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Abstract 
 

Associations between Metabolites and Obesity:  
 A Cross-Sectional Study in South African Adults with HIV 

By Richard A. Powers 
 
 

Background: HIV infection puts individuals at increased risk for obesity and related chronic 
illnesses, and the link between specific metabolites and body mass index within this population, 
especially among those of African ancestry, is not well-defined. By using validated metabolites, 
this study aims to identify potential associations with BMI and develop targeted interventions to 
address health disparities in underrepresented populations. 
 
Methods: This study conducted a cross-sectional study of 340 participants to investigate the 
association between metabolites and BMI. Linear regression was used to test the associations 
between validated metabolites and BMI while controlling for age, sex, race/ethnicity, and 
smoking status. 
 
Results: Among the 154 validated metabolites, there were 20 with significant associations with 
BMI. 1-naphthylamine and tryptophan had the most statistically significant associations (p-value 
< 0.001), and phenylalanine, a replicated metabolite identified in prior studies, was also found to 
be highly significant (p-value = 0.004). 
 
Discussion: The association between tryptophan and phenylalanine with BMI and obesity-related 
diseases may have significant public health implications as obesity is a major risk factor for a 
range of chronic illnesses. Future studies need to consider social determinants of health, such as 
food insecurity and SES, in addressing obesity-related health disparities. Further research is 
required to establish a concrete relationship and determine the precise association and validity of 
these metabolites with obesity-related outcomes. 
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INTRODUCTION 

 Over the last 40 years, advances in antiretroviral therapy (ART) have greatly increased 

the longevity and quality of life for people with HIV (PWH). However, along with these great 

advances arose a new set of challenges to overcome. Age-related diseases, such as type 2 

diabetes (T2D), cardiovascular disease (CVD), chronic kidney disease (CKD), and cancer, pose a 

much greater risk to PWH now than in the past (1,2). This trend is especially pronounced in 

many low- and middle-income countries (LMICs), causing an added strain to existing HIV care 

around the globe. 

Obesity is a major risk factor for adverse health outcomes, such as T2D and CVD, and 

places a significant financial burden on the public health infrastructure in South Africa (3–5). 

The relationship between obesity and these chronic illnesses is exacerbated among PWH 

(1,2,6,7). According to the World Health Organization (WHO), over 1 billion people worldwide 

are considered obese, and this number is expected to increase in the coming years (4). South 

Africa has among the highest prevalence of obesity in sub-Saharan Africa, with 68% of women 

and 31% of men considered either overweight or obese (3,8). South Africa also has one of the 

highest prevalence of HIV infection in the world, with the province of KwaZulu-Natal (KZN) 

bearing the greatest burden (9). The findings of this study, which explores the associations 

between metabolites and obesity in PWH on ART, can help identify metabolic pathways and 

inform the development of targeted interventions to promote healthier lives for PWH. By 

identifying specific metabolites that are associated with obesity in this population, the analysis 

may contribute valuable evidence towards implementing targeted interventions that may prevent 

or treat obesity in PWH, ultimately leading to improved health outcomes and quality of life for 

this vulnerable population. 
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BACKGROUND 

Metabolome-wide association studies (MWAS) are used to identify potential associations 

between metabolic variables and disease outcomes (10). This approach utilizes metabolic 

profiling via spectroscopic techniques (e.g., nuclear magnetic resonance spectroscopy and mass 

spectrometry) to measure thousands of metabolites within the body. Metabolites are small 

molecules that are produced as a result of various metabolic processes in the body (11). They can 

serve as indicators of biological functions and can provide insights into disease pathogenesis.  

Several studies have utilized metabolomics to investigate the metabolic changes 

associated with obesity and to identify potential biomarkers for obesity-related diseases. Early 

MWAS research utilized an untargeted metabolomic approach to investigate metabolite changes 

and their possible association with obesity (12,13) This approach uses a top-down strategy, and 

its primary objective is hypothesis-generating (13). Technical advances in metabolomics led to 

more targeted approaches, which used identified and validated metabolites based on prior 

research. Some early studies using this strategy revealed specific metabolites associated with 

body fat distribution and risk factors for developing adiposity-associated co-morbidities in the 

general adult population, regardless of obesity status (14–17). In more recent studies, researchers 

have investigated the differences in metabolomic profiles of obese and normal-weight adults 

with obesity-related diseases (18–21). The top associated metabolites and metabolic pathways 

reported in the studies referenced above are presented in Table 1. 

The identification of metabolites associated with body mass index (BMI) in PWH may 

help in the early detection of individuals at risk of becoming overweight or obese, which can 

lead to higher risk for developing non-communicable diseases (NCDs), and enable targeted 

interventions to prevent further weight gain (10). MWAS and similar research frameworks have 
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Table 1: Top associated metabolites and metabolic pathways from previous literature 

Authors Year Metabolite/Metabolic Pathways 
Hanhineva et al. 2013 Insulin, Cholesterol, VLDL, TG 54:1-3, TG 50:1-5, TG 55:1, PC 

32:0 
Kim et al. 2013 Betaine, Benzoic acid, Pyroglutamic acid, Pipecolic acid, N-

phenylacetamide, Uric acid, L-aspartyl-L-phenylalanine, 
LysoPCs (C18:1, C18:2, C20:1, and C20:4), L-proline, Valine, L-
leucine/isoleucine, Hypoxanthine, Glutamine, L-methionine, 
Phenylpyruvic acid, Carnitine derivatives, LysoPCs (C14:0, 
PC16:0, C15:0, C16:0, C17:1, C18:0, and C22:0) 

Chen et al. 2015 L-kynurenine, Glycerophosphocholine (GPC), Glycerol 1-
phosphate, Glycolic acid, Tagatose, Methyl palmitate, and Uric 
acid 

Wang et al. 2016 2-Octenoylcarnitine, Eicosadienoic acid, 12-
hydroperoxyeicosatetraenoic acid, 4-hydroxyestrone sulfate, 
LysoPE[18:1(11Z)/0:0], Thromboxane B2, Pyridinoline, Vitamin 
D3 glucosiduronate, 9,10-DHOME 

Chashmniam et al. 2020 Glutamine, Asparagine, Alanine, L-Glutathione Reduced, 2-
Aminobutyrate, Taurine, Betaine, Choline, D-Sphingosine, 
Glycine, Histidine, Isoleucine, L-Proline, Cholic Acid, Carnitine 

Note: Only studies that explicitly reported the identified metabolites in their results were included above and, 
therefore, not all referenced studies are represented. 

 

been primarily conducted in populations of European ancestry and from high-income countries. 

However, there is a need to validate these critical findings in populations of non-European 

ancestry and in LMICs (22).  

Recently, Liu et al. (2022) performed a genome-wide association study (mGWAS) of 

multiple metabolites using a sample from a large cohort of PWH residing in South Africa. A 

major emphasis of the analysis was to sample individuals from diverse ancestries and geographic 

regions in order to assess gene-metabolite associations and identify associations across diverse 

populations; this could provide insights into disease risk at the molecular level and reduce health 

disparities among underrepresented populations (22). The mGWAS of 154 metabolites identified 

22 significant genetic associations, at p < 5 × 10-8, and replicated several genetic associations of 
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metabolites in the general population. By analyzing the same population, our study utilizes the 

154 metabolites previously identified to build more robust evidence of potential associations 

between these validated metabolites and BMI. 

Our study uses BMI as an approximation for adiposity, providing a means of creating 

defined categories to determine weight status within the sample. Obesity has been identified as a 

significant risk factor for various chronic illnesses and metabolic dysfunction including T2D, 

CVD, and other NCDs (4,5). Huang et al. (2022) conducted a phenome-wide association study 

(PheWAS) of BMI and various adverse health outcomes (5). The investigators found BMI to be 

implicated as a genetically associated risk factor for CVD, chronic renal failure, respiratory 

failure, and musculoskeletal disorders among other disease outcomes. These chronic NCDs 

greatly increase disability-adjusted life years (DALYs) both globally and in South Africa (23). 

Between 2002 and 2016, the prevalence of overweight and obese women increased from 56% to 

68% and rose similarly from 29% to 31% among men in South Africa (3,8). The province of 

KZN, where the study was conducted, has the highest rate of severe obesity among men and the 

second highest rate among women (8). 

HIV/AIDS is the top contributor to both the national mortality rate and DALYs per 

100,000 in South Africa (24). In 2012, the prevalence of HIV in South Africa was 12%, and by 

2017, this number rose to 14% (or ~8 million people) despite increased funding and prevention 

efforts. The HIV incidence rate was 320,000 new infections per year between 2012 and 2017 

(25). The highest prevalence of HIV in South Africa is in KZN with 18% of the population living 

with the illness (9). Together, obesity and HIV significantly predispose PWH for developing 

NCDs and living lower quality, shortened lifespans. 
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To date, few studies have investigated the relationship between metabolites and BMI 

among PWH and in LMICs such as South Africa (22). Furthermore, as has been emphasized, 

most related studies have performed these tests using samples from populations of mostly 

European ancestry (5,22,26–30). This study aims to address this gap in knowledge and provide 

valuable insights into the molecular mechanisms that underlie the association between obesity 

and related adverse health outcomes in PWH. Specific aims included (1) identifying key 

associations between BMI and validated metabolites, and (2) performing an ad hoc mediation 

analysis to identify potential mediators or effect modifiers (e.g., SES) between metabolites and 

BMI. The overarching goal of this study is to elucidate the complex relationship between obesity 

and chronic complications observed among PWH. The results of this research may assist in 

designing targeted interventions that promote healthier lifestyles for PWH. By pinpointing the 

particular metabolites linked to obesity in this group, the investigation can provide significant 

evidence for creating interventions that may avert or treat obesity in PWH. Ultimately, this could 

enhance the health outcomes and overall quality of life for this vulnerable population. 

 

METHODS 

Study Design and Participants 

This study was a cross-sectional analysis of data from a sub-cohort of the KZN HIV 

AIDS Drug Resistance Surveillance Study (ADReSS) conducted within several clinics in KZN, 

South Africa. The study sample included 500 participants recruited from a state-funded hospital 

clinic, RK Khan (RKK), located in a peri-urban township, Chatsworth, near Durban, KZN from 

2014 to 2016. The study included participants who were aged 18 years or older, qualified for 
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ART, and provided written informed consent. A total of 340 of these participants with 

metabolomics data available were included in the analysis. 

 

Data Collection 

Data were collected through questionnaires, physical examinations, and laboratory tests. 

The study collected demographic information, including age, sex, and race/ethnicity, as well as 

estimates of socioeconomic status, smoking status, and transportation methods used to attend 

clinic visits. Additionally, metabolic data were collected at baseline through laboratory testing. 

Ethics approval was obtained prior to the start of the study and approved by the institutional 

review boards at University of KwaZulu-Natal and Emory University. 

 

Data Cleaning and Variable Imputation 

All data cleaning was performed using R version 4.2.2. The following packages were 

used for data manipulation and analysis: tidyverse, rio, janitor, skimr, naniar, gtsummary, rstatix, 

sjPlot, mlbench, table1, nlme, ggplot2, qqman, flextable, knitr, and car. Data cleaning included 

merging datasets and removing duplicate entries. 

Metabolomic data were quantified using high-resolution metabolic profiling with liquid 

chromatography and mass spectrometry to analyze plasma samples from participants prior to 

ART initiation. The metabolites were extracted using apLCMS and xMSanalyzer, and annotated 

using an in-house library. A total of 154 metabolites were successfully matched, with annotations 

allowing for small variations in mass and retention time. For a more detailed and comprehensive 

description of the metabolomic profiling process, refer to Liu et al., 2022. BMI was calculated 

using height and weight data collected closest to the blood draw used to calculate the 
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metabolomic data. BMI Status was categorized using CDC standard weight status categories 

(31). BMI has been criticized for its use to approximate adiposity; however, given the inability to 

gather relevant data using dual-energy x-ray absorptiometry (DXA), the gold standard, BMI has 

been found to be a suitable proxy variable among both general populations and PWH residing in 

East Africa (27,32). Covariates included in the model were age, sex, race, smoking status, and 

wealth indices. Age, sex, race, and smoking status were controlled for in the initial model. The 

decision to control for these variables was based on a priori evidence derived from similar 

studies (22,33–35).  

 

Statistical Analysis 

Data analyses were conducted using descriptive statistics and statistical tests, as 

appropriate. Linear regression was used to test the univariate associations of each validated 

metabolite as a predictor for BMI, controlling for race/ethnicity, sex, age, and smoking status. 

For this test, statistical significance was determined using p < 0.05. All analyses were conducted 

using R version 4.2.2 (URL Available online: https://www.R-project.org/). Summary tables were 

created using the gtsummary, table1, and flextable packages. Figures were created using the 

ggplot2 and qqman packages. 

 

RESULTS 

Characteristics of Study Participants 

 The cohort was comprised of 340 participants, all residing in South Africa and receiving 

care at the ART clinic at RKK Hospital in Chatsworth, KZN, South Africa. Among the study 

population, 59% of participants were female. The cohort had a median age at enrollment of 33 
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(±10) years with age staying relatively consistent across BMI status groups. The sample 

overwhelmingly self-identified as Black. The median BMI was 23 (±6.0) kg/m2. For the overall 

cohort, 42% were considered either overweight or obese. Male participants had a lower median 

BMI compared to female participants in the study [21 (±5.0) vs. 25 (±6.3)] as well as had a lower 

percent who were considered overweight or obese. These statistics are consistent with the trends 

observed in the latest national statistics (4,8). Lastly, the majority of participants (58%) reported 

having less than a high school education. These data are presented in Table 2. 

Collinearity was assessed among the significant metabolites by calculating variance 

inflation factor (VIF) values for each variable within each model. No variable had a VIF value 

greater than 5, indicating that collinearity is unlikely to be a concern among these variables. 

Of the 154 targeted metabolites, the model yielded 20 metabolites associated with BMI 

with nominal p-values less than 0.05, after controlling for race/ethnicity, sex, age, and smoking 

status. These results, along with the metabolic feature, beta, standard error (SE), p-values, and 

false discovery rate (FDR) q-values are presented in Table 3, sorted by p-value.  

Omics studies involve the analysis of a large number of variables, which increases the 

likelihood of obtaining false positive results; to address this issue, multiple testing correction 

methods are commonly employed (10,36). In this study, we used the FDR method as the 

correction approach. FDR controls for the expected proportion of false positive results among all 

tests deemed significant. This method is preferred over other statistical approaches, such as the 

Bonferroni correction, because it has greater power to detect significant results and is less likely 

to produce false negatives (36). By using FDR correction, we aimed to minimize the risk of 

reporting false positive findings and to increase the reliability of our results. All metabolites with 

a statistically significant p-value also had q-values less than 0.05 making them significant even 
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Table 2: Demographics and Summary Statistics 

 Total 
(N=340) 

Under-
weight 
(N=30, 

9%) 

Normal 
Weight 
(N=168, 

49%) 

Over- 
weight 

(N=78, 23%) 

Obese 
(N=64, 19%) 

Sex      

Male 141 (41%) 19 (63%) 82 (49%) 27 (35%) 13 (20%) 

Female 199 (59%) 11 (37%) 86 (51%) 51 (65%) 51 (80%) 

Age at Enrollment, 
years 

     

Median (SD) 33 (±10) 34 (±10) 30 (±10) 35 (±9.3) 34 (±10) 

Race/Ethnicity      

Black 322 (95%) 27 (90%) 162 (96%) 73 (94%) 60 (94%) 

Colored 3 (1%) 0 (0%) 1 (1%) 0 (0%) 2 (3%) 

Indian 15 (4%) 3 (10%) 5 (3%) 5 (6%) 2 (3%) 

BMI, kg/m2      

Median (SD) 23 (±6.0) 18 (±1.3) 21 (±1.7) 27 (±1.5) 34 (±4.6) 

Smoking Status      

Smokes 21 (6%) 2 (7%) 15 (9%) 3 (4%) 1 (2%) 

Does Not Smoke 319 (94%) 28 (93%) 153 (91%) 75 (96%) 63 (98%) 

Education Level      

No Education 13 (4%) 1 (3%) 6 (4%) 5 (6%) 1 (2%) 

Less than High 
School 196 (58%) 22 (73%) 97 (58%) 37 (47%) 40 (62%) 

High School or 
Equivalent 52 (15%) 2 (7%) 26 (15%) 16 (21%) 8 (12%) 

Certificate or 
Diploma 63 (19%) 5 (17%) 31 (18%) 14 (18%) 13 (20%) 

College Degree 16 (5%) 0 (0%) 8 (5%) 6 (8%) 2 (3%) 

Note: Percentages may not sum to 100% due to rounding. 

 
after the multiple testing correction. 

A quantile-quantile (QQ) plot was created to compare the distribution of observed p-

values from the analysis to the expected log10(p-values) under the null hypothesis. Based on 
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Figure 1, the observed p-values appear to be mostly smaller than expected under the null 

hypothesis.  

A volcano plot, presented in Figure 2, is another type of graphical tool commonly used in 

omics studies to display the results of a statistical test comparing two groups (37). It plots the 

negative logarithm of the p-value on the y-axis and the log2-fold change on the x-axis, with each 

data point representing one of the 154 metabolites tested. The plot helps to visualize which 

metabolites are significantly differentially expressed between two groups and provides insight 

into both the magnitude and direction of changes.  
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 Figure 1: Quantile-quantile (QQ) Plot of p-values 

 
       
         Figure 2: Volcano Plot 
   

    



 12 

Table 3: Metabolites associated with body mass index. 

Metabolite Name Metabolic Feature Beta SE P-value Q-value 

1-NAPHTHYLAMINE mz144.0807_t46.2 1.43 0.39 < 0.001 0.005 

TRYPTOPHAN mz205.0972_t45.9 1.36 0.38 < 0.001 0.005 

PHENYLALANINE mz166.0862_t46.5 1.08 0.36 0.004 0.023 

HOMOCYSTEINE mz136.0428_t56.3 -0.98 0.36 0.008 0.038 

URIDINE mz245.0769_t45.3 -0.83 0.34 0.015 0.047 

CYSTINE mz239.017_t24.2 0.84 0.35 0.016 0.047 

NORLEUCINE mz130.0873_t23 0.94 0.39 0.017 0.047 

CREATINE mz132.0765_t72.5 0.84 0.37 0.023 0.049 

BETA-ALANINE mz90.0551_t71.3 0.82 0.37 0.026 0.049 

3-METHYL-2-OXINDOLE mz162.056_t60.4 0.81 0.38 0.032 0.049 

SERINE mz104.0351_t26.8 0.79 0.38 0.038 0.049 

N-ACETYL-D-TRYPTOPHAN mz247.1076_t34.1 -0.76 0.36 0.038 0.049 

CITRULLINE mz176.1029_t90.6 -0.74 0.36 0.041 0.049 

3-HYDROXYBENZYL ALCOHOL mz123.045_t27.4 -0.76 0.37 0.042 0.049 

CITRAMALATE mz147.0298_t23.1 -0.82 0.41 0.046 0.049 

N-AMIDINO-L-ASPARTATE mz176.0663_t49 0.74 0.37 0.046 0.049 

CAFFEATE mz179.035_t25.5 -0.70 0.35 0.047 0.049 

D-PANTOTHENIC ACID mz220.1182_t64.5 0.74 0.37 0.048 0.049 

URACIL mz113.0347_t39.3 -0.72 0.36 0.049 0.049 

N-ACETYL-L-PHENYLALANINE mz206.0825_t46.2 0.72 0.36 0.049 0.049 
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DISCUSSION 

South Africa, similar to many other LMICs, faces significant public health challenges due 

to a high prevalence of infectious diseases and a growing burden of NCDs. Most studies 

investigating the relationships between metabolomics and adverse health outcomes have been 

conducted among populations of European ancestry and from high-income countries. These 

studies may not be relevant for individuals of non-European ancestry living in LMICs, as they 

may have different genetic ancestries and environmental exposures (22). 

 

Metabolites of Interest 

The association study between the 154 metabolites and BMI yielded 20 significant results 

(Table 3). 1-naphthylamine and tryptophan were the most statistically significant, and 

phenylalanine was a replicated BMI association, based on previous literature, with a high 

statistical significance. 

1-naphthylamine is not a natural occurring metabolite but has a role as a human 

xenobiotic metabolite (38), and it was found to be highly significant in the analysis (p-value < 

0.001). There was very little existing literature on the association of this metabolite with BMI or 

obesity. One study, involving animal models, found 1-naphthylamine as a significant obesity‐

associated gene expressed in the stomach (39). No other relevant evidence could be found in 

previous research, so this metabolic feature may be a potential novel association with BMI. 

Tryptophan, an essential amino acid and endogenous compound involved in metabolic 

processes (11), showed the second highest significant association in the analysis. Numerous 

previous studies have linked tryptophan with BMI and obesity-related risk factors and diseases. 

For instance, a 2016 study of South African adults with HIV revealed that lower tryptophan 
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levels were associated with higher levels of inflammatory activity, likely caused by food 

insecurity (40). This underscores the potential role of SES as a mediator or effect modifier of 

tryptophan and obesity-related diseases. Additionally, a 2020 study reported that tryptophan, 

along with kynurenine, metabolic pathways were concomitantly altered in obese adults compared 

to non-obese controls (41). Another study in 2022 conducted global metabolomic profiling on a 

diverse cohort of women and found that elevated tryptophan and kynurenine levels were 

associated with decreased levels of microbial-derived metabolites which are critical for 

controlling inflammation and maintaining immune response in obese individuals (42). 

Altogether, these findings suggest that tryptophan is a promising metabolite to explore in the 

context of obesity-related diseases and that future research should consider the potential role of 

socioeconomic factors in mediating or modifying its effects. 

Phenylalanine, a precursor for various neurotransmitters and an amino acid involved in 

protein synthesis (11), was the third most significant result (p-value = 0.004) in the analysis. This 

metabolite was identified as having a significant and relevant metabolic pathway between two 

groups: metabolic healthy obesity (i.e., obese but without hyperglycemia, hypertension and 

dyslipidemia) and metabolic abnormal obesity (i.e., obese with one or more abnormal metabolic 

index) (21). Additionally, phenylalanine has been found at higher levels in obese populations and 

those with metabolic dysfunction (e.g., insulin resistance, T2D, and high blood pressure) in 

general populations (26). With a significant association with BMI in our sample, phenylalanine 

might be a useful marker for early detection and intervention of obesity and metabolic 

dysfunction, however, further studies are necessary to determine the precise association and 

validity of this relationship. 
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The specific metabolites identified in this study may be potential biomarkers, etiological 

pathways, or therapeutic targets of BMI-related outcomes (e.g., obesity) among PWH. Although 

further research is required to establish a concrete relationship, the results of this study could be 

used to implement early interventions and provide better health outcomes. 

SES was identified as a variable of interest to assess as a potential mediator or effect 

modifier of metabolic profiles and BMI due to its important effect on both metabolites and BMI. 

A recent multi-cohort analysis revealed a link between lower SES and unfavorable metabolic 

profiles (43). Meanwhile, extensive research has explored the impact of socioeconomic factors 

on BMI, finding significant effects at both individual and community levels, regardless of HIV 

status (44–46). However, the relationship between social strata and BMI may differ between 

high-income countries and LMICs, especially in the context of PWH residing in LMICs (45). 

Although ongoing research is examining these relationships more thoroughly through 

metabolomics, this study recommends further investigation of SES as a potential mediator or 

effect modifier between metabolic profiles and obesity to clarify the complex relationship. 

 

Public Health Implications 

 The association between tryptophan and phenylalanine with BMI and obesity-related 

diseases may have significant public health implications. As far back as 1988, a study found 

evidence that altered plasma levels of these two amino acids and their response to carbohydrate 

intake may play a role in the regulation of food intake in obese individuals (47). Obesity is a 

major risk factor for a range of chronic diseases, including T2D, CVD, and some cancers 

(1,2,42). Identifying metabolites that are associated with BMI and obesity could help in the 

development of targeted interventions to prevent and manage obesity and these related diseases. 
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Furthermore, the potential mediating effect of SES on the relationship between 

metabolites and BMI highlights the need to consider social determinants of health in addressing 

obesity-related health disparities. Food insecurity, for example, can affect the levels of 

tryptophan and other metabolites that are associated with BMI, as shown in the 2016 study of 

South African adults with HIV (40) mentioned previously. Improving access to healthy food and 

addressing other social determinants of health may be essential to reducing the burden of 

obesity-related diseases, particularly among disadvantaged, underrepresented, and vulnerable 

populations. 

In summary, the findings of this study may contribute to our understanding of the 

metabolic pathways that are associated with BMI and obesity-related diseases. Further research 

is necessary to confirm and extend these findings and to explore potential interventions to 

prevent and manage obesity and obesity-related diseases. 

 

Limitations 

The study was limited by a small sample size and inclusion of participants from a single 

hospital setting. Additionally, race and ethnicity can be important to consider more in depth in 

the model, but given that 95% of our participants identified as Black, our model was limited in 

its ability to further investigate the role of race in the associations. 

 

CONCLUSION 

In conclusion, this study investigated the association between 154 metabolites and BMI 

among PWH in South Africa. The results identified 20 unique metabolites with a significant 

association with BMI. Three metabolites of particular interest were 1-naphthylamine, tryptophan, 
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and phenylalanine, with tryptophan and phenylalanine having a priori associations with BMI and 

obesity-related diseases. The association between tryptophan and phenylalanine with BMI and 

obesity-related diseases may have significant public health implications as obesity is a major risk 

factor for a range of chronic diseases. The study also highlights the need to consider social 

determinants of health, such as food insecurity and SES, in addressing obesity-related health 

disparities. Further research is required to establish a concrete relationship and determine the 

precise association and validity of these metabolites with obesity-related outcomes. 
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