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Abstract 

 

 

ACHD Risk Score: A tool for identifying adults with moderate or complex congenital heart 

defects using Electronic Health Records data from the Emory Healthcare Data Warehouse, 

Atlanta, GA 

 

By Alpha Oumar Diallo 

 

Background: It is hypothesized that adults with moderate to complex congenital heart defects 

(CHD) are increasing, but many patients experience lapses in specialist care. There is, to date, no 

validated procedure to identify this population. 

 

Objectives: To develop and validate a risk score to identify adults aged 20-60 years old with 

moderate to complex CHD from routine provider and health system electronic health records 

(EHR). 

 

Methods: We used a case-control design (596 adults with physician-diagnosed moderate to 

complex CHDs receiving care at Emory’s adult CHD clinic and 2,384 controls [persons without 

ICD-9 codes for CHD] receiving care at other Emory facilities]). We extracted data regarding 

age, race/ethnicity, EKG, and laboratory tests from routine outpatient visits between January 

2009 and December 2012 from Emory Healthcare’s EHR Data Warehouse. We used 

multivariable logistic regression models and a split-sample (4:1 ratio) approach to develop and 

validate the risk score, respectively. We generated receiver operating characteristic (ROC) curves 

to assess the ability of models to predict adult moderate to complex CHD.  

 

Results: Three models (laboratory, non-laboratory, and simplified) were produced and validated 

internally. The non-laboratory algorithm (ACHD model) based on age, sex, and 

electrocardiogram markers was chosen. Validation studies of the ACHD model showed a ROC c-

statistic of 0.97 [95% Confidence interval (CI): 0.95, 0.99]. The ACHD Risk Score, developed 

using the ACHD model, also demonstrated good accuracy with 93.69% sensitivity and positive 

predictive value of 69.80% at a score threshold of 11.   

 

Conclusion: A simple non-laboratory risk score based on age, sex, and EKG marker may help 

accurately identify adults with moderate to complex CHD from routine EHR systems. External 

validation studies within large longitudinal clinical cohorts are required to assess wider 

performance of this tool.      
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Introduction:  
 

Congenital heart defects (CHD) are structural abnormalities of the heart, aorta, or other 

large blood vessels that arise during fetal development, and cumulatively, represent the most 

prevalent birth defect in the United States (1). An estimated 2 million infants, adolescents, and 

adults live with CHD in the United States (2). Advances in medical and surgical care have led to 

increased life expectancy among these individuals. As a result, there are now slightly more adults 

than children and adolescents living with CHDs, and this figure will continue to increase over 

time (1).  

Increasing age among those with CHDs presents new health challenges and increased risk 

of a multitude of late cardiovascular complications including heart failure, arrhythmia, and 

thrombosis (3), and non-cardiac complications such as renal dysfunction and restrictive lung 

disease (4). Consequently, adults with CHDs use substantially more health care resources than 

does the general population. For instance, the number of hospital admissions in the US among 

adults with CHDs doubled between 1998 and 2005 from 35,992 to 72,656, with most admissions 

originating from emergency departments and involving cardiac surgeries, compared to only a 

13% increase in the general population (5). 

Preventative care and specialty management of CHDs can increase quality of life and 

prevent complications and reduce mortality and healthcare costs among those affected (6). 

Guidelines recommend that adults with moderate or complex CHDs receive periodic (every 6-24 

months) follow-up in adult CHD centers (7, 8). However, studies conducted in Canada and the 

Netherlands, where patients have access to care through universal healthcare systems, estimated 

that a high proportion of young adults (47-60%) between 18-22 years old, do not receive 

continuity of care (9, 10). One potential reason for this trend can be due to not requiring 

cardiology follow-up if the patients have certain mild CHDs. Another Canadian study reported 

that 53% of young adults with complex CHDs were not even identified and under cardiology care 
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(11). Proximity to specialized centers, being male, cardiology visits outside the university setting, 

and cost also contribute to adults’ failure to receive continuity of care. However, these patients 

continue to receive primary care, suggesting that access may be a less important barrier than 

awareness of these patients’ conditions among the medical community (9, 12). Failure to receive 

continuity of specialized care, especially among those with complex CHDs, increases the risk of 

delayed recognition of complications and poor outcomes (13, 14). 

Given the high costs associated with hospitalizations and surgery and the high proportion 

of adults with moderate and complex CHDs not receiving specialized care, it is in the financial 

interests of insurance companies and other providers in the United States to identify adults with 

moderate and complex CHD and get them the care as early possible to prevent costly cardiac 

interventions, especially since patients can no longer be denied coverage or charged higher 

premiums due to a preexisting conditions like CHDs under the 2010 Patient Protection and 

Affordable Care Act (15).  

The high proportion of young adults continuing to receive primary care and the 

increasing utilization of electronic health records (EHR) systems among health providers present 

a unique and efficient opportunity to facilitate identification of adults with moderate or complex 

CHDs – i.e. those most likely to benefit from diagnosis and referral to specialist care (16, 17).  

Identifying adults with moderate or complex CHD from large cohorts would enable 

health providers to make specialized care more accessible, encourage individuals not receiving 

specialized care to seek cardiology follow-up, and identify primary care physicians caring for 

these individuals and educate them on how to best utilize specialized care resources to improve 

the health of their patients. However, there is no validated procedure for using data from EHR 

systems to identify adults with moderate or complex CHD. To address this deficit, we derived 

and internally validated a risk score based on common indicators found in patient records: 

demographic, electrocardiogram (e.g., PR interval, left ventricular hypertrophy, and heart rate), 

and laboratory parameters (e.g., B-type Natriuretic Peptides and blood hemoglobin levels).  
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Methods:  

 

Data Sources and Study Design 

 

We used patient administrative and clinical records from Emory Healthcare’s Data 

Warehouse. Emory represents the largest multispecialty health care provider in the state of 

Georgia. We used a case-control study design to identify characteristics and factors that 

distinguish people with and without moderate-to-complex CHD. To develop and validate a risk 

score, we used a split-sample validation approach: study participants were randomly split into two 

groups at a ratio of 4 to 1 between the model development and validation (i.e. holdout) groups, 

respectively. The split sample approach, and the validation group especially, allows for the 

evaluation of the “best” model’s reliability and performance in an independent sample derived 

from the same population when new data is unavailable (18).   

The Institutional Review Board of Emory University (Atlanta, GA, USA) approved this 

study protocol and the Institutional Review Board of the Centers for Disease Control and 

Prevention was also notified. 

 

Study Population 

 

Study participants were adult outpatients, 20-60 years old, cared for in at least one of 

Emory Healthcare’s facilities that had electrocardiogram (EKG) test results between January 

2009 and December 2012. Cases were defined as patients with physician diagnosed moderate-to-

complex CHDs based on International Classification of Diseases Ninth Revision and Clinical 

Modifications (ICD-9-CM codes 745.0-746.7) and receiving care at the Emory Adult Congenital 

Heart Clinic (EACHC). Control subjects were patients seen at any other Emory Healthcare 

facilities who did not have any ICD codes representing mild, moderate, or complex CHD 

diagnosis.  Figure 1 shows a flow chart of patients who met inclusion/exclusion criteria for the 
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study population. Of the 33,660 patients with valid EKG test results, 1,362 were seen at EACHC 

and 32,298 were cared for at other Emory Healthcare facilities. Among the EACHC patients, 766 

were excluded for having ICD codes (n = 582), ICD codes corresponding to mild CHD (n = 167), 

and missing age values (n = 17).  Among the non-EACHC patients, 485 were excluded due to 

having missing age data (n = 350) and ICD codes representing CHD diagnosis (n = 135; mild 

CHD = 84; moderate CHD = 41; complex CHD = 10); we randomly selected 2,384 of the 

remaining 31,813 non-EACHC patients to represent the controls. The final analysis data set 

contained 2,980 patients, which was composed of 596 cases and 2,384 controls.  

 

Data Collection 

 

We extracted data from Emory Healthcare’s electronic health record (EHR) system 

regarding age, race/ethnicity, and EKG and laboratory test results during routine outpatient visits 

during January 2009 and December 2012.   

 

Study variables 

 

The primary outcome variable was clinically-diagnosed moderate-to-complex CHD as 

defined by the American College of Cardiology (8). Moderate CHD was defined as having any of 

the following: common truncus, stenosis of pulmonary valve, and/or Tetralogy of Fallot. 

Complex CHD was defined as having any of the following: transposition of great arteries, 

tricuspid artesia and stenosis (congenital type), hypoplastic left heart syndrome, and/or a common 

ventricle. We excluded adult patients with mild CHDs (i.e. isolated arterial septal defect and 

isolated ventricular septal defects) as non-cases because these defects have high likelihood of 

undergoing resolution in childhood, and they tend to not require lifelong cardiac care (see Figure 

2). Additionally, mild defects are highly misclassified due to diagnostic and data entry errors 
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associated with these conditions (19). Where patients had two or more diagnoses, the most 

complex diagnosis classification was assigned as the patient’s primary diagnosis. 

Initially, we examined factors (out of age, sex, race/ethnicity EKG parameters, B-type 

Natriuretic Peptide (BNP), hemoglobin, echocardiograms and chest X-ray) related to the 

outcome. Age, sex, and race/ethnicity were self-reported items in the EHR. EKG data were 

automatically coded by and stored in the MUSE® Cardiology Information System (GE 

Healthcare, Wauwatosa, WI, USA) to provide a sense of the heart’s electrical conduction and size 

of the atria and ventricles. This data was directly linked with the administrative data in the EHR 

and created de-identified patient records before extracting data. However, we excluded 

race/ethnicity and hemoglobin, due to the large amount of missing data, and echocardiogram and 

chest X-rays because they were non-structured data. Age, sex, EKG, and BNP –the only 

remaining blood biomarker– were included in the analysis. Please see Table 2 for the list of 

predictors (exposure variables) and their classifications as examined in our models.  

 

Statistical analysis: 

 

 We performed analyses using SAS 9.4 (Gary, NC, 2014) and VassarStats Clinical 

Calculator 1 (Poughkeepsie, NY, 2015). We randomly assigned four-fifths (n = 2,384) of the 

study participants into the model derivation cohort and reserved one-fifth (n = 596) for internal 

validation. To ensure even distribution of demographic and clinical characteristics between the 

derivation and validation cohorts, we estimated and compared frequencies (Chi-square or Fisher’s 

Exact Tests for categorical variables, and student’s t-test for continuous variables).  

We used bivariate logistic regression to identify predictors related to moderate-to-

complex CHD and retained exposures associated with the outcome that were statistically 

significant at p < 0.05. Collinearity diagnostics were performed and effect modifiers were not 

considered to simplify and facilitate the implementation of the algorithm and score (20). 
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In a full multivariable unconditional logistic regression model, we examined exposures 

that remained independently associated with the outcome using backward stepwise selection 

(variables remaining were significant at p < 0.05). In another model, we also evaluated whether 

excluding the laboratory predictor and statistically significant predictors with small coefficient 

estimates was associated with any major change (an increased or decreased predictive value).  

To identify the “best” model —i.e., the one which best distinguishes patients with 

moderate to complex CHD from those without the outcome— we compared multivariate models 

using Receiver Operating Characteristic (ROC) c-statistics. We also evaluated how well the 

models predict the observed outcome in the data using the Hosmer-Lemeshow test (HL) for 

which a statistically significant value at p < 0.05 indicates a significant deviation between 

predicted and observed outcomes (20). In cases where it was difficult to discern the difference 

between models using the criteria above, we used the Bayes Information Criterion (BIC), a 

likelihood-based statistic that penalizes models with higher number of variables, to serve as the 

final criterion (21). Lower BIC values indicate better fit.  

We conducted an internal validation to explore how the “best” model performs in the 

validation data set (n = 596). To evaluate performance, we used the Brier score (a global measure 

that calculates the sum of squared differences between the observed outcome and fitted 

probabilities and for which smaller values indicate better agreement between predicted and 

observed outcomes), the ROC c-statistics, and the HL test. To describe if and how the “best” 

model distinguishes patients with moderate to complex CHD from those without these conditions, 

we calculated diagnostic accuracy (sensitivity, specificity, positive predictive value [PPV] and 

negative predictive value [NPV]) of the model. The final model was accepted based on a 

combination of the measures described above and simplicity. 
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Risk score development 

 

After determining the final predictive model, a risk score was developed to simplify the 

computation of patients’ total risk based on methods outlined by Sullivan, Massaro & D'Agostino 

(2004). (22). To do this, continuous predictors were categorized (to simplify the implementation 

of the score in clinical settings) and reference values for each predictor were determined. Second, 

the difference between each category and the referent category was identified. Finally, the 

difference in coefficients for each category was multiplied by a constant before rounding the 

resulting number to the nearest integer. To use the score, the whole integer corresponding to the 

level of each exposure present is added up and examined against the cut-off for defining moderate 

to complex CHD.  

Determination of Risk Score Cut-off 

 

We used 1 / [1 + e^-(final model)] to calculate predictive probabilities of the final model and 

their corresponding sensitivities and specificities using the ROC curves and the VasserStats 

Clinical Calculator 1. The cut-off for the risk score to accurately identify cases of moderate to 

complex CHD was determined by identifying the threshold at which the optimal permutation of 

sensitivity and specificity was found.  

 

Results:  
 

Descriptive characteristics of the model derivation and internal validation cohorts and 

associated statistics are shown in Table 1a and Table 1b. Among the model derivation cohort, 

compared to control participants, adult CHD cases were, on average, a decade younger and had a 

considerably higher QRS duration (131.10 vs. 89.83 msec) on EKG. Cases were more likely than 

controls to be non-Hispanic white and have enlarged right and/or left atria, right and left 
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ventricular hypertrophy, and right and left bundle branch blocks. A similar distribution of these 

characteristics was observed in the validation cohort except that controls were as likely to be 

white as cases.  

Of the exposure variables examined in the bivariate analyses, age, sex, QRS duration, 

QRS axis, right and/or left atrial enlargement, non-sinus rhythm, right and left ventricular 

hypertrophy, right and left buddle branch block, and B-type natriuretic peptide (BNP), were all 

strongly associated with moderate to complex CHD (Table 2). The full multivariable logistic 

regression model, which included all variables listed above, had a ROC c-statistic of 0.96 [95% 

confidence interval (CI): 0.95, 0.97] (Table 3). Removal of additional variables, including QRS 

axis and BNP, the only cardiac biomarker evaluated, did not improve or compromise the 

discriminative ability of the model as the ROC c-statistics were similar across all three models 

produced (laboratory, non-laboratory, simplified) ranging from 0.960 to 0.964. Because of the 

similarities in ROC c-statistics, we also compared the Bayesian Information Criterion (BIC), for 

which lower values indicate better fit, across the models. In the model derivation data set, the BIC 

value for the non-laboratory (no-BNP) model (BIC = 931.81) was larger than that of the full 

model (BIC = 924.91) but lower than the simplified model (BIC = 937.11). Given the minimal 

differences in BIC values between non-laboratory and full models (deemed more complex 

because of the additional laboratory test), the non-laboratory (no-BNP) model was selected as the 

final algorithm.  

Table 4 shows the summary statistics from internal validation regarding how the three 

models performed in the validation data set. The ROC c-statistics ranged from 0.97 to 0.98 across 

the three models. Although the full-model exhibited better global and calibration measures 

compared to the other models, the absolute difference was minimal and these better features were 

achieved at the expense of complexity. The performance of the simplified model and the non-

laboratory were identical (Table 5). Both models had 94.59% sensitivity, 92.37% specificity, and 

73.94% positive predictive value. As a result, the non-laboratory model was confirmed as the 
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final algorithm (ACHD model) from the validation data. Table 6 and Figure 3 shows the estimate 

and ROC curve for the ACHD model in the validation cohort, respectively. The area under the 

curve, the probability that a random adult with moderate to complex CHD is correctly 

discriminated from adults without mild, moderate, or complex CHD, for the ACHD model was 

0.97.   

The ACHD Score, which was derived from the ACHD model, is presented in Table 7. 

Predictors and their categories are shown in the first two columns on the left. The third column 

contains point values corresponding to each category. Only one category can be chosen for each 

exposure and the total points for each indicator can be noted in the last column, “Points for each 

indicator.” Adding the points of each predictor present gives each patient’s final score. The 

differences in mean score between the derivation cohort, 8.88 (SD 6.06; min 0, max 38), and the 

validation cohort, 8.65 (SD 5.65; min 0, max 28), were not statistically significant (Student’s t-

test = 0.84, P = 0.40). In the validation cohort, the mean score was higher in cases than controls 

(17.71, SD 4.93 vs. 8.00, SD, 5.61, Student’s t-test = 2.58, P = 0.01), in females than males (9.19, 

SD 5.62 vs. 8.00, SD, 5.61, Student’s t-test = 2.58, P = 0.01), and in younger than older age 

groups (15.06, SD 5.40 vs. 5.00, SD 3.28).  

From the validation cohort data set, the optimal threshold score, defined by a 

combination of slightly higher sensitivity than specificity, was 11, which was associated with a 

sensitivity of 93.69% and a specificity of 90.72% for the outcome (Table 8). Although lower 

thresholds were associated with higher sensitivity values, they did so at the expense of specificity.    

Discussion:  
 

We developed an empirically-derived risk score using routine clinical variables in 

electronic health records to differentiate between adults with and those unlikely to have moderate 

or complex congenital heart defects. The final algorithm (ACHD model) demonstrated good 
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calibration and discriminatory power in a randomly-generated split-sample internal validation 

cohort. The final model correctly identified adult CHD patients with a 95% sensitivity and a 74% 

positive predictive value. The ACHD model was subsequently used to develop the ACHD Risk 

Score, which similarly demonstrated high sensitivity (94%) and positive predicted values (70%).  

The ACHD Risk Score has several clinical and public health applications. Embedding an 

automated algorithm of this sort in EKG machines and EHR systems can provide automated 

screening during hospital or emergency room visits. It also has a high potential for identifying 

patients lost to cardiac follow-up from large patient cohorts whose data are stored on EHR 

systems. As more and more clinical settings utilize advanced EKG machines, this capability 

could be built in to flag potential high-risk individuals for further cardiology assessment. 

Identification may be an important event in encouraging these individuals to see cardiac 

specialists. Additionally, it can be used to identify primary care physicians and provide them with 

information about how to best utilize specialized care resources to improve their patients’ health. 

Furthermore, from a public health standpoint, this tool can be employed to establish multicenter 

registries for surveillance across the country and overseas.  

 Using the model components may also help estimate national prevalence from cross-

sectional surveys that include these measures and may have trouble defining CHDs based on self-

report alone. EHR systems provide an added value over administrative data, which are regularly 

used to estimate disease incidence and prevalence, because they incorporate clinical data 

including laboratory results and facilitate the identification of patients (23-25). Administrative 

algorithms often rely on billing codes, specifically ICD codes, and include a criterion of two or 

more patient encounters with providers for the condition of interest, which may not always be 

available (19, 26, 27). On the other hand, a code derived from a risk score like the one we 

developed, which rely on both administrative and clinical data, can be applied to EHR systems to 

improve the accuracy of identifying patients (28). Although success of this algorithm depends on 

the quality of data stored in EHR systems, the completeness of the data utilized to develop this 
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algorithm suggest that EKG data stored in EHR systems are viable option for identifying adults 

with moderate and complex CHDs (29-31). We chose a model where the variables are all likely 

to be available.  

Several surgical risk scoring systems for the prediction of mortality, major adverse 

events, and prolonged lengths of stay among pediatrics with CHD demonstrated good predictive 

ability in the adult CHD population undergoing congenital heart surgery (32). To the best of our 

knowledge, our model is the first that predicts the likelihood of having moderate to complex 

congenital defects based on age, sex, and EKG markers obtained from an EHR system. Also, 

impressive performance of our tool suggests high potential for wider use.   

The finding that BNP lacked added predictive value in the algorithm despite its statistical 

significance was consistent with the finding of other studies that indicated that increases in BNP 

values were associated with complex CHD, and should be used for specific clinical reasons, such 

as guiding therapy; however, researchers warn that BNP should be utilized with caution for 

screening purposes because it is a nonspecific biomarker of cardiac dysfunction (33, 34). 

There are some limitations to our work. The risk tools we developed are not yet 

generalizable to populations outside Emory Healthcare settings as we could not validate the 

findings externally, particularly in populations with a higher proportion of racial minority groups. 

There were major differences in the distribution of racial groups within our group of cases than is 

usually found in other studies conducted in Metro Atlanta (35). The use of ICD codes to exclude 

controls is a potential source for disease misclassification resulting in an overestimation of the 

model, especially since providers who may not be familiar with CHD diagnoses are tasked with 

entering ICD codes in EHR systems (19).  

In summary, the ACHD risk score we developed, which was composed of only age, sex and EKG 

markers, provided 94-95% sensitive and 91-92% specificity in the validation cohort. Although these tools 

require external validation in order to apply them in non-Emory Healthcare settings, they have potential 

to identify patients lost to cardiology follow-up whose data are stored in EHR systems, establish 
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multicenter surveillance across the country and overseas, and flag potential high-risk individuals for 

further cardiology assessment when built into advanced EKG machines. 
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Tables 
 

 

 

Table 1a Detailed demographic and clinical characteristics of study population in 

Model Derivation Cohort (n = 2,384) 

Characteristics 
Cases ( n= 485) Controls ( n= 1,899) P-value* 

Means (±SD) or N (%)   

Age (years) 34.00 (±10.52) 46.90 (±9.91) <0.0001 

20-34 290 (59.79) 239 (12.59) <0.0001 

35-49 139 (28.66) 761 (40.07) <0.0001 

50-60 56 (11.55) 899 (47.34) <0.0001 

Sex    

Females 260 (53.61) 981 (51.66) 0.443 

Race   <0.0001 

Non-hispanic white 322 (78.82) 845 (54.31)  

Non-hispanic black 77 (18.87) 643 (42.98)  

Asian 4 (0.98) 30 (1.93)  

Hispanic 4 (0.98) 31 (1.99)  

Native Indian/Pacific 

Islander 
1 (0.25) 7 (0.39)  

PR Interval (msec) 160.10 (±51.48) 153.90 (±30.49) 0.012 

QRS Duration (msec) 131.10 (±32.64) 89.83 (±14.99) <0.0001 

QRS axis (degrees) 59.24(±72.75) 38.49 (±37.24) <0.0001 

Heart Rate (bpm) 72.48 (±11.58) 70.62 (±13.08) 0.002 

Atrial Enlargement, Right, 

Left and Biatrial  
116 (23.92) 134 (7.06) <0.0001 

Rhythm not sinus 131 (72.99) 61 (3.21) <0.0001 

RVH 100 (20.62) 11 (0.58) <0.0001 

LVH 68 (20.34) 86 (4.53) <0.0001 

RBBB 310 (63.92) 85 (4.85) <0.0001 

LBBB 73 (15.05) 38 (2.00) <0.0001 

BNP    

 BNP (pg/ml) 247.20 (±545.9) 435.7 (±722.60) 0.003 

 BNP (>100 pg/ml) 110 (22.68) 64 (3.73) <0.0001 

Abbreviations: BPM, beats per minute; MSEC, milliseconds; RVH, right ventricular 

hypertrophy; LVH, left ventricular hypertrophy; RBBB, right bundle branch block; LBBB, left 

bundle branch block;  BNP, B-type Natriuretic Peptide; pg/ml, picogram per milli-liter 

*All tests were chi-square for categorical variables and student t-tests for continuous variable at 

0.05 significance level.  
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Table 1b Detailed demographic and clinical characteristics of study population in 

Model Validation Cohort (n = 596) 

Characteristics 
Cases (n = 111) Controls (n = 485) P-value* 

Means (±SD) or N (%)   

Age (years) 34.06 (±10.82) 47.00 (±9.61) <0.0001 

20-34 63 (56.76) 59 (12.16) <0.0001 

35-49 31 (27.93) 201 (41.44) 0.008 

50-60 17(15.32) 225 (46.39) <0.0001 

Sex    

Females 70 (57.85) 264 (52.91) 0.328 

Race   0.113 

Non-hispanic white 79 (80.61) 302 (68.79)  

Non-hispanic black 16 (16.33) 123 (28.02)  

Asian 1 (1.02) 8 (1.82)  

Hispanic 2 (2.04) 4 (0.91)  

Native Indian/Pacific 

Islander 
0(0.00) 2 (0.46)  

PR Interval (msec) 156.6 (±51.42) 155.50 (±28.77) 0.833 

QRS Duration (msec) 131.1 (±31.24) 88.88 (±13.72) <0.0001 

QRS axis (degrees) 66.80(±75.61) 42.78 (±39.07) 0.0015 

Heart Rate (bpm) 72.76 (±11.01) 70.95 (±13.73) 0.1388 

Atrial Enlargement, Right, 

Left and Biatrial  
32 (26.45) 183(36.67) 0.034 

Rhythm not sinus 34 (28.0) 36 (7.21) <0.0001 

RVH 20 (16.53) 5 (1.00) <0.0001 

LVH 15 (12.4) 36 (7.21) 0.063 

RBBB 79 (65.29) 106 (21.24) <0.0001 

LBBB 17 (14.05) 36 (7.21) 0.0158 

BNP     

BNP (pg/ml) 374.1 (±765.00) 449.90 (±583.30) 0.630 

BNP > 100 pg/ml 27 (24.32) 17 (3.51) <0.0001 

Abbreviations: BPM, beats per minute; MSEC, milliseconds; RVH, right ventricular 

hypertrophy; LVH, left ventricular hypertrophy; RBBB, right bundle branch block; LBBB, left 

bundle branch block;  BNP, B-type Natriuretic Peptide; pg/ml, picogram per milli-liter 

*All tests were chi-square for categorical variables and student t-tests for continuous variable at 

0.05 significance level.  
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Table 2 Variables examined in multivariate logistic regression model using backwards stepwise approach and their resulting estimates, model 

derivation cohort (n = 2, 384) 

Variables* Definition Estimate Standard Error  Chi-Sq P-value 

Age 
Included in model as continuous variable, split 

into tertiles at score development stage 

-0.12 0.01 181.36 <0.0001 

Sex Male; Female -0.87 0.19 20.13 <0.0001 

QRS Duration  

Included in model as continuous variable, split 

into the following quartiles at score 

development stage: Against (<80 msec); 

Neutral (80-120 msec); Likely (> 150 msec); 

Supports (> 120 - 150 msec) 

0.05 0.00 118.01 <0.0001 

QRS Axis Included in model as continuous variable 0.01 0.00 14.60 0.0001 

Atrial enlargement right, left, biatrial Coded as present or absent by ECG Machine 1.47 0.26 31.55 <0.0001 

Rhythm not sinus Coded as present or absent by ECG Machine 1.84 0.30 38.65 <0.0001 

Right ventricular hypertrophy Coded as present or absent by ECG Machine 1.49 0.45 11.13 0.001 

Left ventricular hypertrophy Coded as present or absent by ECG Machine 0.75 0.33 5.26 0.022 

Right buddle branch block Coded as present or absent by ECG Machine 1.95 0.25 61.36 <0.0001 

Left buddle branch block Coded as present or absent by ECG Machine 0.84 0.40 4.26 0.039 

B-type Natriuretic Peptide (>100 pg/mL) 
Present if value greater than 100 pg/mL 

otherwise it was coded as absent  

1.16 0.30 14.71 0.001 

*Hear rate and PR interval were not statistically significant in bivariate logistic regression analysis and were, thus, excluded from multivariate logistic regression 

stage using backwards stepwise approach. 
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Table 3 Multivariable models using logistic regression backwards stepwise approach in the model 

derivation cohort (n = 2,384) 

Models* ROC c-statistic (95% CI) BIC† Brier Score† 

Non-laboratory model-(ACHD model)  0.962 (0.952, 0.972) 931.81 0.049 

Simplified model 0.960 (0.950, 0.971) 937.11 0.051 

Full-model 0.964 (0.954, 0.973) 924.91 0.047 

Abbreviation: ROC, Receiver Operation Curve; BIC, Bayesian information criterion 

*Full-model contained variables found to be statistically significant variables during the multivariate logistic 

regression stage. The non-laboratory model excludes B-type Natriuretic Peptide (BNP) from the Full-model. The 

Simplified model excludes left bundle branch block, QRS axis & BNP from the Full-model.  

†Lower BIC and Brier score values indicate better fit. Higher values of C-statistic indicate better discrimination. 
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Table 4 Summary Statistics Comparing the ACHD (non-laboratory), Simplified, and Full 

models to predict adult moderate or complex congenital heart defect, based on data from 

validation cohort (n = 596) 

  ACHD Model {¥} Simplified Model {¥} Full Model {¥} 

Global Measure    

Brier Score* 0.038 0.038 0.036 

Discrimination    

C-statistic* 0.97 (0.95, 0.99) 0.97 (0.95, 0.99) 0.98 (0.96, 0.99) 

Calibration    

Hosmer-Lemershow P value† 0.103 0.102 0.551 

{¥} Full-model contained variables found to be statistically significant variables during the multivariate 

logistic regression stage. The ACHD Model excludes B-type Natriuretic Peptide (BNP) from the Full-

model. The Simplified model excludes left bundle branch block, QRS axis & BNP from the Full-model.  

*Lower values of Brier score values indicate better fit. Higher values of C-statistic indicate better 

discrimination. 

† A significant value of Hosmer-Lemeshow statistic indicates a significant deviation between predicted and 

observed outcomes. 
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Table 5 Performance Characteristics of the ACHD (non-laboratory), Simplified, 

and Full models in the identification of adult moderate or complex congenital heart 

defect, validation cohort (n = 596) 

Model Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

ACHD Model  94.59 92.37 73.94 98.68 

Simplified Model  94.59 92.37 73.94 98.68 

Full Model  93.69 92.78 74.82 98.67 

Abbreviations: PPV, Positive Predictive Value; NPV, Negative Predictive Value 
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Table 6 Moderate or complex ACHD (non-laboratory) model, Model Derivation Cohort    

(n = 2,384)  

Variables Estimate Standard Error  Chi-Sq P-value 

Age -0.12 0.01 179.72 <.0001 

Sex -0.91 0.19 22.12 <.0001 

QRS Duration 0.05 0.00 140.43 <.0001 

QRS Axis 0.01 0.00 14.42 0.0001 

Atrial Enlargement Right, Left, Biatrial 1.58 0.26 38.44 <.0001 

Rhythm not sinus 2.02 0.29 47.90 <.0001 

Right Ventricular Hypertrophy 1.54 0.44 12.47 0.0004 

Left Ventricular Hypertrophy 0.83 0.32 6.66 0.010 

Right Buddle Branch Block 1.84 0.25 56.41 <.0001 

Left Buddle Branch Block 0.93 0.40 5.48 0.019 

Best-fitting multivariate logistic regression model.  
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Table 7 Moderate or complex adult congenital heart defect (ACHD) risk score 

Variables Categories 

Points for 

each category 

Points for 

each indicator 

Demographics       

Age 

20-29 7 

Points: 

30-39 5 

40-49 3 

50-60 0 

Sex 
Male 0 

Points: Female 2 

Electrocardiogram       

QRS Duration   

Points: 

Against <80 0 

Neutral 80-119 3 

Support 120-149 6 

Likely ≥150 10 

Atrial enlargement right, left, 

biatrial 

Absent 0 

Points: Present 3 

Rhythm not sinus 
Absent 0 

Points: Present 4 

Right ventricular hypertrophy 
Absent 0 

 Present 3 

Left ventricular hypertrophy 
Absent 0 

Points: Present 2 

Right buddle branch block 
Absent 0 

Points: Present 4 

Left buddle branch block 
Absent 0 

Points: Present 2 

      Total=          * 

*Threshold scores and their assocated sensitivity and positive predicted values: total points = 

≥10, Sen (96 %), PPV (52%); ≥11, Sen (94 %), PPV (70%); ≥12, Sen (88 %), PPV (75%) 
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Table 8 Performance characteristics of ACHD score around threshold score (11)* 

Threshold score Sensitivity (%) Specificity (%) PPV (%) NPV (%) 

10 96.40 80.00 52.45 98.98 

11 93.69 90.72 69.80 98.43 

12 88.29 93.61 75.97 97.22 

Abbreviations: PPV, Positive Predictive Value; NPV, Negative Predictive Value 

*ACHD score is based on the non-laboratory model. 
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Figures and Appendix 
Figure 1 Flow chart of patients who met inclusion/exclusion criteria for the study population 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

          

Patients with EKG test results 

 

n = 33,660 

EACHD attendees with 

mild CHD diagnosis and 

missing age value 

 

n = 184 

 

EACHD attendees with 

CHD diagnosis 

 

n = 780 

EACHC attendees w/o ICD 

codes or CHD diagnosis  

 

n = 582 

Controls: Non-EACHDC attendees 

 

n = 32,298 

 

Cases: Adults seen at EACHDC 

 

n = 1,362 

Controls: Non-EACHDC 

attendees unlikely to have 

moderate to complex CHD after 

random selection  

 (n = 4 x 596) 

 

n = 2,384 

 

Cases: EACHD attendees with 

moderate to complex CHD 

diagnosis  

 

n = 596 

 

 

Controls: Non-EACHDC 

attendees  

 

n = 31,813 

 

Model validation cohort  

n = 596 

 

Model derivation cohort 

n = 2,384 

 

Study population 

n = 2,980 

Non-EACHDC attendees with 

at least one CHD diagnosis 

and missing age value 

 

n = 485 
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Figure 2 Types of congenital heart defects and corresponding ICD-9 codes. 

 

 
 

Figure 3 ROC curve of ACHD Model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mild 

• Ventricular
septal defect 
(745.4) 

• Atrial septal 
defect (745.5) 

• Potent ductus
arteriosus
(747.0)

Moderate

• Common 
truncus (745.0)

• Pulmonary 
valve stenosis 
(746.02)

• Transposition of 
the great 
arteries (745.1) 

• Tetralogy of 
fallot (745.2)

Complex

• Tricuspid 
artesia and 
stenosis (746.1)

• Hypoplastic left 
heart Syndrome 
(746.

• Common 
ventricle 
(745.3)
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