
 

 

 

 

Distribution Agreement 

 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an advanced 

degree from Emory University, I hereby grant to Emory University and its agents the non-

exclusive license to archive, make accessible, and display my thesis or dissertation in whole or in 

part in all forms of media, now or hereafter known, including display on the world wide web. I 

understand that I may select some access restrictions as part of the online submission of this 

thesis or dissertation. I retain all ownership rights to the copyright of the thesis or dissertation. I 

also retain the right to use in future works (such as articles or books) all or part of this thesis or 

dissertation. 

 

 

 

 

  

Genevieve Frances LaCon    Date: 4/21/2013 

  



 

 

 

 

 

 

Long-term trends in the spatial clustering of Aedes aegypti infestation within a tropical 

urban environment 

 

By 

 

Genevieve Frances LaCon 

Master of Public Health 

 

 

Global Environmental Health 

 

 

 

Gonzalo M. Vazquez-Prokopec, PhD, MSc  

Committee Chair 

 

 

 

Paige Tolbert, PhD  

Committee Member  



 

 

 

 

 
Long-term trends in the spatial clustering of Aedes aegypti infestation within a tropical 

urban environment  

 

 

 

 

By 

 

 

 

 

Genevieve Frances LaCon 

B.A., University of New Hampshire, 2011 

 

 

 

 

Thesis Committee Chair: Gonzalo M. Vazquez-Prokopec PhD, MSc 

 

 

 

An abstract of  

A thesis submitted to the Faculty of the  

Rollins School of Public Health of Emory University 

in partial fulfillment of the requirements for the degree of  

Master of Public Health 

in Global Environmental Health 

2013 

 



 

 

 

 

Abstract 
 

Long-term trends in the spatial clustering of Aedes aegypti infestation within a tropical 

urban environment  
 

By Genevieve Frances LaCon 

Background: Dengue, the most important mosquito borne viral disease in the world, is a 

major source of morbidity and mortality in tropical and temperate urban environments. 

While spatial clustering of the dengue vector Aedes aegypti has been previously studied, 

long term trends in clustering have not. This represents a promising area of study to help 

effectively target vector control in areas with limited resources. 

Objective: This study longitudinally quantified the long term (over 3 years) spatial trends 

of Aedes aegypti clustering in the Maynas neighborhood of Iquitos, a city in the Peruvian 

Amazon, and determined the factors that influence a home’s membership in a cluster of 

high mosquito abundance. 

Methods: Spatial methods at the global (neighborhood) and local (household) level were 

applied to understand long term trends in adult and pupae clustering from 9 entomologic 

surveys spaced ~4 months. A GLM model was used to determine which household and 

environmental characteristics predicted proportion of time a household was a member of 

a cluster. 

Results: While individual analysis of entomologic surveys did not indicate the 

occurrence of any apparent clustering, the proportion of time house was a cluster for 

adults as well as the proportion of time a house was a cluster for pupae ranged from 0-1, 

with some houses being members of clusters a high proportion of the time. Average 

kernel density across survey also showed a clear long term pattern of clustering. The best 

model predicting proportion of time house was a member of a cluster used household 

characteristics. 

Discussion: Although Ae aegypti is highly heterogeneous and poorly predicted, overall 

there is a strong distribution pattern, Results from the model indicate household 

characteristics like water source and number of residents are good predictors of cluster 

membership. Future research should connect information on clusters to dengue infection, 

to determine if living in, or visiting a cluster raises risk of infection with dengue. 
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LITERATURE REVIEW 
 

Vector borne diseases account for significant morbidity and mortality worldwide. 

This is especially true for resource-poor countries, and many vector-borne diseases are 

also neglected tropical diseases (NTDs), which disproportionately affect poor and 

marginalized populations [1]. A vector is an animal or object which carries a pathogen 

from one host to another; typically an invertebrate arthropod [2]. For a vector borne 

disease to complete a cycle of transmission, a vector must feed on an infected and 

infectious host, undergo a pathogen incubation period, and transmit the pathogen to a 

new host. Seven of the 10 neglected tropical diseases targeted for control programs by 

WHO are VBDs [3]. Examples of the impact of vector borne diseases worldwide include 

Malaria, which affects roughly 247 million people each year, with nearly 1 million 

people dying from the disease, Chagas disease, which affects an estimated 7 to 8 million 

worldwide, the majority of which are concentrated in Latin America, and Lymphatic 

Filariasis, which affects an estimated 150 million people worldwide [3,4,5]. Emerging 

vector-borne diseases are also important; dengue, West Nile Virus, Chikungunya, and 

Lyme disease have all drastically expanded their distribution range in the last half century 

[6]. These diseases often have limited treatment options, and some have no cure.  

Of all vector-borne diseases, dengue virus (DENV) is the most important 

mosquito-borne viral disease in the world [7]. An estimated 390 million cases of dengue 

virus infection occur annually throughout the tropical and subtropical world out of an 

estimated 3.97 billion people at risk [8]. Roughly 96 million of cases are apparent; 2.1 
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million of those cases are in the form of Dengue Hemorrhagic Fever (DHF) or Dengue 

Shock Syndrome (DSS), the more severe manifestations of the disease, [8,9,10]. In the 

last twenty years, dengue fever epidemics have increased in number and magnitude, due 

to the dramatic range expansion of Ae. aegypti and the global propagation and mixing of 

the four DENV viral strains [11]. Many factors have influenced the spread of dengue, 

among them population increases, travel, and urbanization [7].  

Dengue is caused by 4 related but distinct viral strains or serotypes of the genus 

Flavivirus, family Flaviridae [11]. Manifestations of dengue infection can range from 

asymptomatic infection to nonspecific fever or classical Dengue Fever (DF) [12]. 

Symptoms of classic DF include severe headache and pain behind eyes, joint pain, 

muscle and bone pain, and rash [13]. Dengue Hemorrhagic Fever (DHF) and Dengue 

Shock Syndrome (DSS), the most serious manifestations, also include hemorrhagic 

manifestations, severe abdominal pain and persistent vomiting, as well as shock, and may 

be life threatening without medical treatment [13]. Untreated, a DHF or DSS infection 

has a case fatality rate of 30-40%, but with medical treatment the case fatality rate is less 

than 1% [13]. Infection confers serotype-specific partial immunity, but only to the strain 

of virus that caused the infection. A person who has had one strain of the virus is actually 

more susceptible to other strains[11]. This may be due in part to antibody-dependent 

enhancement, where antiviral antibodies actually enhance viral entry into a host cell [11]. 

Antibody-dependent enhancement occurs when, after having been previously infected 

with on serotype of dengue, a person becomes infected after some time with a different 

serotype [11]. This is caused by the highly cross-reactive nature of antibodies between 
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serotypes [14]. This results in higher viral loads, and more serious manifestations of the 

disease. Because of this, a person may be infected with dengue up to 4 times.  

DENV is transmitted primarily by the vector Aedes aegypti, a daytime biting and 

highly anthropophilic mosquito species. Incubation of the virus lasts 3 to 15 days in 

humans, after which symptoms such as acute fever, headache myalgia and fatigue 

manifest [12]. Mosquitoes become infective after they bite an infected human and 

undergo an extrinsic incubation period lasting from 7 to 14 days, depending on ambient 

temperature [15]. Currently, there is no effective treatment of dengue, and while there are 

vaccines being researched, it will be years before an effective one is found [9,16]. In the 

absence of other tools, vector control is the only effective method for preventing virus 

transmission [17].  

The mosquito Ae. aegypti plays a prominent role in the transmission of dengue. 

Ae. aegypti is highly adapted to the human environment; it predominantly breeds in 

artificial containers such as plastic containers found in and around the home, prefers to 

rest in cool, dark areas including inside the home, and feeds almost exclusively on 

humans [7]. Outdoor passive rain-filled containers are the most productive sources of 

pupae [18]. Female Ae. aegypti seldom disperse beyond 100m, so adult mosquitoes are 

likely to stay in close proximity to the larval habitats from which they emerged  

[19,20,21].  

In absence of other tools, vector control has shown the most promise in impacting 

transmission of dengue (Morrison and Scott 2010). Current vector control efforts are 

largely similar to the same methods that were used to eliminate Yellow Fever in Panama 

in 1904 [22]. These include container reduction, treatment of containers with larvicide to 
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kill immatures, vector surveillance, and emergency application of ULV (ultra low 

volume) space sprays in the home. Vector control of Ae. aegypti faces many more 

challenges than control of Anopheline and Culex mosquitoes due to the ineffectiveness of  

larger insecticide spray campaigns that use trucks and aerial sprays, the emergence of 

insecticide resistance in adult Ae aegypti, and the challenges of reaching and covering all 

households at risk in an urban area [23]. Vector control must be done in the home for 

Aedes due to its adaptations to the human lifestyle. Other vector control methods that are 

currently being investigated for Ae. aegypti include genetically modified mosquitoes and 

insecticide treated materials, however these interventions have yet to prove effective [16]. 

Vector surveillance is an essential part of vector control and long term understanding of 

dengue transmission. For dengue, the goal of vector control is to lower the mosquito 

population down to levels where virus transmission cannot occur. However dengue 

presents a challenge in that this level is still unknown. There is no entomological measure 

to predict dengue risk like the entomological inoculation rate for malaria[15]. By 

improving surveillance, the connection between mosquito densities and transmission can 

be better understood. 

Ae. aegypti abundance is spatially heterogeneous, and some areas are more likely 

to produce more mosquitoes than others [24,25]. Understanding the spatial and temporal 

distribution of Ae. aegypti is essential for controlling transmission of DENV, because 

knowledge about long-term vector presence and abundance can help inform local public 

health and vector control agencies on the locations of potential transmission hot-spots 

[24,26,27] . Additionally, by understanding the distribution of environmental variables 

and vectors, predictions about future vector abundance can be made [28]. However, 
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effective predictions that accurately predict infestation are rare, due to the skill and 

understanding of ecological context necessary to create them [28]. 

One promising aspect of the application of spatial analysis methods to vector 

control is that of identifying hotspots of vector production that can be targeted for 

control. The majority of this research on identifying and targeting hotspots has been done 

on hotspots in connection to malaria, although research concerning the efficacy of spatial 

targeting of Chagas disease also exists [29,30,31]. Malaria researchers have identified 

that stable hotspots of asymptomatic parasitemia and unstable hotspots of  febrile malaria 

prevalence exist, as well as stable hotspots in areas of low level transmission [32]. There 

is also evidence on a theoretical level that targeting hotspots of mosquito production 

could have significant impact on the cost effectiveness of vector control interventions 

[31]. Chagas researchers also show the theoretical promise of spatial targeting, both 

logistically and economically, in areas where full coverage cannot be achieved [30]. 

These findings would support the development of a vector control program that utilizes 

targeting of hotspots. However, it is important to note that many challenges to identifying 

hotspots exist, specifically the ambiguity in definition of what a hotspot is, with 

definitions ranging from an entire country to a household [24,31]. Additionally, while 

these theoretical studies about spatial targeting show promise, none have empirically 

demonstrated these results. While several studies have looked at dengue hotspots, none 

have attempted to spatially target vectors, beyond classic vector control of houses within 

100 meters of a case. 

While understanding spatial and temporal distributions of Ae. aegypti is important 

for effective disease control, current research on long-term spatial analysis of clustering 
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of Ae. aegypti is limited; most studies are either concurrent with a dengue virus epidemic 

or cross-sectional [33,34]. Little information exists at fine spatial (e.g. household) and 

temporal scales (e.g. multiple time points longer than a year), however the limited 

analysis that has been done indicates that this is the appropriate scale at which to study 

Aedes aegypti spatial clustering [33]. Findings of Ae. aegypti cluster analysis have been 

mixed; Getis et al. found that adult Ae. aegypti clustered up to 30 meters while pupae did 

not cluster beyond the household, while Melo et al found that Ae. aegypti eggs clustered 

from 200 to 800 meters [24,35]. Additionally, Aedes aegypti abundance is highly variable 

over short time periods[24,25]. Koenraadt et al found that areas treated with insecticide 

spray to control Ae. aegypti recovered 50 percent after only one week [36]. One study 

looking at spatial stability of clusters found significant spatial correlation in rank order of 

mosquito abundance per trap, however only one year of data was analyzed [25]. Using a 

longer period of time for analysis may elucidate more stable trends in vector abundance. 

By analyzing entomologic data at fine spatial and temporal scales, long-term patterns of 

distribution can be better understood, which is essential for the development of 

interventions targeting transmission hot-spots.  

In order to better predict and prevent future dengue outbreaks, it is important to 

understand whether consistent hotspots of Aedes aegypti infestation exist, and to identify 

what underlying factors are associated with their occurrence. Therefore, this thesis aims 

to understand long-term patterns vector distribution, as well as the underlying factors that 

account for these patterns, in a well-studied neighborhood in the city of Iquitos, Peru. 

This is achieved by first estimating the long-term (over 3 years) pattern of spatial 

clustering of Aedes aegypti abundance within two study neighborhoods in Iquitos, Peru. 
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Next, the major drivers of presence (or absence) of Aedes aegypti clusters, both within 

and between neighborhoods are defined. Last, using the information gathered, a 

predictive model of Aedes aegypti clustering is developed at the neighborhood level. 

Understanding temporal trends in vector abundance and clustering has the potential to 

help improve understanding of disease transmission and potentially inform local public 

health and vector control agencies where to target their vector control efforts. 
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ABSTRACT 
 

Background: Dengue, the most important mosquito borne viral disease in the world, is a 

major source of morbidity and mortality in tropical and temperate urban environments. 

While spatial clustering of the dengue vector Aedes aegypti has been previously studied, 

long term trends in clustering have not. This represents a promising area of study to help 

effectively target vector control in areas with limited resources. 

Objective: This study longitudinally quantified the long term (over 3 years) spatial trends 

of Aedes aegypti clustering in the Maynas neighborhood of Iquitos, a city in the Peruvian 
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Amazon, and determined the factors that influence a home’s membership in a cluster of 

high mosquito abundance. 

Methods: Spatial methods at the global (neighborhood) and local (household) level were 

applied to understand long term trends in adult and pupae clustering from 9 entomologic 

surveys spaced ~4 months. A GLM model was used to determine which household and 

environmental characteristics predicted proportion of time a household was a member of 

a cluster. 

Results: While individual analysis of entomologic surveys did not indicate the 

occurrence of any apparent clustering, the proportion of time house was a cluster for 

adults as well as the proportion of time a house was a cluster for pupae ranged from 0-1, 

with some houses being members of clusters a high proportion of the time. Average 

kernel density across survey also showed a clear long term pattern of clustering. The best 

model predicting proportion of time house was a member of a cluster used household 

characteristics. 

Discussion: Although Ae aegypti is highly heterogeneous and poorly predicted, overall 

there is a strong distribution pattern, Results from the model indicate household 

characteristics like water source and number of residents are good predictors of cluster 

membership. Future research should connect information on clusters to dengue infection, 

to determine if living in, or visiting a cluster raises risk of infection with dengue. 
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INTRODUCTION 
 

Dengue virus (DENV) is the most important mosquito-borne viral disease in the 

world [7]. An estimated 390 million cases of dengue virus infection occur annually 

throughout the tropical and subtropical world out of an estimated 3.97 billion people at 

risk [8]. Roughly 96 million of cases are apparent; 2.1 million of those cases are in the 

form of Dengue Hemorrhagic Fever (DHF) or Dengue Shock Syndrome (DSS), the more 

severe manifestations of the disease, [8,9,10]. In the last twenty years, dengue fever 

epidemics have increased in number and magnitude, due to the dramatic range expansion 

of Ae. aegypti and the global propagation and mixing of the four DENV viral strains [11]. 

Many factors have influenced the spread of dengue, among them invasion of multiple 

serotypes, population increases, travel, and urbanization [7]. Currently, there is no 

effective treatment of dengue, and while there are vaccines being researched, it will be 

years before an effective one is found [9,16]. In the absence of other tools, vector control 

is the only effective method for preventing virus transmission [17]. 

DENV is transmitted primarily by the vector Aedes aegypti, a daytime biting and 

highly anthropophilic mosquito species. Ae. aegypti is highly adapted to the human 

environment; it breeds in artificial containers such as plastic containers found in and 

around the home, prefers to rest in cool, dark areas including inside the home and 

preferentially feeds from humans [7]. Outdoor passive rain-filled and often unattended 

containers are the most productive sources of pupae [18]. Female Ae. aegypti seldom 

disperse beyond 100m, so adult mosquitoes are likely to stay in close proximity to the 

larval habitats from which they emerged  [19,20,21].  Empiric evidence from both 

entomologic field surveys and population genetics studies support the notion that Ae. 



12 

 

 

 

aegypti abundance is spatially heterogeneous, and that some areas are more likely to 

produce more mosquitoes than others [24]. Understanding the spatial and temporal 

distribution of Ae. aegypti is essential for controlling transmission of DENV, because 

knowledge about long-term vector presence and abundance has the potential to help 

inform local public health and vector control agencies on how to target their vector 

control efforts \ [24,26,27]. Additionally, by understanding the distribution of 

environmental variables and vectors, predictions about future vector abundance can be 

made [28].  

While understanding spatial and temporal distributions of Ae. aegypti is important 

for effective disease control, current research on long-term spatial analysis of clustering 

of Ae. aegypti is limited; most studies are either concurrent with a dengue virus epidemic 

or cross-sectional[33,34]. Little information exists at fine spatial (e.g. household) and 

temporal scales (e.g. multiple time points longer than a year), however the limited 

analysis that has been done indicates that this is the appropriate scale at which to study 

Aedes aegypti spatial clustering [33]. Findings of Ae. aegypti cluster analysis have been 

mixed; Getis found that adult Aedes aegypti clustered up to 30 meters while pupae did 

not cluster beyond the household, while Melo et al found that Ae. aegypti eggs clustered 

from 200 to 800 meters [24,35]. Additionally, Aedes aegypti abundance is highly variable 

over short time periods[24,25]. Koenraadt et al found that areas treated with insecticide 

spray to control Ae. aegypti recovered in adult abundance 50 percent after only one week 

[36]. One study looking at spatial stability of clusters found significant spatial correlation 

in rank order of mosquito abundance per trap, however only one year of data was 

analyzed [25]. Using a longer period of time for analysis may elucidate more stable 
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trends in abundance. This study aims to understand long-term patterns of vector 

distribution by estimating the long-term (over 3 years) pattern of spatial clustering of Ae. 

aegypti abundance within a well defined neighborhood of the city of Iquitos, Peru. Next, 

the major drivers of presence (or absence) of Aedes aegypti clusters were identified by 

developing a predictive model of Aedes aegypti clustering at the neighborhood level. 

Understanding vector presence and abundance will help inform local public health and 

vector control agencies decide where to target their vector control efforts. 

 

MATERIALS AND METHODS 
Data:  

Study area: This study was took place in the city of Iquitos, the largest urban center in 

the Peruvian Amazon. The location of the city can be seen in Figure 1. The city is 

surrounded on three sides by the Amazon, Nanay, Itaya rivers. The city is only accessible 

from other parts of the country by air or water. This results in a city of roughly 370,000 

inhabitants that is geographically isolated [37].  Figure 1. The city is only accessible from 

other parts of the country by air or water. Human demography, Ae. aegypti entomological 

indices, and dengue epidemiology for Iquitos have been studied in detail 

[18,24,26,37,38,39]. Over the last 12 years, Iquitos has been a field site for various long-

term epidemiological research studies through the University of California-Davis-Emory 

University entomology field station and the U.S. Naval Medical Research Unit 

(NAMRU-6). While a successful campaign by the Pan American Health Organization 

(PAHO) led to the elimination of Aedes aegypti in the Peruvian Amazon in the mid-

twentieth century, a reduction in vector control programs that followed this success led to 

the reintroduction of Ae. aegypti in the 1960s and dengue fever in the 1980s [40]. 
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Within Iquitos, Maynas was the neighborhood of focus. As seen in figure 1, the 

Maynas neighborhood is located in Punchana district in the north central part of the city 

[18,41]. The Maynas neighborhood is older, more urbanized, and in general wealthier 

than other neighborhoods in Iquitos, though economic prosperity in the neighborhood 

varies widely [24,39]. However, Maynas has also historically had significantly more 

Aedes aegypti than other neighborhoods in Iquitos. One reason for this is that problems 

with reliability of the water supply have been a problem in the past for this neighborhood, 

so residents have been more likely to store their water [24]. Source of water varies widely 

at the household level; some homes have piped water, while others have neither water nor 

sewer services [24]. In addition to high Ae. Aegypti densities, the Maynas neighborhood 

has also historically had one of the highest seroprevalence rates in the city [38]. This 

paper expands on a previous study by Getis [24] in the same neighborhood, and looks to 

see whether trends from this previous study hold true over longer time periods. 

Data collection and management 

Data for this study was collected using standardized entomological surveys 

performed ~ 4 months from 2009 to 2012 comprising 9 survey “circuits”. All houses (645 

in Maynas)  were painted with a unique house code [24].  Unoccupied or closed houses, 

as well as houses that did not give permission, schools, businesses and offices were not 

surveyed. An attempt to survey a house was made a minimum of 3 times per circuit.  

Entomological data collection:  

Immatures and adults were surveyed because the pupal index is highly correlated 

with adult production (Morrison et al 2010). The survey was conducted in teams of two, 

where one person conducted the demographic survey while the other looked for aspirated 
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for adults. Adults were aspirated using a Prokopack mosquito aspirator (Vazquez-

Prokopec et al. 2009). Survey teams were rotated daily to limit temporal and collector 

biases [41]. Adult aspirations were conducted in each room of the house as well as 

outside the house [41]. Upon completion of the demographic survey the other team 

member looked in potential Ae. Aegypti development sites for water, larvae and pupae. 

All containers found to be holding water were measured, classified,  and scored for 

sunlight exposure, fill method (actively via faucet or passively by rain), and presence of a 

cover. If immatures were found, pupae were collected for processing at the field 

laboratory.   

Survey data was imported into ArcGIS and georeferenced using the geographic 

coordinates of the unique house codes. The coordinate system and datum used were 

Universal Transverse Mercator and WGS -84. There were roughly 6,190 data points in 

the Maynas neighborhood. Each point was identified by coordinates, district, 

neighborhood, block number, location code as well as survey circuit and date. This study 

made use of the Geographic Information System(GIS) created by the Naval Medical 

Research Detachment (NMRD) and Amy Morrision for the city of Iquitos. 

Analysis  

Spatial Analysis 

To estimate long-term patterns of Aedes aegypti adult and pupae, spatial 

distributions in Maynas spatial statistical analysis methods were applied. First, clustering 

in each circuit was estimated. Spatial analysis utilized ArcMap 10.1, and PPA, two 

recognized spatial analysis programs. The statistical package SAS was also used for 
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regression. Pupae were analyzed as a measure of productivity, while adults were analyzed 

as a measure of entomologic risk.  

 Clustering 

 To assess clustering, first, a global weighted k-function was calculated with PPA. 

Global WK-function was used to detect global spatial clustering in individual-level data. 

Global WK-function is a second order analysis. There are multiple tests available to 

estimate this.  L(d), the calculated K-function is compared to the expected K-function 

L(h), calculated using Monte Carlo randomizations of the data. Weighted k-function 

analysis was used to determine if weights or values at each point were clustered, 

dispersed, or random within the pattern of points.  

 Next, local Gi*(d), was calculated using PPA. This is also called hotspot analysis. 

Local clusters are clusters that occur at some locations. Local Gi*(d) was calculated for 

pupal and adult abundance. Local Gi*(d) identifies individual cluster members. Gi* takes 

each house as a center, and searches outwards from the center to find if nearby houses 

have more or less than expected mosquitoes. Clusters occur when greater than expected 

numbers of mosquitoes occur near each other.  From this, houses which are members of 

clusters as well as houses which are not are identified, using a z-score of 2.575 as a cutoff 

for cluster membership, as per Getis et al 2003. This information is used to identify 

cluster membership for the model that is constructed. The distance at which the z-score 

peaked for each cluster member was also calculated. 

Additionally, to estimate temporal patterns in clustering, clusters found using 

Getis Gi* were summed across circuits, then divided by number of times house was 

surveyed, as per Barrera (2011), to determine which areas have consistent clusters.  
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 Kernel density 

To assess trends over the entire collection period, kernel density estimates were 

first derived for each circuit using interpolation via a bandwidth of 100 meters [42]. This 

technique is dependent on the choice of bandwidth: a bandwidth that is too small will not 

offer much for interpolation if points are too far apart, while a bandwidth that is too large 

will include spurious data that is unrelated in estimates. This bandwidth was selected 

based on the median of the highest k-function values found at each circuit. To assess a 

pattern of high kernel density, all calculated kernel densities were averaged together into 

a new raster for adults and pupae. This analysis is a visual representation of the combined 

kernel densities from each circuit. 

Modeling 

A generalized linear model (GLM) was constructed to study cluster membership. 

The GLM takes into account correlated data structures, which is appropriate in this case 

because longitudinal and clustered data is being used. Using multi model selection, the 

best model was defined. Two models were constructed; one to predict the proportion of 

time a house was a cluster for pupae, and another for adults. 

 Environmental and Household Covariates 

Environmental and household characteristics used to predict outcome included 

NDVI, temperature, rainfall, number of household residents, water source, and number of 

containers. Normalized Difference Vegetation Index (NDVI) was also calculated for each 

block over the study area, and an average NDVI value for each city block was calculated. 

Average daily temperature and rainfall over the collection period were calculated for each 

circuit. Results from the demographic survey were used to calculate average number of 
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household residents, proportion of time households used rainwater and/or faucet, and 

average number of water-holding containers. 

The full model was 

Model: y= Intercept + β1* NumberContainers + β2*Temperature +β3*NDVI + β4* 

NumResidents + β5*WaterSourceRain + β6*WaterSourceFaucet  

RESULTS  

Survey Results and Neighborhood Characteristics 

Over the course of all 9 circuits, 3,731 house entomological surveys were 

performed. A total of 645 unique houses were surveyed, with an average of 415 (standard 

deviation, SD, 40) houses surveyed in each circuit. Seventy-seven percent of buildings 

surveyed were residential. Surveys lasted on average 70 days, but to reach as many 

houses as possible some surveys lasted longer. After full survey of Maynas households, 

the collection team would return to try to sample closed houses, which is why some 

survey circuits were longer. On average, each house was surveyed 5.8 (SD 2.7) times. 

The average number of people living in a house was 6 (SD 3.1). As previously 

mentioned, water source has historically been unstable in the Maynas neighborhood, and 

percentage of households using two of the most important water sources (faucet and rain 

water), ranged from 91 to 95 percent for faucet, and 2 to 7 percent for rain water. Use of 

these two water sources was not mutually exclusive, so a third measure, number of water 

holding containers per household, was also important, and households had an average of 

2.8 (SD 2) containers. Almost all (98.9%) of houses had at least 1 container throughout 

the study period. Temperature, another significant influence on mosquito development, 

was fairly stable throughout the circuits, ranging from 26.2 to 27.5 degrees.  
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 On average, 0.9 (SD 4.6) adults were found per house, as well as 0.8 (SD 11.2) 

pupae, however there was considerable range in these numbers (see Figures 2 and 3). The 

number of adults collected per house ranged from 0 to 163, and the number of pupae 

collected per house ranged from 0 to 433. An average of 69.8 (SD 12.9) percent of 

houses per survey had no adults, while 96.6 (SD 1.5) percent of houses had no pupae. 

There was no obvious pattern to both pupal and adult prevalence. As seen in Figure 4 

there was a weak negative correlation (-0.43) between total number of adult females and 

pupae found per circuit, while in Figure 5 there was a weak positive correlation (0.33) 

between number of adult females and number of pupae captured per house.  

Global statistics 

 K Function  

Clustering occurred during all survey circuits for both pupae and adult presence. 

For presence of pupae, on average clustering occurred up to 288.9 (SD 82.1, Median 250, 

LQ250-UQ300) meters. Clustering peaked for pupae on average at 133.3 (SD 70.7, 

Median 100, LQ100-UQ100) meters. Alternatively, for presence of adults average 

maximum distance of clustering was 255.6 (SD 30, Median 250, LQ250-UQ250) meters. 

Clustering peaked for adults on average and median distance 100 (SD 25, Median 100, 

LQ100-UQ100) meters. Weighted K functions were also performed for abundance of 

adults and pupae, and can be seen in Table 3. Clustering of abundance was much less 

apparent, with number pupae only clustering in 1 circuit (5), from 250 to 300 meters, 

peaking at 250 meters. For number of adults, clustering was found during 3 survey 
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circuits (3, 4, and 8). In circuit 3, clustering of number of adults occurred at 150 meters, 

while for circuits 4 and 8 clustering of number of adults occurred at 50 meters.    

Local Statistics 

 Clusters 

Hotspot analysis maps for pupae and adults can be found in Figures 6 and 7. On 

average, 11.3 percent of households were a member of a cluster for pupae, and 14 percent 

were a member for adults. There was no obvious consistent temporal pattern to both 

pupae and adult clusters. The proportion of vectors found within cluster households also 

did not appear to follow a consistent temporal trend. On average, 72.2 (SD 15.3) percent 

of all pupae and 43.4 (SD 12.5) percent of adults were found in households that were a 

member of a cluster.  

In addition to whether or not a household was a cluster, the distance at which the 

z-score of the household peaked was also recorded, as seen in Figures 8 and 9. Average 

peak distance of clusters of adults was 47.75 (SD 10.9) meters, while average peak 

distance of clusters pupae was 42.2 (SD 7.3) meters (seen in Figures 10 and 11). Neither 

the average peak distance of pupae nor adults followed the expected seasonal trend, 

though pupae and adult values were highly correlated (0.78) with each other.  

To see if some areas were consistently a member of a cluster, proportion of time 

house was a member of a cluster was calculated. Proportion of circuits a house was a 

cluster can be seen for pupae in Figure 12, and for adults in Figure 13. There is a clear 

spatial pattern of areas that are members of a cluster a high proportion of the time, with 



21 

 

 

 

the majority of high proportion (0.668-1.000) households for both adults and pupae being 

located in two adjacent blocks.   

Kernel Density Estimation 

 Kernel density estimation utilized a bandwidth of 100 meters for both adults and 

pupae, based on the median peak distance of clustering from the K-function analysis. 

Output from Adults and pupae can be viewed in Figures 14 and 15. Output of the kernel 

density estimation closely mirrored output of the Gi*(d), however it also provided an 

estimation of vector density. Values varied widely between circuits. For adults, values 

ranged from 0.003 adults per meter squared during circuit 1 (March 2009), compared to 

up to 0.03 adults per meter square during circuit 4 (February 2010). Values for pupae 

ranged from 0.004 pupae per square meter in circuit 5 (July 2010) up to 0.042 pupae per 

square meter during circuit 3 (November 2009). For averaged kernel densities, shown in 

Figures 16 and 17, the densities of adults and pupae clearly highlighted two different 

blocks in the Maynas neighborhood. These two blocks are the same adjacent blocks with 

high values found by calculating the proportion of time a house was a cluster. 

Model 

For both pupae and adults, 4 models were compared: the full model, an 

environmental model (NDVI and temperature), a household model (number of residents, 

use of rain water, and use of faucet water), and an entomological model (number of 

containers). The results of the full model can be seen in Table 4. The best model, 

determined using Akaike’s Information Criterion (AIC), was the household model, seen 

in table 5. The number of residents and the use of water from faucet were both positively 
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and significantly associated with both the number of pupae and adults (Table 5). Houses 

which collected rainwater for consumption were not statistically associated with Ae. 

aegypti hotspots, but their inclusion increases the model's fit to the data  (Table 5). 

NDVI and average temperature were not significant for both pupae and adult 

outcomes in both the full model as well as the environmental model. Number of 

containers was significant for both pupae and adult outcomes at the 0.01 level in the 

entomological model, but not the full model.  

DISCUSSION 
 

 

 The goal of this study was to understand long term trends in Aedes aegypti spatial 

distribution and clustering. There was a clear pattern of clustering over the three year 

time period studied. At the global or neighborhood level, data from the Maynas 

neighborhood showed consistent trends in both the distance up to which clustering 

occurred, as well as the distance at which clustering peaked. At the local level, while 

significant clusters existed, little to no pattern of cluster membership of households was 

initially found by looking at individual circuits. The temporal distribution of pupae and 

adults was highly irregular. However, by looking at the proportion of survey circuits a 

house was a cluster over the study period, a clear pattern of cluster location could be 

found for both pupae and adults. The longitudinal aspect of this analysis is a significant 

improvement over previous studies. The high temporal variability and instability of 

survey results from circuit to circuit, means that is essential to analyze data longitudinally 

to identify key premises for Aedes aegypti production. 

 It was essential to perform analysis for both adult females and pupae. Total 

numbers of pupae and adult females found per survey were only weakly correlated. Pupal 
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and adult surveys operate on different assumptions. While it is easy to tell where pupae 

were produced because they are found within the same container that they were laid in, 

pupae are only a proxy for the actual number of females that will emerge and be able to 

transmit the virus. Female adult collections cannot be used on their own either; while the 

current aspiration techniques used are the most effective for finding adult females, there 

is no gold standard for collection of adults. Adult aspirations still only find a portion of 

all adult females in the home, and thus do not represent the complete population of biting 

females. 

 Despite the heterogeneity between adult female and pupae spatial distributions, 

consistent temporal patterns in clustering and cluster locations were found between adult 

females and pupae for most of the analysis. This is evidenced by the similar households 

that were a member of a cluster a high proportion of the time for both pupae and adults. 

These households should be identified as key premises for mosquito infestation. It can 

also be seen in the similar results of the k-function analysis, specifically the maximum 

distance households were clustered to, as well as the average distance at which clustering 

peaked for both pupae and adults.  

 Some findings from spatial analysis were surprising. Both clustering and size of 

clusters did not follow an expected seasonal trend. This may be because cluster size is 

independent of seasonality. However this also may be because Iquitos does not have 

conventional seasons, but is rather characterized by a “wet” and “dry” season. It may be 

worthwhile to use height of the nearby rivers as an indicator of Iquitos’ seasons.   

 Relatively few studies have calculated the spatial extent of clusters, due to the 

time and resource intensity of data collection, and the distance of clustering is likely to 
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change dependant on different environmental conditions and household characteristics. 

Getis et al, looking at clustering, also found significant temporal variability short-term 

between two surveys, but did not look at long term trends. Getis also found that 

clustering disappeared after 30 meters, which is different from what was found in this 

study. Barrera found hotspots of infestation of adults that showed spatial stability over 

time, but looked on a coarser scale, and for less time.   

 This study is an improvement over previous studies in that it has studied 

clustering longitudinally, over a longer period of time than others. These results have 

significant implications for vector control. By looking at areas that are consistently a 

member of a cluster for pupae and adults, vector control can be targeted. The presence of 

areas that produce a significant portion of all mosquitoes, or key premises, may indicate 

that focal control of persistent clusters may be warranted. This relates to work by Chadee, 

identifying the role of key premises of Aedes aegypti production in serving as sources for 

introduction and re-infestation [43]. 

 The results of the GLM models showed that household variables were most 

important for predicting a household’s membership in a cluster a high proportion of the 

time. Human density has already been connected with production of Aedes aegypti [44]. 

It was surprising that use of faucet water had a positive effect on cluster membership, as 

it was originally predicted to have a negative effect on membership. Use of a faucet 

should indicate that residents do not need to store their water, cutting down on the 

number of water containers in which Aedes can lay eggs. This indicates that it may be 

more appropriate to investigate the water source stability as a predictor of cluster 

membership instead.    
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 While this study had rich household data, some environmental data was only 

available at coarse spatial or temporal scales, which may account for why it was not 

significant in any of the models. NDVI was limited in spatial and temporal scales, and 

could only be calculated once at the block level. Previous studies have found NDVI 

significantly associated with Ae. aegypti abundance, so it is likely that obtaining better 

data would improve the model as well, though Iquitos’ proximity to the equator may 

render this irrelevant [45,46,47]. Additionally, temperature data was available only at the 

city level, measured several kilometers from the study site. As the Maynas neighborhood 

is in the “downtown” area of Iquitos, it is possible that the neighborhood exists in a heat 

island. This has been hypothesized for other insects and vectors of disease [48,49]. 

Rainfall data was also only available at the city level. As ambient temperature and 

rainfall are significantly connected to speed of mosquito development and extrinsic 

incubation period length for dengue, it is worth exploring whether improving the spatial 

and temporal scale of environmental data may improve models predicting Ae. aegypti 

abundance and household membership in a cluster. 

 While there were many promising findings from this study, these results are 

limited due to the size of the study area, so results will not be generalizable to other areas. 

While the trends present in the Maynas neighborhood are significant, considerable 

differences exist in infestation levels even within Iquitos, let alone globally. It is essential 

that this type of analysis is repeated in other environments as well to understand if global 

trends in long term clustering occur in other areas as well. Within Iquitos, another 

neighborhood, Tupac Amaru, has been surveyed alongside Maynas. Maynas is different 

in terms of many neighborhood and household characteristics, and has historically 
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experienced lower infestation than Maynas [24]. It would be worthwhile to repeat the 

analyses on this neighborhood, to see if similar trends are found.   

 Currently, dengue research is moving towards studying the ecology of the disease 

system over individual aspects of transmission in depth. In this case we have only looked 

at the dengue vector, but it is essential to connect this research to infection data. 

Understanding hotspots of Aedes aegypti clustering over time may help understanding of 

virus transmission, by showing which locations put individuals at the highest risk for 

infection. Based on results of this study we propose to connect infection data to see 

whether people living in Aedes aegypti hotspots have higher infection prevalence. 

 It is also becoming increasingly clear that dengue infection does not necessarily 

occur only in the home. People who visit a high mosquito abundance area are also likely 

at increased risk for infection. This connects to new research being done by Stoddard et 

al. on the impact of human movement on dengue infection risk, aiming to understand 

how a person’s interactions in space put them at increased risk for dengue [37].Their 

research indicates human movement is significant in propagating dengue transmission. 

We also propose to connect human movement data to see whether visitation to areas 

within Aedes aegypti hotspots is significantly connected to infection. 
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TABLES 
 

Circuit 

Survey Dates 

Houses 
Surveyed 

(N) 

Adults Immatures Water Supply Environment 

Start End 
All 

Adults 
(N) 

Adult 
Females 

(N) 
Pupae (N) 

Faucet 
(%) 

Rain 
Water 

(%) 

Average 
Daily 

temperature 
(°C) 

1 3/4/09 4/3/09 412 117 77 532 95% 7% 26.58 
2 6/26/09 8/6/09 424 184 72 214 91% 3% 26.57 
3 11/13/09 12/14/09 319 287 128 988 96% 3% 27.5 
4 2/25/10 4/29/10 431 646 285 268 91% 4% 27.25 
5 7/2/10 9/13/10 411 675 329 98 93% 4% 26.15 
6 10/6/10 2/23/11 426 620 338 177 92% 2% 26.98 
7 2/23/11 5/17/11 401 164 70 285 94% 3% 26.54 
8 7/4/11 9/12/11 458 298 140 204 93% 3% 26.45 
9 10/24/11 2/1/12 449 490 246 167 94% 4% 26.86 

 

 Table 1. Maynas neighborhood characteristics by survey circuit 
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 Circuit 

Pupae Adults 

Clustering 
Start 

Clustering 
End 

Clustering 
Peak 

Clustering 
Start 

Clustering 
End 

Clustering 
Peak 

1 0 250 100 0 250 100 

2 0 250 100 0 200 100 

3 0 300 100 0 300 50 

4 0 300 200 0 300 150 

5 0 500 300 0 250 100 

6 0 250 100 0 250 100 

7 0 250 100 0 250 100 

8 0 250 100 0 250 100 

9 0 250 100 0 250 100 

Average 0.0 288.9 133.3 0.0 255.6 100.0 

 

Table 2. K-function output, Pupae and Adults. Testing to see if presence of pupae 
and adults was clustered. 500 meters, roughly half the study area, was used as a 
cutoff distance. 99 permutations using Monte Carlo randomization were used for 
calculating the confidence envelope. Clustering occurs if values of L(d) exceed the 
expectation under Complete Spatial Randomness (CSR) for a value at a given 
distance. The distance up to which clustering occurred (Clustering End), as well as 
the distance at which L(d) peaked (Clustering Peak), were reported by survey 
circuit. 
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Pupae Adults 

D Start D End D Max D Start D End D Max 

1 - - - - - - 

2 - - - - - - 

3 - - - 150 150 150 

4 - - - 50 50 50 

5 250 300 250 - - - 

6 - - - - - - 

7 - - - - - - 

8 - - - 50 50 50 

9 - - - - - - 

 Table 3. Weighted K function, Pupae and Adults. Testing to see if abundance of 
pupae and adults was clustered. 500 meters, roughly half the study area, was used 
as a cutoff distance. 99 permutations using Monte Carlo randomization were used 
for calculating the confidence envelope  
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Pupae Adults 

  Estimate Std. error z value Pr(>|z|) Estimate Std. error z value Pr(>|z|) 

Variable   
  

  
   

  

Intercept 1.0327 0.8657 1.42 0.2329     1.1413 1.1111 1.06 0.3043 

Temperature -0.0375 0.0324 1.34 0.2464 -0.0413 0.0416 0.99 0.3198 

NDVI -0.1487 0.1217 1.49 0.2216 -0.1216 0.1562 0.61 0.4361 

Number of Residents 0.0064 0.0017 13.88 0.0002*** 0.0084 0.0022 14.35 0.0002*** 

Water Source Rainwater 0.0502 0.0249 4.07 0.0438* 0.0681 0.0320 4.54 0.0331* 

Water Source Faucet 0.0445 0.0430 1.07 0.3011 0.0541 0.0552 0.96 0.3272 

Number of Containers 0.0032 0.0032 1.02 0.3118 0.0041 0.0041 1.00 0.3169 

 
Table 4. Results of the Linear GLM Models testing the different factors 
influencing the proportion of circuits a household was a cluster member for 
larvae and pupae. Statistical significance: .0.1; *0.05; **0.01; ***0.001.  
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Pupae Adults 

  Estimate Std. error z value Pr(>|z|) Estimate Std. error z value Pr(>|z|) 

Variable   
  

  
   

  

Intercept 0.0081 0.0246 0.11 0.7417 0.0200 0.0315 0.40 0.5247 

Number of Residents 0.0071 0.0017 18.54 <.0001*** 0.0092 0.0021 18.82 <.0001*** 

Water Source Faucet 0.0499 0.0247 4.07 0.0436* 0.0691 0.0317 4.75 0.0293* 

Water Source Rainwater 0.0512 0.0419 1.49 0.2217 0.0637 0.0538 1.40 0.2361 

 
Table 5. Results of the best Linear GLM Model, using household variables, 
testing the different factors influencing the proportion of circuits a household 
was a cluster member for larvae and pupae. Statistical significance: .0.1; *0.05; 
**0.01; ***0.001. 
  



35 

 

 

 

FIGURES 

 
 
Figure 1. Map of Maynas Neighborhood of Iquitos, Peru.  
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Figure 2. Adult Abundance by Survey Circuit. Maps of adult abundance during each 
survey circuit. Numbers of adults collected were partitioned into groups of 0, 1, 2, 3-
5 6-10 and >10 to account for the few number of observations at higher numbers.  
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Figure 3. Pupal Abundance by Survey Circuit. Maps of pupae abundance during 
each survey circuit. Numbers of pupae collected were partitioned into groups of 0, 1, 
2, 3-5 6-10 and >10 to account for the few number of observations at higher 
numbers. 
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Figure 4. Ratio of total number of adult females to total number of pupae 
found per circuit. There is moderate negative correlation (-0.43) between number 
of adult females and number of pupae captured per circuit. 
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Figure 5. Ratio of total number of adult females to total number of pupae 
found per household. As seen in the graph, there is only a weak positive 
correlation (0.33) between number of adult females and number of pupae captured 
per house. 
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Figure 6. Pupae Abundance Cluster Members (Gi(d) > 2.575; P<0.05) by 
Survey Circuit. A z-score of 2.575 was used as a cutoff for cluster membership.  
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Figure 7. Adult Abundance Cluster Members (Gi(d) > 2.575; P<0.05) by Survey 
Circuit. A z-score of 2.575 was used as a cutoff for cluster membership.  
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Figure 8. Distance at which Z-score peaked for Pupae Gi*(d) tests by circuit. 
Households for which no distance resulted in a Z-score over the cutoff of 2.575 were 
labeled as not significant (NS) 
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Figure 9. Distance at which Z-score peaked for Adult Gi*(d) tests by circuit . 
Households for which no distance resulted in a Z-score over the cutoff of 2.575 were 
labeled as not significant (NS) 
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Figure 10. Average distance at which the Z-score peaked for Gi*(d) tests 
compared with proportion of households part of a cluster for pupae over 
study period. 
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Figure 11. Average distance at which the Z-score peaked for Gi*(d) tests 
compared with proportion of households part of a cluster for adults over 
study period 
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Figure 12. Proportion of Time House is a Cluster Member, Maynas Pupae.  Most 
houses are never a cluster member, with very few being a member a high 
proportion of the time 
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Figure 13. Proportion of Time House is a Cluster, Maynas Adults. Most houses 
are never a cluster member, with very few being a member a high proportion of the 
time 
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Figure 14. Kernel Density by Survey Circuit, Maynas Pupae Density is 
represented as expected number of pupae per square meter  
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Figure 15. Kernel Density by Survey Circuit, Maynas Adults. Density is 
represented as expected number of adults per square meter  
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Figure 16. Average Kernel Density, Maynas Pupae. Average density across all 
circuits, represented in number of pupae per square meter 
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Figure 17. Average Kernel Density, Maynas Adults. Average density across all 
circuits, represented in number of adults per square meter 
 


