
 

Distribution Agreement  

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 
degree from Emory University, I hereby grant to Emory University and its agents the non-exclusive 
license to archive, make accessible, and display my thesis or dissertation in whole or in part in all 
forms of media, now or hereafter known, including display on the world wide web. I understand 
that I may select some access restrictions as part of the online submission of this thesis or 
dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I also retain 
the right to use in future works (such as articles or books) all or part of this thesis or dissertation.  

Signature:  
 
_____________________________  ______________ 
Brent Gawey      Date 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Metabolomic Analysis of Microbial Small Molecules in Non-Alcoholic Fatty Liver Disease 

By 

Brent Gawey 

Master of Science 

Clinical Research 

 

_________________________________________ [Advisor’s signature]  
Dean Jones, PhD 

Advisor 
 

_________________________________________ [Advisor’s signature]  
Andrew Neish, MD 

Advisor 
 

_________________________________________ [Advisor’s signature]  
Matthew Ryan Smith, PhD 

Advisor 
 

_________________________________________ [Advisor’s signature]  
Thomas Ziegler, MD MS 

Advisor 
 

_________________________________________ [Member’s signature] 
Jeffrey Collins, MD MS 

Committee Member 
 

_________________________________________ [Member’s signature] 
Amita Manatunga, PhD 

Committee Member 
 

 
Accepted: 

 
_________________________________________  

Kimberly Jacob Arriola, PhD, MPH 
Dean of the James T. Laney School of Graduate Studies 

 
___________________  

Date 
 

 



 

Metabolomic Analysis of Microbial Small Molecules in Non-Alcoholic Fatty Liver Disease 

By 

Brent Gawey  
B.S., University of Georgia, 2017 

 
Advisors:  

Dean Jones, PhD 
Andrew Neish, MD 

Thomas Ziegler, MD MS 
 

 
 
 
 
 

An abstract of 
A thesis submitted to the Faculty of the James T. Laney School of Graduate Studies of Emory 

University in partial fulfillment of the requirements for the degree of Master of Science  
in Clinical Research 

2022 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

 



 

Abstract 
 

Metabolomic Analysis of Microbial Small Molecules in Non-Alcoholic Fatty Liver Disease 
By Brent Gawey 

 
Introduction: High-resolution metabolomics (HRM) is an innovative platform that can quantify 
products of microbial metabolism in systemic circulation. δ-Valerobetaine (VB) and 5-methoxyindole-
acetic acid (5-MIAA) are two recently discovered microbial metabolites with known systemic 
bioactivity. VB has been implicated in carnitine and fatty acid metabolism and 5-MIAA has been 
shown to activate hepatic detoxification pathways (Nrf2/ARE). These pathways are highly expressed 
in the liver and play a role in hepatic inflammatory diseases, such as non-alcoholic fatty liver disease 
(NAFLD). Our study aimed to investigate the associations of these novel metabolites with validated 
measures of liver fibrosis, hypothesizing that each metabolite would be associated with the underlying 
degree of liver fibrosis. We also performed metabolome wide association studies (MWAS) and 
pathway analysis to further characterize these metabolites.  
Methods: This cross-sectional study included 139 participants with pre-existing liver fibrosis (mean 
age 51.08 ± 12.44 years, 66% female). Fasting plasma was analyzed using HRM methodology. Liver 
fibrosis was quantified using liver stiffness measurement (LSM) scores. Regression analyses were used 
to investigate associations between level of VB and 5-MIAA with LSM. An MWAS was performed to 
identify metabolites significantly associated with VB and 5-MIAA. These results were further analyzed 
using pathway analysis.  
Results: In regression analysis, there were no significant associations between plasma level of VB and 
5-MIAA with LSM. MWAS for VB identified a variety of lipids and an NAD precursor to be most 
significantly associated. Pathway analysis for VB revealed significant associations with limonene 
degradation, lysine and glutathione metabolism, and vitamin B1 metabolism. MWAS for 5-MIAA 
identified a variety of dicarboxylic acids and fatty acids demonstrating the most significant 
associations. Pathway analysis for 5-MIAA revealed significant associations with lipid metabolism, 
chondroitin sulfate degradation, and biopterin metabolism.  
Conclusions: While regression analysis did not show any significant associations between plasma 
level of VB and 5-MIAA with LSM in patients with NAFLD, network and pathway analysis found a 
variety of metabolites and metabolic pathways with known biological importance in liver fibrosis 
significantly associated with VB and 5-MIAA. These associations offer future direction for analysis of 
the gut microbiome’s role in host inflammatory responses and human disease. 
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1. Introduction  
 

The human gastrointestinal tract is home to trillions of microorganisms known to play an 

important role in the metabolism of ingested compounds (xenobiotics), including food, 

pharmaceutical drugs, and industrial chemicals.1-5 This interaction produces a metabolic profile 

unique to an individual’s gut microbial composition.6,7 These microbiota-derived, bioactive 

metabolites can be readily absorbed and distributed throughout systemic circulation, having a 

potential impact on whole organism homeostasis and metabolism. While gut-microbiota driven 

metabolism can provide numerous benefits to the host, abnormalities of microbial composition 

have been associated with metabolic and inflammatory diseases, including adult-onset diabetes, 

inflammatory bowel disease, obesity, and nonalcoholic fatty liver disease.6-10 How microbiota-

driven xenobiotic metabolism mechanistically influences these aspects of human physiology 

beyond direct effects on the gut epithelium and the associated enteric immune system remains 

largely unknown.  

Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease in the 

United States.11 NAFLD results from increased deposition of fat in liver cells and is associated 

with altered lipid and glucose metabolism.12 Excess fat accumulation is toxic to liver cells, leading 

to inflammation, which can progress to nonalcoholic steatohepatitis (NASH). In states of 

prolonged hepatic inflammation, as seen in NASH, scarring and fibrosis develop, leading to liver 

cirrhosis. Liver cirrhosis is associated with increased rates of hepatocellular carcinoma and 

mortality.13 Accordingly, liver fibrosis is the strongest predictor of liver and non-liver related 

outcomes in patients with NAFLD.  

High-resolution metabolomics (HRM) is an innovative technique that allows for the study 

of host-microbial metabolism through the analysis of a large number of metabolites and biological 
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compounds. This provides mechanistic insight to the contribution and function of microbial-

derived metabolites in human physiology, including metabolism. A recent study using HRM in 

concert with germ-free and conventional mice identified a variety of novel metabolites synthesized 

directly from gut microbiota that influence host physiology.14 Specifically, a novel microbial-

derived metabolite, δ-Valerobetaine (VB) was found to have significant biochemical activity 

toward carnitine and fatty acid metabolism, and is linked with dietary fat intake in animal models, 

with a hypothesized role in metabolic hepatic diseases, such as NAFLD (Figure 1).15 Additionally, 

microbial-derived 5-methoxyindole-acetic acid (5-MIAA) was found to be a potent activator of 

host hepatic detoxification pathways (NRF-2/ARE), serving as a potential biomarker for hepatic 

metabolism and severity of hepatic steatosis (Figure 2).14  

In this study, we utilized HRM to investigate the associations between the novel, gut-

derived metabolites VB and 5-MIAA with NALFD using data from a participant cohort with 

measured scores of liver fibrosis as a proxy for underlying severity of NAFLD. Understanding that 

VB decreases fatty acid oxidation in the liver, we hypothesized that plasma δ-Valerobetaine (VB) 

will be associated with the degree of liver fibrosis in individuals with NAFLD. Further, because 

5-MIAA drives antioxidant responses in the liver, we hypothesized that plasma 5-methoxyindole-

3-acetic acid (5-MIAA) will be associated with the degree of liver fibrosis in individuals with 

NAFLD. Finally, we conducted an untargeted metabolome wide association study (MWAS) for 

both VB and 5-MIAA separately, to assess their association with concentrations of other detected 

metabolites in this same cohort, based on the hypothesis that plasma concentrations of VB and 5-

MIAA are associated with differences in the broader metabolome.  
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Figure 1 Molecular structure and biological function of gut microbial metabolite δ-Valerobetaine 

(VB), demonstrating its inhibitory effect on mitochondrial fatty acid oxidation through disrupted 

uptake of L-carnitine. These metabolic changes are associated with increased hepatic lipid 

accumulation, predisposing to the development and progression of NAFLD.  

 

 

 

 

 

 

 

 
Figure 2 Molecular structure and biological function of gut microbial metabolite 5-

methoxyindole-acetic acid (5-MIAA), demonstrating its ability to activate the nuclear erythroid 2-

related factor 2/antioxidant response element (Nrf2/ARE) detoxification pathway in the liver and 

attenuate the hepatic inflammatory response. Reduced hepatic inflammation is associated with 

decreased development and progression of NAFLD.  
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2. Methods  
 

2.1 Study Design, Setting, Participants 

 

This cross-sectional study utilized archived, de-identified data and plasma samples from 

139 adult patients with nonalcoholic fatty liver disease (NAFLD). Patients were recruited in the 

Indiana University Health network as part of a previously published, placebo-controlled clinical 

trial of obeticholic acid for adult patients with nonalcoholic steatohepatitis (NASH).16 All 

participants were 18 years or older, able to read and understand English, and able to provide 

informed consent. Exclusion criteria were fasting for < 3 hours, current significant alcohol 

consumption, history of significant alcohol consumption for > 3 consecutive months within one 

year prior to screening, active substance abuse, participants with cardiac or gastrointestinal 

pacemakers, pregnant women or nursing mothers, patients unable or unwilling to sign the informed 

consent statement and HIPAA Authorization form, and participants who met criteria for prisoners 

or those under the care of the Department of Corrections. Significant alcohol consumption was 

defined as more than 20 grams per day in females and more than 30 grams per day in males. All 

measurements used for analyses were taken from baseline visits. All participants provided written 

informed consent and the study was approved by the affiliated Institutional Review Board. 

 

2.2 Variables 

Liver fibrosis was quantified by liver stiffness measurement (LSM) scores via Fibroscan® 

(ultrasound). LSM score was used to distinguish patients with advanced liver fibrosis and those 

without advanced liver fibrosis. Advanced fibrosis was defined as LSM ≥ 12.1 of 12.1 kilopascals 

(kPa) and non-advanced fibrosis as LSM < 12.1 kPa.17 
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2.3 Plasma High-Resolution Metabolomics (HRM)  

Fasting plasma samples were collected for participants (n=139) using an established 

protocol in the Emory Clinical Biomarkers Laboratory.18 In summary, 65 microliters of plasma 

previously-stored at −80°C was added to 130 mL acetonitrile along with a mixture of internal 

standard stable isotopes.18 Samples were analyzed with three technical replicates using liquid 

chromatography-Fourier transform mass spectrometry (Dionex Ultimate 3000, Q-Exactive, 

Thermo Scientific, Waltham, MA, USA) with both a C18 column under negative-ionization and a 

hydrophilic interaction liquid chromatography (HILIC) [Accucore HILIC 100×2.1mm columns] 

column under positive ionization to maximize the detection of low-molecular-weight chemicals. 

Batches of 20 randomized samples were run with quality control samples analyzed at the beginning 

and end of each batch. Following analysis of all participant and quality control samples, the 

metabolic profiles from each analytical run were extracted by R-based packages apLCMS and 

xMSanalyzer with batch correction done by ComBat.19-21 Output was displayed in mass to charge 

(m/z) feature tables with detected ions and their associated relative retention times and mass. 

Metabolic features without matches to common adducts within a 10 ppm window were labeled as 

“unknown.” 

Each metabolic feature was characterized by its mass to charge (m/z) ratio, retention time 

(RT), and peak intensity. Metabolic features were annotated using xMSannotator.22 xMSannotator 

is an R-based package that uses multiple criteria to provide score-based metabolite annotation 

using the Human Metabolome DataBase (HMDB).23 Metabolite identities were confirmed by 

comparing coelution with standard curves from authentic chemical standards. Chemical identity 

level was based on Schymanski et al. (2014), where 1 represents the highest level of identification 

and 5 represents the lowest.24 Results were only reported for columns on which the metabolites 
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could be annotated. The authentic chemical standard for VB was from an in-house validated library 

of over 920 chemicals. The authentic chemical standard for 5-MIAA was individually purchased 

with stated purity >95%. 

 

2.4 Data Analysis 

Descriptive statistics were performed for clinical and demographic variables using JMP 

Pro (Version 15, SAS Institute Inc, Cary, NC). Summary statistics are reported as mean ± standard 

deviation (SD) or count and percentage. LSM was analyzed as a dichotomous variable with logistic 

regression and as a continuous variable with linear regression. To dichotomize LSM, advanced 

fibrosis was denoted as LSM ≥ 12.1 kilopascals (kPa) and non-advanced fibrosis as LSM < 12.1 

kPa.17 Plasma concentrations of metabolites were log2 transformed and quantile normalized for 

all analyses. Model building was guided by directed acyclic graph (DAG) theory. DAGs allow for 

the assessment of potential relationships amongst variables, providing discernment for which 

variables should be included or excluded from analyses to minimize bias.25 Variables existing on 

open back door pathways were considered to be potentially confounding of the primary exposure 

outcome relationship, and were included in the model. Variables existing on closed directed 

pathways were considered mediators and were not included in the analysis to prevent removing 

part of the variable’s effect. Regression analyses for Aim 1 and 2 were performed using xMSPanda 

(https://github.com/kuppal2/xmsPANDA). xMSPANDA is an R-based package that can perform 

classification, regression-based feature selection, and statistical analyses for metabolites of 

interest. 

The metabolome-wide association studies (MWAS) for VB and 5-MIAA were performed 

using the xmsPANDA package in R studio.26 xmsPANDA uses multiple linear regression analyses 
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to identify metabolites significantly associated with 5-MIAA and VB. False discovery rate (FDR) 

in regression analyses was controlled for using the Benjamini–Hochberg method (q = 0.2) or a raw 

p-value of 0.05 if the Benjamini-Hochberg method failed to identify any significant associations.27 

Metabolites not present in at least 10% of the samples and at least 80% of samples for a group 

were excluded from analyses. For association analysis, Spearman’s correlation threshold was set 

to 0.4. Metabolites significantly associated with VB and 5-MIAA were selected for pathway 

enrichment analysis using mummichog.28 Mummichog is a Python-based program that maps 

statistically significant metabolic features with known human biological pathways. A raw p-value 

significance threshold of 0.05 was used as a cutoff for metabolites associated with VB and 5-

MIAA. Enriched pathways were included if they contained four or more overlapping metabolic 

features with at least one metabolite with a confirmed identity. 
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3. Results 
 

3.1 Descriptive Data  

 

A total of 139 patients met the inclusion criteria. Table 1 shows baseline demographic, 

clinical, and laboratory characteristics of the 139 participants analyzed in this study. Overall, 

participants were mostly female (n=92, 66.2%) and had non-advanced liver fibrosis (n=97, 70%), 

with an average age of 51.1 years (± 12.4 years). Type 2 diabetes was prevalent in 49% (n=68) of 

participants with an average BMI of 35.9 (± 7.52). Of patients with non-advanced liver fibrosis, 

LSM was 6.55 kPa (± 2.19 kPa) compared to 24.82 kPa (± 13.11 kPa) in patients with advanced 

liver fibrosis. A bivariate analysis was also performed to determine factors associated with LSM 

score (Table 1).  
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Table 1. Baseline characteristics and bivariate analysis for patients (n=139) with non-advanced 

liver fibrosis versus those with advanced liver fibrosis.   

 
Abbreviations: OR – odds ratio, CI – confidence interval, kg/m2– kilogram per square meter, LSM – 

liver stiffness measurement, kPa – kilopascal, VCTE - vibration-controlled transient elastography, db/m - 

decibels per meter, ALT - alanine aminotransferase, AST- aspartate aminotransferase, ALP – alkaline 

phosphatase, LDL - low-density lipoprotein, HDL – high-density lipoprotein, K/µl – kilo per microliter, 

mg/dL – milligrams per deciliter  

1. Value represents mean ± standard deviation.  

2. Value represents column percentage, n (%). 

3. Missing values were excluded from bivariate analyses for the outcome (level of liver fibrosis) 

based on analysis of effect of missing values on measures of association using sensitivity 

analyses.  
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3.2 Main Results - Metabolite Identification and Quantification 

 

VB was detected as an [M+H]+ adduct (m/z, 160.13322) eluting at 82.57 seconds in HILIC 

positive mode, however VB was not detected as an annotatable ion (m/z with retention time and 

intensity; hereafter termed “metabolite”) in C18 negative mode. 5-MIAA was detected as an 

[M+H]+ adduct (m/z, 170.06092) eluting at 95.37 seconds and an [M-H]- adduct (m/z, 204.0667) 

eluting at 40.4 seconds (Table 3). VB was annotated at a level 1 on the HILIC positive column. 5-

MIAA was annotated at a level 2 on the C18 negative and HILIC positive columns.24 

 

 

 

 

 

 

 

 

 

 

 

Table 2 Detection of δ-valerobetaine and 5-methoxyindole-3-acetic acid primary adducts based 

on mass-to-charge (m/z) ratio and retention time (RT) with associated chemical identity confidence 

score. 

 
Abbreviations: m/z, mass to charge; RT, retention time 

A. Chemical identity according to Schymanski et al. (2014), where 1 represents the highest level 

of identification and 5 represents the lowest.24 
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3.3 Main Results – δ-Valerobetaine Targeted Analysis 

 

In the crude logistic regression model (Table 4), there was no significant association 

between plasma level of δ-valerobetaine and level of liver fibrosis (OR 1.03; 95% CI 0.89, 1.20). 

There was no significant difference in plasma level of VB between patients with non-advanced 

fibrosis and advanced fibrosis (21.11 ± 2.31 and 21.31 ± 2.85, respectively; p = 0.96) (Figure 3). 

Further considering the relationship between plasma VB (primary exposure) and NAFLD (primary 

outcome), an assessment of covariates was done by literature review and directed acyclic graph 

theory to construct a DAG, which demonstrated the hypothesized causal relationship between 

selected variables included in Table 1. The age variable existed on an open backdoor path and thus 

was considered as a potential confounder by DAG theory and included in the model based on these 

assumptions (Appendix, Figure A.1). Multivariable regression analysis found no significant 

association between plasma level of VB and level of liver fibrosis (adjusted OR 1.02; 95% CI 0.88, 

1.19) (Table 4).  

Linear regression analyses were run to assess the relationship between LSM and quantile 

normalized level of plasma VB (Table 5). LSM was log transformed for analyses. In the simple 

linear model, VB was not significantly associated with LSM (regression coefficient 0.01; SE 0.01; 

p-value 0.38). The model had poor discrimination, explaining only 0.6% of the variation in LSM 

(R-square = 0.006; Figure 4). In the adjusted model including age, VB was not significantly 

associated with LSM (regression coefficient 0.007; SE 0.01; p-value 0.52).  
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Table 3 Multivariable logistic model for the association between plasma level of δ-Valerobetaine 

and level of liver fibrosis. 

 
Abbreviations: OR – odds ratio, CI – confidence interval 

*Model adjusted for age at consent.  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3 Box plots with violin plot overlay to demonstrate plasma level of VB in 97 patients with 

non-advanced fibrosis and 42 patients with advanced fibrosis. Boxplot ‘boxes’ indicate the first 

and third quartiles of the data. The middle lines indicate the medians. Boxplot ‘whiskers’ indicate 

the inner fences of the data. There was no significant difference in plasma level of VB between 

patients with non-advanced fibrosis and advanced fibrosis (21.11 ± 2.31 and 21.31 ± 2.85, 

respectively; p = 0.96). 
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Table 4 Univariate regression for the association between log transformed LSM and quantile 

normalized level of δ-valerobetaine. 

 
Abbreviations: SD – standard deviation, min – minimum, max – maximum, Std. – standard 

A. Log normalized variable.  

B. For the final model containing plasma level of δ-Valerobetaine and participant’s age.  

 

 

 

 

 

 

 

 

 

 

 
Figure 4 Intensity values for quantile normalized level of plasma VB (identified by m/z and 

retention time) for individual plasma samples plotted as a function of the associated log 

transformed LSM measurement for the sample. 
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3.4 Main Results – δ-Valerobetaine Untargeted Analysis  

 

An untargeted metabolome wide association study (MWAS) detected 18,009 ions (m/z 

with retention time and intensity; hereafter termed “metabolites”) in HILIC positive mode. 

Metabolites not present in at least 10% of the samples were excluded from analyses, leaving 16,958 

metabolites. VB was not annotated in C18 negative mode, and therefore was not included in the 

MWAS. A raw p-value of 0.05 was used for significance in order to identify regulated metabolic 

pathways. Using this method, 5,560 metabolites were significantly associated with the plasma VB 

level. The Manhattan plot (Figure 5) showed a broad range of m/z, indicating that correlated 

metabolites were diverse in size and physical properties. An unknown metabolite (m/z 308.8586, 

RT 120s) had the highest –log P (r = 0.37, p < 0.0001). Correlated features were used to search 

the HMDB metabolomics database for matches to common ions (H+, H-) with 10 ppm tolerance. 

13 of the top 25 metabolites were of unknown identity. Other metabolites significantly associated 

with VB with confirmed identification are shown in Table 6.  

Analysis of pathways associated with VB demonstrated significant (p<0.05) enhancement 

of the following metabolic pathways related to nutrient metabolism (Figure 6): limonene/pinene 

degradation, Vitamin B1 (thiamine) metabolism), amino acid metabolism (aspartate and 

asparagine metabolism, glutathione metabolism), sialic acid metabolism, and lipid metabolism and 

polyunsaturated fatty acid biosynthesis. 
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Figure 5 Type 1 Manhattan plot showing the negative log p (−log p) for correlation of 5,560 

significant features at p = 0.05 as a function of the m/z with VB level. m/z 308.8586 had r = 0.37 

and the highest -log10 P. Features positively associated with VB are represented in red, and those 

with negative associations are in blue. Most significant metabolites were of unknown origin. 

 

 

 

 

 

 

 

 

Table 5 Selected metabolites (hydrogen adducts) significantly correlated with δ-valerobetaine in 

an untargeted analysis of human plasma in patients with varying degrees of liver fibrosis. 

 
Abbreviations: m/z - mass-to-charge ratio, RT - retention time, r – Spearman’s correlation 

coefficient, FDR – false discovery rate, NAD - nicotinamide adenine dinucleotide. 
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Figure 6. Pathway enrichment analysis (p < 0.05) using mummichog. The y-axis shows metabolic 

pathways significantly associated with metabolome wide alterations associated with VB. The x-

axis shows the -log p-value for pathway enrichment. Results are only shown for HILIC positive 

ionization mode, as VB was unable to be annotated using C18 negative chromatography. 

Limonene and pinene degradation was the most significantly enhanced pathway.  
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3.5 Main Results – 5-methoxyindole-acetic acid Targeted Analysis 

 

In the crude logistic regression model (Table 4), there was no significant association 

between plasma level of 5-MIAA and the level of liver fibrosis (OR 1.46; 95% CI 0.86, 2.47). 

There was no significant difference in plasma level of 5-MIAA between patients with non-

advanced fibrosis and advanced fibrosis (21.06 ± 0.77 and 21.23 ± 0.78, respectively; p = 0.2143) 

(Figure 7). Considering the relationship between plasma 5MIAA (primary exposure) and NAFLD 

(primary outcome), an assessment of covariates was done by literature review and directed acyclic 

graph (DAG) theory, which demonstrated the hypothesized causal relationship between all 

variables included in Table 1. There were no covariates on open backdoor paths in the DAG and 

thus no covariates were considered confounders by DAG theory and included in the model based 

on these assumptions (Appendix, Figure A.2).  

Linear regression analysis was performed to assess the relationship between LSM and 

quantile normalized level of plasma 5-MIAA (Table 7). LSM was log transformed for analyses. In 

the linear model, 5-MIAA was not significantly associated with LSM (regression coefficient 0.05; 

SE 0.04; p-value 0.16). The model had poor discrimination, explaining only 1.0% of the variation 

in LSM (R-square = 0.01; Figure 8). 
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Table 6. Regression model for the association between plasma level of 5-MIAA with C18 negative 

separation and level of liver fibrosis. 

 
Abbreviations: OR – odds ratio, CI – confidence interval 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 7 Box plots with violin plot overlay to demonstrate 5-MIAA level with C18 separation in 

97 patients with non-advanced fibrosis and 42 patients with advanced fibrosis. Boxplot ‘boxes’ 

indicate the first and third quartiles of the data. The middle lines indicate the medians. Boxplot 

‘whiskers’ indicate the inner fences of the data. Outliers are represented as individual points. There 

was no significant difference in plasma level of 5-MIAA between patients with non-advanced 

fibrosis and advanced fibrosis (21.06 ± 0.77 and 21.23 ± 0.78, respectively; p = 0.2143). 
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Table 7: Univariate regression for the association between LSM (kPa) and plasma level of 5-

methoxyindole-3-acetic acid. 

 
Abbreviations: SD – standard deviation, min – minimum, max – maximum, Std. – standard 

A. Log normalized variable.  

 

 

 

 

 

 

 

 

 

 
Figure 8 Intensity values for quantile normalized level of plasma 5-MIAA (identified by m/z and 

retention time) for individual plasma samples plotted as a function of the associated log-

transformed LSM measurement for the sample. 
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3.6 Main Results – 5-methoxyindole-Acetic Acid Untargeted Analysis 

 

An untargeted MWAS detected 11,993 metabolites using C18 negative electrospray 

ionization chromatography. After filtering for metabolites not present in at least 10% of the 

samples, 11,497 were included in analyses, of which 492 were found to be significantly associated 

with plasma 5-MIAA level with a rigorous FDR cutoff of q = 0.2. With HILIC positive ionization 

mode, 18,009 metabolites were detected. After filtering metabolites not present in at least 10% of 

the samples, 16,968 features underwent downstream analysis, with 788 features significantly 

associated with plasma 5-MIAA level at a raw p-value of 0.05. A raw p-value of 0.05 was used 

for significance for metabolites separated using HILIC positive chromatography in the 

mummichog pathway analytical program. 

Manhattan plots (Figures 9, 10) showed a broad range of m/z correlated with 5-MIAA, 

indicating that correlated metabolites were diverse in size and physical properties. Correlated 

features were used to search the HMDB metabolomics database for matches to common ions (H+, 

H-) with 10 ppm tolerance. Caffeic Acid (m/z 181.0507, RT 37.4 s) had the highest –log P (r = 

0.56, p < 0.0001). Other metabolites significantly associated with 5-MIAA with confirmed 

identification are shown in Table 9. 

Pathway analysis revealed significant (p<0.05) enhancement of the following pathways 

associated with 5-MIAA: lipid metabolism (de novo fatty acid biosynthesis, glycerophospholipid 

metabolism, fatty acid metabolism/activation, glycosphingolipid metabolism, omega-3 fatty acid 

metabolism), saccharide metabolism (chondroitin sulfate degradation, heparan sulfate 

degradation, prostaglandin formation, galactose metabolism), amino acid metabolism (histidine 

metabolism, methionine and cysteine metabolism, lysine metabolism, urea cycle/amino group 

metabolism, aspartate and asparagine metabolism), mitochondrial metabolism (CoA catabolism, 
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glyoxylate and dicarboxylate metabolism), antioxidant response (biopterin metabolism), and sialic 

acid metabolism (Figure 11).  
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Figure 9 Type 1 Manhattan plot showing the negative log p (−log p) for correlation of 492 

significant features (q = 0.2) as a function of the m/z with 5-MIAA level with C18 negative 

separation. m/z 181.0507 (Caffeic Acid) had r = 0.56 and the highest -log10 P. Each dot represents 

one metabolic feature. Features positively associated with 5-MIAA are represented in red, and 

those with negative associations are in blue. Black dots (below p < 0.05) represent metabolites not 

significantly related to 5-MIAA. False discovery rate (FDR) threshold is labeled as q = 0.2.  

 

 

 
Figure 10 Type 1 Manhattan plot showing the negative log p (−log p) for correlation of 788 

significant features (p-value < 0.05) as a function of the m/z with 5-MIAA level with HILIC 

positive separation. m/z 162.9739 had p = - 0.31 and the highest -log10 P. Features positively 

associated with 5-MIAA are represented in red, and those with negative associations are in blue.  
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Table 8 Selected metabolites (hydrogen adducts) significantly correlated with 5-MIAA in an 

untargeted analysis of human plasma in patients with varying degrees of liver fibrosis. 

 
Abbreviations: m/z - mass-to-charge ratio, RT - retention time, r – Spearman’s correlation 

coefficient, FDR – false discovery rate 

 

 

 

 

 

 

 
Figure 11 Pathway enrichment analysis (p < 0.05) using mummichog. The y-axis shows metabolic 

pathways significantly associated with metabolome wide alterations associated with 5-MIAA. The 

x-axis shows the -log p-value for pathway enrichment. Results are shown for both HILIC positive 

and C18 negative ionization modes. De novo fatty acid biosynthesis was the most significantly 

enhanced pathway. 
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4. Discussion  

 
4.1 Key results (Targeted and untargeted analysis of VB) 

 

δ-Valerobetaine (VB), a gut microbial-derived diet dependent obesogen, has been shown 

to disrupt mitochondrial fatty acid oxidation via inhibition of the carnitine shuttle in the liver and 

positively correlate with visceral adipose tissue mass and body mass index in humans.15 Therefore, 

we suspected higher levels of VB in patients with higher scores of liver fibrosis (LSM). In this 

study, there were no significant differences in plasma levels of VB between patients with advanced 

and non-advanced fibrosis. Additionally, VB was not associated with liver fibrosis in the 

regression analyses. However, the MWAS linked VB to several metabolites and pathways 

previously associated with the pathogenesis of NAFLD. Results from pathway analysis revealed 

significant associations between plasma levels of VB and limonene degradation, lysine and 

glutathione metabolism, and vitamin B1 (thiamine) metabolism. Limonene degradation has been 

associated with gut microbial metabolism and administration of D-limonene has been shown to 

precipitate liver fibrosis in the murine model.29-31 Lysine and glutathione metabolism are notably 

altered in patients with NAFLD.32,33 Further, multiple studies have linked alterations in amino acid 

metabolism directly to imbalances in human gut microbiota.34,35 Alterations in vitamin B1 

(thiamine) metabolism have been implicated in hepatic fat accumulation, a key pathogenic 

contributor to progression of liver fibrosis in patients with NAFLD.36 These findings support our 

hypothesized importance of the microbiome-gut-liver axis in NAFLD and liver fibrosis. 

Metabolites significantly associated with VB in the MWAS included a variety of lipids 

(two acylcarnitines, one fatty acid ester) and an NAD precursor. Metabolic disturbance of lipids is 

a well-documented hallmark of NAFLD and a known physiologic effect of VB.37,38 Additionally, 
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prior studies have shown that patients with high levels of hepatic steatosis have an altered demand 

for NAD, which could explain the observed association with VB in our study.33  

These findings suggest VB is metabolically linked to various pathways and metabolites 

implicated in liver fibrosis and NAFLD. In this cohort of patients with pre-existing liver fibrosis, 

it is unclear whether changes in VB level are due to metabolome wide alterations from liver 

fibrosis, or if VB precedes these underlying changes. While VB did not demonstrate any 

significant associations with severity of liver fibrosis in those who already have NAFLD, future 

studies should aim to explore the temporality of this relationship. 

 

4.2 Key results (Targeted and untargeted analysis of 5-MIAA) 

Previous studies have demonstrated that 5-MIAA is functionally protective against 

oxidative liver injury, decreases insulin resistance, and improves lipid metabolism.14,39 Therefore, 

we expected increased plasma levels of 5-MIAA in patients with lower LSM scores. In this study, 

there were no significant differences in level of 5-MIAA between patients with advanced and non-

advanced fibrosis and 5-MIAA was not a strong predictor of liver fibrosis in regression analyses. 

However, the MWAS linked 5-MIAA to metabolites and pathways previously documented to play 

important roles in NAFLD.  

Results from pathway analysis revealed significant associations between plasma levels of 

5-MIAA and lipid metabolism, chondroitin sulfate degradation, and biopterin metabolism. 

Together, the widespread changes in numerous pathways of lipid metabolism is consistent with 

the known metabolic disturbance of lipids as a hallmark of NAFLD.32 Chondroitin sulfate 

degradation has been linked to gut microbial metabolism, lipogenesis, and systemic inflammation. 

These metabolic processes are key factors in the pathogenesis of NAFLD and further highlight the 

underlying implications of gut microbial metabolism in hepatic disease.40 Biopterin metabolism is 
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associated with the hepato-protective antioxidant response (Nrf2/ARE pathway).41 Nrf2/ARE 

plays a key role in the regulation of hepatic inflammation, detoxification, and development of 

fibrosis.42,43 Thus, our data show 5-MIAA is involved in a robust metabolic network of lipid 

metabolism, inflammatory regulation, and antioxidant response, all of which have contributory 

roles in the underlying pathogenesis of NAFLD and its progression.  

Metabolites significantly associated with 5-MIAA in the MWAS primarily included 

dicarboxylic acids (caffeic acid, 33-thiobispropanoic acid) and a variety of fatty acids 

(glycerophospholipids, fatty acylcarnitines, phosphosphingolipids, keto acids). Dicarboxylic acids 

have been associated with hepatic lipid deposition and mitochondrial fatty acid oxidation.44 

Specifically, caffeic acid, a metabolite derived from plant digestion, has been found to regulate 

lipid accumulation in the murine model, attenuating  gut microbiota dysbiosis and protecting 

against hepatic steatosis in high fat diets.45,46 Studies using lipidomic approaches have 

demonstrated that patients with NAFLD have altered levels of glycerophospholipids and 

phosphosphingolipids, two major membrane lipids with intracellular signaling capacity, when 

compared to healthy controls.47,48 Fatty acids and their metabolites are directly implicated in 

NAFLD pathogenesis, with previous findings showing altered ratios of fatty acid composition and 

disrupted fatty acid metabolism in patients with NASH.47,49-51 Also of interest to this study, 

research has shown that differences in free fatty acid profiles are directly linked to changes in gut 

microbiota composition.52,53  

Taken together, these findings suggest 5-MIAA is metabolically linked to many important 

pathways implicated in NAFLD and that further study of the role of gut microbial metabolism in 

the pathogenesis and progression of NAFLD is warranted.  As stated previously, all patients in this 

cohort had pre-existing liver fibrosis, and therefore it remains unknown whether differences in 
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plasma 5-MIAA may precede progression to cirrhosis. This should be a target for future studies, 

along with assessment of 5-MIAA as a reliable biomarker of hepatic inflammatory response and 

to further discern its role in host-microbiome cross talk. 

 

4.3 Limitations  

 

Limitations of this study include the cross-sectional design, which limits the capacity for 

causal inference and relatively small sample size, which limits generalizability. Future, larger 

studies interrogating similar hypotheses should include longitudinal sampling to allow for 

investigation of temporal associations between VB and 5-MIAA and the severity of liver fibrosis. 

Specifically, this will allow for measurement of these metabolites before the development of liver 

fibrosis, as our study only included patients with pre-existing NAFLD. Another limitation derives 

from the collection of samples from plasma, which places measured metabolites at risk of 

biotransformation in liver. This potentially makes associations harder to detect in humans when 

compared to murine models, where samples can be obtained from the portal vein, which feeds gut-

derived metabolites into the liver. Another limitation is that our study lacked a healthy control 

group. Importantly, future studies should include healthy participants without NAFLD, as no 

studies of plasma 5-MIAA and VB have been previously documented in patients with NAFLD 

versus those without this metabolic disorder.  

 

4.4 Interpretation  

 

While targeted metabolites did not significantly differ between levels of fibrosis, the 

MWAS for each metabolite suggests these metabolites are associated with metabolic networks 

previously shown to have biologic importance in NAFLD. Further, many metabolites detected in 

the MWAS were of unknown origin, which could represent a broad network of previously 
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unexplored metabolic pathways associated in NAFLD. This supports the notion of gut microbial 

cross talk at the host-microbe interface, and the role of the gut microbiome in human disease. This 

study has raised important questions regarding mechanistic relationships between gut microbial 

metabolism and human metabolic activity that should be further explored in future studies.   

 

4.5 Generalizability  

Without a healthy control group, the findings in this study are limited in their clinical 

applicability and external validity. However, the results of this study do provide a general strategy 

for the use of high-resolution metabolomics for the interrogation of gut-microbiome metabolism 

in various disease states. Future studies including a healthy control group will allow for more 

developed clinical and translational insights using the conceptual framework demonstrated in this 

study. 
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5. Appendix  

 
Figure A.1 Directed Acyclic Graph (DAG) for the assessment of covariate relationships with 
plasma VB (primary exposure) and NAFLD (primary outcome). Age was on an open backdoor 
path and thus was considered as a potential confounder by DAG theory and included in the 
model based on these assumptions.  
 
 

 
A. Includes total cholesterol, LDL-C, and triglycerides. 
 
Figure A.2 Directed Acyclic Graph (DAG) for the assessment of covariate relationships with 
plasma 5-MIAA (primary exposure) and NAFLD (primary outcome). There were no covariates on 
open backdoor paths in the DAG and thus no covariates were considered confounders by DAG 
theory and included in the model based on these assumptions.  
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