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Abstract 
 

Understanding and Modeling the Uncertainty in the American Community Survey:  Detecting the 
Spatial Correlation in Uncertainty at the County Level with Conditional Autoregressive Models  

By Shiwei Tang 
 
 

Starting in 2010, the US Census Bureau replaced the Long Form with  the American Community 
Survey (ACS), a rolling sample with annual and five- year data summaries. Because of the sampling 
design, the ACS reports the uncertainty of estimation via a margin of errors, which can be used to 
model the precision of results. Recent research illustrates latent spatial correlation in these margins 
of errors at different level of aggregation, and conditional autoregressive (CAR) models are popular 
way to incorporate such spatial correlations. In this thesis, we use spatial generalized linear mixed 
models (GLMMs), based on Poisson regression and the CAR model, to incorporate uncertainty in 
ACS-based population counts and covariates in small area estimates of disease risk. Both Markov 
chain Monte Carlo (MCMC) and Integrated Nested Laplace Approximation (INLA) are used to 
implement GLMMs, and we find both methods provide similar results. However, INLA is much 
more efficient in computation while MCMC provides slightly better interval coverages for fixed 
parameters. 
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1. Introduction 

When government agencies, research institutions, and companies seek to understand 

patterns and trends in the United States population to make plans and decisions, they 

often are interested in incorporating United States Census data to provide background 

reference values on population size, age distributions, demographics, etc.  The US Census 

Bureau collects population data using several survey instruments.  To balance the 

community’s needs and efforts required to complete the survey, there are two types of 

questionnaires, which are Short Form and Long Form.  Short Form, which only takes 

about 10 minutes to finish, asks some basic information such as sex, age, race and 

housing status. Long Form, which includes all questions from Short Form, contains many 

questions about population and housing. It takes about 38 minutes to finish and provides 

social-economic details. (U.S. Census Bureau 1999) Starting in 2010, the American 

Community Survey (ACS), a rolling sample of Americans, provides a smaller, but more 

frequent survey sample of the US population.  The ACS results are published by US 

Census Bureau annually, and, according to current plans, will replace the Long Form 

completely by 2020.   Based on detailed survey sampling techniques (U.S. Census 

Bureau 2016), the ACS reports both point estimates of demographic summaries and 

associated levels of uncertainty associated with the point estimates.  Historically, Census 

estimates have been treated as fixed quantities in statistical and epidemiological models, 

but the ACS reports allow more detailed consideration of estimation uncertainty within 

these models.  

The public health research community needs to cope with the new type of census data 

represented by the ACS including both point estimates and associated uncertainty, and 
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use the data in appropriate ways. Here we examine analytic techniques to incorporate the 

reported uncertainty in the ACS data in public health studies, specifically when 

estimating and mapping disease rates for small geographic areas (e.g., counties or census 

tracts).  We are interested in assessing the impact compare two different estimation 

algorithms with a simulation study based on the ACS data.  

1.1 Modeling  

Disease mapping and small area estimation are related modeling techniques that have 

many applications in public health (Gelfand et al., 2010). These overlapping families of 

methods share two competing main goals. One involves estimating local values precisely 

for each area; the other is having “small” areas to provide local details within broad 

trends. However, these main goals of disease mapping are in direct contradiction with 

each other. Usually, a small area comes with a small sample size, which means that 

precision of results is decreased (Gelfand et al., 2010) and aggregating small areas to 

increase sample sizes sacrifices local detail.  Small area methods seek to meet both goals 

by providing estimators that represent a weighted compromise between local and global 

data to improve local precision without entirely giving up local information. 

Disease mapping methods extend small area estimation by assuming positive spatial 

correlation between nearby observations, allowing local estimates to borrow more 

information from nearby areas rather than borrow information equally across all areas. 

The spatial setting provides a smoothing of extreme values and an easy way to visualize 

geographic patterns of disease.  As one example, popular conditional autoregressive 

(CAR) models allow us to borrow information from neighborhood areas, and provide 

more accurate local estimates than one would obtain ignoring neighboring values.  
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In spatial data, the CAR models often are implemented by Markov chain Monte Carlo 

(MCMC) algorithms (Gelfand et al., 2010) and, more recently, Integrated Nested Laplace 

Approximation (INLA) (Blanogiardo & Cameletti, 2015). Usually, MCMC is the first 

choice when we are looking for posterior sampling for Bayesian models such as the CAR 

model. However, the biggest challenge is obtaining convergence in posterior samples in a 

reasonable amount of time (Carroll et al., 2015). MCMC approaches can be very time 

consuming and put a heavy burden on CPU for simulation. Unlike MCMC, INLA is a 

new algorithm based on numerical rather than Monte Carlo integration to perform 

Bayesian analysis and calculate approximations of posterior marginal directly (Rue et al., 

2009), allowing much quicker computation than MCMC. INLA has been widely used to 

analyze lattice data with CAR model, and examples are easy to find (Bivand et al., 2015).  

1.2 Data Sources 

Before 2010, the only official, reliable resource for demographic characteristics of the 

US population was the Decennial Census (DC). US Census Bureau (USCB) conducts this 

survey for the entire country with two different forms: the Long Form and the Short 

Form. The Short Form is given to all households and collects basic demographic 

information, e.g., number of people in housing units, age, race, and Hispanic origin 

(Herman, 2008). The Long Form, which is distributed to 1-in-6  households, collects the 

same questions as in Short Form with additional questions about socioeconomic topics 

including education, income, housing characteristics, employment, and disability status 

(Herman, 2008). Although government agencies, researchers, and companies rely on 

these data to make decisions, it is obvious that the data will be outdated when applied to 
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the last few years of the 10-year cycle. A new census approach was introduced in 2010 to 

replace the Long Form in order to provide more timely data. 

The American Community Survey (ACS) is a complex sample conducted by US 

Census Bureau annually and yields dataset starting in 2010 for research and analysis. In 

1996, US Census Bureau decided to switch to the ACS (Bazuin & Fraser, 2013). It aims 

to help decision makers understand the community at different scales (State, County or 

Census Tract) by providing basic information regarding households and individuals 

annually. The ACS is distributed to about 250,000 households every year on a rolling 

monthly basis. Compared to Decennial Census (DC), which is published every 10 years, 

the ACS provides demographic estimates with more frequent updates.  

A very special feature of the ACS is that it changes point-in-time statistics to a period 

average over 1, 3, or 5 years. Annual information is available for areas with more than 

65,000 people. It covers data collected from January to December of the previous year. 

For areas with population size between 20,000 to 64,999 people, a three-year average is 

provided. For areas with a population size less than 20,000 people, a five-year average is 

the only available information (Herman, 2008).  However, due to the decrease of the 

Census budget, the three-year estimation was discontinued at 2014 (Buff, 2015). 

The ACS provides many advantages over the Decimal Census. First, it provides the 

most up-to-date estimates of basic social factors in the population on a relatively local 

scale. The ACS allows up-to-date data each year, and across the entire country.  Second, 

the ACS data provides an associated margin of error for each local estimate.  The margin 

of error allows users to analyze variability of the estimates, as well as the point estimates 

themselves. Third, with the yearly update, it is easier to examine the relationship between 
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population change and local or national events. Sampling weights are used at the person 

and housing unit level to adjust the importance of each complete survey, and the same 

weights of a survey apply to all estimates relating to that subject. For example, an Asian 

respondent whose income is $20,000 per year with sampling weight is 10 contributes 

$200,000 in aggregate income and 10 Asian residents to the estimated total population 

size (Spielman et al., 2015).  Lastly, since the ACS dataset maintains a permanent, well-

trained staff rather than a decennial pulse of data collectors, the collected data will be 

more accurate gathered by individuals with full understanding of the questionnaires. 

(Bazuin & Fraser, 2013). 

With a limited budget, the USCB has to compromise between the precision, 

timeliness, and cost of their data collection efforts.  Even with its advanced survey 

sampling design and best implementation efforts, bias and uncertainty will remain in the 

ACS and the goal is to quantify these and incorporate adjustments where possible. 

Although response to the survey is required by law, only 65% of selected ACS 

individuals reply.  The USCB dispatches staff to follow up with a sample of non-

respondents in person if individuals do not response by mail or Internet. However, not all 

non-respondents will receive personalized follow-up because of the high cost of doing so 

(Spielman et al., 2014).  

The reported margin of error reflects the uncertainty associated between two 

independent samples from the same population. In a simple random sample, it is easy to 

estimate margin of error based on sample size and variation in the targeted population. 

Estimating margin of error is much more difficult in complex designs such as that of the 
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ACS survey, but the details have been carefully worked out and documented by the 

USCB (Spielman & Singleton, 2015). 

We note that, because the design of the ACS is much more complex than the US 

census Long Form, it requires knowledge and care from users. Many users naively 

believe that the ACS provides the same information at the same accuracy as the decennial 

census data and ignore the reported margins of error (Napierala et al., 2017).  The 

increased uncertainty in the ACS data comes directly from its smaller sample size 

compared to US Census Long Form. As Starsinic (2005) states, overall, Standard 

Error(SE) from the ACS is 1.41 times larger than the SE from US census Long Form at 

the county level and 1.8 to 2.0 times at the tract level.  

In addition to sampling error, there are many factors influencing nonsampling error in 

the ACS. First, the ACS estimated population sizes may include random and systemic 

errors, especially in small areas. Another source of nonsampling error results from long 

data collection periods. Since the ACS is a rotating survey, some time passes between 

direct observation of data from particularly small areas.  As a result, it is somewhat 

harder to directly interpret results since they represent summary estimates over periods of 

time rather than direct point estimates for each year.  Similarly, the ACS also mismatches 

with population controls from Population Estimates Program (PEP), since PEP estimates 

the population on a single day rather than one- or five-year intervals of time (Napierala et 

al., 2017).  There are also some systematic differences coming from data collection 

methods and questionnaire design between the ACS and US Census Long Form. 

However, compared to the Census 2000 Long Form, the ACS has higher overall response 
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rates with the same completeness rates.  This helps the ACS to reduce nonsampling error 

(Napierala et al., 2017). 

Recent research highlights latent spatial correlations in ACS uncertainty values. For 

example, when exploring associations between median household income and uncertainty 

in household income at the tract-level, analysts find that tracks with a high (or low) 

uncertainty are likely surrounded by tracts with similar uncertainty (Spielman et al., 

2014). It is reasonable to assume that there are spatial correlations in reported ACS 

margins of error at the tract level. Spatial correlation, albeit at different spatial scales, 

may also be found at larger areas of aggregation (e.g., counties, states). When we are 

examining county or higher levels of the ACS data, we have more data within each area 

than in the tract-level data, for the same period of time.  It is not always helping to 

reducing MOEs if we aggregate smaller areas in to larger areas as some aggregation will 

combine data from dissimilar types of neighborhoods.  This question represents an open 

area of research, and recent research suggests that the aggregation recommendation from 

Census Bureau tends to over-correct for area-specific uncertainty (Spielman et al., 2015).  

Further research is clearly needed on this issue. 

As we stated above, the ACS is a compromise of spatial and temporal data; the within 

area uncertainty is not uniform distribution across the full collection of small areas.  In 

order to make the best use of ACS in spatially-referenced small area public health 

research, a better understanding of patterns in reported margins of errors and their impact 

on conclusions is required.   In this thesis, we are interested in to finding a better way to 

understand and use reported ACS margin of error information to obtain accurate small 

area estimation, with particular focus on incorporating the ACS within Poisson 
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regression-based disease mapping models.  More specifically, we are particularly 

interested in incorporating reported uncertainty in ACS-based population counts and 

covariates and comparing MCMC and INLA implementations of spatial generalized 

linear mixed models (GLMMs), based on Poisson regression and CAR model. We use a 

Poisson model as an approximation to a binomial model where the disease is rare. For the 

analysis, we use the following software and R packages: R version: 3.2.3, CARBayes 

version: 4.6, and INLA version:0.0.1485844051. 

In this paper, we will discuss the set of our data simulation. Then, we will describe 

how to compare the results from MCMC and INLA. Next, we will provide our results. At 

last, we will discuss our finds including advantages and disadvantages of both algorithms. 
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2. Methods 

2.1 Simulation model 

In this paper, we focus on fitting Poisson regression disease mapping models with 

MCMC and INLA, and assess the impact on model results of uncertainty in ACS. To 

evaluate the impact of uncertainty in ACS, we simulate data and compare the results of 

both approaches.  

As discussed above, a Poisson data model is frequently used in small area estimation 

of risk of a rare disease. We define yi as the count outcome observed in the ith area, and 

we use the state of Georgia and its 159 counties as our study area. We assume that we 

have the population size (denoted pi) for each area (county), and we set a fixed expected 

individual level rate (E). In our model, the outcome follows a Poisson distribution as 

follows: 

yi = 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝐸𝑝𝑖𝜃𝑖) 

log(𝜃𝑖) = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 

where θi denotes the relative risk of ith area. 

With a fixed expected rate for all individuals, we remove interindividual 

heterogeneity (not of interest here) and focus on variability due to uncertainty in the 

ACS, i.e., variability in pi, x1i, and x2i. More specifically, we include two spatially varying 

variables, which represent percent of poverty (x1i) and percent graduating from high 

school (x2i), both reported at the county-level by the ACS.  We simulated 200 datasets 

based on a fixed set of parameters (E = 0.05, β0 = 0.1, β1 = 0.01, β2 = 0.02). Since we 

choose relative small β values and individual level risk E, the outcome mimics rare 

disease incidence.  
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2.2 Fitted model 

We next fit standard disease mapping models to our simulated data.  To access spatial 

correlation in the data,  we fit an intrinsic CAR model. In this study region, we have J = 

159 separate areas and a set of outcomes y = (y1….y159). We define an offset O = 

(O1….O159), where  Oi equals to Epi. Next, we create a matrix of covariates X = 

(X1,…,X159) with a spatial random interecept v = (v1,…v159), which is used to explain any 

spatial autocorrelation for which fixed effects fail to account.  

To explore variability in ACS values, we calculate the standard error of variables by 

Marginal or Error (MOE)/1.645 for covariates. For each simulation, we generate values 

for, xi=(1,x1i,x2i) for each county, where xki ~ N(E(xki), SE(xki)) and 0<xki<1. These in turn 

allow us to simulate outcome values yi  for i = 1,…,J.  (Note that the simulation model 

does not include any random effects. 

Once we have the simulated outcome values, we fit the following hierarchical 

Bayesian disease mapping model: 

log{𝐸(𝑦𝑖|𝛽)} = 𝛽0 + 𝛽1𝑥1𝑖 + 𝛽2𝑥2𝑖 + 𝑣𝑖 + 𝑢𝑖 

with an intrinsic CAR prior for the spatial random effects 

𝑣𝑖|𝑣−𝑖, 𝒘, 𝜏~𝑁(
∑ 𝑤𝑖𝑗𝑣𝑗

𝐽
𝑗=1

∑ 𝑤𝑖𝑗
𝐽
𝑗=1

,
𝜏

∑ 𝑤𝑖𝑗
𝐽
𝑗=1

) 

standard prior distributions for covariate effects 

𝛽𝑖~𝑁(0,1000), 

and extra Poisson variation defined by another random intercept following 

𝑢𝑖~𝑁(0, 𝜎2) 

and finally, a hyperprior on the variance components 
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𝜏, 𝜎2~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 − 𝐺𝑎𝑚𝑚𝑎(𝑎, 𝑏) 

We note that v=(v1,…,v159) denotes a vector of random intercepts with spatial structure 

defined via a CAR structure with precision τ, and weight matrix w. The weight matrix w 

is a symmetric J by J matrix where wij = 1 if area i and area j have a shared boundary, and 

wij = 0 otherwise. We generate the w matrix using the tigris and spdep packages in R. 

Tigris is a package that accesses United States Census Bureau geography files and 

downloads a shapefile of Georgia at the county level. The spdep package helps us define 

neighbors on this shapefile via the poly2nb function (Bivand et al., 2015). 

To complete the model definition, we assign a normal prior distribution to each 𝛽𝑖 

with mean = 0 and variance = 1,000, and we also assign a gamma prior distribution to τ 

with parameters a = 1 and b = 0.01. 

Both the R-INLA and CARBayes packages can handle this model well (Bivand 

2015), and we compare their abilities to recover true associations (the βs) in the presence 

of measurement error (in p, x1, and x2) consistent with typical ACS margins of error. 

2.3 Comparison Techniques 

For this study, we fit the same model in both MCMC and INLA to each simulated 

data set. Both models were fitted in R. We compare the performance of MCMC and 

INLA by mean square error (MSE). We calculate MSE for parameter estimates, fitted y 

values, and relative risk.  

MSE(𝛽𝑘) =
1

𝑁
∑(𝛽𝑘 − 𝛽𝑘𝑛,𝑠𝑖𝑚)

2
𝑁

𝑛=1

 

MSE(𝑌) =
1

𝑁
∑[

1

𝐽
∑(𝑦𝑗 − y𝑗𝑛,𝑠𝑖𝑚)

2
]

𝐽

𝑗=1

𝑁

𝑛=1
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MSE(𝜃) =
1

𝑁
∑[

1

𝐽
∑(𝜃𝑗 − 𝜃𝑗𝑛,𝑠𝑖𝑚)

2

𝐽

𝑗=1

]

𝑁

𝑛=1

 

K denotes the number of covariates, N is the number of simulation times, and J is the 

number of counties. These results are based on averaged on 200 simulated datasets with 

the same underlying parameters.  

We also use graphical displays to examine differences between the simulated y and 

fitted y values averaged over our 200 simulated datasets. This measure determines how 

much the fitted y differs from simulated y values, even after allowing for spatially 

structured and unstructured excess variation.  

2.4 Data Summaries 

All data are primarily from the 2011-2015 ACS. It is the most recent ACS five-year 

estimation.  We choose the state of Georgia as our research area, which contains 159 

counties.  

 Mean Median Min Max 

Population Size 62,935 22,731 1,721 983,903 

Education (%) 19.7 20.1 6.1 39.0 

SE of Education (%) 1.5 1.5 0.2 4.0 

Poverty (%) 22.2 21.9 6.9 42.2 

SE of Poverty (%) 2.0 1.9 0.3 5.6 

Table 1. Descriptive statistics for Georgia at the county-level for the 2011-2015 ACS. 

According to Table 1, the mean county population size in Georgia is 62,935 people 

(range = 1,721, 983,903), the mean of education (% of population who does not graduate 

from high school and above age 25) is 19.7% (SE=1.5 %), and poverty (% of population 

who is below poverty line) is 22.2% (SE=2.0 %). 
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Figure 1.  County-specific values from the 2011-2015 American Community Survey 

(left) and locally weighted average values (right) for the covariate % population who 

does not graduate from high school and above age 25.  Covariate values in the top maps, 

standard errors on the bottom maps. 
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Figure 2. County-specific values from the American Community Survey (left) and 

locally weighted average values (right) for the covariate % in poverty.  Covariate values 

in the top maps, standard errors on the bottom maps. 

 

Since we are using percent to display the spatial heterogeneity at county level, we 

may face small number problems (Waller and Gotway 2004). As we state above, counties 

of Georgia have a very different population sizes.  The percent of education and poverty 

covariates are based on population size, so some counties have more precise local  

estimates than others. This may obscure some spatial patterns in maps.  Spatial 

smoothing helps reduce the noise by borrowing information from neighboring regions. 

As an initial descriptive display, we use locally weighted averages in Figures 1 and 2 to 

show smoothed values for each county by averaging the value of each county with that if 

its neighboring counties who share the boundary.  We use adjacency to define neighbors. 

More specifically, if p1, p2, …,pJ are the percent, smoothed percent is : 
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𝑟�̂� =
∑ 𝑤𝑖𝑗𝑝𝑗

𝐽
𝑗=1

∑ 𝑤𝑖𝑗
𝐽
𝑗=1

 

Where 𝑤𝑖𝑗 = {
1, if county 𝑖 and 𝑗 share a boundary or 𝑖 = 𝑗, and
0, otherwise.                                                                   

 

According to Figure 1 and Figure 2, the smoothed maps illustrate broad spatial 

patterns of both the covariates percent of Education and Poverty and their standard errors 

with pockets of high values (and high associated SEs).  These patterns motivate our 

inclusion of CAR-based random effects in our models below.  

The other tool, which is widely used to detect spatial correlation, is Moran's I 

autocorrelation index. We find Moran’s I is 0.294 for Education, 0.371 for Poverty, 0.377 

for SE of Education and 0.468 for SE of Poverty (All p-values < 0.01). These results 

suggest significant spatial correlation in both predictors and standard errors.  

We also examined the local components of Moran’s I (Bivand et al., 2009). 

According to Figure 3, we find that about 20% of counties exhibit significant positive 

spatial correlation with their adjacent neighbors. We note that geographic distribution is 

similar for both covariates and their standard errors, and there are few “Hot Spots” in the 

metropolitan Atlanta area, which have large population sizes. 
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Figure 3. County-specific P-values from Local Moran’s I.  Covariate values in the top 

maps, standard errors in the bottom maps. 

 

From these maps, we also find that the spatial patterns are very similar in all maps, 

and inversely related to local population size, but also may be due to mixing dissimilar 

types of neighborhoods in aggregating data from tract level to county level. 
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Figure 4. The relationship between raw data and locally weight average data. 

According to Figure 4, we see that the locally weight averages do not oversmooth the 

results but rather highlight the spatial trends and correlations already existing in the 

original data. 

It is worth noting that we use locally weight averages for display of potential spatial 

patterns, we still use the original raw data in our study. 
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3. Results 

It is important that our MCMC model is converged. We checked 200 simulated 

datasets using the Geweke Convergence Diagnostic in CARBayes package. All datasets 

show that the model has been converged after 200,000 iterations. 

 True Value MCMC INLA* 

Intercept 0.1 0.144 0.144 

95% Credible Intervals  (0.104, 0.184) (0.111, 0.177) 

Education 0.01 0.011 0.011 

95% Credible Intervals  (0.009, 0.013) (0.009, 0.012) 

Poverty 0.02 0.017 0.017 

95% Credible Intervals  (0.016, 0.019) (0.016, 0.019) 

Tau  0.002 0.002 

Sigma  0.001 0.001 

MSE (BETA0)  0.002 0.002 

MSE (BETAEDU)  0.000001 0.000001 

MSE (BETAPOV)  0.000001 0.000001 

MSE (Y FITTED)  338.83 340.71 

MSE 

(RELATIVE RISK) 
 0.31 0.31 

*Mean was used instead of median. 

Table 2. Parameter estimates from MCMC and INLA as well as the true values defining 

our simulated data values. 
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Figure 5. Ten example parameter estimates and 95% credible intervals from MCMC and 

INLA.  Reference values indicated by vertical lines. 

 

Table 2, Figure 5 and 8 show the results of parameter estimation compared to the true 

reference value for ten data simulations. The estimates from MCMC and INLA are very 
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similar, and the greatest difference (y-yfit) is less than 30. Compared to the true value, 

both MCMC and INLA tend to overestimate the intercept and underestimate the 

coefficient associated with % below Poverty.  We note the negative correspondence 

between the intercept and the Poverty coefficient (when the estimate of one is high, the 

other is low). While the coefficient associated with % with high school degree 

(Education) is slightly overestimated, most of 95% credible intervals contain the true 

value from each simulation. The overall coverage probability across 200 simulations for 

the intercept is 36.5% (MCMC) and 19.5% (INLA), for Education is 95.5% (MCMC) 

and 87.5% (INLA), and for Poverty is 11.5% (MCMC) and 6.5% (INLA). We also note 

that the MSE estimates from MCMC and INLA are almost the same, which means that 

both algorithms provide comparable fit of our models to the datasets. 
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Figure 6.  Estimated relative risk comparison between MCMC and INLA. 
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Figure 7. Relative risk mapping based on MCMC and INLA. 
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Figure 8. Relationship between log (population size) and difference in mean fitted and 

simulation outcomes. 

 

According to Figure 6, 7, and 8, we notice that there is very little difference in the 

county-specific outcome and county specific relative risk estimates, and both results are 

close to the true values underlying the simulation, suggesting very little bias in overall 

estimation due to the offsetting bias between the intercept and poverty effects. What’s 

more, there is not much difference in precision regardless of population size of country. 

The map also shows that both MCMC and INLA results show very similar spatial 

patterns, which are very closed to true value. 
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Figure 9. Relationship between log(Population) and difference in fitted and simulation 

outcomes based on dataset 1. 

 

Figure 10. Relationship between log(Population) and difference in fitted and simulation 

outcomes based on dataset 2. 
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We also plot outcome comparison for 2 randomly chosen dataset and they provide 

similar results (Figure 9 and 10), but the greatest difference is larger than the difference 

from the mean value.   
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4. Discussion 

As we see above, we find little difference in performance between INLA and MCMC 

suggesting either approach works well to fit standard disease mapping models. The 

parameter estimates are almost identical for both algorithms at default setting of 

CARBayes.  While the estimates are similar, INLA runs much faster than MCMC. The 

computing time for 200 simulation datasets in INLA is less than 1 hour, while we found 

it takes about half day using MCMC to ensure convergence.  We mention that MCMC 

provides better estimation for fixed effects compared to INLA, with respect to coverage 

probabilities for the intercept and the Poverty effect.  This is somewhat surprising, since 

the estimates for the relative risk are very similar. The overall coverage probabilities for 

fixed effects in our 200 simulations are better in MCMC than in INLA.   

Our results suggest that the spatial patterns of relative risk from both MCMC and 

INLA methods are very accurate even in the presence of ACS-type observation error, 

which means that the CAR model effectively adjusts for the effect of uncertainty in our 

dataset when we focus on local estimates of relative risk and outcomes, even though our 

data reveal measureable spatial correlations in local ACS values and reported margins of 

error.  Even we did not simulate our dataset with spatial covariance, our simulated 

datasets still contain some spatial correlations, and these correlations are “soaked up” by 

the CAR random intercepts. So, it is reasonable to use CAR model to reduce uncertainty 

in the ACS dataset, and we can focus on outcomes and relative risk. 

There are also some limitations to our approach model. As noted in earlier research, 

the non-spatial covariate effects are not well estimated in either MCMC or INLA (Carroll 

et al.,  2015), suggesting the disease mapping models have better prediction than 



27 
 

estimation properties.  Lawson (2015) suggests that this problem may be more of an issue 

wheen the magnitude of the true value is small. In our results, we also find similar 

performance to that reported in Lawson (2015)., We find that including the CAR terms in 

our model allows us to borrow neighborhood information to improve estimates of local 

values, even in the presence of spatially autocorrelated margins of error. It appears that 

neighboring information works well to stabilize fixed effect estimates to provide accurate 

overall predictions of local relative risk, but the specific fixed effect estimates merit more 

study.  In our case, we found an underestimated Poverty term with an overestimated 

intercept, lessening the impact of the standard error on our local predictions.   

There are several areas for future work.  Some revised CAR models, such as the 

Leroux CAR Model (Leroux et al., 2000), help to balance the strength in random effects 

and fixed effects through an additional parameter and may have better estimation 

performance than the standard CAR model used in our research. The other thing we need 

to mention is that CAR model assume that we have the same strength of spatial 

correlation among the whole area, which is almost impossible in real world.  A localized 

CAR model may help this problem and is worth examining in more detail in future work 

(Lee 2013). 
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5. Conclusion 

Overall, both MCMC and INLA perform well to estimate model parameters and 

predict the local relative risk and outcomes in simulation datasets with random errors, 

and, like others, we find the INLA implementation to be considerably faster than MCMC.  

Our initial results are promising but more work is needed to better assess and understand 

the impact of using CAR disease mapping models.  
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