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Abstract 

Untangling RR Lyrae in Gaia DR3 

          By Eden Schapera 

Although the GAIA database is an incredibly useful tool to assess baseline variability, the 

low and uneven cadence across different Gaia sectors makes it very difficult to distinguish 

between objects with similar lightcurve features. Using previously verified W. Ursa Majoris and 

RRc Lyra stars, we develop a classification pipeline using minima depth variation in the 

lightcurve to distinguish between genuine RR Lyrae and eclipsing binaries. We assess a set of 72 

variables with poor or incomplete lightcurves in Gaia using TESS archival data, and identify 12 

objects as genuine RR Lyrae based on their minima variation and secondary lightcurve features. 

We further verify the lightcurves of three variables using observational data from the Emory 

observatory, reinforcing the efficacy of our classification pipeline. 
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Analysis of RR Lyrae and Eclipsing Binary Candidates   

 

Chapter 1: Background  

RR Lyrae are a category of periodic variable star identified by their characteristic period-

luminosity relationship. The prototype of this category was first identified by Williamina 

Fleming in 1893 [1], and since then has become core components of distance estimation within 

our galaxy and the galactic halo.  

As a star between 0.5 and 0.7 solar masses evolves through the red giant phase, thermal 

instability causes opacity changes in ionized helium through the kappa mechanism. Decreased 

opacity increases thermal pressure and drives expansion, cooling the star. As the star cools, 

opacity drops again, and the star contracts [2]. The period of an RR Lyrae’s cyclical expansion 

and contraction is highly correlated with its luminosity. Due to their age, these stars are typically 

found within globular clusters. By measuring the period of these objects, we determine their 

absolute magnitude, and can thus determine distances to associated structures within our galaxy. 

With the advent of large-scale satellite telescope surveys, one of the most common 

methods of identifying RR Lyrae is through automated machine learning searches of archival 

data. While an incredibly useful tool to conduct preliminary classification, machine learning 

pipelines may struggle to differentiate between variable objects which share similar features to 

genuine RR Lyrae[20]. Of particular interest is the overlap between shared envelope eclipsing 

binaries and a subset of RR Lyrae which exhibit particularly sinusoidal lightcurves. 

In this research, we study objects initially identified by machine learning searches of the 

GAIA DR3 database to be low-confidence RR Lyrae or eclipsing binaries. We analyze the 

periodicity and structure of these objects’ lightcurves using data from the Transiting Exoplanet 



2 

 

   

 

Survey Satellite (TESS) database, and we conduct follow-up observational studies of these 

objects to generate independent lightcurves and confirm our TESS analysis. Using these tools, 

we establish a robust classification method for these variable objects. 

 

I: RRc Lyra Characteristics 

RR Lyrae are distinguished into several categories depending on the characteristics of 

their period-luminosity relationship and shape of their lightcurves.  

Type A/B RR Lyrae (RRab) are the most common category of RR Lyrae, comprising 

approximately 91% of all known variables within this family. RRab variables typically exhibit a 

period between 12 and 24 hours and can be distinguished by their highly asymmetric lightcurve. 

By contrast, type C RR Lyrae (RRc) exhibit a much more sinusoidal variation in luminosity 

across their period. In addition, RRc stars typically have periods on the order of 6-12 hours, 

significantly shorter than their RRab counterparts. [3] 

The lightcurves V2438 Sgr and OGLE BLG-RRLYR-6970, representative of RRab and 

RRc variables respectively, are presented below for comparison.  Both stars were identified and 

verified through the OGLE gravitational lensing survey. [4] 

 

Figure 1: Lightcurve of OGLE BLG-RRLYR-6970, a RRc type variable, and V2438, a RRab type 

variable. The RRc lightcurve is approximately sinusoidal, with a small asymmetry on the 
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ascending edge. By contrast, the RRab lightcurve is highly asymmetrical. These features are 

typical for stars of these categories. [4] 

 

II: W Ursa Majoris Eclipsing Binaries 

Eclipsing binaries are a subcategory of binary systems where the orbital plane is parallel 

to the observer. Maximum luminosity occurs when both stars are visible and decreases when one 

star in the pair eclipses the other. The maximum decrease in luminosity, known as the primary 

eclipse, occurs when the hotter star of the pair is partially or completely blocked by the cooler 

star. A secondary eclipse occurs when the cooler star is blocked by the hotter star. 

Although verification of RR Lyrae is the primary motivation for this research, eclipsing 

binaries also offer a wealth of information on stellar properties and the distribution of stars 

throughout the galaxy. Using the variation and timing of transits between the primary and 

secondary eclipses, it is possible to derive both the spectral class, mass, and orbital separation for 

both stars in the pair. [5] 

As the orbital separation of a binary pair begins to approach their Roche limit, material 

begins to transfer between the two stars and forms a shared envelope or contact binary. During 

this transfer, temperature begins to equilibrate, and the shared envelope forms a more 

homogeneous mass distribution. As a result, the decrease in luminosity during the primary and 

secondary eclipse becomes close to equal, and the shape of the lightcurve becomes 

approximately sinusoidal. [6] The lightcurve of W. Ursa Majoris, a well-known variable which 

the subtype of overcontact binaries is now named after is shown below, generated using our 

Lightkurve python pipeline (see Chapter 2). 
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Figure 2: Lightcurve of W. Ursa Majoris. Data from approximately 20 days of TESS observation 

was folded by a 0.33-day period to generate the above dataset (see Chapter 2). Note, the flux 

from this binary is approximately sinusoidal with two distinct magnitude minima. 
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III: Astronomical Databases and Previous Research 

Gaia 

The Gaia database is an all-sky catalogue of over 3 billion objects observed by the Gaia 

space telescope. The satellite telescope gathers parallax distance, astrometric, and photometric 

data R, B, and G band filters.  

Since the launch of the Gaia mission in 2013, there have been three public data releases, 

Gaia DR1 in 2016, DR2 in 2018, and DR3 in 2020. A fourth release is planned for the end of 

2025, with the fifth and final release by the end of 2030. [7] 

Numerous automated classification pipelines have been performed on the Gaia database 

to identify variable objects including RR Lyrae. In Clementini et. al. (2023) [9] the Specific 

Object Study (SOS) pipeline is used to assess 2.1 million stars of the Gaia DR3 catalogue using a 

combination of radial velocity and photometric data. Of the published dataset, this study 

identifies 72 objects with poor Gaia lightcurves or uncertain classifications, and another 282 

objects which have SOS classifications that differ between this study and other automated 

classification studies.  

 

TESS 

TESS, or the Transiting Exoplanet Survey Satellite, is an all-sky survey designed to 

discover and catalogue exoplanetary systems using time-domain photometry. [10] Exoplanetary 

transits are typically rapid, so TESS data is captured at a cadence rate of 2 minutes for a small 

stars and every 30 minutes for other fields of view. This significantly faster cadence allows the 

creation of highly detailed light-curves and more precise measurements of stellar variability than 

similar all-sky surveys.[11] Unlike Gaia data, TESS data has a uniform cadence across all targets, 

but some sectors of the sky currently lack coverage.  
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In addition, a number of tools have been created to facilitate TESS data acquisition and 

processing. In particular, the Lightkurve python package[12] offers a user-friendly toolkit to 

generate and analyze lightcurves from TESS archival data. It combines a number of core features 

for standard data analysis and visualization libraries, including matplotlib, astropy, and scipy. 

 

Combining TESS and Gaia for Time Domain Photometry  

Although Gaia provides time-domain photometric data, its orbital and rotational motion 

results in an uneven and object-dependent cadence which is often lower than required for high 

precision periodicity measurements. [8] This relatively low cadence may result in features of 

short-period variables being missed due to low sampling. Some candidates initially classified as 

RR Lyrae using Gaia data may actually belong to another class of similarly variable object - in 

particular, objects tagged as RRc variables have been misclassified as W. Ursa Majoris eclipsing 

binaries. 

Similarly, while TESS has a faster and more consistent cadence than Gaia, its pixel size 

is much larger (approximately 21 by 21 arcseconds).[19] This can cause classification uncertainty 

when several stars are in close proximity to one another and necessitates follow up ground-based 

observational studies. Additionally, many TESS sectors suffer from scattered light. 

By utilizing Gaia data to conduct initial variability assessment, and then conducting more 

in-depth analysis using TESS photometry, we mitigate the drawbacks of both instruments. In 

chapter 2, we explore this approach by examining set of uncertain variable objects in the Gaia 

database using TESS lightcurves to establish a more robust classification. Independent 

verification of target variability provides yet another method of confirming target classification 

and eliminating error in both the TESS and Gaia datasets. In Chapter 3, we conduct 
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observational studies of three uncertain Gaia variables and compare them with our TESS 

lightcurves to evaluate the validity of our classifications.  
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Chapter 2: Initial classification and TESS Analysis. 

 

I: Identification of Candidates 

Research candidates were selected from the pool of objects marked by Clementini et. al 

(2023) as those with poor lightcurves or uncertain measurements. This resulted in a total list of 

72 potential research candidates.  

Of the 72 candidates, no TESS sector coverage was available for 8 objects along the 

ecliptic. In addition, in 5 cases the target was in too close proximity to a bright neighbor for data 

collection, while in an additional 7 cases the target object was too dim for accurate measurement. 

This resulted in a final target set of 52 objects whose Gaia photometric classification were 

uncertain.  

 

II: The Lightkurve Pipeline 

TESS data for each target is downloaded by querying the Lightkurve service with the 

target coordinates. This results in a number of targetpixelfile objects, an 11 by 11 (231 by 231 

arcsecond) array of pixels and their measured flux for each cadence of the 29 day observation. 

In order to isolate our target star from the surrounding area, we define an aperture mask 

using either automatic threshold masking or manual pixel selection. Threshold masking 

automatically selects any pixels which have a flux value above a certain flux threshold, while 

manual pixel selection allows the user to identify a range of pixels in both axis which should be 

included as target data.  
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When we expect our star to be the brightest object within about 21 arcseconds, threshold 

offers the most streamlined method of isolating the target from the background. However, this 

method fails when there is another bright object in frame, or when there are several stars in close 

proximity to the target object. In these cases, we use manual pixel selection to identify our target. 

This often requires a conservative estimate target area and may decrease the signal to noise ratio.   

In order to select an appropriate method for our target, we identify a frame where the 

background and target star have good contrast and apply both methods. In Figure 6 are forced to 

use manual pixel selection as threshold masking defaults to the brighter star located in the 

bottom left corner of the frame. 

 

 

Figure 3: The targetpixelfile cutout used for target four. ATO J106.1517+08.6631 

is located at the center of the frame. 
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Figure 5: Lightcurve of LAMOST/ATO J106.1517+08.6631, generated using the manual 

aperture selection in Figure 6. The lightcurve exhibits short-term variation on the order of 9 

hours due to genuine stellar variability, while a spike in luminosity observed at 

BTJD=457000+2214 is due to scattered light from the earth. This light pollution is corrected 

using pixel level decorrelation. 

Figure 4: Threshold masking and aperture masking used to select target pixels. Threshold 

masking incorrectly selects the bright neighbor rather than the target star in the center. 
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After identifying an appropriate aperture mask, we plot the total flux of our selected 

region as a function of time. This results in an uncorrected lightcurve for our target. An example 

of this first lightcurve approximation is provided for target LAMOST/ATO J106.1517+08.6631 

(Figure 7). 

In addition to short period variability on the order of approximately 9 hours, we also 

observe long term trends which dominate the data near BTDJ=2457000+2214. This is primarily 

due to scattered light from the earth and moon as TESS orbits every 13.7 days. In order to 

eliminate these trends, we must subtract this effect from our data using regression techniques.  

 

Data Reduction and Cleaning 

Our primary method of data reduction in this analysis is pixel-level decorrelation (PLD). 

This algorithm was originally developed for analysis of Spitzer telescope data. However, this 

technique is generalizable to other datasets and has been successfully used in several other 

studies to eliminate systematic error. [13][14]  

The PLD algorithm measures the flux of background pixels for each frame and uses 

linear regression to create a model of the systematic error over – including the scattered light 

signature present in m any TESS datasets (see Appendix 3 for a detailed discussion of the PLD 

algorithm).  

The error model is subtracted from the target data, and outputs the cleaned target 

lightcurve. As with aperture masking, PLD correction requires the user to select pixels which 

correspond to background flux. A simple approach is to select any pixels where the flux is below 

one standard deviation of the average flux per frame.[15] This is generally sufficient to ensure that 

no signal from background stars is included in the error model. 
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We can explore the efficacy of this approach using the pld.diagnose() tool provided in the 

Lightkurve package. Shown below is the aperture mask for LAMOST/ATO J106.1517+08.6631, 

and the 1σ background aperture. Note, no visible stars are included in the background aperture, 

and we can be relatively confident that the background flux estimate will be accurate.  

 

 

 

 

The Lightkurve library offers built-in implementation of the PLD algorithm. Using our 

targetpixelfile object, target aperture, and background mask, we generate a reduced dataset. 

Initial correction parameters, including the number of PCA components and spline properties, 

are specific to TESS but may be adjusted to fine tune the correction.  

Figure 6: Aperture masks and background masks used in the PLD algorithm. A design matrix 

containing the background light trends for each pixel in the background mask is used to create 

an overall background/noise spline. 
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We explore the efficacy of the PLD model and determine if any overfitting occurred by 

comparing the background splines and target splines. Data during portions of the PLD model that 

are overcorrected may be manually removed. Through testing on a set of known variables (see 

minima classification) we establish that default TESS PLD parameters were sufficient to 

eliminate background flux without overfitting the model. 

The background spline (blue) represents noise from scattered light and background flux 

and is generated by a linear combination of flux from pixels corresponding to the background 

mask. This spline is scaled and subtracted from the target data, resulting in the corrected 

lightcurve. The red target spline represents the average continuum level of the corrected 

lightcurve.  

 

Minima Classification 

Classification of targets was performed by measuring the average variation between two 

consecutive minima of the target lightcurve. In genuine RRc Lyrae variables, we expect a very 

Figure 7: Splines generated by the PLD algorithm. The background spline (blue) effectively 

corrects the scattered light observed in the original data. Areas where the target spline (red) is not 

constant – indicating potential overfitting - are manually removed from the dataset 
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low variation in flux between two periods, while for W Ursa Majoris variables, we expect a 

much higher variation in luminosity between half phases due to slight differences in stellar 

temperature.  

To determine an appropriate threshold for classification, we measure the minima 

variation on a verified sample of 12 RRc Lyrae by Sneden et. al. (2017)[16] Of this group, one 

object was excluded from the dataset due to a bright neighbor preventing accurate data 

collection. Furthermore, two objects did not have TESS data available, and were removed from 

the sample. 

For the remaining 9 verified RRc Lyrae, a reduced lightcurve was obtained using the 

Lightkurve pipeline previously outlined. Each objects’ period was identified using the built-in 

to_periodogram() function, and the power-frequency relationship was plotted for verification.   
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In the above example of OGLE GD-RRLYR-791 (object 19 of the Clementini et. al 2023 

dataset), we identify that the period at max power is approximately 0.271 days. Folding the 

TESS dataset by this value, we observe this value appropriately combines multiple periods.  

Figure 8: Periodogram of OGLE GD-RRYLR-791. The frequency which corresponds to the 

maximum power is highlighted in red. This period is used for to fold the lightcurve in Fig. 11. 

Figure 9: Folded lightcurve of OGLE GD-RRLYR-791. The folding period of 0.271 effectively 

combines the 28 day TESS dataset into a single lightcurve. 
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Based on testing of the objects in Sneden et. al (2017), the Lightkurve folding algorithm 

accurately identifies the period RR Lyra objects. However, through testing of objects in 

Soszynski, et. al (2014), we identify that the folding algorithm often erroneously identifies the 

period of eclipsing binaries as half of its real value, causing the half periods to stack on-top of 

each other and obscure variability. Therefore, the 28 day TESS dataset is folded by two times the 

measured period at max power, resolving two periods of RR Lyra and one full period of 

eclipsing binaries (Fig. 12). This has no effect on the shape or minima variability of RR Lyra 

objects, but effectively separates the minima of eclipsing binaries for accurate classification. 

Figure 10: Folded lightcurve of CD-25 1568 - an eclipsing binary. Folding TESS data by the 

measured period at max power (0.249 days) results in half-periods overlapping. Doubling this 

folding period results in a clear differentiation between the two minima. 



17 

 

   

 

To reduce noise present in the folded lightcurve, we apply a rolling average filter with a 

window size of twenty (Fig. 13, bottom). For an in-depth discussion on the efficacy of this 

smoothing algorithm and its potential effects on classification, see Appendix 1. The local minima 

of this dataset are then identified by comparing the value of each point to its neighbors within a 

20-point window. We subtract the values of both minima identified through this process to 

determine the average difference between minima on successive periods.  
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This process is repeated for the remaining 9 objects in the Sneden et. al. (2017) sample. 

We identify that on average, minima between two periods of a genuine RR Lyrae vary by 

approximately 0.11%, with a standard deviation of 0.5%.  

Figure 11: Scattered (top) and smoothed (below) lightcurve of ASAS 132225-2042.3 in TESS data. 

Distinguishing features, including a 'notch' on the rising edge of each slope and an asymmetric increase 

and decrease in luminosity are still clearly visible. This object belongs to the set of genuine RR Lyrae 

verified by Sneden et. al. (2017) 
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Assuming an approximately normal distribution, we establish a minima variability 

threshold for future classification of RRc Lyrae of 0.16%. Retroactively applying this threshold 

to the dataset of confirmed RRc candidates, this metric would correctly identify 8 out of 9 as 

genuine RRc variables. The isolated RR Lyra which fell outside this threshold, ASAS 14332-

041.2, has a minima variation of 0.21% which is still well outside the average variation observed 

with genuine eclipsing binaries. The low variation threshold selected for this study was 

intentionally conservative to provide the cleanest possible sample of RR Lyrae. A list of each 

RRc object used in this analysis, along with their minima variation, is provided in Table 1.  

 We further validate this classification metric by studying a sample of confirmed W Ursa 

Majoris (W. UMa) variables compiled and individually studied by Soszynski, et. al (2014). 

Applying the same lightcurve processing procedure as before, we obtain 8 folded and smoothed 

W. UM a lightcurves.  

Figure 12: Smoothed and folded lightcurve of the W. UMa variable S. Ant (Sneden et. al, 2017). The 

average difference between minima is approximately 3.7% - significantly higher than genuine RRc variables. 
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Within this group, primary and secondary minima varied significantly more than in the 

RRc sample, on average by 4.1% (σ = 2.1%). The minima threshold correctly classified all W 

UMa variables in this sample as non-RRc objects, indicating that this metric is an appropriate 

tool to identify likely RRc candidates. A table of all W. UMa reference objects and their minima 

depth variation is provided in Table 2.  

 This procedure was repeated for all 52 remaining objects from Clementini et. al (2023). 

Of this group, 18 objects were identified as W Ursa Majoris variables, while 12 were identified 

as genuine RR Lyrae. In addition to automated threshold classification, each of the positively 

identified RR Lyrae was manually inspected and confirmed to exhibit secondary features that aid 

in classification including an asymmetric lightcurve or notch near maximum luminosity. 

 

 

 

Figure 13: Lightcurve of BW Tri (ID 3) The minima variation is 1.3% -- approximately 10 times larger 

than the RRc threshold. This object was classified through the Lightkurve pipeline as an eclipsing binary. 
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In addition to these positively confirmed variables, we additionally identified 10 RRc 

candidates with minima variation below the 0.16% threshold, but without any secondary 

characteristics – notably a notch on the ascending edge - to confirm their classification.  

Finally, we identified several variables in the dataset which do not clearly align with our  

standards for RR Lyrae or W UMa variables. These variables exhibit highly consistent minima 

across several periods, with a ‘double hump’ on the falling edge of each period. Based on 

literature searches of similar variables, we hypothesize that these objects may be RV Tauri stars, 

a variant of Type II Cepheids that are often mistaken for W Ursa Majoris variables.[18] A total of 

9 of these objects were identified. 

Figure 14: Lightcurve of V1047 Cas (ID 17). The average minima variation is less than 0.1%, and 

the lightcurve exhibits highly asymmetric features consistent with other RR Lyrae. This variable was 

classified as an RR Lyra by our Lightkurve pipeline, and visually appears to be a type A/B variable. 
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Figure 15: Lightcurve of OGLE-GD-RRLYR-791 (ID 19). Minima variation is less than 0.07%, within the 

range of our RR Lyra criteria, but the lightcurve lacks secondary characteristics to confirm this classification. 

Figure 16: Lightcurve of ASAS J081549-0732.9 (ID 58), a potential RV Tauri star. A 'double hump' is 

visible on the falling edge of each period. Although this variable was classified as an RR Lyra through 

our Lightkurve pipeline, it was manually reclassified as a potential RV Tauri. 
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A full list of all objects studied through the TESS Lightkurve pipeline is available in Table 3, 

along with their minima variability and classification.  
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Chapter 3: Observational Studies 

I: Identification of Candidates 

After determining an initial classification for each object, follow-up observations were 

conducted for a selection of these objects to confirm the TESS-based classification. The Emory 

observatory utilizes a 24-inch f/8 DFM Cassegrain telescope and an Apogee Alta U47 camera, 

with 1024x1024 pixels at 13x13 microns each. For each observation, an R-band filter was used 

with approximately the same characteristics as the Johnson/Cousins Rc filter. 

A number of cuts were performed on 72 object datasets from Clementini et. al (2023) to 

determine each target’s suitability for observation. Based on the location of the observatory, only 

a subset of the objects was observable from Atlanta se during late winter and early spring. We 

imposed right ascension (RA) and declination (DEC) cuts to the total target list to isolate 

candidates between 90- and 210-degrees RA, and greater than 0 degrees DEC. This significantly 

reduced the subject pool to 5 candidates. 

Due to adverse seeing and light pollution conditions in Atlanta, as well as the 

specifications of the Emory observatory, targets were limited to those with a magnitude below 

+16. This criterion reduced the total subject pool further from 5 to 4. 

Due to limited observation time and adverse weather conditions, only 3 of 4 suitable 

targets were successfully observed. Additional analysis of these candidates, and future 

observations of additional objects would aid in validating Lightkurve classifications. A list of the 

three observed targets, observation date, coordinates, and basic photometric information is 

available in Table 4. 
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II: Data Collection 

Each target was observed for approximately 4 to 8 total hours depending on visibility and 

weather conditions. This duration ultimately prevented us from capturing a complete lightcurve 

of any one target, but allowed us to observe multiple objects for comparative analysis. Exposure 

time varied depending on the magnitude of each target but was adjusted so that in the initial 

frame, flux from the target reached approximately half of the saturation limit of the CCD. This 

selection ensured that any magnitude changes due to inherent variability would be entirely 

captured within the linearity range. Typical exposure times for targets were between 120 and 150 

seconds. Each exposure was saved as a .fit file, with header data indicating target coordinates, 

target name, observer, date, and exposure time.  

 

Figure 17: Uncalibrated exposure of 

LAMOST/ATO J106.1517+08.6631 
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Adverse weather conditions and light pollution resulted in several sources of error 

throughout the data collection process. In addition, significant light pollution of approximately 

15 frames was observed in 3 of 5 total observation runs. This source of error has been isolated to 

infrared emission from a camera located in the observatory dome, which has since been 

removed. In addition, high winds and poor telescope tracking resulted in some frames being out 

of alignment or blurred. These errors were corrected by plate solving, normalizing target flux to 

background stars, and removing unusable frames.  

 

III: Calibration 

After each night of observation, a series of flat, dark, and bias calibration frames were 

collected. These calibration images were used to correct flat field response, thermal noise, and 

readout noise, respectively.  

Flat frames were collected by exposing the telescope to against a uniformly illuminated 

white background with an exposure time between 1 to 2 seconds. Exposure time and illumination 

were adjusted to minimize the standard deviation of flux across the CCD pixels. These frames 

measure the flat-field response of the telescope and correct for the effects of dust and other 

imperfections in the optical system. 20 flat calibration images were obtained for each observation 

run.  

Dark frames were collected by exposing the CCD for the same duration as target data 

while the CCD shutter was closed and the telescope lens cap in place. Thus, any flux observed 

by the CCD was due to thermal and readout noise.  Between 10 and 20 such images were 

obtained per observation night.   

Finally, bias frames were generated by measuring the flux from the CCD with zero 

exposure time, and the shutter closed. Again, 20 bias frames were collected per night. This 
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isolates any flux recorded to the readout noise of the CCD.  

 

 

 

 

Figure 18: Calibration data: a dark calibration 

frame (upper right), flat field calibration frame 

(upper left), and bias calibration frame (lower left).  



28 

 

   

 

 

IV: Processing 

All target files were opened as a virtual stack and analyzed using AstroImageJ. [17] Master 

bias, dark, and flat frames were generated by averaging the flux of individual calibration frames, 

and each target frame was reduced by subtracting and dividing master calibration frames, as 

appropriate. 

Target images were then aligned using plate solving, provided by astronomy.net. This 

process automatically identifies the sources present in each image by cross-referencing 

astronomical databases. Each identified source in one frame is then stacked on-top of its 

counterpart in another frame, creating a fully aligned set of images.  After alignment, reference 

stars with approximately the same luminosity as the target star were identified in order to 

measure target variability against a fixed reference point. Each reference star selected was 

researched in literature to ensure no past identification as a variable and independently verified 

as non-variable by comparing its flux relative to other stars in the field during data analysis. 

Multi aperture photometry was performed on aligned, reduced images. During this 

process, aperture size was selected by measuring the point spread function of the target star. The 

size of the inner aperture was selected to capture 95% of the target flux according to its point-

spread function, with the middle aperture and outer aperture at 1.5 and 2.5 times the diameter of 

the inner aperture, respectively.  

The inner aperture isolates flux from the target and background, while the annulus 

between the middle and outer aperture isolates flux from the background. Using the total flux of 

the background annulus, and the number of pixels in this region, we identify the amount of flux 

per pixel from background noise. This value is then subtracted from each pixel of the target 

aperture to isolate flux from the target star. 
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Flux from all apertures was saved as a CSV file for future analysis. 

 

V: Visualization and Analysis 

 The relative flux for all apertures was imported into Python for visualization using 

matplotlib. Flux from the target was divided by the average flux from all selected comparison 

stars, normalized, and then averaged to derive a reduced lightcurve for the target.  

For targets with multiple nights of observation, identical comparison stars were used 

across each night. The reduced flux data for each observation was combined into a single 

lightcurve and folded according to the period derived during the Lightkurve pipeline analysis.  

After reducing the data, a rolling average smoothing filter with a window of 3 was 

applied to each lightcurve to reduce noise from light pollution across each cadence (see 

Appendix 1). Each target lightcurve was visually inspected to confirm the features identified 

during the pipeline analysis.  

VI: Observational Follow-up Results 

LAMOST J073756.25+311646.5 

LAMOST J073756.25+311646.5 (LAMOST J07, ID 36) was initially categorized by 

Clementini et. al. (2023) as an eclipsing binary. TESS analysis of the target indicated a highly 

symmetric lightcurve, but a transit depth variation of only 0.025%. The low variation in transit 

depth nominally suggested that this object could be an RRc Lyra, but no secondary lightcurve 

features were present to confirm this classification.  



30 

 

   

 

This target was observed for 4.7 hours on April 25-26, under clear conditions. Wind 

speeds were initially high and interfering slightly with tracking, but resolved within the first hour 

of data collection. 

 

Following the observation, multi-aperture photometry was performed on the target and 

three reference stars in-frame and exported to Python.  

Figure 19: TESS Lightcurve of LAMOST J07073756.25+311646.5. Note that the lightcurve is highly 

symmetric, there is very little minima variation between periods.  
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Figure 20: Reduced frame of LAMOST 

J07073756.25+311646.5 with 

apertures. The target star is indicated 

with a green aperture, while red 

apertures indicate a reference star. 
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 Approximately 75% of a complete period was obtained during the observation, and 

Python analysis of the observational lightcurve confirmed the variability initially observed in 

TESS data. The lightcurve appears relatively symmetric around the maximum at JD = 60366 + 

0.8, with a period that aligns with the value determined through our TESS pipeline of 0.257 days. 

Comparing our observational data with the folded TESS lightcurve, we observe that our 

observations fit the TESS model exceptionally well between JD = 0.025 and 0.20, with some 

minor deviation near the beginning of data collection. It is possible that this could be an artifact 

of ambient light changes during twilight, but this may also be a genuine feature of the target’s 

lightcurve. Additional observational data is crucial to confirm the source of this deviation.  
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Figure 21a: Observational lightcurve of LAMOST J07 

Figure 21b: Smoothed TESS lightcurve of LAMOST J07 with observational data overplotted in 

red.  
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ASAS J074316+1705 

As with LAMOST J07, ASAS J074316+1705 (ASAS J07, ID: 9) was initially classified 

by Clementiti et. al. (2023)  as an eclipsing binary but was reclassified through the Lightkurve 

pipeline due to low minima variation of only 0.07%. 

This target was observed for 3.9 hours on March 6-7, during clear weather. No significant 

light pollution was observed during this period, and tracking remained stable. Due to the short 

period of observation, we expected to only observe approximately 60% of the total lightcurve.  

 

Multi aperture photometry was performed with three reference stars, and the data was 

processed using Python. This observation primarily captured the rising-edge of the lightcurve, 

and approximately ¼ of the falling edge. 

 

Figure 22: Reduced frame of ASAS J07 with 

apertures used for multi-aperture 

photometry. The target is selected in green 

while reference stars are selected in red. 



35 

 

   

 

Observational data for ASAS J07 is exceptionally well modelled by the TESS lightcurve 

between JD=0.10 and 0.225. This reinforces our classification of this object, and the efficacy of 

our Lightkurve pipeline for variable classification.  

 

 

 

LAMOST/ATO J106.1517+08.6631 

Figure 23: Top: Smoothed TESS 

lightcurve of ASAS J07 with observational 

data overplotted in red. The observational 

data has been shifted by shifted +0.095 days 

to align with the TESS model 

 

 

 

Bottom: Isolated observational 

lightcurve of ASAS J07 
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LAMOST/ATO J106.1517+08.6631 (ATO J106, ID 23) was initially categorized by Clementini 

et. al. (2023) as a low confidence eclipsing binary. While the minima depth variation was high in 

TESS data, this object exhibited a slight asymmetry near its peak luminosity reminiscent of the 

notch found on some RR Lyrae. Thus, a primary motivation for observational studies of this 

variable was to ascertain the validity of these features.   

ATO J106 has the longest expected period of all objects considered for follow-up 

observational study, so data was collected over two separate nights. 6 hours of data was collected 

on March 14-15 and an additional 4.5 hours were collected on March 20-21.  

Each night of observation data was individually processed and combined into a single 

dataset. The combined set of observational data was then folded by a period of 0.415 days.  

Figure 24: A calibrated image of 

ATO J106 (green) with reference 

stars highlighted in red. 
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Unfortunately, a significant amount of scatter is present in the observational data for 

ATO J106 (Fig. 25). During the last quarter of the object’s period, there is almost no correlation 

between the observational data and the expected lightcurve. Between JD=0.0 and 0.6, the 

observational data aligns reasonably well with our TESS model, and the observed minima fits 

our expected value. The asymmetry at the peak of the lightcurve near JD=0.4 is well captured by 

our observational data, although slightly lower in magnitude than expected. However, due to the 

significant noise and lack of complete coverage at both minima we cannot positively classify this 

object. Additional data for the first quarter of this objects lightcurve would significantly aid 

future classification attempts. 

  

Figure 25: Observational data of ATO J106 overplotted with the expected TESS 

lightcurve. Data for each night of observation are color coded separately. Note that 

the minima variation observed in TESS is captured by the observational data, 

reinforcing this object’s potential classification as a W. UMa variable. 
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Chapter 4: Discussion and Future Research 

The full-sky coverage of Gaia offers an unprecedented opportunity to uncover many 

previously hidden stellar objects, and initial machine learning searches of the Gaia DR3 release 

has aided in the classification of over 2.1 million stars. Many of these objects are novel RR 

Lyrae and eclipsing binaries, which may open new opportunities for distance estimation 

throughout the galaxy. However, due to the low sampling rate of Gaia, crucial distinguishing 

features of these objects lightcurve may be missed. As a result, photometric classifications of 

variables in Gaia have a potentially high error rate. 

Throughout this research, we have explored the categorization of low-confidence variable 

objects in Gaia DR3 using a number of different methodologies which aim to reduce error in 

these classifications. Cross-checking uncertain variables using TESS archival data effectively 

compensates for the low sampling rate of Gaia. However, due to the large pixel size and limited 

coverage, this approach is only applicable to a subset of Gaia targets.  

The minima variation classification pipeline developed for this research offers a robust 

method of excluding some W. Ursa Majoris variables from RR Lyrae, but alone is not able to 

positively identify all RR Lyrae from other types of variable object. For instance, while we can 

confidently ascertain that BW Tri (Fig. 12) is not an RR Lyra based on its high minima variation, 

we cannot exclude the possibility that OGLE-GD-RRLYR-791 (Fig. 11) is an eclipsing binary 

purely based on its low minima variation.  

Although the PLD algorithm used to process TESS data is highly effective in many cases, 

some instances were noted in which it overcorrected or failed to subtract noise from the 

lightcurve of bright objects (Appendix 3). In addition, it is possible that this algorithm could 

have influenced the minima depth variation measured through the TESS pipeline, however, 

additional testing is required to ascertain the significance of these effects. 
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Still, this pipeline provides a highly useful tool for folding, processing, and visualizing 

TESS lightcurves of variable stars. Combining minima variation with visual inspection for 

secondary lightcurve features, we are able to classify with high confidence multiple genuine RR 

Lyrae that were otherwise misclassified in the Gaia DR3 dataset.  

Follow-up observational studies of these objects provides yet another tool to verify the 

variability identified both in TESS and Gaia. While Gaia has a high angular resolution, its 

cadence is not high enough to effectively capture the details of a short-period variable. TESS has 

a much higher cadence than GAIA, but often fails to resolve target stars from other objects in 

close proximity. When available, observational follow-up studies potentially mitigate both of 

these issues, offering the best independent verification method for stellar classifications. 

Unfortunately, due to limited observation time, this study only partially utilized the full 

capabilities of this technique. Observational follow-up data of both LAMOST 

J073756.25+311646.5 and ASAS J074316+1705 visually align well throughout the period of 

observation and reinforces the efficacy of our Lightkurve processing pipeline. However, neither 

object was observed for their full period, and so we are unable to empirically confirm their 

minima variation. While noisy, observational data of LAMOST/ATO J106.1517+08.6631 

captures the minima variation initially determined using TESS data and supports the W. Ursa 

Majoris classification of our pipeline. Future ground-based observations are crucial to verify 

both the minima variation and lightcurve features of W. UMa and RR Lyra variables identified in 

this paper.  
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Tables  

Table 1: Minima variation for confirmed RR Lyrae 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

ASAS Identifier Minima 

Difference 

Notes 

023706–4257.8 
 

0.001536856 

 
 

094541–0644.0 
 

0.00113081 

 
 

095328+0203.5 
 

0.001029559 

 
 

101332–0702.3 
 

0.001321967 

 
 

123811–1500.0 
 

0.000175428 

 
 

132225–2042.3 
 

0.000723183 

 
Figure 10 
 

143322–0418.2 
 

0.002134002 

 
 

190212–4639.2 
 

0.000551584 
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Table 2: Minima variation for confirmed W. Ursa Majoris variables 

Identifier Minima Difference Pipeline 

Classification 

AB And 0.068843333 ECL 

S Ant 0.037739624 ECL 

TU Boo 0.027569353 ECL 

eps CrA 0.024405277 ECL 

SX Crv 0.026107652 RR 

V1191 Cyg 0.014564398 ECL 

XY Leo 0.054092986 ECL 

CE Leo 0.048218453 ECL 
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Table 3: Minima variation and classification for Gaia DR3 Variables 

Target 

ID 

Gaia  

Classification 

RA DEC Minima 

Variability 

Lightkurve 

Classification 

Secondary 

Features? 

1 ECL                                35.52084 20.0213 0.043951 ECL 
 

2 ECL                                58.8649 81.3534 0.000885 RR Yes 

3 ECL                                34.02603 34.63023 0.016097 ECL 
 

4 ECL                                329.7278 -24.5261 0.023571 ECL 
 

5 ECL                                114.2033 -60.1085 0.019258 ECL 
 

6 ECL                                57.68542 -72.4979 0.009485 ECL 
 

7 ECL                                102.2204 -13.2856 0.00422 ECL 
 

8 ECL                                125.4739 -30.6887 0.010308 ECL 
 

9 ECL                                115.8151 17.09085 0.000783 RR Yes 

10 ECL                                250.649 -46.5693 0.006996 ECL 
 

11 RRc/ECL?                           32.91502 10.88761 0.000893 RR Yes 

12 ECL                                123.8855 -55.9209 0.003204 ECL 
 

13 RRL?/ECL?                          135.7902 -38.5343 0.000182 ECL Yes 

14 ECL                                233.336 -49.2179 Faint 
  

15 ECL                                354.7571 57.76953 0.002764 ECL 
 

16 ECL                                133.7134 -13.6517 0.003426 ECL 
 

17 ECL?                               10.50622 54.25137 0.000929 RR Yes 

18 ECL                                356.0142 38.80609 0.002554 ECL 
 

19 ECL                                126.4544 -49.696 0.000147 RR 
 

20 ECL                                339.1527 49.90346 0.001223 ECL 
 

21 ECL                                111.3283 -9.03204 0.002867 ECL 
 

22 ECL                                284.6458 -9.39006 No data 
  

23 LikelyECL                          106.1518 8.66311 0.002938 ECL 
 

24 ECL                                125.1369 -59.9995 0.00021 RR 
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25 ECL                                338.188 -11.4205 0.000493 RR Yes 

26 ECL                                8.621 73.55835 4.32E-05 RR 
 

27 ECL                                268.5393 -60.8327 0.00019 RR 
 

28 ECL                                126.4544 -49.696 0.000693 RR 
 

29 ECL                                278.084 14.76311 Faint 
  

30 ECL                                23.05287 -49.5613 0.000216 RR 
 

31 ECL                                260.0214 -33.3536 No data 
  

32 ECL                                134.7057 -44.4554 Faint 
  

33 ECL                                5.48508 37.94372 Faint 
  

34 ECL                                92.74734 32.73736 Faint 
  

35 ECL/RRc?                           126.2956 -37.4907 Faint 
  

36 ECL?                               114.4844 31.27955 0.000252 RR 
 

37 ECL?                               349.0122 -32.7783 0.000161 RR 
 

38 ECL?                               42.44324 -69.1841 0.000227 RV Tauri 
 

39 ECL?                               317.5578 -38.8975 0.001566 RV Tauri 
 

40 ECL?                               217.2137 -6.95105 0.000536 RR Yes 

41 ECL?                               111.3833 -32.0116 0.000158 RV Tauri 
 

42 ECL?                               161.9256 -55.1707 0.000324 RR 
 

43 ECL?                               350.9276 -41.9568 0.000597 RV Tauri 
 

44 ECL?                               274.4136 10.30744 No data 
  

45 ECL?                               329.3296 58.72098 Faint 
  

46 ECL?                               326.4337 16.49886 0.005078 ECL 
 

47 ECL?                               222.0758 -49.2072 0.001364 RV Tauri 
 

48 ECL?                               241.056 -28.1772 0.001532 RR Yes 

49 ECL?                               268.2061 -40.6731 0.000171 RR Yes 

50 ECL?                               227.8425 -51.6455 0.002026 ECL 
 

51 ECL?                               74.62177 2.03769 0.00028 RR Yes 

52 ECL?                               100.1365 10.66434 0.000293 RR Yes 
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53 ECL?                               73.22596 -53.2401 0.000564 RV Tauri 
 

54 ECL?                               77.61917 -46.2853 0.001231 RV Tauri 
 

55 ECL?notRRL                         160.2138 -64.7132 0.000318 RR Yes 

56 uncertain-

classification           

268.9849 -22.9983 No data 
  

57 uncertain-

classification-

NotRRL    

184.6051 -43.052 0.010851 ECL  
 

58 uncertain-

classificationR

Rab?/ECL? 

123.9549 -7.5481 0.002576 RV Tauri 
 

59 uncertain-

classification           

250.7021 13.79764 No data 
  

60 uncertain-

classification           

322.4973 12.16906 Bright neighbor 
 

61 uncertain-

classification           

255.3072 -30.1072 Bright neighbor 
 

62 uncertain-

classificationR

Rab?      

323.3584 -0.82164 bright neighbor 
 

63 uncertain-

classificationR

Rc/ECL?   

249.4204 -30.5277 0.000127 RR 
 

64 uncertain-

classification           

305.642 47.04218 No data 
  

65 uncertain-

classification-

RRc/ECL?  

268.4189 -29.3085 No data 
  

66 uncertain-

classification-

RRab?     

258.5605 -37.6352 Faint 
  

67 uncertain-

classification-

RRc/ECL?  

271.4211 -34.5228 Faint 
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68 uncertain-

classification-

RRab/ECL? 

251.8863 -20.3443 No data 
  

69 uncertain-

classification           

201.6674 -47.4434 Bright neighbor 
 

70 uncertain-

classification-

RRab??    

286.3201 16.3251 0.001535 ECL 
 

71 uncertain-

classification           

322.5036 12.16567 Bright neighbor 
 

72 NotRRL/ECL?                        356.2311 44.40214 0.003462 RV Tauri 
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Table 4: Information for Observation Targets 

Target ID RA (Deg.) DEC (Deg.) G Mag. 

(Gaia) 

Period (Days) Date 

Observed 

9 115.8151 17.09085 11.697312 0.27089 2/06-07/24 

23 106.1518 8.66311 13.205950 0.41528 2/14-15/24 

2/20-21/24 

36 114.4844 31.27955 13.553999 0.25711 2/25-26/24 
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Figures 

1: Comparison of RRab Lyra and RRc Lyra Lightcurves 

2: W. Ursa Majoris Lightcurve 

3: Targetpixelfile Cutout of ATO J106.1517+08.6631 

4: Comparison of Threshold Task and Custom Mask for ATO J106.1517+08.6631 

5: Uncorrected TESS Lightcurve of LAMOST/ATO J106.1517+08.6631 

6: LAMOST/ATO J106.1517+08.6631 Cutout with Aperture and Background Masks 

7: PLD-Corrected Lightcurve of LAMOST/ATO J106.1517+08.6631 

8: Periodogram of OGLE GD-RRYLR-791 

9: Period Folded Lightcurve of OGLE GD-RRYLR-791 

10: CD-25 15687 Folded by Half and Full Periods 

11: Scattered and Smoothed Lightcurve of ASAS 132225-2042.3 

12: Lightcurve of S. Ant 

13: Lightcurve of BW Tri 

14: Lightcurve of V1047 Cas 

15: Lightcurve of OGLE-GD-RRLYR-791 

16: Lightcurve of ASAS J081549-0732.9 

17: Uncalibrated exposure of ATO J106 

18: Calibration Data for Observation 

19: TESS Lightcurve of LAMOST J07073756.25+311646.5 

20: Reduced Frame of LAMOST J07073756.25+311646.5 

21: Lightcurve of LAMOST J07073756.25+311646.5 with Observational Data 

22: Reduced Frame of ASAS J074316+1705 

23: Lightcurve of ASAS J074316+1705 with Observational Data 
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24: Reduced Frame of LAMOST/ATO J106.1517+08.6631 

25: Lightcurve of LAMOST/ATO J106.1517+08.6631 with Observational Data 

26: Pure and Noisy Signal 

27: Recovered Signal through Smoothing 

28: Comparison of Smoothing Window Effects on CD-25 15687 

29: Comparison of Uncorrected and PLD Corrected W. Ursa Majoris Lightcurve 
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Appendix 1: Smoothing Lightcurve Data 

 Given an array of flux data, a moving average is calculated by computing the average of 

all N points both before and after a test point I (including I), where N is the window size of the 

rolling average. This process effectively reduces the high frequency noise of a dataset. To 

demonstrate this efficacy of moving averages to reduce noise, we apply uniform random noise 

with a maximum and minimum value between -0.3 and 0.3 to a perfectly sinusoidal signal with 

an amplitude of 2. 

 

The addition of noise to this signal significantly impairs analysis. We now apply a 

moving average with a smoothing window size of 5 to this dataset. While there is still some 

noise present, the addition of smoothing significantly improves the visibility of the underlying 

trend.  

Figure 26: Pure sinusoidal signal and noisy sinusoidal signal. Noise was applied through the addition of 

a uniformly distributed random value between -0.3 and 0.3. 
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In the analysis of both TESS and observational data, we similarly use moving averages 

extensively to reduce noise. However, it is valuable to investigate the effects this process may 

have on the shape and amplitude of our target lightcurves. 

We explore this question by testing rolling averages with varying window sizes on a 

target with extremely clear raw observational data. The following lightcurve corresponds to CD-

25 15687 (ID 4), classified as an eclipsing binary due to its extremely large minima variation.  

We apply a rolling average with window sizes ranging between 10 and 80 and observe its 

effects. As the window size increases from 0 to 20, short period noise present in the lightcurve is 

reduced without significantly altering the overall shape of the lightcurve. Furthermore, the 

measured minima variation remains approximately constant.  

As the window size increases beyond 20, we observe significant deviations from the 

unsmoothed lightcurve. Both minima and maxima are reduced in magnitude. We also observe 

large changes in the measured minima difference. 

Figure 27: The noisy data (Fig. 26) after smoothing. The 

averaging process aids in recovery of the original signal.  
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Based on this analysis, we conclude that a smoothing window size of 20 is sufficient to 

eliminate high frequency noise without compromising the overall integrity of the lightcurve. This 

window size is used throughout our TESS data analysis to process folded lightcurves.  
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Figure 28: A comparison of various smoothing windows on a noisy dataset. At a 

window size of 20, we obtain the greatest reduction in noise while preserving 

important characteristics of the target lightcurve.  
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Appendix 2: The Lightkurve RRc Pipeline 

The full source code for the Lightkurve RRc Pipeline can be found on GitHub at 

https://github.com/EdenSchapera/RRcLightkurvePipeline 
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Appendix 3: PLD Correction 

Pixel level decorrelation (PLD) generates a clean lightcurve by subtracting a model of 

background and systematic noise from a dataset. This model is generated by examining the 

relationship between flux in N background pixels (see Data Reduction and Cleaning). 

Mathematically, this model takes the form: 

𝑚𝑖 = ∑ 𝑎𝑙

𝑓𝑖𝑙

∑ 𝑓𝑖𝑘𝑘
+ ∑ ∑ 𝑏𝑙𝑚

𝑓𝑖𝑙
𝑓𝑖𝑚

(∑ 𝑓𝑖𝑘
)𝑘

2

𝑁

𝑚

+ ⋯ 

𝑁

𝑙

𝑁

𝑙

 

 

where mi is a vector of noise models at time ti, fil is the flux in the lth pixel at time ti, al is the first 

order PLD coefficient, and blm is the second order PLD coefficient.  

The vector mi may be quite large depending on the number of pixels in the background 

mask, so principal component analysis (PCA) is preformed to reduce the number of basis vectors 

and generalize the model.  

After PCA, the model is further optimized using chi-squared minimization: 

𝜒2 = ∑
(𝑦𝑖 − 𝑚𝑖)2

𝜎𝑖
2

𝑖

 

and solving for 

𝜕2𝜒

𝜕𝑎𝑙
2 = 0 

Finally, an overall background spline is generated using the reduced, optimized models at 

each cadence. By default, the spline is fit using a 5th degree polynomial, but this order may be 

manually adjusted by the user. 
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Although the PLD data regression technique has proven very effective in the majority of 

targets analyzed in this research, several anomalies have been noted which are worth exploring 

in greater detail. In particular, when analyzing particularly bright objects, the PLD process tends 

to overcorrect data. In the following example, we assess W. Ursa Majoris (G-band magnitude 

7.7), which is exceptionally bright compared to the majority of targets we explore from 

Clementini et. al. (2023). 

We hypothesize that this overcorrection may be due to light from the target star being 

present in the background mask. When a single bright target dominates a targetpixelfile cutout, 

the mean brightness is significantly skewed in favor of that object. Our standard procedure of 

selecting pixels for the background mask with a flux greater than one standard deviation below 

the mean may not be sufficient to entirely isolate purely background regions.  

Figure 29: An uncorrected (top) and PLD corrected (bottom) lightcurve of W. Ursa Majoris. The 

PLD algorithm overfits the target data, resulting in a decrease in flux at BTJD 245700+1870 

and BTJD 245700+1885. 
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While this effect has significant implications for analyzing bright targets, almost all 

targets considered in this research had magnitudes greater than 11. Therefore, we are relatively 

confident that the results of our Lightkurve analysis pipeline remain uncontaminated.   

 

 

 


