003; |Ang, Chen, and Xing, 2006). Such asymmetric
characteristics of stock returns are important because effective hedging relies on the depen-
dence between assets hedged and financial instruments used. If the dependence structure
is varying with the state of the market, portfolio managers may need to worry about the
effectiveness of their hedges when they are most needed. Despite the importance, the as-
set pricing implications of asymmetric dependence on the cross-section of expected stock
returns have been less studied in the literature.

Ang, Chen, and Xing (2006) find asymmetric risk premia are associated with downside
and upside betas in the cross-section of stock returns. They show that stocks with higher
downside betas have on average higher returns, but have mixed evidence on whether higher
upside betas are associated with a discount. Since downside and upside betas are highly
correlated with market betas (the correlations are above 0.75 as shown in |/Ang, Chen, and
Xing| (2006)), i.e. an increase in downside or upside betas are associated with an increase in
the market beta, it is hard to distinguish the effects of downside or upside covariation from
the overall covariation between stock and the market returns. |Alcock and Hatherley; (2013])
tries to overcome this problem by constructing a beta-invariant asymmetric dependence
measure that is a modified J statistic of an asymmetric correlation test proposed by Hong,
Tu, and Zhou| (2007)). Although beta-invariant, their measure still does not capture full
dependence structure since it is constructed based on exceedance correlations that can only
capture conditional dependence to the second moment (linear dependence).

Under classical Capital Asset Pricing Model (CAPM), it is sufficient to consider only
linear correlations (captured by the market beta) between individual stock returns and the

market portfolio return. (see Sharpe, 1964; Lintner, 1965)). However, more recent studies
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find supporting evidence that features of the joint distribution of individual stock and
market returns beyond the linear correlation also determine the expected stock returns.
For example, [Harvey and Siddique| (2000), Dittmar| (2002) among others show that higher
order co-moments, such as conditional coskewness and cokurtosis, also play important roles
in explaining the cross-sectional returns. The main reason is that returns are assumed
to be normally distributed for classical CAPM to holdE] while several papers documented
that realized stock returns are non-normally distributed (see, e.g., [Embrechts, McNeil, and
Straumann, 2002; |Ang and Chen, [2002)). It is well known that the correlation coefficient is
only a measure of linear dependence and cannot capture the full dependence structure of
non-normal distributions. Some recent papers start to examine cross-sectional asset pricing
implications of higher order dependence. Contemporary paper by |[Chabi-Yo, Ruenzi, and
Weigert| (2014), in a non-normal distribution framework, uses parametric copula-based tail
dependence measure to explain the cross-sectional expected returns. My paper differs from
theirs in that they focus on extreme lower tail dependence, or the crash sensitivities of
stocks, while, muck like |/Ang, Chen, and Xing (2006), I focus on the downside and upside
dependence when market returns are above or below the mean.

In this paper, I use an entropy-based statistic to empirically measure asymmetric depen-
dence and study its asset pricing implications in the cross-section of expected stock returns.
The entropy measure is a modified statistic of an asymmetric dependence test proposed in
Chapter [I} Entropy is estimated using empirical probability densities, so it can summarize
all the information of a given distribution and capture asymmetric dependence structure
existed in all the moments. |Ang, Chen, and Xing (2006) shows that under a simplistic
representative agent model with disappointment aversion (DA) utility (Gul, |[1991)) and with
certain parameter settings, agents require a premium to hold stocks with strong covariation
with the downside market, while are willing to hold stocks with high upside potential at a

discount, all else being equal. Motivated from this insight, we expect stocks with stronger

"'Without normality assumption, CAPM also holds under the assumption of quadratic preferences, which
is even less likely to be true in reality. So the violation of normality condition should be held as the major
reason for the failure of CAPM.
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downside asymmetric dependence, i.e. the dependence with the downside market is stronger
than with the upside market, to earn higher average returns, because those stocks are highly
risky in the sense that they may incur large loss when the wealth level is low, meanwhile
they do not have high upside potential when the market goes up. Furthermore, as pointed
out by |Ang, Chen, and Xing| (2006), the DA utility is kinked at certainty equivalence wealth
level, so the higher-order co-moments derived from Taylor expansion, like coskewness and
cokurtosis, may not approximate the utility function well globally. This is a theoretical
motivation why there may exist asymmetric effects of downside and upside dependence.

In the empirical analysis, I also construct proxies for downside and upside dependence
using estimated probabilities that individual stock and market returns both fall below or
above the sample means. Using Center for Research in Securities Prices (CRSP) data from
1962 to 2013, I find empirical evidence that stocks with high downside (upside) dependence
earn a premium (discount). Both effects are statistically and economically significant after
controlling for other known characteristics in cross-sectional [Fama and MacBeth (1973
regressions. The value-weighted average return (Carhart| (1997) four factor adjusted alpha)
of the top quintile portfolio sorted based on downside asymmetric dependence outperforms
the lowest quintile portfolio by 12.34% (12.89%) per annum. In Fama-Macbeth (1973)
regressions, the premium of downside asymmetric dependence cannot be explained by known
characteristics, such as CAPM beta, downside or upside betas, coskewness and cokurtosis,
size, book-to-market ratio, past returns and maximum daily return within a month. The
downside asymmetric dependence is time-varying and shows limited predictability using its
own lag. Yet when using the lagged asymmetric dependence to form a trading strategy,
the spread portfolio still earns an average equal-weighted annualized return of 4.5%. The
premium is both economically and statistically significant.

The rest of the paper is organized as follows. Section 2.2 introduces a modified entropy-
based measure of downside asymmetric dependence. Section 2.3 shows that downside asym-
metric dependence is associated with a risk premium contemporaneously using univariate,

dependent bivariate portfolio sorting and firm-level cross-sectional regressions, along with a
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battery of robustness checks. Section 2.4 examines the time-series persistence of downside
asymmetric dependence and evaluates whether lagged asymmetric dependence can predict

future stock returns cross-sectionally. Section 2.5 concludes.

2.2 Measuring Asymmetric Dependence

2.2.1 Downside Asymmetric Dependence

In finance literature, prior studies utilize exceedance correlations, i.e. the conditional cor-
relations evaluated when both individual stock and the market returns are below or above
certain exceedance levels, to construct measures of asymmetry of the joint return distribu-
tion. However, it is well known that the correlation coefficient is only a measure of linear
dependence and cannot reflect dependence structure beyond the second moment. To over-
come this shortcoming, in the first chapter I propose to use entropy to capture asymmetric
dependence existed in all the co-moments. Originated from physics and information theory
as a measure of uncertainty, entropy has gained increasing popularity in economics and fi-
nance. Some important applications of entropy include [Sims| (2003); Backus, Chernov, and
Martin (2011)); [Hansen| (2012). Among most recent notable examples, (Cabrales, Gossner,
and Serrano| (2013) use Shannon’s entropy (Shannon, 1948) to quantify the informativeness
of a ruin-averse investor’s beliefs on the state of nature.

I have shown in Chapter (1| that the entropy test statistic S,(c), defined in equation
can successfully capture the degree of asymmetric dependence as the entropy-based test
demonstrates higher finite sample power than the correlation-based test in [Hong, Tu, and
Zhou| (2007)). However, S,(c) is a normalized metric that is always non-negative, so it gives
no direction of asymmetry dependence, i.e. it does not indicate whether the dependence
is stronger in the downside or upside. In finance, investors are more concerned about the
downside risk of an asset (see, e.g., Ang, Chen, and Xing, 2006). Therefore, we need a
measure to distinguish the direction of asymmetric dependence.

Graphically, the degree of concentration of return pairs in a given region reflects the
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degree of dependence of the two variables in the local area. For example, if the points are
more concentrated in the third quadrant than in the first quadrant, it indicates stronger
dependence during the downside market. A proxy for the direction of asymmetric depen-
dence can be constructed using joint probabilities of return pairs being in each region. The
proxy, excessive downside probability (EDP), can be defined as the difference between a
lower quadrant probability (LQP) and an upper quadrant probability (UQP). Specifically,
LQP and UQP are given by

LQr = Pre s —c g0 = [ [ j@g)dids, (2.1)
ERCS) oo
QP = Pri e 520 = | 1@, 5) didg. (2.2)

They measure probabilities of individual stock and market return pairs being both above
or below the exceedance level c. When ¢ = 0, higher LQP? (UQP°) indicates higher
tendency for the stock to co-move with the market below (above) the average levels, and
hence is a good proxy for downside (upside) dependence with the market. The EDP is
defined as

EDP¢ = LQP¢-UQP®
= [ [ f (@ 0) — f(—7,—§)] didj.

(2.3)

EDP is a function of exceedance level ¢. When ¢ is taken to be 0, if EDP? > 0,
the probability that the asset goes below the mean with the market is greater than the
probability that it goes up above the mean with the market, indicating stronger downside
dependence. When ¢ equals other values, EDP¢ indicates the dependence difference in
farther tails. Everything else equal, intuitively, most investors dislike the excessive downside
probability defined above. From the viewpoint of utility theory, for example, investors

with the disappointment aversion (DA) preference, which is introduced by |Gul (1991)) and
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excellently analyzed by |Ang, Bekaert, and Liu| (2005), weigh outcomes below a certain
reference point strictly more heavily than those above it if the DA coefficient is of a usual
value less than 1. In other words, the greater the EDP€¢, the more they require to be
compensated for.

However, the degree of this asymmetric dependence is not fully reflected by EDP¢. On
the other hand, as a distance measure of between the original and rotated distributions,
S,(c) captures the exact degree of asymmetric dependence. So a measure of downside

asymmetric dependence (DownAsy) can be defined as

DownAsy® = Sign(EDP€)S,(c), (2.4)

where Sign(z) is a sign function that takes the value of 1 if EDP® is positive and
equals —1 otherwise. It is interesting to exam the asset pricing implications of downside
asymmetric dependence measured at the sample means (¢ = 0), as it closely mimics the
way how Ang, Chen, and Xing| (2006) define downside and upside betas, the conditional
linear dependence with the market. The empirical analysis mainly emphasizes on the case
of ¢ = 0, so the results are directly comparable to Ang, Chen, and Xing (2006). The results

of asymmetric dependence measures at farther tails are also reported as robustness checks.

2.2.2 Non-parametric estimation

Empirically, estimating the downside asymmetric dependence measure requires consistent
estimation of the unknown joint density and cumulative distribution functions. Similar
as in the first chapter, I use the same “Parzen-Rosenblatt” kernel density estimator as in
and the “product kernel function” given in to consistently estimate the density
functions in . S,(c) are then computed via numerical integration.

Besides the joint density functions, I also need to consistently estimate cumulative dis-
tribution functions in order to estimate LQP¢, UQP¢, and EDP¢ defined in , , and
. The cumulative distribution functions can be consistently estimated using either em-

pirical distribution functions or kernel smoothing method suggested by [Li, Li, and Racine
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(2014)). I choose to use kernel estimation method due to several advantages as shown in [Li,

Li, and Racine| (2014)

2.3 Data and Empirical Results

In this section, I introduce data and empirical methodology used in the paper and report

the empirical findings.

2.3.1 Data and Research Design

Stock market data are from the CRSP that cover the sample period from January 1962
to December 2013. The data include all common stocks (with share codes of 10 or 11)
listed on NYSE, AMEX and NASDAQ. In order to make the trading volume in NASDAQ
comparable to NYSE and AMEX, volumes are adjusted based on the way proposed by |Gao
and Ritter| (2010). Turnover ratio is calculated as the adjusted monthly trading volume
divided by shares outstanding. |[Amihud| (2002) ratio is also computed using the adjusted
trading volumes. Following Acharya and Pedersen| (2005), I also normalize the Amihud
ratio to adjust for inflation and truncated it at 30 to eliminate the effect of outliers. The
detailed steps are given in appendix.

The book value information comes from COMPUSTAT and is supplemented by the
hand-collected book value data from Kenneth French’s web site] The book-to-market
ratio is calculated by the book value of equity (assumed to be available six months after the
fiscal year end) divided by current market capitalization. It is truncated at 0.5% percentile
and 99.5% percentile to eliminate the effect of extreme values. Following the literature, I
take natural logarithm of size, turnover ratio, and book to market ratio before controlling
them as firm characteristics.

Following |Jegadeesh and Titman (1993)), I use returns over past six months to control

2Note that the empirical distribution function is a non-smooth step function that jumps up by 1 /n at
each of the n data points. As pointed out by |Li, Li, and Racine| (2014)), the estimate is mechanically equal
to 0 (1) at the sample minimum (maximum), while the true population support may not be bounded by the
sample minimum and maximum. The problem is more prominent when the sample size is relatively small.
3The data are available at http://mba.tuck.dartmouth.edu/pages/faculty /ken.french/data_library.html.
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for the momentum effect. The sample is restricted to stocks with beginning-of-month prices
between $5 and $1,000 to eliminate stocks whose transaction cost is a huge part of their price
and those that have very high pricesﬁ I construct 57, BT, coskewness and cokurtosis using
the definitions given in |Ang, Chen, and Xing| (2006). Idiosyncratic volatility is calculated as
the standard deviation of the CAPM residuals over 12-month horizon. Max is the maximum
daily return in a month following the definition of Bali, Cakici, and Whitelaw (2011)).
Factor pricing models focus on the contemporaneous risk return relationship. Classical
CAPM indicates that stocks that have higher exposure to the market risk earn higher
average returns over the same time period. The empirical research design of this paper
closely follows |Ang, Chen, and Xing (2006); Lewellen and Nagel (2006); |(Chabi-Yo, Ruenzi,
and Weigert| (2014) by investigating the contemporaneous relations between the realized
risk exposure and realized average returns. This approach may raise some concern that the
results may be driven by endogeneity. However, several papers documented that market risk
exposures may be time-varying (see,e.g., |[Fama and French |1992; Ang and Chen, [2007). In
section 2.4, I also find evidence that the downside asymmetric dependence measure is time-
varying, since the past DownAsy is not a good predictor of current DownAsy. Following the
approach proposed by |Ang, Chen, and Xing| (2006)), the dependence measures (LQP, UQP
and DownAsy) are estimated using realized daily return data over overlapping 12-month
periods. The estimates are updated monthly. Since the measures are estimated using
non-parametric kernel methods that require sufficient data points for reliable estimates, I
restrict the sample so that in each stock 12-month combination there are at least 100 daily
observations. Furthermore, using 12-month horizon could better capture the time-varying
feature of the dependence measures. Very long time intervals may lead to noisy estimates.
Other risk measures (3, 37, 8T, Ivol, Coskew, Cokurt) are estimated using the same way.
As advocated by |Ang, Chen, and Xing (2006); Lewellen and Nagel| (2006)), such estimation
procedure provides greater statistical power with possible time-varying risk measures.

Except for estimating the risk measures, all the empirical asset pricing analyses are done

4As a robustness check, I also repeated the same empirical analyses using stocks with prices in-between
$1 and $1,000, all the major results remain qualitatively the same.
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using CRSP monthly frequency data. After applying the data filters, the number of firms
in each month over the sample period ranges from 955 to 4364. In the empirical results to
follow, all the dependence measures (LQP, UQP and DownAsy) are evaluated at the sample
mean (c = 0), except for some cases that are specifically denoted.

Table reports time series averages across months of the cross-sectional correlations
of main variables, lower quadrant probability (LQP), upper quadrant probability (UQP),
downside asymmetric dependence (DownAsy), CAPM beta (), downside beta (87), upside
beta (371), log of market capitalization (Size), log of book-to-market ratio (Bm), turnover
ratio (Turn), normalized Amihud illiquidity measure (Illiq), past six-month return (Mom),
idiosyncratic volatility (Ivol), coskewness (Coskew), cokurtosis (Cokurt) and the maximum
daily return over the past one month (max), used in this study. At the beginning of each
month ¢, all risk characteristics (LQP, UQP, DownAsy, 3, 83~ , 8T, Ivol, Coskew, Cokurt)
are calculated using daily realized stock and market excess returns over the next 12-month
period. Size, Bm, Turn, Illiq, Mom and Max are calculated using information available at
the end of month ¢ — 1. All the variables are updated monthly. A detailed description of

these variables is given in the appendix.

[Insert Table [2.1 about here]

From Table we can tell how the new dependence measures are linearly related to
traditional variables that have explanatory powers on cross-sectional stock returns. The
average correlation between LQP and UQP is relatively modest, at -0.08, which means
that the tendency of stock to go up or down with the market may appear independently.
This finding also justifies the approach to separately estimate lower and upper quadrant
probabilities, which allows for asymmetric dependence in the lower and upper quadrants.
As expected, DownAsy has strong positive correlation (0.462) with LQP and negative cor-
relation (-0.515) with UQP, because mechanically the sign of DownAsy coincides with the
sign of (LQP—UQP). If a variable has similar correlations with LQP and UQP, DownAsy

will show little correlation with that variable. Hence we see that DownAsy has almost no
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correlation with all the other variables. It is more interesting to focus on the correlations
with LQP and UQP.

Both LQP and UQP are positively correlated with the CAPM [ with correlation co-
efficients of 0.463 and 0.436 respectively. It is as expected because 8 captures the linear
dependence between individual stock return and market return, while quadrant probabilities
measure the general dependence that also captures linear dependence as one component.
Stocks with higher  will have high probabilities to be above (below) its sample mean when
the market is above (below) average.

On the other hand, 3~ and ST both have very high positive correlations (around 0.8)
with 3 due to construction. 3~ and ST are also highly positively correlated with correlation
coefficient equal to 0.528. This finding indicates that 3~ (37) may not be clean measures of
downside risk (upside potential). A higher 3~ or ST is most likely associated with a higher
CAPM 5.

Interestingly, size is positively correlated with both LQP and UQP with fairly large
correlation coefficients of 0.299 and 0.473 respectively. It indicates that excess returns of
larger stocks are more likely to be above (below) the sample mean when market is above
(below) the average level. Note that UQP increases more strongly with size than LQP, which
indicates that larger stocks have less degree of downside asymmetry than small stocks. It
is also confirmed by the negative correlation between size and DownAsy. The finding is
consistent with Ang and Chen (2002); |[Hong, Tu, and Zhou| (2007)), who find that small size
portfolios show stronger asymmetric co-movements with the market using formal statistical
tests.

LQP and UQP has little correlation with coskewness, but they have high positive corre-
lations with the fourth co-moment, cokurtosis. The findings with coskewness seems odd, but
upon scrutiny, it is not surprising. Just like skewness for univariate distribution, coskewness
is more related with length of the tails in a joint distribution. LQP and UQP are measured
at the sample mean, where the probability mass is more concentrated. Compared to the

probability mass at the center, the probability difference at the tails are much less impor-
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tant. In unreported results, I find that LQP and UQP measured at 0.5 and 1 standard
deviations away from the sample mean have much higher correlations with coskewnessﬁ
Cokurtosis measures the fatness of the tails in a given joint distribution. A fatter tail indi-
cates higher probability in that quadrant. It is natural to see that both LQP and UQP are

positively correlated with cokurtosis.

2.3.2 Portfolio Sorting

In this subsection, I study the impact of those dependence measures on the cross-section of

average stock returns using simple univariate portfolio sorting.

Univariate Portfolio Sorts

At the beginning of each 12-month period at time ¢, I sort stocks into five quintile portfolios
based on their realized LQP, UQP and DownAsy over the next 12 months. The portfolio
returns are also computed as the average realized excess returns over the same 12-month
period.

Table [2.2] shows the contemporaneous relationship between excess returns and LQP
(Panel A), UQP (Panel B), and DownAsy (Panel C). Both equal-weighted and value-
weighted excess returns and (Carhart| (1997)) four factor adjusted alphas are reported. The
row labeled “High - Low” gives the difference between the returns of portfolio 5 and portfo-
lio 1, with corresponding statistical significance levels. Although I use a 12-month horizon,
the quintile portfolios are updated at a monthly frequency. Using overlapping information
to compute the returns/alphas is more efficient but the 12-month returns/alphas are au-
tocorrelated by construction. To account for the autocorrelations, I report t-statistics of
returns/alphas differences computed using Newey and West| (1987)) heteroskedasticity and
autocorrelation consistent (HAC) standardized errors with 12 lagsﬁ The sample covers

all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period

5The results are available upon request.
5 Although the theoretical number of lags is 11, to follow the practice of |[Ang, Chen, and Xing| (2006)), I
use 12 lags. Adding one more lag is more conservative and leads to smaller t-statistics than using 11 lags.
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is from January 1962 to December 2013, with the last 12-month period starting in Jan-
uary 2013. For robustness checks, I also conduct cross-sectional regression analysis using

nonoverlapping yearly periods in the later subsection.

[Insert Table about here]

Panel A of Table shows an increasing pattern between realized LQP and average
annualized returns and Carhart alphas. For value-weighted returns/alphas, the increasing
pattern is monotonic. In the second column, Quintile 1 (5) shows an average equal-weighted
excess return of -5.89% (16.15%) per annum, and the spread in average excess returns is
a 22.03% per annum, with a corresponding Newey-West t-statistic of 10.31. In the fourth
column, Quintile 1 (5) shows an average value-weighted excess return of -9.16% (8.89%) per
annum, and the value-weighted spread is a 18.05% per annum, statistically significant at
the 1% level. Return spread is smaller when more weights are given to larger stocks, but
the reduction is not much, at about 4% per annum. The results only consider the effect of
one variable, while it is shown that LQP is correlated with other variables that also affect
returns, such as CAPM §, size and book-to-market ratio. To account for the effects of
market, size (SMB), book-to-market (HML), and momentum (UMD) factors, I calculate
the equal-weighted and value-weighted alphas from Carhart (1997) four factor model for
the quintile and spread portfolios. The results are listed in the third and fifth columns
respectively, with equal-weighted (value-weighted) four factor alpha for the spread portfolio
is equal to 19.89% (16.45%). Both alphas are economically large and statistically significant
at the 1% level.

Panel B of Table shows a decreasing pattern between realized UQP and average
annualized returns. For Carhart alphas and value-weighted returns, such decreasing pattern
is monotonic. Quintile 1 (5) portfolios have an average equal-weighted excess return of
17.33% (-1.79%) per annum, and the spread in average excess returns is a -19.12% per
annum. The return difference is statistically significant at the 1% level and cannot be

explained by Carhart (1997) four factor model. The four factor equal-weighted alpha spread
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is -19.00% per annum. The return to the spread portfolio is much lower, at -8.22% per
annum, when the returns are weighted by firm’s market capitalization. The four factor
value-weighted alpha spread is -9.87% per annum. Both value-weighted returns and alphas
are still highly statistically significant, at the 1% level. However, the economic significance
is much reduced compared to the equal-weighted case.

As pointed out by |Ang, Chen, and Xingl (2006), asymmetric market risk exposure is
bigger among smaller stocks, so we choose to focus on equal-weighted results. Previous
studies on testing for asymmetric correlations (Ang and Chenl 2002; Hong, Tu, and Zhou,
2007)) and my work on testing for asymmetric dependence in Chapter [1fall find that smaller
stocks tend to co-vary with the market more strongly during the downside market than
during the upside market. Such downside asymmetry is statistically significant according
to their testing results, but these studies do not find any statistically significant asymmetry
in large size portfolios.

The findings indicate that the joint return distribution is more symmetric for larger
stocks, which further indicates that the correlations between LQP and UQP should be
positive among large stocks.Indeed, among top 10 percentile biggest firms, I find that the
time series average correlation between LQP and UQP is 0.31, much larger than its full
sample counterpart, -0.08. Such large correlation leads to a reduction in the value-weighted
return spread, due to the opposite effects of LQP and UQP on contemporaneous returns.
For example, a very big firm with high UQP is sorted into quintile 5 portfolios, but it may
also have high LQP. High UQP leads to a lower excess return, but high LQP also leads to a
higher excess return, so the combined effect makes the stock to earn higher return than the
other stocks in the quintile with similar UQP. Value-weighted results put very large weights
on such biggest companies. Thus the average value-weighted return for quintile 5 portfolio
is higher than the average equal-weighted return. Similarly, very big stock may have both
low LQP and UQP, the combined effect makes the average value-weighted returns for lower
quintile portfolios to be smaller than the average equal-weighted returns. This is exactly

the case as shown in Panel B. A lower value-weighted return spread is also observed in
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Panel A, but empirically the reduction is not as large as in Panel B.

The patterns shown in Panel A and B are similar to the sorting patterns of realized
relative 5~ (defined as 8~ — () and relative B+ (defined as ST — ) as shown in Ang,
Chen, and Xing| (2006). The patterns also coincide with the findings documented in |Chabi-
Yo, Ruenzi, and Weigert| (2014), who find a risk premium (discount) for stocks with high
extreme lower (upper) tail dependence with the market. |Ang, Chen, and Xing (2006)
demonstrate that such patterns can be implied by a simplistic representative agent model
with DA utility. The DA preferences allow agents to put greater weights on losses than
gains. In equilibrium, a representative agent requires a premium to hold stocks with high
downside risk, but is willing to hold stocks with high upside potential at a discount, holding
other things equal. Empirically, I find that there is a positive premium for high LQP stocks
and a negative premium (discount) for stocks with high UQP. The effect is stronger for
LQP than for UQP (18.05% v.s. -8.22% for the value-weighted returns).

Given the opposite effects of LQP and UQP on returns and the fact that LQP and
UQP are only modestly correlated, we expect the downside asymmetric dependence mea-
sure (DownAsy) to be positively associated with returns, since higher DownAsy indicates
stronger dependence with the downside market while limited upside potential. Agents dis-
like this kind of stocks and should require a risk premium to hold them. The risk premium is
expected to be larger than that of LQP, because it also combines the effect of UQP. Panel C
of Table[2.2|shows average returns for portfolios sorted by DownAsy. We can see a monoton-
ically increasing pattern between realized DownAsy and average annualized returns as well
as Carhart alphas. In the second column, Quintile 1 (5) shows an average equal-weighted
excess return of -6.96% (21.21%) per annum, and the spread in average excess returns is
a 28.17% per annum, which is statistically significant at the 1% level. The equal-weighted
four factor alpha for the spread portfolio is 25.58% per annum. Both excess return and
alpha are higher compared to those for the spread portfolio sorted by either LQP or UQP.
The fourth and fifth columns show value-weighted results. The average value-weighted ex-

cess return (alpha) of the spread portfolio is 12.34% (12.89%) per annum, higher than the
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UQP return spread, but lower than the LQP spread. The reason is the same as for the UQP
sorted portfolios. While the direction and statistical significance of the relationship between
the dependence measures and returns hold for both an average stock (equal weighting) or
an average dollar (value weighting), the magnitude is smaller with value-weighting.

Since betas are wildly used in the literature as linear dependence measures with the
market, for comparison purposes, I also sort stocks into quintile portfolios based on their
contemporaneous realized 3~ (Panel A), 87 (Panel B) and 8~ — % (Panel C) over 12-
month periods. The method and sample used is the same as in Table With a longer
sample period and with all stocks listed on NYSE/AMEX/NASDAQ, I have got similar
findings as |Ang, Chen, and Xing (2006). The results are reported in Table

[Insert Table [2.3| about here]

Panel A of Table shows a monotonically increasing pattern between realized 5~ and
average annualized returns/alphas. The average equal-weighted excess return of the spread
portfolio in average is a 12.23% per annum, which is statistically significant at the 1%
level. However, after accounting for Carhart (1997) four factors, the alpha spread is only
5.49% per annum. Although the downside beta does not exactly reflect the exposure to
the market factor, the market, size, boot-to-market and momentum factors can still explain
more than half of the excess return difference. Compared to the LQP sorted portfolios,
the magnitude of downside beta premium is only about half, and the difference in Alpha is
even more prominent (5.49% vs. 19.89%). It is clear evidence that the non-linear downside
dependence measure, LQP, can better capture the downside risk than the downside beta.
While LQP is also estimated using information from the joint distribution of individual
stock and market returns, there is no linear structure involved. It may explain why the
market factor, combined with the other three factors, fail to explain much of the excess
return to the LQP sorted spread portfolio.

Panel B of Table shows an increasing pattern between realized 37 and average annu-

alized returns/alphas. As noted in|Ang, Chen, and Xing| (2006)), the pattern is inconsistent
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with their model predictions and the reason is due to high correlation between A% and
CAPM . They do find that when partially out the 3 effect, returns to portfolios sorted by
realized relative ST (8% — ) show a decreasing pattern. It indicates that ST may not be
a clean measure of upside potential. In comparison, the excess return (four factor alpha)
to the spread portfolio sorted by UQP is negative and significant both economically and
statistically.

Panel C of Table shows an increasing pattern in average annualized returns/alphas
with increasing realized (8~ — 7). This measure gauges the effect of downside linear de-
pendence relative to upside linear dependence and can be considered as a linear downside
asymmetric dependence measurem Compared to the non-linear downside asymmetric de-
pendence measure, the spread in value-weighted returns is much smaller (6.33% v.s. 12.34%
per annum), and a large portion can be explained by Carhart (1997) four factors. The
findings suggest that the entropy-based downside asymmetric dependence measure better

captures the asymmetry in market risk exposure.

Dependent Portfolio Sorts

The univariate return patterns could be driven by differences in other risk measures or firm
characteristics known to affect contemporaneous returns. As shown in Table LQP and
UQP are correlated with some other variables, such as CAPM [, size and cokurtosis. To
see a clearer picture of the composition of the other variables across the LQP and UQP
sorted portfolios, Table presents summary statistics of the related variables for the
stocks sorted into decile portfolios by LQP (Panel A) and UQP (Panel B). Specifically, at
the beginning of each month ¢, I rank all stocks into decile portfolios based on realized
LQP and UQP measures over the next 12 months. The table reports for each decile the
time-series average across months of the cross-sectional mean values within each month of

the same set of variables as appeared in Table

"Ang, Chen, and Xing (2006) report the portfolio sorting results based on (87 — 87). They find a
decreasing pattern with a -7.81% equal-weighted excess return for the spread portfolio.



67

[Insert Table about here]

From Panel A of Table we can see that there is enough dispersion in LQP across
the deciles, with the smallest being 0.224 and largest being 0.370. As we move from the low
LQP to the high LQP decile, all three betas increase monotonically. The pattern may raise
some concern that the positive risk premium in Table may be driven by higher linear
dependence with the market or higher downside beta. We rule out this possibility using
dependent portfolio sorts that control for the variations in # in the analysis to follow.

As LQP increases across deciles, firm market capitalization (size) increases and illiquidity
(Illiq) decreases, indicating that high LQP stocks tend to be larger and more liquid. This
is good news for the univariate results reported in Panel A of Table [2.2] since previous
studies have documented that larger (Banzl, 1981)) and more liquid (Amihud} 2002) stocks
tend to earn a return discount, not the return premium observed in the data. The fact
that high LQP portfolios contain larger and more liquid stocks but still earn higher average
returns works to strengthen the effect of LQP. It is also observed that cokurtosis (cokurt)
is increasing with LQP. Dittmar| (2002) document that stocks with higher cokurtosis earn
higher average returns. Therefore, the premium of LQP may be explained by the difference
in cokurtosis across the deciles. It motivates me to do dependent portfolio sorts with LQP
and cokurtosis. The book-to-market ratio (Bm) does not show a clear pattern, although
the high LQP portfolios seem to have more growth stocks. There is no clear pattern found
for other control variables, such as past six-month return (Mom), idiosyncratic volatility
(Ivol), coskewness (Coskew), and maximum daily return in the previous month (Max).

Panel B of Table shows some interesting patterns for decile portfolios sorted by
UQP. As we move from the low UQP to the high UQP decile portfolio, the average across
months of the mean UQP of stocks increases from 0.201 in the Decile 1 to 0.361 in Decile
10. Similar as the LQP case, all three betas increase monotonically with UQP. This finding
works to strengthen the effect of UQP, because stocks with higher market 5 or 5~ tend to
have higher average returns instead of the lower average returns indicated by high UQP.

Size increases with UQP, which works to weaken the effect of UQP as larger firms tend to
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earn lower average returns. Illiquidity also decreases for the high UQP deciles, consistent
with the fact that these portfolios contain larger stocks. It may also be confounding the
effect of UQP, as more liquid stocks tend to have lower returns. The book-to-market ratio
decreases with UQP, so it may also explain part of the return discount of high UQP stocks.
Past six-month return and cokurtosis show increasing pattern as UQP increases, which
strengthens the effect of UQP since stocks with high momentum (Jegadeesh and Titman),
1993) and high cokurtosis (Dittmar, [2002) tend to earn higher average returns instead of
the observed lower returns. Idiosyncratic volatility seems to decrease with UQP, but the
variation in Ivol is not very large. Other variables, like coskewness and Max, do not show
a clear pattern.

Those control variables show almost identical co-movement patterns with either LQP
or UQP. Since I use excessive downside probability (EDP), defined as (LQP—-UQP), to
determine the sign of downside asymmetric dependence (DownAsy), the opposite patterns
given by LQP and -UQP almost cancel out. There is no clear pattern for any of these control
variables, when decile portfolios are formed based on realized DownAsy, which means that
the return premium due to DownAsy should not be driven by other known characteristics
that affect cross-sectional returns. Therefore, the summary statistics for decile portfolios
sorted by DownAsy are not reportedﬁ

Motivated by the patterns observed in Table I conduct dependent portfolio sorts
to explicitly control for the effects of the other stock characteristics that co-vary most
with both LQP and UQP, i.e. the CAPM S, size, coskewness, and cokurtosis. I include
coskewness in the double sorts mainly due to theoretical consideration, since coskewness is
a moment-based measure of asymmetry. Although the linear beta exposure to market and
the size effect can be controlled by looking at the Carhart alphas in the univariate portfolio
sorts, dependent portfolio sorts can account for some potential nonlinear impact of these
control variables.

At each month, I first form quintile portfolios sorted on each of 3, size, coskewness, and

8The results are available upon request.



69

cokurtosis, then within each quintile, I further sort stocks into five portfolios based on their
realized lower quadrant probability (LQP). The results are reported in Table The row
labeled “High - Low” reports the difference between the excess returns of portfolio 5 and
portfolio 1 in each 3, size, coskewness and cokurtosis first-sort quintile with corresponding
statistical significance levels. The column labeled “Average” reports the average excess
return of stocks in each second-sort quintile. Newey-West (1987) 12-lag adjusted t-statistics

are reported in row labeled “t-stat” ]

[Insert Table [2.5[ about here]

Panel A of Table reports equal-weighted portfolio excess returns of 5x LQP portfo-
lios. Within each S quintile, the return to the high LQP portfolio is larger than the return
to the low LQP portfolio. The return spreads are both economically and statistically signif-
icant. They range from 24.59% per annum in 3 quintile 1 to 17.39% per annum in 3 quintile
5. The average difference in excess returns is 20.57% per annum, only slightly smaller than
the return spread in the univariate sorting case. Therefore, market [, although correlated
with LQP, can only account for a tiny part of the premium associated with high LQP.

Panel B of Table repeats the same analysis as Panel A, with § being replaced by
firm size. Within each size quintile, the equal-weighted return to the “How - Low” portfolio
is highly significant both economically and statistically, ranging from 32.51% to 14.26% per
annum. The return difference decreases as as we move to high size quintile. As mentioned
above, this is due to higher correlation between LQP and UQP among larger stocks. It is
difficult to purge the effect of UQP from LQP among large size quintile, which leads to a
shrunk return spread. Due to the same argument, we also observe similar pattern, among
size x UQP portfolios in Panel B of Table Despite the decreasing pattern, the average
return difference among five size quintiles is still 24.95% per annum and highly significant
statistically. The magnitude is even higher than the return spread in the univariate sorting

case, which indicates that size cannot explain the risk premium associated with high LQP

9For tables to fit in one page, I only report results for the quintile 5 and quintile 1 second-sort portfolios,
and the “High - Low” portfolio. Detailed results are available upon request.
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either.

Panel C of Table reports equal-weighted portfolio excess returns of coskewness x
LQP portfolios. Empirically, I find coskewness is not much correlated with either downside
or upside dependence measures. The reason is that coskewness captures more of the asym-
metry in the length of the tails, while LQP and UQP are measured at the sample mean
and are less sensitive to the probability difference in the tailsE Given the low correlation,
we do not expect coskewness to account for the risk premium due to LQP. Within each
coskewness quintile, the return of the spread portfolio is large and statistically significant
at 1% level, with an average spread of 22.09% per annum. Meanwhile, we can confirm that
coskewness has negative impact on returns as documented in Harvey and Siddique (2000).

Panel D of Table reports equal-weighted cokurtosis x LQP double-sorted portfolio
excess returns. Within each cokurtosis quintile, the return of the spread portfolio is large
and statistically significant at the 1% level, ranging from 29.57% to 10.77% per annum.
Although we observe a decreasing return spread as cokurtosis increases, the average spread
is 21.89% and is highly significant at the 1% level, indicating that cokurtosis cannot account
for the return premium associated with LQP.

Table repeats the same exercises as Table only replacing LQP by UQP. In
general, none of (§, size, coskewness or cokurtosis can account for the discount for holding
stocks with high UQP. Although if anything, firm market capitalization seems to reduce the
negative excess return earned by the UQP spread portfolio. Panel B of Table shows that
the return spread within size quintile 1 is -19.26%. While within the highest size quintile,
the spread is narrowed to -5.48% due to the reason I mentioned above. The average return
spread across all size quintiles is -14.89%. The magnitude shrinks compared to -19.12%, the
return spread in the univariate sorting case. It is consistent with the finding that the value-
weighted UQP return spread is much smaller than the equal-weighted UQP return spread
in terms of absolute value. Therefore, size can explain a small part of the return discount

due to high UQP, but the unexplained part remains to be quite large. (3, coskewness and

10When measured at 0.5 and 1 standard deviations away from the sample mean, LQP anf UQP do show
much higher correlations with coskewness.
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cokurtosis cannot account for any proportion of the return discount due to high UQP.

[Insert Table [2.6{ about here]

Finally, in Table I report the double-sorting results using the downside asymmetric
dependence measure (DownAsy) with 5 (Panel A), size (Panel B), coskewness (Panel C),
and cokurtosis (Panel D). By construction, DownAsy reflects the combined pattern of LQP
and UQP. For example, the magnitude of the return spread decreases as we move from small
to large size quintile for both LQP and UQP second-sort portfolios. We may expect similar
pattern in the size x DownAsy portfolios. Panel B of Table 2.7 shows that the return spread
within size quintile 1 is 30.86% and monotonically decreases to 12.08% in size quintile 5. It
is consistent with the findings in the existing literature that small stocks are more exposed
to asymmetric downside market risk. The average return difference 23.92%, although is
slightly smaller than the return difference in univariate sorts, is still highly significant both
economically and statistically. Patterns of return spreads for double-sorted portfolios with
B, coskewness and cokurtosis are much similar to the LQP case, as shown in Table
None of the control variables can largely explain the risk premium earned for holding stocks

with high downside asymmetric dependence.

[Insert Table [2.7] about here]

In summary, the results of dependent portfolio sorts provide strong evidence that the
risks associated with LQP, UQP and DownAsy are weakly related to size, but clearly are
different from risks associated with CAPM S, size, coskewness and cokurtosis. Dependent
sorts allow us to control for potential nonlinear impact, but only one other stock charac-
teristic can be controlled for at one time. In the following subsection, I conduct a series
of Fama and MacBeth| (1973) cross-sectional regressions at the firm level, which allows us
to examine the impact of the dependence measures while controlling for many other firm

characteristics at the same time.
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2.3.3 Fama-Macbeth Regressions

Following several prior studies (see, e.g., Brennan, Chordia, and Subrahmanyam)| [1998;
Ang, Chen, and Xing), [2006} [Ang, Liu, and Schwarz, 2010; |(Chabi-Yo, Ruenzi, and Weigert),
2014)) that test asset pricing models with individual stock data, I run Fama-MacBeth (1973)
regressions at the individual stock level over the sample period from January 1962 to Decem-
ber 2013H I regress stock excess returns on realized dependence measures with respect to
the market risk (LQP, UQP, and DownAsy), realized betas (3, 37, and 87) and other firm
characteristics using 12-month rolling periods. Since the regressions are run at monthly fre-
quency with a 12-month horizon, I report t-statistics of the estimated coefficients computed
using 12 Newey-West (1987) lags. For each month, the risk characteristics (LQP, UQP,
DownAsy, 37, 7, Ivol, Coskew, Cokurt) are calculated contemporaneously over the same
12-month period as the excess returns. Log firm size, log book-to-market ratio, turnover
ratio, normalized Amihud (2002)illiquidity ratio, past six-month return, and maximum are
calculated at the beginning of each month ¢. All the independent variables are winsorized
at the 0.5% and 99.5% levels to avoid some extreme observations driving the results. All
the main findings hold no matter I choose to do winsorization or not. Table report the
regression results with various sets of control variables. For easier interpretation, the second
to last column shows time series averages of cross-sectional mean and standard deviation
of each independent variable. To test whether the stock characteristics are still significant
after taking the effects of commonly used factors into account, I use 12-month Carhart
(1997) four factor adjusted excess return as the dependent variable in regressions (8) and
(9). The risk-adjusted returns are used by Brennan, Chordia, and Subrahmanyam| (1998])
to test factor based asset pricing models. This method avoids the errors-in-variables bias

in estimating the risk premia of stock characteristics by putting the factor loadings on the

" Estimates of risk loadings, such as the realized betas, from individual stock data are less precise than
using portfolios as the test assets, which leads to well-known errors-in-variables (EIV) problem. However,
Ang, Liu, and Schwarz (2010)) argue that with individual stock data, the estimated factor loadings have
greater dispersion that reduces the variance of the risk premium estimator and hence is statistically more
efficient. Furthermore, Lo and MacKinlay| (1990); |Lewellen, Nagel, and Shanken| (2010) also argue that the
method used to form portfolios can lead to very distinct results in asset pricing tests, while using individual
stocks as test assets can avoid this arbitrary element in portfolio grouping choice.
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left hand side as the dependent variable. The last column reports the change in 12-month
Carhart (1997) four factor adjusted excess return given a one standard deviation increase

in the respective independent variable based on regressions (8) and (9).

[Insert Table about here]

Regression (1) and (2) only include LQP and UQP respectively as the explanatory
variable to see the univariate effect. Both variables are highly significant economically and
statistically with opposite impacts on returns. A one standard deviation increase in LQP
is associated with 2.049 x 0.042 = 8.6% higher average excess returns per annum. UQP has
shown a significantly negative impact and a one standard deviation increase in UQP leads
to 1.471 x 0.047 = 6.9% lower average excess returns per annum.

In regression (3), I include both LQP and UQP as the independent variables to see
the joint effects. The positive (negative) coefficient of LQP (UQP) remains unchanged
with even higher economic magnitude. Still we can see that UQP has a smaller impact
on returns than LQP, indicating that investors show stronger aversion to the downside
risk than preference for upside potential. Regression (4) includes only DownAsy as the
explanatory variable. Consistent with the findings in univariate portfolio sorts, the impact
of downside asymmetric dependence is negative and statistically significant at the 1% level.
A one standard deviation increase in DownAsy is associated with 2.443 x 0.046 = 11.2%
higher average excess returns per annum. The impact is economically more significant than
the univariate effect of LQP.

In regression (5), I check the effects of 3~ and 87, the linear counterparts of LQP and
UQP. With the sample used in this paper, I can confirm the results from |[Ang, Chen, and
Xing (2006) that downside beta earns a risk premium (5.0% per annum), and upside beta
earns a discount (-1.3% per annum), both impacts are statistically significant at the 1%
level. The economic magnitude of downside beta premium is much higher compared to the
upside beta discount. Regression (6) adds a full set of control variables along with LQP
and UQP. The results show that the effects of LQP and UQP are still highly significant
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with similar magnitudes compared to regression (3). The estimated return premium for
bearing one standard deviation downside dependence risk is 11.6% per annum. The impact
of upside dependence (UQP) is slightly lower, but still earns -6.3% discount with a one
standard deviation increase. In comparison, the effect of upside beta is no longer significant,
consistent with the findings in|/Ang, Chen, and Xing| (2006). It indicates that the upside beta
may not be a good measure of upside risk, as the results are inconsistent with theoretical
model prediction.

The findings in regression (6) confirm many patterns that have been documented in
the literature. For example, small size stocks and stocks with high book-to-market ratios
have high average returns (Fama and French, 1993)). Stocks with high past six-month
returns earn high average returns during the next 12 months (Jegadeesh and Titman,|1993).
Anomaly documented by |Ang et al.| (2006, 2009) is confirmed that high realized idiosyncratic
volatility is associated with low average returns. Less liquid stocks tend to earn lower average
returns (Amihud, 2002). Stocks with high coskewness earn low average returns (Harvey and
Siddiquel 2000) and stocks with positive cokurtosis have high returns (Dittmar, |2002).

In regression (7), I replace the upside and downside dependence measures (LQP and
UQP) by the downside asymmetric dependence measure (DownAsy) and include the same
set of controls as in regression (6). We can see that the effect of DownAsy is highly significant
and the economic magnitude only slightly reduced compared to the univariate regression
(4). Interestingly, I find that the effects of Ivol and coskewness are no longer significant
statistically after including the entropy-based downside asymmetric dependence measure.
Even in regression (6), the effects are not economically significant. The finding suggests
that the anomalies due to volatility and coskewness may be explained by the nonlinear
dependence with the market risk. However, cokurtosis is still highly significant in both
regression (6) and (7).

Regression (8) and (9) use the same controls as in (6) and (7), but replace the dependent
variable as Carhart (1997) four factor adjusted return to see whether the characteristics still

have explanatory power after accounting for the effects of the four factors. It is clear that
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the effects of the nonlinear dependence measures are robust even using the risk-adjusted
return as the dependent variable. The economic significance of each independent variable is
reported in the last column mainly based on regression (9), except for LQP and UQP that
are based on regression (8). Among all the explanatory variables, the downside dependence
with the market (LQP) has the strongest impact, 9.08% higher adjusted return per annum
given a one standard deviation increase. The downside beta, although still negative and
significant statistically, has much lower impact (3.68% per annum) on adjusted return,
which suggests that LQP is a more accurate measure of downside risk. Downside asymmetric
dependence (DownAsy) is also positive and highly significant with 8.59% impact per annum.
The upside dependence (UQP) has a significant negative impact of -5.14% per annum on
the risk-adjusted return. The magnitude of the discount is much smaller than the risk
premium associated with the downside dependence risk or the downside asymmetry risk.
The evidence suggests that investors dislike stocks exhibiting strong dependence with the
downside market, while prefer stocks with strong upside potential. The aversion to downside

risk is stronger compared to the attraction to upside potential.

2.3.4 Robustness Checks

In this subsection, I run a series of Fama-Macbeth (1973) regressions using different weight-
ing schemes, samples and measures of asymmetric dependence at other exceedance levels to
check the robustness of the findings in Table I use Carhart (1997) four factor adjusted
excess return as the dependent variable with the full set of controls in these regressions.

The results are reported in Table

[Insert Table [2.9| about here]

Regression (1) and (2) report the value-weighted regression results with full set of con-
trols. The weighting variable is firm’s market capitalization at the beginning of each month.
The regression coefficients now reflect the impacts for each dollar invested. Similar as the

findings in the univariate portfolio sorts, the signs and statistical significance of LQP, UQP
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and DownAsy remain intact, but the economic magnitude of the impacts are reduced for
LQP and DownAsy.

Regression (3) and (4) report the regression results when the sample is restricted to
NYSE stocks only. Since stocks listed on NYSE tend to be larger size stocks, the findings
are similar to value-weighted results.

Regression (5) and (6) report the regression results using non-overlapping yearly obser-
vations. Using non-overlapping periods are less efficient statistically, but do not cause the
returns to be autocorrelated, so the standard t-statistics are reported. The findings are
almost the same as the results using overlapping periods, with only small changes to some
coefficients.

Regressions (7) to (10) test whether the impacts of those nonlinear dependence measures
still hold when they are evaluated at other exceedance levels, such as 0.5 and 1 standard
deviations away from the mean. The measures evaluated at farther tails capture the ten-
dency of a stock to move drastically with large market movements and hence are proxies
for joint tail risks. The findings are largely consistent with the previous findings when the
measures are evaluated at the sample mean. The only exception is that the effect of UQP!
is no longer statistically significant as shown in regression (9), indicating that investors’s
attraction to stocks with high upper tail dependence with the market is not robust. On the
other hand, the aversion to downside risk is significant and robust at any exceedance level.

Similar findings are also documented by |Chabi-Yo, Ruenzi, and Weigert| (2014)).

2.4 Past Downside Asymmetric Dependence and Future Re-

turns

The empirical results in Section demonstrate significant positive relationship between
high downside (asymmetric) dependence with the market and the average stock returns over
the same period. If the dependence characteristics are stable or predictable over time, then

investors can exploit this cross-sectional return relationship and form investable trading
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strategies based on stocks’ asymmetric exposure to the downside risk and upside risk. Since
portfolios formed based on contemporaneous DownAsy gives the highest return spread
as shown in Table in this section, I examine the time-series persistence of downside
asymmetric dependence and check if we can predict such asymmetric downside risk exposure

in a future period using prior information.

2.4.1 Determinants of Downside Asymmetric Dependence

I explore the determinants of DownAsy using cross-sectional Fama-MacBeth (1973) re-
gressions. Specifically, at each month, I regress realized downside asymmetric dependence
(DownAsy) over the next 12-month period on a set of past risk measures and firm char-
acteristics variables including the lagged DownAsy estimated over the previous 12-month
period. At the beginning of each month ¢, the past risk measures (87, 87, Ivol, Coskew,
Cokurt) are estimated over the previous 12-month period (t — 12 to ¢t — 1). Size, Bm, Turn,
Illiq, Mom and Max are calculated at the beginning of the month ¢. The regression results

are in Table

[Insert Table about here]

We can see that DownAsy is not persistent over time and hard to predict even with
all these past variables. When using lagged DownAsy as the only predictor variable, the
coefficient 0.058, although highly significant (t = 6.6), is far from 1. The corresponding R? is
lower than 0.01, meaning most variations in current DownAsy cannot be explained by past
DownAsy. Size effect is still clear in the predictive setting. Large market capitalization
predicts low future downside asymmetric risk. The relationship between current book-
to-market ratio and future DownAsy is positive and significant. High current cokurtosis
predicts low DownAsy in the future. But the R? is only 0.056 even if we put all these past
variables as predictors.

An alternative approach is to examine the average 12-month decile portfolio transition

matrix, i.e. the average probability p;; that a stock in decile ¢ during the previous 12-
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month period will be in decile j in the next 12-month. In the unreported results, I find that
stocks in decile 10 according to lagged 12-month DownAsy have 17.64% chance to be in the
same decile over the next 12-month period and the chance of staying in the top 3 deciles is
40.69%. It indicates that stocks with high downside asymmetric risk exposure tend to have
slightly higher chance to retain that characteristics over the next 12 months compared to
the case when DownAsy is totally random.

The findings indicate that there is limited predictability in a stock’s asymmetric exposure
to the downside risk and support time-varying risk exposures as suggested in [Lewellen and

Nagel (2006]).

2.4.2 Trading Strategy

Although the predictability is limited, yet it is still interesting to examine whether it is
possible to generate abnormal return spreads based on past realized DownAsy. At the
beginning of each month, I sort stocks into quintile (1-5) portfolios based on their realized
DownAsy over the previous 12 months. Then, I examine equal-weighted average returns
of these portfolios over the next 12-month period (Panel A) and over the next one month
period (Panel B). The data used in this paper range from January 1962 to December 2013.
As I use first 12-month data to estimate the first lagged DownAsy, the first portfolios are
formed in January 1963. Then I update those portfolios in a monthly frequency. The results
are reported in Table below.

[Insert Table about here|

Panel A of Table shows 12-month holding period returns for portfolios sorted based
on lagged DownAsy. Newey-West (1987) standard errors with 12 lags are used to compute
the t-statistics (in parentheses) to account for autocorrelations in the 12-month cumulative
returns. In the second column, quintile 1 (5) shows an average equal-weighted excess return
of 10.63% (13.86%). The spread in average excess returns is a 3.22% per annum, which is

statistically significant at the 1% level. To purge any effect due to exposures to systematic
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risk factors, I regress the returns of each quintile portfolio and the spread portfolio on
the market factor, Fama and Frenchl (1993) three factors, and |Carhart| (1997) four factors
respectively. The alphas are reported in the third to fifth columns. CAPM alpha spread
is at 2.97% per annum, showing that a small part of the premium can be explained by the
market factor. After controlling for the size factor (SMB) and the book-to-market factor
(HML), alpha increases to 3.47% per annum. Adding the momentum factor (UMD) reduces
the alpha spread to only 1.23% per annum that is marginally significant at the 10% level.
It indicates that the part of the return based on the trading strategy is due to exposure to
the momentum factor.

We find that DownAsy is not persistent over time. During shorter holding period,
DownAsy may change less than during the longer period, so in Panel B, I show 1-month
holding period returns for portfolios sorted based on lagged DownAsy. Non-overlapping
1-month returns are usually considered to have no autocorrelations, so the standard t-
statistics are reported in parentheses. As expected, the trading strategy of investing in
high DownAsy stocks and shorting low DownAsy stocks yields an economically significant
one month return of 0.37% per month, which amounts to a compounded return premium
of 4.53% per annum. The return difference is also statistically significant at the 1% level.
The CAPM alpha spread is at 0.34% per month (4.16% per annum). Adding Fama-French
factors increase the alpha spread to 0.38% per month (4.66% per annum). When taking
the momentum factor into account, the alpha spread decreases to 0.19% per month (2.30%
per annum). Exposure to the momentum factor can explain part of the return spread, but
still the four factor alpha spread is statistically significant and economically meaningful.

In summary, DownAsy has limited predictability based on past information. It is difficult
to exploit the strong contemporaneous relation between downside asymmetry. Although the
return to the spread portfolio formed on lagged DownAsy is smaller than the contempo-
raneous return spread, it is still economically and statistically significant. In comparison,
Ang, Chen, and Xing| (2006)) find that a trading strategy based on past downside beta using

all stocks does not yield an economically significant return spread. It also suggests that the



80

nonlinear asymmetric dependence measures can better capture the downside risk than the

downside beta does.

2.5 Conclusion

This paper examines whether a stock’s nonlinear dependence with the downside and upside
market have significant impact on the cross section of stock returns. Using dependence
measures constructed with a metric entropy and estimated quadrant probabilities of the
joint distribution of stock and the market returns, I find a risk premium (discount) for
stocks that are more likely to covary with the market during market declines (rises). The
asymmetry between the downside and upside dependence with the market is earns a risk
premium as well. The risk premia associated with the downside dependence and downside
asymmetric dependence are higher compared to the discount due to upside dependence.
The findings suggest that investors’ aversion to downside losses are stronger than their
attraction to the upside gains.

Fama-Macbeth (1973) regressions show that the contemporaneous impacts of the depen-
dence measures on cross-sectional returns cannot be explained by a set of well-known stock
characteristics, such as the market beta (linear exposure to the market risk), downside or
upside betas (asymmetric exposure to downside and upside market risk), size and book-to-
market effects, illiquidity risk, momentum effect, coskewness, cokurtosis, and stock’s lottery
feature as captured by the maximum daily return within a month. The estimated cross-
sectional excess return premium for bearing downside dependence risk is approximately
11.6% per annum, almost twice as large as the effect of the downside beta (6% as reported
in |Ang, Chen, and Xing| (2006)). The downside premium, downside asymmetry premium
and upside discount are robust across a battery of robustness checks. In addition, I also
find that the downside dependence and downside asymmetric dependence measures have low
cross-sectional correlations with coskewness, since coskewness captures more of the asym-
metry in the lengths of the tails. In Fama-Macbeth (1973) regressions, adding the downside

and upside dependence measures (or the downside asymmetric dependence measure) along
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with the downside and upside betas can empirically rule out the effect of coskewness. The
finding suggests that exploring the nonlinear dependence with the market factor may help
explain some CAPM anomalies.

The downside asymmetric dependence is not persistent over time and shows limited
predictability. However, a trading strategy that forms portfolios based on past asymmetric
dependence can still earn an average equal-weighted annualized return of 4.5%. Such a
premium is both economically and statistically significant. However, a similar trading
strategy based on downside beta fails to yield a economically meaningful return spread.
All the findings suggest that there are economic gains when going beyond traditional linear
dependence measures. Nonlinear dependence measures may better capture the market risk
than their linear counterparts. As part of future research, it will be of interest to develop
new models to explain observed risk premium in assets that have asymmetric comovement

with the market.
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2.A Appendix: Variable Definitions

Let us denote a stock i’s demeaned daily excess return as 7; 4, and demeaned daily
market excess return as 7, 4.
CAPM BETA: § is estimated at each month ¢ over the next 12-month, using the fol-

lowing formula

5 TidTm,d
/B’Lt Zd dl th~2 s 9 (2A*1)
d=1 Tm,d

where Dy is the number of trading days in a 12-month period starting from month t.
DOWNSIDE and UPSIDE BETAS: Denote the sample average of demeaned daily mar-
ket excess return during a 12-month period starting from month ¢ as fi, ;. Further denote
demeaned excess return and demeaned market excess return conditional on market excess
return being below (above) fiy: as 7, (f:d) and 7, (f;rl 4) respectively. Following the
definitions in |Ang, Chen, and Xing (2006)),
2 a<iim Tid m.d i Tid

A— , , , > o s , s s
Bi,t - Z ~—9 ) and 5i,t - Z o) . (2A*2)
T'm,d<ﬂm,t rm7d 7'm,d>/:4m,t Tm,d

COSKEWNESS: Following Harvey and Siddique| (2000), coskewness of stock i over a

12-month period starting at month ¢ is given by

d=D; ~
— T Zd 1 T drm d
coskew; ; = ,
’ Zd Dt ~2 1 d—Dt ,,’,."2
T T d=1 "m,d

where Dy is the number of trading days in a 12-month period starting from month t.

(2.A-3)

COKURTOSIS: Cokurtosis of stock i over a 12-month period starting at month ¢ is

similarly defined as

=D ~ =3

cokurt; ; = 373"
1 d=Dy 7:2 1 d=Dy ,,:2
T 2ud=1 "d\T 2ud=1 "myd

(2.A-4)

where Dy is the number of trading days in a 12-month period starting from month t.
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IDIOSYNCRATIC VOLATILITY: Ivol of stock i at the beginning of each month ¢ is
defined as the standard deviation of the CAPM residual series over the next 12 months.

SIZE: Following the existing literature, firm size at each month ¢ is measured using the
natural logarithm of the market value of equity at the end of month ¢ — 1.

BOOK-TO-MARKET: Following |Fama and French (1992]), a firm’s book-to-market ratio
in month t is calculated using the market value of equity at the end of December of the last
year and the book value of common equity plus balance-sheet deferred taxes for the firm’s
latest fiscal year ending in the prior calendar year.

MOMENTUM: Following |Jegadeesh and Titman! (1993)), the momentum effect of each
stock in month ¢ is measured by the cumulative return over the previous 6 months, with the
previous one month skipped, i.e. the cumulative return from month ¢ — 7 to month ¢ — 2.

TURNOVER: Turnover ratio is calculated monthly as the adjusted monthly trading
volume divided by shares outstanding.

ILLIQUIDITY: Following |Amihud| (2002)), the proxy for the stock illiquidity is from
normalizing L;; = |ri¢|/dv;s. It is the ratio of absolute change of price r;; to the dollar
trading volume dv; ; for stock ¢ at day ¢. The monthly illiquidity ratios are the daily average
of the illiquidity ratio for each stock. To get an accurate estimate of monthly Amihud ratio,
we drop the months for stocks if the number of the monthly observations is smaller than 15.
Following |Acharya and Pedersen| (2005)), we also normalize the Amihud ratio to adjust for
inflation and truncated it at 30 to eliminate the effect of outliers (the stocks with transaction

cost larger than 30% of the price).

capitalization of market portfolio,_;

ILLIQ; , = min (0.25 +0.3L;; X : 30> (2.A-5)

capitalization of market portfolio ;,;,1962

MAXIMUM: Following Bali, Cakici, and Whitelaw, (2011)), Max of stock i at month ¢ is

defined as the maximum daily excess return within that month.
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Panel A: Lower Quadrant Probability

Table 2.2: Univariate Portfolio Sorts: Dependence Measures

Portfolio ‘ EW Return Carhart-Alpha VW Return Carhart-Alpha
1 Low -5.89% -11.92%*** -9.16% -13.85%***
2 11.68% -1.42% 1.37% -5.99%***
3 17.23% 5.59%*** 6.26% 0.19%
4 18.11% 8.39%*** 7.84% 1.40%**
5 High 16.15% 7.97%%H* 8.89% 2.60%***
High - Low 22.03%*** 19.89%*** 18.05%*** 16.45%***
t-stat (10.31) (8.56) (8.11) (7.72)
Panel B: Upper Quadrant Probability
Portfolio ‘ EW Return Carhart-Alpha VW Return Carhart-Alpha
1 Low 17.33% 10.18%*** 12.46% 8.02%***
2 18.74% 8.66%*** 10.86% 4.72%***
3 15.61% 3.25%*** 9.08% 2.13%***
4 8.61% -3.11%%** 6.30% -0.42%
5 High -1.79% -8.82%*** 4.24% -1.85%***
High - Low -19.12%*** -19.00%*** -8.22%%H* -9.87%***
t-stat (-12.55) (-12.06) (-4.09) (-5.79)
Panel C: Downside Asymmetric Dependence
Portfolio ‘ EW Return Carhart-Alpha VW Return Carhart-Alpha
1 Low -6.96% -12.80%*** -1.56% -T.54%%H*
2 8.37% -3.88%*** 5.17% -1.86%***
3 15.82% 4.08%*** 8.38% 1.66%***
4 20.27% 9.89%*** 10.61% 4.40%***
5 High 21.21% 12.78%*** 10.78% 5.35%***
High - Low 28.17%*** 25.58%*** 12.34%*** 12.89%***
t-stat (21.45) (16.54) (9.46) (8.84)

This table reports both equal-weighted and value-weighted average annualized returns and Carhart’s
(1997) four factor alphas of stock portfolios sorted by contemporaneous lower quadrant probability,
upper quadrant probability and downside asymmetric dependence evaluated at the mean (exceedance
¢ = 0). In each month, we rank stocks into quintile (1-5) portfolios based on the next 12 month
realized measures and report the average excess returns over the same 12 months for each portfolio.
The row labeled “High - Low” reports the difference between the returns of portfolio 5 and portfolio
1, with corresponding statistical significance levels. The sample covers all U.S. common stocks traded
on the NYSE/AMEX/NASDAQ), and the sample period is from January 1962 to December 2013,
with the last 12-month period starting in January 2013. Since the 12-month returns are computed
using overlapping periods, the t-statistics computed using Newey-West (1987) heteroskedastic-robust
standard errors with 12 lags are reported in parentheses. *, ** and *** indicate significance levels
at 0.1, 0.05 and 0.01 respectively.
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Table 2.3: Univariate Portfolio Sorts: Beta Measures

Panel A: Downside Beta ()

Portfolio ‘ EW Return Carhart-Alpha VW Return Carhart-Alpha

1 Low 7.36% 0.33% 4.36% -0.28%

2 8.54% 0.73% 5.02% 0.20%

3 10.08% 0.66% 6.45% 0.05%

4 12.94% 1.74%** 8.63% 0.33%

5 High 19.60% 5.82%*** 11.24% 1.31%
High - Low 12.23%*** 5.49%%** 6.88%** 1.59%
t-stat (4.08) (2.62) (2.40) (0.73)

Panel B: Upside Beta (37)

Portfolio \ EW Return Carhart-Alpha VW Return Carhart-Alpha
1 Low 10.41% 1.55%* 5.71% -0.54%
2 10.53% 1.90%** 6.31% 0.18%
3 11.02% 2.03%*** 6.46% 1.03%*
4 11.91% 1.47%** 6.38% 0.04%
5 High 13.87% 1.86%* 6.60% -2.04%
High - Low 3.46% 0.30% 0.89% -1.50%
t-stat (1.58) (0.19) (0.38) (-0.68)
Panel C: Downside Beta - Upside Beta (8~ — )
Portfolio ‘ EW Return Carhart-Alpha VW Return Carhart-Alpha
1 Low 7.67% -1.32% 3.16% -2.15%**
2 9.61% 1.15%* 6.69% 1.12%**
3 11.06% 2.08%*** 7.30% 1.36%***
4 13.12% 2.90%*** 8.59% 0.77%
5 High 16.80% 411 %*+** 9.49% -0.17%
High - Low 9.13%*** 5.43%*** 6.33%*** 1.99%
t-stat (6.87) (4.88) (3.24) (1.00)

This table reports both equal-weighted and value-weighted average annualized excess returns and
Carhart’s (1997) four factor alphas of stock portfolios sorted by contemporaneous $~, 8+ and
B~ — BT. In each month, we rank stocks into quintile (1-5) portfolios based on the next 12 month
realized beta measures and report the average excess returns over the same 12 months for each
portfolio. The row labeled “High - Low” reports the difference between the returns of portfolio
5 and portfolio 1, with corresponding statistical significance levels. The sample covers all U.S.
common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from January
1962 to December 2013, with the last 12-month period starting in January 2013. Since the 12-
month returns are computed using overlapping periods, the t-statistics computed using Newey-West
(1987) heteroskedastic-robust standard errors with 12 lags are reported in parentheses. *, ** and
*** indicate significance levels at 0.1, 0.05 and 0.01 respectively.
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Table 2.5: Dependent Portfolio Sorts: Lower Quadrant Probability (LQP)

Panel A: Beta (8) and LQP

Portfolio ‘ 1 Low S8 2 3 4 5 High g ‘ Average
1 Low LQP -9.21% -7.66% -6.72% -4.55% 1.57% -5.32%
5 High LQP 15.39% 13.97% 13.87% 14.10% 18.96% 15.26%
High - Low | 24.59%*%*  21.63%***  20.50%**  18.65%***  17.39%*%* | 20.57%***

t-stat (20.45) (13.34) (11.20) (9.17) (7.56) (13.40)

Panel B: Size and LQP

Portfolio ‘ 1 Low size 2 3 4 5 High size ‘ Average
1 Low LQP -6.27% -9.23% -8.44% -6.24% -2.81% -6.60%
5 High LQP 26.23% 20.83% 18.03% 15.23% 11.45% 18.36%
High - Low 32.51%*** 30.07%*** 26.47%*** 21.47%*** 14.26%*** 24.95%***

t-stat (17.92) (14.05) (11.87) (10.07) (7.26) (14.39)
Panel C: Coskewness and LQP

Portfolio 1 Low 2 3 4 5 High Average

coskew coskew
1 Low LQP -1.75% -3.68% -6.36% -7.46% -7.51% -5.35%

5 High LQP 20.89% 19.59% 17.03% 14.58% 11.59% 16.73%
High - Low 22.64%*** 23.27%*** 23.39%*** 22.04%*** 19.10%*** 22.09%***
t-stat (9.88) (11.24) (11.55) (11.09) (9.03) (11.44)
Panel D: Cokurtosis and LQP
Portfolio 1 Low 2 3 4 5 High Average

cokurt cokurt
1 Low LQP -10.16% -9.08% -6.00% -2.31% 4.79% -4.55%
5 High LQP 19.36% 18.04% 17.28% 16.44% 15.56% 17.33%
High - Low 29.57%*** 27.12%*** 23.28%*** 18.75%*** 10.77%%** 21.89%***
t-stat (23.96) (18.16) (12.31) (8.82) (5.00) (14.24)

This table reports equal-weighted average annualized excess returns of portfolios double-sorted by realized
lower quadrant probability (LQP) and realized CAPM f (Panel A), firm market capitalization (Panel B),
realized coskewness (Panel C) and realized cokurtosis (Panel D), respectively. LQP is evaluated at the
sample mean. For each month, we compute LQP, 3, coskewness and cokurtosis using daily realized stock
and market excess returns over the next 12 months. Size is computed at the beginning of each month using
information at the end of previous month. First, we form quintile portfolios sorted on j3, size, coskewness and
cokurtosis respectively. Then, we rank stocks within each first-sort quintile into additional quintiles based on
LQP. The row labeled “High - Low” reports the difference between the returns of portfolio 5 and portfolio
1 in each B, size, coskewness and cokurtosis first-sort quintile with corresponding statistical significance
levels. The column labeled “Average” reports the average return of stocks in each second-sort quintile. The
sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ), and the sample period is
from January 1962 to December 2013, with the last 12-month period starting in January 2013. Newey-West
(1987) 12-lag adjusted t-statistics are reported in parentheses. *, ** and *** indicate significance levels at
0.1, 0.05 and 0.01 respectively.
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Table 2.6: Dependent Portfolio Sorts: Upper Quadrant Probability (UQP)

Panel A: Beta (3) and UQP

Portfolio ‘ 1 Low S8 2 3 4 5 High g ‘ Average

1 Low UQP 16.26% 19.60% 20.44% 22.55% 26.54% 21.08%

5 High UQP -7.82% -7.16% -5.59% -2.60% 4.72% -3.69%
High - Low | -24.37%*%%  26.76%***  -26.03%***  -25.16%***  -21.82%*** | -24.80%***

t-stat (-18.61) (-20.05) (-19.63) (-14.02) (-10.04) (-17.71)

Panel B: Size and UQP

Portfolio ‘ 1 Low size 2 3 4 5 High size ‘ Average

1 Low UQP 19.37% 16.04% 14.73% 12.06% 9.27% 14.29%

5 High UQP 0.11% -3.66% -2.65% -0.58% 3.79% -0.60%
High - Low -19.26%*** -19.70%*** -17.38%*** -12.63%*** -5.48%*** -14.89%***

t-stat (-7.83) (-9.12) (-8.54) (-6.69) (-3.11) (-8.57)

Panel C: Coskewness and UQP

Portfolio 1 Low 2 3 4 5 High Average
coskew coskew
1 Low UQP 19.44% 19.11% 17.44% 16.14% 14.58% 17.34%
5 High UQP 3.71% 0.55% -2.13% -4.38% -6.59% 1.77%
High - Low -15.72%*** -18.56%*** -19.57%*** -20.52%*** S21.17%*** | -19.11%***
t-stat (-9.12) (-11.36) (-11.95) (-13.42) (-13.26) (-12.79)

Panel D: Cokurtosis and UQP

Portfolio 1 Low 2 3 4 5 High Average
cokurt cokurt
1 Low UQP 17.55% 18.51% 18.48% 18.55% 18.40% 18.30%
5 High UQP -10.86% -11.32% -7.95% -2.89% 6.23% -5.36%
High - Low -28.7TT%*** -29.849%** -26.43%*** -21.43%*** -12.17%*** | -23.67%*FF*
t-stat (-23.40) (-18.91) (-15.57) (-14.16) (-8.81) (-18.53)

This table reports equal-weighted average annualized excess returns of portfolios double-sorted by realized
upper quadrant probability (UQP) and realized CAPM S (Panel A), firm market capitalization (Panel B),
realized coskewness (Panel C) and realized cokurtosis (Panel D), respectively. UQP is evaluated at the
sample mean. For each month, we compute LQP, 3, coskewness and cokurtosis using daily realized stock
and market excess returns over the next 12 months. Size is computed at the beginning of each month using
information at the end of previous month. First, we form quintile portfolios sorted on j3, size, coskewness and
cokurtosis respectively. Then, we rank stocks within each first-sort quintile into additional quintiles based on
LQP. The row labeled “High - Low” reports the difference between the returns of portfolio 5 and portfolio
1 in each B, size, coskewness and cokurtosis first-sort quintile with corresponding statistical significance
levels. The column labeled “Average” reports the average return of stocks in each second-sort quintile. The
sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ), and the sample period is
from January 1962 to December 2013, with the last 12-month period starting in January 2013. Newey-West
(1987) 12-lag adjusted t-statistics are reported in parentheses. *, ** and *** indicate significance levels at
0.1, 0.05 and 0.01 respectively.
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Table 2.7: Dependent Portfolio Sorts: Downside Asymmetric Dependence (DownAsy)

Panel A: Beta (8) and DownAsy

Portfolio ‘ 1 Low S8 2 3 4 5 High g ‘ Average

1 Low DownAsy -8.55% -7.77% -7.46% -6.28% -0.28% -6.07%

5 High DownAsy 16.90% 20.31% 21.77% 24.74% 28.68% 22.48%
High - Low 25.45%*** 28.08%*** 29.22%*** 31.01%*** 28.96%*** | 28.55%%**

t-stat (24.86) (26.14) (21.46) (18.83) (14.89) (23.35)

Panel B: Size and DownAsy

Portfolio ‘ 1 Low size 2 3 4 5 High size ‘ Average

1 Low DownAsy -4.74% -8.18% -7.24% -4.92% -1.13% -5.24%

5 High DownAsy 26.12% 22.47% 19.21% 14.63% 10.95% 18.68%
High - Low 30.86%*** 30.65%*** 26.46%*** 19.54%*** 12.08%*** | 23.92%***

t-stat (22.50) (17.87) (15.04) (12.84) (11.33) (18.85)

Panel C: Coskewness and DownAsy
Portfolio 1 Low 2 3 4 5 High Average
coskew coskew

1 Low DownAsy -1.97% -5.25% -7.58% -8.83% -9.49% -6.62%

5 High DownAsy 24.89% 24.07% 21.63% 19.31% 16.17% 21.21%
High - Low 26.86%*** 29.32%*** 29.20%*** 28.14%*** 25.65%*** | 27.83%***

t-stat (16.23) (21.83) (21.48) (21.59) (19.87) (22.36)

Panel D: Cokurtosis and DownAsy
Portfolio 1 Low 2 3 4 5 High Average
cokurt cokurt

1 Low DownAsy -10.28% -10.61% -7.89% -4.00% 3.69% -5.82%

5 High DownAsy 19.65% 21.83% 22.20% 21.94% 20.46% 21.22%
High - Low 29.93%*** 32.44%*** 30.09%*** 25.94%*** 16.77%*** | 27.03%***

t-stat (30.12) (24.50) (18.90) (14.53) (10.44) (22.06)

This table reports equal-weighted average annualized excess returns of portfolios double-sorted by realized
downside asymmetric dependence (DownAsy) and realized CAPM S (Panel A), firm market capitalization
(Panel B), realized coskewness (Panel C) and realized cokurtosis (Panel D), respectively. DownAsy is
evaluated at the sample mean. For each month, we compute LQP, 3, coskewness and cokurtosis using daily
realized stock and market excess returns over the next 12 months. Size is computed at the beginning of
each month using information at the end of previous month. First, we form quintile portfolios sorted on
3, size, coskewness and cokurtosis respectively. Then, we rank stocks within each first-sort quintile into
additional quintiles based on LQP. The row labeled “High - Low” reports the difference between the returns
of portfolio 5 and portfolio 1 in each 3, size, coskewness and cokurtosis first-sort quintile with corresponding
statistical significance levels. The column labeled “Average” reports the average return of stocks in each
second-sort quintile. The sample covers all U.S. common stocks traded on the NYSE/AMEX/NASDAQ),
and the sample period is from January 1962 to December 2013, with the last 12-month period starting in
January 2013. Newey-West (1987) 12-lag adjusted t-statistics are reported in parentheses. *, ** and ***
indicate significance levels at 0.1, 0.05 and 0.01 respectively.
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Table 2.11: Trading Strategy Based on Past Downside Asymmetric Dependence (DownAsy)

Panel A: Portfolios Returns with 12-month Holding Period

Portfolio ‘ Return CAPM-Alpha FF-Alpha Carhart-Alpha
1 Low 10.63% 4.89%*** 0.51% 1.38%**
2 9.66% 3.57%*H* 0.48% 1.02%*
3 10.28% 4.16%*** 1.05%* 1.17%**
4 11.81% 5.47%*** 2.15%*** 1.47%***
5 High 13.86% 7.86%*** 3.98%*** 2.61%***
High - Low 3.22%%** 2.97%%** 3.47%*** 1.23%*
t-stat (3.73) (3.35) (3.52) (1.78)

Panel B: Portfolios Returns with 1-month Holding Period

Portfolio ‘ Return CAPM-Alpha FF-Alpha Carhart-Alpha
1 Low 0.65% 0.15% -0.12%* 0.02%
2 0.75% 0.17% -0.03% 0.06%
3 0.85% 0.27%*** 0.07%* 0.12%***
4 0.94% 0.36%*** 0.16%*** 0.16%***
5 High 1.03% 0.49%*** 0.25%*** 0.21%***
High - Low 0.37%*** 0.34%*** 0.38%*** 0.19%**
t-stat (4.39) (4.04) (4.61) (2.47)

This table reports equal-weighted average returns and alphas of stock portfolios sorted by past
DownAsy evaluated at the sample mean. In each month, we rank stocks into quintile (1-5) portfolios
based on the past 12-month realized DownAsy. we report the average excess returns/alphas over the
next 12 months for each portfolio in Panel A and the average excess returns/alphas over the next 1
month in Panel B. The row labeled “High - Low” reports the difference between the returns/alphas
of portfolio 5 and portfolio 1, with corresponding statistical significance levels. The sample covers
all U.S. common stocks traded on the NYSE/AMEX/NASDAQ, and the sample period is from
January 1963 to December 2013, with the last 12-month period starting in January 2013. The
t-statistics computed using Newey-West (1987) heteroskedastic-robust standard errors with 12 lags
are reported in parentheses for Panel A and standard t-statistics in parentheses for Panel B. *, **
and *** indicate significance levels at 0.1, 0.05 and 0.01 respectively.
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Chapter 3

The Gap Between the Conditional Wage
Distributions of Incumbents and the Newly Hired
Employees: Decomposition and Uniform Ordering
(joint with Esfandiar Maasoumi and Melinda Pitts)

Abstract

We examine the cardinal gap between wage distributions of the incumbents
and newly hired workers based on entropic distances which are well defined wel-
fare theoretic measures. Decomposition of several effects is achieved by identify-
ing several counterfactual distributions of different groups. These go beyond the
usual Oaxaca-Blinder decompositions at the (linear) conditional means. Much
like quantiles, these entropic distances are well defined inferential objects and
functions whose statistical properties have recently been developed. Going be-
yond these strong rankings and distances, we consider weak uniform ranking of
these wage outcomes based on statistical tests for stochastic dominance. The
empirical analysis is focused on employees with at least 35 hours of work in the
1996-2012 monthly Current Population Survey (CPS). Among others, we find
incumbent workers enjoy a better distribution of wages, but the attribution of
the gap to wage inequality and human capital characteristics varies between
quantiles. For instance, highly paid new workers are mainly due to human
capital components, and in some years, even better wage structure.

Keywords: Wage gap, metric entropy distance, stochastic dominance, wage
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distributions, counterfactual analysis, inequality, labor markets.
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3.1 Introduction

Wage differentials among different types of workers, e.g. the gender earnings gap, wage
differences between immigrants and natives, etc., have drawn much attention from labor
economists and policy makers. There is an extensive literature on labor market outcomes,
much of it focused on the analysis of the wage gap at the mean, median and other quan-
tiles of the wage distribution. More recently, techniques have been provided for identifying
entire distributions and general function of the distributions. These techniques provide the
backdrop for the current paper’s approach. One central object of inference in this paper
is a summary measure of the “distance” between the entire distributions of interest. Our
proposed summary measure makes clear that all other measures of the gap between two
distributions are special, and all imply and are implied by well defined welfare functions.
Seen in this light, comparison at the mean, median, or any particular quantile would appear
to place too much weight on a part of the population, or too equal a weight everywhere.
For example, Blau and Kahn| (2006) documented the slowing convergence of the gender gap
at the mean, median and 90th percentile levels. |Albrecht, Bjorklund, and Vroman| (2003])
looked at wages differentials at different parts of the distribution to see whether the gender
gap is larger in the upper tail than in the lower tail of the wage distribution due to a “glass
ceiling” effect in Sweden. Kampkotter and Sliwka; (2011)investigated average wage differ-
ences between newly hired and incumbent employees. While these focused examinations
are informative and useful, recent papers have examined the wage differentials at the entire
distribution level. For example, Maasoumi and Wang| (2013)) employed a metric entropy
measure proposed by |Granger, Maasoumi, and Racine| (2004]) to examine the gender wage
gap based on the metric distance between two distributions. The measure is the metric
member of the Generalized Entropy class of measures with very credible welfare theoretic
foundations.

All measures of the gap provide strong ranking of outcome distributions since they are
based on implicit “cardinal” welfare or weighting functions. They are inevitably subjective

even though some are less extreme than others. In view of this, we explore weak uniform
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rankings based on the concept of stochastic dominance which allow assessments over entire
classes of welfare functions. We do so by rigorous statistical tests for various orders of
dominance.

A key issue of interest is about decomposition of observed gaps and rankings in order to
identify the factors that underlie the overall wage differentials. Specifically, are those differ-
entials associated with inequality or discrimination in the wage structure, or are they due
to human capital composition effect. The classic decomposition method is due to |(Oaxaca
(1973)) and [Blinder| (1973). It is a regression-based method focusing on linear conditional
mean decomposition. One major limitation of the Oaxaca-Blinder procedure discussed by
Barsky et al| (2002) is that the decomposition provides consistent estimates of the struc-
ture and composition effect only under the assumption that the conditional expectation
is linear. As advocated in DiNardo, Fortin, and Lemieux (1996)), we take an alternative
non-parametric decomposition approach based on propensity score reweighting methods.
The key advantage of this reweighting approach is that it identifies the counterfactual dis-
tribution under less restrictive assumptions and hence can easily be applied to more general
distributional statistics, rather than the simple mean and quantiles.

Several recent papers, e.g. [Firpo, Fortin, and Lemieux| (2007), Maasoumi and Wang
(2013)), have applied this reweighting method for wage gap decompositions. Following the
recent approach, this paper decomposes the wage gap between newly hired and incumbent
employees across the entire distribution. The wage differences between newly hired and
incumbent employees is a less studied topic in labor economics. The seminal work of
Doeringer and Piore (1985)) provided a theoretical foundation in this area, claiming that
the incumbent wage could partially be determined by internal labor markets. Following the
work of Baker, Gibbs, and Holmstrom| (1994), many empirical studies investigated the wage
structure of the internal labor markets. But very few studies have been done to examine
the difference between the wage structure of the internal labor markets and that of the
external labor markets. Studying the differential is very important because it sheds light

on how much external market forces could determine the wage formation within firms. It
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could also potentially serve as an indicator of competitiveness of labor markets, since wage
differentials between new hires and incumbents with identical characteristics should not
exist in perfectly competitive labor markets.

This paper’s analysis focuses on a sample of employed workers. As we do not address
the issue of selection into the labor market, this work is only generalizable to the work force
and not the population as a whole. The plan of the rest of the paper is as follows. In
section 3.2, the decomposition and counterfactual approach are explained. Subsection 3.2.1
introduces the idea of decomposition with a general distributional function. Subsection 3.2.2
discusses the Oaxaca-Blinder decomposition that employs linear conditional expectation as
the functional form. Section 3.3 first introduces a metric entropy measure and its welfare
implications, and then discusses the empirical and analytical methodologies in details, i.e.
the stochastic dominance tests and the propensity score reweighting method used to identify
counterfactual distributions. Section 3.4 explains how to construct the linked CPS monthly
data set used in the paper. Section 3.5 gives the results of the stochastic dominance tests

and counterfactual analysis. The conclusion is in Section 3.6.

3.2 The Decomposition Problem

A key question of interest in this paper is how to decompose the distributional wage gap
between incumbent and newly hired employees into a composition effect, corresponding to
differences in the covariates between the two groups, and a wage structure effect corre-
sponding to differences in the return to the covariates. In this section, we present a general
theoretical framework illustrating the decomposition at the distributional level. We also
link this decomposition to the more popular Oaxaca-Blinder decomposition method. We
then propose to apply an entropy metric, a distributional statistic that could summarize
differences between two distributions, to measure the structure and composition effects, and

present its welfare function underpinnings.
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3.2.1 Decomposition with General Distributional Function

The outcome variable of interest is the log hourly wage. We have two groups of workers,
the incumbent group denoted as group 0 and the new hire group denoted as group 1.
Let In(w®) and In(w') denote the log wages of incumbent and newly hired employees,
respectively. We observe a random sample of N = Ny + Ny workers. Ny denotes the
sample size of incumbents and N7 is the sample size of the newly hired employees. Let
Fo(y) = Prlin(w®) < y] represents the cumulative distribution function (CDF) of in(w°)
and fo(y) is the corresponding probability density function (PDF). The same notations
apply to the log wages of newly hired employees.

The wage structure of the incumbent group is denoted by gg and that of the newly hired
group is denoted by ¢;. Individual wages are determined non-parametrically by both ob-
served characteristics X; and unobserved characteristics ¢; via the unknown wage structure

functions gg,

In(wP) = gp(X;, &) for D=0,1 (3.1)

This non-parametric approach avoids imposing distributional assumptions or specific
functional forms, which allow for very flexible interactions among X; and ;. We only assume
that (In(w), X, D) have some unknown joint distribution. Under such specification, the wage
differential is assumed to be associated to two primary sources: (1) differences in observed
human capital characteristics X; (e.g. education, age, etc.), and unobserved human capital
characteristics ¢; (e.g. innate ability). However, under the unconfoundedness assumption
elaborated in the next section, the composition effect only comes from differences in X; and
differences in the wage structures, gp(-).

With observed data, we can identify the conditional distribution of a new hire’s log
hourly wage, In(w!)|X,D =1 4 Fy|x, and the conditional distribution of the incumbent’s
log hourly wage, In(w’)|X,D = 0 4 Fyx. With certain further assumptions discussed

later, we are able to identify the conditional counterfactual distribution of In(w®)|X,D =
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14 Fe|x using the aforementioned propensity score reweighting method. The conditional
counterfactual distribution Fiy is the wage distribution that would have been observed
under the wage structure of group 0, but with the distribution of observed and unobserved
characteristics of group 1. Accordingly, the unconditional (on X) distributions are denoted
as F1, Fp, and F.. We analyze the distributional wage gap between groups 0 and 1 using
some distributional function. Following Firpo, Fortin, and Lemieux! (2007, we denote v as a
function of the conditional joint distribution of (In(w'),In(w?)) |D ,ie. v: F, — R, where
F, belongs to a class of distribution functions that satisfy V F € F,, and || v(F) ||< +oc.
Under this specification, the distributional wage gap between two groups can be written in

terms of v:

A6 =V (Fl) — VUV (Fo) =V — 1 (32)

We can then further decompose equation into two parts, given that X is not evenly

distributed across the two groups:

O =1 —ve)+ (vo —w) = A+ Ak (3.3)

where the first term A reflects the wage structure effect, meaning the effect caused by
changing ¢ (-, -) to go (-, -) while holding characteristics (X,e) |D = 1 constant. The other
term A% indicates the composition effect, which is the effect from changing the distribution
of characteristics from (X,e)|D =1 to (X,e)|D = 1, while keeping the “wage structure”

go (+,-) constant.

3.2.2 Oaxaca-Blinder Decomposition as a Special Case

With such settings, we can include Oaxaca-Blinder decomposition as a special case, where
the v function is the mathematical expectation E. Under the assumption that the condi-

tional expectation takes linear form, we have
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E [In(wP)|X] = X:Bp, forD=0,1 (3.4)

Then the expected wage gap between the “treated” and untreated group, A’é, can be

written as

D = Bo[E[(In(w) X, D = 1)] - E, [E[(in(w)|X, D = 0)]
= Eln(w)|D = 1] ~ Elin(w)|D = 0]
— E[X|D = 1]3 - E[X|D = 0]4
— E[X|D = 1](8 — o) + (E[X|D = 1] — E[X|D = 0)) s

EA{;‘FA%

The second line follows from the Law of Iterated Expectations. Note that the decom-
position in the fourth line uses group 1 as the base group. The counterfactual outcome
indicates the mean wage that would have been observed under the wage structure of group
0, but with X from group 1, can directly be computed by E[X|D = 1|8y, which is the
counterpart of v¢ in equation A’ is the mean wage structure effect and accordingly
A% stands for the mean composition effect. Oaxaca-Blinder decomposition is very appeal-
ing empirically due to its ease of estimation and interpretation. However, as |Barsky et al.
(2002)) pointed out, consistent estimates of both effects rely on the assumption of the lin-
ear structure, which is restrictive. Moreover, Kline (2011)) showed that the counterfactual
mean identified by the Oaxaca-Blinder method constitutes a propensity score reweighting
estimator based upon a linear model for the conditional odds of being treated. Therefore,
Oaxaca-Blinder decomposition is indeed a special linear case of propensity score reweighting
method. By applying the reweighting method generally, we impose less structure and hence

lead to more robust inference.
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3.3 Empirical Methodology

3.3.1 A Metric Entropy Measure of the Wage Gap

A comparison of means is implicitly based on a welfare/weighting function that is additive
and attaches equal weight to each wage earner. Among others, this implicit welfare function
imposes infinite substitutability. Assessment at the median, or any other quantile is justified
by even more radical welfare weighting schemes. To overcome these limitations we choose
more general distributional functions that could summarize information along the whole dis-
tribution. Several commonly used information-based entropy measures such as Shannon’s
entropy and Kullback-Leibler relative entropy are good candidates for such distributional
functions. They are well analyzed in the field of income inequality where the corresponding
welfare functions are identified. For instance, an axiomatic approach to “ideal” inequality
measures, equivalently welfare functions, or risk averse utility functions, renders the class
of Generalized Entropy as ideal. Further additive decomposition requirements render Shan-
non’s entropy, and Theil’s measures of inequality as “best”. (For example, see Bourguignon
(1979), Shorrocks| (1978), and Maasoumi (1986)) Inequality measures are divergence mea-
sures between any distribution and a uniform (rectangular) size distribution representing
perfect equality. The latter is eliminated when the difference between the “inequalities” of
two wage distributions is computed. However, entropy divergence measures are generally
not metric since they violate the triangular inequality. Hence they are not proper measures
of distance. This paper uses a metric entropy measure S, proposed by Granger, Maasou-
mi, and Racine| (2004) as the specific distributional v function, which is a normalization of
the “Bhattacharya-Matusita-Hellinger” measure of distance. It is the one member of the

Generalized Entropy family that is a metric. It is given by

So=3 | U =15y (35)

This measure has several desirable properties: 1. it is well defined for both continuous
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and discrete variables{l] 2. it is normalized to 0 if two distributions are equal and lies
between 0 and 1; 3. it satisfies the properties of a metric and hence is a true measure of
distance; and 4. it is invariant under continuous and strictly increasing transformation on
the underlying variables. Note that the natural log of earnings is used through out this
paper. Since the logarithm is a strictly increasing function, the findings of this paper are
invariant whether using the raw wages or the log form. Following |Granger, Maasoumi, and
Racine (2004) and Maasoumi and Racine| (2002)), we consider a kernel based nonparametric

implementation of the entropy measure shown in equation [3.5)

3.3.2 Stochastic Dominance

Using S, as the distributional distance measure, we can estimate the distance between
original wage distribution and counterfactual wage distribution, and thus the distributional
wage structure and composition effects. However, this analysis is still subjective as it would
reflect the social welfare based on the generalized entropy function.

In order to compare the different wage distributions robustly, and relative to large
classes of welfare functions, we need to examine Stochastic Dominance rankings. First
order Stochastic Dominance corresponds to a class (denoted as Uj) of all (increasing) von
Neumann-Morgenstern type of social welfare functions u such that welfare is increasing in
wages (i.e. v/ > 0), and the second order Stochastic Dominance test corresponds to the
class of social welfare functions in U; such that v” < 0 (i.e. concavity), denoted as Us.
Concavity implies an aversion to higher dispersion (or inequality) of wages across workers.

In this paper, we focus on the one-dimensional social welfare function of only earnings.

Case 1. First Order Dominance: Incumbent employee wage distribution First Order S-
tochastically Dominates newly hired employee wage distribution (denoted as

In(w®) FSD In(w')) if and only if
1. Elu(ln(w®))] > Elu(In(w!))] for all u € Uy with strict inequality for some u;

2. Or, Fy(y) < Fi(y) for all y with strict inequality for some y.

'For discrete variables, S, = 1 Z(p}/2 — p(l)/Q)A
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Case 2.  Second Order Dominance: Incumbent wage distribution Second Order Stochasti-
cally Dominates newly hired employee wage distribution (denoted as In(w®) SSD
In(w!)) if and only if
1. Efu(in(w®))] > Eu(ln(w'))] for all u € Uy with strict inequality for some wu;
2. Or, [Y_Fy(t)dt < [Y_ Fi(t)dt for all y with strict inequality for some y.
The stochastic dominance tests used in this paper are based on a generalized Kolmogorov-

Smirnov test as discussed in Linton, Maasoumi, and Whang (2005)). The test statistics for

FSD and SSD are given by

d = %min{snp[ﬁb(y) — Fi(y)], sup[Fi(y) — Fo(y)]} (3.6)
s = ]\%min{sup /_:[Fo(t) — Fi(t)]dt, sup /—yoo[Fl(t) — Fo()]dt}  (3.7)

When we report the empirical test results in Section 5, we denote sup[Fo(y) — F1(y)]
as di,maz and sup[F1(y) — Fo(y)] as d2maz. We report both di ;me, and da e, along with
the test statistic d for clarity of interpretation. $i 4z and $2 4, are similarly defined.
In empirical applications, the CDFs are replaced with their empirical counterparts. The
empirical CDFs are given by F/d(y\) = Nid vazdl I(In(wd) < y), d = 0,1, where I(-) is an
indicator function. The underlying distribution of the test statistics are generally unknown
and depend on the data. Following Maasoumi and Heshmati (2000), simple bootstrap

technique based on 199 replications are employed to obtain the empirical distribution of the

test statistics.

3.3.3 Identification of the Counterfactual Distributions

The fundamental question this paper addresses is to identify the wage structure and compo-
sition effects through the identification of counterfactual wage distributions, and determine
which effect dominates the wage differential. We consider the following counterfactual situ-

ation: holding the human capital characteristics of the newly hired workers constant, if we
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change their wage structure to the wage structure of the incumbents, would the counterfac-
tual wage distribution be different from the original one? If so, would the counterfactual
wage distribution stochastically dominate the original one in terms of welfare? If we find
such dominance in the first or second order, we would conclude that the wage structures are
different and the internal wage structure is better. Similarly, we could also check whether
the wage gap is due to differences in human capital characteristics by changing the dis-
tribution of the newly hired employees’ characteristics to that of the incumbents, holding
their wage structure unchanged. To conduct such counterfactual analysis, we follow the
propensity score reweighting methods as discussed in [Firpo| (2007)) to identify the coun-
terfactual distributions mentioned above. Simple bootstrap with replacement is applied to
obtain the statistical significance of the dominance tests. Specifically, we want to identify

the distributions of the following two counterfactual outcomes:

In(wé) = go(Xs,&)|D=1 (counterfactual outcome #1) (3.8)

In(w?) = g1(Xi,e)|D=0 (counterfactual outcome #2) (3.9)

The benchmark outcome we considered is the conditional wage distribution of the new
hires In(w}) = g1(Xi1,€i1). The counterfactual outcome #1, In(wg!), indicates the hypo-
thetical unobserved wage of the newly hired employees if they were paid under the incumbent
wage structure. Comparing the benchmark wage in(w}) to In(w§') using the S, measure
would yield the wage structure effect A% as in equation Comparing distributional
distance between In(w§') and the incumbent wage In(w?) would give us the composition
effect, denoted by A’ in equation However, that would require using ln(w?) as the
benchmark. For ease of interpretation, we choose to use In(w}) as the benchmark when
identifying both effects and construct counterfactual outcome #2 ln(wa), which indicates
the hypothetical wage of the newly hired employees if they had the characteristics of the

incumbents. With the new hire wage as the benchmark, S, measure of In(w}) — In(w$?)
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gives the composition effect that are reported in empirical applications in Section 5.
Firpo (2007) proved that under certain assumptions, such counterfactual distributions
are identified. Following [Firpo (2007)) and |Firpo, Fortin, and Lemieux| (2007)), we make

similar assumptions:

1. Unconfoundedness: Suppose (Y, D, X) have a joint distribution, where Y is the out-
come and D is a dummy indicating treatment: (Y7,Yy) and D are jointly independent

conditional on X = z.

2. Common support: For allz € X, 0 < Pr{D =1|X =z} :=p(z) < 1.

Assumption 1 means that fixing the values of observable human capital characteristics
X, the distribution of the wage outcome or the error term ¢ is independent of whether one
is incumbent or newly hired. Assumption 2 rules out the possibilities that some specific
x belongs only to either one of the two worker groups and hence such x can predict the
probability of being treated perfectly.

The counterfactual distribution of In(wg!) could be identified by the following propensity

score reweighting methods discussed in [Firpo| (2007)).

Fcl = E[wd(Dl, X) . I[(ln(wl) S y)] (310)

where we1 (D1, X) = (129(1?;)) (1;?1>, D1 is a treatment dummy variable taking the
value of 1 for incumbent employees, pi(z) = Pr{D; = 1|X = z} is the propensity score,
p1 = Pr{D; = 1} = E[p;(X)] is the marginal probability of being treated. In practice, we
will estimate the propensity score parametrically using a logit modelﬂ Applying the weights
wet (D1, X) gives us the counterfactual distribution of In(w¢!). Identifying the distribution

of counterfactual outcome ln(w?), Fo, is similar, but we need to take newly hired employees

as the treated group. Let Do be the treatment dummy taking the value of 1 for new hires.

2Nonparametric kernel regression can also be used to estimate the propensity score, which allows more
flexible dependence relations among independent and dependent variables.
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Fry = E [wea(Da, X) - I[(In(w;i) < y)] (3.11)

where wea(Da, X) = (%) (%), p2(x) and po are similarly defined as in the

previous caseﬁ Applying the weights wea(Da2, X) gives us the counterfactual distribution of
In(w$?). Once we identify the counterfactual distributions of interest, we can then perform
stochastic dominance tests to compare those counterfactual distributions with the original

distribution.

3.4 Data

The data used in this paper come from 1996-2012 monthly Current Population Survey
(CPS). The monthly CPS is a survey of a probability sample of housing units. Although
the CPS is designed to be a cross-sectional survey, it does not survey a completely new
set of housing units every month. The sample is divided into eight representative rotation
groups. Therefore, a typical housing unit in the sample is interviewed in 8 different months,
given no attrition during survey period. If a housing unit is randomly selected into monthly
CPS for the first time, it will be interviewed for four consecutive months, followed by an
8-month break, and then be surveyed for another four consecutive months. The rotation
group could be identified by the CPS variable “month in sample” (MIS).

The CPS sample design actually allows us to longitudinally link a household in sample
over 8 different months. Following methods as discussed in Madrian and Lefgren (1999),
we conducted one-month matching for all the eligible rotation groups (MIS = 2-4 or 6-8)
in each monthly sample, i.e. linking those eligible subsamples with their previous month
observationsﬁ In our sample, the matching rate for those eligible groups is over 90 percent

on averageﬂ Using this longitudinally linked data set, we could identify the incumbent and

3Note that under such setting, p1(z) 4+ p2(z) = 1 and p; + p2 = 1.

4In 1995, the Census made some changes to CPS sample ID variable, which leads to very poor matching
rates for that year, so we chose 1996 as the starting year to circumvent the problem.

®One shortcoming of this linked data is that we can only follow workers who remain in the same household.
Thus any new hire that moved in order to take a new job could not be matched in this data set.
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newly hired employees. Since we are interested in the wage differentials, we first restrict
our sample to individuals of working age, i.e. those who aged from 18 to 64. Then we
keep those who remained full-time employed (35 hours per week or above) in both month
t —1 and month ¢t. Among those full-time workers, we define incumbent workers to be those
who stayed with the same employer from month ¢ — 1 to t. The newly hired employees are
defined to be those who changed their employer from month ¢ — 1 and ¢, i.e. workers that
switched to a new job with a new employer at time tﬁ

Following the literature (e.g. Maasoumi and Wang (2013)), we use the log of hourly
wages, measured by an individual’s weekly wage income divided by the number of hours
worked per week. Note that, as we mentioned above, the metric entropy measure of the wage
differential and stochastic dominance tests are invariant to the logarithm transformation,
while many conventional measures are not. The observed human capital variables used
in the counterfactual analysis include age, age squared, gender, education (five education
groups: less than high school, high school, some college, college, graduate), marital status,
ethnicity and region (Northeast, Midwest, South and West). Occupation variable is grouped
into three categories: high-skill (managerial and professional occupations); medium-skill
(technician, technical production, sales, and administrative support occupations); and low-

skill(other occupations such as maintenance, construction, and farming occupations).

3.5 Results

3.5.1 Baseline Analysis
Trend of the Wage Differential between Internal and External Labor Markets

Table shows various measures of the log wage differences between the incumbent and
newly hired employees, i.e. In(w®) — In(w!). The second column in the table reports the
distributional measure of the wage gap S,. Since S, is a normalized metric taking on values

between 0 and 1, for easy interpretation we report the original results multiplied by 100

SWe also exclude those with hourly wage less than or equal to 1 dollar, because those extremely low
wages are likely be due to misreporting.
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throughout the paper. Under the null hypothesis of no difference between incumbent and
new hire wage distributions, we calculate the statistical significance of the S,measure using
199 simple bootstrap replications. The p values are reported in the third column. The
other columns in Table report conventional measures (e.g. mean, median and quantiles
at various levels) of earning differentials commonly used in the literature. We can see that
both the traditional measures and the metric entropy measure S, imply that there exists
wage differentials between those two groups of workers for all the years in sample. The
distributional distances are statistically significant at 5% in 2011 and at 1% in remaining
years. The mean differences and all the quantile differences except for the 90th quantile in
2010, are all positive, clearly showing wage gaps that in favor of the incumbent employees.
However, it is hard to tell a clear trend over time for any of these measures and even harder
to tell whether our new measure shows a different pattern of the time trend from other

traditional measures.

[Insert Table |3.1| about here]

The S, measure and other conventional measures are not directly comparable. Thus,
to enable easy comparisons, we normalize all these measures by setting the value in the
year of 1996 to 100 and computing the normalized values. The plot of these normalized
values of S,, mean, median, 25th and 75th percentiles in Figure As shown in the graph,
other than the 75th percentile, the traditional measures display similar time trends as the
S, entropy measure. In order to check how the wage differentials fit with macro business
cycles, we plot the recession periods with shaded vertical bars in the figure. During the
sample period, Mar 2001 to Nov 2001 and Dec 2007 to Jun 2009 are considered as recession
periods by the NBER. Since our measures are computed at yearly frequency, we roughly
pick 2001, 2008 and 2009 as the recession years and the three years are indicated by the
shaded bars in Figure 1. The line plots do not show very clear cyclical patterns, but all
measures, except the 75th percentile of wage differentials do seem to increase during the

recent great recession period from 2008 to 2009. During the great recession the level of
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payroll employment fell by 5.4%, more than four times the employment decline faced in the
2001 recessionm Many firms reduced or halted hiring, which reduced the bargaining power
of those job seekers. So the newly hired employees may have had to accept lower wages,

which increases the wage gaps between the incumber and the newly hired workers.

[Insert Figure |3.1] about here]

Stochastic Dominance Test Results

As discussed above, these measures of the gender gap could not give a clear ranking of the
earnings distributions in terms of social welfare. Therefore, in Table we present the
stochastic dominance test results. The second column labeled Observed Ranking details if
the distributions can be ranked in either the first or second order, where FSD is short for
First-order Stochastic Dominance and SSD stands for Second-order Stochastic Dominance.
The columns labeled Pr[d < 0] and Pr[s < 0] report the probabilities of the test statistics
(of the first and second order dominance tests respectively) to be non-positive based on the
simple bootstrap with replacement for 199 replications. The probability serves a similar
role as p-values in any hypothesis test, but the interpretation is reversed. For example, if
we observe FSD (SSD) and Pr[d < 0] (Pr[s < 0] ) is 0.95, then it means that the test

statistic is statistically significant at 5% level (p-value=0.05).

[Insert Table |3.2| about here]

From Table we can see that the wage distribution of incumbents lies predominantly
to the right of the wage distribution of new hires, meaning that incumbent workers enjoy
higher level of wages. For all the years in sample, we find stochastic dominance relations
either in the first or second order. In 4 out of 17 years (1996, 2004, 2007 and 2008), we
find the wage distribution of incumbent workers to empirically dominates, in a first-order
sense, the wage distribution among newly hired workers, but such dominance relation is

not statistically significant in any of the 4 years. For the remaining years, highly significant

" Authors’ calculation; Source: BLS, Haver Analytics
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second-order dominance is found in the years of 1997, 2000-2002 and 2008, with confidence
level greater than 0.95. This suggests that any worker with a social welfare function in
the class Us (increasing and concave in wage) would prefer the incumbent distribution to
the new hire distribution in those 5 years. Such dominance ranking is only possible when
we account for an aversion to higher dispersion in the welfare criteria. This finding is
quite interesting because those significant second-order dominance cases mainly occurred
around recession periods (2001 and 2008 are recession years). Second-order dominance
indicates that starting from the very left tail of the wage distribution, incumbent workers
are better paid than newly hired workers at most quantiles. This is in line with the findings
of |Oreopoulos, Von Wachter, and Heisz (2006)), which finds that young graduates entering
the labor market in a recession suffer significant initial earnings losses. SSD also suggests
that at the far right tail of the wage distribution, some newly hired workers could be paid
better than their incumbent counterparts. One possible explanation could be the differences
in human capital characteristics. Those who managed to find highly paid jobs during a
recession may have very strong human capital characteristics. We will further test this

hypothesis using counterfactual analysis in a latter section.

3.5.2 Counterfactual Analysis

Table reports the estimated wage structure effect, i.e. the wage gap caused by the
inequality in the pay structure. Metric entropy and traditional measures of the log wage
differences between the newly hired employees and their counterfactual outcome #1, i.e.
In(w') — In(we), are presented. The p values of S, measure are calculated using the
same bootstrap method as applied in Table From Table [3.3] we can see that most
means and quantiles in almost all years except for 2011 are negative, which means that the
counterfactual wages under the incumbent’s wage structure while keeping new employee
characteristics unchanged are generally better than actual wages those new hires earn. The
distributional distance measured by S, is smaller and less significant than the distance

between n(w’) and In(w), as it only reflects the wage structure effect.
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[Insert Table about here]

Table reports dominance test results of the actual wage distribution of the new hires
versus the counterfactual wage distribution #1. Recall that this comparison identifies the
difference of the wage structures between the external and internal labor markets. Any
finding of stochastic dominance indicates the inequality in the pay structure instead of the
differences in human capital characteristics. We find the counterfactual wage distribution
#1 SSD the original wage distribution of the new hires for all the years in sample, except for
the year of 2011, which means that if the newly hired workers were paid under incumbent
wage structure, such outcomes are preferred at least for those with social welfare functions
in the class of Us. As indicated by the bootstrapped probabilities, those dominance relations
are statistically significant in 1997, 2006 and 2008, with confidence level greater than 0.9
and are close to significant in 2000 and 2001. Second-order dominance indicates that such
findings holds mainly at the lower tail of the wage distribution, while at the upper tail, the
wage structure of those new hires may actually be better than those of the incumbents, so
such counterfactual wages may be lower than their actual wages for those highly paid new
employees. To further test this finding, in the following subsection we divide our sample
into two sub groups, higher and lower wage groups, and conducted counterfactual analysis

respectively.

[Insert Table about here]

Table reports the estimated composition effect, i.e. the wage gap caused by the
differences human capital characteristics. S, and conventional measures of the log wage
differences between the newly hired employees and their counterfactual outcome #2, i.e.
In(wl) — In(w?), are reported. From the table we can see that all the means and quantiles
in all the years in the sample are negative, which indicates that the counterfactual wages
under the incumbent characteristics while keeping new hire’s wage structure unchanged are
generally better than actual wages of the new hires. We conclude that the differences in

human capital characteristics between the incumbents and new hires also contributed to
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the their wage gap. The distributional distance measured by S, is a little smaller and less
significant than those reported in Table which means that the estimated composition

effect is smaller compared to the estimated wage structure effect.

[Insert Table about here]

Table reports the stochastic dominance test results from the comparison between the
actual wage distribution of the new hires versus the counterfactual wage distribution #2.
Note that this comparison identifies the wage gap caused by differences in human capital
characteristics. As shown in the table, we find the counterfactual wage distribution #2
FSD the actual new hire wage distribution in all year. However, such first-order dominance
relations are not statistically significant. FSD always indicates SSD, but those second-order
dominance relations are largely insignificant as well. Hence we have found some evidence
for differences in human capital characteristics, but the evidence is not quite strong. The
data seem to tell us that even though there is some difference in human capital between
incumbent and newly hired workers, such a difference is not large enough to be statistically

meaningful.

[Insert Table about here]

3.5.3 Counterfactual Analysis of Different Wage Groups

In this section, we report the findings of counterfactual analysis for different wage groups.
We used the weighted median wage of our sample, $18.5 per hour, as the cut-off point.
Higher wage group consists of workers with wages above the median, and the rest are in

the lower wage group.

Counterfactual Analysis of Higher Wage Group

We conducted the two kinds of counterfactual analysis again for the higher wage workers.
The findings are reported in Tables and In line with Table Table also

indicates a first-order distributional wage premium of human capital characteristics in favor
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of the incumbents. But still, among higher paid workers, such an edge is also not statistically
significant, neither is the second-order dominance relation significant for any year in sample.
We have our most interesting findings in Table which summarize the wage gap caused

by inequality in wage structure for higher paid workers.

[Insert Table |3.7| about here]

In many years, we find that the newly hired worker’s wage distribution and the counter-
factual wage distribution # 1 are generally unrankable. However, we do find second-order
dominance relations in the years of 1997, 2000, 2001, 2003, 2008, 2010 and 2011. More
notably, the dominance relations reversed direction. The wage distribution of newly hired
workers empirically dominates, in a second-order sense, the counterfactual wage distribu-
tion # 1. Although they are largely statistically insignificant, the reverse of the dominance
relations, to some degree, confirmed our hypothesis that certain highly paid new workers
actually enjoyed a better wage structure than their incumbent counterparts, the so called
“new hire premium” in the literature. For workers with a social welfare function in the class
Us, the counterfactual case that replace new hire’s wage structure with that of incumber
workers, while keeping their characteristics constant, would actually make those new hires

worse off.

[Insert Table 3.8 about here]

Counterfactual Analysis of Lower Wage Group

The results of counterfactual analysis for the lower paid group are reported in Table and
Table [3.10} Table [3.10] shows similar results as that in Table |3.6] indicating better human

capital characteristics among incumbent workers with hourly wage lower than $18.5.

[Insert Table |3.9 about here]

Table [3.9| reports the stochastic dominance test results between the original wage dis-

tribution of the new hires and the counterfactual wage distribution #1 among lower paid
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group. We have some interesting findings here. In the years of 1996, 1997, 2000-2003
and 2005-2009, the counterfactual wage distribution #1 empirically dominates, in a first-
order sense, the wage distribution of newly hired workers. In the years of 1998, 2004, 2010
and 2011, the counterfactual wage distribution #1 empirically dominates, in a second-order
sense, the wage distribution of newly hired workers. First-order dominance relation is large-
ly insignificant, but in 1997 and 2008, the second-order dominance relations are statistically
significant, with p-values less than 0.1. The findings indicate that for lower wage workers,
the counterfactual wage distribution #1 are preferred compared to the actual new hire wage
distribution for workers with a social welfare function in the class of Uy in both years. The
significant dominance relation in 2008, provides a strong evidence that during the recent
great recession year, lower wage new hired workers suffer from a much worse pay structure
than that of the incumbents. It is an indicator showing that the external labor market

deteriorates much more than the internal labor market during the recent recession.

[Insert Table about here]

3.6 Conclusion

This paper employs a distribution based entropy metric to measure the wage differentials
between incumbent and newly hired employees. The entropy measure incorporates the dif-
ferences at the entire distribution level and thus gives a better picture on wage comparison.
We also use stochastic dominance tests to rank those wage distributions based on social
welfare. We find that the incumbent workers are generally paid better than the newly hired
worker in any year from 1996 to 2012. Further counterfactual analysis shows that the wage
gap could be attributed to both the inequality in wage structures and the differences in
human capital characteristics, depending on a worker’s wage level. For highly paid new
workers, the wage gap mainly comes from the differences in human capital characteristics
and those new hires tend to enjoy a better wage structure than the incumbents in certain

years. For lower paid new workers, the wage differential comes from both gap in human
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capital characteristics and the inequality in wage structure. Especially in the recent reces-
sion year 2008, those lower wage new hires suffer more from the significantly worse wage

structure than that of the incumbents.
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Figure 3.1: Time Trend of Wage Differential with Business Cycle Indicator
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Table 3.1: Entropy Measures of Wage Differentials

Year S,x100 pof S, mean 10th 25th 50th 75th 90th

1996 0.97 (0.00) 0.14 0.09 0.13 0.14 0.13 0.11
1997 1.47 (0.00) 0.15 0.13 0.16 0.18 0.17 0.08
1998 1.11 (0.00) 0.13 0.08 0.15 0.20 0.11 0.04
1999 1.14 (0.00) 0.13 0.15 0.12 0.17 0.13 0.07
2000 0.93 (0.00) 0.11 0.07 0.17 0.12 0.07 0.07
2001 0.69 (0.00) 0.10 0.07 0.12 0.11 0.08 0.04
2002 1.03 (0.00) 0.10 0.11 0.11 0.13 0.08 0.04
2003 0.95 (0.00) 0.11 0.13 0.12 0.14 0.10 0.04
2004 0.62 (0.00) 0.10 0.06 0.08 0.12 0.13 0.07
2005 0.97 (0.00) 0.12 0.06 0.14 0.12 0.12 0.12
2006 0.98 (0.00) 0.14 0.09 0.10 0.15 0.14 0.14
2007 0.50 (0.00) 0.10 0.09 0.15 0.11 0.08 0.06
2008 0.65 (0.01) 0.09 0.06 0.13 0.12 0.07 0.03
2009 1.24 (0.00) 0.11 0.11 0.18 0.16 0.06 0.09
2010 0.64 (0.00) 0.07 0.10 0.11 0.13 0.04 -0.08
2011 0.59 (0.03) 0.08 0.05 0.07 0.07 0.08 0.09
2012 0.65 (0.00) 0.09 0.06 0.13 0.11 0.08 0.05

Notes: Columns (2)-(3) report metric entropy measure of distributional distance and its p
values respectively. The p values are obtained from 199 simple bootstrap under the null
hypothesis of no difference between incumbent and new hire wage distributions.
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Year  Obrank dimez  d2.mas d Pr(d<0) Simazr S2maz s Pr(d <0)
1996 FSD -0.03 5.15 -0.03 0.30 -0.04 104.05  -0.04 0.94
1997 SSD 0.06 6.30 0.06 0.25 -0.05 110.07  -0.05 0.99
1998 SSD 0.11 5.47 0.11 0.04 -0.05 98.14 -0.05 0.87
1999 SSD 0.06 5.78 0.06 0.19 -0.05 93.93 -0.05 0.81
2000 SSD 0.11 4.96 0.11 0.05 -0.06 86.00 -0.06 0.96
2001 SSD 0.01 4.39 0.01 0.43 -0.06 80.49 -0.06 0.97
2002 SSD 0.24 4.48 0.24 0.01 -0.06 76.70 -0.06 0.99
2003 SSD 0.07 4.20 0.07 0.14 -0.05 71.31 -0.05 0.87
2004 FSD -0.06 4.27 -0.06 0.41 -0.06 68.43 -0.06 0.79
2005 SSD 0.09 4.54 0.09 0.18 -0.09 73.32 -0.09 0.92
2006 SSD 0.08 4.62 0.08 0.21 -0.09 95.11 -0.09 0.94
2007 FSD -0.06 3.88 -0.06 0.55 -0.07 67.61 -0.07 0.87
2008 FSD -0.03 4.16 -0.03 0.48 -0.08 55.20 -0.08 0.98
2009 SSD 0.38 3.56 0.38 0.00 -0.04 61.14 -0.04 0.76
2010 SSD 0.45 2.76 0.45 0.01 -0.06 47.83 -0.06 0.93
2011 SSD 0.07 2.13 0.07 0.09 -0.07 35.03 -0.07 0.54
2012 SSD 0.01 3.34 0.01 0.21 -0.06 47.96 -0.06 0.64
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Table 3.3: Measures of Differences between New Hire and New Hire counterfactual #1
Distributions

Year S,x100 pof S, mean 10th 25th 50th 75th 90th

1996 0.34 (.03) -0.06 -0.05 -0.07 -0.06 -0.05 -0.02
1997 0.77 (.00) -0.07 -0.09 -0.11 -0.10 -0.08 0.00
1998 0.47 (.01) -0.05 -0.04 -0.06 -0.09 -0.03 0.04
1999 0.47 (.01) -0.06 -0.07 -0.06 -0.09 -0.04 0.00
2000 0.46 (.01) -0.03 -0.07 -0.11 -0.04 0.00 0.04
2001 0.32 (.05) -0.03 -0.00 -0.04 -0.04 -0.01 0.05
2002 0.47 (.00) -0.03 -0.07 -0.08 -0.05 0.00 0.00
2003 0.38 (.06) -0.02 -0.08 -0.05 -0.05 0.00 0.05
2004 0.23 (.25) -0.03 -0.05 -0.03 -0.05 -0.04 0.03
2005 0.36 (.04) -0.04 -0.06 0.00 -0.04 -0.03 -0.03
2006 0.28 (.17) -0.03 0.00 -0.04 -0.07 -0.02 -0.00
2007 0.19 (.58) -0.03 -0.05 -0.10 -0.03 -0.02 0.03
2008 0.37 (.17) -0.03 -0.06 -0.07 -0.05 0.00 0.07
2009 0.63 (.00) -0.04 -0.07 -0.09 -0.08 0.00 -0.00
2010 0.40 (.11) -0.00 -0.05 -0.04 -0.03 0.04 0.12
2011 0.47 (.00) 0.01 0.00 0.00 0.04 0.04 0.01
2012 0.33 (.06) -0.03 -0.02 -0.04 -0.03 0.01 0.00

Notes: Columns (2)-(3) report metric entropy measure of distributional distance and its
p values respectively. The p values are obtained from 199 simple bootstrap under the
null hypothesis of no difference between the new hire and their counterfactual #1 wage
distributions.
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Year  Obrank dimaz d2max d Pr(d <0) Simaz S2,mase s Pr(d <0)
1996 SSD 14.22 0.58 0.58 0.05 240.39 -0.28 -0.28 0.85
1997 SSD 17.43 0.73 0.73 0.03 261.86 -0.25 -0.25 0.96
1998 SSD 16.37 2.39 2.39 0.01 206.92  -0.25 -0.25 0.71
1999 SSD 15.41 1.31 1.31 0.01 201.00 -0.46 -0.46 0.60
2000 SSD 11.39 1.92 1.92 0.00 156.57  -0.34 -0.34 0.88
2001 SSD 8.80 2.64 2.64 0.02 132.64 -0.30 -0.30 0.89
2002 SSD 9.60 2.66 2.66 0.00 136.40 -0.26 -0.26 0.81
2003 SSD 9.20 2.70 2.70 0.00 123.87  -0.26 -0.26 0.72
2004 SSD 8.55 1.16 1.16 0.01 109.38  -0.32 -0.32 0.61
2005 SSD 10.93 1.43 1.43 0.01 143.21 -0.34 -0.34 0.77
2006 SSD 12.29 1.38 1.38 0.01 159.84 -0.45 -0.45 0.91
2007 SSD 9.16 1.75 1.75 0.03 104.39 -0.33 -0.33 0.73
2008 SSD 11.21 3.73 3.73 0.00 113.81 -0.43 -0.43 0.94
2009 SSD 11.15 3.16 3.16 0.00 155.81  -0.28 -0.28 0.63
2010 SSD 5.33 7.22 5.33 0.00 98.05 -0.29 -0.29 0.46
2011 None 3.39 4.66 3.39 0.00 29.92 25.71 25.71 0.16
2012 SSD 8.42 0.85 0.85 0.00 80.50 -0.22 -0.22 0.43
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Table 3.5: Measures of Differences between New Hire and New Hire counterfactual #2
Distributions

Year S,x100 pof S, mean 10th 25th 50th 75th 90th

1996 0.27 (0.53) -0.08 -0.04 -0.07 -0.07 -0.08 -0.08
1997 0.28 (0.59) -0.08 -0.09 -0.07 -0.10 -0.14 -0.08
1998 0.29 (0.64) -0.08 -0.04 -0.06 -0.13 -0.10 -0.06
1999 0.28 (0.44) -0.08 -0.07 -0.03 -0.09 -0.12 -0.11
2000 0.23 (0.48) -0.08 -0.06 -0.11 -0.05 -0.09 -0.08
2001 0.24 (0.08) -0.08 0.00 -0.05 -0.10 -0.09 -0.08
2002 0.28 (0.42) -0.09 -0.05 -0.11 -0.10 -0.10 -0.10
2003 0.23 (0.50) -0.07 -0.07 -0.05 -0.09 -0.10 -0.07
2004 0.27 (0.66) -0.08 -0.06 -0.03 -0.11 -0.12 -0.08
2005 0.26 (0.14) -0.08 -0.06 -0.01 -0.07 -0.10 -0.11
2006 0.29 (0.05) -0.09 -0.03 -0.04 -0.10 -0.11 -0.12
2007 0.26 (0.26) -0.08 -0.05 -0.10 -0.09 -0.10 -0.07
2008 0.20 (0.97) -0.07 -0.03 -0.08 -0.10 -0.11 -0.06
2009 0.25 (0.68) -0.09 -0.07 -0.09 -0.11 -0.11 -0.12
2010 0.19 (0.80) -0.08 -0.05 -0.07 -0.09 -0.10 -0.09
2011 0.19 (0.98) -0.07 -0.04 -0.05 -0.08 -0.09 -0.10
2012 0.20 (0.51) -0.07 -0.00 -0.06 -0.10 -0.09 -0.10

Columns (2)-(3) report metric entropy measure of distributional distance and its p values re-
spectively. The p values are obtained from 199 simple bootstrap under the null hypothesis of
no difference between between the new hire and their counterfactual #2 wage distributions.
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Year  Obrank dimaz d2max d Pr(d <0) Simaz S2,mase s Pr(d <0)
1996 FSD 14.50 -0.30 -0.30 0.21 303.47 -0.30 -0.30 0.47
1997 FSD 14.80 -0.29 -0.29 0.18 303.02 -0.29 -0.29 0.38
1998 FSD 15.24 -0.26 -0.26 0.16 340.35  -0.30 -0.30 0.48
1999 FSD 14.62 -0.45 -0.45 0.21 293.55 -0.45 -0.45 0.51
2000 FSD 13.78 -0.25 -0.25 0.14 285.84  -0.37 -0.37 0.51
2001 FSD 14.62 -0.29 -0.29 0.17 295.95 -0.29 -0.29 0.52
2002 FSD 15.84 -0.33 -0.33 0.36 344.21 -0.41 -0.41 0.77
2003 FSD 13.85 -0.26 -0.26 0.15 301.62 -0.26 -0.26 0.43
2004 FSD 15.42 -0.25 -0.25 0.25 274.34 -0.32 -0.32 0.87
2005 FSD 15.22 -0.22 -0.22 0.31 255.04 -0.27 -0.27 0.58
2006 FSD 15.64 -0.26 -0.26 0.34 375.20  -0.26 -0.26 0.81
2007 FSD 15.40 -0.25 -0.25 0.10 281.80 -0.56 -0.56 0.53
2008 FSD 13.37 -0.34 -0.34 0.11 220.90 -0.46 -0.46 0.47
2009 FSD 13.66 -0.28 -0.28 0.20 297.15  -0.28 -0.28 0.54
2010 FSD 12.28 -0.22 -0.22 0.21 284.13 -0.22 -0.22 0.51
2011 FSD 11.90 -0.39 -0.39 0.22 244.62 -0.42 -0.42 0.59
2012 FSD 12.49 -0.25 -0.25 0.33 216.75 -0.25 -0.25 0.71
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Table 3.7: Stochastic Dominance Test Results for High Wage Workers, Counterfactual #1

Year  Obrank dimaz d2max d Pr(d <0) Simaz S2,mase s Pr(d <0)
1996 None 2.09 3.17 2.09 0.00 0.26 40.10 0.26 0.26
1997 SSD 1.85 3.10 1.85 0.10 -0.30 49.34 -0.30 0.65
1998 None 0.80 6.16 0.80 0.06 0.80 118.62 0.80 0.18
1999 None 0.34 6.09 0.34 0.03 0.14 79.75 0.14 0.38
2000 SSD 1.05 3.50 1.05 0.15 -0.65 80.04 -0.65 0.47
2001 SSD 1.38 5.59 1.38 0.00 -0.39 100.11 -0.39 0.51
2002 None 0.23 4.42 0.23 0.07 0.23 118.22 0.23 0.23
2003 SSD 0.46 4.28 0.46 0.00 -0.61 10291 -0.61 0.46
2004 None 1.72 5.78 1.72 0.00 3.52 30.94 3.52 0.16
2005 None 0.76 4.63 0.76 0.02 0.66 56.92 0.66 0.14
2006 None 2.59 2.61 2.59 0.00 11.49 38.30 11.49 0.23
2007 None 5.66 2.16 2.16 0.02 21.11 0.63 0.63 0.18
2008 SSD 0.44 7.88 0.44 0.03 -0.18 104.73 -0.18 0.59
2009 None 4.27 6.15 4.27 0.02 10.85 121.45 10.85 0.14
2010 SSD 0.33 11.37 0.33 0.00 -0.83  315.47  -0.83 0.82
2011 SSD 2.01 2.83 2.01 0.00 -0.35 18.44 -0.35 0.30
2012 None 4.34 1.83 1.83 0.00 15.58 0.55 0.55 0.13
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Table 3.8: Stochastic Dominance Test Results for High Wage Workers, Counterfactual #2

Year  Obrank dimaz d2max d Pr(d <0) Simaz S2,mase s Pr(d <0)
1996 FSD 14.50 -0.30 -0.30 0.18 303.47 -0.30 -0.30 0.39
1997 FSD 14.80 -0.29 -0.29 0.12 303.02 -0.29 -0.29 0.37
1998 FSD 15.24 -0.26 -0.26 0.12 340.35  -0.30 -0.30 0.41
1999 FSD 14.62 -0.45 -0.45 0.21 293.55 -0.45 -0.45 0.42
2000 FSD 13.78 -0.25 -0.25 0.16 285.84  -0.37 -0.37 0.54
2001 FSD 14.62 -0.29 -0.29 0.19 295.95 -0.29 -0.29 0.42
2002 FSD 15.84 -0.33 -0.33 0.32 344.21 -0.41 -0.41 0.76
2003 FSD 13.85 -0.26 -0.26 0.19 301.62 -0.26 -0.26 0.49
2004 FSD 15.42 -0.25 -0.25 0.32 274.34 -0.32 -0.32 0.81
2005 FSD 15.22 -0.22 -0.22 0.36 255.04 -0.27 -0.27 0.66
2006 FSD 15.64 -0.26 -0.26 0.34 375.20  -0.26 -0.26 0.75
2007 FSD 15.40 -0.25 -0.25 0.12 281.80 -0.56 -0.56 0.41
2008 FSD 13.37 -0.34 -0.34 0.11 220.90 -0.46 -0.46 0.60
2009 FSD 13.66 -0.28 -0.28 0.15 297.15  -0.28 -0.28 0.49
2010 FSD 12.28 -0.22 -0.22 0.15 284.13 -0.22 -0.22 0.45
2011 FSD 11.90 -0.39 -0.39 0.22 244.62 -0.42 -0.42 0.59
2012 FSD 12.49 -0.25 -0.25 0.20 216.75 -0.25 -0.25 0.60
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Table 3.9: Stochastic Dominance Test Results for Lower Wage Workers, Counterfactual
#1
Year  Obrank dimaz  d2.mas d Pr(d<0) Simaz S2,mase s Pr(d <0)
1996 FSD 13.34 -0.13 -0.13 0.15 365.28  -0.22 -0.22 0.84
1997 FSD 18.51 -0.22 -0.22 0.83 544.61  -0.26 -0.26 0.92
1998 SSD 18.00 0.47 0.47 0.04 402.38  -0.20 -0.20 0.70
1999 None 15.13 0.19 0.19 0.13 388.87 0.64 0.64 0.21
2000 FSD 13.52 -0.17 -0.17 0.58 394.86  -0.23 -0.23 0.71
2001 FSD 10.85 -0.23 -0.23 0.55 287.80  -0.25 -0.25 0.84
2002 FSD 11.11 -0.26 -0.26 0.46 327.00  -0.29 -0.29 0.81
2003 FSD 10.37 -0.01 -0.01 0.29 293.57  -0.20 -0.20 0.68
2004 SSD 8.33 0.90 0.90 0.04 198.47  -0.23 -0.23 0.31
2005 FSD 8.71 -0.26 -0.26 0.11 202.16  -0.26 -0.26 0.40
2006 FSD 12.60 -0.31 -0.31 0.38 243.86  -0.52 -0.52 0.84
2007 FSD 10.71 -0.15 -0.15 0.17 222.28 -0.24 -0.24 0.36
2008 FSD 10.11 -0.03 -0.03 0.35 246.93  -0.17 -0.17 0.90
2009 FSD 10.45 -0.01 -0.01 0.34 268.62  -0.19 -0.19 0.71
2010 SSD 6.42 0.03 0.03 0.15 200.86  -0.21 -0.21 0.72
2011 SSD 6.46 1.14 1.14 0.01 148.40  -0.19 -0.19 0.39
2012 None 8.91 0.64 0.64 0.01 177.41 0.77 0.77 0.28




135

Table 3.10: Stochastic Dominance Test Results for Lower Wage Workers, Counterfactual
#2
Year  Obrank dimaz  d2.mas d Pr(d<0) Simaz S2,mase s Pr(d <0)
1996 FSD 14.50 -0.30 -0.30 0.11 303.47  -0.30 -0.30 0.46
1997 FSD 14.80 -0.29 -0.29 0.10 303.02  -0.29 -0.29 0.36
1998 FSD 15.24 -0.26 -0.26 0.22 340.35  -0.30 -0.30 0.53
1999 FSD 14.62 -0.45 -0.45 0.20 293.55  -0.45 -0.45 0.46
2000 FSD 13.78 -0.25 -0.25 0.13 285.84  -0.37 -0.37 0.46
2001 FSD 14.62 -0.29 -0.29 0.22 295.95  -0.29 -0.29 0.62
2002 FSD 15.84 -0.33 -0.33 0.31 344.21  -0.41 -0.41 0.76
2003 FSD 13.85 -0.26 -0.26 0.12 301.62 -0.26 -0.26 0.48
2004 FSD 15.42 -0.25 -0.25 0.31 274.34  -0.32 -0.32 0.85
2005 FSD 15.22 -0.22 -0.22 0.30 255.04  -0.27 -0.27 0.65
2006 FSD 15.64 -0.26 -0.26 0.46 375.20  -0.26 -0.26 0.77
2007 FSD 15.40 -0.25 -0.25 0.11 281.80  -0.56 -0.56 0.41
2008 FSD 13.37 -0.34 -0.34 0.09 220.90 -0.46 -0.46 0.46
2009 FSD 13.66 -0.28 -0.28 0.19 297.15  -0.28 -0.28 0.55
2010 FSD 12.28 -0.22 -0.22 0.19 284.13  -0.22 -0.22 0.54
2011 FSD 11.90 -0.39 -0.39 0.17 244.62  -0.42 -0.42 0.65
2012 FSD 12.49 -0.25 -0.25 0.15 216.75  -0.25 -0.25 0.62
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