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Abstract

Patching and local-global principles for gerbes over semi-global fields with an

application to homogeneous spaces

By Bastian Haase

Starting in 2007, Harbater and Hartmann introduced a new patching setup for semi-

global fields, establishing a patching framework for vector spaces, central simple al-

gebras, quadratic forms and other algebraic structures. In subsequent work with

Krashen, the patching framework was refined and extended to torsors and certain

Galois cohomology groups. After describing this framework, we will discuss an ex-

tension of the patching equivalence to bitorsors and gerbes. Building up on these

results, we then proceed to derive a characterisation of a local-global principle for

gerbes and bitorsors in terms of factorization. These results can be expressed in the

form of a Mayer-Vietoris sequence in non-abelian hypercohomology with values in

the crossed-module G→ Aut(G). After proving the local-global principle for certain

bitorsors and gerbes using the characterization mentioned above, we conclude with an

application on rational points for homogeneous spaces via a study of the associated

quotient stack.
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1

Chapter 1

Introduction

The main topic of this thesis concerns patching and local-global principles for bitorsors

and gerbes over semi-global fields with an application towards homogeneous spaces.

Local-global principles for varieties over global fields have been (and still are) a

popular topic in algebraic geometry. Starting with the famous Hasse principle, there

have been a plethora of results proving local-global principles for certain varieties.

Additionally, the Brauer-Manin obstruction has been introduced to study the failure

of the local-global principle to great success. In particular, Sansuc ([San81]) was

able to completely answer when the local-global principle holds for G-torsors under

connected linear algebraic groups. This was then extended to homogeneous spaces,

most notably by Borovoi ([Bor92b], [Bor93], [Bor95], [BK97]).

In 2007, Harbater and Hartmann introduced a novel patching framework for func-

tion fields of arithmetic curves, so called semi-global fields (compare [HH10]). They

proved that patching holds for vector spaces, central simple algebras and quadratic

forms. Their patching framework also introduced an analogue of the local fields asso-

ciated with global fields. Hence, it makes sense to ask which varieties over semi-global

fields satisfy the local-global principle with respect to this patching framework.

Harbater, Hartmann and Krashen extended the patching framework to torsors
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and Galois cohomology (compare [HHK15a] and [HHK14]). By use of their patching

result, they were also able to deduce a characterization of when the local-global

principle holds for G-torsors in terms of a factorization condition on G.

They also proved that patching holds for certain homogeneous spaces, which in

turn implies new and improved bounds on the u-invariant and the period index prob-

lem for semi-global fields ([HHK09]).

In this thesis, we want to extend patching to bitorsors and gerbes. We will then

study when the local-global principle holds for those objects. This will be achieved

via studying characterizations of local-global principles for bitorsors and gerbes that

follows from the patching result.

We will then use this results to turn our attention to homogeneous spaces. By

studying their quotient stack (which is a gerbe), we can use our results on gerbes to

prove local-global principles for certain homogeneous spaces.

1.1 Overview

In Chapter 2, we will start by reviewing background material concerning Grothendieck

topologies, descent and stacks.

Chapter 3 discusses basic definitions of the theory of algebraic groups, leading to

the classification of split semisimple groups. We continue with a discussion of étale

cohomology and torsors. Lastly, we discuss why torsors are classified by the first étale

cohomology groups.

Next, in chapter 4, we introduce hypercohomology groups with values in crossed

modules following Borovoi’s cocyclic description. Apart from the main definitions,

we also briefly discuss their relation to bitorsors and gerbes.

Our last background chapter, Chapter 5, introduces the main setup considered in

this thesis: The patching setup of Harbater, Hartmann and Krashen of semi-global
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fields. After discussing the abstract setup, we discuss two particular patching setups

in detail. We then focus on patching and local-global principles for torsors, which

leads us naturally to the topic of factorization of linear algebraic groups. Lastly, we

discuss separable factorization and patching for Galois cohomology.

The remaining chapters cover the novel material of the thesis.

In Chapter 6, we prove that patching for torsors implies patching for bitorsors.

Let G,H be linear algebraic groups and let P be a (G,H)-bitorsors. Breen ([Bre90])

has given an equivalent description of P in terms of the left G-torsor P and a G-

equivariant morphism P → Isom(H,G). This description allows us to deduce patch-

ing for bitorsors to patching for torsors.

This result can be interpreted as a Mayer-Vietoris type sequence in hypercoho-

mology with values in the crossed module G→ Aut(G). This sequence in turn allows

us to characterize the local-global principle for G-bitorsors in terms of factorization

of the center of G.

We conclude the chapter with a factorization result for neutral bitorsors the we

will later relate to a local-global principle for gerbes.

Chapter 7 discuss patching for gerbes. We first review the definition of gerbes and

bands and prove a result for patching the second non-abelian cohomology group. We

then proceed by discussing a semi-cocyclic description of gerbes in terms of bitorsors

by Breen ([Bre90]). This description allows us to reduce gerbe patching to bitorsor

patching, under one technical condition.

With this patching result, we can extend our Mayer-Vietoris sequence of the pre-

vious chapter and characterize gerbe patching in terms of factorization for bitorsors.

While the last two chapters were describing results over an arbitrary inverse fac-

torization system, we discuss their concrete realization to the HHK patching setup

in Chapter 8. We also discuss various factorization results for linear algebraic groups

such as SL1(D) or split semisimple adjoint groups of type Bn. This in turn implies
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local-global principles for gerbes banded by those groups using the characterization

of the previous chapter.

In the last chapter, Chapter 9, we study local-global principles for homogeneous

spaces in the patching setup. Let X be a homogeneous space under a linear algebraic

group H. Our main tool is to consider the quotient stack [X/H] which is in fact a

gerbe, whose band is induced by the geometric stabilizers of X. Using our local-global

results for gerbes, we can deduce local-global principles for X.
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Chapter 2

Grothendieck topologies, descent

and stacks

In the following chapter, will recall standard results in étale descent theory and then

review notions of Grothendieck topologies and stacks. This chapter is mainly expos-

itory and we will omit some proofs/details.

Our main references for the material presented here are [Ols16] and [LMB00].

2.1 Grothendieck Topologies

Let C be a category. A functor F : Cop → Sets is also called a presheaf. In order

to define a sheaf over C, we need the notion of coverings. This is precisely what a

Grothendieck topology on a category defines.

Definition 1. A Grothendieck topology T on C is given by a set Cov(C) of families

of morphisms {Ui → U}i∈I such that

• Cov(C) contains isomorphisms: if φ : Vi → U is an isomorphism, then φ : V → U

is in Cov(C).

• Cov(C) is closed under composition: if {φi : Vi → U}i∈I ∈ Cov(C) and, for all
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i ∈ I we have a covering {αij : Vij → Vi}j∈Ii ∈ Cov(C), then {φi ◦ αij : Vij →

U}i,j ∈ Cov(C).

• Cov(C) is closed under base change: if {φi : Vi → U}i∈I ∈ Cov(C) and f : W →

U is any morphism in C, then Vi ×U W exists for all i ∈ I and {Vi ×U W →

W}i∈I ∈ Cov(C).

An element {Vi → U} ∈ Cov(C) is called a covering. A site (C, T ) consists of a

category C equipped with a Grothendieck topology.

Examples 1.

• Let X be a topological space and let CX denote the associated category of

open subsets: objects in CX are open subsets of X and morphisms are given

by inclusions. We can endow CX with a Grothendieck topology induced by the

topology on X: a family of morphisms {Vi → U} is a covering if and only if

U =
⋃
i Vi. In the special case where X is a scheme, we call CX the small Zariski

site of X.

• Let X be a scheme and consider the category Sch/X whose objects are mor-

phisms U → X and whose morphisms are commutative triangles

U V

X.

(We will often write U for the object U → X when the base morphism is clear

from context) We endow Sch/X with a Grothendieck topology by saying that a

family of morphisms {φi : Vi → U} is in Cov((Sch/X)ét) if and only if each φi is

an open immersion and U =
⋃
i φi(Vi). The resulting site, which we will denote

by (Sch/X)Zar, is called the big Zariski site of X.
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• Let X be a scheme and consider the category Xét whose objects are étale mor-

phisms U → X and whose morphisms are commutative triangles

U U

X.

(Note that this forces U ′ → U to also be étale.) We endow Xét with a

Grothendieck topology by saying that a family of morphisms {φi : Vi → U}

is in Cov(Xét) if and only if U =
⋃
i φi(Vi). The resulting site, which we will

also denote by Xét, is called the small étale site of X. As every open immersion

is étale, it follows that the étale topology is finer than the Zariski topology.

• Let X be a scheme and consider the category Sch/X. We endow Sch/X with a

Grothendieck topology by saying that a family of morphisms {φi : Vi → U} is in

Cov((Sch/X)ét) if and only if each φi is étale and U =
⋃
i φi(Vi). The resulting

site, which we will denote by (Sch/X)ét, is called the big étale site of X.

• Repeating the last two examples with faithfully flat finitely presented morphisms

yields the fppf topology: the small fppf site of X (denoted by Xfppf ) and the big

fppf site of X, denoted by (Sch/X)fppf . As every étale morphism is in particular

faithfully flat and finitely presented, we observe that that the fppf topology is

finer than the étale topology.

With the notion of a covering, we can define sheaves on a site to be presheaves

that satisfy a descent axiom with respect to the Grothendieck topology.

Definition 2. Let (C, T ) be a site and let F : Cop → Sets be a presheaf in sets. We

say that F is a sheaf if, for all coverings {Ui → U}i∈I , the following sequence is exact:

F (U)
∏

i∈I F (Ui)
∏

(i,j)∈I2 F (Ui ×U Uj)
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is exact.

A morphism of sheaves F → F ′ is just a natural transformation of the underlying

functors.

The descent results in Section 2.3 yield an important class of sheaves.

Example 1. Let X be a scheme and let Y → X ∈ (Sch/X)ét. Then, the functor

hY : (Sch/X)op
ét −→ Sets

U → X 7→ Hom(U, Y )

is a sheaf by Lemma 2.3.1. A sheaf F on (Sch/X)ét isomorphic to hY for some

Y ∈ (Sch/X)ét is called representable.

2.2 Categories fibered in groupoids

Categories fibered in groupoids are the category-theoretic notion we will use to define

stacks, just like presheaves are the category-theoretic notion used to define sheaves. As

the notion of a presheaf is often first introduced by looking at the presheaf of regular

functions, we will also motivate the definition of a category fibered in groupoids by

looking at an example.

Let G be an algebraic group over a scheme S and let BG denote the classifying

stack of G-torsors. We will later see that this is in fact an (algebraic) stack (and even

a gerbe). Let us first define it as a category:

1. Objects: An object in BG is a tuple (X → S, P ), where X → S is an object

in Sch/S and P is a left G|X-torsor over X in the étale topology. We will often

write (X,P ) to simplify notation.

2. Morphisms: A morphism (X,P )→ (X ′, P ′) consists of a morphism f : X → X ′

in Sch/X and an isomorphism α : f ∗P ′ → P of G|X-torsors.
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Note that there is a natural functor BG → Sch/S which leads us to our first

definition.

Definition 3. let C be a category. A category over C is a functor D → C. We will

often say that D is a category over C if the functor D → C is clear from context.

Recall that we have the notion of pullbacks in BG: Given an object (X,P ) ∈ BG

and a morphism f : Y → X, we get another object (Y, f ∗P ) ∈ BG. Note that f ∗P

is not unique, which leads us to axiomatizing the existence of pullbacks through the

notion of cartesian arrows.

Definition 4. Let p : D → C be a category over C. We say that a morphism η →

ζ ∈ D is cartesian if any commutative diagram

τ η ζ

A B C

p

α

?

p p

f g

where p(α) = g◦f can be uniquely completed by a morphism α′ : τ → η satisfying

p(α′) = f .

We say that D → C is a category fibered over C if for all ζ ∈ D and any morphism

f : B → p(ζ) ∈ C, there exists a cartesian arrow β : η → ζ with p(β) = f . This is

called a pullback of η along f .

As the natural map (Y, f ∗P )→ (X,P ) is cartesian, it follows that BG→ Sch/X

is a category fibered over Sch/X.

Fixing a base category C, let us define the (2)-category of fibered categories over

C, denoted by FIB(C):

1. Objects: An object is given by fibered categories over C.

2. 1-Morphisms: A 1-morphism between p : D → C and p′ : D′ → C is given by a

commutative (not 2-commutative) diagram of functors:
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D D′

C.

p

p′

3. 2-Morphisms: A 2-morphism between two 1-morphisms α, β : (D, p) → (D′, p′)

is given by a natural transformation α ⇒ β such that for all η ∈ D, the map

α(η)→ β(η) maps to the identity under p′.

An equivalence of fibered categories over C is defined to be a quasi-isomorphism

in FIB(C)

We will now define fibers of a fibered category p : D → C. This will both explain

the name fibered category as well as shed light on the mysterious condition on 2-

morphisms.

Given U ∈ C, the fiber of p : D → C over U , denoted by D(U), is the following

category:

1. Objects: An object is an object η ∈ D such that p(η) = U .

2. Morphisms: A morphism η → η′ is given by a morphism α : η → η′ ∈ D such

that p(α) = idU holds.

Note that for a map U → V ∈ C, we can define a (unique up to unique isomor-

phism) pullback map D(V )→ C(U).

Given a scheme X → S over S the fiber BG(X) is just the category of G|X-torsors

over X with morphisms given by G|X-invariant morphisms. This is where we can see

that the requirement p(α) = idU is natural: Otherwise, we would allow morphisms

P → P ′ in BG(X) that are not compatible with the structure morphisms P → X

and P ′ → X.

As a G-equivariant morphism of torsors is an isomorphism, we observe that the

categories BG(X) are in fact a groupoids, i.e. categories where all morphisms are

isomorphisms.
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Definition 5. A fibered category D → C is a category fibered in groupoids over C if,

for all U ∈ C, the fiber D(U) is a groupoid.

A stack will later be defined to be a category fibered in groupoids satisfying a

descent criterion.

Just as the Yoneda Lemma is crucial to embed the category of schemes into the

category of algebraic spaces, the 2-Yoneda Lemma is crucial to embed the category

of schemes into the category of stacks.

Given an element U ∈ C, let C/U denote the localization of C at U , i.e. the

category of morphisms V → U ∈ C. This category admits a natural functor C/U → C

making it a category fibered in groupoids (in fact in setoids!).

Let D → C be another category fibered over C. There is a natural functor

µ : HomFIB(C)(C/U,D) −→ D(U)

g 7→ g(idU).

The 2-Yoneda Lemma asserts that this functor is an equivalence.

Lemma 2.2.1 (2-Yoneda Lemma). The functor µ is an equivalence of categories.

Proof. Compare [Ols16, Proposition 3.2.2].

In particular, for a scheme X → S over S, the category of morphisms Sch/X →

BG is equivalent to the category of G|X-torsors BG(X).

Another special case is that the set of morphisms X → Y ∈ Sch/S is in a natural

bijection with the set of equivalences of fibered categories over Sch/S between Sch/X

and Sch/Y.

This results thus allows us to embed the category of schemes over S into the

category of fibered categories over Sch/S via identifying X with Sch/X, i.e. the
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functor

Sch/S→ FIB(Sch/S)

sending X → S to Sch/X→ Sch/S is fully faithful. We will often abuse notation and

write for instance X → BG as opposed to Sch/X→ BG.

2.3 Descent

While the last chapter described the category-theoretic part of stacks, this chapter

focuses on the geometric aspect. Apart from the main references for the appendix

([Ols16] and [LMB00]), a paper of Vistoli ([Vis89], especially the appendix) is an

excellent reference for this chapter.

The main result we want to cover is the following theorem.

Theorem 2.3.1. Let X be a scheme and let Y ∈ Sch/X. Then, the presheaf hY is a

sheaf in the fppf topology.

In more concrete terms, the above result says that we can glue morphisms in the

fppf topology. As the fppf topology is finer than the étale topology, we immediately

obtain the following corollary.

Corollary 2.3.2. Let X be a scheme and let Y ∈ Sch/X. Then, the presheaf hY is

a sheaf in the étale topology.

The proof of theorem 2.3.1 will consist of multiple intermediate results and reduc-

tions. Roughly, we will first prove the affine case and then reduce the general case to

the affine case. So, our first goal is to prove that we can patch morphisms between

affine schemes in the fppf topology.

Proposition 2.3.3. Let Y → Y ′ be a faithfully flat morphism of affine schemes in

Sch/X. Let U be an affine scheme in Sch/X. Then, the sequence
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hU(Y ′) hU(Y ) hU(Y ×Y Y ′)

is exact.

Let us translate this statement into a statement in commutative algebra. Let Y =

Spec(B), Y ′ = Spec(A) and let R = Spec(U). The morphism Y → Y ′ corresponds to

a homomorphism f : A → B of commutative rings with multiplicative identity. The

morphisms Y ′×Y Y ′ → Y ′ correspond to the two projections B → B ⊗A B which we

will denote by pr1 and pr2 respectively. The statement of Proposition 2.3.3 translates

to proving that

Hom(R,A) Hom(R,B) Hom(R,B ⊗A B)

is exact (Here, Hom(R,A) denotes the set of homomorphisms of rings with multi-

plicative identity). We need the following proposition to prove this.

Proposition 2.3.4. Let A → B be a faithfully flat ring map. The sequence of A-

modules

A B B ⊗A B

is exact.

Proof. As A→ B is faithfully flat, it is equivalent to prove that the sequence

B B ⊗A B B ⊗A B ⊗A B
f

pr2

pr1

is exact. The first map is given by b 7→ 1⊗ b, whereas the second and third map are

given by b1 ⊗ b2 7→ b1 ⊗ 1⊗ b2 and b1 ⊗ b2 7→ 1⊗ b1 ⊗ b2. Note that a f is a section

to the map m : B ⊗A B → B given by b1 ⊗ b2 7→ b1b2 and is thus injective.

Assume now that b1⊗b2 is in the equalizer of pr1 and pr2. Then, consider m′ : B⊗A

B ⊗A B → B ⊗A B defined via b1 ⊗ b2 ⊗ b3 7→ b1 ⊗ b2b3. Note that m′ ◦ pr1 = id and



14

m′ ◦ pr2 = f ◦m. Hence,

b1 ⊗ b2 = (m′ ◦ pr1)(b1 ⊗ b2) = (m′ ◦ pr2)(b1 ⊗ b2) = (f ◦m)(b1 ⊗ b2)

holds. Thus, the image of f equals the equalizer of pr1 and pr2.

Proof of Proposition 2.3.3. As Hom(R, ◦) is left exact, Proposition 2.3.4 yields that

Hom(R,A) → Hom(R,B) is injective. Fix f : R → B and assume that pr1 ◦f =

pr2 ◦f . Thus, for any r ∈ R, we have 1⊗A f(r) = f(r)⊗A 1. Hence, f(r) ∈ A so that

f is induced by a morphism R→ A.

Proposition 2.3.5. Let F : Sch/X → Sets be a sheaf in the big Zariski topology of

X. Then, the following are equivalent

1. F is a sheaf in the big fppf topology of X

2. For all fppf covers of the form U → V in Sch/X, the sequence

F (V ) F (U) F (U ×V U)

is exact.

3. F is a sheaf in the big Zariski topology and for all fppf covers of the form U → V

in Sch/X with U and V affine, the sequence

F (V ) F (U) F (U ×V U)

is exact.

Sketch: Clearly, it is enough to show that 3) implies 1). So, assume that condition

3) holds and let {Ui → V } be a fppf cover. By replacing the collection of morphisms

Ui → V with the single morphism
⊔
i Ui → V it is easy to see that we may assume
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that the cover is given by a single morphism U → V . (This is essentially proves that

the first two conditions are equivalent.

Let us check that the map F (V ) → F (U) is injective. Cover V =
⋃
i Vi by open

affines and let U =
⋃
i,j Uij be an affine covering of U , so that {Uij → Ui} is an fppf

cover. Consider the commutative diagram

F (V ) F (U)

∏
i F (Vi)

∏
i,j F (Uij)

and note that the bottom row is injective as F by assumption. As F is a Zariski sheaf,

the horizontal arrows are also injective and thus F (V )→ F (U) is also injective.

To prove the gluing axiom, let us first reduce to the case where U is affine. For

general V , pick a cover Vi → V of affine open subsets Vi and let Ui be the preimage

of Vi in U . Consider the commutative diagram

F (V ) F (U) F (U ×V U)

∏
i F (Vi)

∏
i F (Ui) F (Ui ×Vi Ui)

∏
i,j F (Vi ∩ Vi)

∏
i,j F (Ui ∩ Uj)

By use of a diagram chase, one can show that it is enough to prove that

F (Vi)→ F (Ui) ⇒ F (Ui ×Vi Ui)

is exact for all i.

We will leave another reduction to the case where U is quasi-compact to the reader.

Assuming this, let U =
⋃n
i=1 Ui be a finite affine cover of U . Then,

⊔
i Ui → U is an

fppf-cover and
⊔
i Ui is affine. Hence, in the commutative diagram
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F (V ) F (U) F (V ×U V )

F (V ) F (
⊔
i Ui) F (

⊔
i Ui ×V

⊔
i Ui)

the middle vertical arrow is injective. By assumption, the bottom row is exact. Hence,

the upper row is also exact in the middle.

Proof of Theorem 2.3.1. Note that we may assume without loss of generality that

X = Spec(Z). If Y is affine, then the statement follows from Proposition 2.3.3 and

Proposition 2.3.5.

For the general case, by Proposition 2.3.5, it is enough to prove exactness of the

sequence

hY (V )→ hY (U) ⇒ hY (U ×V U)

where U → V is an fppf cover of affine schemes. To prove injectivity, let f, g ∈ hY (V )

such that their image in hY (U) agree. This means that f, g are morphisms V → Y

that, when precomposed with the cover U → V , yield the same morphism U → Y .

This implies that f, g agree set-theoretically, as U → V is by definition surjective.

Let Y ′ ⊂ Y be an open affine subscheme of Y . Then, on f−1(Y ′) = g−1(Y ′), f and g

agree by the affine case. Covering Y with open affines finishes the proof of injectivity.

To prove exactness in the middle, let f : U → Y be an element in the equalizer

hY (U) ⇒ hy(U ×V U). We omit the verification that this implies in particular, that

the compositions

|U ×V U |⇒ |U |
|f |−→ |V |

are the same, where |U | denotes the underlying set of the scheme U . Hence, by the

universal property, we see that there is a set-theoretical map h : |V | → |Y | such that
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|U | |Y |

|V |

|f |

h

commutes. It remains to promote h to a scheme-theoretic map. This can be done

on affine patches; the uniqueness of a lift follows from the injectivity of the first

morphism, it guarantees that we can glue along the patches to get a map schemes

h : V → Y . By construction, this is a preimage of f .

2.4 Stacks

Just like a sheaf is a presheaf satisfying a gluing/descent condition, a stack is a

category fibered in groupoids satisfying a gluing/descent condition. To make this

precise, we will first define a descent functor for categories fibered in groupoids over

sites. We will then state the definition of a stack and reconsider our running example

BG.

Let D → C be a category fibered in groupoids where C is a site. Fix now a

collection of morphisms {Yi → Y }i∈I in C. We mostly care about the case where this

collection is a cover, but this is not relevant yet. Let us define a descent category of

D with respect to {Yi → Y } which we will denote by D({Yi → Y }i∈I):

1. Objects: An object is given by a tuple ({ηi}i∈I , {σij}i,j∈I) where ηi ∈ D(Yi) and

σij : ηi|Yi×Y Yj → ηj|Yi×Y Yj such that the following diagram is commutative:

pr∗12 pr∗1 ηi pr∗12 pr∗2 ηj pr∗23 pr∗1 ηj

pr∗13 pr∗1 ηi pr∗13 pr∗2 ηk pr∗23 pr∗2 ηk

pr∗12 σij '

pr∗23 σjk

pr∗13 σik '

(which we should think of as the usual cocycle condition σijσjk = σik). An

object is also called a gluing datum.
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2. Morphisms: A morphism ({ηi}i∈I , {σij}i,j∈I)→ ({η′i}i∈I , {σ′ij}i,j∈I) is given by a

collection of morphisms ηi → η′i ∈ D(Yi) that satisfy the obvious compatibility

condition with σij and σ′ij.

Note that there is a natural functor

D(Y )→ D({Yi → Y }i∈I)

sending an object η to the canonical descent datum ({η|Yi}i∈I , {σcan
ij }i,j∈I). Here σcan

ij

are the canonical isomorphisms induced by the universal property of pullbacks.

Let us consider our running example BG → Sch/S, where we equip Sch/S with

the étale topology. Let {Yi → Y }i∈I be an étale covering in Sch/S. An object in

BG({Yi → Y }i∈I) is given by a collection of G|Yi-torsors Pi over Yi together with

isomorphisms σij : Pi|Yi×Y Yj → Pj|Yi×Y Yj satisfying the gluing condition. Compare

[Ols16, Section 4.5] for a detailed proof that this induces a G|Y -torsor P over Y

together with isomorphisms P |Yi → Pi that are compatible with σij. This follows

readily from the fact that we can glue sheaves as this implies that we can glue the

G-action (as this action can be expressed in terms of morphisms of sheaves) and the

fact that being simply transitive is a local property in the étale topology.

In other words, the natural functor BG(Y ) → BG({Yi → Y }i∈I) is essentially

surjective. Furthermore, we have also seen that we can glue morphisms in the étale

topology - this just means that the functor is fully faithful. We define a stack to

be a category fibered in groupoids where descent works ; i.e. the above functor is an

equivalence for all coverings.

Definition 6. Let D → C be a category fibered in groupoids. We say that D → C is

a stack if, for all coverings {Yi → Y }i∈I the natural functor

D(Y )→ D({Yi → Y }i∈I)
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is an equivalence.

By our discussion above, BG→ Sch/S is a stack. A morphism of stacks is just a

1-morphism of categories fibered in groupoids. Let f, g : X → Y be two morphisms

of stacks. A morphism f ⇒ g is just a natural transformation of functors.

We denote by STACKS the 2-category of stacks where 1-morphisms are given by

morphisms of stacks and 2-morphisms are given by natural transformations.
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Chapter 3

Algebraic groups

In this chapter, we recall the basic notions of algebraic groups and discuss their

classification. We will then proceed and study specific groups a little closer, as we

will need this when discussing bitorsor factorization in Section 8.2. We will end the

section by a review of (étale) cohomology of algebraic groups (or, more generally,

étale group sheaves) and torsors.

The main references for this chapter are [KMTR98], [Bor91], [Ser88] and [Sko01].

3.1 Introduction

In this section, we will give basic definitions and constructions without proofs. Let us

fix a perfect ground field F and let G be a scheme over F . A collection of morphisms

(e : F → G,m : G ×F G → G, i : G → G) equips G with a group structure if the

following conditions are satisfied:

• Associativity: The diagram

G×F G×F G G×F G

G×F G G

idG×µ

µ×idG

µ

µ
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commutes.

• Neutral element: The diagrams

Spec(F )×F G G×F G

G

e×idG

pr2
µ

and

G×F Spec(F ) G×F G

G

idG×e

pr2
µ

commute where pr2 : Spec(F )×F G→ G denotes the projection on the second

factor.

• Inverse Element: Let δ : G → G ×F G denote the diagonal map defined via

g 7→ (g, g). The diagrams

G G×F G

Spec(F ) G G×F G

∆

i×idG

e
µ

and

G G×F G

Spec(F ) G G×F G

∆

idG×i

e
µ

commute.

An algebraic group over F is given by a tuple (G, e,m, i) such that G is a variety over

F and (e,m, i) define a group structure on G. We will often omit (e,m, i) and simply

speak of G as an algebraic group when there is no risk of confusion.
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Examples 2.

• The additive group Ga: The underlying scheme is given by Spec(F [T ]); the

group structure is given by addition.

• The multiplicative group Gm: The underlying scheme is given by Spec(F [T, T−1]);

the group structure is given by multiplication.

• More generally, the group of invertible matrices GLn: The underlying scheme is

given by Spec(F [xij][1/ det]) where 0 ≤ i, j ≤ n and det = det((xij)). Its group

structure is induced by matrix multiplication.

Let us now collect some definitions and constructions concerning algebraic groups:

• The fiber product of two algebraic groups is again an algebraic group.

• Let (G, e,m, i) and (H, e′,m′, i′) be algebraic groups over F . A homomorphism

of algebraic groups is given by a morphism of schemes G→ H that is compatible

with the maps e, e′,m,′ , i and i′. An example of a morphism of algebraic groups

is given by the determinant map det : GLn → Gm.

We denote by HomF (G,H) the sheaf of group homomorphisms which maps

any F -scheme to the set of homomorphisms. In particular, we write AutF (G)

for the group sheaf of group automorphisms of G. There is a natural map

G→ AutF (G) given by conjugation.

• Let swap: G ×F G → G ×F G denote the morphism given by (a, b) 7→ (b, a).

We say that G is abelian if m ◦ swap = m, i.e. if for any scheme S → F and

any a, b ∈ G(S), we have m(S)(a, b) = m(S)(b, a).

• We say that an algebraic group is

– smooth,
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– connected,

– affine

if the underlying scheme has said property.

• Let G be an abstract group. Consider the scheme G′ =
∐

g∈G Spec(F ). We

define multiplication by sending the component corresponding to (g, g′) to the

component corresponding to gg′. The inversion map sends the component cor-

responding to g to the component corresponding g−1. Lastly, the morphism e is

given by mapping Spec(F ) on the component corresponding to the neutral ele-

ment is G. We say that G′, equipped with this group structure, is the constant

group scheme associated to G. We will often identify G with G′. Note that G′

represents the sheafification of the functor

Sch/F→ Groups

S 7→ G.

• A subgroup H of an algebraic group G is a subvariety of G such that the

restriction of the group structure of G defines a group structure of H. An

example is the subgroup SLn of GLn of invertible matrices of determinant 1. It

is the kernel of the group homomorphism GLn
det−→ Gm.

Another important example is the group of n-th roots of unity µn. It is the

kernel of the map Gm
()n−→ Gm

A subgroup H of G is normal if H is stable under conjugation by G, i.e. if the

conjugation map G→ Aut(G) induces a a map G→ Aut(H).

• A linear algebraic group is a closed, smooth subgroup of GLn. In particular,

a linear algebraic group is affine. In fact, any affine group is isomorphic to a

linear algebraic group.
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• An algebraic group G is diagonalizable if it is a closed subgroup of (Gm)n for

some n. It is of multiplicative type if G|F sep is diagonalizable.

• An algebraic group G is simple if it is connected and does not admit any con-

nected, normal subgroups. An example of a simple group is given by PSLn.

• An algebraic group G is solvable if it admits a subnormal series

G = G0 ⊃ G1 ⊃ . . . ⊃ Gt = e

of normal subgroups Gi such that Gi/Gi+1 is abelian.

An algebraic group G is nilpotent if in addition Gi/Gi+1 is contained in the

center of G/Gi+1.

The group of upper triangular matrices is solvable, whereas the group of strictly

upper triangular matrices is nilpotent.

• The radical of an algebraic group is the identity component (i.e. the connected

component of the identity) of its maximal normal solvable subgroup. For ex-

ample the radical of GLn is given by the subgroup of scalar matrices.

An algebraic group is semisimple if its radical is trivial. An example of a

semisimple group is given by SLn, as the identity matrix is the only scalar

matrix with determinant 1.

• A linear algebraic group is unipotent if it is a closed subgroup of the group of

upper triangular matrices with diagonal entries equal to 1.

The unipotent radical of G is the maximal unipotent subgroup of the radical of

G (which is automatically normal).

An algebraic group is reductive if its unipotent radical is trivial. Examples of

reductive groups are given by SLn and the group of special orthogonal matrices,
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SOn.

• An isogeny of algebraic groups G,G′ is a an epimorphism G → G′ with finite

kernel. We say that G and G′ are isogenous if an isogeny between them exits.

A multiplicative isogeny is an isogeny G→ G′ where the kernel is of multiplica-

tive type.

• Let G be connected and semisimple. We say that G is simply connected if any

multiplicative isogeny G′ → G with G′ connected is an isomorphism.

• Given an algebraic groupG, there is a subgroupGad of Aut(G) such the sequence

1→ Z(G)→ G→ Gad → 1

is exact. We say that Gad is the adjoint group of G. We say that G is adjoint

if it is isomorphic to Gad via the morphism of the above sequence.

• A Borel subgroup of G is a maximal closed, connected and solvable algebraic

subgroup.

• A torus is an algebraic group G such that G|F sep ' Gn
m|F sep for some n. A torus

is called split if G ' Gn
m. An example of a non-split torus is given by SO2.

3.2 Classification of split semisimple algebraic groups

Let G be a semisimple algebraic group. A subtorus of G is maximal if it is not

contained in any larger subtorus of G. We say that G is split if it contains a split

maximal torus. Clearly, if F is separably closed, any semisimple group is split.

For a split semisimple group G, fix a split maximal torus T . Recall that, through

the restriction of the adjoint representation of G to T , we obtain a set of non-zero
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Table 3.1: Classification of Dynkin diagrams

Type Dynkin Diagram Ψ Aut(Ψ)

An {e} if n = 1, Z/2Z otherwise

Bn {e}

Cn {e}

Dn, n ≥ 3 S3 if n = 4, Z/2Z otherwise

E6 Z/2Z

E7 {e}

E8 {e}

F4

G2 {e}

weights Φ(G) in T ∗⊗ZR that form a root system. This system is, up to isomorphism,

independent of the choice of T . We call Φ(G) the root system of G.

As the root system is an invariant of G, we can study the classification of root

systems to study the classification of split semisimple algebraic groups. It turns

out that the root system is a rich invariant in the sense that it yields a powerful

classification for split semisimple groups.

Compare Table 3.1 for a list of all Dynkin diagrams. For later use, we will also

note the automorphism group of the Dynkin diagram.

We say that a split semisimple group G is of type X, if the associated Dynkin

diagram of G is of type X.

Examples 3. • Let V be a n + 1 dimensional vector space over F . Then, the
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group SL(V ) is is of type An.

• Let (V, q) be a hyperbolic quadratic form of dimension 2n. Consider the group

orthognal group of (V, q), denoted by O(V, q) and defined on points via

O(V, q) = {A ∈ GL(V )(R) | qR(Av) = qr(v) for v ∈ V } .

If char(F ) 6= 2, consider the group

SO(V, q) = ker(O(V, q)
det−→ Gm).

Then, SO(V, q) is of type Dn.

Our main application of this classification is the information we get about outer

automorphisms of algebraic groups.

Let G be a split semisimple group with split maximal torus T . Fix a simple root

system Π in Φ(G). For any scheme S over F , any element g ∈ G(S) induces an

automorphism G|S → G|S via conjugation. This defines a morphism of group sheaves

Int : G→ Aut(G). In particular, we have a map G(F )→ Aut(G)(F ).

Given an automorphism ψ ∈ Aut(G)(F ), there is g ∈ G(F ) such that ψ ◦

Int(g)(Π) = Π. Hence, ψ induces an automorphism of Dyn(Φ) and we have a group

homomorphism Aut(G)(F )→ Aut(Dyn(Φ)), compare [KMTR98, VI.25.B].

For split semisimple adjoint groups, there is a strong relation between outer auto-

morphisms and the automorphism group of the Dynkin diagram induced by the maps

described above.

Proposition 3.2.1 ([KMTR98, Proposition 25.15]). If G is a split semisimple adjoint

group, then the sequence

1→ G(F )→ Aut(G)(F )→ Aut(Dyn(Φ))→ 1
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is exact.

If Aut(Dyn(Φ)) is trivial, then the last theorem tells us in particular, that there

are no outer automorphisms. This is true even if G is not split, as it becomes split

after base change to F sep.

Corollary 3.2.2. If G is semisimple adjoint of type A1, Bn, Cn, E7, E8, F4 or G2, then

G does not admit outer automorphisms.

If G is not adjoint, a variant of the last proposition remains true. Recall that

G = G/C denotes the associated adjoint group of G, where C is the kernel of adG.

Theorem 3.2.3 ([KMTR98, Theorem 25.16]). Let G be a split semisimple group.

Then, the sequence

1→ G(F )→ Aut(G)(F )→ Aut(Dyn(Φ))

is exact. The last map is surjective and the sequence splits if G is adjoint or simply

connected.

If G is simply connceted, the last theorem implies that the group Aut(G) coincides

with Aut(G).

Corollary 3.2.4. Let G be a split semisimple simply connected group. Then, the

natural map Aut(G)→ Aut(G) is an isomorphism.

Proof. In [KMTR98, Corollary 25.17] this is proven for Aut(G)(F ) and Aut(G)(F ),

however this statement implies our statement as all assumption are stable under

separable field extensions.

3.3 Examples

In this section, we will take a closer look at the groups SO(q) and SL1(D) associated

to a quadratic form q or a division algebra D. We will use the results discussed here



29

later in Section 8.2, when we discuss bitorsor factorization for these groups.

Let us start with SO(q) and assume char(F ) = 2. We have already defined this

group in Example 3. Consider the quadratic form q′ =
∑n

i=1 x
2
i . Then, it is an easy

computation to check that

O(q′)(R) =
{
A ∈ GLn(R) | AtA = In

}
holds. This recovers the standard notion of orthogonal matrix. Clearly, this also

implies

SO(q′)(R) =
{
A ∈ GLn(R) | AtA = In; det(A) = 1

}
.

As any two quadratic forms are isomorphic over F sep, it follows that any SO(q′) is a

form of SO(q).

For SL1(D), let us fix a central simple algebra D over F . Let GL1(D) denote the

algebraic group of units in D, i.e. GL1(D)(R) = (D⊗F R)∗ for an F -algebra R. The

reduced norm map induces a morphism of algebraic groups

Nrd: GL1(D)→ Gm.

We define SL1(D) to the kernel of this map. Hence, for an F -algebra R, we have

SL1(D)(R) = {a ∈ (D ⊗F R)∗ | Nrd(a) = 1} .

Note that if D = Mn(F ), then GL1(D) = GLn and SL1(D) = SLn.
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3.4 Torsors and principal homogeneous spaces

In this section, we will review the notion of torsors and principal homogeneous spaces.

Loosely speaking, given an algebraic group G, a G-torsor is a sheaf with a simply

transitive G-action, whereas a principal homogeneous space is a scheme with a simply

transitive G-action. Thus, any representable torsor is a principal homogeneous space.

It turns out that in many interesting situations, e.g. if G is a linear algebraic group

and the base is a field, these two notions coincide.

Definition 7. A left principal homogeneous space P over F under an F -group scheme

G is an F -scheme P together with a left G-action G×F P → P such that the induced

morphism

G×F P → P ×F P

given on points by (g, t) 7→ (g · t, t) is an isomorphism.

A morphism of left principalG-homogeneous spaces P, P ′ over F is an F -morphism

P → P ′ that is G-equivariant.

A trivial example of a principal homogeneous space is given by G itself, where

the action is given by left translation. Let L/F be a Galois extension and let G be

the constant group scheme associated to its Galois group. Then, P = Spec(L) is a

principal homogeneous space under G via the usual Galois action.

Remark 1. When we speak of a principal homogeneous space, we mean left principal

homogeneous space unless explicitly stated otherwise.

Let us now define the closely related notion of a torsor.

Definition 8. A left étale G-torsor T over F is an étale sheaf with a left action of

the sheaf hG such that:
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1. For all K-schemes Y there is an étale cover {Yi → Y } such that T (Yi) 6= ∅.

2. The map hG × T → T × T given by (g, t) 7→ (g · t, t) is an isomorphism.

A morphism of G-torsors T, T ′ over K is a morphism of sheaves T → T ′ which is

G-equivariant.

Remark 2. If G is affine over the base field, then the notions of (left) principal

homogeneous space and (left) torsor coincide, i.e. the category of (left) principal

G-homogeneous spaces over F is equivalent to the category of (left) G torsors over

F (compare Proposition 4.5.6 in [Ols16]). This is also true if G is smooth. If one is

willing to work with algebraic spaces instead of schemes, then this is true even if G

is not affine or smooth. As we will focus on linear algebraic groups in this thesis, we

do not have to worry about these subtleties.

Examples 4. 1. Let X and Y be two F -varieties such that X|F sep ' Y |F sep holds,

i.e. assume that X and Y are forms of each other. Let Aut(X) denote the sheaf

of automorphisms of X. Then, the sheaf of isomorphisms between X and Y ,

Isom(X, Y ) is a torsor under Aut(X).

2. Let P be a left G-torsor. Define P op to be the same sheaf as P but define a

right action of G on P on sections as p.g := g−1.p. This action makes P op a

right G-torsor. We call P op the opposite torsors of P .

3.5 Étale Cohomology

Let S be a scheme and let Sch/S denote the category of schemes over S. In this section,

we will (very) briefly recall the definition of étale cohomology groups of abelian étale

sheaves in Sch/S. We will then show that G-torsors over S are classified by H1(S,G)

and use this to give a definition of non-abelian cohomology sets. We will conclude the

section with the computation of certain cohomology groups that will be needed later
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on. For the general theory of étale cohomology, standard references are [Mil04] and

[Tam94]. For the more specific results given in the last subsection, the main reference

is [KMTR98].

Let Sh(S) denote the category of étale sheaves with values in abelian groups

over the small étale site associated to Sch/S. As the category of abelian groups

has enough injectives, Sh(S) also has enough injectives (compare [Tam94, Theorem

I.3.2.2]). Hence, for any F ∈ Sh(S), we can find a resolution of étale sheaves

. . .→ I3
d3−→ I2

d2−→ I1
d1−→ I0

d0−→ F → 0

where Ii ∈ Sh(S) are injective. After applying the global section functor we obtain a

complex

. . .→ I3(S)
d3−→ I2(S)

d2−→ I1(S)
d1−→ I0(S)

d0−→ 0

of abelian groups. We define the i-th étale cohomology group of S with values in F ,

denoted by Hi(S, F ) as the group

Hi(S, F ) = ker(di)/ Im(di+1).

Let us recollect some properties, proofs of these can all be found in [Tam94, I.3.3]:

• For any sheaf F,

H0(S, F ) = F (S).

• If I is an injective sheaf, then

Hi(S, I) = 0
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for all i > 0.

• Cohomology groups are functorial in F : A morphism of sheaves G→ F induces

morphisms

Hi(S,G)→ Hi(S, F )

for all i ≥ 0.

• Short exact sequences yield long exact sequences: For every short exact sequence

1→ F1 → F0 → F2 → 1

of étale sheaves, there are (unique) connecting maps δi

δi : Hi(S, F2)→ Hi+1(S, F1)

such that we obtain a long exact sequence

1 H0(S, F1) H0(S, F0) H0(S, F2)

H1(S, F1) H1(S, F0) H1(S, F2)

H2(S, F1) H2(S, F0) H2(S, F2)

H3(S, F1) . . .

Let us now specialize to the case S = Spec(F ). In this case, it is well-known that

étale and Galois cohomology agree (compare [Tam94, Corollary II.2.2]). In particular,

the famous Hilbert 90 Theorem also holds in étale cohomology.
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Theorem 3.5.1 (Hilbert 90). For any n ≥ 1, we have

H1(F,Gm) = 0.

We can use this result to compute the first cohomology groups of µn. Starting

with the short exact sequence

1→ µn ↪→ Gm
()n−→ Gm → 1,

we obtain the long exact sequence

1→ µn(F )→ F ∗
()n−→ F ∗ → H1(F, µn)→ H1(F,Gm)→ H1(F,Gm).

Hence, Hilbert 90 immediately yields the following corollary.

Corollary 3.5.2. There is a natural isomorphism

H1(F, µn) ' F ∗/(F ∗)n.

3.5.1 Torsors and Cohomology

Fix a base scheme S and let G be an abelian group sheaf on the big (or small) étale

site of S. The goal of this subsection is to prove the following theorem:

Theorem 3.5.3 ([Sta15, Tag 03AG]). There is a canonical bijection

H1(S,G) ' {isomorphism classes of G-torsors over S} .

Sketch. Let F denote a G-torsor. Let Z[F ] denote the sheafification of the presheaf
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Z(F ) given by

U 7→ Z[F (U)].

Further, let Z denote the constant group sheaf associated with Z and consider the

map of sheaves σ : Z[F ] 7→ Z induced by the map Z(F )→ Z defined over U ∈ Sch/S

via

∑
i

nisi 7→
∑
i

ni.

for si ∈ F (U).

The kernel of σ is locally generated by sections of the form s − s′, we can thus

define a map ker(σ)→ G by mapping s− s′ to g such that g.s = s′.

We can thus form a morphism of exact sequences

1 ker(σ) Z[F ] Z 1

1 G Q Z 1

σ

id

where Q = G×ker(σ) Z[F ] is the pushout of Z[F ] along ker(σ)→ G.

The long exact sequence in cohomology associated to the lower exact sequence

yields the connecting map H0(S,Z) → H1(S,G). Let ζ denote the image of 1 under

this map. To F , we associate the class ζ ∈ H1(S,Z).

Given a class ζ ∈ H1(S,G), let G ↪→ I be an embedding of G into an injective

sheaf I. Let Q denote the quotient sheaf of I by G. We then have the short exact

sequence

1→ G→ I → Q→ 1
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which yields the long exact sequence

. . . ...→ H0(S, I)→ H0(S,Q)→ H1(S,G)→ H1(S, I)→ . . .

As I is injective, we have H1(S, I) = 0. Hence, the map H0(S,Q) → H1(S,G) is

surjective. Let f ∈ Q(S) denote a preimage of ζ. We can then define a subsheaf of I

via

U 7→ {s ∈ I(U) | s 7→ f |U}

which is a G-torsor via the natural action.

It is easy to check that this construction is, up to isomorphism, independent of

the choice of f and that both constructions are inverse to each other.

Remark 3. This statement is true in much greater generality on any site. However,

as we have only introduced étale cohomology, we only state the étale version of the

statement.

While we cannot define étale cohomology for non-abelian groups via the derived

functor approach due to the lack of injective resolutions, torsors under non-abelian

groups are defined naturally. This motivates the next definition.

Definition 9. Let G be a non-abelian algebraic group. We define

H1(F,G) = {P | P is a G-torsor over F} / '

We note without proof that even in the non-abelian case, a short exact sequence

of group sheaves yields a (mildly) long exact sequence in cohomology. (See [Ser97]

for details) Given a short exact sequence

1→ G′ → G→ G′′ → 1
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with G′ is normal in G, we obtain a long exact sequence

1 H0(F,G′) H0(F,G) H0(F,G′′)

H1(F,G′) H1(F,G) H1(F,G′′)

3.5.2 Examples

Let us finish this chapter with some elementary calculations concerning the étale

cohomology of SL1, SL1(D) and SO(q) for a quadratic form q and a central simple

algebra D over a field F of characteristic not 2.

Let us first state a generalized version of Hilbert 90.

Theorem 3.5.4 ([KMTR98, Theorem 29.2]). Let D be a central simple algebra over

F . Then,

H1(F,GL1(D)) = 0.

Corollary 3.5.5. For any n ≥ 1, we have

H1(F, SLn) = 0.

Proof. The short exact sequence

1→ SLn → GLn
det−→ Gm → 1

yields the long exact sequence
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1 SLn(F ) GLn(F ) F ∗

H1(F, SLn) H1(F,GLn) H1(F,Gm)

det

By use of Hilbert 90, we obtain

GLn(F )
det−→ F ∗ → H1(F, SLn)→ 0

The result follows if the determinant map is surjective. But, for any a ∈ F ∗, the

diagonal matrix A with A11 = a and Aii = 1 for i > 1 is a preimage.

Let us now turn to the case more general case of SL1(D). The short exact sequence

1→ SL1(D)→ GL1(D)
Nrd−−→ Gm → 1

yields the long exact sequence

1→ SL1(D)(F )→ GL1(D)(F )
det−→ F ∗ → H1(F, SL1(D))→ H1(F,GL1(D))→ H1(F,Gm).

As stated above, Hilbert 90 generalizes to algebraic groups of the form GL1(D) to

yield H1(F,GL1(D)) = 0. We have thus proven the next lemma.

Lemma 3.5.6. There is a natural isomorphism

H1(F, SL1(D)) = F ∗/Nrd(D).

Consider the short exact sequence defining SO(q):

1→ SO(q)→ O(q)
det−→ µ2 → 1.
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The corresponding long exact sequence starts as

1→ SO(q)(F )→ O(q)(F )
det−→ {±1} → H1(F, SO(q))→ H1(F,O(Q)(F ))→ H1(F, µ2).

As O(q)(F )
det−→ {±1} is surjective. This implies that H1(F, SO(q))→ H1(F,O(Q)(F ))

is injective at the base point. Using twisting, one can prove the following Lemma.

Lemma 3.5.7. The natural morphism

H1(F, SO(q))→ H1(F,O(q))

is injective.
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Chapter 4

Non-abelian hypercohomology

Non-abelian hypercohomology with values in crossed modules has been introduced

and studied by Breen in [Bre90]. He defines non-abelian hypercohomology in any

topos by methods from homotopy theory. Independently, Borovoi ([Bor92a]), based

on work of Deligne and Dedecker, introduced a cocyclic approach to non-abelian

hypercohomology generalizing the cocyclic approach of Galois cohomology. His ap-

proach is only defined over the étale site of a field.

For the purpose of this thesis, it is enough to consider Borovoi’s approach. This has

the advantage that we do not have to introduce any advanced notions from homotopy

theory.

4.1 Definition

Throughout this section, let F be a field and Γ its absolute Galois group. Let F sep

denote the separable closure of F . Furthermore, let H,G be a algebraic groups over F .

In this section, we will identify G with its set of points G(F sep) to simplify notation.

Our hypercohomology groups will have coefficients in crossed modules. Hence, we

will first discuss crossed modules.
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Definition 10. A crossed module over F is a morphism ρ : G → H of algebraic

groups over F together with a left action α : H ×G→ G such that

• ρ(g′)g = g′g(g′)−1 for g′, g ∈ G and

• ρ(hg) = hρ(g)h−1 for g ∈ G and h ∈ H

holds.

Let ρ′ : G′ → H ′ be another crossed module. A morphism of crossed modules

ρ→ ρ′ is given by morphisms G→ G′ and H → H ′ that are compatible with α and

α′.

Given a crossed module ρ : G→ H, a Γ action on ρ consists of actions of Γ on G

and H satisfying

ρ(σg) = σρ(g)

and

σ
(hg) =

σh(σg)

for g ∈ G, h ∈ H and σ ∈ Γ.

A Γ action on ρ is continuous, if the actions on G and H are continuous with

respect to the discrete topology. A Γ-crossed module is a crossed module equipped

with a continuous action. A morphism of Γ-crossed modules is a morphism of crossed

modules that is compatible with the Γ actions.

Examples 5. We will mostly use the following two examples.

• Let G be any algebraic group, then 1 → G is a crossed module. The usual Γ

action on G defines a Γ action on the crossed module.
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• For any algebraic group G, G
Int−→ Aut(G) is a crossed module. The usual action

of Γ on G and Aut(G) defines a Γ action on the crossed module.

We are now ready to define the hypercohomology groups.

Definition 11. Let ρ : G→ H be a Γ-crossed module over F . We define

H−1(F,G→ H) = ker(ρ)(F ).

Example 2. For the crossed Γ-moduleG→ Aut(G), we have H−1(G→ Aut(G), F ) =

Z(G)(F ).

A 0-cocycle of ρ is a tuple (φ, h), where φ : Γ→ G(F sep) is a continuous map and

h ∈ H(F sep) such that

1. φ(στ) = φ(σ) σφ(τ) for σ, τ ∈ Γ,

2. σh = ρ(φ(σ)−1) · h for all σ ∈ Γ.

We denote by Z0 the set of 0-cocycles of ρ. Note that G(F sep) acts on Z0: For

(φ, h) ∈ Z0 and g ∈ G(F sep) define (φ, h).g = (φ′, h′) via

φ′(σ) = g−1φ(σ) σg

h′ = ρ(g)−1h.

Definition 12. Let ρ : G→ H be a Γ-crossed module over F . We then define

H0(F,G→ H) = Z0 /G(F sep). (4.1)

We can equip H0(F,G → H) with a group structure. Note that H(F sep) acts on

continuous morphisms φ : Γ→ G(F sep) via

(
hφ
)

(σ) := hφ(σ)
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for h ∈ H(F sep) and σ ∈ Γ. This allows us to define a group structure on Z0 via

(φ, h) · (φ′, h′) = (
h
φ′φ, hh′).

It is easy to see that this defines a group structure which descends to H0(F,G→ H).

Let Hom(Γ × Γ, G),Hom(Γ, H) denote the sets of continuous homomorphisms.

Let Z1 ⊂ Hom(Γ × Γ, G) × Hom(Γ, H) denote subset of tuples (φ, ψ) such that for

σ, τ, γ ∈ Γ, the following two conditions are satisfied:

ρ (φ(σ, τ))−1 · ψ(στ) = ψ(σ) · σψ(τ)

φ(σ, τγ) · ψ(σ)σφ(τ, γ) = φ(στ, γ) · φ(σ, τ)

We now define an equivalence relation R on Z1. We say that (φ, ψ) and (φ′, ψ′) are

equivalent if there is a continuous map f : Γ→ G(F sep) and h ∈ H(F sep) such that

ψ′(σ) = h−1ρ(f(σ))ψ(σ) σh

φ′(σ, τ) =
h−1(

f(στ)φ(σ, τ)
ψ(σ)σ

f(τ)−1f(σ)−1
)

holds.

Definition 13. Let ρ : G→ H be a Γ-crossed module over F . We then define

H1(F,G→ H) = Z1 /R.

4.2 Properties of hypercohomology

We will now collect results regarding the functoriality of hypercohomology groups.
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Proposition 4.2.1 ([Bor98, Section 3.4.2]). Let

1→ (G1 → H1)
i−→ (G2 → H2)

j−→ (G3 → H3)→ 1

be an exact sequence of complexes of Γ-groups where i is an embedding of crossed

modules with Γ action. Then, there is an exact sequence of pointed sets

1 H−1(G1 → H1) H−1(G2 → H2) H−1(G3 → H3)

H0(G1 → H1) H0(G2 → H2) H0(G3 → H3)

H1(G1 → H1) H1(G2 → H2)

Example 3. We will mostly use Proposition 4.2.1 for the following short exact se-

quence:

1→ (1→ Aut(G))
i−→ (G→ Aut(G))

j−→ (G→ 1)→ 1

where all maps occurring are either the identity or trivial. Then, the corresponding

long exact sequence simplifies to the following sequence (cf. [Bre90, Section 4.2.3]).

1 H0(Z(G)) H0(G) H0(Aut(G))

H0(G→ Aut(G)) H1(G) H1(Aut(G))

H1(G→ Aut(G)))

We will now describe characterizations of Hi(G→ Aut(G)) for i = −1, 0, 1. Recall

that H−1(H
α−→ G) = ker(α)Γ and hence

H−1(F,G→ Aut(G)) = Z(G)(F )
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where Z(G) is the center of G.

As further discussed in Section 6.1.3, H0(G → Aut(G)) classifies G-bitorsors

(which we will also introdcue in Section 6.1.3).

Proposition 4.2.2 ([Bre90, Theorem 4.5]). There is a natural isomorphism

H0(F,G→ Aut(G)) ' {Isomorphism classes of G-bitorsors over F} .

Unlike torsors, a G-bitorsor may not be trivial (i.e. isomorphic to G as a bitorsor)

even when it admits a point. This phenomenon motives the next definition.

Definition 14. Let α ∈ H0(G → Aut(G)). We say that α is neutral if a bitorsor

representing α admits a point over F .

We now turn our attention to H1(G → Aut(G)), which classifies G-gerbes. (See

Chapter 7 for the definition of gerbes).

Proposition 4.2.3 ([Bre90, Theorem 4.5]). There is a natural isomorphism

H1(F,G→ Aut(G)) ' {Equivalence classes of G-gerbes over F} .

Definition 15. Let α ∈ H1(G→ Aut(G)). We say that α is neutral if a corresponding

gerbe (and thus every corresponding bitorsor) admits a point over F .
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Chapter 5

Patching and local global principles

In this chapter, we will discuss a patching setup first developed by Harbater and

Hartmann ([HH10]), and then refined and expanded by Harbater, Hartmann and

Krashen ([HHK15a],[HHK15b],[HHK14],[HHK11] and [HHK09]).

5.1 Introduction to field patching

In this section, we want to fix notation and discuss vector space patching problems.

Let I denote an indexing set with relations. Throughout, let F = {Fi}i∈I denote

a finite inverse systems of fields with inclusions as morphisms. We say that Fk is

an overfield of Fi if there is an inclusion Fi ⊂ Fk in F . Let F denote lim−→F . We

want to study when the datum of an algebraic object (e.g. a vector space) over F

is equivalent to the datum of a collection of algebraic objects over Fi together with

isomorphisms between them over common overfields. In other words, we want to be

able to think of F as a cover of F . Before we analyze when this is possible, let us

make some assumptions on F .

Definition 16. A factorization inverse system over a field F is a finite inverse system

of fields such that
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1. F is the inverse limit.

2. The index set I can be partitioned as I = Iv t Ie such that:

(a) For any k ∈ Ie there are exactly two elements i, j ∈ Iv such that i, j > k.

(b) These are the only relations.

For each index k ∈ Ie, fix a labeling lk, rk for the two elements in Ie with lk, rk > k.

Then, let SI denote the set of triples (lk, rk, k).

Given a factorization inverse system, one can associate to it a (multi-)graph Γ,

which we will call the graph of F . Its vertices are the elements of Iv, where the

edges come from Ie (explaining the subscripts). Given k ∈ Ie, the corresponding edge

connects the vertices i, j ∈ Iv iff (i, j, k) ∈ SI . Note that Γ is connected, as the inverse

limit F would otherwise admit zero-divisors. We will sometimes specialize to the case

where Γ is a tree.

Example 4. A basic example of a factorization inverse system is given by fields

F ⊂ F1, F2 ⊂ F0 such that F = F1 ∩ F2 ⊂ F0. Pictorially, we get

F0

F1 F2

F.

Note that in this case Ie = {0}, Iv = {1, 2} and SI = {(1, 2, 0)}. The corresponding

graph Γ

F1 F2

F0

is a tree.

Note, however, that Γ may not always be a tree.
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Example 5. Consider F = {F0, F1, F2, F3, F4, F5} with inclusions given by

F0 F4 F5

F1 F2 F3 F1

F

In this case, Ie = {0, 4, 5}, Iv = {1, 2, 3} and SI = {(1, 2, 0), (2, 3, 4), (3, 1, 5)}. The

corresponding graph Γ

F1

F2 F3

F0

F4

F5

is not a tree.

We are now ready to state the concept of a patching problem. A patching problem

roughly consists of data over F that should give rise to an object over F if we want

to think of F as a cover of F . In other words, a patching problem is an analogue

of descent data (compare Section 2.3). In fact, it is known (but not published) that

one can define a Grothendieck topology based on patches which makes this analogy

precise. We will start with the perhaps easiest algebraic object, the vector space. Let

VECT(F ) denote the category of finite dimensional vector spaces over F .

Definition 17. A vector space patching problem V =
(
{Vi}i∈Iv , {νk}k∈Ie

)
for a fac-

torization inverse system F is given by a collection of finite dimensional Fi vector

spaces Vi together with Fk vector space isomorphisms νk : Vi ⊗Fi Fk → Vj ⊗Fj Fk

whenever (i, j, k) ∈ SI .

A morphism of patching problems V → V ′ is a collection of Fi-linear transforma-

tions Vi → V ′i for all i ∈ Iv that are compatible with the isomorphisms νk, ν
′
k.
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The category of vector space patching problems is denoted by PP(F). By con-

struction, we have

PP(F) '
∏

(i,j,k)∈SI

VECT(Fi)×VECT(Fk) VECT(Fj).

If A/F is a finite product of finite separable field extension, let PP(FA) denote the

category of free module patching problems: objects are collections ({Mi}i∈Iv , {νk}k∈Ie)

where Mi is a free module over Ai = Fi ⊗F A of finite rank and νk : Mi ⊗Ai Ak →

Mj ⊗Aj Ak are isomorphisms of Ak modules.

Note that we have a canonical functor

β : VECT(F )→ PP(F)

V 7→ ({V ⊗F Fi}i∈Iv , {σcan
k }k∈Ie)

where σcan
k is the canonical isomorphism V ⊗F Fi ⊗Fi Fk ' V ⊗F Fj ⊗Fj Fk.

Definition 18. A solution to a vector space patching problem V is an F vector space

V such that β(V ) is isomorphic to V .

If β is an equivalence of categories, then every patching problem has a solution

that is unique up to isomorphism.

Untying definitions, we see that V is a solution to V if and only if there are

isomorphisms of vector space αi : V ⊗F Fi → Vi for i ∈ Iv that are compatible with

{µk}, i.e. for each (i, j, k) ∈ SI , the diagram

V ⊗F Fk Vi ⊗Fi Fk

V ⊗F Fk Vj ⊗Fj Fk

αi⊗Fk

νk

αj⊗Fk

commutes. This is where the notion of patching comes from: We were able to glue

the vector spaces Vi along the isomorphisms νk to get a vector space V over F .
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To make this even more concrete, let us pick bases for all vector spaces of a

patching problem V . In fact, without loss of generality, let us assume Vi = F n
i for

i ∈ Iv. Then, we can identify νk with a matrix Ak ∈ GLn(Fk). (note that n needs

to be constant; otherwise, there cannot be an isomorphism νk!) The only candidate

(up to isomorphism) for a solution is thus given by V = F n. By definition V is a

solution if and only if there is a collection of isomorphisms {αi}i∈Iv satisfying the

condition outlined above. Identifying the αi with a matrix Ai ∈ GLn(Fi), we see

that the commutativity condition is equivalent to the condition Ak = AiA
−1
j . This

observation motivates the following definition.

Definition 19. A linear algebraic group G satisfies simultaneous factorization over F

if for any collection of elements ak ∈ G(Fk) with k ∈ Ie, there are elements ai ∈ G(Fi)

for all i ∈ Iv such that ak = a−1
r al ∈ G(Fk) for all (l, r, k) ∈ SI .

In the case where G = GLn, we simply say that simultaneous factorization holds

over F .

The following result provides the basis of many patching results obtained by Har-

bater, Hartman and Krashen. It is a direct consequence of our discussion above the

previous definition.

Proposition 5.1.1 ([HH10, Proposition 2.1]). The functor β : VECT(F )→ PP(F)

is an equivalence of categories if and only if simultaneous factorization holds over F .

Simultaneous factorization is amenable to many concrete examples. To date, all

proofs that β is an equivalence were derived using this characterization. We discuss

two concrete examples in Section 5.2.

If A =
∏n

i=1 Li is a finite product of finite separable field extensions of F , then we

denote by FA the inverse system {Ai := A⊗F Fi}i∈I . It is not necessarily an inverse

factorization system but we have A = lim←−FA. Let MOD(A) denote the category

of free modules of finite rank over A. Let PP(FA) denote the category of patching
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problems of the form ({Mi}i∈Iv , {νk}k∈Ie) where Mi is a free Ai-module of finite rank

and νk : Mi|Ak →Mj|Ak is an isomorphism of Ak-modules for (i, j, k) ∈ SI . Note that

we have a natural functor β̂ : MOD(A)→ PP(FA).

The following proposition is a slight variant of [HHK15b, Lemma 2.2.7].

Proposition 5.1.2. Assume that patching holds over F , i.e. that the functor

β : VECT(F )→ PP(F)

is an equivalence. Let A =
∏n

i=1 Li be a product of finitely many finite separable field

extensions. Then, patching holds over FA, i.e. the natural functor β̂ : MOD(A) →

PP(FA) is an equivalence.

Proof. Given a patching problem ({Mi}i∈Iv , {νk}k∈Ie) in PP(FA), note that Mi is a

finite dimensional vector space over Fi for all i ∈ Iv. Also, νk is an isomorphism

of Fk vector spaces. Hence, by assumption, there is an F -vector space M together

with F -vector space isomorphisms φi : M |Fi → Mi for all i ∈ Iv that are compatible

with νk. The Ai-module structure of Mi is equivalent to the datum of a morphism

αi : Ai → EndFi(Mi) of Fi-vector spaces. As the νk are Ak module morphisms, they

are compatible with αi. Hence, as the functor β is full, there is a morphism α : A→

EndF (M) of F vector spaces. The resulting A-module M solves the patching problem.

This shows that β̂ is essentially surjective. As every morphism of Ai-modules is in

particular a morphism of Fi-vector spaces, it follows that β̂ is faithful. Given two

A-modules M , N and a morphism β̂(M) → β̂(N), note that we can lift it to an

F -vector space morphism γ : M → N . As the image of this morphism in PP(FA)

commutes with the Ai-action and as β̂ is faithful, it follows that γ is an A-module

morphism.
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5.2 Example: Patching over arithmetic curves

In this section, we will discuss two concrete patching setups. We will start by intro-

ducing a patching framework for function fields of the projective line over a complete

discretely valued field. This patching result is obtained by covering the special fiber

of the projective line with (possibly non-open) subsets. This result is then used to

prove a patching results for arithmetic curves, stemming from a cover consisting of

a finite number of points on the special fiber and their complements. The material

discussed here originates in [HH12].

5.2.1 Patching over the projective line

Let T be a complete discretely valued ring with uniformizer t and residue field k. Let

K denote its field of fractions. Let X̂ = P1
T and X = P1

k. Let F denote the field

K(x), the function field of X̂. We will now construct a system of fields F over F over

which patching will hold.

Let U ⊂ X be a non-empty subset. We will use RU to denote the subring of F

of functions that are regular on U . The t-adic completion of RU will be denoted by

R̂U . The fraction field of R̂U is denoted by FU . Analogously, let R∅ denote the ring

of rational functions that are regular at the generic point of X. Let again R̂∅ denote

its t-adic completion.

Note that, for V ⊂ U ⊂ X, we have natural inclusions

R̂U ⊂ R̂V ⊂ R̂∅ ⊂ F.

Given subsets U1, U2 ⊂ X, we can form the system FU1 , FU2 ⊂ FU1∩U2 . We will

show that this system has inverse limit FU1∪U2 . Also, patching holds over this system.

To show this, we will prove that GLn satisfies simultaneous factorization.
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Lemma 5.2.1. Let U1, U2 ⊂ X and U0 = U1 ∩ U2. Then, for all a ∈ R̂U0, there are

bi ∈ R̂Ui such that a ∼= b1 + b2 mod t in R̂U0.

Proof. We can write a =
∑∞

i=0 ait
i with coefficients ai ∈ A, where A is a subring of

k(X). In particular, a0 is a rational function on P1
k with poles disjoint from U0. By

partial fraction decomposition, we can write a0 = b + c, with b, c ∈ k(x) such that b

has no poles in U1 and c has no poles in U2. Hence, b ∈ RU1 ⊂ R̂U1 and, similarly,

c ∈ RU2 ⊂ R̂U2 . Clearly, a ∼= a0 = b+ c mod t, completing the proof.

Using the additive decomposition from above together with the fact that our rings

R̂i are t-adically complete, we can prove our first factorization result.

Proposition 5.2.2. Let U1, U2 ⊂ X and U0 = U1∩U2. Then, for any A0 ∈ GLn(R̂U0)

such that A0
∼= I mod t, there are Ai ∈ GLn(R̂Ui) such that A0 = A−1

1 A2.

Sketch: We will construct a sequence of matrices {Bj} with Bj ∈ GLn(R̂U1) and {Cj}

with Cj ∈ GLn(R̂U2) such that A1 = limBj and A2 = limCj. (The limits are taken

in the t-adic topology). We start by setting B0 = C0 = In. We want to construct

Bj, Cj such that

• Bj
∼= Bj−1 mod tj,

• Cj ∼= Cj−1 mod tj,

• A0 = B−1
j Cj mod tj+1,

holds. It is clear then that limBj and limCj give the desired factorization. Fix some

r ≥ 0 and assume that we constructed Bj, Cj for j ≤ r. In particular, there is a

matrix Ãr+1 ∈ Matn(R̂U0) such that

A0 −B−1
r Cr = tr+1Ãr+1
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holds. Applying Lemma 5.2.1 on every entry of Ãr+1. we obtain matrices B′r+1 and

C ′r+1 such that

Ãr+1
∼= B′r+1 + C ′r+1 mod t

holds. We then define Br+1 = Br − trB′r+1 and Cr+1 = Cr − trCr+1. We omit the

verification that these matrices satisfy the conditions imposed above.

In order to apply this result to matrices with entries in the FU0 we need an analogue

of the Weierstrass Preparation Theorem.

Theorem 5.2.3 (Weierstrass Preparation). Let U ⊂ X and f ∈ FU . Then, we can

write f = a · u, with a ∈ F , and u ∈ R̂∗U .

Proof. If U contains all closed points of X, then the result is immediate. If U contains

no closed points, then we can take a = tm, where m is the t-adic valuation of f in F∅.

(Note that, by definition, Fη = F∅.)

So, we may assume that U contains some but not all closed points of X. We can

write f = g
h

with g, h ∈ R̂U , and the statement holds for f if it holds for g and h.

Hence, we assume that f ∈ R̂U \ {0}. As mentioned before, R̂U = AJtK for some

commutative ring A. Hence, we can write f = tr
∑n

i=0 ait
i with ai ∈ A and constant

term a0 6= 0. It is enough to prove the proposition for
∑n

i=0 ait
i, so we assume that

r = 0. Consider the element f ′ = f/a0 ∈ R̂∅ with constant term 1. We will us the

factorization result from Proposition 5.2.2 with n = 1, U1 = X \U and U2 = U . The

proposition guarantees the existence of fi ∈ R̂∗Ui such that f ′ = f1f2. In particular,

f0f1 = ff−1
2 ∈ R̂U1 [f0] ∩ R̂U2 . Note that this intersection is contained in F , hence

u = f2 and a = f0f1 works.

We are now ready to prove the main results needed for patching: the intersection

property and the factorization property.
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Theorem 5.2.4. Let U1, U2 ⊂ X and U0 = U1 ∩ U2 and U = U1 ∪ U2. Then,

FU = FU1 ∩ FU2 inside FU0.

Proof. Note first that by definition, for any V ⊂ X, we have FV = FV ∪{η}. Here η

denotes the generic point of X. Hence, we may assume without loss of generality,

that Ui contain the generic point.

The statement is clear if either Ui equals X. Hence, we assume that both Ui miss

at least one closed point of X.

We have already proven that

FU ⊂ FU1 , FU2 ⊂ FU0

holds. Hence, only FU1∩FU2 ⊂ F remains to be shown. Pick an element f ∈ FU1∩FU2 .

By Weierstrass Preparation (cf. Theorem 5.2.3), we can write f = f1u1 = f2u2 for

fi ∈ F ⊂ FU and ui ∈ R̂∗Ui .

Let us first assume that U ( X. Then, we can write fi = ai
bi

for ai, bi ∈ R̂U . Thus,

we obtain

f =
a1u1

b1

=
a2u2

b2

which implies that

a1b2u1 = a2b1u2 ∈ R̂U1 ∩ R̂U2 = R̂RU .

Therefore, f = a1b2u1
b2b1

∈ FU .

In the case U = X, write R̂Ui = AiJtK for some subrings Ai ⊂ k(X). As U = X,

we know that U1 6⊂ U2 and hence R̂U2 6⊂ R̂U1 and therefore A2 6⊂ A1.

Therefore, we can pick an element f0 ∈ A2 ⊂ A1 ∩ A2. Let R′ = R̂1[f0] ∩ R̂2.

We refer the reader to [HH10, Theorem 4.9] for a proof of the fact that FracR′ = F .
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Using this, we can write fi = ai
bi

with ai, bi ∈ R′. The proof now continues as in the

case U ( X.

Theorem 5.2.5. Let U1, U2 ⊂ X and U0 = U1 ∩ U2. Then, for any A0 ∈ GLn(FU0),

there are Ai ∈ GLn(FUi) such that A0 = A−1
1 A2.

Proof. Let us first assume U0 = ∅. Then, there is some positive integer r such

that trA0 ∈ Matn(R∅). Therefore, A−1
0 ∈ t−r Matn(R̂∅) ⊂ Matn(FU0). As R∅ is

t-adically dense in R̂∅, there is a matrix CU0 ∈ Matn(R∅) such that C0
∼= trA−1

0

mod tr+1. Let C = t−rC0 ∈ t−r Matn(R∅) ⊂ Matn(FU1). Then, by construction,

C − A−1
0 ∈ tMatn(R̂∅), and thus CA0 − In ∈ tMatn(R̂U0). But, this means that

CA0 ∈ GLn(R̂∅), so in particular, C ∈ GLn(FU1). As CA0
∼= In mod t, we can

conclude by Proposition 5.2.2 that there are Bi ∈ GLn(FUi) such that CA0 = B−1
1 B0.

Hence, the matrices A1 = B1C and A2 = B2 satisfy the statement of the theorem.

In the general case, let U ′2 = U2 \ U0. We note that

1. FU ′2 ∩ FU0 = FU2 , by Theorem 5.2.4

2. U1 ∩ U ′2 = ∅

hold. Hence, by the first step, there are matrices A1 ∈ GLn(FU1) and A2 ∈ GLn(FU ′2)

such that A0 = A−1
1 A2 holds. We finish the proof by showing that in fact A2 ∈

GLn(FU2). Note that A2 = A1A0 ∈ GLn(FU0) and thus

A2 ∈ GLn(FU0) ∩GLn(FU ′2) = GLn(FU2).

As an immediate corollary, we obtain the main result of this subsection.

Theorem 5.2.6. With the notation from above, let F = {FU1 , FU2 , FU0} with the

natural inclusions. Then, lim←−F = F and patching holds over F .
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We will end the section by stating a generalization of the main result.

Theorem 5.2.7 ([HH10, Theorem 4.14]). Let T be a complete discrete valuation ring

and let X̂ be a smooth connected projective T -curve with closed fibre X. Let U1, . . . , Ur

denote subsets of X such that the pairwise intersection Ui ∩ Uj (for i 6= j) are all

equal to a common subset U0 ⊂ X. Let U =
⋃
i Ui.

Consider the finite inverse factorization system F = {FUi}i=0,...,n. Then, the

inverse limit of F is FU and patching holds over F .

5.2.2 The local case

We will now recall a patching setup for function fields of arithmetic curves obtained

by Harbater, Hartmann and Krashen in [HHK14]. Following the notation of [HHK14],

let T be a complete discretely valued ring with field of fraction K, uniformizer t and

residue field k. Let X̂ be a projective, integral and normal T -curve with function

field F and let X denote its closed fiber.

For any closed point p ∈ X, let ÔX̂,p denote the completion of the local ring

OX̂,p at its maximal ideal and let Fp denote the fraction field of ÔX̂,p. For a subset

U ⊂ X, that is contained in an irreducible component of X and does not meet other

components, let RU denote the subring of F of rational functions regular on U . Let

R̂U denote its t-adic completion and FU denote the fraction field of R̂U . For each

branch of X at a closed point p, i.e., for each height one prime b of ÔX̂,p that contains

t, let R̂b be the completion of ÔX̂,p at b and let Fb denote its fraction field.

Let P ⊂ X be a non-empty set of closed points of X including all points where

distinct irreducible components of X meet and all closed points where X is not

unibranched. This implies that X \ P is a disjoint union of finitely many irreducible

affine k curves. The set of these curves will be denoted by U .

Let p ∈ P and U ∈ U be chosen such that p is contained in the closure of U .

Then, the ideal defining U induces an ideal in OX̂,p. The branches of U at p are the
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height one prime ideals in Rp containing said induced ideal. Let B denote the set of

all branches. Note that we have inclusions F ⊂ Fu, Fp ⊂ Fb, whenever b is a branch

corresponding to U and p.

Figure 5.1 visualizes this setup in the case where three points were chosen.

These fields form a finite inverse factorization system F . With the notation from

the beginning of this chapter, we have Iv = P t U and Ie = B.

Our goal in this section is to discuss the proof of the following theorem.

Theorem 5.2.8 ([HH10, Theorem 6.4], [HHK15b, Proposition 3.2.1]). In the above

setup,

1. F is the inverse limit of F ,

2. patching holds for finite dimensional vector spaces over F .

To simplify exposition, we will focus on the case where X̂ is smooth.

In order to prove the theorem above, we will prove that GLn satisfies factorization

over F . For notational simplicity, let us assume that our patching setup is given by

Fb

Fp FU

F

i.e. U = {U}, P = {p},B = {b} with X = U ∪ {p} and a single branch at p and U .

An example of this setup is given by X̂ = P1
T and U = A1

k and p = {∞}.

We want to prove that the natural functor

VECT(F )→ VECT(FU)×VECT(Fb) VECT(Fp) (5.1)
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Figure 5.1: Local patching setup
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is an equivalence. In the last section, we discussed (in the case X̂ = P1
T ) that the

functor

VECT(F )→ VECT(FU)×VECT(F∅) VECT(F{p})

is an equivalence. Hence, in order to show (5.1), it is enough to show that

VECT(F{p})→ VECT(Fp)×VECT(Fb) VECT(F∅)

is an equivalence.

Thus, the second part of Theorem 5.2.8 follows from the next Proposition.

Proposition 5.2.9. For any n ≥ 1 and A ∈ GLn(F∅), there are A1 ∈ GLn(Fp) and

A1 ∈ GLn(F∅) such that A = A−1
1 A2.

Let us remark (without proof) some algebraic properties of the rings R̂p, R̂{p}, R̂b

and R̂∅:

• As X̂ is regular and projective, we can conclude that R̂p is a 2-dimensional

regular local ring; we will denote its maximal ideal by mp.

• If f is a lift of a local parameter f ∈ OX,p under R̂{p} � OX,p, then {f, t} is a

system of local parameters for X̂ at p.

• We have

R∅ ⊂ R̂{p} ⊂ R̂∅

and hence

R̂∅ =
̂

R̂{p}[f−1](t) =
̂

R̂{p}[f−1]
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where all completions are with respect to t.

• As R̂b is the t-adic completion of
(
R̂p

)
(t)

and

(
R̂p

)
(t)
⊂ R̂p[f

−1](t) ⊂ R̂b,

we can conclude that R̂b is the t-adic completion of R̂p[f
−1](t) and (equivalently)

R̂p[f
−1].

Let us rename our rings for notational simplicity:

• R̂ := R̂{p}

• R̂1 := R̂∅

• R̂2 := R̂p

• R̂0 := R̂b

Let R := R̂/(t) and Ri := R̂/(t). The next lemma collects various algebraic

properties of the ring R̂, R̂i and their residue rings.

Lemma 5.2.10.

1. R̂1 is the f -adic completion of R̂ and R̂ ⊂ R̂1, R̂2 ⊂ R̂0.

2. tR̂i ∩ R̂ = tR̂ for i = 0, 1, 2 and tR̂0 ∩ R̂i = tR̂i for i = 1, 2.

3. The rings R̂2 and R̂0 are complete discretely valued rings with parameter t. The

rings R1 and R are discretely valued rings with parameter f .

4. The ring R1 is the f -adic completion of the ring R. Furthermore,

R2 ' R[f
−1

] = Frac(R)

R ' R1[f
−1

] = Frac(R1)
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5. There are natural inclusions R ⊂ R2, R1 ⊂ R0 and R1 ∩R2 = R inside R2.

Proof. 1. As the maximal idealmR̂ of R̂ is generated by f and t, we have (f 2n, t2n) ⊂

m2n ⊂ (fn, tn). Thus, using that R̂ is t-adically complete, we see that

lim←−
j

R̂/f jR̂ = lim←−
j

lim←−
i

(
R̂/tiR̂

)
/f j

(
R̂/tiR̂

)
= lim←−

j

lim←−
i

R̂/(ti, f j) = lim←−
j

R̂/mj = R̂1

holds.

Recall that for any ring A and ideal I ⊂ A such that 1 + I has no zero divisors,

we can conclude that
⋂
n∈N I

n = 0.

Also, note that the maps

R̂→ R̂1

R̂[f−1]→ R̂2

R̂1[f−1]→ R̂0

are injective as completion maps. Hence, the morphisms

R̂→ R̂2

R̂1 → R̂0

are injective.

Let us now show that R̂2 → R̂0 is injective. For this, let us first note that, as

R̂1 is the f -adic completion of R̂, we can conclude that R̂ ∩ fnR̂1 = fnR̂ for

any n. Also, tjR̂ is f -adically dense in tjR̂1. Thus, for g ∈ tjR̂1 ∩ R̂, we can
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write g = tjr + fms with r ∈ R̂, s ∈ R̂1. It follows that

fns ∈ R̂ ∩ fnR̂1 = fnR̂

and therefore s ∈ R̂. This in turn implies that g ∈ (tj, fn) ⊂ R̂ for all n. As

f ∈ R̂/tjR̂ is in the maximal ideal, the ideal 1 + (f) contains no zero divisors.

Hence,
⋂
n∈N(f

n
) = (0) in R̂/tjR̂ and

⋂
n∈N(tj, fn) = (tj) ⊂ R̂. In particular,

g ∈ tjR̂ and thus tjR̂1 ∩ R̂ = tjR̂. As this implies that

tjR̂1[f−1] ∩ R̂[f−1] = tjR̂[f−1]

for all j, we can conclude that R̂2 → R̂0 is injective. (Recall that R̂0 is the the

t-adic completion of R̂2[f−1].)

2. The equality tR̂1 ∩ R̂ = tR̂ was proven in the last part.

In order to prove tR̂0∩ R̂ = tR̂, pick g ∈ tR̂1[f−1]∩ R̂. Then, there is a positive

integer n such that fng ∈ tR̂1∩ R̂ = tR̂ holds. As f and t are local parameters,

it follows that g ∈ tR̂. Hence,

tR̂1 ∩ R̂ ⊂ tR̂

which, after passing to the t-adic completion, implies

tR̂0 ∩ R̂ = tR̂.

Note that this immediately implies tR̂2 ∩ R̂ = tR̂, as we proved tR̂2 ⊂ tR̂0 in

the last step.

The statement tR̂0 ∩ R̂1 = tR̂1 follows from tR̂1[f−1]∩ R̂1 = tR̂1. To prove this

equality, not that the inclusion ⊃ is trivial. For the other direction, fix some
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g ∈ fR̂1[f−1] ∩ R̂1. Then, there is some n ≥ 1 such that fng ∈ tR̂1 ∩ fnR̂1 =

tfnR̂1. Therefore, we have g ∈ tR̂1, concluding this part.

Similarly to the last case, the equality tR̂0 ∩ R̂2 = tR̂2 follows from tR̂1[f−1] ∩

R̂[f−1] = tR̂[f−1] which was proven in the first part of the lemma.

3. As f, t form a s system of local parameters in R̂ and R̂1, it follows that R̂[f−1]

and R̂1[f−1] are regular domains of dimension 1. In particular, their t-adic

completions R̂2 and R̂0, are complete discrete valued fields with parameter t.

Similarly, it follows that f is a local parameter for the 1 dimensional local

domains R and R1. It follows that R and R1 are discretely valued rings with

parameter f .

4. The first statement follows immediately from the first part. The equalities

R2 = R[f
−1

] and R0 = R1[f
−1

] are direct consequences of the last part.

5. The inclusions are clear by the last part. For the intersection, the description

of the last part implies

R1 ∩R2 = R1 ∩R[f
−1

] = R

as f is a parameter, and thus not a unit, in R1.

Analogously to the global case, we need an additive decomposition of scalars.

Lemma 5.2.11. For any a ∈ R̂0, there are b ∈ R̂1 and c ∈ R̂2 such that a = b + c

mod R̂0t.

Proof. The statement is clear when a = 0, so let us assume a 6= 0. Let a ∈ R0 denote

the image of a under the natural quotient map R̂0 → R0. By Lemma 5.2.10, R1 is a

discretely valued ring with parameter f and fraction field R0. Let n ∈ Z denote the
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f -adic valuation of a. If n ≥ 0, then a ∈ R̂1 and the decomposition b = a and c = 0

works.

If n n < 0, then fna ∈ R̂1. As R̂ ⊂ R̂1 is f -adically dense by part 4 of Lemma

5.2.10, there is d ∈ R̂ such that

d ∼= fna mod f
n
R̂1

holds. Let c = f
−n
d ∈ R2. Then,

f
n
(a+ c) = f

n
d− c ∈ fnR1

and thus, b = a− c ∈ R1. Choosing lifts of c and b yields the desired decomposition.

Let us denote F = Frac(R̂) and Fi = Frac(R̂i).

Theorem 5.2.12. For all A ∈ GLn(F0) there exist Ai ∈ GLn(Fi) for i = 1, 2 such

that A = A1A2.

Proof. The proof is analogous to the proof of Theorem 5.2.5, by first proving a local

version of Theorem 5.2.2. Compare [HH10, Theorem 5.4] for details.

We will now work toward proving the intersection property. Similarly to the last

case, we will first prove the intersection property for the underlying rings and use this

to prove an analogue of the Weierstrass Preparation Theorem.

Lemma 5.2.13. We have

R̂1 ∩ R̂2 = R̂,

where the intersection is taken inside R̂0.
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Proof. Let S = R̂1 ∩ R̂2, note that there is a natural inclusion R ↪→ S. By Lemma

5.2.10, we know R = R1 ∩ R2. Hence, the map R ↪→ S is surjective. Assume now

that x ∈ R maps to 0 in S. Then, there exists y ∈ S such that ty = x. Therefore,

ty ∈ R∩R1t. Using Lemma 5.2.10 we can conclude x = ty ∈ tR. Hence x = 0. Thus,

the natural map R ↪→ S becomes an isomorphism modulo t.

It follows that R̂ ∩ tS = tR̂ and S = R̂ + tS. By induction, it follows that

R̂ ∩ tjS = tjR̂ and S = R̂ + tjS. So, for any x ∈ S, there is a yn ∈ R̂ such that

x − yn ∈ tjR̂. Hence, yn − ym ∈ tN R̂ for n,m > N . Thus, {yn} form a Cauchy

sequence with limit x. As R̂ is t-adically complete, this implies x ∈ R̂.

We will state the following technical lemma without proof.

Lemma 5.2.14 ([HH10, Lemma 5.5]). Let a ∈ R̂∗0. Then, there are ai ∈ R̂∗i such

that a = a1a2.

Using this Lemma, we can prove a local analogue of the Weierstrass preparation

theorem.

Proposition 5.2.15 (Local Weierstrass Preparation). For a ∈ R̂1 there exist b ∈ R̂∗1

and c ∈ F such that a = bc.

Proof. We can assume without loss of generality that a is not 0. Hence, there is a

non-negative integer n such that a = tna′ with a′ ∈ R̂∗1. If we prove the statement

for a′, then it clearly also holds for a. Hence, we may assume that a is a unit. By

Lemma 5.2.14, there are ai ∈ R̂∗i such that a = a1a2. However, a2 = a−1a1 ∈ R̂∗1. As

R̂1 ∩ R̂2 = R̂, we can conclude that a2 ∈ R̂. hence, the choice a1 = b and a2 = c

works.

Theorem 5.2.16. We have

F1 ∩ F2 = F,
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where the intersection is taken inside F0.

Proof. Let h ∈ F1∩F2. As h ∈ F1, we can write h = a
b

with a, b ∈ R̂1. By Weierstrass

Preparation (cf. Theorem 5.2.15), we can write b = uf for u ∈ R̂∗1 and f ∈ F ∗. Thus,

h = au−1

f
. As it is enough to prove that fh ∈ F , we will assume from now on that

h ∈ R̂1.

Recall that R̂2 is a complete discretely valued field with parameter t. As h ∈ F2,

there is an integer n such that tnh ∈ R̂2. As t ∈ F , it is enough to prove the statement

for tnh, i.e. we may assume that h ∈ R̂2. Hence, h ∈ R̂1 ∩ R̂2, so, by use of Lemma

5.2.13, we can conclude that h ∈ R̂ ⊂ F .

Having proven the intersection property and the factorization property, we can

conclude that patching holds.

Corollary 5.2.17. The natural functor

VECT(F )→ VECT(F1)×VECT(F0) VECT(F2)

is an equivalence.

This concludes our discussion of the proof of Theorem 5.2.8. We end the section

with an example.

Example 6. Let T = kJtK and let X̂ = P1
T be the projective T -line. Pick the patching

cover given by U = X \ {0} and p = 0 ∈ X. The corresponding system of fields then

corresponds to the following diagram:

Frac (kLxMJtK)

Frac (k[x−1]JtK) Frac (kJx, tK)

kLtM(x).
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5.3 Patching for torsors and a local-global princi-

ple

In this section, we will describe how patching for vector spaces implies patching for

torsors under linear algebraic groups. This will then lead us to a characterization

of a local-global principle for such torsors. The material in this section is based on

[HHK15a].

We will start by fixing notation and describing a torsor patching problem. Fix a

field F and an inverse factorization system F over F . Let G be a sheaf of groups in

the big étale site over F .

Let TOR(G)(F ) denote the category of G-torsors over F . Let Gi denote that base

change of G to Fi. A G-torsor patching problem over F is given by a collection of

Gi-torsors Ti over Fi for all i ∈ Iv and a collection of isomorphisms νk : Ti|Fk → Tj|Fk

of Gk-torsors for all (i, j, k) ∈ SI .

Let TPP(G)(F) denote the category of torsor patching problems, i.e. the category

with objects
(
{Ti}i∈Iv , {νk}k∈Ie

)
. A morphism of torsor patching problems

(
{Ti}i∈Iv , {νk}k∈Ie

)
→
(
{T ′i}i∈Iv , {ν

′
k}k∈Ie

)
is a collection of Gi-torsor morphisms Ti → T ′i compatible with νk and ν ′k.

As in the case of vector spaces, there is a natural functor

β′G : TOR(G)(F )→ TPP(G)(F).

sending a torsors defined over F to its associated trivial patching datum.

Theorem 5.3.1 ([HHK15a, Theorem 2.3]). Let G be a linear algebraic group over F .

If the natural functor β : VECT(F ) → PP(F) is an equivalence of categories, then

so is the functor β′G : TOR(G)(F )→ TPP(G)(F).
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Sketch: We will only prove that β′G is essentially surjective. Fix a torsor patching

problem
(
{Ti}i∈Iv , {νk}k∈Ie

)
As G is linear algebraic, there is an embedding G ↪→

GLn. Hence, we have the exact sequence

1→ G(Fi)→ GLn(Fi)→ GLn /G(Fi)→ H1(Fi, G)→ H1(Fi,GLn)

for i ∈ I. Note that H1(Fi,GLn) is trivial by Hilbert 90. Hence, the morphism

GLn /G(Fi) → H1(Fi, G) is surjective. Let [Ai] ∈ GLn /G(Fi) with Ai ∈ GLn(F sep
i )

be lifts of the classes [Ti] ∈ H1(Fi, G). Consider the matrices Bk = νk(Ai)A
−1
i ∈

GLn(F sep
k ) for (i, j, k) ∈ SI . This element defines a morphism

AiGF sep
k
→ νk(Ai)GF sep

k
= AjGF sep

k

via left multiplication. This morphism identifies with the isomorphism νk|F sep
k

: Ti(F
sep
k )→

Tj(F
sep
K ) and is thus defined over Fk. In particular, it sends Ai to νk(Ai). and we can

conclude Bk ∈ GLn(Fk). As patching holds for vector spaces, we can deduce that

GLn satisfies factorization over F (compare Theorem 5.1.1). Thus, there are matrices

Bi ∈ GLn(Fi) and Bj ∈ GLn(Fj) such that Bk = B−1
i Bj. Consider now the system

Ci = BiAi ∈ GLn(F sep
i ). Note that the collection ({CiGF sep

k
}i∈Iv , {idCiGF sep

k

}k∈Ie)

also forms a system of torsors over F , as CiGF sep
k

and CjGF sep
k

agree by construc-

tion. Note that the morphisms CiGF sep
k
→ AiGF sep

k
defined by left multiplication

with B−1
i are compatible with νk. Hence, the two patching problems are equivalent.

Let π : GLn → GLn /G be the quotient map (note that GLn /G is a quasi-projective

variety). Let pi = π(Ci) ∈ GLn /G(Fi). By construction, the pi form a family of Fi

rational points such that pi = pj ∈ GLn /G(Fk) whenever (i, j, k) ∈ SI . As F is the

inverse limit of F , we thus obtain a point p ∈ GLn /G(F ). The fiber of p has the

shape CGF sep for C ∈ GLn(F sep) such that CGF sep
i

= CiGF sep
i

for all i ∈ Iv. Thus,

the torsor associated with CGF sep is a solution to the patching problem.
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We will omit the proof of fully faithfulness and refer to [HHK15a, Theorem 2.3].

In particular, patching holds for G-torsors in the two examples defined in the last

section.

Corollary 5.3.2. Let F and F be as in Section 5.2. Then, patching holds for G-

torsor over F .

The following proposition is a slight variant of [HHK15b, Theorem 2.2.4(c)(iii)].

It will later be used to establish an analogous result for bitorsors which in turn will

be crucial to prove patching results for gerbes. For an étale F -algebra A, write

TOR(G)(A) for the category of G ×F Spec(A)-torsors over Spec(A). Let TPP(FA)

denote the category of G×F Spec(A)-torsor patching problems over FA, defined anal-

ogously to PP(FA).

Proposition 5.3.3. Let A =
∏n

r=1 Lr be a product of finitely many finite separable

field extensions Li/F . Let G be a linear algebraic group over A (i.e. G|Lr is a linear

algebraic group over Li). If the functor β : VECT(F )→ PP(F) is an equivalence of

categories, then so is the functor β̂′G : TOR(G)(A)→ TPP(G)(FA).

Proof. By Proposition 5.1.2, patching holds for free modules of finite rank over FA.

Hence, GLn satisfies factorization over FA, cf. Theorem 5.1.1. The proof is now

verbatim to the proof of [HHK15a, Theorem 2.3].

Once patching for torsors holds, one can describe local-global principle for torsors

in terms of simultaneous factorization. We say that G-torsors satisfy the local-global

principle with respect to F if for anyG-torsor P , we have that P×Spec(F )Spec(Fi) ' Gi

for all i ∈ Iv if and only if P ' G (here, G denotes the trivial G torsor).

We can express torsor patching in the form a Mayer-Vietoris type sequence, that

will reveal a characterization of when the local-global principle for torsors hold.
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Theorem 5.3.4. Let G be a linear algebraic group. Assume that patching for torsors

holds over F . Then, there is an exact sequence

1 H0(F,G)
∏

i∈Iv H0(Fi, G)
∏

k∈Ie H0(Fk, G)

H1(F,G)
∏

i∈Iv H1(Fi, G)
∏

k∈Ie H1(Fk, G)

of pointed sets.

Sketch. The exactness of the first row follows from the intersection property of F .

The exactness at
∏

i∈Iv H1(Fi, G) follows immediately from the assumption that

patching holds.

Let us now describe the construction of the map δ. Given an element (ak) ∈∏
k∈Ie G(Fk), we want to construct an H-torsor Pa over F . Identifying ak ∈ G(Fk)

with the torsor isomorphism Gk → Gk induced by left translation of ak, we can define

the G-torsor patching problem ({(G|Fi}i∈Iv , {ak}k∈Ie). By assumption, patching holds

for G-torsors, let Pa denote a solution to this patching problem. We define δ by

mapping (ak) to the class of Pa in H1(F,G). It is easy to check that this is well-

defined.

If δ maps (ak) to the class of zero, then this means that Pa is isomorphic to G.

This in turn is equivalent to the torsor patching problems

({G|Fi}i∈Iv , {ak}k∈Ie)

and

({(G|Fi}i∈Iv ,
{

idG|Fk

}
k∈Ie

).

being isomorphic in TPP(F , G). By the definition of morphism, this is equivalent to

the existence of (bi)i∈Iv such that ak = b−1
i bj for all (i, j, k) ∈ SI . Hence, the sequence
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is exact at
∏

k∈Ie H0(Fk, G).

Similarly, if the class of a G-torsor P maps to 0 in
∏

i∈Iv H1(Fi, G), then P corre-

sponds to a patching problem

({(G|Fi}i∈Iv , {φk}k∈Ie).

As the group of automorphisms of G|Fk as a G|Fk torsor is G(Fk), we can identify

each φk with an element ak ∈ G(Fk). Hence, the class of P is the image of (ak) under

δ. This proves exactness at H1(F,G).

As an immediate corollary, we see that local-global principle for G-torsors is equiv-

alent to factorization for G.

Theorem 5.3.5 ([HHK15a, Theorem 3.5]). Let G be a linear algebraic group. Then,

local-global principle for G-torsors holds if and only if G satisfies simultaneous fac-

torization over F .

5.3.1 Factorization and local-global in the local case

We have just seen that local-global principles for G-torsors are related to simultane-

ous factorization of G. Of course, this characterization is only helpful, if we are able

to verify factorization in interesting cases. In this subsection, we will recall a factor-

ization theorem for rational linear algebraic groups in the patching setup described

in Section 5.2.8. Let F and F be as described in said section and let G be a linear

algebraic group.

Harbater, Hartmann and Krashen proved the following important theorem on

factorization for rational linear algebraig groups.

Theorem 5.3.6 ([HHK15a, Corollary 6.5]). Let G be a rational linear algebraic group.

Then, G satisfies simultaneous factorization over F if and only if G is connected or

Γ is a tree.
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5.4 Separable Factorization

Fix an abstract inverse factorization system F with inverse limit F . Let L = F sep

denote the separable closure of F and let G denote the absolute Galois group of F .

We will write Li to denote the separable Fi-algebra Fi ⊗F F sep.

There is an exact sequence of F -vector spaces

0→ F →
∏
i∈Iv

Fi
∆−→
∏
k∈Ie

Fk

Here, ∆ is given by the product of the maps ∆k : Fi×Fj → Fk for (i, j, k) ∈ SI where

∆k is defined via (fi, fj) 7→ fi−fj. Recall that we fixed the orientation, i.e. the order

of i and j in (i, j, k).

This in turn implies that the sequence

0→ L→
∏
i∈Iv

Li
∆−→
∏
k∈Ie

Lk

is also exact. Let G be a linear algebraic group over F . We can conclude that

0→ G(L)→
∏
i∈Iv

G(Li)
∆−→
∏
k∈Ie

G(Lk)

is exact as well.

We say that G satisfies separable factorization if ∆ is surjective, i.e. if the sequence

0→ G(L)→
∏
i∈Iv

G(Li)
∆−→
∏
k∈Ie

G(Lk)→ 0

is exact.

More concretely, the definition says that given group elements gk ∈ G(Lk) for

every k ∈ Ie, then there are gi ∈ G(Li) for i ∈ Iv such that gk = gig
−1
j for any

(i, j, k) ∈ SI , explaining the term separable factorization.
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Harbater, Hartmann and Krashen proved that GLn satisfies factorization if and

only if it satisfies separable factorization. Maybe even more surprising, GLn satisfies

(separable) factorization if and only if any linear algebraic group satisfies separable

factorization.

Theorem 5.4.1 ([HHK14, Theorem 2.2.4]). The following are equivalent:

1. Patching holds over F ,

2. GLn satisfies factorization over F ,

3. Any linear algebraic group over F satisfies separable factorization over F .

Sketch: We will only sketch why 2) implies 1). If GLn satisfies separable factorization,

then, by definition, the sequence

0→ GLn(L)→
∏
i∈Iv

GLn(Li)
∆−→
∏
k∈Ie

GLn(Lk)→ 0

is exact. The resulting long exact sequence starts as

0→ GLn(F )→
∏
i∈Iv

GLn(Fi)
∆−→
∏
k∈Ie

GLn(Fk)→ H1(F,GLn).

But, by Hilbert 90, H1(F,GLn) = 0, proving that GLn satisfies factorization.

One immediate application of this result is that any linear algebraic group satisfies

separable factorization in the patching setup over arithmetic curves.

Theorem 5.4.2 ([HHK14, Theorem 3.1.1]). Let F and F be as in Section 5.2. Every

linear algebraic group G over F satisfies separable factorization over F .
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5.5 Galois Cohomology

Our final goal in this chapter is to sketch patching results in Galois cohomology. The

material in this section is based on [HHK14]. Let us start by defining what we mean

by patching for Galois cohomology.

Let A be an abelian linear algebraic group over F and let Hn(F,A) denote the

n-th Galois cohomology group. For every (i, j, k) ∈ SI , we have a map Hn(Fi, A) ×

Hn(Fj, A)→ Hn(Fk, A) given by (αi, αj) 7→ αi|Fkαj|−1
Fk

. The collection of these maps

gives a map
∏

i∈Iv Hn(Fi, A)→
∏

k∈Ie Hn(Fk, A).

Definition 20. We say that patching holds for Galois cohomology with values in A

over F if the sequence

Hn(F,A)→
∏
i∈Iv

Hn(Fi, A)→
∏
k∈Ie

Hn(Fk, A)

is exact for any n ≥ 0.

Assume now that vector space patching holds for F over F . Recall from the last

section, that this implies that any linear algebraic group satisfies separable factoriza-

tion. Thus, we know that the natural sequence

0→ GLn(F sep)→
∏
i∈Iv

GLn(Fi ⊗F F sep)
∆−→
∏
k∈Ie

GLn(Fk ⊗F F sep)→ 0

is exact. It is tempting to conclude that patching holds for Galois cohomology with

values in A by looking at the long exact sequence associated to this short exact

sequence. However, the problem lies in the fact that, generally, F sep
i and Fi ⊗F F sep

are quite different. Fix separable closures F sep
i for i ∈ I and let F gd

i denote the

compositum of F sep and Fi. One can show that

Hn(F,A(Fi ⊗F F sep)) ' Hn(F gd
i /Fi, A(F gd

i ))
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holds, compare [HHK14, Lemma 2.3.2]. (In fact, this holds for an arbitrary field

extension)

This motivates the following definition.

Definition 21. Let E/F be a field extension. Fix a separable closure Esep of E and

let F sep denote the separable closure of F inside Esep. Let Egd denote the compositum

of F sep and E inside Esep.

We say that the cohomology of A over E is globally dominated with respect to F

if Hn(Egd, A) = 0 for all n > 0.

Thus, if cohomology is globally dominated, then the difference between Hn(Egd/E,A(Egd))

and Hn(E,A(Esep) is zero. This can be made precise by use of the Hochschild-Serre

spectral sequence, and thus proving the next proposition.

Proposition 5.5.1 ([HHK14, Proposition 2.3.4]). Let E/F be a field extension. As-

sume that Galois cohomology of A over E is globally dominated with respect to F .

Then, we can identify

Hn(F,A(E ⊗F F sep) = Hn(Egd/E,A(Egd)) = Hn(E,A(Esep)

for all n ≥ 0.

If we assume that cohomology is globally dominated, then the proof outlined above

actually goes through to show the next theorem.

Theorem 5.5.2 ([HHK14, Theorem 2.5.1]). Suppose that, for all i ∈ I, the coho-

mology of A is globally dominated over Fi. Then, we have a long exact sequence in

Galois cohomology:

1 H0(F,A)
∏

i∈Iv H0(Fi, A)
∏

k∈Ie H0(Fk, A)

H1(F,A)
∏

i∈Iv H1(Fi, A)
∏

k∈Ie H1(Fk, A) . . .
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In particular, patching holds for Galois cohomology with values in A over F .

Harbater, Hartmann and Krashen have proven that in the local patching setup,

global domination is often satisfied. We mention their main result and refer the reader

to the original paper [HHK14] for details.

Theorem 5.5.3 ([HHK14, Theorem 3.1.3]). Let F and F be given as in the local

case of Section 5.2. Let G be an abelian linear algebraic group. If char(k) = p > 0,

assume furthermore that p - |A| <∞. Then, for any n ≥ 0, patching holds for Galois

cohomology with values in A over F .
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Chapter 6

Bitorsors

Our main goal in this chapter is to prove that patching torsors implies patching for

bitorsors. We will start by stating the definition of bitorsors. Our main tool to prove

our principal result in this chapter is a semi-cocyclic description of bitorsors developed

by Breen ([Bre90, Section 2]). Let S be a scheme and fix a Grothendieck topology

for Sch/S. When we speak of a sheaf, torsor or bitorsor over S we will always refer

to the fixed topology.

Let G and H be group sheaves over S. Let Y be a scheme over S. For ease of

noation, we will write G|Y for G ×S Y throughout the next chapters. We will use

similary notation for bitorsors and gerbes.

Definition 22. A (G,H)-bitorsor P over S is a left G-torsor and a right H-torsors

such that the actions commute, i.e. we have (g.x).h = g.(x.h) for all x ∈ P (Y ), g ∈

G(Y ) and h ∈ H(Y ) for all Y ∈ Sch/S.

If P is a (G,H) bitorsor we define P op to be the (H,G)-bitorsor obtained by

switching the actions of G and H.

A morphism of (G,H)-bitorsors P → P ′ is a morphism of sheaves that is simulta-

neously a morphism of left G-torsors and right H-torsors. We denote the category of

(G,H)-bitorsors over S by BIT(G,H)(S). We will often just write BIT(G,H) when
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the base is clear from context. A (G,H)-bitorsor P is neutral if P (S) 6= ∅.

A G-bitorsor is a (G,G)-bitorsor. The G-bitorsor G with the actions defined

via left- and right-translation is the trivial G-bitorsor. We denote the category of

G-bitorsors by BIT(G).

Remark 4. • Note that, unlike in the case of torsors, a neutral G-bitorsor may

not be trivial. Take any group sheaf G which admits a non-trivial isomorphism

of group sheaves λ : G→ G. Consider theG-bitorsorG whose left action is given

by translation, but with the twisted right action defined via: x� g := x.λ(Y )(g)

(here . corresponds to translation) for x, g ∈ G(Y ) and Y ∈ Sch/S. This bitorsor

is clearly neutral and not isomorphic to the trivial bitorsor.

• Note that the existence of a (G,H)-bitorsor implies that G and H are locally

isomorphic: If P is a (G,H)-bitorsor, then any section p ∈ P (Y ) induces a

group isomorphism

G|Y
p−→ P |Y

p−→ H|Y

so that G and H are forms of each other.

• If P is a (G,H)-bitorsor with G abelian, then one can see that H = G. Fur-

thermore, the datum of a G-bitorsor for G abelian is equivalent to the datum

of a G-torsor. For the first claim, let P be a (G,H)-bitorsor with G abelian.

Fix some Y ∈ Sch/S and p ∈ P (Y ). Then, this point induces an isomorphism

G|Y → P |Y → H|Y

as remarked in the last paragraph. As G is abelian, H is also abelian and this

isomorphism is independent of the point p ∈ P (Y ). This can be seen as follows:

for p, p′ ∈ P (Y ) with h.p = p′, there is a g ∈ G(Y ) such that g.p = p.g′.
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Therefore, g.p′ = g.h.p = h.g.p = h.p.g′ = p′.g and these equations are precisely

the equations defining the isomorphisms G|Y → H|Y (see below for a more

detailed explanation of this part). Hence, the local isomorphisms glue together

and it follows that G ' H.

The second claim, that a G-bitorsor is, up to isomorphism, defined by its under-

lying (left) G-torsor, follows easily from the hypercohomological interpretation

given in Section 4. Alternatively, let G be the trivial left G-torsor. We want

to equip it with a right action so that it becomes a G-bitorsor. If we can show

that our only option is given by the usual right translation, then this means

that every G-bitorsor is a form of the trivial G-bitorsor, thus proving our claim.

Let ? be a right action on G making it a G-bitorsor. Fix a scheme Y ∈ Sch/S

and a section g ∈ G(Y ). For any h ∈ G(Y ) there is h′ ∈ G(Y ) such that

h.g = g ? h′. This defines a morphism G → Aut(G). We will see below in

greater generality that this map is G-equivariant with respect to the conjuga-

tion map G → Aut(G). As G is abelian, this map is trivial. In other words,

each g yields the same automorphism. Clearly, the identity e of G(S) maps to

id ∈ Aut(G)(S). Hence, any g maps to the identity and thus g ? h = g.h.

Let G′ be another group sheaf and consider a (G,H)-bitorsor P and a (H,G′)-

bitorsor P ′. We define the wedged product P ∧H P ′ as the sheafification of

U 7→ P (U)× P ′(U)/ ∼

where (p, p′), (q, q′) ∈ P (U) × P ′(U) are equivalent if there is h ∈ H(U) such that

(p.h, h.p′) = (q, q′). Note that P ∧H P ′ inherits the left G action of P and the right

G′-action of P ′ making it a (G,G′)-bitorsor.

In particular, if P and P ′ are G-bitorsors, then P ∧GP ′ is again a G-bitorsor. This

binary operation descends to isomorphism classes, equipping the set of isomorphism
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classes of G-bitorsors with a group structure. The neutral element is given by the

class of G and the inverse of the class represented by a G-bitorsor P is represented

by P op.

This group structure is compatible with the group structure of H0(F,G→ Aut(G))

described in Chapter 4.

6.1 A semi-cocyclic description

The material in this section is based on [Bre90, Section 2], see also [Bre09, Section

1]. Our goal is to describe a (G,H)-bitorsor as a left G-torsor together with a G-

equivariant morphism P → Isom(H,G).

Let P be a (G,H)-bitorsor and fix be a section p of P over some U ∈ Sch/S.

Define an isomorphism of group sheaves

up : H|U → G|U

via

p|V h = up(V )(h)p|V

for V ∈ Sch/U and h ∈ H|U(V ).

Let p′ be another section over the same U . As P is a left G-torsor, there is some

γ ∈ G(U) such that p′ = γp. Note that then

u′p = iγup

where iγ is conjugation by g (g 7→ γgγ−1).

This follows immediately from the definition: Given V → U and h ∈ G(V ), we
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obtain:

γ|V up(V )(h)γ|−1
V p′|V = γ|V up(V )(h)p|V = γ|V p|V h = p′|V h|V = up′(V )(h)p′|V .

Thus, we obtain a morphism of group sheaves

u : P −→ Isom(H,G)

p 7→ up

that is equivariant with respect to the conjugation map

i : G −→ Aut(G).

This process is reversible.

Lemma 6.1.1. For a left G-torsor P , the following are equivalent:

1. the data of a right H action making it a bitorsor,

2. a morphism of sheaves u : P −→ Isom(H,G) equivariant with respect to i : G→

Aut(G).

Proof. We have already seen that a bitorsor yields the equivariant morphism.

For the other direction, fix some V → S and define the right H-action over V via

p.h = up(V )(h).p

for h ∈ G(V ) and p ∈ P (V ).

Let us check that right and left actions commute: For p ∈ P (V ) and g, h ∈ G(V ),
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we obtain

(gp)h = gup(V )(h)g−1gp = gup(V )(h)p

g(ph) = gup(V )(h)p.

Let us now check that this right action is associative:

p(hh′) = up(V )(hh′)p = up(h)up(V )(h′)p

(ph)h′ = (up(V )(h)p)h′ = up(V )(h)(ph′) = up(V )(h)up(V )(h′)p.

It remains to show that the right H-action is simply transitive. However, as up is an

isomorphism, this follows from the definition and the fact the left G-action is simply

transitive.

The following Lemma continues this equivalence with respect to morphisms.

Lemma 6.1.2. Let f : P → P ′ be a morphism of left G-torsors. Assume that P and

P ′ are (G,H)-bitorsors and let u : P → Isom(H,G), u′ : P ′ → Isom(H,G) denote

the equivariant morphisms of sheaves from Lemma 6.1.1. Then, the following are

equivalent:

1. f is a morphism of bitorsors

2. u = u′f

Proof. For the first implication, assume that f is a morphism of bitorsors. Then, for

any Y ∈ Sch/S and p ∈ P (Y ), we have

up(h)f(Y )(p) = f(Y )(up(h)p) = f(Y )(ph) = f(Y )(p)h = u′f(Y )(p)(h)f(Y )(p)

so we get up = u′f(p), i.e. u = u′f .
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For the reverse direction, observe

f(Y )(p)h = u′f(Y )(p)(h)f(Y )(p) = f(u′f(Y )(p)(h)p) = f(Y )(up(h)p) = f(Y )(ph)

so f is compatible with the right action, i.e. a morphism of bitorsors.

If we fix a cover of Y → S and a section p over that cover, we can reinterpret the

two lemmas above:

Lemma 6.1.3. Let (P, p) be a left G-torsor with a section p over a cover Y → S.

Then, the following data are equivalent

1. a right H-action on P making it a (G,H)-bitorsor

2. a sheaf isomorphism up : H|Y → G|Y

Let now (P ′, p′) be another such tuple where p′ is also a section over Y . Assume that

both P and P ′ are (G,H)-bitorsors. Let f : P → P ′ be a morphism of left G-torsors.

Let g ∈ G(Y ) be such that f(p) = gp′ holds. Then, the following are equivalent

1. f is a morphism of bitorsors

2. up = igu
′
p

Proof. The second assertion follows readily from the first one.

For the first claim, note that the implication 1) ⇒ 2) is clear. For the other

direction, observe that up induces a unique equivariant isomorphism of sheaves P →

Isom(H,G): As we want this to be a morphism of sheaves, it is enough to define it

over the cover Y . Over said cover, the equivariance only allows us to define up′ as

igup for p′ = gp which does indeed make it equivariant. The claim follows.
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6.2 Patching for bitorsors

In this section, fix a base field F and let C = Sch/F be equipped with the big étale

topology. Also, let F denote a finite inverse factorization system with limit F and

indexing set I. Our goal in this section is to prove that bitorsor patching holds over

F whenever torsor patching does. Our main tool will be the semi-cocyclic description

of Section 6.1.

Lemma 6.2.1. Let K be a finite separable extension of F and let K denote the

corresponding inverse system obtained from base change. Let G,H be linear algebraic

groups over K. Given isomorphism of group schemes ui : G|Ki → H|Ki for all i ∈ Iv

such that

ui|Kk = uj|Kk

whenever (i, j, k) ∈ SI , there is an isomorphism of group schemes u : G|K → HK

satisfying u|Ki = ui for all i ∈ I.

Proof. Let A, B be K-algebras such that G|K = Spec(A) and H|K = Spec(B). Then,

the ui induce ring isomorphisms fi : Bi → Ai. Fix some b ∈ B. Consider the elements

fi(b) for i ∈ I. We have fi(b) = fj(b) ∈ Ak for (i, j, k) ∈ SI by assumption. Hence,

the elements fi(b) determine a unique element f(b) in A which define a morphism

f : B → A. It is clear that this is a ring isomorphism. Hence, we get an isomorphism

of schemes u : G → H. For u to be compatible with the group structure, we need f

to be compatible with Hopf algebra structure. But, as each fi is compatible with the

Hopf algebra structure, it follows that f is as well, by the faithfulness of the patching

functor.

Let BPP(G,H)(F) denote the category of (G,H)-bitorsor patching problems over

F , defined analogously to TPP(G)(F ):
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1. Objects: An object is a tuple ({Pi}i∈Iv , {φk}i∈Ie) where Pi is a (Gi, Hi)-bitorsor

over Fi and φk : Pi|Fk → Pj|Fk is an isomorphism of (Gi, Hi)-bitorsors for

(i, j, k) ∈ SI .

2. Morphisms: A morphism

({Pi}i∈Iv , {φk}i∈Ie)→ ({P ′i}i∈Iv , {φ′k}i∈Ie)

is given by a collection of bitorsor morphisms Pi → P ′i for i ∈ Iv that are

compatible with φk and φ′k.

Just like there is a natural functor

β′G : TOR(G)(F )→ TPP(G)(F),

there also is a natural functor

β′′(G,H) : BIT(G,H)(F )→ BPP(G,H)(F).

given by the trivial gluing datum induced by the universal property of pullback.

Definition 23. We say that patching holds for (G,H)-bitorsors over F if β′′(G,H) is

an equivalence.

We will now see that we can patch bitorsors whenever we can patch torsors.

Theorem 6.2.2. Assume that patching holds for G-torsors over F . Then, patching

holds for (G,H)-bitorsors, i.e. if β′G is an equivalence of categories, then so is β′′(G,H).

Proof. We need to prove essential surjectivity and fully faithfulness. Let us start with

essential surjectivity.

Fix some P ∈ BPP(G,H)(F). We have a commuting diagram of functors
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BIT(G,H)(F ) BPP(G,H)(F)

TOR(G)(F ) TPP(G)(F),

β′′
(G,H)

β′G

where the vertical functors are the forgetful ones.

By assumption β′G is essentially surjective, so there is some left G-torsor P defined

over F together with isomorphisms φi : P |Fi → Pi for all i ∈ Iv that are compatible

with the morphisms νk (as morphisms of torsors). Let K/F be a finite separable

field extension, such that P (K) 6= ∅. Fix some p0 ∈ P (K). Let Ki := Fi ⊗F K for

all i ∈ I. Set pi = φi(Ki)(p0|Ki), which defines a trivializing family {pi}i∈I . Note

that, by construction, νk(pi|Kk) = pj|Kk . By Lemma 6.1.3, we get sheaf isomorphisms

upi : H|Ki → G|Ki for all i ∈ I. Recall that this morphism is defined over V → Kk

via pi|V .h = upi(V )(h).pi|V for h ∈ H(V ). We claim that upi |Kk = upj |Kk for all

(i, j, k) ∈ SI . This follows from

upi(V )(h).pj|V = upi(h).νk(V )(pi|V )

= νk(V )(upi(V )(h).pi|V )

= νk(pi|V .h)

= νk(pi|V ).h

= pk.h

= upj(V )(h).pj|V .

By Lemma 6.2.1, we get a global isomorphism up0 : G→ H. By Lemma 6.1.3, this in

turn equips P with a (G,H)-bitorsor structure.

In order to show that β′′(G,H)(P ) is isomorphic to the given bitorsor patching prob-

lem P , it is enough to show that the morphisms φi are in fact morphisms of bitorsors.
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By Lemma 6.1.3 and the choice of p and pi, this is equivalent to checking that

up0|Ki = upi

for all i ∈ Iv (note that φi(p0) = pi). But, this is clear by construction of up0 . Hence,

β′′(G,H) is essentially surjective.

Let us now show that β′′(G,H) is fully faithful. It is clearly faithful as β′G is faithful.

So, we only need to prove that it is full. Fix two (G,H)-bitorsors P, P ′ over F

and let β′′(G,H)(P ) = P and β′′(G,H)(P
′) = P ′. Let α : P → P ′ be a morphism in

BPP(G,H)(F). Note that α is also a morphism in TPP(G)(F). Hence, there is

a morphism α : P → P ′ of left G-torsors inducing the morphisms αi : Pi → P ′i . A

straightforward check shows that α is a morphism of bitorsors. If the morphism was

not compatible with the right action, then there would be a scheme X/F such that

P (X) 6= ∅ 6= P ′(X) with p ∈ P (X) such that a(p.h) 6= a(p).h for some h ∈ H(X).

This inequality must hold on some affine subscheme of X, so we may assume

without loss of generality that X is affine. Note that, as A is free as an F vector

space, A injects into
∏

i∈Iv Ai. Hence, there is some i ∈ Iv such that ai(pi.hi) 6=

ai(pi).hi where the subscript denotes restriction. This contradicts the fact that ai is

a morphism of bitorsors. Hence, a must be compatible with the right action.

In the context of gerbe patching, we will have to patch bitorsors over covers of F .

These covers are formed by finite products of finite separable field extensions. We

thus need to extend our patching results to this setup.

Corollary 6.2.3. Let A be a finite product of finite separable field extensions of F

and let G,H be linear algebraic groups over A. If vector space patching holds over F

then (G,H)-bitorsor patching holds over FA.

Proof. Follows from Theorem 6.2.2 and Proposition 5.3.3. (Note that the proof of

Theorem 6.2.2 goes through verbatim if we replace F by FA.)
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6.2.1 A Mayer-Vietoris sequence and a local-global principle

for bitorsors

Using patching for bitorsors, we can construct the start of our Mayer-Vietoris se-

quence, which will be extended in section 7.4. Fix a group sheaf G and let Z denote

its center.

We say that G-bitorsors satisfy the local-global principle over F if for any G-

bitorsor T , we have that T ' G if and only if Ti ' Gi for all i ∈ Iv.

Recall that automorphisms of the trivial G-bitorsor G can be identified with Z(F ).

Furthermore, note that H−1(F,G → Aut(G)) = Z(F ) and that H0(F,G → Aut(G))

classifies bitorsors up to isomorphism (cf. Chapter 4).

There area natural maps

H0(Fi, G→ Aut(G))× H0(Fj, G→ Aut(G))→
∏
i∈Ik

H0(Fk, G→ Aut(G))

for (i, j, k) ∈ SI defined via (Pi, Pj) 7→ Pi ∧G P op
j . This induces a map

∏
i∈Iv

H0(Fi, G→ Aut(G))→
∏
i∈Ik

H0(Fk, G→ Aut(G)).

Lemma 6.2.4. There is a map of pointed sets

∏
i∈Ik

H−1(Fk, G→ Aut(G))→ H0(F,G→ Aut(G))

Proof. We can define the map as follows: Given elements ek ∈ Z(Fk), consider the G-

bitorsor patching problem ({Gi}i, {ek}k). By Theorem 6.2.2, there is a G-bitorsor P

over F in the essential preimage of the patching problem. Map (ek)k to the equivalence

class of P . Note that this is independent of the choice of P .
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For notational simplicity, let us abbreviate

GAut = G→ Aut(G).

Theorem 6.2.5 (Mayer-Vietoris for non-abelian hypercohomology (1)). Assume that

G-bitorsor patching holds over F . Then, there is an exact sequence

1 H−1(F,GAut)
∏

i∈Iv H−1(Fi, G
Aut)

∏
k∈Ie H−1(Fk, G

Aut)

H0(F,GAut)
∏

i∈Iv H0(Fi, G
Aut)

∏
k∈Ie H0(Fk, G

Aut)

Proof. Exactness in the first row follows from the description H−1(F,GAut) = Z(F )

and the fact that F is a factorization inverse system with limit F . Exactness at∏
i∈Iv H0(Fi, G

Aut) follows from Theorem 6.2.2. Finally, exactness at H0(F,GAut) also

follows from Theorem 6.2.2 and the fact that the automorphism group of G as a

bitorsor is Z.

The sequence above allows us to characterize when the local-global principle for

bitorsors with respect to patches holds.

Corollary 6.2.6. Assume that G-bitorsor patching holds over F . Then, G-bitorsors

satisfy local-global principle over F iff Z(G) satisfies factorization over F .

6.3 Bitorsor Factorization

Let F be an inverse factorization system over F and let G be a linear algebraic group

over F . Recall that we say that G satisfies factorization over F if for every tuple

(gk)k∈Ie with gk ∈ G(Fk) there exists a tuple (gi)i∈Iv with gi ∈ G(Fi) and gk = g−1
i gj

for every (i, j, k) ∈ SI . We saw in Theorem 5.3.5 that this property is equivalent to

local-global principle for G-torsors.
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In this section, we will introduce the similar notion of factorization for G-bitorsors.

We will also prove a first result on when bitorsor factorization holds. In Chapter 7,

we will link this property to local-global principle for gerbes. We will also prove more

results on bitorsor factorization in the arithmetic curve setting in Chapter 8.

Definition 24. Let G be a linear algebraic group over F and let F be a finite inverse

factorization system over F . We say that factorization holds for G-bitorsors if for any

tuple (Pk)k∈Ie of G|Fk-bitorsors Pk over Fk, there is a tuple (Pi)i∈Iv of G|Fi-bitorsors

Pi over Fi such that Pk ' Pi|Fi ∧G|Fk Pj|Fk for any (i, j, k) ∈ SI .

Our main goal for this section is to prove that, under some under assumptions on

G, neutral bitorsors always satisfy factorization.

Note that a G-bitorsor P over F corresponds to the data of (A, g, λ) where

• A is an étale F -algebra

• g ∈ G(A⊗F A) satisfies the cocycle condition g12g23 = g13 in G(A⊗F A⊗F A).

• λ ∈ Aut(G)(A) satisfies λ1 = Int(g)λ2 ∈ Aut(G)(A⊗F A).

Here, the subscripts correspond to the natural projections.

Given two such cocycles (A, g, λ), (A, g′, λ) corresponding to G-bitorsors P and

P ′, the wedged product P ∧G P ′ corresponds to the cocycle (A, gλ(A⊗F A)(g′), λλ′).

Theorem 6.3.1. Let G be a linear algebraic group which does not admit automor-

phisms. Assume furthermore that Aut(G) is linear algebraic and that Γ is a tree.

Then, factorization holds for G-bitorsors if vector space patching holds over F .

Proof. To simplify notation, we assume that F has the shape

Fb

FU Fp.
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Fix a neutral G|Fk-bitorsor P over Fk. Note that a neutral G-bitorsor over Fb has the

form (Fb, e, λ) for some λ ∈ Aut(G)(Fk.

So, we are looking for a finite separable K-algebra A and mU ∈ G(AU × AU),

mp ∈ G(Ap × Ap) as well as λU ∈ Aut(G)(AU) and λp ∈ Aut(G)(Ap) such that

• λ1
U = Int(gU)λ2

U

• m12
U m

23
U = m13

U

• m12
p m

23
p = m13

p

• λ1
p = Int(mp)λ

2
p

• mUλ
2
U(mp) = e

• λUλp = λ

holds. These relations ensure that (A|U ,mu, λU) and (A|p,mp, λp) define G-bitorsors

over FU and Fp respectively and that their wedged product over Fk is isomorphic to

P .

Recall that any linear algebraic group over F satisfies separable factorization

over F by assumption. Thus, there is a a finite separable extension L/F and

λU ∈ Aut(G)(LU) and λp ∈ Aut(G)(Lp) such that λ = λUλp ∈ Aut(G)(Lb). As

G admits no outer automorphisms, there are hU ∈ G(LU) and hp ∈ G(Lp) such that

• λU = Int(hU)

• λp = Int(hp)

holds.

Therefore,

λ1
U(λ2

U)−1 = Int
(
h1
U(h2

U)−1
)

λ1
p(λ

2
p)
−1 = Int

(
h1
p(h

2
p)
−1
)
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so that we set gU = h1
U(h2

U)−1 and gp = h1
p(h

2
p)
−1. As they are coboundaries (in the

Čech complex of G with respect to the cover L/F ), gU and gp satisfy the cocycle con-

dition. They are also compatible with λU and λp by construction. Hence, (LU , gU , λU)

defines a G-bitorsor over FU and (Lp, gp, λp) defines a G-bitorsor over Fp.

Hence, we only have to worry about gUλ
2
U(gp) = e. Consider the following

id = λ1(λ2)−1 = λ1
Uλ

1
p(λ

2
p)
−1(λ2

U)−1 = Int(h1
Uh

1
p(h

2
p)
−1(h2

U)−1)

so that

h1
Uh

1
p(h

2
p)
−1(h2

U)−1 = z

for some z ∈ Z(G)(Lb × Lb). This can be rewritten as

gp = z(h1
U)−1h2

U .

Considering that λ2
U = Int(h2

U), we can conclude that

λ2
U(gp) = zh2

U(h1
U)−1h2

U(h2
U)−1 = zg−1

U

holds. Therefore

gUλ
2
U(gp) = z

Let us now prove that z is a cocycle. For this, note that the identity

λ1
U = Int(gU)λ2

U
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over Lb × Lb pulls back to

λ2
U = Int(g23

U )λ3
U

over Lb × Lb × Lb via pr23. With this in mind, we calculate

(
gUλ

2
U(gp)

)
12

(
gUλ

2
U(gp)

)
23

= g12
U λ

2
U(g12

p )g23
U λ

3
U(g23

p )

= g12
U g

23
U λ

3
U(g12

p )(g23
U )−1g23

U λ
3
U(g23

p )

= g13
U λ

3
U(g12

p g
23
p )

= g13
U λ

3
U(g13

p )

=
(
gUλ

2
U(gp)

)
13

so that z = gUλ
2
U(gp) is in fact a cocycle.

Hence, there is a finite separable extension E/L/F such that z splits, i.e. z =

c1(c2)−1 with c ∈ Z(G)(Eb). After another such base change to A/E/L/F , we may

assume the existence of cU ∈ Z(G)(AU) and cp ∈ Z(G)(Ap) such that c−1 = cUcp.

We define mU = c1
U(c2

U)−1gU and mp = c1
p(c

2
p)
−1gp. Then, as cU , cp are central and

c1
U(c2

U)−1 are coboundaries, mU ,mp are still coboundaries and still satisfy

λ1
U = Int(mU)λ2

U

λ1
p = Int(mp)λ

2
p.

So, (mU , λU) and (mp, λp) define bitorsors. Note that λ2 is an inner automorphism
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and as such trivial on central elements. Hence,

mUλ
2(mp) = c1

U(c2
U)−1gUλ

2
U

(
c1
p(c

2
p)
−1gp

)
= c1

Uc
1
p(c

2
Uc

2
p)
−1gUλ

2
U (gp)

= (c1)−1c2z = (c1)−1c2c1(c2)−1 = e

as desired.
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Chapter 7

Gerbes

The main goal of this chapter is to prove that, under an additional assumption,

patching for vector spaces implies patching for gerbes. We will see in the next chapter

that this additional assumption is satisfied in the local patching setup over arithmetic

curves in equicharacteristic 0. In the case that the characteristic of the residue field

is positive, we also show that gerbe patching often holds.

We will start the chapter by recalling the definition of gerbes and bands. We

then proceed and describe a semi-cocyclic description of gerbes in terms of bitorsors

developed by Breen ([Bre90]). This description is crucial, as it allows us to reduce

gerbe patching to bitorsor patching. We prove this in the following section. The last

section interprets the patching result in terms of a Mayer-Vietoris sequence in non-

abelian hypercohomology. This also allows us to characterize a local-global principle

for gerbes in terms factorization for bitorsors.

7.1 Generalities

Let us fix the big étale site Sch/F of the scheme Spec(F ) for some fixed field F . As

before, we will often just write F to denote Spec(F ). Note that covers of F can all

be taken to be of the form Y → F for a single arrow where Y is a finite product of
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finite separable field extensions of F . We will use this throughout this section as it

will simplify notation.

We will first recall the definition of a gerbe as a special kind of stack. Our main

reference for gerbes is [Gir71].

Definition 25. Let G → Sch/F be a stack. We say that G is a gerbe if the following

two conditions are satisfied:

1. For all X ∈ Sch/F, there is a cover Y → X such that G(Y ) 6= ∅

2. For any x, x′ ∈ G(X), there is a cover Y → X such that the pullbacks of x and

x′ are isomorphic in G(Y ).

Note the similarity between the definition of gerbes and torsors, which is why we

often think of gerbes as a 1-categorical analogue of torsors.

Example 7. Let G be a sheaf of groups over Sch/F. Then, the classifying stack BG

is a gerbe. Its fiber over Z → F is given by BG(Z) = TOR(G)(Z).

Just like torsors, a torsor is trivial if it admits an F -rational point.

Definition 26. We say that a gerbe G → Sch/F is trivial (or neutral) if G(F ) 6= ∅.

Example 8. The gerbe BG is trivial as the trivial left G-torsor G is in BG(F ).

Remark 5. Let x, y ∈ G(Z) for some Z ∈ Sch/F. The sheaf IsomZ(x, y) on Sch/Zét

is a (AutZ(y),AutZ(x))-bitorsor.

Recall that a 2-category Ç consists of a class of objects obj(C) together with

categories Hom(A,B) for A,B ∈ obj(C) and composition functors Hom(A,B) ×

Hom(B,C) → Hom(A,C) satisfying the usual identities. Additionally, we require

Hom(A,A) to contain an identity element with respect to composition. Similarly, for

f ∈ Hom(A,B), we require there to be an identity element in Hom(f, f). We will call

an object in Hom(A,B) a 1-morphism and a morphism in Hom(A,B) a 2-morphism.
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A typical example of a 2-category is the category of categories, where for two

categories A,B, the category Hom(A,B) has functors as objects and natural trans-

formations as morphisms.

Recall from Section 2.4 that, as stacks are in particular categories, we consider

the 2-category of stacks over some site as the category with objects being stacks, 1-

morphisms being functors of fibered categories and 2-morphisms being natural trans-

formations of functors.

Similarly, we will consider the 2-category of gerbes in this section and will later

define the 2-category of gerbe patching problems.

Definition 27. A 1-morphism of gerbes G → G ′ over Sch/F is a morphism of stacks

G → G ′ over Sch/F.

A 2-morphism of gerbes is a natural transformation of functors.

By Gerbe(F ), we denote the 2-category of gerbes with 1-morphisms given by

equivalences and 2-morphisms given by natural isomorphisms of functors.

There is a beautiful analogue of Morita equivalence for morphisms between gerbes

of the form BG. Let G and H be group sheaves on Sch/F and let P be a (H,G)-

bitorsor. Recall that given a a left G-torsor T , the wedged product T ∧G P is a left

H-torsor. As this construction is functorial, it induces a morphism

ΨP : BG→ BH

(S, T ) 7→ (S, PS ∧GS T )

(where S denotes the scheme over which T is a torsor). This morphism is an equiv-

alence, as a quasi-inverse is given by the morphism ΨP op . Note also that if P is

a (H,G)-bitorsor and P ′ is a (H ′, H)-bitorsor, then there is a natural isomorphism

ΨP ′∧HP ' Ψ′P ◦ΨP .

Conversely, given a morphism Ψ: BG → BH, consider the image of the trivial
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G-torsor over F , P = ψ((F,G)). Note that, as AutBG((F,G)) ' G and as Ψ is fully

faithful, we also have that G ' AutBH(P ), so that G acts on P on the right. This

action makes P a right G-torsor. As it is compatible with left H-action, we see that

P has a natural structure of a (H,G)-bitorsor. It is easy to check that Ψ ' ΨP , and

that this isomorphism is natural.

As a consequence of these observations, we can see that the category Hom(BG,BH)

in Gerbe(F ) is equivalent to the category of (G,H)-bitorsors.

Theorem 7.1.1 ([Gir71, Giraud]). Let P be a (H,G)-bitorsor over F . Then, the

functor

BG→ BH

(S, T ) 7→ (S, T ∧G|S PS)

is an equivalence of categories. Furthermore, any equivalence between BG and BH

is of this form.

7.1.1 Bands and patching of non-abelian H2

In this section, we will continue to work over the big étale site of schemes over F .

Before we can patch gerbes, we will first investigate when we can patch equivalence

classes of gerbes, i.e. elements in the non-abelian second cohomology set of a band.

Given a gerbe G, one can associate to it a band L. Let us quickly review the

definition of a band. For more details, we refer again to [Gir71],but compare also the

appendix of [DM82].

Let H,G be group sheaves and denote Gad = G/Z, where Z is the center of G.

Then, Gad acts on Isom(H,G) via conjugation. Let Isex(H,G) denote the quotient

of Isom(H,G) by the Gad-action. Then, a band L consists of a triple (Y,G, ϕ) where

Y is a cover of F , G is a group sheaf defined over Y and ϕ ∈ Isex(G1, G2) where
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Gi = priG for pri : Y ×F Y → Y . We require ϕ to satisfy the cocycle condition

pr∗31 ϕ = pr∗32 ϕ ◦ pr∗21 ϕ over Y ×F ×FY .

Thus, a band is a descent datum for a group sheaf over a cover Y → F modulo

inner automorphisms. Every group sheaf over F defines a band with trivial gluing

datum. Furthermore, any abelian band (i.e. G is abelian) is induced by a group

sheaf over F as the datum of a band in this case just gives descent datum since inner

automorphisms of G are all trivial.

The center Z(L) of a band L = (Y,G, ϕ) is defined as (Y, Z, ϕZ) and we identify

it with the group sheaf over F determined by the descent datum of the band. For a

cover f : Y ′ → Y , we identify the bands (Y,G, ϕ) and (Y ′, f ∗G, f ∗ϕ). An isomorphism

between two bands (Y,H, ϕ) → (Y,G, τ) is given by an element g ∈ Isex(H,G)

compatible with ϕ and τ .

We say that a band L = (Y,G, ϕ) is linear algebraic, ifG is a linear algebraic group,

i.e. if Y = Spec(R) for R =
∏

i Li where Li is a finite separable field extension, GLi

is a linear algebraic group for all i.

The reason for the definition of a band is its natural appearance in the context

of gerbes. It turns out that the gerbe axioms put strong conditions on the auto-

morphisms of the elements in the gerbe. In particular, as two objects are locally

isomorphic, all automorphism groups are forms of each other. In fact, they even

induce a unique band.

Given a gerbe G, we can define an associated band. Pick a cover Y → F and an

object x ∈ G(Y ). Let G = Aut(x) be the sheaf of automorphisms of x. Let xi = pr∗i x

denote the two pullbacks along the projections pri : Y ×F Y → Y . By the definition

of gerbes, there is a cover U → Y ×F Y such that x1|U and x2|U are isomorphic in

G(U). An isomorphism f : x1|U → x2|U defines an isomorphism λf : G1|U → G2|U . If

g : x1|U → x2|U is another isomorphism, then λf , λg differ by an inner automorphism

of G2. Thus, there is a well defined element λ ∈ Isex(G1, G2)(U).
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An easy calculation shows that the pullbacks of λf on U ×Y×FY U differ by an

inner automorphism. Hence, the pullbacks of λ agree on U ×Y×FY U and we thus

obtain an element λ′ ∈ Isex(G1, G2)(Y ×k Y ) whose restriction to U equals λ.

It is not hard to see that λ′ satisfies the cocycle condition and thus (Y,G, λ′) defines

a band. Given a gerbe, the associated band is unique up to unique isomorphism and

we denote it by Band(G). Note that a morphism G → G ′ induces a map Band(G)→

Band(G ′). Given a band L, a gerbe banded by L is a tuple (G, θ) where G is a gerbe

and θ : Band(G) → L is an isomorphism of bands. We often suppress θ from the

notation.

Given two gerbes G,G ′ banded by L, an L-morphism of gerbes is a morphism

α : G → G ′ that is compatible with the morphisms θ and θ′, i.e. the diagram

Band(G) Band(G ′)

L

α

θ

θ′

commutes. Any morphism of L-gerbes is an equivalence, just as any G-equivariant

morphism of G-torsors is an isomorphism.

Let H2(F,L) denote the set of L-equivalence classes of gerbes banded by L (this

means that we only consider equivalences of L-gerbes that are compatible with the

band L). If L is abelian coming from the group sheaf A over F , then this definition

coincides with the usual definition of H2(F,A) as a Galois cohomology group.

Furthermore, there is a remarkable relation between H2(F,L) and H2(F,Z(L)).

Theorem 7.1.2 ([Gir71, Chapter IV, Theorem 3.3.3]). If H2(F,L) is not empty, then

it is a principal homogeneous space under H2(F,Z(L)).

Sketch. Given a class α in H2(F,L) represented by the L-gerbe G and given a class

in β ∈ H2(F,Z(L)) represented by the Z(L)-gerbe H, we define β.α to be the class

in H2(F,L) represented by G ∧Z(L)H. We refer the reader to [Gir71, Chapter IV] for

details and definitions.
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Harbater, Hartmann and Krashen have proved patching for Galois cohomology

groups of abelian algebraic groups over arithmetic curves under some mild compati-

bility assumptions between the characteristic of F and the order of the group (compare

Section 5.5). Using the above theorem, we can deduce patching for non-abelian Galois

cohomology over arithmetic curves whenever the center of the band admits patching.

We will pursue this in Section 8.3. For the purpose of gerbe patching, let us note this

immediate consequence.

We define patching for H2(◦, L) over a finite inverse factorization system F anal-

ogously to the case of patching for Galois cohomology, see Section 5.5. Note that

for (i, j, k) ∈ SI , we have two maps H2(Fi, L) × H2(Fj, L) ⇒ H2(Fk, L) given by re-

striction of the first and the second factor respectively. Hence, we have two maps∏
i∈Iv H2(Fi, L) ⇒

∏
k∈Ie H2(Fk, L).

Definition 28. Let F be a finite inverse factorization system with inverse limit F .

For a band L over F , we say that patching holds for H2(◦, L) over F if the the

following sequence is an equalizer diagram

H2(F,L)→
∏
i∈Iv

H2(Fi, L) ⇒
∏
k∈Ie

H2(Fk, L).

Proposition 7.1.3. Let F be a finite inverse system for fields with inverse limit F

and let L be a band over F . If patching holds for H2(◦, Z(L)) over F and H2(F,L) 6= ∅,

then patching holds for H2(◦, L) over F .

Proof. By assumption, there is a class α ∈ H2(F,L). Given a patching problem

{βi}i∈Iv with βi ∈ H2(Fi, L), there are elements γi ∈ H2(Fi, Z(L)) such that βi =

γi.α|Fi by Theorem 7.1.2. As the action of H2(Fi, Z(L)) on H2(Fi, L) is simply transi-

tive, it follows that {γi}i∈Iv defines a patching problem for H2(◦, Z(L)). By assump-

tion, there is γ ∈ H2(F,Z(L)) such that γ|Fi = γi for all i ∈ Iv. The element β := γ.α

solves the patching problem {βi}i∈Iv .
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7.2 A semi-cocyclic description

We will now follow sections 2.3-2.6 of [Bre94] to introduce a cocyclic description of a

gerbe G → Sch/F.

Let Y → F be a cover such that there is an element y ∈ G(Y ). Let G = AutY (y)

denote the sheaf of automorphisms of y over Sch/Y. The choice of an object y defines

an equivalence

Φ: G|Y −→ BG

defined on fibers over f : Z → Y via

Φ(Z) : G(Z) −→ TOR(G)(Z)

z 7→ IsomZ(f ∗y, z)

where IsomZ(z, f ∗y) is a Gy|Z-torsor by the natural action on the left.

We fix the following notation: Let pri : Y
2 = Y ×F Y → Y denote the natural

projections on the i-th factor for i = 1, 2. We will denote by Gi = pr∗i G the pullbacks

of G to Y 2. Let prij : Y 3 → Y 2 denote the natural projections on the i-th and j-th

component for 1 ≤ i < j ≤ 3. We will denote by Gi the pullbacks of G to Y 3 along

the natural projections Y 3 → Y . Finally, let prijk : Y 4 → Y 3 denote the natural

projection on the i-th, j-th and k-th component for 1 ≤ i < j < k ≤ 4. Let G(i)

denote the pullbacks of G to Y 4 along the natural projections Y 4 → Y . Note that Φ

induces an equivalence

ϕ = pr∗1 Φ ◦ (pr∗2 Φ)−1 : BG2 −→ BG1.

where Gi = pr∗i G.
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We obtain an isomorphism of functors

ψ : pr∗12 ϕ ◦ pr∗23 ϕ⇒ pr∗13 ϕ

rather than an equality. The various pullbacks to Y 4 of this isomorphism make the

following diagram of natural transformations commute:

BG|Y 4 BG|Y 4

BG|Y 4 BG|Y 4

where Y 4 = Y ×F Y ×F Y ×F Y .

The gerbe G is completely determined by the tuple (G,ϕ, ψ).

We will now reinterpret the above description in terms of bitorsors. Note that,

by Mortia equivalence, the equivalence ϕ can be identified with the (G2, G1)-bitorsor

E = Isom(pr∗2 y, pr∗1 y). Then, the isomorphism ψ corresponds to an isomorphism of

(G1, G3)-bitorsors

pr∗12E ∧G
2

pr∗23E −→ pr∗13E

where Gi denotes the pullback of G along Y ×F Y ×F Y → Y on the i-th component.

Finally, the compatibility condition translates to the commutativity of the diagram

pr∗12E ∧G(2) pr∗23E ∧G(3) pr∗34E pr∗13E ∧G(3) pr∗34E

pr∗12E ∧G(2) pr∗24E pr∗14E

where the arrows are induced by the various pullbacks of ψ and G(i) denotes the

pullback of G along Y 4 → Y onto the i-th component. So, a gerbe can be described by

the triple (G,E, ψ) and we will henceforth go back and forth between the categorical
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and the cocyclic description. We call the triple (G,E, ψ) the semi-cocyclic description

of G. (We could further describe E as a cocyle yield a cocyclic description of G)

Let us now turn to morphisms of gerbes.

Let ρ : G → G ′ be a morphism of gerbes over a field F . Let K/F be a finite

separable extension such that there are x ∈ G(K) and y ∈ G ′(K). After possibly

replacing K by a further finite separable extension, we may assume that ρ(x) and y

are isomorphic in G ′(K). Using the cocyclic description, we get G = (G,E, ψ) and

G ′ = (G′, E ′, ψ′) where we choose the descriptions induced by x and y. In particular,

Aut(x) = G and Aut(y) = G′.

Observe that ρ induces a map

ρ′ : G −→ G′

and a ρ′|K×FK-equivariant map

α : E → E ′.

Note that α is compatible with ψ and ψ′. Conversely, given a map α compatible

with ψ and ψ′, one gets an induced morphism of gerbes G → G ′.

Lemma 7.2.1 ([Bre94, Section 2.6]). Let ρ : G → G ′ be a morphism of gerbes. Assume

that there is a finite separable cover K/F such that G(K) 6= G ′(K). Fix some x ∈

G(K) and y ∈ G(K). Assume that there is a morphism ρ(K)(x) → y in G ′(K).

Rewrite G = (Aut(x), E, ψ) and G = (Aut(y), E ′, ψ′) using the construction described

above coming from x and y. Then, ρ induces an equivariant isomorphism of bitorsors

E → E ′ that is compatible with ψ and ψ′. Conversely, given an isomorphism E → E ′

compatible with the gluing data, one can construct a morphism of gerbes.



106

7.3 Patching for gerbes

Let F be a factorization inverse system of fields with inverse limit F . Let L be a band

over F . Let Gerbe(F,L) denote the 2-category of L-banded gerbes G over F . Here,

morphisms are given by equivalences of gerbes and 2-morphisms are given by natural

isomorphisms. Let GPP(F , L) denote the 2-category of L-gerbe patching problems,

i.e. an object consists of a collection of gerbes L-banded gerbes Gi over Fi together

with L-equivalences σk : Gi|Fk → Gj|Fk for (i, j, k) ∈ SI .

A 1-Morphisms ({Gi}, {σk})
(α,f)−−−→ ({G ′i}, {σ′k}) is given by a collection of equiva-

lences of gerbes αi : Gi → G ′i and natural isomorphisms fk : σ′k ◦ αi|Fk ⇒ αj|Fk ◦ σk,

pictorially:

Gi|Fk G ′i|Fk

Gj|Fk G ′j|Fk

αi|Fk

σk σ′k

αj |Fk

fk

Composition of morphisms is given by composing equivalences of gerbes and by hor-

izontally composing the natural isomorphisms.

Given two morphisms (α, f), (β, g) : {Gi}, {σk}) → ({G ′i}, {σ′k}), a 2-morphism

ψ = ({ψi}) is given by a collection of natural isomorphisms

Gi G ′i

αi

βi

ψi

such that the diagram of natural transformations commutes:

Gi|Fk G ′i|Fk Gi|Fk G ′i|Fk

Gj|Fk G ′j|Fk Gj|Fk G ′j|Fk

αi

σk

ψi|Fk

σ′k

βi

σk σ′k

αj

ψj |Fk

fk

βj

gk
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i.e.

σ′k ◦ αi|FK αj|Fk ◦ σk

σ′k ◦ βi|Fk βj|Fk ◦ σk

fk

ψ′i ψ′j

gk

commutes. Here ψ′i is the natural isomorphism induced by ψi and σ′k. Composition of

2-morphisms is given by vertical composition of the various natural transformations.

Lemma 7.3.1. Every 1-morphism in GPP(F , L) admits a quasi-inverse.

Proof. Let (α, f) : ({Gi}, {σk}) → ({G ′i}, {σ′k}) be a 1-morphism. Let βi denote a

quasi-inverse of αi. Then, we get natural isomorphisms gk : βj|Fk ◦ σ′k ⇒ σk ◦ βi|Fk

defined via

βj|Fk ◦ σ′k ⇒ βj|Fk ◦ σ′k ◦ αi|Fk ◦ βi|Fk ⇒ βj|Fk ◦ αj|Fk ◦ σk ◦ βi|Fk ⇒ σk ◦ βi|Fk .

Here, the first and last natural transformation are induced by fixed natural isomor-

phisms φi : αi ◦ βi ⇒ id, while the middle arrow is induced by fk. Hence, we can

define a 1-morphism (β, g) : ({G ′i}, {σ′k}) → ({Gi}, {σk}). It remains to check that

(α, f) ◦ (β, g) and (β, g) ◦ (α, f) are 2-isomorphic to the identity morphism. We will

prove that (α, f) ◦ (β, g) is isomorphic to the identity, the other case is analogous.

For this, we need to give a collection of 2-isomorphisms ψi : αi ◦ βi ⇒ id that are

compatible with gk and fk. It is tedious but straightforward to check that the choice

ψi = φi works.

Note that there is a natural functor of 2-categories

β′′′L : Gerbe(F,L) −→ GPP(F , L)

induced by base change. We say that patching holds for L-gerbes over F if β′′′L is an

equivalence.
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In order to prove our main result, we need the following elementary lemma from

the general theory of stacks. Let X and Y be stacks in groupoids over Sch/F and fix

a cover {U → X} in C.

Let pri : U ×X U → U and prij : U ×X U ×X U → U ×X U denote the usual

projections.

Lemma 7.3.2. The following data are equivalent:

1. a morphism of stacks X → Y

2. a morphism of stacks α : X|U → Y|U together with a natural transformation

ψ : pr∗1 α→ pr∗2 α such that the diagram

pr∗12 pr∗1 α pr∗12 pr∗2 α pr∗23 pr∗1 α

pr∗13 pr∗1 α pr∗13 pr∗2 α pr∗23 pr∗2 α

pr∗12 ψ

pr∗23 ψ

pr∗13 ψ

commutes.

Proof. This immediately follows from the fact that the category of morphisms X → Y

is a stack itself.

Definition 29. Let ({Gi}, {νk}) be a gerbe patching problem. We say that ({Gi}, {νk})

has property D if there is a cover Z → F such that Gi(Zi) 6= ∅ for all i ∈ Iv and

that there are elements xi ∈ Gi(Zi) such that νk(xi|Zk) is isomorphic to xj|Zk for all

(i, j, k) ∈ SI .

Proposition 7.3.3. Let L = (Y,G, ψ) for some cover Y → F . Let ({Gi}, {νk}) be

an L-gerbe patching problem with property D. Then, if patching holds for G-torsors,

there is G ∈ Gerbe(F,L) such that β′′′L (G) ' ({Gi}, {νk}).

Proof. Since the gerbe patching problem has property D, there is a cover Z → F

and elements xi ∈ Gi(Zi) such that νk(xi|Zk) ' xj|Zk for (i, j, k) ∈ SI . We may
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assume without loss of generality that Z → F factors through Y → F as we could

replace Z by Z ×F Y . Hence, we may assume L = (Z,G, ψ) and that we can patch

G-torsors over Z. Let prj : Z ×F Z → Z denote the natural projection for j = 1, 2.

Let Gj = pr∗j G.

Let A = Z ×F Z and note that patching holds for (G1, G2)-bitorsors over FA by

assumption and Corollary 6.2.3.

By use of the cocyclic description of gerbes and their morphisms, we will show

that the given gerbe patching problem induces a bitorsor patching problem in

BPP(G2, G1)(FA).

Describing the gerbes Gi with respect to Zi as a cocycle, we get tuples (G|Zi , Pi, ψi)

where Pi are (G1, G2)-bitorsors over Ai. The equivalences of the various Gi|k with

the Gj|k for (i, j, k) ∈ SI translate to isomorphisms Pi|Ak → Pj|Ak by Lemma 7.2.1.

Hence, we get an element in BPP(G2, G1)(FA).

Thus, there is a (G2, G1)-bitorsor P defined over A = Z ×F Z. The morphisms

ψi from the cocyclic description of Gi glue together by bitorsor patching to give

a global isomorphism ψ : P12 ∧G
2
P23 → P13 of (G1, G3)-bitorsors. Also, again by

bitorsor patching, the morphism ψ satisfies the coherence condition. Hence, we get a

cocycle (G,P, ψ) defining an L-gerbe G in Gerbe(F,L). By construction, we obtain

a 1-morphism β′′′K,G(G)→ ({Gi}, {νk}).

Proposition 7.3.4. Let L = (Y,G, ψ) for some cover Y → F . Assume that patching

holds for G-torsors. Then, the functor β′′′L is essentially surjective on 1-morphisms.

Proof. Let G,G ′ ∈ Gerbe(F,L) and let ({Gi}, {σk}) and ({G ′i}, {σ′k}) denote the im-

ages in GPP(F , L). Given a morphism ({αi}, {fk}) : ({Gi}, {σk})→ ({G ′i}, {σ′k}), we

want to construct a morphism G → G ′ whose image in GPP(F , L) is isomorphic to

(α, f).
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Let Z → F be a cover such that G(Z) 6= ∅ 6= G ′(Z). Thus, G|Z ,G ′|Z ' BG,

and therefore ({Gi}, {σk})|Z = ({BGi}, {σk|Zk}) and we can identify σk|Zk with the

trivial bitorsor Gk. The same conclusion holds for G ′ and ({G ′i}, {σ′k}). Therefore,

over Zi, αi corresponds to a G-bitorsor Pi by Theorem 7.1.1. Over Zk, the natural

transformation fk corresponds to the diagram

BGi|Zk BGi|Zk

BGj|Zk BGj|Fk

Pi

Gk Gk

Pj

fk

and thus corresponds to an isomorphism of Gk-bitorsors Pi|Zk → Pj|ZK . By Theorem

6.2.2, we get a G-bitorsor P defined over Z together with isomorphisms φi : P |Zi → Pi.

This bitorsor in turn defines a morphism α : G|Z → G ′|Z . We claim that it actually

descends to a morphism G → G ′. According to Lemma 7.3.2, we need an isomorphism

of functors ψ : pr∗1 α→ pr∗2 α such that

pr∗12 pr∗1 α pr∗12 pr∗2 α pr∗23 pr∗1 α

pr∗13 pr∗1 α pr∗13 pr∗2 α pr∗23 pr∗2 α

pr∗12 ψ

pr∗23 ψ

pr∗13 ψ

commutes. In terms of bitorsors, this means that we need an isomorphism of bitorsors

ψ : pr∗1 P → pr∗2 P making the analogous diagram commute. Such a morphism clearly

exists for each Pi as these bitorsors come from morphisms defined over Fi. Further-

more, as these morphisms are compatible with the gluing data, these isomorphisms

glue to give a global ψ : pr∗1 P → pr∗2 P by Theorem 6.2.2. Hence, we get a morphism

of gerbes G → G ′ and it is easy to see that its image is isomorphic to ({αi}, {fk}).

Proposition 7.3.5. Let L = (Y,G, ψ) for some cover Y → F . Assume that patching

holds for G-torsors. Then, the functor β′′′L is fully faithful on 2-morphisms.

Proof. Fix two 1-morphisms of gerbes α, β : G → G ′ and let

({αi}, {fk}), ({βi}, {gk}) : ({Gi}, {σk})→ ({G ′i}, {σ′k})
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denote their images in GPP(F , L).

Given two 2-morphisms ψ, ψ′ : α → β whose image in GPP(F , L) are the same,

we want to prove that ψ = ψ′. It is enough to show this after base change, i.e. to

prove ψ|Z = ψ′|Z . Thus, we may assume G = G ′ = BG. Thus, α and β correspond to

G-bitorsors P,Q and ψ, ψ′ are bitorsor isomorphisms P → Q. We then obtain ψ = ψ′

immediately from Theorem 6.2.2.

Finally, we need to check fullness. Given a 2-morphism

({ψi}) : ({αi}, {fk})→ ({βi}, {gk})

we first base change to Z. Then, ψi correspond to bitorsor isomorphisms and the

compatibility condition for 2-morphisms ensures that these isomorphisms glue. Hence,

we get ψ′ : α|Z → β|Z by Theorem 6.2.2. It remains to show that this morphism

descends to a morphism ψ : α → β. This follows from arguments analogous to the

argument to lift the 1-morphism in the proof of Proposition 7.3.4.

Theorem 7.3.6. Let L = (Y,G, ψ) for some cover Y → F . Assume that any L-gerbe

patching problem ({Gi}, {νk}) has property D. If patching holds for G-torsors, then it

also holds for L-gerbes, i.e. if the functor β′G is an equivalence of 1-categories, then

β′′′L is an equivalence of 2-categories.

Proof. By Proposition 7.3.3 and assumption, β′′′L is essentially surjective on objects.

By Proposition 7.3.4 β′′′L is essentially surjective on 1-morphisms and by Proposition

7.3.5, β′′′L is fully faithful on 2-morphisms. Hence, β′′′L is an equivalence.

Remark 6. Let L be a band and assume that L-gerbe patching holds over F . Let

G,G ′ be L-gerbes over F such that β′′′L,F(G) and β′′′L,F(G ′) are isomorphic. Then, there

is an equivalence G ' G ′, unique up to unique isomorphism, as β′′′L,F is an equivalence

of 2-categories.
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We will now conclude this section with a sufficient condition for the technical

assumption of the above theorem to be satisfied.

Proposition 7.3.7. Let L = (Y,G, ψ) be a band over F . Assume that patching holds

for H2(◦, L) and that bitorsor factorization holds for any cover Z → Y . Then, any

L-gerbe patching has property D.

Proof. Let αi ∈ H2(Fi, Li) denote the equivalence class of Gi. Then, we have that

αi = αj ∈ H2(Fk, Lk) by assumption. Hence, there is some α ∈ H2(F,L) inducing αi

for all i ∈ Iv. Let G be an L-gerbe representing α and let Z → Y be a cover such that

G(Z) 6= ∅. Then, Gi(Zi) 6= ∅ by construction. Fix equivalences Gi → BGi. Then, for

(i, j, k) ∈ SI , we have a morphism

BGi BGj

Gi Gj
σk

defined over Zk. Let P be the Gk-bitorsor corresponding to the composition BGi →

BGj. By assumption, we there is a Gi-bitorsor Pi over Zi and a Gj-bitorsor Gj

over Zj such that P ' Pi ∧Gk Pj over Zk. Let xi ∈ Gi(Zi) correspond to P op
i with

respect to the chosen equivalence Gi → BGi and let xj correspond to Pj. Then, it is

straightforward to check that σk(xi|Zk) and xj|Zk are isomorphic in Gj(Zk).

Corollary 7.3.8. Under the assumptions of Proposition 7.3.7, L-gerbe patching holds

over F .

7.4 A Mayer-Vietoris sequence and a local-global

principle for gerbes

In this section, we will fix a finite inverse factorization system F with inverse limit

F . We will also fix a group sheaf G defined over F for which G-torsor patching holds.

Let L be the band induced by G.
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Definition 30. We say that G-gerbes satisfy the local-global principle with respect

to F if for any G-gerbe G over F ,

Gi ' BG|Fi

for all i ∈ Iv implies

G ' BG.

Recall that G-bitorsors over F are classified by H0(F,G→ Aut(G)) and G gerbes

are classified by H1(F,G→ Aut(G)) (cf. Chapter 4).

Note that we obtain two maps

∏
i∈Iv

H1(Fi, G→ Aut(G)) ⇒
∏
k∈Ie

H1(Fk, G→ Aut(G)).

via base change.

Lemma 7.4.1. There is a map of pointed sets

∏
k∈Ik

H0(Fk, G→ Aut(G))→ H1(F,G→ Aut(G))

Proof. We can define the map as follows: Given G-bitorsors Pk over Fk, consider the

G-gerbe patching problem ({BG|Fi}i, {Pk}k). By Theorem 7.3.6, there is a G-gerbe

G over F in the essential preimage of the patching problem. We map the equivalence

class of (Pk)k to the equivalence class G. Note that this is independent of the choice

of G (cf. Remark 6).

We can put these maps in a Mayer-Vietoris type sequence. Recall that we use the

notation GAut := G→ Aut(G).
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Theorem 7.4.2 (Mayer-Vietoris for non-abelian hypercohomology (2)). Assume

patching holds for G-torsors and G-gerbes over F . Then, there is an exact sequence

1 H−1(F,GAut)
∏

i∈Iv H−1(Fi, G
Aut)

∏
k∈Ie H−1(Fk, G

Aut)

H0(F,GAut)
∏

i∈Iv H0(Fi, G
Aut)

∏
k∈Ie H0(Fk, G

Aut)

H1(F,GAut)
∏

i∈Iv H1(Fi, G
Aut)

∏
k∈Ie H1(Fk, G

Aut)

Proof. The exactness in the first two rows is the content of Theorem 6.2.5. The

exactness at
∏

i∈Iv H1(Fi, G
Aut) follows from gerbe patching (Theorem 7.3.6). The

exactness at H1(F,GAut) follows immediately from Theorem 7.1.1.

From this exact sequence, we can deduce a necessary and sufficient criterion for

the local-global principle for gerbes to hold in terms of bitorsor factorization.

Theorem 7.4.3. Assume that gerbe patching holds for L-gerbes. Then, L-gerbes

satisfy a local-global principle with respect to patches if and only G satisfies bitorsor

factorization.

Remark 7. These results are analogous to the results in [HHK15a] concerning local-

global principles for G-torsors. They prove that local-global principle for H1(F,G) is

equivalent to factorization of
∏

k H0(Fk, G). In other words, local-global principle for

G-torsors is equivalent to G satisfying factorization.

Note that when G is abelian, our result recovers the beginning of the Mayer-

Vietoris sequence described in Section 5.5.
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Chapter 8

Arithmetic Curves

The goal of this chapter is to apply the results on bitorsor patching and gerbe patching

to the patching setup described in Section 5.2.2. We will also discuss bitorsor factor-

ization over arithmetic curves and use these results to prove local-global principles

for certain gerbes.

Throughout this section, let F be the function field of an arithmetic curve and let

F be a finite inverse factorization system as described in Section 5.2.2.

8.1 Bitorsors Patching

Let G,H be linear algebraic groups over F .

Recall the natural functor

β′′(G,H) : BIT(G,H)(F )→ BPP(G,H)(F).

introduced in Chapter 6.1.3.

Theorem 8.1.1. Let G,H be linear algebraic groups over F . Then, patching holds

for (G,H)-bitorsors over F , i.e. the functor β′′(G,H) is an equivalence

Proof. Follows from Theorem 5.3.2 and Theorem 6.2.2.
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As a corollary, we immediately obtain a criterion for when G-bitorsors satisfy a

local-global principle.

Corollary 8.1.2. The local-global principle for G-bitorsors holds over F iff Z(G)

satisfies factorization over F .

Proof. Follows from Corollary 6.2.6 and Theorem 8.1.1.

As Z(G) is a linear algebraic group itself, we can apply the results from Section

5.3.1 to prove the local-global principles for bitorsors whose center is rational.

Theorem 8.1.3. Let G be a linear algebraic group whose center Z is rational. Then,

G-bitorsors satisfy local-global principle over F iff Z is connected or Γ is a tree.

Proof. In Theorem 5.3.6, we have seen that H satisfies factorization over F iff H is

connected or Γ is a tree. Hence, the result follows from Corollary 8.1.2.

8.2 Bitorsor Factorization

We will now investigate which group schemes G over F admit G-bitorsor factorization

over F . Let F be indexed by I = Iv t Ie with associated graph Γ (cf. Chapter 5 for

details). The short exact sequence 1 → (1 → Aut(G)) → (G → Aut(G)) → (G →

1)→ 1 of crossed modules induces the long exact sequence

1 H0(Z(G)) H0(G) H0(Aut(G))

H0(G→ Aut(G)) H1(G) H1(Aut(G)) H1(G→ Aut(G))

(8.1)

(compare Example 3 in Chapter 4).

We will first consider the case of finite constant group schemes with trivial center.
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Theorem 8.2.1. Assume that G is a finite constant group scheme over F with trivial

center and that Γ is a tree. Then, G satisfies bitorsor factorization over F .

Proof. Given a collection {Pb}b∈B with Pb a G-bitorsor over Fb, we need to show

that there are {PU}U∈U and {Pp}p∈P such that PU is a G-bitorsor over FU , Pp is a

G-bitorsors over FP and PU |Fb ∧G Pp|Fb ' Fb whenever b is a branch at U and p.

By Theorem 4.2.2, this is equivalent to showing that

∏
U∈U

H0(FU , G→ Aut(G))×
∏
p∈P

H0(Fp, G→ Aut(G))→
∏
b∈B

H0(Fb, G→ Aut(G))

is surjective. Since Z(G) = {e}, the sequence

1→ G→ Aut(G)→ Aut(G)/G→ 1

is exact. Since G is constant, so is Aut(G) and the long exact sequence associated to

the short exact sequence above reads

1→ H1(Fb, G)→ H1(Fb,Aut(G))→ . . .

for any b ∈ B. Since H1(Fb, G)→ H1(Fb,Aut(G) is injective, it follows from sequence

(8.1) that H0(Fb,Aut(G)) → H0(Fb, G → Aut(G)) is surjective. It is thus enough to

show that

∏
U∈U

H0(FU ,Aut(G))×
∏
p∈P

H0(Fp,Aut(G))→
∏
b∈B

H0(Fb,Aut(G))

is surjective, i.e. that Aut(G) satisfies factorization. Since Aut(G) is also a finite,

constant group scheme, it satisfies factorization by assumption and Theorem 5.3.6.

Examples 6. Examples of group schemes satisfying the assumptions of theorem 8.2.1
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include Sn for any n > 2, An for n > 3 and any finite, nonabelian simple group.

As bitorsors are classified by hypercohomology with values in G → Aut(G), the

properties of this morphism are important for bitorsor factorization. This is of course

also closely related to the center of G and the (non-)existence of outer automorphisms.

This is why it is useful to study bitorsor factorization for semisimple groups dependent

on their type, as discussed in Section 3.2.

Theorem 8.2.2. Let G be an algebraic group over F such that the natural map

G→ Aut(G) is an isomorphism. If G satisfies factorization over F , then G satisfies

bitorsor factorization over F .

Proof. Using the assumption, we can see that the map H0(F,G) = H0(F,Aut(G))→

H0(F,G→ Aut(G)) is surjective. Hence, the claim follows immediately.

Examples 7. Let G be semisimple adjoint, Then, G→ Aut(G) is an isomorphism if

G is of type A1, Bn, Cn, E7, E8, F4, and G2 (compare 24.A and [KMTR98, Proposition

25.15]).

Thus, if G satisfies factorization over F , then it also satisfies bitorsor factorization.

Let now G be a semisimple group whose adjoint group admits no outer automor-

phism. Then, we have a short exact sequence of crossed modules (see Chapter 4 for

the definition and see Corollary 25.17 in [KMTR98] for exactness):

1→ (Z → 1)→ (G→ Aut(G))→ (G/Z → Aut(G/Z))→ 1
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We thus obtain the following exact sequence of hypercohomology groups.

1 H0(F,Z) H0(F,Z) 1

H1(F,Z) H0(F,G→ Aut(G)) H0(F,G/Z → Aut(G/Z))

H2(F,Z) H1(F,G→ Aut(G))

(8.2)

Lemma 8.2.3. Let G be a semisimple group whose adjoint group G/Z admits no

outer automorphisms. Then, the map

H0(F,G/Z → Aut(G/Z))→ H2(F,Z)

from the exact sequence (8.2) is the zero map.

Proof. Consider the diagram

H1(F,G/Z)

H0(F,G/Z → Aut(G/Z)) H2(F,Z).

δ

Note that this diagram does not commute: a cocycle (f, λ) ∈ Z0(F,G → Aut(G))

maps to λ(δ(f)) as opposed to δ(f). However, as δ(f) = 0 implies λ(δ(f)) = 0, it is

enough to show that

H0(F,G/Z → Aut(G/Z))→ H1(F,G/Z)

is the zero map.

From the exact sequence (8.1), we obtain that

H0(F,G/Z → Aut(G/Z))→ H1(F,G/Z)→ H1(F,Aut(G/Z))
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is exact. But, as G/Z is isomorphic to Aut(G/Z) by assumption, the claim follows.

Theorem 8.2.4. Let G be a semisimple group such that G/Z admits no outer auto-

morphisms. If G/Z and Z satisfy bitorsor factorization over F , then so does G.

Proof. Let us start with α ∈ H0(Fb, G → Aut(G)). Let β denote its image in

H1(Fb, G/Z → Aut(G/Z)). By assumption, there are βU ∈ H0(FU , G/Z → Aut(G/Z))

and βp ∈ H0(Fp, G/Z → Aut(G/Z)) such that βUβp = βb ∈ H0(Fb, G/Z → Aut(G/Z)).

By Sequence (8.2) and Lemma 8.2.3, we can lift βU and βP to elements α̃U and α̃p

in H0(FU , G→ Aut(G)) and H0(Fp, G→ Aut(G)) respectively. Consider the element

α̃ = α̃−1
U αα̃−1

p ∈ H0(Fb, G → Aut(G)). By construction, α̃ comes from an element

γ ∈ H1(Fb, Z). By assumption, there are γU ∈ H1(FU , Z) and γp ∈ H1(Fp, Z) satisfy-

ing γUγp = γ ∈ H1(Fb, Z). Consider the elements αU = γU α̃u ∈ H0(FU , G→ Aut(G))

and αp = γpα̃p ∈ H0(Fp, G→ Aut(G)). Then, α = αUαp. This follows from

α−1
U αα−1

p = γ−1
U α̃−1

U αα̃−1
p γ−1

p

= γ−1
U γγ−1

p

= 1.

We will now turn our attention to groups of type An for n > 1. For this, let D

be a central simple algebra over F . Our goal is to prove bitorsor factorization for

SL1(D)-bitorsors. We need two auxiliary results.

Lemma 8.2.5. The group Aut(SL1(D)) satisfies factorization over F if Γ is a tree.

Proof. Note that we have a short exact sequence

1→ PGL1(D)(K)→ Aut(SL1(D))(K)→ Z /2 Z→ 1



121

for any field K/F . The result now follows from noting that PGL1(D) and Z /2 Z

satisfy factorization over F as they are both rational and Γ is a tree (see Theorem

5.3.6).

Proposition 8.2.6. Let D be a central simple algebra over K. Then, the map of

pointed sets

H1(K, SL1(D)→ H1(K,Aut(SL1(D)))

has trivial image. In particular, the map H0(SL1(D)→ Aut(SL1(D)))→ H1(SL1(D))

is surjective.

Proof. Note that a piece of sequence (8.1) for G = SL1(D) reads

H0(Aut(SL1(D))→ H0(SL1(D)→ Aut(SL1(D)))→ H1(SL1(D))→ H1(Aut(SL1(D))).

(8.3)

Thus, injectivity of

H1(K, SL1(D)→ H1(K,Aut(SL1(D)))

implies surjectivity of

H0(SL1(D)→ Aut(SL1(D)))→ H1(SL1(D)).

Note that the map

SL1(D)→ Aut(SL1(D))

factors through

SL1(D)→ GL1(D).
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Hence,

H1(K, SL1(D)→ H1(K,Aut(SL1(D)))

factors through

H1(K, SL1(D)→ H1(K,GL1(D)).

The claim thus follows from H1(K,GL1(D)) = 0, i.e. Hilbert 90.

Theorem 8.2.7. Let D be a a central simple algebra over F and let Γ be a tree.

Then, SL1(D) satisfies bitorsor factorization.

Proof. Fix a collection of

αb ∈ H0(Fb, SL1(D)→ Aut(SL1(D)))

for b ∈ B and let βb denote their images in H1(Fb, SL1(D)) (along sequence 8.3) when

b corresponds to a branch at p. Recall that

H1(Fb, SL1(D)) = F ∗b /Nrd(Db)

holds. Let n be the index of D. Since Fb is a completion of Fp at a discrete valuation,

the map F ∗p → F ∗b /F
∗n
b is surjective. As F ∗nn ⊂ Nrd(D∗b ), it follows that F ∗p →

F ∗b /Nrd(D∗b ) is surjective whenever b is a branch at p. Thus, by weak approximation,

there are βp ∈ H1(Fp, SL1(D)) for all p ∈ P such that βp = βb ∈ H1(Fb, SL1(D))

whenever b is a branch at p.

By Proposition 8.2.6, there are αp ∈ H0(Fp, SL1(D) → Aut(SL1(D))) mapping

onto βp for all p ∈ P . Let now b be a branch at p and U . Then, αbα
−1
p maps

onto 0 in H1(Fb, SL1(D)) by construction. Hence, there is νb ∈ H0(Fb,Aut(SL1(Db)))

mapping onto αbα
−1
p . By Lemma 8.2.5, there exist νU ∈ H0(FU ,Aut(SL1(D))) and

νp ∈ H0(Fp,Aut(SL1(D))) such that their product in H0(Fb,Aut(SL1(D))) is νb for

all (U, p, b) ∈ SI .
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Let τU and τp denote the images of νU and νp in H0(FU , SL1(D)→ Aut(SL1(D))))

and H0(Fp, SL1(D) → Aut(SL1(D))) respectively. Then, the collection of {τU}U∈U

and {τpαp}p∈P give a factorization of {αb}b∈B.

8.3 Gerbe Patching and Mayer-Vietoris

We will now investigate, when gerbe patching holds over arithmetic curves. Let us

first collect some results related to the technical assumption in Theorem 7.3.6.

Theorem 8.3.1. Assume that char(K) = 0 = char(k). Let (Li)i∈I be a collection of

finite separable field extensions Li/Fi. Then, there is a finite separable field extension

E/F such that Ei dominates Li.

Proof. This follows from Propositions 2.4-2.5 and Theorem 2.6 in [HHK+17].

Corollary 8.3.2. Assume that char(k) = 0. Then, every L-gerbe patching problem

({Gi}i∈Iv , {νk}k∈Ie)

over F has property D.

Proof. Pick covers Zi → Fi for i ∈ Iv and zi ∈ Gi(Zi). Note that Zi is a product of

finite separable field extensions of Fi. By Theorem 8.3.1, there is a cover Z ′ → F

such that Z ′i dominates Z.

While νk(xi|Z′k) and xj|Z′k may not be isomorphic in Gj(Z ′k), they are locally iso-

morphic, so there are covers Yk → Z ′k such νk(xi|Yk) and xj|Yk are isomorphic. Again

using Theorem 8.3.1, there is a cover Y → F dominating Z → F such that Y ′k → F

dominates Yk → Fk.

Then, the choice Y ′ → F and xi|Y ′i proves the claim.
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In the case where char(k) = p, we want to use Proposition 7.3.7 to prove that

every gerbe patching problem has property D. The next proposition proves that this

is true under some mild assumptions.

Proposition 8.3.3. Let L be a band over F such that Z(L) is a linear algebraic group

over F with finite order not divided by char(k). Then, if H2(F,L) 6= ∅, patching holds

for H2(◦, L) over F .

Proof. By [HHK14, Theorem 3.1.3], patching holds for H2(◦, Z(L)). Thus, the con-

clusion follows by Proposition 7.1.3.

We are now ready to state our main result on gerbe patching over arithmetic

curves.

Theorem 8.3.4. Let L = (Y,G, ψ) be a band over F with G being a linear algebraic

group over Y . Assume either

• char(k) = 0 or

• char(k) = p > 0 and Z(L) has finite order not divisible by char(k) and G-

bitorsor factorization holds over FZ for every cover Z → Y .

Then, gerbe patching holds over F , i.e. the functor β′′′L is a 2-equivalence.

Proof. If char(k) = 0, this follows from Theorem 5.3.2, Theorem 7.3.6 and Theo-

rem 8.3.2. If char(k) = p, then it follows from Theorem 5.3.2, Theorem 7.3.6 and

Proposition 8.3.3.

Corollary 8.3.5 (Mayer-Vietoris of non-abelian hypercohomology over curves). Let

G be a linear algebraic group defined over F and let L denote the associated band.

Under the assumption of Theorem 8.3.4, there is an exact sequence of pointed sets



125

1 H−1(F,GAut)
∏

i∈Iv H−1(Fi, G
Aut)

∏
k∈Ie H−1(Fk, G

Aut)

H0(F,GAut)
∏

i∈Iv H0(Fi, G
Aut)

∏
k∈Ie H0(Fk, G

Aut)

H1(F,GAut)
∏

i∈Iv H1(Fi, G
Aut)

∏
k∈Ie H1(Fk, G

Aut)

Proof. Follows from Theorem 7.4.2 and Theorem 8.3.4.

8.4 Local-global principles for gerbes

Building on our results on bitorsor factorization, we now use Theorem 7.4.3 to obtain

local-global principles for gerbes.

Theorem 8.4.1. Let G be a linear algebraic group over F with center Z. Then, the

local global principle for G-gerbes with respect to patching holds if

• char(k) = 0 and one of the following hold:

– Γ is a tree and G is a finite constant group scheme with trivial center,

– G is connected, rational, semisimple, adjoint of type A1, Bn, Cn, E7, E8, F4

or G4,

– G is semisimple such that G/Z admits no outer automorphism and Z,G/Z

satisfy bitorsor factorization,

– Γ is a tree and G = SL1(D) where D is a central simple algebra over F ,

• char(k) = p > 0, Z has finite order not divided by char(k) and G and Γ are as

in the case of char(k) = 0.

Proof. All results use Theorem 7.3.6 and Theorem 7.4.3. The results follow (in order)

from Theorem 8.2.1, Example 7 and Theorem 5.3.6, Theorem 8.2.4, and Theorem

8.2.7.
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Chapter 9

Homogeneous Spaces

In this section, we will discuss local-global principles for the existence of rational

points on homogeneous spaces over arithmetic curves. Throughout this chapter, let

F denote the function field of an arithmetic curve and let F denote an inverse fac-

torization system as discussed in Section 5.2.2. The results derived here will rely on

the local-global principles derived for gerbes in the last chapter.

Let H be a linear algebraic group and let X be a variety over F admitting an

H action. We say that H is a homogeneous space if H(F sep) acts transitively on

X(F sep).

Definition 31. We say that the local-global principle holds for X over F if X(F ) 6= ∅

if and only if X(Fi) 6= ∅ for all i ∈ Iv.

We will link the existence of rational points on X to rational points on a moduli

stack. To do this, let us note that if X admits a rational point p ∈ X(F ), then this

point defines an H-equivariant surjection

H → X

where we think of H as the trivial H-torsor.
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Based on this observation, we say that X admits a torsor if there is an H-

equivariant morphism

P → X

for an H-torsor P (note that this is necessarily a surjection by transitivity). By our

observation, admitting a torsor is necessary for the existence of a rational point. We

will thus divide our study of local-global principles for rational points into two steps:

1. Study local-global principles for admitting a torsors.

2. Study when admitting a torsor is sufficient for admitting a rational point.

This plan of action is not novel, it was pioneered in the case where F is a number field

(and local-global is understood with respect to valuations) by Springer and Borovoi,

compare [Spr65], [Bor92b] and [Bor95]. It was also used by Flicker, Scheiderer and

Sujatha to prove a formally real analogue of Grothendieck’s Theorem regarding the

second cohomology group, see [FSS98].

In order to study the first point, we will turn to the moduli stack of torsors over

H. This moduli stack will turn out to be a gerbe and is thus amenable to the tools

developed in Section 7.4.

We will assume throughout this chapter that the stabilizer of a geometric point

x ∈ X(F sep) is isomorphic to G|F sep for some linear algebraic group G ⊂ H defined

over F .

The moduli stack of torsors over X is the well-known quotient stack [X/H]. Recall

that objects of this stack are given by tuples (Y, P, φ) where Y is an F -scheme, P

is a torsor under H|Y over Y and φ : P → X|Y is an H-equivariant map. By étale

descent for torsors, this category is a stack.

Let Y be an F -scheme. If X(Y ) 6= ∅, pick a point x ∈ X(Y ). This defines

an H-equivariant morphism φx : H|Y → X|Y which gives an element (Y,H|Y , φx) ∈
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[X/H](Y ). Hence, X(Y ) 6= ∅ implies[X/H](Y ) 6= ∅. In particular, [X/H] locally

admits points in the étale topology.

Given two elements (Y, P, φ) and (Y, P ′, φ′) in [X/H](Y ), let U → Y be an étale

cover such that P and P ′ are both trivial on U . Fixing points p ∈ P (U) and p′ ∈ P ′(U)

on U , the morphisms φ : P → X can be identified with a morphism H → H/G and

likewise for φ′. Let φ(U)(p) = [h] and φ(U)(p′) = [h′]. Consider the isomorphism of

H|U torsors H|U → H|U given by left multiplication by h′h−1. This morphism yields

a morphism P |U → P |′U that is compatible with φ and φ′ by construction. Hence,

(Y, P, φ) and (Y, P ′, φ′) are locally isomorphic.

Therefore, [X/H] is a gerbe. In general the band of this gerbe is induced by the

stabilizers of geometric point. As we assume that these are induced by a F -group G,

it is easy to check that [X/H] is in fact a G-gerbe.

The stack [X/H] is a G-gerbe and it is trivial if and only if there is a H-equivariant

map P → X where P is principal homogeneous space under H over F . In particular,

if X admits a rational point, then so does [X/H]. The question whether the converse

is true is generally delicate and ties to the second point of our outline. Clearly, it

would be enough to prove that a torsor lying over X admits a rational point. So,

if H1(F,H) is trivial, i.e. if every H-torsor admits a point, then the converse holds.

This seemingly trivial case was actually successfully used by Borovoi in the number

field case as this assumption could be made after several reductions ([Bor92b]).

One class of groups for which this is true are special groups. Recall that that H

is special (i.e. H1(K,H) = {e} for all field extensions K/F ). Examples for special

groups are given by GLn and SLn, as seen in Section 3.5.2. This leads us to our first

theorem on homogeneous spaces.

Theorem 9.0.2. Let H be special and let X be a homogeneous space under H. Let

G ⊂ H be a linear algebraic group over F such that G|F sep is isomorphic to the

stabilizer of a geometric point of X. If char(k) = 0, the local-global principle for X
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holds if and only if bitorsor factorization holds for G.

If char(k) = p > 0, assume that

• p - |Z(G)| <∞,

• G-bitorsor factorization holds over FZ for every cover Z → F .

Then, the local-global principle holds for X over F .

Proof. Since H is special, we have X(F ) 6= ∅ iff [X/H](F ) 6= ∅ as well as X(Fi) 6= ∅

iff [X/H](Fi) 6= ∅ by the discussion above. Hence, the local-global principle for X

holds iff it holds for [X/H]. The result follows from Theorem 7.4.3 and Theorem

8.3.4.

We can prove a similar result when G is special.

Theorem 9.0.3. Let H be linear algebraic group and let X be a homogeneous space

under H. Let G ⊂ H be a special linear algebraic group over F such that G|F sep is

isomorphic to the stabilizer of a geometric point of X. If char(k) = 0, the local-global

principle for X holds if bitorsor factorization holds for G and factorization holds for

H. If char(k) = p > 0, assume that

• p - |Z(G)| <∞,

• G-bitorsor factorization holds over FZ for every cover Z → F ,

• H satisfies factorization.

Then, the local-global principle holds for X over F .

Proof. If X(Fi) 6= ∅ for all i ∈ Iv, then [X/H](Fi) 6= ∅. By the local-global principle

for gerbes (Theorem 8.4.1) and the assumptions, we can conclude that [X/H](F ) 6= ∅.

Hence, there is an H-equivariant map P → X, where P is a H-torsor over F .
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The restriction of P → X to Fi induces an element α ∈ [X/H](Fi). As X(Fi) 6= ∅,

there is also β ∈ [X/H](Fi) corresponding to a morphism H|Fi → X|Fi . As [X/H]

is a G-gerbe, Isom(α, β) is a G|Fi-torsors over Fi. As G is special, the torsor must

admit a Fi-rational point. In particular, P |i ' H|Fi and thus P is locally trivial (over

F). As H satisfies factorization, local-global principle for H-torsors holds over F by

Theorem 5.3.5. Thus, P and hence X admit an F -rational point.

Combining this with the results on gerbe factorization, we obtain the following

result.

Corollary 9.0.4. Let H be a linear algebraic group let X be a homogeneous space

under H. Let G ⊂ H be a linear algebraic group over F such that G|F sep is isomorphic

to the stabilizer of a geometric point of X. Assume that either

• H is special or

• G is special and H satisfies factorization.

Then,

• If char(k) = 0, assume that one of the following holds:

– Γ is a tree and G is a finite constant group scheme with trivial center,

– G is connected, rational, semisimple, adjoint of type A1, Bn, Cn, E7, E8, F4

or G4,

– G is semisimple such that G/Z admits no outer automorphism and Z,G/Z

satisfy bitorsor factorization,

– Γ is a tree and G = SL1(D) where D is a central simple algebra over F ,

• If char(k) = p > 0, assume that Z(G) has finite order not divided by char(k)

and G and Γ are as in the case of char(k) = 0.



131

Then, the local-global principle holds for X over F .

Proof. Follows from Theorem 8.4.1 and Theorem 9.0.2 and Theorem 9.0.3.
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