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Abstract 
 

Functionality of placental 5-hydroxymethylcytosine and associations with birthweight 
 

By Michael Mortillo 
 

Abstract 
 
Genetic and environmental influences during in utero development may contribute to the 
etiology of adverse health outcomes in both early life and adulthood. As the main regulator of 
early development, the placenta acts as an interface in the exchange of maternal physiological 
and environmental cues with the fetus. It also functions to ensure the success of the pregnancy 
and allow for proper fetal growth and development. Together, these roles position the placenta as 
a unique window to understanding molecular mechanisms underlying these potentially 
deleterious genetic and environmental impacts. One mechanism that can regulate placental 
function through control of gene expression is the DNA modification 5-hydroxymethylcytosine 
(5hmC). 5hmC is an epigenetic modification found on the cytosine base of a cytosine-phosphate-
guanine (CpG) dinucleotide. It is formed through oxidation of 5-methylcytosine (5mC), an 
epigenetic mark known to play a complicated role in gene expression control. Though evidence 
has suggested 5hmC to be a transient intermediate on the demethylation pathway, it may also 
play a functional role similar to that of 5mC. In this study, placentae from the Rhode Island 
Child Health Study (RICHS) were selected for CpG 5hmC and 5mC profiling, as well as total 
mRNA sequencing. The RICHS cohort also collected anthropomorphic and medical data from 
mother-infant pairs, including data related to newborn birthweight, an early life predictor of 
long-term health. Here, we characterize associations between placental 5hmC and gene 
expression, as well as associations between 5hmC, 5mC, and birthweight. We show that 
although 5hmC proportions are generally low across placenta, it is positively associated with 
expression of specific genes based on genomic context. We also identify few relationships 
between 5hmC and birthweight, but show that the characterization of 5mC is not overtly biased 
by 5hmC content. The characterization of placental 5hmC and its associations with expression 
suggests a role for this mark in the placenta, with as of yet unknown phenotypic consequence. 
Future work should consider potentially other roles for 5hmC and explore how environmental 
and physiologic factors impact this functional mark. 
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Chapter 1 – Introduction 
 
Birthweight outcomes are an early life predictor of chronic disease risk 
through the developmental origins of health and disease 
Birthweight has been identified as a risk indicator not only for infant mortality, but also as a risk 

factor for developing chronic diseases in adulthood, including high blood pressure, 

cardiovascular disease, and type 2 diabetes[1-3]. Throughout gestation, humans experience a 

large amount of developmental plasticity, though this plasticity quickly diminishes following 

birth[4]. Despite this reduction in plasticity, in utero changes in the physiology and metabolism 

of the offspring can produce lifelong health outcomes[4] (Figure 1-1). Fetal growth trajectories 

are established early in development and are highly susceptible to in utero conditions, and thus 

alterations in the fetal environment can lead to a perturbed fetal growth trajectory[5]. While 

birthweight itself does not directly contribute to the etiology of these chronic diseases in 

adulthood, it may serve as a marker of underlying mechanisms that are developmentally 

programming lifelong health outcomes[6, 7]. This relationship was originally highlighted in 

observational studies of economically disadvantaged areas of England and Wales, where it was 

shown that these regions experienced significantly higher rates of mortality due to cardiovascular 

disease compared to wealthier regions[8]. This seemed counterintuitive, as prevalence of 

cardiovascular disease was expected to be higher in wealthier regions where fatty foods are more 

abundant and accessible. Further investigation revealed that people of lower birth weight had a 

higher risk of adult cardiovascular disease[9]. Specifically, in countries like England, Wales, and 

Finland, lower birth weight was associated with increased risk of coronary heart disease later in 

life[10-13]. This work resulted in the postulation of the Developmental Origins of Health and 
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Disease hypothesis (DOHaD), which states that environmental exposures throughout the 

perinatal period can impact diseases later in life[14, 15].  

The placenta is an important mediator of the maternal-fetal environment and 
can be used to assess the DOHaD hypothesis 
 The placenta is a highly specialized organ that supports the growth and development of a 

fetus throughout pregnancy[16-18]. It begins formation following the invasion of the 

trophectoderm into the extracellular matrix of the uterine wall, and is critical for implantation 

[16, 19]. The main function of the placenta is to act as an interface between the maternal and 

fetal systems, and to perform this, it contains two separate circulatory systems: 1) the maternal-

placenta system, and 2) the fetal-placenta system[20-22]. Through its complex, microvilli-based 

system[23, 24], the placenta maintains intrauterine homeostasis by carrying out critical functions 

including exchange of nutrients, gas, and waste[25-28], along with immunomodulation[29, 30] 

and endocrine signaling[31, 32] (Figure 1-2). Due to its position as an ephemeral fetal organ that 

acts as an interface in the exchange of maternal physiological and environmental cues with the 

developing fetus, the placenta is uniquely positioned to assess the mechanisms that may be 

involved in the DOHaD hypothesis[33]. 

Placental function is regulated by the collective responses of maternal decidual cells, 

trophoblastic cells, and fetal endothelial cells[25, 34]. Therefore, disruption of the maternal 

environment via stress and other stimuli can have adverse effects on placental structure and 

function, including integrity of the transplacental barrier, nutrient and oxygen exchange, and 

placental endocrine action[25, 35, 36]. Studies have shown that these effects act in a largely 

time-specific framework; perturbations occurring in early pregnancy are more likely to produce 

prolonged effects on placental function related to trophoblast differentiation and vascular 

remodeling[37]. These placental function deficiencies are associated with adverse gestational 
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outcomes, such as fetal growth restriction, which serves as a significant risk indicator for the 

development of chronic diseases throughout life[38]. However, clinical placental pathologies are 

fairly uncommon in the general population, and thus they do not entirely account for the 

prevalence of adverse gestational outcomes. However, it is widely believed that the subtle 

alterations in placental function induced via a response to changing gestational conditions may in 

part be responsible for the developmental programming of long-term health outcomes in the 

offspring[39]. 

While this relationship between gestational conditions, placental function, and 

longitudinal health outcomes in offspring is well characterized, the molecular mechanisms 

involved in this programming remain poorly understood[40, 41]. It has been theorized that 

mechanisms in the placental epigenome may be altered in response to gestational conditions[42], 

leading to placental dysregulation and subsequent health outcomes, and investigating these 

epigenetic mechanisms may provide novel insight into the etiology of these outcomes. 

Placental methylation is a potential biomarker for fetal birthweight 
DNA methylation is the most common type of epigenetic modification, with the most 

common type of DNA methylation being 5-methylcytostine (5mC), which occurs at 

unmethylated cytosines along the sugar-phosphate backbone of the DNA. Though it serves a 

variety of functions, the main function of methylation is to regulate gene expression. Typically, 

methylation in a gene promoter leads to a decrease in transcription of the gene, mainly by 

recruiting proteins involved in gene silencing or by inhibiting transcription factors from binding 

to the DNA and initiating transcription[43, 44]. Methylation marks are established by the 

addition of a methyl group to the 5th carbon position of the cytosine via DNA methyltransferases 

(DNMTs)[45-48]. As a functional epigenetic modification, 5mC plays a critical role in genomic 
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imprinting[49, 50], X-chromosome inactivation[51, 52], and tissue-specific gene expression[53, 

54].  

DNA methylation may represent the regulatory links between genetic and environmental 

influences on birthweight[55, 56]. Thus, identifying birthweight-associated methylation loci can 

provide clues to detect molecular biomarkers of aberrant fetal growth[56] (Figure 1-3). DNA 

methylation in placenta has been shown to regulate expression and may be one mechanism by 

which environmental exposures and genetic variation are influencing fetal growth; a recent study 

assessing the relationship between methylation-regulated expression of imprinted genes and fetal 

growth showed that enrichment of methyl marks in the imprinted CDKN1C gene was positively 

associated with birthweight[57]. Furthermore, evidence has shown that aberrant imprinting leads 

to abnormalities in placental and fetal growth in animal models[58-61]. Additionally, altered 

placental expression of imprinted genes is associated with fetal growth restriction in humans[62, 

63]. Another proposed link between infant growth restriction and epigenetic alterations is the 

association between methylation and regulation of genes involved in trophoblast migration and 

invasion[64], as well as the reception of the endometrium to implantation[65]. 

Placental methylation in other areas outside of candidate gene regions has also been 

shown to be significantly associated with birthweight; epigenome-wide association studies 

(EWAS) have identified CpG sites that are significantly associated with birthweight[56, 66, 67], 

as well as an association with methylation in long interspersed nuclear elements (LINE)-1[68, 

69] and global methylation (defined as the total level of 5mC content relative to total cytosine 

content)[70].  

Previous studies that aim to understand the association between placental methylation 

and fetal growth have been limited, mainly due to the fact that the methylation signal may be 



 

   
   

                                                                                                                                                     5  

 

contaminated by hydroxymethylation (which may or may not be present and have a functional 

impact), and thus these results may be confounded. It is vital that not only do future studies 

assess the relationship between placental 5hmC and birthweight, but explore the relationship 

between 5mC, 5hmC, and birthweight. The latter focus will hopefully allow researchers to 

understand which modification at a given CpG is acting more robustly on birthweight.  

5hmC is formed through oxidation of 5mC and is a stable epigenetic 
modification that regulates expression. 

5hmC is a DNA modification formed through oxidation of 5mC by ten-eleven 

translocation (TET) methylcytosine dioxygenases[71-73]. It is understood that 5hmC plays an 

intermediary role in the demethylation pathway, as it is subsequently converted to various other 

intermediaries before returning to an unmethylated cytosine[74-76] (Figure 1-4). Though its role 

on the demethylation pathway is well-characterized, recent evidence has suggested that 5hmC is 

also a stable epigenetic modification[77, 78] that may play a variety of roles related to the 

maintenance of pluripotency in embryonic stem cells (ESCs) and tumorigenesis[79-81].  

5hmC has been found to be associated with expression, as it is generally found in the bodies of 

actively transcribed genes, and TET1 has been observed at the transcription start site (TSS) of 

genes with CpG-rich promoters that are decorated with the bivalent histone signature of 

H3K27me3 and H3K4me3[82-86]. Thus, it is assumed the 5hmC may regulate gene expression 

through modulating the chromatin accessibility of transcriptional machinery, or by inhibiting the 

binding of repressors to DNA[82]. Despite these findings, the relationship between 5hmC 

abundance and gene expression is still evolving; it may be acting in a cell type-dependent 

regulatory network instead of a simple activation or repression of expression[82], as 

differentially hydroxymethylated regions (DHMRs) have been uncovered in mouse ESCs and 

neural progenitor cells (NPCs)[87]. Recent evidence also suggests that tissue type is likely a 
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major modifier for 5hmC content in human genes, as it has been observed that there may be a > 

20-fold change in gene body 5hmC between the same gene in different tissues[88].  

Currently, our knowledge of the epigenetic mechanisms regulating placental dynamics is 

limited, though recent studies have begun to reveal how epigenetic marks are involved in the 

regulation of placental development processes such as cell fate determination[89], 

syncytialization[90], and extravillous trophoblasts (EVT) migration and invasion[91]. 

Additionally, epigenetic regulation of the placenta may be playing a pivotal role in the mediation 

of developmental programming of chronic diseases. Recent studies employing genome-wide 

DNA methylation arrays have demonstrated that sexually dimorphic patterns in placental DNA 

methylation profiles may regulate responses to environmental stimuli and disease 

susceptibility[92, 93]. Specifically, epigenetic processes in the placenta have been shown to 

mediate relations between prenatal factors and neurodevelopmental outcomes, with these factors 

including low infant birthweight[94], maternal depression during pregnancy[95], and maternal 

obesity and exposure to toxicants[96, 97].  

 Though some studies have characterized the distribution of placental 5hmC and its role in 

gene expression[78], few have been able to draw an empirical correlation between 5hmC and 

transcript levels. Additionally, few studies have attempted to elucidate an association between 

placental 5hmC and fetal growth. Understanding the epigenetic landscape of 5hmC in the 

placenta and its association with fetal growth is critical to furthering our understanding of the 

functionality of the placental epigenome, as well as elucidating these underlying mechanisms 

that may be programming long-term health outcomes. 

Dissertation Overview 
The placenta is a critical organ in ensuring successful gestational outcomes, and 

perturbations to its physiology and function during gestation can lead to restricted fetal growth, 
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which is a risk indicator for longitudinal health outcomes in infants. It is hypothesized that 

epigenetic mechanisms are the underlying cause of this developmental programming, as 

placental methylation has been shown to regulate gene expression, which in turn may influence 

fetal birth outcomes. However, these studies have assessed methylation using bisulfite-converted 

methylation arrays, which do not discriminate 5mC from 5hmC. Additionally, few studies have 

drawn an empirical correlation between placental 5hmC and expression, as well as investigating 

the association between 5hmC and birthweight outcomes. This dissertation investigates the 

epigenetic landscape of placental 5hmC and its association with gene expression and birthweight 

outcomes utilizing epidemiological and molecular data gathered from a large mother-infant 

cohort from the northeastern United States (Figure 1-5). The primary aims of this work are: 

Aim 1: Characterize the distribution of 5hmC across the placenta and identify areas of 

5hmC that may play a direct role in gene expression, using placenta data collected from the 

Rhode Island Child Health Study (RICHS). Hypothesis: Placental 5hmC is associated with gene 

expression in the RICHS cohort.  

Aim 2: Investigate the association between placental hydroxymethylation and 

methylation with birthweight outcomes in RICHS. Hypothesis: Placental 5hmC and 5mC are 

associated with birthweight in RICHS.  

These aims are addressed in the following dissertation chapters. Chapter 2 acts as a set-up 

to Aim 1 by investigating the influence of early-life environmental exposures on placental 

methylation. The goal of this study was to review recent literature that demonstrated an 

association between early-life environmental exposures and DNA methylation in the placenta, in 

the hopes of understanding how placental methylation is regulated. Chapter 3 addresses Aim 1 

by investigating the epigenetic landscape of 5hmC and how it associates with placental gene 
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expression. The goal of this study was to develop a better understanding of the distribution and 

functional relevance of 5hmC in the placenta. Chapter 4 addresses Aim 2 by investigating the 

association between placental hydroxymethylation and methylation on birthweight. The goal of 

this study was to develop an understanding of how placental 5hmC relates to 5mC in regards to 

infant birthweight. Lastly, Chapter 5 provides a summation of the research conclusion and 

discusses future directions.  
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Figure 1-1: Developmental programming of chronic disease. Throughout 
gestation, plasticity levels are high. This plasticity diminishes following birth, though in 
utero exposures can increase risk of chronic diseases. Thus, developmental plasticity and 
chronic disease risk are inversely proportional throughout an individual’s lifespan. Genetic 
influences of developmental programming remain constant throughout lifespan, while 
environmental influences fluctuate. Created with www.BioRender.com  

http://www.biorender.com/
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Figure 1-2: Overview of the critical functions of the placenta. The placenta 
is responsible for a myriad of processes designed to support and sustain gestational growth 
and development, including 1) exchange of nutrients, gas, and waste between the mother 
and fetus, 2) immunomodulation, which protects the fetus from harmful pathogens, and 3) 
endocrine signaling, where it makes a number of hormones to support the developing 
fetus. Created with www.BioRender.com  

http://www.biorender.com/
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Figure 1-3: Association between DNA methylation and infant 
birthweight. Methylation is assayed across infants with varying birthweight levels, and 
an epigenome-wide association study (EWAS) is performed to elucidate an association. 
EWAS results are then queried to identify CpG sites where methylation is associated with 
birthweight. Created with www.BioRender.com 

http://www.biorender.com/
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Figure 1-4: Overview of the active demethylation pathway. The pathway 
begins with 5-methylcytosine (5mC), which has been created through the addition of a 
methyl group to the 5th carbon position on an unmethylated cytosine via DNA 
methyltransferases (DNMTs), being oxidized to 5-hydroxymethylcytosine (5hmC) via Ten-
Eleven-Translocation (TET) proteins. These TET proteins generate additional 
intermediates in 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC). 5fC and 5caC can 
be further excised by thymine-DNA glycosylase (TDG) to restore the unmethylated 
cytosine. Created with www.BioRender.com  

http://www.biorender.com/
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Figure 1-5: Dissertation Overview. Using placental samples collected from the 
RICHS cohort, we have performed CpG 5mC and 5hmC profiling, along with RNA-
sequencing. In Aim 1, we plan to characterize the distribution of 5hmC across the 
placenta, and then investigate the association between 5hmC and expression. In Aim 2, 
we plan to investigate the association between 5mC and 5hmC to birthweight. Created 
with www.BioRender.com  

http://www.biorender.com/
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Abstract 
 
Purpose of review 
To summarize recent literature relating early-life environmental exposures on DNA methylation 
in the placenta, to identify how variation in placental methylation is regulated in an exposure-
specific manner and to encourage additional work in this area. 
 
Recent findings 
Multiple studies have evaluated associations between prenatal environmental exposures and 
placental methylation in both gene-specific and epigenome-wide frameworks. Specific exposures 
lead to unique variability in methylation, and cross-exposure assessments have uncovered certain 
genes that demonstrate consistency in differential placental methylation. Exposure studies that 
assess methylation effects in a trimester-specific approach tend to find larger effects during 1st 
trimester exposure. Earlier studies have more targeted gene-specific approaches to methylation, 
while later studies have shifted towards epigenome-wide, array-based approaches. Studies 
focusing on exposures such as air pollution, maternal smoking, environmental contaminants, and 
trace metals appear to be more abundant, while studies of socioeconomic adversity and circadian 
disruption are scarce but demonstrate remarkable effects.  
 
Summary 
Understanding the impacts of early-life environmental exposures on placental methylation is 
critical to establishing the link between the maternal environment, epigenetic variation, and long-
term health. Future studies into this field should incorporate repeated measures of exposure 
throughout pregnancy, in order to determine the critical windows in which placental methylation 
is most heavily affected. Additionally, the use of methylation-based scores and sequencing 
technology could provide important insights into epigenetic gestational age and uncovering more 
genomic regions where methylation is affected. Studies examining the impact of other exposures 
on methylation, including pesticides, alcohol, and other chemicals are also warranted. 
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Introduction 
DNA methylation is the best-characterized and most stable epigenetic modification, 

influencing gene expression through the disruption of transcription factor binding, chromatin 

structure, and subsequent gene silencing [1-3]. DNA methylation typically involves methylation 

of the 5th carbon position at a cytosine residue within a CpG dinucleotide (CpG), resulting in 5-

methylcytosine (5mC). There are ~28 million CpGs in the genome, most of which are 

methylated [4]. However, CpGs located in “CpG islands” (regions of high CpG density and 

commonly found in gene promoters) tend to be unmethylated, as methylation in these regions 

generally represses transcription of the gene [5]. DNA methylation is primarily measured in this 

locus/gene-specific way, though other forms of measuring methylation do exist. One such 

example is building a methylation profile across several unique sites in the genome, through a 

genome-wide analysis [6]. Global methylation is another form of methylation profiling, and is 

defined as the total level of 5mC content in a sample relative to total cytosine content [6]. 

Though these types of methylation are generally studied in nuclear DNA, other types of DNA 

have proven to be useful tools for understanding methylation. Altered methylation of 

mitochondrial DNA (mtDNA) which is located outside the nucleus and plays an important role 

in cell life and death [7], has been implicated in a number of human diseases including cancer 

[8], and cardiovascular disease (CVD) [9]. 

DNA methylation can be influenced by both genetic and environmental factors, and 

recent studies have provided concrete evidence of a link between methylation and certain 

environmental exposures, including tobacco smoke [10-12], air pollution [13-15], toxic metals 

[16-18], and chemical compounds [19-21]. Exposure to these contaminants, particularly early in 

life, is associated with an increased later-life disease risk [22-24] (Fig. 2-1). Much of this 

literature linking the maternal environment, epigenetic variation, and developmental 
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programming has focused on DNA methylation in cord blood, due to its availability in birth 

cohort studies and its utility as a surrogate marker of target offspring tissue or as a target itself of 

environmental impacts on the developing immune system [25, 26].  

The placenta, though, may also be a highly relevant target tissue for the environment 

during in utero development. This ephemeral organ acts as a regulator of the intrauterine 

environment and physiologic interface between the mother and developing fetus. It is the first 

organ to develop and plays an important role throughout pregnancy, coordinating nutrient, gas, 

and waste exchange, as well as acting as an immunologic and endocrine organ [27-29]. An 

overview of placental structure and its role in function is described in Figure 2-2. Placental 

development is essential for proper fetal development, and can be influenced by the maternal 

environment [30, 31]. Exogenous exposures including environmental contaminants, 

pharmaceuticals, and psychosocial factors, as well as endogenous characteristics including 

maternal metabolic state contribute to that maternal environment and subsequently influence 

fetal development and potentially lifelong offspring health [32-34] through interactions with or 

effects on the placenta [35, 36]. Those environmental impacts to the placenta can be reflected in 

its molecular landscape, including changes to gene and protein expression and the upstream 

mechanisms which control these cellular products, in particularly DNA methylation, which 

exhibits a unique profile in the placental genome [37]. 

In this review, we summarize the existing literature relating early-life environmental 

exposures on DNA methylation in the placenta, to identify how variation in placental 

methylation is regulated in an exposure-specific manner and to encourage additional work in this 

area.  
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Methods 
In December 2021, we searched PubMed for literature concerning placental DNA 

methylation and early-life environmental exposures. We utilized general keywords “placenta”, 

“methylation”, “environment”, “exposures”, as well as specific exposure keywords “smoking”, 

“pollution”, “metals”, “chemicals”, “circadian”, and “socioeconomic.” From our queries, we 

included studies published in English within the last 5 years that represented new research on 

placental methylation in relation to in-utero environmental exposures and were either open 

access or accessible through a typical University library. We excluded studies that were 

systematic review articles, non-human studies, and studies where environmental exposures’ 

impacts were assessed in-vitro. If multiple papers assessed the same environmental exposure and 

methylation type in nested, overlapping sample sources, only the paper with the largest sample 

size was retained. Papers that met inclusion criteria but were later found to have a scope not 

matching inclusion criteria were also excluded. See Figure 2-3 for flow chart of literature search 

strategy. For papers meeting inclusion criteria, relevant data, including paper title, authors, year 

and place of publication, cohort size and source, exposure and specific type of DNA methylation 

assessed, research question, methods, and key findings, was extracted and maintained in a local 

database.  

Results 
A total of 108 studies were initially retrieved for screening and assessed for possible 

inclusion. After exclusion of non-pertinent articles, 28 studies met final inclusion criteria for 

assessing placental DNA methylation in relation to an environmental exposure; 9 (32.1%) 

studied air pollution, 8 (28.6%) studied maternal smoking, 4 (14.3%) studied environmental 

chemicals, 4 (14.3%) studied trace metals, 2 (7.1%) studied socioeconomic status (SES), and 1 
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(3.6%) studied circadian disruption (Fig. 2-3). Results from all studies are summarized in Table 

2-1. 

Air pollution 
From our review, exposure to air pollution was the most highly-studied environmental 

exposure in relation to placental DNA methylation. One study assessed global placental DNA 

methylation based on PM2.5 exposure during different during different time windows of 

pregnancy [38], observing an overall decrease in methylation as exposure to PM2.5 increased 

during whole pregnancy, particularly with exposure during the 1st trimester and specifically the 

early first trimester when implantation occurs. A separate study assessed methylation of 7 CpGs 

in the promoter of leptin, a hormone that plays a functional role in embryo implantation, 

intrauterine development, and fetal growth during pregnancy [39]. The authors observed 

decreased methylation across all 7 sites among mothers with increased PM2.5 exposure in the 2nd 

trimester [40].  

A 2018 study assessed placental methylation among genes within the circadian clock 

pathway in response to PM2.5 exposure [41]. The authors observed that increased PM2.5 exposure 

during 3rd trimester led to increased DNA methylation in the promoters of NPAS2, CRY1, 

PER2, and PER3, while an inverse association was seen between 1st trimester exposure and 

CLOCK methylation. Another study examined exposure to PM2.5, black carbon, and NO2 on 

promoter methylation of tumor suppressor and DNA repair genes, including genes on the 

nucleotide excision repair (NER) and base excision repair (BER) pathways [42]. Increased PM2.5 

exposure throughout pregnancy was found to be positively associated with promoter methylation 

of repair genes APEX1, OGG1, and ERCC4, as well as tumor-suppressor gene p53. Increased 

black carbon exposure was also positively associated with methylation in APEX and ERCC4. 

Interestingly, pollution exposure during the 1st and 2nd trimesters of pregnancy mainly affected 
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methylation of tumor suppressor genes, whereas later pregnancy exposure affected genes of the 

BER pathway. These gene and trimester-specific trends were observed in additional studies, 

including one that studied PM2.5 exposure on promoter methylation among 5 candidate placental 

genes and its role as a mediator of the exposure’s impact on fetal growth [43]. The authors noted 

that in the case of IGF2, a growth hormone that plays a crucial role in fetal development [44], 

increased PM2.5 exposure during 2nd or 3rd trimester and entire pregnancy was associated with 

decreases in promoter methylation, while increases in exposure across the same windows 

resulted in increased promoter methylation of BID, an apoptosis regulator that has been shown to 

be susceptible to oxidative stress and immune response induced by environmental risk factors 

[45, 46]. A mediation analysis also showed that PM2.5 exposure might influence fetal growth 

through BID methylation.  

Several studies used qualitative measures of air pollution exposure, grouping their 

participants based on exposure levels. This included a 2018 study done in Tehran, Iran, assessing 

impact of PM2.5 and PM10 exposure on global placental DNA methylation [14]. Positive 

correlations were observed between PM2.5/PM10 exposure in 1st trimester and methylation of all 

participants in “polluted” and “non polluted” groups. Stronger correlations were also seen in the 

“polluted” group compared to “non-polluted” group. Another study assessed prenatal PM2.5 

exposure on placental methylation and how these changes modulate vitamin D deficiency and 

atopic dermatitis in offspring [47]. They observed significant hypomethylation in the promoter of 

the AHRR gene, as well as decreased expression of AHRR targets (AHR), in mothers with high 

PM2.5 exposure, low cord blood vitamin D, and offspring atopic dermatitis compared to other 

groups. AHR is a transcription factor that responds to chemicals regulating expression of genes 

with toxic or protective effects [48]. Placental hypomethylation of AHRR could suppress 
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expression of AHR, thereby decreasing AHR signaling and disrupting immune response, which 

could increase risk of atopic dermatitis in offspring.   

Several studies also investigated genomic regions that exhibit differential methylation 

patterns in response to varying levels of pollution exposure. One study assessed NO2 and PM10 

exposure on global methylation in Alu and LINE-1 repetitive elements, as well as in specific 

CpG-sites [49]. The authors identified 27 differentially methylated regions (DMRs) associated 

with air pollutants, including 4 located in CD81, DAXX, NOTCH3, and P2RX4 genes, all of 

which have been implicated in preeclampsia phenotypes [50-53]. A similar trend was recently 

reported in a study looking at NO2 and O3 exposure impact on methylation across genomic 

locations, including CpG islands, shores, shelves, and open seas [54]. The authors noted 

location-specific variability in methylation, but more importantly they identified 5 

hypomethylated DMRs in placenta mapped to genes ZNF442, PTPRH, SLC25A44, F11R, and 

STK38. Several of these genes are involved in immune and inflammatory processes, and these 

processes have been implicated as biological targets of air pollutant exposure [55, 56].  

Studies of air pollution are often unique in that they can consider various time windows 

of exposure in pregnancy, something that is generally not seen in studies requiring biomarkers of 

exposure, due to the burden and cost of sampling multiple times throughout pregnancy [57]. 

Several genes exhibiting variable methylation in response to air pollution exposure have been 

previously implicated in environmental exposure-induced changes to immune response and 

oxidative stress [43, 47], making them good candidates for future studies on how changes in their 

methylation levels may impact these processes. Finally, a few studies assessed global 

methylation in the form of LINE-1 and Alu non-coding, repetitive elements, but such studies of 
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global patterns of methylation are becoming more rare, replaced with studies of gene-specific 

and genome-wide methylation, made possible with array-based technologies and sequencing.  

Maternal smoking 
There is also an abundance of studies focusing on maternal smoking either prior to or 

during pregnancy, and placental methylation. In one study [58], investigators aimed to assess the 

effect of prenatal exposure to smoking on methylation of mtDNA and in the promoter of the 

CYP1A1 gene, which is involved in detoxification and may be activated by constituents of 

tobacco smoke [59]. The authors noted that direction of effect varies based on the type of DNA 

(genomic vs. mtDNA); current smokers had neonates with lower CpG-specific methylation at 

CYP1A1 compared to non-smokers, but higher mtDNA methylation at specific loci (specifically 

the MT-RNR1 gene). Another study that also assessed CYP1A1 promoter methylation found no 

association with prenatal smoking exposure, though it is worth nothing that this study only 

sampled placenta from pre-term births [60]. This may denote that early-pregnancy smoking is 

not sufficient to elicit CYP1A1 methylation changes. Likewise, a recent study [61] that also 

assessed placental mtDNA methylation found significantly higher D-loop methylation in 

smokers compared to non-smokers, but no difference in methylation of LDLR2 between groups. 

The D-loop and LDLR2 both lie on the displacement loop of mtDNA, with D-loop on the heavy 

chain and LDLR2 on the light chain [62, 63]. These findings suggest that prenatal exposure to 

smoking may have a differential impact on the displacement loop of placental mtDNA.  

Recently, a large epigenome-wide association study (EWAS) aimed to understand if 

placental methylation would mediate the established association of prenatal smoking and lower 

infant birthweight [64]. Authors found 153 DMRs between smokers and non-smokers, with 

increases and decreases based on exposure. Interestingly, methylation of 7 CpGs had a mediating 

effect of lower birthweight in smokers. A separate study looking at impacts of Vitamin C 
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supplementation on smoking-associated changes in placental methylation found differential 

methylation between those groups and suggested Vitamin C could be a potential intervention 

[65].  

One study investigated maternal smoking effects on tissue-specific impacts in the 

placenta [66]. Authors observed significant decreases in methylation on the fetal side of the 

placenta among those who smoked throughout pregnancy, and, to a lesser extent, quit during 

pregnancy compared to non-smokers. Methylation levels on maternal sides of the placenta 

displayed less significant changes between groups, suggesting that smoking-induced alterations 

reflect smoking through pregnancy rather than long-term smoking history, under the assumption 

that maternal tissue would already have the smoking associated differences.   along the lines of 

understanding the “biological memory” of smoking on methylation [67], a recent EWAS found 

that ~ 75% of DMRs showed “reversible” alterations of DNA methylation present in placentas of 

current smokers, and 26 of these DMRs were also present in placentas of former smokers (which 

were not exposed directly to cigarette smoke), suggesting an “epigenetic memory” of placentas 

exposed to smoking prior to pregnancy. These DMRs also contained “enhancer-like” epigenetic 

marks enriched for H3K4me1 and H3K27ac, suggesting these placenta enhancer regions are 

particularly sensitive to tobacco smoke [68]. 

A recent EWAS performed by the Pregnancy and Childhood Epigenetics (PACE) 

consortium [69] represents the largest study of smoking and placental methylation, and serves as 

a complement to their prior work linking smoking and cord blood methylation [11]. This analysis 

identified over 400 differentially methylated CpG sites, with very few overlapping with those 

identified in cord blood, and many exhibiting effect estimates substantially larger than those 

observed in blood. Additionally, many of these CpGs were associated with smoking-related birth 
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outcomes, including preterm birth and small birthweight, lending support to the critical role that 

the placenta plays in mediating the impact of adverse environmental exposures on newborn 

health.  

Environmental chemicals 
Environmental chemicals including persistent organic pollutants (POPs), bisphenol A 

(BPA), and polybrominated diphenyl ethers (PBDEs), also emerged as widely-studied prenatal 

exposure related to placental DNA methylation. Effects on placental methylation varied in both 

methylation-specific and chemical-specific contexts. A recent study conducted in the Shanghai-

Minhang Birth Cohort Study (S-MBCS) assessed prenatal BPA exposure on CpG-specific 

methylation in the placenta [70]. Authors noted a trend towards hypermethylation of CpGs in the 

high BPA-exposed group. This result aligns with a previous study in mouse placentas that 

showed increased BPA exposure led to increased DNA methylation (and subsequently reduced 

expression) of WNT-2, a gene involved in cell proliferation and differentiation during 

embryogenesis [71, 72]. A similar association was seen in an EWAS evaluating prenatal 

exposure to 9 synthetic phenols on methylation [73]. Researchers identified 596 phenol-

associated CpG sites, with > 90% of sites showing a positive association between urinary phenol 

concentration and methylation. A similar association was seen in 97% of DMRs (n = 180), with 

many of these DMRs related to exposure to triclosan, which has been shown in mice to have 

adverse effects on placental development and nutrient transport [74, 75]. Triclosan-associated 

DMRs were also shown to overlap with imprinted genes, suggesting triclosan could impact these 

important drivers of fetal development.  

Examining imprinted placental genes was further investigated in a couple of studies. The 

first [76] was a 2018 study looking at exposure to POPs on IGF2 and H19, expressed from the 

paternal and maternal allele, respectively, on chromosome 11. IGF2 lies upstream of H19, and 
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when it is down-regulated, expression of H19 increases. Decreased IGF2 levels have been shown 

to impair fetal growth [77]. Researchers observed significant hypermethylation of CpGs in IGF2 

and hypomethylation in H19 in response to higher serum POP concentrations. Increased 

methylation in IGF2 may lead to decreased expression, and since IGF2 is known to be a major 

regulator of placental and fetal growth [78], this could severely impair fetal growth. The second 

study assessed methylation of IGF2 and HSD11B2, a non-imprinted gene, in response to in-utero 

exposures to PBDEs among a cohort of children with fetal growth restriction (FGR) [79]. In 

contrast to the 2018 study, authors observed hypomethylation at IGF2-associated CpGs in 

response to increased cord blood concentrations of BDE-17-190, a PBDE congener. However, 

they noted a positive association between that congener and methylation of HSD11B2. 

HSD11B2 converts maternal cortisol to cortisone [80], and hypermethylation of its promoter has 

been shown to reduce placental expression [81], leading to increased cortisol being able to enter 

fetal circulation. High levels can affect fetal growth [82], which may explain the prevalence of 

FGR in these infants.  

Overall, the reviewed chemical-methylation association studies showed variability in 

methylation in a chemical-and-gene specific framework. Specifically, BPA and phenol exposures 

appeared to show a more positive association with placental methylation, while POP and PBDE 

exposures tend to show more variability, with opposite effect directions based on specific genes. 

One trend to note was that we did not find any recent placental methylation studies looking at 

exposure to specific pesticides, although there are a number of such studies greater than five 

years ago.  

Trace metals 
Our group has been at the forefront of understanding the effects of prenatal trace metal 

exposures on placental methylation with a number of studies conducted by our group within the 
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Rhode Island Child Health Study (RICHS) or New Hampshire Birth Cohort Study (NHBCS) 

which have extensive data on placental DNA methylation. One study [83] looked at 

concentrations of various neurotoxic metals and their impact on methylation of NR3C1, a 

glucocorticoid receptor that has been linked to neurobehavioral outcomes at birth [84, 85], and is 

involved in the development of a child’s hypothalamic-pituitary-adrenal (HPA) axis [86]. We 

found that higher levels of Arsenic (As), Cadmium (Cd), Lead (Pb), Manganese (Mn), and 

Mercury (Hg), and lower levels of Zinc (Zn) were associated with increased methylation of 

NR3C1. We noted that this metal-induced hypermethylation may reduce expression of NR3C1, 

thereby affect the child’s developing HPA axis, which may increase cognitive and 

neurodevelopmental risk later in life.  

Cadmium (Cd) is a unique metal to examine in the placenta, given that it can be 

sequestered in the placenta and not pass into fetal circulation, and so may elicit its toxicity within 

the placenta itself [87]. In a study of Cd-associated placental methylation [88], we found that 

increased Cd concentrations in the placenta was associated with differential methylation at 17 

CpGs. Additionally, these Cd-associated CpGs may play a functional role in birth outcomes as 

methylation at specific CpGs was associated with increased expression of genes such as 

TNFAIP2 and ACOT7. Higher expression of these genes is associated with lower birthweight in 

our cohorts. In another study [89], we identified that increasing placental selenium was 

associated with increased methylation of a CpG in the GFI1 gene, and that methylation of that 

gene was associated with greater muscle tone in the infants. In an EWAS [90] on placental 

copper (Cu) and DNA methylation, we identified Cu-associated differentially methylated sites 

and regions, including the antioxidant GSTP1 gene, and the ZNF197 transcription factor, which 

has as transcriptional targets a number of Cu metabolism genes [91]. These studies of metals 



 

   
   

                                                                                                                                                     32  

 

suggest that DNA methylation likely plays a role in the impacts of these metals on various fetal 

and newborn health outcomes and may be involved in the regulation of those metals in the 

placenta.  

Socioeconomic adversity 
It is also important to consider how demographic, social, and structural factors, which 

contribute to exposure to adverse environmental agents, also impact placental DNA methylation 

and may act to modify the effects of the exposures. In one study conducted in the Extremely Low 

Gestational Age Newborns (ELGAN) [92] cohort, an adversity risk score was developed, based 

on four indicators: maternal education, marital status, eligibility for public health insurance, and 

supplemental nutrition assistance. Higher scores indicate greater socioeconomic adversity. 

Investigators identified 33 CpGs with methylation associated with at least one indicator, with 19 

(58%) hypermethylated and 14 (42%) hypomethylated. Additionally, 15 (45%) of these were 

associated with the summative risk score, with placentas from female infants showing more 

robust differential methylation than male placentas. Thus, epigenomic effects may be linked to 

embedding of adversity, potentially effecting long term health outcomes. However, these effects 

may be attributed to this cohort consisting only of pre-term infants, and therefore these findings 

may not be generalizable to placentas of term pregnancies.  

Our group had previously assessed adversity on placental methylation in RICHS [93]. 

Similar to the ELGAN study, we developed a cumulative risk score for adversity. We tested the 

association of this exposure on HSD11B2 methylation, and found that infants whose mothers 

experienced the greatest levels of adversity during pregnancy had the lowest extent of placental 

HSD11B2 methylation, particularly among males. Low maternal education, prenatal tobacco use, 

and higher cumulative risk scores were associated with significant HSD11B2 hypomethylation, 

with a one-unit increase in risk score correlating with a 2.3% decrease in methylation. 
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In general, there is an overall lack of literature on the impact of adversity on placental 

methylation, and additional work in this area may provide important insights on the mechanisms 

underlying the impacts of adversity on health across generations. Thus, additional studies about 

adversity and incorporating measures of adversity with other environmental exposures is 

warranted.  

Circadian Disruption (CD) 
The last environmental exposure we sought literature on was disruptions in circadian 

rhythm (CD). Our team was one of the first (and to date, only few) groups to examine CD on 

placental methylation, which we assessed based on night-shift work in the RICHS cohort [94]. 

We observed differential methylation at 298 CpG sites in night shift workers, with an average 

methylation decrease of 1.7% compared to non-night shift workers. We hypothesized that this 

could be due to increased transcription factor (TF) binding to DNA, leading to chromatin 

changes causing hypomethylation [95]. Additionally, CLOCK, a core component of the circadian 

clock, acts as a histone acetyltransferase [96], and thus CD could be impacting the epigenetic 

activity of CLOCK, affecting chromatin state and accessibility. The 298 probes were also found 

to be associated with traits such as psoriasis, lupus, type-1 diabetes (T1D), and multiple sclerosis 

(MS). This finding is in concert with a growing literature of the impacts of CD on various health 

outcomes [97]. Thus, our study shows that CD is impacting placental epigenetics and may also 

play a role in the development of diseases, though additional studies on this exposure’s effect on 

placental methylation are required.  

Conclusions and Future Perspectives  
In this review, we have outlined the current state of evidence pertaining to early-life 

environmental exposures and their impact on placental DNA methylation. We have examined 6 
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well-studied exposure categories but recognize there were a number of other exposures, 

including pesticides, alcohol, and other chemicals, that we did not include in this review. From 

what we have summarized, we can identify a few prevailing themes: 1) Specific exposures lead 

to unique variability in methylation, though cross-exposure assessment shows certain genes 

demonstrating consistency in differential methylation across exposures; 2) Exposure studies that 

have looked at trimester-specific exposures’ impact on methylation patterns tend to find effects 

that are most striking during the 1st trimester; 3) Earlier studies have more targeted gene-specific 

approaches to methylation or assessed repetitive elements such as LINE-1 and Alu, while later 

studies are epigenome-wide, array-based.  

One challenge in the study of DNA methylation in the placenta has been limitations in 

the ability to control for cellular heterogeneity in genome-wide studies. Until recently, many 

studies made use of reference-free methods to address this issue given a lack of reference data. 

This limitation has been recently overcome, though, with the publication of a reference panel and 

method, through R package planet, to estimate the cellular composition from array-based DNA 

methylation data [98]. Additionally, since methylation and exposure assessment are often 

observed coincidentally at birth, it is difficult to elucidate any form of temporality or causation. 

Incorporating repeated measures of exposure throughout pregnancy could improve this issue and 

allow for a better understanding of the critical windows during which exposure impacts placental 

methylation.   

As for additional directions of placental epigenetic research, the use of DNA 

methylation-based scores is likely to become more prevalent as various risk scores are 

developed. For example, a placental epigenetic clock has been developed for estimating 

epigenetic gestational age from placental methylation levels [99]. Like other epigenetic clocks, 
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the deviation between actual gestational age and the estimated age can be used as an outcome 

and future studies that aim to assess epigenetic gestational age could consider this approach. 

Also, as sequencing technology continues to improve, it is likely there will be more studies 

utilizing such an approach in the placenta, and this could provide important new insights to 

genomic regions that thus far are being missed using array-based and targeted approaches. 

Finally, as we begin to uncover specific genes that have identified epigenetic alterations related 

to exposures, there will be opportunities for the development of more robust biomarkers, leading 

to a better understanding of how environmental exposures work.  

The placenta clearly plays a critical role in fetal development and newborn health, and is 

increasingly being recognized as a critical organ in the developmental origins of long-term 

health. As cohorts and studies with placental data mature, there will be incredible opportunities 

to look empirically at these relationships and we encourage ongoing efforts to establish the links 

between the developmental environment, the placenta, and long-term health.    
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1st 
author, 

year 

Study 
cohort & 

size 

Exposure Assay Direction of effect on 
DNAme 

Air Pollution Studies 
Janssen et. 
al, 2013 
[38] 
 

ENVIRONA
GE (n = 240) 

 

PM2.5   Bisulfite 
sequencin
g 

↓ global DNAme (1st trimester, 
whole pregnancy, implantation) 

Saenen et. 
al, 2017 
[40] 

ENVIRONA
GE (n = 361) 

PM2.5  Bisulfite 
sequencin
g 

↓ LEP (2nd trimester) 

Nawrot et. 
al, 2018 
[41] 

ENVIRONA
GE (n = 407) 

PM2.5  Bisulfite 
sequencin
g 

↑ NPAS2, CRY1, PER2, PER3 
(3rd trimester) 
↓ PER1, CLOCK (3rd trimester) 

Neven et. 
al, 2018 
[42] 

ENVIRONA
GE (n = 463) 
 

PM2.5, black 
carbon, NO2  

Bisulfite 
sequencin
g 

↑ APEX1, OGG1, ERCC4, p53 
(PM2.5) 
↓ DAPK1 (PM2.5) 
↑ APEX1, ERCC4 (black 
carbon) 

Zhao et. 
al, 2021 
[43] 

Shanghai 
MCPC (n = 
287) 

PM2.5  Infinium 
450K  

↑ IGF2, ↓ BID (2nd & 3rd 
trimester, whole pregnancy) 
↑ FOX3N (2nd trimester) 

Maghbool
i et. al, 
2018 [14] 

• Prenatal 
care clinics 
in Tehran, 
Iran (n = 
92) 
o Polluted 

= 48 
o Non-

polluted 
= 44 

PM2.5, PM10 HPLC ↑ global DNAme (PM2.5 & 
PM10, 1st trimester) 
↑ global DNAme (PM2.5, 3rd 
trimester, polluted) 

Yang et. 
al, 2020 
[47] 

• COCOA (n 
= 1,180) 

• Grouped 
analysis: 
o n = 6 for 

each 
group (8 
groups) 
§ High/l

ow 
exposu
re 
groups
, 

PM2.5 
 

Infinium 
450K 

↓ AHRR, DPP10, HLA-DRB1 
(high PM2.5, low CB VD, and 
AD group) 

Tables 
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high/lo
w CB 
VD 
within 
those, 
AD 
within 
those 

Abraham 
et. al, 
2018 [49] 

EDEN (n = 
668) 

NO2, PM10  Infinium 
450K 

↓ ADORA2B (NO2, 1st & 2nd 
trimester, whole pregnancy) 
↑ PXT1, KCTD20 (NO2, 2nd 
trimester & whole pregnancy) 
↓ TUBGCP, ↑ TGM6, ADCK5 
(PM10, month before birth) 
↓ LINE-1, Alu (PM10, 1st 
trimester) 

Ladd-
Acosta et. 
al, 2019 
[54] 

EARLI (n = 
133) 

NO2, O3  
 

Infinium 
450K 

↓ All probes, CpG islands (NO2) 
↑ shores, islands, ↓ shelves (O3) 
↓ ZNF442, PTPRH, SLC25A44, 
F11R (NO2), STK38 (O3) 

Maternal Smoking Studies 
Janssen et. 
al, 2017 
[58]  

• ENVIRON
AGE (n = 
382) 
o Smokers 

(n = 62) 
o Past-

smokers 
(n = 65) 

o Non-
smokers 
(n = 
255) 

Cigarette 
smoke 

Bisulfite 
sequencin
g 
 

↑ MT-RNR1  
↓ CYP1A1  

Fa et. al, 
2017 [60] 

• Women 
seeking 
legal 
abortions in 
Denmark (n 
= 39) 
o Smoking

-exposed 
(n = 17) 

Cigarette 
smoke 

Bisulfite 
sequencin
g 

↑ AHRR  
 

Vos et. al, 
2021 [61] 

• ENVIRON
AGE (n = 
60) 
o Smokers 

(n = 20) 

Cigarette 
smoke 

Bisulfite 
sequencin
g 
 

↑ D-loop 
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Cardenas 
et. al, 
2019 [64] 

• Gen3G (n = 
441) 
o Smokers 

(n = 38) 
o Non-

smokers 
(n = 
403) 

Cigarette 
smoke 

Infinium 
450K 

↑ MDS2, PBX1, CYP1A2, 
VPBRP, CD28, CDK6  
↓ WBP1L 

Shorey-
Kendrick 
et. al, 
2021 [65] 

• VCSIP (n = 
96) 
o Smokers 

(n = 72) 
§ VCS 

(n = 
37) 

§ Place
bo (n 
= 35) 

o Non-
smokers 
(n = 24) 

Cigarette 
smoke 

Infinium 
450K 

↑ DIP2C, APOH/PRKCA 
(VCS)  
 

Van 
Otterdijk 
et. al, 
2017 [66] 

• HEBC (n = 
120) 
o Smoked 

during 
entire 
pregnan
cy (n = 
27) 

o Quit 
smoking 
while 
pregnant 
(n = 32) 

o Non-
smokers 
(n = 61) 

Cigarette 
smoke 

Bisulfite 
sequencin
g 

↓ AHRR, CYP1A1 (smoked 
throughout pregnancy) 
↓ GFI1 (quit while pregnant) 

Rousseaux 
et. al, 
2020 [67] 

• EDEN (n = 
568) 
o Current 

smokers 
(n = 
117) 

o Former 
smokers 
(n = 70) 

o Non-
smokers 
(n = 
381) 

Cigarette 
smoke 

Infinium 
450K 

↓ LINE-1, ↑ DMRs (current 
smokers) 
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Everson 
et. al, 
2021 [69] 

• PACE (n = 
1,700) 
o Any 

MSDP 
(n = 
344) 

o Sustaine
d MSDP 
(n = 
163) 

o No 
MSDP 
(n = 
1,193) 

Cigarette 
smoke 

Infinium 
450K 

↓ CpG DNAme (Any/sustained 
MSDP) 

Chemical Studies 
Song et. 
al, 2021 
[70] 

• S-MBCS (n 
= 146) 
o Low 

BPA (n 
= 108) 

o High 
BPA (n 
= 38) 

BPA  Infinium 
450K 

↑ CpG DNAme, HLA-DRB6 
(high BPA) 

Jedynak 
et. al, 
2021 [73] 

EDEN (n = 
202) 

Phenols Infinium 
450K 

↑ DMPs, DMRs 

Kim et. al, 
2018 [76] 

CHECK (n = 
109) 

POPs Bisulfite 
sequencin
g 

↓ LINE-1, H19, ↑ IGF2  

Zhao et. 
al, 2019 
[79] 

• Wenzhou 
Birth 
Cohort (n = 
249) 
o FGR 

cases (n 
= 124) 

o Controls 
(n = 
125)  

PBDEs Bisulfite 
sequencin
g 

↓ IGF2, ↑ HSD11B2 

Trace Metal Studies 
Appleton 
et. al, 
2017 [83] 

RICHS (n = 
222) 

As, Cd, Pb, 
Mn, Hg, Zn 

Bisulfite 
sequencin
g 

↑ NR3C1 (higher As, Cd, Pb, 
Mn, Hg, lower Zn) 

Everson 
et. al, 
2018 [88] 

• RICHS (n = 
141) 

• NHBCS (n 
= 343) 

Cd Infinium 
450K 

↑ CpG DNAme 
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Tian et. al, 
2020 [89] 

• RICHS (n = 
141) 

• NHBCS (n 
= 343) 

Se  Infinium 
450K 

↑ GFI1, CAPN9, SKIDA1, ↓ 
ZNF496, TBC1D5 

Kennedy 
et. al, 
2020 [90] 

• RICHS (n = 
141) 

• NHBCS (n 
= 306) 

Cu Infinium 
450K 

↓ Enhancers, active TSS 

Socioeconomic Adversity Studies 
Santos et. 
al, 2019 
[92] 

ELGAN (n = 
426) 

SES  Infinium 
450K 

↑ ↓ DMPs 

Appleton 
et. al, 
2013 [93] 

RICHS (n = 
444) 

SES Bisulfite 
sequencin
g 

↓ HSD11B2 

CD Studies 
Clarkson-
Townsend 
et. al, 
2019 [94] 

• RICHS (n = 
237) 
o Night 

shift (n 
= 53) 

o No night 
shift (n 
= 184) 

CD  Infinium 
450K 

↓ DMPs, NAV1, MXRA8, 
GABRG1, PRDM16, WNT5A, 
FOXG1 (night shift) 
↑ TDO2, ADAMTSL3, DLX2, 
SERPINA1 

Table 2-1: Summary of recent publications focusing on various 
environmental exposures in relation to placental DNA methylation. 
 
Abbreviations: ENVIRONAGE = Environmental Influence on Early Aging; PM2.5 = particulate 
matter ≤ 2.5 µm; DNAme = DNA methylation; NO2 = nitrogen dioxide; Shanghai MCPC = 
Shanghai Maternal-Child Pairs Cohort; PM10 = particulate matter ≤ 10 µm; HPLC = high 
performance liquid chromatography; COCOA = Cohort for Childhood Origin of Asthma and 
Allergic Diseases; CB = cord blood; VD = vitamin D; AD = atopic dermatitis; EARLI = Early 
Autism Risk Longitudinal Investigation; O3 = ozone; CpG shores = CpG probe ± 2 kb from CpG 
island; CpG shelves = CpG probe ± 2-4 kb from island; D-loop = displacement loop; Gen3G = 
Genetics of Glucose regulation in Gestation and Growth; VCSIP = Vitamin C to decrease the 
effects of smoking in pregnancy on infant lung function; VCS = vitamin C supplement; HEBC = 
Harvard Epigenetic Birth Cohort; DMRs = differentially methylated regions; PACE = 
Pregnancy and Childhood Epigenetics; MSDP = maternal smoking during pregnancy; S-MBCS 
= Shanghai-Minhang Birth Cohort Study; BPA = bisphenol A; DMPs = differentially 
methylated probes; CHECK = Children’s Health and Environmental Chemicals in Korea; POPs 
= persistent organic pollutants; FGR = fetal growth retardation; PBDEs = polybrominated 
diphenyl ethers; RICHS = Rhode Island Child Health Study; As = arsenic; Cd = cadmium; Pb = 
lead; Mn = manganese; Hg = mercury; Zn = zinc; NHBCS = New Hampshire Birth Cohort 
Study; Se = selenium; Cu = copper; TSS = transcription start site; ELGAN = Extremely Low 
Gestational Age Newborns; SES = socioeconomic status; CD = circadian disruption 
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Figure 2-1: Early life environmental exposures and their impact on 
genome-wide DNA methylation and disease risk. 
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Figure 2-2: Human placental structure and function. 
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Figure 2-3: Flow chart illustrating paper selection process for conducting 
literature search. 
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Abstract 
 
5-hydroxymethylcystosine (5hmC) is produced through enzymatic oxidation of 5-methylcytosine 
(5mC). 5hmC is an intermediary in the DNA demethylation pathway, though recent evidence 
suggests that it acts as a functional epigenetic modification. The landscape of placental 5hmC 
and its role in gene expression is poorly understood. We aimed to characterize the distribution of 
5hmC across the placenta and identify genomic regions of 5hmC that play a direct role in gene 
expression. Using 5hmC signals at CG dinucleotide (CpG) sites along with RNA-sequencing 
(RNA-seq) data, we assessed 5hmC distribution in the placenta and evaluated the association 
between 5hmC and gene expression using an expression quantitative trait hydroxymethylation 
(eQTHM) analysis. We identified ~47,000 loci with consistently elevated (systematic) 5hmC 
levels. We observed significant depletion (p < 0.0001) of systematic 5hmC at CpG islands 
(CGI), and enrichment (p < 0.0001) in “open sea” regions (CpG > 4 Mb from CGI). 5hmC levels 
were highest and lowest among CpGs in enhancers and active transcription start sites (TSS), 
respectively (p < 0.05). eQTHM analysis produced 499 significant (empirical-p < 0.05) cis CpG-
gene pairs, with 75.4% of eQTHMs demonstrating a positive correlation between 5hmC and 
expression. We observed significant enrichment and depletion of eQTHMs in enhancers and 
active TSS, respectively (p < 0.05 for both). Finally, we identified 107 differentially 
hydroxymethylated regions (DHMRs, p < 0.05) across 100 genes. Our study provides novel 
insight into placental distribution of 5hmC, and sheds light on the functional capacity of this 
epigenetic modification.   
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Introduction 
 The placenta is an organ that acts as the interface between the fetus and its mother[1]. Its 

crucial roles include nutrient transfer, gas exchange, waste removal, immune protection, and 

various neuroendocrine functions[2-4]. Disruptions in placental processes can lead to pregnancy 

complications including preeclampsia, inflammation, preterm delivery and fetal growth 

restriction, with subsequent implications for the health of both the infant and the mother[5-7].  

5-methylcytosine (5mC) is formed through DNA methyltransferases (DNMTs) adding a 

methyl group to the 5th carbon position of an unmethylated cytosine[8]. It is one of the most 

abundant DNA modifications in the human genome and is involved in a number of epigenetic 

functions, including modulation of transcription factor binding to regulatory regions[9]. When 

found in the promoter regions of genes, it generally leads to repression in transcription[10]. 5-

hydroxymethylcytosine (5hmC) is produced through enzymatic oxidation of 5mC by ten-eleven 

translocation (TET) methylcytosine dioxygenases[11, 12]. Though it is most commonly believed 

that 5hmC acts as an intermediary in the DNA demethylation pathway, there is also evidence to 

suggest that 5hmC is stable and could act as a stand-alone epigenetic modification[13]. Within 

the gene body, 5hmC is correlated with increased transcription, depending on cell and tissue 

type[14, 15]. In the placenta, 5hmC is sparse[16], and has been observed to be enriched at 

imprinted loci[17], although when evaluated by Piyasena et al.[18] at imprinting control regions 

(ICRs) of the genes IGF2, H19, and CDKN1C, was not associated with gene expression. Our 

group has previously leveraged publicly-available placental gene expression data to demonstrate 

that 5hmC is positively associated with transcription in actively transcribed genes, but did not 

assess 5hmC and gene expression in the same samples[19].  

In this study, we aim to characterize 5hmC distribution across the placenta and identify 

specific areas of 5hmC that relate to gene expression through the use of expression quantitative 
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trait hydroxymethylation (eQTHM). We believe that drawing a direction correlation between 

5hmC and expression will shed light on the functionality and distribution of placental 5hmC and 

provide a framework for future studies of the placental epigenome.  

Materials and Methods 
 
Study population 

The study was conducted in placenta samples collected from participants enrolled in the 

Rhode Island Child Health Study (RICHS). This hospital-based cohort (n = 840) recruited 

women 18-40 years old, with no history of psychological disorders and in good physical health, 

and who delivered infants from healthy, non-pathologic pregnancies at term (≥ 37 gestational 

weeks). Mother-infant pairs were recruited between September 1, 2009 and July 31, 2014 from 

the Women and Infants Hospital of Rhode Island (WIH, Providence, RI). The cohort was 

established to examine the relationship between molecular features of the placenta and 

birthweight and was oversampled for infants born small for gestational age (SGA, <10% 2013 

Fenton Growth Curve) and large for gestational age (LGA, >90% 2013 Fenton Growth Curve), 

each matched on gender, gestational age, and maternal age to infants born appropriate for 

gestational age (AGA, 10-90% 2013 Fenton Growth Curve)[20]. 

Participant demographic data was collected from interviewer-administered questionnaires 

and clinical data were abstracted from a structured review of medical records. The current study 

focuses on a subset of the enrolled participants with available placental 5hmC data (n = 227).  

Placental sample collection 
 Placental parenchyma was obtained within two hours of delivery, taken from the fetal 

side of the placenta, 2 cm from the umbilical cord insertion site. All samples were free of 

maternal decidua. Samples were placed in RNALater at 4ºC. At least 72 hours later, samples 
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were removed from RNALater, snap-frozen in liquid nitrogen, pulverized to homogenize the 

samples, and stored at -80oC until extraction.  

CpG methylation and hydroxymethylation profiling  
Hydroxymethylation profiling was performed as previously described[19]. Briefly, DNA 

was extracted using the DNeasy Blood and Tissue Kit (Qiagen, Germantown, MD, USA) 

following manufacturer’s protocol, quantified with the Qubit Fluorometer (Thermo Fisher 

Scientific Life Sciences), and stored at −80°C. Bisulfite (BS) and oxidative bisulfite (oxBS) 

conversion were performed on placenta-derived DNA using the TrueMethyl oxBS Module 

(NuGen, Redwood City, CA, USA), following manufacturer’s optimized protocol of 500 ng 

gDNA input for downstream analysis using the Infinium HD Methylation EPIC Bead Chip Array 

(Illumina, San Deigo, CA, USA).  

Cross-reactive CpG probes[21], probes that failed detection p-value (p > 0.01) in > 1 

sample, and probes overlapping single nucleotide polymorphisms (SNPs) were removed from the 

analysis. Three samples were removed due to failing sex quality control or failing detection p-

value (p-value > 0.01 in >2% of probes). After quality control, 706,435 CpGs were available for 

normalization. Normalization of background correction and dye bias of raw signals from each of 

the BS and oxBS-converted samples was done using the Noob procedure, followed by 

normalization of probe-type bias using SWAN, both of which are available in the 

R/Bioconductor package minfi (version 1.24.0; https://www.bioconductor.org). Estimation of 

5hmC beta values (proportion of CpGs across all cells in a given sample that are 

hydroxymethylated) for each CpG on the array was performed using OxyBS (version 1.5)[22]. 

Potential confounding due to array chip was removed using the ComBat function in 

R/bioconductor package sva[23]. Beta values were logit-transformed (M-values) to better 

approximate a normal distribution[24]. Finally, we limited our analysis to autosomal probes 

https://www.bioconductor.org/
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only, to avoid any confounding due to sex-specific effects. The final filtered, normalized dataset 

contained 689,815 CpGs.  

RNA-sequencing, Quality Control and Read Filtering 
 RNA-sequencing was performed as previously described[25]. Briefly, Total RNA 

was isolated from homogenized placental tissue, stored, and quantified. RNA was then converted 

to cDNA, and transcriptome-wide 50 bp single-end RNA sequencing was conducted using the 

HiSeq 2500 platform (Illumina, San Diego, CA)[26]. Samples were run in three sequencing 

batches, with 10% of the samples run in triplicate within each batch.  

The raw RNA sequencing data (fastq files) were assessed for quality control, including 

read length and GC content. Reads that passed quality control were mapped to the human 

reference genome (hg19) in a splice-aware manner, with common SNPs in the reference genome 

masked prior to alignment. Genes with counts per million <1 in greater than 30 samples were 

considered unexpressed and removed. Read counts were adjusted for GC content, followed by 

TMM correction for library size differences across samples. The data were then log2-transformed 

to account for the mean-variance relationship. Following assessments of Pearson correlations in 

gene expression among the triplicate samples, duplicated repeat samples were removed from the 

analysis. The data were adjusted to remove batch effect due to flow cell, using the ComBat 

function in R/bioconductor package sva[23]. We then removed poorly-defined transcripts 

(transcripts containing the phrases “LOC”, “orf”, “KIAA”, “NCRNA”, and “MIR”), as well as 

genes on sex chromosomes. The final filtered, normalized dataset contained reads mapped to 

12,744 genes. For our 5hmC-expression analysis (see section below, “eQTHM Identification”), 

we used samples that had both placental 5hmC and gene expression data available (n = 197). To 

assess 5hmC enrichment across genes with varying expression levels, we grouped our genes into 
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expression quartiles (0 – 25%, 26% – 50%, 51% – 75%, 76% – 100%) based on mean log2TMM 

expression counts across all samples.   

Annotation 
We annotated CpGs using the R/bioconductor package 

“IlluminaHumanMethylationEPICanno.ilm10b2.hg19”[27]. This includes annotating each CpG 

based on its location relative to the nearest gene, as well as annotating CpGs that fall within a 

CpG islands (CGI) interval. The available gene compartments from the EPIC array package are 

as follows: 1) 5’ untranslated region (5’ UTR), 2) TSS 200 (1-200 base pairs (bp) upstream of 

the TSS), 3) TSS 1500 (201-1500 bp upstream of TSS), 4) 1st exon, 5) gene bodies, 6) exon 

boundaries, and 7) 3’ untranslated region (3’ UTR). CpGs that fell in either the TSS200 or 

TSS1500 intervals were combined into one “TSS” interval. CpGs that fell into gene bodies, 1st 

exons, or exon boundaries were combined into one “gene body” class. For the CGI regions, 

CpGs were annotated to a CGI “shore” if they were within a 2 kb region flanking a CGI, a CGI 

“shelf” if they were within a 2 kb region flanking a CGI shore, or an “open sea” if they were not 

within a shore, shelf, or CGI. CpGs were also annotated to chromatin-based genomic categories 

using ChromHMM[28], derived from the Roadmap Epigenomics Consortium[29] and applied to 

fetal placenta cells. We combined enhancers and genic enhancers into one “enhancers” class, 

strong and weak transcription into a “transcribed” class, bivalent enhancers and bivalent/poised 

transcription start sites (TSS) into “poised TSS/enhancers” class, and finally polycomb repressed 

and weak polycomb repressed into a single “polycomb repressed” class.  

In order to relate the location of each CpG to its associated gene for eQTHM analysis, 

gene TSS and transcription termination site (TTS) positions were obtained from the switchDbTss 

track of the UCSC table browser (hg19/GRCh37) [30]. 5’ and 3’UTR positions were obtained 

from the NCBI RefSeq track of the table browser. When multiple TSS, TTS, 5’UTR, and 3’UTR 
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positions were annotated for one gene, we used the most 5’ upstream and most 3’ downstream 

position. To annotate gene body coordinates, we selected the most 5’ upstream start position of 

the 1st exon and the most 3’ downstream end position of the last exon.  

When mapping the distance of the CpG to its target eQTHM gene, CpGs upstream of the 

TSS were calculated as negative bp to the TSS, while CpGs downstream of the TTS were 

calculated as positive bp. For CpGs that fall within their target gene, their distance is represented 

as the proportion of the way through the gene (to account for variability in gene length).  

Systematic 5hmC distribution 
As in prior work[19], CpGs at which 5hmC proportion ≥ 0.10 in at least 50% of samples 

were defined as regions of systematic 5hmC (n = 113). Distribution of systematic 5hmC in 

relation to nearest genes and CGI feature was assessed using odds ratios (ORs) and 95% 

confidence intervals (CIs) derived from a Fisher’s exact test. This allowed us to compare the 

proportions of loci demonstrating systematic 5hmC within a gene/CGI compartment against loci 

not demonstrating systematic 5hmC.  

eQTHM Identification 
eQTHM is an extension of expression quantitative trait methylation (eQTM), a method 

used to identify specific positions in the genome where the proportion of methylated CpGs at one 

locus is associated with transcript abundance for a given gene[31]. In the current study, we 

assess how 5hmC proportion at a given CpG in the placental epigenome associates with the 

abundance of a gene transcript. To this end, we have conducted a cis eQTHM analysis using the 

Matrix eQTL R package[32]. Matrix eQTL fits a multivariate linear regression model: y = b0 + 

b1HM + Ta + e, where y is the normalized transcript counts for each gene, HM is 5hmC M-

values at each CpG, b0, b1, and a are regression coefficients, and T represents covariates. We 

identified covariates as any variable with significant univariate association (p < 0.05) with any of 
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the top 5 principal components (PCs) for the 5hmC data and any of the top 5 PCs of the 

transcriptomic data. From this, we identified infant sex, birthweight percentile, and estimated 

proportions of syncytiotrophoblasts (STBs, estimated using R/Bioconductor package planet[33]) 

as being significantly associated with both pairs of PCs, and included them as covariates in our 

model. With respect to the transcript under investigation, we restricted our analyses to only CpGs 

that were 1) in the gene, 2) up to 1 Mb upstream of the transcription start site (TSS), and 3) up to 

1 Mb downstream of the transcription termination site (TTS). We then implemented an empirical 

p-value approach (see section below) to find eQTHMs among all cis CpGs. Among eQTHMs, 

we conducted a Pearson’s correlation between 5hmC at the CpG and transcript level of the target 

gene, according to the Matrix eQTL guidelines[32]. 

Empirical p-value threshold. CpGs can be mapped to multiple genes that fall within a 1 

Mb window, so we employed an empirical p-value threshold to ensure that genes paired to a 

higher number of CpGs do not have a greater chance of being part of an eQTHM. We defined a 

significance threshold using the procedure previously described for eQTL analyses in the 

Genotype-Tissue Expression (GTEx) project[34], and subsequently for expression quantitative 

trait methylation (eQTM) analysis by Ruiz-Arenas et al.[31]. Briefly, we performed the eQTHM 

analysis described above on data with shuffled sample identifiers, collecting the minimum p-

value obtained for each gene in the permutation. We obtained 1,000 permuted p-values for each 

gene. We modeled the null distribution with the permuted P-values using a beta distribution, 

generating the parameters with maximum likelihood estimation[35]. Using the beta distributions, 

we estimated empirical p-values for the minimum observed (non-permuted) p-values obtained 

for each gene. False discovery rates (FDR) were calculated for gene-wise empirical p-values 

using the Benjamini-Hochberg method[36]. Genes with FDR less than 5% were considered 
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significant. Finally, we defined an empirical p-value threshold as the empirical p-value of the 

gene closest to the 5% FDR threshold (i.e. the highest empirical p-value among genes significant 

at 5% FDR). Among all cis CpG-gene pair associations, if the nominal p-value for the CpG was 

less than the empirical threshold and the corresponding gene had an FDR < 0.05, it was deemed 

an eQTHM.  

Differentially-hydroxymethylated regions (DHMRs) 
  We also conducted a DHMR analysis, where we aimed to find contiguous local genomic 

regions with differential hydroxymethylation associated with gene expression, considering these 

regions may be more biologically relevant than individual eQTHMs. To perform this, we utilized 

the Comb-p method[37], which identifies regions enriched for low p-values (using Matrix eQTL 

p-values). Comb-p corrects p-values for auto-correlation with neighboring CpGs (within 1 kb) 

using the Stouffer-Liptak method, and then builds DHMRs for a specific gene based on CpGs 

with corrected p-values falling below a threshold. We specified a corrected p-value threshold of 

1e-4. Once a DHMR is identified, a regional p-value is generated and adjusted for multiple 

testing using the Sidak correction. DHMRs with an adjusted regional p-value < 0.05, and 

containing at least three CpGs were considered significant. This process was conducted for every 

gene in our eQTHM analysis.  

Enrichment tests 
Fisher’s exact tests were used to test for enrichment of systematic 5hmC within gene 

compartments and CGI regions, as well as enrichment of systematic CpGs among CpGs in the 

eQTHMs and DHMRs. Fisher’s exact tests were also used to test for enrichment of positively 

and negatively-correlated eQTHMs in target gene compartments, CGI regions, and ChromHMM 

states, as well as enrichment of DHMR CpGs across ChromHMM states. One-way repeated 

measures analysis of variance (ANOVA) was used to test for differences in 5hmC proportions 
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within gene compartments of genes with varying expression levels, as well as to assess 5hmC 

differences across ChromHMM compartments.  

 
All analyses were conducted using R version 4.1.1.  

Results 
 
Sample cohort 

This study analyzed data from 227 mother-infant pairs from the RICHS cohort, with the 

mother and infant demographics displayed in Table 3-1. The sample consisted mainly of white 

mothers (77.1% of samples), with a mean age of 30.9 years. There was a nearly equal 

distribution of male and female infants (51.1% vs. 48.9%, respectively), with a mean gestational 

age of 39.4 weeks, and by study design, the sample was over-represented by infants born SGA 

(14.5%) and LGA (30.8%). 

Placental 5hmC distribution 
Placental 5hmC proportions were notably low with very little variation. Mean 5hmC 

across all 689,815 autosomal CpGs ranged from 0 – 56%, with the 227 samples having a grand 

mean of 2.98% (Fig. 3-1). Among all CpGs, 46,921 (6.8%) were deemed systematic (5hmC 

proportion ≥ 0.10 in at least 50% of samples), with a mean 5hmC of 15.57% (Fig. 3-1).  

Across gene compartments, we observed significant enrichment of systematic 5hmC in 

gene bodies (OR = 1.26; 95% CI = 1.23, 1.28; p < 0.0001), 3’ UTRs (OR = 1.14; 95% CI = 1.10, 

1.19; p < 0.0001), and 5’ UTRs (OR = 1.10; 95% CI = 1.07, 1.13; p < 0.0001). Significant 

depletion of systematic 5hmC was observed in TSS (OR = 0.66; 95% CI = 0.64, 0.68; p < 

0.0001) (Fig. 3-1). Among CGI regions, we observed a significant enrichment of systematic 

5hmC at "open sea” regions (OR = 2.09; 95% CI = 2.05, 2.13; p < 0.0001), and depletion in 

CGIs (OR = 0.09; 95% CI = 0.08, 0.10; p < 0.0001) (Fig. 3-1).  
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Across ChromHMM states, mean 5hmC was most abundant among enhancer CpGs 

(mean = 5.2%), flanking transcribed (mean = 5.1%), and transcribed regions (mean = 4.2%). 

5hmC was least abundant among CpGs found in active TSS, flanking poised TSS/enhancers, and 

flanking active TSS (means = 0.39%, 1.1%, and 2.0%, respectively) (Fig. 3-2). Significant 

differences in 5hmC proportions were found across all ChromHMM states (p < 0.05). 

We found that 5hmC proportions varied by both genic region and gene expression level. 

Although proportions of 5hmC were largely dependent on the location of the CpG site relative to 

the gene, hydroxymethylation proportion generally increased with transcript abundance. 5hmC 

among CpGs lying in the gene body or 3’ UTR increased as transcript abundance increased from 

transcriptionally silent (represented by the first quartile of transcript abundances) to active genes 

(fourth quartile) (Fig. 3-3). Among CpGs in the 5’ UTR, 5hmC proportion was highest in 

transcriptionally silent genes, then decreased as transcription increased, and finally increased 

slightly in the most actively transcribed genes. 5hmC was negatively correlated with transcript in 

TSS; as transcript abundance increased, 5hmC proportion decreased. Within all gene 

compartments, 5hmC proportion differed across expression quartiles (p < 0.05, for all) (Fig. 3-3). 

Thus, we observed significant differences in 5hmC proportions across expression quartiles, 

indicating a potential association between 5hmC and expression. 

eQTHM analysis 
We identified 499 eQTHMs (Table S3-1), consisting of 473 unique CpGs and 284 

unique genes. Among the 473 unique CpGs, 165 (34.9%) were deemed systematic CpGs from 

our placental 5hmC distribution results, representing a significant enrichment (OR = 6.79; 95% 

CI = 5.60, 8.21; p < 0.0001). We also observed an overall positive correlation between 5hmC 

and expression, with 75.4% of significant eQTHMs demonstrating a positive correlation with cis 

gene transcript abundance (Table 3-2).  
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Among eQTHMs positively correlated with transcript abundance (positively correlated 

eQTHMs), we observed a depletion (OR = 0.60; 95% CI = 0.39, 0.93; p < 0.05) of CpGs that fall 

within their target gene (Fig. 3-4), along with an enrichment (OR = 2.89; 95% CI = 1.84, 4.57; p 

< 0.001) in “open sea” regions of the genome (Fig. 3-4). Among eQTHMs negatively correlated 

with transcript abundance (negatively correlated eQTHMs), we observed an enrichment (OR = 

8.93; 95% CI = 3.64, 24.16; p < 0.0001) in the TSS regions (Fig. 3-4) and in CGIs (OR = 19.45; 

95% CI = 8.49, 50.44; p < 0.0001) (Fig. 3-4).  

When plotting the distance between the eQTHMs and their associated gene, we observed 

a larger proportion of eQTHMs lying close to the TSS of the associated gene (Fig. 3-4). As the 

distance from the TSS increases in the upstream direction we observed a smaller proportion of 

eQTHMs in these areas. This pattern of increased proportions at the 5’ end of the genes and 

decreased proportions further away from the 5’ end was also observed across all cis eQTHM-

gene pairs (Fig. 3-4).  

We found a significant enrichment of eQTHMs among enhancers CpGs (OR = 2.29; 95% 

CI = 1.85, 2.80; p < 0.01) (Fig. 3-4), with particular enrichment of positively correlated 

eQTHMs in these regions (OR = 2.01; 95% CI = 1.17, 3.58; p < 0.01) (Fig. 3-4). Conversely, we 

observed an overall depletion of eQTHMs among CpGs in active TSS regions (Fig. 3-4), and 

among eQTHMs that did reside there, there was an overall enrichment of negatively correlated 

eQTHMs (OR = 28.36; 95% CI = 12.56, 72.85; p < 0.0001) (Fig. 3-4). Likewise, there was an 

overall depletion of eQTHMs in regions flanking active TSS (Fig. 3-4), though amongst 

eQTHMs in these regions, we observed an enrichment (OR = 3.90; 95% CI = 1.76, 8.72; p < 

0.001) of negatively correlated eQTHMs (Fig. 3-4). We also found a strong enrichment of 
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positively correlated eQTHMs in quiescent regions (OR = 4.61; 95% CI = 2.14, 11.37; p < 

0.0001) (Fig. 3-4).  

DHMR analysis 
We identified 107 significant (≥ 3 CpGs in DHMR and regional p-value < 0.05) DHMRs 

across 100 genes (Table S3-2) and encompassing 479 unique CpGs. Among these CpGs, 85 

(17.7%) were considered to have systematic 5hmC, representing a significant enrichment (OR = 

2.96; 95% CI = 2.31, 3.75; p < 0.0001). Additionally, 121 of these CpGs (25.3%) were also 

eQTHMs. 

Among the 107 significant DHMRs, 42 (39.3%) fell within their target gene, with most 

(n=36, 33.6%) in the gene body (Fig. 3-5). Additionally, 47 DHMRs (43.9%) were in “open sea” 

regions and 30 (28.0%) in CGIs (Fig. 3-5). We found an enrichment of DHMR CpGs compared 

to CpGs outside of DHMRs in active TSS regions (OR = 2.14; 95% CI = 1.71, 2.67; p < 0.0001), 

enhancers (OR = 1.65; 95% CI = 1.32, 2.06; p < 0.0001), regions flanking active TSS (OR = 

2.69; 95% CI = 2.08, 3.45; p < 0.0001), and poised TSS or enhancers (OR = 2.19; 95% CI = 

1.58, 2.96; p < 0.0001) (Fig. 3-5). We observed a depletion of DHMR CpGs in polycomb 

repressed regions (OR = 0.16; 95% CI = 0.08, 0.27; p < 0.0001) and quiescent regions (OR = 

0.29; 95% CI = 0.20, 0.40; p < 0.0001) (Fig. 3-5). 

The DHMR with the most significant association with expression is on chromosome 19 

in the body of B3GNT3 (Fig. 3-5). This DHMR also overlaps with a poised TSS/enhancer 

region. We assessed the 5hmC proportion across the eight CpGs found in this DHMR, stratified 

by the B3GNT3 expression quartile across all subjects, and observed a negative correlation 

between 5hmC proportion and B3GNT3 transcript abundance across the DMHR (Fig. 3-5).  

Interestingly, we found 29% of all DHMRs overlapped with an enhancer region. We also 

assessed whether DHMRs tend to be more associated with active transcripts than inactive 
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transcripts, and found that the proportions were evenly distributed across transcript abundance 

quartiles (28%, 26.2%, 28%, and 17.8% of DHMRs were associated with transcripts in the first, 

second, third, and fourth quartile of transcript abundance, respectively). Among the 65 DHMRs 

that fell outside their target gene, 51.6% and 48.4% were located in the upstream and 

downstream direction, respectively.  

Discussion 
 In this study, we have achieved two distinct goals: 1) we have described the genomic 

landscape of hydroxymethylation in a healthy subset of infant placental tissue samples, and 2) 

we have identified the extent to which 5hmC is associated with placental gene expression. These 

findings will provide important reference data for future studies of 5hmC in placental tissue and 

offer insight into the roles this modification plays. 

Although 5hmC proportions were relatively low across all placental samples, we found 

~47,000 loci that met the criteria for demonstrating systematic placental hydroxymethylation 

(Fig. 3-1). Hydroxymethylation has been described as both an intermediate in the demethylation 

pathway[11], as well as a stable epigenetic mark[38]. By classifying 5hmC as systematic based 

on our criteria, we aim to distinguish 5hmC that fall within each of these categories. The criteria 

were established due to the notion that hydroxymethylation present as a result of cells 

undergoing active demethylation would likely be observed in only a limited number of samples, 

while stable, functional 5hmC regions would more likely be seen in a greater proportion of 

samples[19].  

Our findings regarding the enrichment or depletion of systematic 5hmC at functionally 

relevant genomic regions (Fig. 3-1) are in strong concordance with results from previous 

placental studies. Green et al.[19] utilized placental methylation data from the 450 

HumanMethylationBead Chip (450k) Array, and also observed a depletion of systematic 5hmC 
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in areas like the TSS and particularly, CGIs. CGIs are often associated with promoters and have 

shown 5hmC depletion in brain tissue[39]. Similarly, Mora Hernandez et al.[17] profiled 

placental 5hmC using the 450k array, and in agreement with our results, found an enrichment of 

5hmC in “open seas”, along with a depletion in CGIs. Our 5hmC distribution results are also 

consistent with previous studies in brain samples; one study[40] utilized 450k data to quantify 

genome-wide patterns of 5hmC in the cerebellum and also observed significant depletion in 

CGIs, as well as enrichment in “shores”, “shelves”, and areas outside of CG-rich regions (“open 

seas”). Another study by Spiers et al.[41] characterizing 5hmC and 5mC across human fetal 

brain tissue found about ¼ of the autosomal CpGs assayed were characterized by non-detectable 

5hmC in all brain samples, with these sites enriched in CGIs and other regulatory regions 

including TSS. Among CpGs that contained detectable 5hmC, the authors noted these sites were 

enriched in “shores”, “shelves”, and gene bodies. Finally, this relationship has been replicated in 

a 5hmC study[42] of breast tissue, with the authors utilizing 450k methylation data to identify 

genomic loci containing elevated 5hmC. The authors observed 5hmC enrichment in “open seas” 

and “shores”, as well as a depletion in CGIs. Our 5hmC distribution findings, along with those 

from other studies of placental, brain, and breast tissue, further highlight the paradoxical 

relationship of 5hmC abundance in CpG-poor regions and depletion in CpG-rich regions. 

Numerous mechanistic models have been proposed for how 5hmC is regulated in these areas, 

with one possible mechanism being that in CpG-rich regions, the CpGs are already methylated, 

and these methylated CpGs can recruit methyl-CpG binding domain (MBD) proteins to establish 

a constitutive heterochromatin state, thereby making TET1 inaccessible to the hypermethylated 

sites and preventing the conversion of 5mC to 5hmC[43]. Future studies of the placental 5hmC 
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could examine specific chromatin marks and associated chromatin modifiers and binding 

proteins to understand these relationships.  

Despite our 5hmC distribution results demonstrating agreement with previous findings in 

placenta, brain, and breast tissue, a portion of our findings are in contrast with those found in 

embryonic stem cells (ESCs). Specifically, studies in mouse ESCs have shown increased 5hmC 

at CGIs associated with bivalent (TET1/Polycomb repression complex 2 (PRC2)-cobound) 

promoters[44]. As TET1 is capable of binding to PRC2-repressed development regulators[45], it 

is possible that in mouse ESCs, TET1 may have a higher binding affinity to PRC2, thereby 

allowing for more oxidation of 5mC to 5hmC at CGIs in the bivalent promoters[45, 46]. 

Additionally, mouse ESCs could have a greater proportion of CGIs bound by PRC2, in 

comparison to placental samples[47]. As TET1 binds to these areas, this in turn could manifest 

as an enrichment of 5hmC. As we observed a depletion of 5hmC in polycomb repressed regions 

(Fig. 3-2), our findings are in direct contrast to those of ESCs. However, it is worth noting that 

our 5hmC distribution results are consistent with those from other differentiated cell types; a 

recent study[48] characterizing 5hmC in trophoblast stem cells (TSCs) within mouse placenta 

showed a profound lack of TET1 peaks overlapping with bivalent or polycomb repressed 

regions, leading to a subsequent reduction of 5hmC in these areas. 

We observed that higher proportions of 5hmC, particularly in the gene body, are 

associated with more highly expressed genes (Fig. 3-3). Previous studies have also shown 5hmC 

to be enriched in the gene body of active genes in mouse cerebellum[39] and that oxidation from 

5mC to 5hmC prevents the binding of transcriptionally repressive MBD proteins[49]. Thus, it is 

possible that the observed enrichment of 5hmC in the gene body of actively transcribed genes 
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could be due to the absence of MBD proteins in those areas, though future studies comprised of 

MBD-binding marks are needed to confirm this association.  

Our study also sheds light on how 5hmC may be involved in regulating expression 

through regulatory elements, specifically enhancers. We observed an enrichment of 5hmC marks 

in enhancer regions (Fig. 3-2), along with enrichment of eQTHMs in these regions (Fig. 3-4), 

with the majority of these eQTHMs being positively associated with expression (Fig. 3-4). 

Enrichment of 5hmC in these regions is in agreement with previous studies, which have shown 

that 5hmC tends to accumulate at poised and active enhancers labeled with H3K4me1, H3K18ac, 

and H3K27ac[50, 51]. The trend we observed between 5hmC and expression in these regions 

could be due to the aforementioned increased variability of 5hmC in enhancer elements, and 

recent studies stress the importance of altered methylation patterns at enhancers as a critical 

component to variation in gene expression[52, 53]. It is also possible that 5hmC at enhancers 

may be involved in changing the transcriptional landscape of placental tissue, which in turn aids 

in differentiation. The results from our DHMR analysis further support the notion that 5hmC 

may be regulating expression through enhancers; 29% of significant DHMRs overlapped with an 

enhancer region, as we observed an enrichment of DHMR CpGs in these regions (Fig. 3-5). As 

enhancers are known to regulate transcription of both distal and proximal genes[54, 55], it is 

possible that 5hmC across contiguous CpGs in enhancers is working in concert to further 

promote transcription of the associated gene.  

Our eQTHM findings are also noteworthy in that we observed an enrichment of 

systematic 5hmC among CpGs in eQTHMs (Table 3-2). This is especially significant given the 

small number of systematic 5hmC loci across all CpGs on the array (6.8% of all CpGs were 

deemed systematic). As these sites demonstrate consistently higher proportion of 5hmC and are 
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significantly associated with gene expression, this provides a candidate list of loci with 

potentially functional 5hmC. Future studies should evaluate the functional relevance of these 

sites in the larger placental epigenome.  

The most robust DHMR we identified was in the body of the B3GNT3 gene (Fig. 3-5). 

Expression of B3GNT3 is negatively correlated with 5hmC in the DHMR, meaning higher 

expression of B3GNT3 associates with lower 5hmC proportions (Fig. 3-5). B3GNT3 is a 

transmembrane protein that has been found to be associated with immune cell infiltration and 

activation of the NF-kB pathway in gynecologic cancers[56]. A previous study[57] looking at 

how mutations in IDH2 and TET2 cells modulates tumorigenesis in angioimmunoblastic T cell 

lymphoma (AITL) also found a negative correlation between CpG hypermethylation in a 

differentially methylated region (DMR) of B3GNT3 and its corresponding expression levels.  

To our knowledge, this study presents the most comprehensive description of the 

empirical relationship between placental 5hmC and gene expression through eQTHM analyses 

using a large sample size (n=227) and the more comprehensive array (Illumina MethylationEpic 

array) than prior studies. Many of our findings are consistent with 5hmC-expression research in 

various other tissues and models[17, 19, 39, 40, 42]. We demonstrated that 5hmC is associated, 

for the most part positively, with gene expression in the placenta. Unlike previous placental 

epigenetic studies, we were able to leverage paired sample RNA-sequencing data to gain a better 

understanding of the relationship between 5hmC and expression. We were also very stringent in 

our control for multiple testing of the eQTHM analysis; by employing an empirical p-value 

threshold, we ensured that genes paired to a higher number of CpGs did not have a stronger 

chance of being a part of an eQTHM. We also utilized a DHMR analysis as an additional way to 

demonstrate the 5hmC and gene expression associations, which adds an additional level of rigor 
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and confidence in the reported results. This study also benefits from the recruitment of a large 

cohort of placental samples; while previous placental epigenetics studies were generally 

conducted in a small cohort of samples, the RICHS cohort represents one of the largest cohorts 

of placental samples ever assembled, ensuring a well-powered study necessary to evaluate 

empirical effects. Finally, we employed a reference-based approach when estimating cell-type 

proportions in the placental samples, thereby limiting confounding due to inter-sample variability 

in cell compositions.  

The results from this study are robust and relevant within the broader area of placental 

health, though these findings should be interpreted within the context of this study’s limitations. 

This is an observational study in which placental hydroxymethylation and expression were both 

measured in placenta at term. Therefore, we cannot conclude that our results are representative of 

the relationship between placental 5hmC and expression throughout development. 

Hydroxymethylation and expression being collected at the same time point also limits our ability 

to infer a causal relationship between the two. We also were unable to assess distal CpGs in our 

eQTHM analysis, mainly due to a limited sample size. Our DHMR analysis utilized eQTHM 

results with raw p-values < 1 x 10-4, and thus there may be some false-positives in our DHMR 

hits. Finally, the RICHS cohort consists predominantly of healthy, white mothers and their 

infants from the New England region of the United States, and thus these findings may not be as 

generalizable to more diverse populations.  

In summary, this study presents an important step in understanding the distribution and 

functional relevance of 5hmC in the placenta. Although additional studies are needed for a more 

complete understanding of placental hydroxymethylation, these findings serve as a good starting 

point for investigators looking to understand the role of 5hmC in placental epigenetics. 
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  RICHS (n = 227) 
Maternal characteristics   
Age in years (mean, SD) 30.9 (4.9) 
Educational attainment (n, %) 

 

High school or less 35 (15.4) 
Post-high school or junior college 111 (48.9) 

College 81 (35.7) 
Self-reported race/ethnicity (n, %)  

Asian 10 (4.4) 
Black 12 (5.3) 
Indian 2 (0.88) 

More than one race 4 (1.8) 
Unknown/not reported 24 (10.6) 

White 175 (77.1) 
Infant characteristics 

 

Age in weeks (mean, SD) 39.4 (0.9) 
Sex (n, %) 

 

Male 116 (51.1) 
Female 111 (48.9) 

Birthweight in grams (mean, SD) 3,556.4 (662.5) 
Birthweight category (n, %)a  

AGA 124 (54.6) 
LGA 70 (30.8) 
SGA 33 (14.5) 

Table 3-1: RICHS participant demographics 

aInfants born with birthweight percentile ≤ 10% (small for gestational age [SGA]), 
10-90% (appropriate for gestational age [AGA]), and ≥ 90% (large for gestational 
age [LGA]) 
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All cis CpG-gene pairs  

(n = 19,546,660) 
Pairs below empirical-p threshold 
(n, %) 

499 (0.003) 

# unique CpGs 473 
# unique genes 284 

Unique CpGs that overlap with 
systematic CpGs (n, %) 

165 (34.9) 

Correlation sign (n, %) 
 

+ 376 (75.4) 
- 123 (24.6) 

Estimate (mean, SD) 0.29 (0.46) 
r (mean, SD) 0.20 (0.36) 

Table 3-2. eQTHM summary results 
 
Abbreviations: r = correlation coefficient 
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Figures 

A
 

All CpGs 

Systematic CpGs 

Depletion Enrichment 

B
 

Figure 3-1: Distribution of systematic 5hmC across the placental epigenome. 
Systematic CpGs were defined as loci with 5hmC proportion > 0.10 in at least 50% (n = 113) 
of samples. A total of 689,815 autosomal CpGs were assayed. Among those, 46,921 (6.8%) 
were considered systematic, with the remaining 642,894 (93.2%) deemed non-systematic. A) 
Distribution of all CpGs sites (blue) and systematic sites (red) on EPIC array. 5hmC 
proportions display a strong right skew, with samples having a mean of 2.98% (indicated by the 
vertical dashed blue line). Systematic CpGs had a 5hmC mean of 15.57% across samples 
(indicated by vertical dashed red line). B) Distribution of systematic 5hmC by gene and CGI 
compartments. ORs and 95% CIs were determined by Fisher’s exact test, with ORs marked by 
asterisks defined as significant (p < 0.05). ORs above 1.0 indicate enrichment for systematic 
5hmC in comparison to other location classifiers, and ORs below 1.0 indicate depletion. CpGs 
associated with >1 gene class may be counted twice. CGI shores define loci < 2 kb from CGI, 
shelves are loci 2-4 kb from CGI, and open seas are loci > 4 kb from CGI. 
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Figure 3-2: Placental 5hmC distribution across ChromHMM states. Box 
plots denote distribution of 5hmC, with boxes encompassing 25th to 75th percentile (with 
the length of the box representing the interquartile range (IQR), defined as the difference 
between the 25th and 75th percentiles), the median denoted as line within box, and the 
upper and lower whiskers marking the maximum and minimum values no further than 
1.5 x IQR, respectively. Outliers were suppressed to improve visualization of differences. 
Inset plot represents the plot with outliers included. One-way repeated measures ANOVA 
revealed significant differences in 5hmC levels across states (p < 0.05).  
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Figure 3-3: Placental 5hmC distribution across gene compartments of genes 
with varying expression levels. Genes were grouped into expression quartiles based on 
mean transcript levels across all subjects. CpG probes were mapped to compartment of nearest 
gene from EPIC array annotation package. Box plots denote distribution of 5hmC, with boxes 
encompassing 25th to 75th percentile (with the length of the box representing the IQR, defined as 
the difference between the 25th and 75th percentiles), the median denoted as line within box, and 
the upper and lower whiskers marking the maximum and minimum values no further than 1.5 x 
IQR, respectively. Outliers were suppressed to improve visualization of differences. Inset plot 
represents the plot with outliers included. Asterisks mark significant differences in 5hmC levels 
across expression quartiles within each gene compartment (ANOVA p < 0.05).  
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E n = 473 

n = 116 

n = 689,326 

n = 357 

Figure 3-4: Characterization and distribution of genomic location of 
eQTHM signals. A) Percentage of positively and negatively correlated eQTHMs 
across gene compartments of target gene. B) Percentage of positively and negatively 
correlated eQTHMs across CGI compartments. Fisher’s exact tests were used to test for 
enrichment of positively and negatively-correlated eQTHMs across gene compartments 
(A) and CGI regions (B). C) CpG distance from TSS/TTS of target eQTHM gene. TSS 
and TTS are represented by 0, 1 on x-axis, respectively. CpGs lying within gene have 
distance represented by proportion through gene. Shown are significant eQTHMs 
(dashed purple line) and all cis CpG-gene pairs from Matrix eQTL (solid black line). D 
and E) Proportion of CpGs within ChromHMM states. Shown are negatively (Neg) and 
positively (Pos) associated CpGs (D), along with all significant CpGs (Sig) and all CpGs 
on EPIC array (E). Fisher’s exact tests were used to test for enrichment of eQTHMs 
across ChromHMM states. Numbers on top of each bar represent # of CpGs in that 
group.  
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n = 479 n = 688,847 

Figure 3-5: Characterization and distribution of transcription-associated 
DHMRs. Percentage of all significant DHMRs (n = 107) across A) genic compartments and B) 
CGI regions. C) Proportion of CpGs across ChromHMM states among CpGs in and out of DHMRs. 
Fisher’s exact tests were used to test for enrichment of CpGs across ChromHMM states. Numbers on 
top of each bar represent # of CpGs in that group. D) Most significant DHMR at B3GNT3 gene. 
Hydroxymethylated proportions among subjects at each of the 8 CpG probes (represented by vertical 
lines of stacked points) in the DHMR are shown. Data is stratified by B3GNT3 log2TMM expression 
quartiles among subjects. CpG site positions are displayed along the x-axis. Lines represent local 
regression model using the locally estimated scatterplot smoothing (LOESS) method.  
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Supplementary Tables 
 
 
Table S3-1: Significant CpG-gene pairs from eQTHM analysis 

CpG Gene Statistic p-value FDR Beta r r2 
cg03515999 PSMD5 12.17 1.34E-25 2.62E-18 0.30 0.66 0.44 
cg16289896 ATP1A4 11.72 2.98E-24 2.91E-17 0.78 0.65 0.42 
cg04677839 SLC6A15 11.50 1.35E-23 8.83E-17 1.54 0.64 0.41 
cg15407162 TOB2P1 10.85 1.14E-21 5.59E-15 0.55 0.62 0.38 
cg16289896 CASQ1 10.62 5.45E-21 2.13E-14 0.75 0.61 0.37 
cg27213577 STON2 10.45 1.71E-20 5.02E-14 0.78 0.60 0.36 
cg16389864 B3GNT3 -10.44 1.80E-20 5.02E-14 -0.08 -0.60 0.36 
cg26251192 HEATR4 10.40 2.39E-20 5.84E-14 0.23 0.60 0.36 
cg04627461 STBD1 10.21 8.46E-20 1.84E-13 0.79 0.59 0.35 
cg05772903 DSEL 10.00 3.25E-19 6.34E-13 0.31 0.59 0.34 
cg14112503 SMUG1 -9.86 8.22E-19 1.46E-12 -0.07 -0.58 0.34 
cg01183122 KCNE1 9.84 9.74E-19 1.59E-12 1.47 0.58 0.34 
cg10814298 DYRK1B 9.75 1.73E-18 2.60E-12 1.18 0.58 0.33 
cg14298503 ATP2C2 9.67 2.93E-18 4.09E-12 1.00 0.57 0.33 
cg10334928 STON2 9.64 3.67E-18 4.78E-12 0.91 0.57 0.33 
cg20809402 TOB2P1 9.56 6.25E-18 7.63E-12 1.76 0.57 0.32 
cg01733572 DNAAF1 9.38 1.98E-17 2.23E-11 0.18 0.56 0.32 
cg01970114 CUL7 -9.37 2.05E-17 2.23E-11 -0.04 -0.56 0.32 
cg10878397 STBD1 9.33 2.72E-17 2.80E-11 1.10 0.56 0.31 
cg04517722 B3GNT3 -9.28 3.79E-17 3.71E-11 -0.09 -0.56 0.31 
cg04940991 STON2 9.18 6.96E-17 6.48E-11 0.90 0.55 0.31 
cg21694531 SLC30A8 9.11 1.12E-16 9.91E-11 0.18 0.55 0.30 
cg06514344 B3GNT3 -9.10 1.23E-16 1.01E-10 -0.08 -0.55 0.30 
cg08105571 ATP1A4 9.09 1.24E-16 1.01E-10 2.26 0.55 0.30 
cg21558508 SAR1B -8.95 3.04E-16 2.37E-10 -0.06 -0.54 0.30 
cg16024904 B3GNT3 -8.95 3.16E-16 2.37E-10 -0.09 -0.54 0.30 
cg03847020 ARFGAP3 8.87 5.34E-16 3.86E-10 0.32 0.54 0.29 
cg15292565 SMUG1 8.86 5.67E-16 3.95E-10 0.26 0.54 0.29 
cg21220670 ETV7 8.83 6.72E-16 4.53E-10 0.86 0.54 0.29 
cg09228454 SMUG1 8.81 7.55E-16 4.92E-10 0.24 0.54 0.29 
cg02657438 STON2 8.65 2.05E-15 1.29E-09 0.94 0.53 0.28 
cg08183066 DDX19B -8.47 6.64E-15 4.06E-09 -0.04 -0.52 0.27 
cg21546132 PLA2G2F 8.39 1.09E-14 6.43E-09 0.57 0.52 0.27 
cg25703541 GSTT1 -8.38 1.12E-14 6.47E-09 -0.22 -0.52 0.27 
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CpG Gene Statistic p-value FDR Beta r r2 
cg22424213 SGSM1 8.35 1.33E-14 7.34E-09 1.03 0.52 0.27 
cg08105571 CASQ1 8.35 1.35E-14 7.34E-09 2.19 0.52 0.27 
cg07612367 CUL7 -8.32 1.67E-14 8.81E-09 -0.04 -0.52 0.27 
cg02912161 CUL7 -8.31 1.80E-14 9.26E-09 -0.04 -0.52 0.27 
cg25148230 CDCP1 8.28 2.06E-14 1.03E-08 0.99 0.51 0.26 
cg19778253 SCCPDH 8.27 2.22E-14 1.08E-08 0.75 0.51 0.26 
cg04645556 TMX4 8.21 3.24E-14 1.55E-08 0.21 0.51 0.26 
cg18955493 SGSM1 8.20 3.48E-14 1.62E-08 0.72 0.51 0.26 
cg25519284 TUSC3 -8.15 4.63E-14 2.10E-08 -0.07 -0.51 0.26 
cg17385905 TRPV5 -8.14 5.13E-14 2.28E-08 -0.99 -0.51 0.26 
cg04905092 NARS2 8.11 5.92E-14 2.57E-08 0.39 0.51 0.26 
cg17879066 PGM1 8.10 6.25E-14 2.65E-08 0.58 0.51 0.26 
cg09153565 AQP3 -8.07 7.72E-14 3.21E-08 -0.46 -0.50 0.25 
cg04139874 PDGFD 7.96 1.53E-13 6.22E-08 0.37 0.50 0.25 
cg24483411 IL36RN 7.95 1.59E-13 6.33E-08 1.16 0.50 0.25 
cg26251192 ACOT1 7.94 1.68E-13 6.55E-08 0.14 0.50 0.25 
cg16744531 B3GNT3 -7.87 2.63E-13 1.01E-07 -0.10 -0.49 0.24 
cg18334211 PRKAG2 -7.86 2.76E-13 1.04E-07 -0.07 -0.49 0.24 
cg22131825 CUL7 -7.86 2.81E-13 1.04E-07 -0.03 -0.49 0.24 
cg05196621 THNSL2 7.83 3.27E-13 1.18E-07 0.66 0.49 0.24 
cg02216667 NOS1AP 7.80 3.85E-13 1.37E-07 0.83 0.49 0.24 
cg07203561 P2RX7 -7.73 5.99E-13 2.09E-07 -0.37 -0.49 0.24 
cg19768360 ST3GAL3 -7.72 6.19E-13 2.12E-07 -0.57 -0.49 0.24 
cg21211480 TMEM106A -7.71 6.81E-13 2.30E-07 -0.03 -0.49 0.24 
cg06967124 FLT4 7.68 8.23E-13 2.73E-07 1.02 0.49 0.24 
cg01358620 HEATR5A -7.66 9.08E-13 2.96E-07 -0.35 -0.48 0.23 
cg08526264 AQP11 -7.64 1.04E-12 3.33E-07 -0.15 -0.48 0.23 
cg00571421 CUL7 -7.62 1.14E-12 3.61E-07 -0.04 -0.48 0.23 
cg13054523 METRNL 7.59 1.35E-12 4.18E-07 0.52 0.48 0.23 
cg08986950 ERAP1 7.58 1.50E-12 4.59E-07 0.02 0.48 0.23 
cg11058900 CUL7 -7.50 2.39E-12 7.04E-07 -0.03 -0.48 0.23 
cg11794635 RAB6B 7.50 2.40E-12 7.04E-07 0.50 0.48 0.23 
cg15407162 ZKSCAN4 7.49 2.47E-12 7.04E-07 0.09 0.48 0.23 
cg00648558 GJB5 7.49 2.47E-12 7.04E-07 0.43 0.48 0.23 
cg17998522 PLA2R1 7.49 2.48E-12 7.04E-07 1.05 0.48 0.23 
cg22593405 HOXB2 7.46 3.02E-12 8.42E-07 0.42 0.47 0.23 
cg00832635 ZNF208 7.45 3.08E-12 8.49E-07 1.02 0.47 0.23 
cg12022967 ATP8A2 7.39 4.34E-12 1.18E-06 0.12 0.47 0.22 
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CpG Gene Statistic p-value FDR Beta r r2 
cg01040129 TOB2P1 7.37 5.14E-12 1.38E-06 0.15 0.47 0.22 
cg22247664 GSTM4 -7.35 5.49E-12 1.45E-06 -0.61 -0.47 0.22 
cg02323744 ATP2C2 7.33 6.34E-12 1.65E-06 0.19 0.47 0.22 
cg15127088 WNT7A 7.27 8.95E-12 2.30E-06 1.35 0.47 0.22 
cg05237429 CDCP1 7.27 9.18E-12 2.33E-06 0.94 0.47 0.22 
cg07054978 BTBD11 7.23 1.11E-11 2.78E-06 0.90 0.46 0.22 
cg26121234 WNT7A 7.21 1.26E-11 3.13E-06 1.38 0.46 0.21 
cg26335760 RAB6B 7.20 1.34E-11 3.27E-06 0.98 0.46 0.21 
cg25485560 MAP3K5 -7.19 1.45E-11 3.51E-06 -0.29 -0.46 0.21 
cg27540823 ERCC6 -7.17 1.56E-11 3.73E-06 -0.18 -0.46 0.21 
cg06243115 DSEL 7.17 1.60E-11 3.78E-06 0.25 0.46 0.21 
cg10490670 PIP5K1C 7.16 1.74E-11 4.05E-06 0.64 0.46 0.21 
cg09000199 CDCP1 7.15 1.78E-11 4.10E-06 0.40 0.46 0.21 
cg17125727 THSD7A 7.14 1.89E-11 4.30E-06 0.79 0.46 0.21 
cg18685394 CCK 7.14 1.94E-11 4.33E-06 1.26 0.46 0.21 
cg27563138 SLCO4A1 7.14 1.95E-11 4.33E-06 1.48 0.46 0.21 
cg10325053 TMX4 7.10 2.34E-11 5.14E-06 0.45 0.46 0.21 
cg20847471 B3GNT3 -7.09 2.48E-11 5.39E-06 -0.09 -0.46 0.21 
cg21968849 DDX19B -7.09 2.52E-11 5.42E-06 -0.04 -0.46 0.21 
cg26466773 DNAAF1 7.08 2.61E-11 5.54E-06 1.88 0.46 0.21 
cg05672540 TMX4 7.08 2.64E-11 5.54E-06 0.20 0.46 0.21 
cg04688366 THSD7A 7.08 2.72E-11 5.65E-06 0.15 0.46 0.21 
cg20809402 ZKSCAN4 7.06 3.02E-11 6.21E-06 0.28 0.45 0.21 
cg02359409 PEX6 -7.06 3.08E-11 6.28E-06 -0.05 -0.45 0.21 
cg14815361 PDLIM4 7.02 3.75E-11 7.55E-06 0.99 0.45 0.21 
cg08279665 ATP1A4 -7.00 4.11E-11 8.20E-06 -0.11 -0.45 0.20 
cg03438754 SGSM1 7.00 4.16E-11 8.21E-06 0.18 0.45 0.20 
cg03316864 B3GNT3 -7.00 4.34E-11 8.48E-06 -0.07 -0.45 0.20 
cg12294310 DSEL 6.98 4.70E-11 9.09E-06 0.08 0.45 0.20 
cg10840704 TACSTD2 6.97 4.99E-11 9.57E-06 0.55 0.45 0.20 
cg01743658 HEATR5A 6.96 5.18E-11 9.80E-06 1.14 0.45 0.20 
cg10325053 PLCB1 6.96 5.22E-11 9.80E-06 0.56 0.45 0.20 
cg21174128 PLCB1 6.93 6.14E-11 1.14E-05 0.09 0.45 0.20 
cg23459486 PLCB1 6.93 6.42E-11 1.18E-05 0.43 0.45 0.20 
cg12647020 ARFGAP3 -6.91 6.99E-11 1.28E-05 -0.04 -0.45 0.20 
cg24252262 CDH12 6.89 7.69E-11 1.39E-05 0.28 0.45 0.20 
cg06383401 IL36RN 6.88 8.25E-11 1.48E-05 0.39 0.45 0.20 
cg17846098 DNAAF1 -6.88 8.46E-11 1.50E-05 -1.04 -0.45 0.20 
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CpG Gene Statistic p-value FDR Beta r r2 
cg07303975 ARMS2 -6.86 9.39E-11 1.65E-05 -0.64 -0.44 0.20 
cg14343062 ERCC6 -6.84 1.04E-10 1.80E-05 -0.32 -0.44 0.20 
cg14909555 TMEM65 6.84 1.05E-10 1.80E-05 0.54 0.44 0.20 
cg25042239 CUL7 -6.84 1.05E-10 1.80E-05 -0.03 -0.44 0.20 
cg00364287 P2RX7 6.83 1.09E-10 1.85E-05 0.72 0.44 0.20 
cg03236032 DSEL 6.83 1.12E-10 1.89E-05 0.11 0.44 0.20 
cg01750053 DPYD 6.82 1.17E-10 1.96E-05 0.15 0.44 0.20 
cg08472247 DDX19B -6.81 1.22E-10 2.02E-05 -0.04 -0.44 0.20 
cg08377924 TMEM106A -6.75 1.76E-10 2.89E-05 -0.04 -0.44 0.19 
cg18061573 PGM1 6.67 2.65E-10 4.32E-05 0.56 0.43 0.19 
cg12556325 LRRC61 6.66 2.83E-10 4.58E-05 0.46 0.43 0.19 
cg02028568 SGSM1 6.63 3.37E-10 5.40E-05 0.17 0.43 0.19 
cg10034572 PLA2R1 6.62 3.58E-10 5.69E-05 0.56 0.43 0.19 
cg03318428 GRAMD4 6.60 3.95E-10 6.23E-05 0.38 0.43 0.19 
cg11011131 ARMS2 6.59 4.08E-10 6.38E-05 1.58 0.43 0.19 
cg27254924 LY6K 6.59 4.24E-10 6.58E-05 1.04 0.43 0.19 
cg18336854 TUSC3 6.59 4.28E-10 6.59E-05 0.62 0.43 0.19 
cg06288340 HPGD 6.58 4.47E-10 6.82E-05 0.84 0.43 0.18 
cg06755741 P2RX7 -6.56 4.97E-10 7.53E-05 -0.61 -0.43 0.18 
cg06289802 SLC9A3R1 6.54 5.56E-10 8.35E-05 0.44 0.43 0.18 
cg03992114 ATP11A 6.53 5.77E-10 8.61E-05 0.47 0.43 0.18 
cg11545871 IP6K3 6.52 5.99E-10 8.87E-05 0.11 0.43 0.18 
cg06061081 AQP11 6.51 6.45E-10 9.43E-05 0.12 0.43 0.18 
cg18569135 GAS7 6.51 6.51E-10 9.43E-05 0.26 0.43 0.18 
cg11704068 SLCO4A1 6.51 6.51E-10 9.43E-05 0.93 0.43 0.18 
cg24014795 STON2 6.51 6.63E-10 9.52E-05 0.41 0.43 0.18 
cg17762770 PGM1 6.50 6.96E-10 9.92E-05 0.60 0.43 0.18 
cg11012194 PSMD5 6.50 7.01E-10 9.93E-05 0.17 0.43 0.18 
cg18894440 CRISPLD1 6.48 7.77E-10 0.00011 0.21 0.42 0.18 
cg03698089 PLCB1 6.47 7.95E-10 0.00011 0.11 0.42 0.18 
cg17507371 GHR 6.47 8.05E-10 0.00011 0.49 0.42 0.18 
cg24624696 DSEL 6.47 8.07E-10 0.00011 0.13 0.42 0.18 
cg26141324 B3GNT3 -6.47 8.25E-10 0.00011 -0.08 -0.42 0.18 
cg14936846 DSG2 6.45 8.72E-10 0.00012 0.44 0.42 0.18 
cg17192247 MAPRE3 6.44 9.32E-10 0.00013 0.68 0.42 0.18 
cg23459486 TMX4 6.44 9.37E-10 0.00013 0.32 0.42 0.18 
cg08279665 CASQ1 -6.42 1.07E-09 0.00014 -0.10 -0.42 0.18 
cg24835545 KCNC4 6.41 1.10E-09 0.00014 1.02 0.42 0.18 
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CpG Gene Statistic p-value FDR Beta r r2 
cg27474431 IL36RN -6.41 1.10E-09 0.00014 -0.60 -0.42 0.18 
cg25094921 SLC17A5 6.40 1.15E-09 0.00015 0.41 0.42 0.18 
cg15808331 CDCP1 6.40 1.18E-09 0.00015 0.20 0.42 0.18 
cg03252829 KCNK17 -6.39 1.23E-09 0.00016 -0.15 -0.42 0.18 
cg16935597 TMC6 6.39 1.24E-09 0.00016 0.78 0.42 0.18 
cg11463696 DDX19B -6.37 1.35E-09 0.00017 -0.03 -0.42 0.18 
cg15623143 STARD5 -6.37 1.41E-09 0.00018 -0.04 -0.42 0.18 
cg09898793 KCNC4 6.36 1.43E-09 0.00018 0.82 0.42 0.17 
cg12089439 TUSC3 -6.36 1.47E-09 0.00018 -0.04 -0.42 0.17 
cg02408321 PDLIM4 6.35 1.50E-09 0.00018 0.58 0.42 0.17 
cg06454698 GRAMD4 6.35 1.50E-09 0.00018 0.34 0.42 0.17 
cg22462856 SMUG1 6.35 1.51E-09 0.00018 0.14 0.42 0.17 
cg17270927 CFL2 6.35 1.53E-09 0.00019 0.25 0.42 0.17 
cg07739179 NAGS 6.35 1.55E-09 0.00019 0.47 0.42 0.17 
cg02527190 SLC27A6 6.34 1.62E-09 0.00019 0.31 0.42 0.17 
cg06993952 CEP128 6.31 1.93E-09 0.00023 0.05 0.42 0.17 
cg07019869 STON2 6.31 1.94E-09 0.00023 0.42 0.42 0.17 
cg08089513 FAM3B 6.29 2.14E-09 0.00025 0.97 0.41 0.17 
cg11940318 CDCP1 6.29 2.17E-09 0.00025 0.38 0.41 0.17 
cg15026277 TMEM106A -6.27 2.33E-09 0.00027 -0.03 -0.41 0.17 
cg01703818 NARS2 6.27 2.37E-09 0.00027 0.34 0.41 0.17 
cg27426267 FAM118A 6.27 2.39E-09 0.00027 0.27 0.41 0.17 
cg07183362 LPCAT1 6.26 2.51E-09 0.00029 0.51 0.41 0.17 
cg08406047 PSMG1 6.26 2.52E-09 0.00029 0.28 0.41 0.17 
cg13330363 SPESP1 6.25 2.63E-09 0.00030 1.40 0.41 0.17 
cg15059622 PVR 6.24 2.73E-09 0.00031 0.32 0.41 0.17 
cg07876788 WDR91 6.24 2.78E-09 0.00031 0.54 0.41 0.17 
cg04861640 TOB2P1 -6.23 2.96E-09 0.00033 -0.13 -0.41 0.17 
cg02475902 MUC4 -6.21 3.21E-09 0.00035 -1.63 -0.41 0.17 
cg16485140 ZNF208 6.21 3.22E-09 0.00035 0.10 0.41 0.17 
cg10829629 SNCG 6.20 3.41E-09 0.00037 0.36 0.41 0.17 
cg02149965 VARS2 6.20 3.45E-09 0.00037 0.43 0.41 0.17 
cg11011131 HTRA1 6.20 3.49E-09 0.00038 0.92 0.41 0.17 
cg16712789 TMX4 6.19 3.55E-09 0.00038 0.04 0.41 0.17 
cg01660001 HEG1 6.18 3.85E-09 0.00041 0.63 0.41 0.17 
cg24940138 TMEM106A -6.16 4.19E-09 0.00045 -0.03 -0.41 0.17 
cg16347629 GJB5 6.11 5.37E-09 0.00056 0.84 0.40 0.16 
cg02589828 SAR1B -6.11 5.41E-09 0.00057 -0.05 -0.40 0.16 
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CpG Gene Statistic p-value FDR Beta r r2 
cg07606636 PIK3C2B 6.11 5.57E-09 0.00058 0.55 0.40 0.16 
cg07722372 SV2B 6.10 5.76E-09 0.00060 0.61 0.40 0.16 
cg15573406 SNX25 6.09 5.95E-09 0.00061 0.25 0.40 0.16 
cg16253157 AMIGO1 6.09 6.14E-09 0.00063 1.08 0.40 0.16 
cg26251585 THSD7A 6.08 6.38E-09 0.00065 0.56 0.40 0.16 
cg04041654 NCF2 6.08 6.54E-09 0.00066 0.32 0.40 0.16 
cg08526264 PAK1 -6.06 6.99E-09 0.00070 -0.04 -0.40 0.16 
cg23663999 PDGFD 6.06 7.14E-09 0.00072 0.43 0.40 0.16 
cg15371526 SGSM1 6.06 7.18E-09 0.00072 0.47 0.40 0.16 
cg18236464 PAPPA2 6.05 7.50E-09 0.00074 1.02 0.40 0.16 
cg01811895 CBLB -6.05 7.60E-09 0.00075 -0.09 -0.40 0.16 
cg08412750 FLT4 6.04 7.76E-09 0.00076 0.64 0.40 0.16 
cg05524458 ANKRD33B 6.04 7.80E-09 0.00076 0.78 0.40 0.16 
cg01067604 VAMP3 -6.03 8.12E-09 0.00079 -0.03 -0.40 0.16 
cg01691763 INPP5B 6.03 8.20E-09 0.00079 0.23 0.40 0.16 
cg11339420 DNAAF1 6.03 8.28E-09 0.00080 0.93 0.40 0.16 
cg19018267 PHYH -6.02 8.71E-09 0.00084 -0.12 -0.40 0.16 
cg25817165 CNDP2 -6.02 8.76E-09 0.00084 -0.05 -0.40 0.16 
cg07005960 METRNL 6.01 9.14E-09 0.00087 0.36 0.40 0.16 
cg08150575 CEACAM19 6.01 9.23E-09 0.00087 0.70 0.40 0.16 
cg10578851 HPCAL1 6.01 9.36E-09 0.00088 0.85 0.40 0.16 
cg26586567 CSMD1 5.99 1.02E-08 0.00096 0.29 0.40 0.16 
cg17834632 METRNL 5.98 1.10E-08 0.00102 0.45 0.40 0.16 
cg07078958 SH3BP5 5.97 1.15E-08 0.00106 0.06 0.40 0.16 
cg23105600 LRFN5 5.97 1.15E-08 0.00106 0.30 0.40 0.16 
cg19157819 SYNPO2L 5.97 1.15E-08 0.00106 0.54 0.40 0.16 
cg01514075 VAMP3 5.97 1.16E-08 0.00106 0.22 0.40 0.16 
cg00995241 PLCB1 5.97 1.16E-08 0.00106 0.08 0.40 0.16 
cg27356188 TPPP 5.96 1.20E-08 0.00109 0.47 0.40 0.16 
cg18291850 PLCB1 -5.95 1.23E-08 0.00111 -0.04 -0.40 0.16 
cg21119074 MBOAT1 -5.95 1.24E-08 0.00111 -0.22 -0.40 0.16 
cg22362405 KCNE1 5.93 1.38E-08 0.00123 0.53 0.39 0.16 
cg15092561 PWP2 5.93 1.41E-08 0.00125 0.10 0.39 0.16 
cg02339392 TOB2P1 -5.92 1.43E-08 0.00127 -0.18 -0.39 0.16 
cg17484874 STEAP3 -5.92 1.44E-08 0.00127 -0.12 -0.39 0.16 
cg24312582 ANXA4 5.91 1.52E-08 0.00134 0.35 0.39 0.15 
cg23332989 WDR91 -5.91 1.56E-08 0.00136 -0.51 -0.39 0.15 
cg15863052 LYPD5 5.90 1.65E-08 0.0014 0.33 0.39 0.15 
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CpG Gene Statistic p-value FDR Beta r r2 
cg16277399 ZNF559 5.88 1.76E-08 0.0015 0.06 0.39 0.15 
cg22963267 CACNG4 5.88 1.77E-08 0.0015 1.31 0.39 0.15 
cg27356188 CEP72 5.88 1.80E-08 0.0015 0.53 0.39 0.15 
cg20848186 ALOX5 5.88 1.80E-08 0.0015 0.15 0.39 0.15 
cg22131825 MRPL2 -5.87 1.85E-08 0.0016 -0.02 -0.39 0.15 
cg18382305 ASXL3 5.87 1.89E-08 0.0016 0.16 0.39 0.15 
cg17591198 PDP2 5.87 1.91E-08 0.0016 0.32 0.39 0.15 
cg03804409 GABRA4 5.87 1.94E-08 0.0016 0.80 0.39 0.15 
cg02557139 EXOC3L4 5.85 2.05E-08 0.0017 0.53 0.39 0.15 
cg15112803 RPS28 5.85 2.10E-08 0.0017 0.49 0.39 0.15 
cg06114320 HPCAL1 5.83 2.29E-08 0.0019 0.48 0.39 0.15 
cg07303975 HTRA1 -5.83 2.30E-08 0.0019 -0.34 -0.39 0.15 
cg21832243 TTC3 -5.82 2.44E-08 0.0020 -0.20 -0.39 0.15 
cg23088397 MYO1E 5.82 2.47E-08 0.0020 0.20 0.39 0.15 
cg15066323 KIF6 5.81 2.52E-08 0.0020 0.53 0.39 0.15 
cg15818787 POU6F2 5.81 2.52E-08 0.0020 0.35 0.39 0.15 
cg01502373 SGSM1 5.81 2.58E-08 0.0021 0.16 0.39 0.15 
cg04524477 TMEM106A -5.81 2.60E-08 0.0021 -0.05 -0.39 0.15 
cg16989380 CLDN16 5.80 2.66E-08 0.0021 0.60 0.39 0.15 
cg07881650 CRISPLD1 5.80 2.67E-08 0.0021 0.13 0.39 0.15 
cg21744026 PAPPA2 5.80 2.71E-08 0.0022 0.79 0.39 0.15 
cg08220966 SNCG 5.79 2.84E-08 0.0022 0.28 0.39 0.15 
cg03104820 TMX4 5.79 2.88E-08 0.0023 0.23 0.39 0.15 
cg05659314 S100A13 -5.79 2.91E-08 0.0023 -0.13 -0.39 0.15 
cg00598758 TBX20 5.78 2.95E-08 0.0023 0.09 0.39 0.15 
cg13045913 ZFYVE19 5.78 3.02E-08 0.0024 0.04 0.39 0.15 
cg07031334 POLE4 5.77 3.08E-08 0.0024 0.39 0.39 0.15 
cg08504942 B3GNT3 5.77 3.09E-08 0.0024 0.39 0.39 0.15 
cg12601575 SEC14L5 5.77 3.18E-08 0.0025 0.11 0.39 0.15 
cg01775802 RGS6 5.77 3.20E-08 0.0025 0.21 0.39 0.15 
cg27383876 PDGFD 5.76 3.37E-08 0.0026 0.19 0.38 0.15 
cg14473416 AQP3 -5.76 3.40E-08 0.0026 -0.85 -0.38 0.15 
cg08670210 RNF141 5.75 3.54E-08 0.0027 0.49 0.38 0.15 
cg14240646 MASTL -5.75 3.55E-08 0.0027 -0.11 -0.38 0.15 
cg16705185 CUL7 5.74 3.64E-08 0.0027 0.03 0.38 0.15 
cg27182293 ZNF611 -5.73 3.85E-08 0.0029 -0.03 -0.38 0.15 
cg04041654 ARPC5 5.73 3.95E-08 0.0029 0.22 0.38 0.15 
cg20972969 IL36RN 5.72 4.03E-08 0.0030 0.98 0.38 0.15 
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CpG Gene Statistic p-value FDR Beta r r2 
cg13500480 ADCY7 5.71 4.22E-08 0.0031 0.28 0.38 0.15 
cg03653088 GAS7 5.70 4.40E-08 0.0032 0.30 0.38 0.15 
cg25724460 PDK2 5.69 4.64E-08 0.0034 0.50 0.38 0.15 
cg15052791 ADORA1 5.69 4.80E-08 0.0035 0.17 0.38 0.14 
cg25940196 NPAS3 5.68 4.99E-08 0.0036 0.46 0.38 0.14 
cg10324502 PHYH 5.68 5.06E-08 0.0037 0.25 0.38 0.14 
cg19548479 TMEM106A -5.65 5.64E-08 0.0041 -0.03 -0.38 0.14 
cg08525331 GSTM3 -5.64 5.92E-08 0.0043 -0.57 -0.38 0.14 
cg07612367 MRPL2 -5.63 6.24E-08 0.0045 -0.02 -0.38 0.14 
cg19062298 AP2A2 5.63 6.49E-08 0.0046 0.39 0.38 0.14 
cg19205266 SMUG1 5.62 6.53E-08 0.0046 0.10 0.38 0.14 
cg22636562 CLDN8 5.62 6.56E-08 0.0046 0.17 0.38 0.14 
cg10997251 SAR1B -5.62 6.61E-08 0.0047 -0.04 -0.38 0.14 
cg10507231 PIK3C2B 5.62 6.62E-08 0.0047 0.43 0.38 0.14 
cg26143719 C1QTNF6 -5.62 6.69E-08 0.0047 -0.23 -0.38 0.14 
cg12454169 LCLAT1 5.61 7.12E-08 0.0050 0.06 0.38 0.14 
cg03187338 IP6K3 5.61 7.19E-08 0.0050 0.23 0.38 0.14 
cg01970114 MRPL2 -5.60 7.33E-08 0.0051 -0.02 -0.38 0.14 
cg08925307 LRRC8E -5.60 7.50E-08 0.0052 -0.04 -0.38 0.14 
cg14460291 CDH8 5.60 7.55E-08 0.0052 0.11 0.38 0.14 
cg06659352 LRCH1 5.60 7.56E-08 0.0052 0.31 0.38 0.14 
cg27569984 SNX25 5.59 7.66E-08 0.0052 0.19 0.38 0.14 
cg10645412 THSD7A 5.59 7.89E-08 0.0054 0.37 0.37 0.14 
cg01458219 ERVV-1 5.57 8.66E-08 0.0059 0.15 0.37 0.14 
cg04482110 TMEM106A -5.56 8.86E-08 0.0060 -0.02 -0.37 0.14 
cg19811108 TRIM45 5.56 8.97E-08 0.0060 0.55 0.37 0.14 
cg13427828 CCK 5.56 9.06E-08 0.0060 0.57 0.37 0.14 
cg02265785 PDGFD 5.56 9.15E-08 0.0061 0.06 0.37 0.14 
cg08371186 CDCA7L 5.56 9.17E-08 0.0061 0.08 0.37 0.14 
cg06851354 SMUG1 5.56 9.21E-08 0.0061 0.10 0.37 0.14 
cg12658012 ARPC5 5.55 9.53E-08 0.0063 0.70 0.37 0.14 
cg11588907 ASXL3 5.55 9.65E-08 0.0063 0.20 0.37 0.14 
cg18371928 FAM184A 5.54 1.00E-07 0.0065 0.78 0.37 0.14 
cg25054324 A4GALT 5.53 1.02E-07 0.0066 0.07 0.37 0.14 
cg15907473 GPR180 5.53 1.02E-07 0.0066 0.53 0.37 0.14 
cg17548735 UNC5CL 5.53 1.05E-07 0.0068 0.70 0.37 0.14 
cg17092624 ZNF197 5.53 1.05E-07 0.0068 0.05 0.37 0.14 
cg00148729 EVC2 5.53 1.06E-07 0.0068 0.06 0.37 0.14 
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CpG Gene Statistic p-value FDR Beta r r2 
cg04773602 SLC25A24 -5.52 1.09E-07 0.0070 -0.03 -0.37 0.14 
cg17548735 APOBEC2 5.52 1.10E-07 0.0070 0.60 0.37 0.14 
cg04645556 PLCB1 5.52 1.11E-07 0.0070 0.20 0.37 0.14 
cg08246428 ATP1A4 5.52 1.12E-07 0.0071 0.25 0.37 0.14 
cg22459204 ANKRD33B 5.52 1.12E-07 0.0071 0.69 0.37 0.14 
cg06575723 RRP7A -5.51 1.12E-07 0.0071 -0.19 -0.37 0.14 
cg07636681 INF2 -5.51 1.13E-07 0.0071 -0.69 -0.37 0.14 
cg19563574 METRNL 5.51 1.14E-07 0.0071 0.43 0.37 0.14 
cg15729878 STON2 5.51 1.14E-07 0.0071 0.76 0.37 0.14 
cg10279470 NOS1AP 5.51 1.16E-07 0.0072 0.40 0.37 0.14 
cg16814023 ACTR8 -5.51 1.16E-07 0.0072 -0.37 -0.37 0.14 
cg09395732 SLC6A11 5.50 1.21E-07 0.0075 0.94 0.37 0.14 
cg25966812 ZFYVE19 5.50 1.22E-07 0.0075 0.61 0.37 0.14 
cg05703009 OR52E4 5.49 1.24E-07 0.0076 0.36 0.37 0.14 
cg19090871 ECHDC3 -5.49 1.26E-07 0.0077 -0.55 -0.37 0.14 
cg15769472 FKBP2 -5.49 1.27E-07 0.0078 -0.05 -0.37 0.14 
cg05904364 RHOB -5.48 1.32E-07 0.0081 -0.30 -0.37 0.14 
cg09150320 STARD5 5.48 1.33E-07 0.0081 0.75 0.37 0.14 
cg21088514 KCNE1 5.47 1.37E-07 0.0083 1.15 0.37 0.14 
cg26293310 SAR1B -5.47 1.37E-07 0.0083 -0.03 -0.37 0.14 
cg26826957 ICA1 5.47 1.43E-07 0.0086 0.05 0.37 0.14 
cg23890469 SNCG 5.46 1.46E-07 0.0087 0.63 0.37 0.14 
cg07734889 CRISPLD1 5.46 1.49E-07 0.0089 0.28 0.37 0.13 
cg07925587 KRT80 5.46 1.49E-07 0.0089 0.52 0.37 0.13 
cg02475902 MUC20 -5.46 1.50E-07 0.0089 -0.84 -0.37 0.13 
cg23645969 DISP2 5.45 1.54E-07 0.0091 0.17 0.37 0.13 
cg22497336 KRT80 5.45 1.58E-07 0.0093 0.21 0.37 0.13 
cg20073882 NAA11 -5.44 1.60E-07 0.0094 -0.06 -0.37 0.13 
cg07709181 CRISPLD1 5.43 1.73E-07 0.010 0.26 0.37 0.13 
cg01146238 RTN4 -5.42 1.74E-07 0.010 -0.12 -0.37 0.13 
cg24752487 CYP1B1 5.42 1.76E-07 0.010 1.14 0.37 0.13 
cg13588073 PRKAG2 5.42 1.76E-07 0.010 0.27 0.37 0.13 
cg07436701 SNCG 5.42 1.79E-07 0.010 0.53 0.37 0.13 
cg07165018 STBD1 5.42 1.80E-07 0.010 0.75 0.37 0.13 
cg17417378 ZNF205 5.40 1.92E-07 0.011 0.20 0.36 0.13 
cg14449309 VPS16 5.40 1.95E-07 0.011 0.09 0.36 0.13 
cg13996963 TUSC3 -5.40 1.96E-07 0.011 -0.04 -0.36 0.13 
cg04896851 SGSM1 5.40 1.98E-07 0.011 0.28 0.36 0.13 
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CpG Gene Statistic p-value FDR Beta r r2 
cg02992311 FBXO27 -5.40 1.98E-07 0.011 -0.07 -0.36 0.13 
cg21116203 UNC13B 5.40 1.99E-07 0.011 0.18 0.36 0.13 
cg26876215 CDON 5.39 2.02E-07 0.011 0.07 0.36 0.13 
cg22636562 KRTAP26-1 5.39 2.05E-07 0.011 0.19 0.36 0.13 
cg12836958 SNX25 5.39 2.07E-07 0.012 0.13 0.36 0.13 
cg00738291 HNRNPA1L2 5.39 2.08E-07 0.012 0.08 0.36 0.13 
cg14815361 P4HA2 5.39 2.10E-07 0.012 0.48 0.36 0.13 
cg12658012 NCF2 5.38 2.12E-07 0.012 0.93 0.36 0.13 
cg12884378 EYA2 5.38 2.21E-07 0.012 0.76 0.36 0.13 
cg09355348 PLA2G2F 5.38 2.21E-07 0.012 0.40 0.36 0.13 
cg23147597 CEACAM19 5.37 2.26E-07 0.012 0.41 0.36 0.13 
cg01682590 WNT7A 5.37 2.32E-07 0.013 0.87 0.36 0.13 
cg01288797 GSTT1 -5.36 2.35E-07 0.013 -1.96 -0.36 0.13 
cg26792694 FAM118A 5.36 2.35E-07 0.013 0.47 0.36 0.13 
cg00773965 VAMP3 -5.36 2.36E-07 0.013 -0.03 -0.36 0.13 
cg13845211 ERAP2 -5.36 2.41E-07 0.013 -1.30 -0.36 0.13 
cg03147584 TRIM58 5.35 2.45E-07 0.013 0.46 0.36 0.13 
cg19539664 ZNF502 5.35 2.47E-07 0.013 0.04 0.36 0.13 
cg18763720 DYRK1B 5.35 2.52E-07 0.013 0.05 0.36 0.13 
cg09331735 DIP2C 5.35 2.55E-07 0.014 0.45 0.36 0.13 
cg03182620 DIP2C 5.35 2.56E-07 0.014 0.42 0.36 0.13 
cg08453609 POSTN 5.33 2.76E-07 0.015 0.17 0.36 0.13 
cg02019444 ITSN1 -5.33 2.79E-07 0.015 -0.20 -0.36 0.13 
cg26217936 COX6C -5.32 2.88E-07 0.015 -0.22 -0.36 0.13 
cg11692488 PDGFD 5.32 2.93E-07 0.015 0.06 0.36 0.13 
cg22413023 DSCAM 5.31 2.97E-07 0.016 0.25 0.36 0.13 
cg06161915 ARF5 -5.31 2.98E-07 0.016 -0.20 -0.36 0.13 
cg11377286 SDCBP 5.31 2.99E-07 0.016 0.29 0.36 0.13 
cg08163621 THAP3 -5.31 3.02E-07 0.016 -0.05 -0.36 0.13 
cg06543640 FZD10 5.31 3.03E-07 0.016 0.73 0.36 0.13 
cg01111341 RAB6B 5.31 3.08E-07 0.016 0.62 0.36 0.13 
cg18649503 TOB2P1 5.30 3.15E-07 0.016 0.31 0.36 0.13 
cg13644197 METRNL 5.30 3.16E-07 0.016 0.38 0.36 0.13 
cg22741977 FBXO32 -5.30 3.18E-07 0.016 -0.14 -0.36 0.13 
cg07971797 SGSM1 5.29 3.29E-07 0.017 0.28 0.36 0.13 
cg23432370 CLASP1 5.29 3.29E-07 0.017 0.16 0.36 0.13 
cg21158502 GCNT4 -5.29 3.32E-07 0.017 -0.20 -0.36 0.13 
cg17157956 RRP7A -5.28 3.46E-07 0.017 -0.21 -0.36 0.13 
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CpG Gene Statistic p-value FDR Beta r r2 
cg10395101 ANGPT2 -5.27 3.71E-07 0.019 -1.24 -0.36 0.13 
cg18362112 ISL1 5.26 3.78E-07 0.019 0.28 0.36 0.13 
cg07236562 MTSS1 5.26 3.82E-07 0.019 0.24 0.36 0.13 
cg12806347 METRNL 5.26 3.87E-07 0.019 0.79 0.36 0.13 
cg22990871 C2CD2 5.26 3.92E-07 0.019 0.34 0.36 0.13 
cg08741843 ZNF595 5.25 3.94E-07 0.019 0.05 0.36 0.13 
cg05703009 TRIM5 5.25 3.95E-07 0.019 0.07 0.36 0.13 
cg06773033 TOE1 5.25 4.04E-07 0.020 0.27 0.36 0.13 
cg12061069 RAP1GAP2 5.25 4.06E-07 0.020 0.32 0.36 0.13 
cg21999269 LAMB4 5.25 4.07E-07 0.020 0.54 0.35 0.13 
cg13927938 PIK3C2B 5.25 4.12E-07 0.020 0.35 0.35 0.13 
cg18806980 ATP2C2 5.24 4.20E-07 0.020 0.11 0.35 0.13 
cg01183703 ADCY2 5.24 4.20E-07 0.020 0.04 0.35 0.13 
cg14751503 OVCH2 5.24 4.21E-07 0.020 1.12 0.35 0.13 
cg01784614 CARD6 5.24 4.25E-07 0.020 0.32 0.35 0.13 
cg12793733 ATP10D -5.24 4.27E-07 0.020 -0.14 -0.35 0.13 
cg08220278 QSOX1 -5.24 4.28E-07 0.020 -0.20 -0.35 0.13 
cg08827804 KCNJ2 5.23 4.52E-07 0.021 0.23 0.35 0.13 
cg07435254 SNX25 5.22 4.56E-07 0.022 0.22 0.35 0.13 
cg09655116 CHMP4A -5.22 4.56E-07 0.022 -0.02 -0.35 0.13 
cg07816074 SH3TC1 5.22 4.58E-07 0.022 0.23 0.35 0.12 
cg05957477 TMX4 5.22 4.62E-07 0.022 0.23 0.35 0.12 
cg07277633 ATP2C2 5.22 4.64E-07 0.022 0.28 0.35 0.12 
cg22072332 MUC15 5.22 4.65E-07 0.022 0.67 0.35 0.12 
cg05940672 HPCAL1 5.21 4.78E-07 0.022 0.74 0.35 0.12 
cg12200611 AFF3 5.21 4.80E-07 0.022 0.52 0.35 0.12 
cg16537292 ERICH1 5.21 4.82E-07 0.022 0.31 0.35 0.12 
cg15274858 MYEF2 5.21 4.86E-07 0.022 0.25 0.35 0.12 
cg00766382 N4BP1 5.21 4.96E-07 0.023 0.17 0.35 0.12 
cg26880549 LYNX1 5.21 4.97E-07 0.023 0.35 0.35 0.12 
cg08150575 CBLC 5.20 5.08E-07 0.023 0.62 0.35 0.12 
cg13892059 DDX19B -5.19 5.35E-07 0.024 -0.03 -0.35 0.12 
cg07735013 IL36RN 5.19 5.42E-07 0.024 0.58 0.35 0.12 
cg20004389 ANO2 5.18 5.55E-07 0.025 0.57 0.35 0.12 
cg26293019 ISL1 5.18 5.60E-07 0.025 0.88 0.35 0.12 
cg11708454 CATSPERG 5.18 5.71E-07 0.025 0.06 0.35 0.12 
cg05747095 ETV7 -5.17 5.76E-07 0.026 -0.05 -0.35 0.12 
cg26446133 CNDP2 -5.17 5.91E-07 0.026 -0.15 -0.35 0.12 
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CpG Gene Statistic p-value FDR Beta r r2 
cg10057218 ORMDL3 5.16 6.03E-07 0.027 0.53 0.35 0.12 
cg08481002 NARS2 5.16 6.10E-07 0.027 0.17 0.35 0.12 
cg09489281 NNT -5.16 6.18E-07 0.027 -0.03 -0.35 0.12 
cg07474359 BTBD16 5.15 6.37E-07 0.028 0.90 0.35 0.12 
cg21256968 SCARB2 5.15 6.48E-07 0.028 0.53 0.35 0.12 
cg18318704 SAR1B -5.15 6.55E-07 0.028 -0.04 -0.35 0.12 
cg14590806 WDR91 -5.15 6.56E-07 0.028 -0.30 -0.35 0.12 
cg04422802 ZNF208 5.15 6.56E-07 0.028 0.08 0.35 0.12 
cg17589576 SLC6A15 5.14 6.66E-07 0.028 0.26 0.35 0.12 
cg21603313 CELF2 5.14 6.80E-07 0.029 0.06 0.35 0.12 
cg16125375 PPP2R2B 5.11 7.68E-07 0.032 0.51 0.35 0.12 
cg25940485 TRIM45 5.11 7.68E-07 0.032 0.42 0.35 0.12 
cg11268590 GLRB 5.11 7.74E-07 0.032 0.62 0.35 0.12 
cg21032929 FAM171B 5.11 7.93E-07 0.033 0.69 0.35 0.12 
cg02498072 SNX29 5.10 7.97E-07 0.033 0.44 0.35 0.12 
cg11316709 ZNF28 5.10 8.05E-07 0.033 0.15 0.35 0.12 
cg22990475 FAM98A 5.10 8.10E-07 0.033 0.18 0.35 0.12 
cg16280624 RPSA 5.10 8.25E-07 0.034 0.39 0.35 0.12 
cg08160623 OR52E4 5.10 8.29E-07 0.034 0.63 0.35 0.12 
cg15791719 LRRC8D 5.09 8.35E-07 0.034 0.27 0.35 0.12 
cg07321742 TMX4 -5.09 8.37E-07 0.034 -0.03 -0.35 0.12 
cg05871892 INPP1 -5.09 8.42E-07 0.034 -0.40 -0.35 0.12 
cg14960550 NAALAD2 5.09 8.47E-07 0.034 0.59 0.35 0.12 
cg10981598 NNAT -5.09 8.49E-07 0.034 -0.05 -0.35 0.12 
cg18642179 MGMT 5.09 8.53E-07 0.034 0.43 0.35 0.12 
cg10624236 TAF5L 5.09 8.56E-07 0.034 0.25 0.35 0.12 
cg05672540 PLCB1 5.09 8.58E-07 0.034 0.20 0.35 0.12 
cg19071879 AFF3 5.09 8.66E-07 0.034 0.16 0.35 0.12 
cg25785733 PPP2R2B 5.08 8.89E-07 0.035 0.80 0.35 0.12 
cg12689806 TRIM58 5.08 8.90E-07 0.035 0.07 0.35 0.12 
cg27060295 ICA1 5.08 9.00E-07 0.035 0.45 0.34 0.12 
cg25063515 CA10 5.07 9.31E-07 0.036 0.08 0.34 0.12 
cg14909555 TRMT12 5.07 9.43E-07 0.037 0.22 0.34 0.12 
cg04304338 ANKRD33B 5.07 9.53E-07 0.037 0.64 0.34 0.12 
cg13136938 HMOX1 5.07 9.57E-07 0.037 0.21 0.34 0.12 
cg01287209 FAM171B 5.06 9.68E-07 0.037 0.71 0.34 0.12 
cg08392199 LIFR 5.05 1.01E-06 0.038 0.19 0.34 0.12 
cg04220914 HEXB -5.05 1.04E-06 0.039 -0.54 -0.34 0.12 
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CpG Gene Statistic p-value FDR Beta r r2 
cg01964975 NOS1AP 5.05 1.05E-06 0.039 0.33 0.34 0.12 
cg18140087 SPINK5 5.04 1.09E-06 0.040 0.55 0.34 0.12 
cg13570585 PLCB1 5.04 1.10E-06 0.040 0.07 0.34 0.12 
cg03730490 PEPD 5.03 1.12E-06 0.041 0.04 0.34 0.12 
cg04907746 ARAP2 5.03 1.13E-06 0.042 0.20 0.34 0.12 
cg02007844 KCNJ8 5.03 1.14E-06 0.042 0.06 0.34 0.12 
cg14842970 ASXL3 5.03 1.15E-06 0.042 0.14 0.34 0.12 
cg08875710 DMXL1 5.02 1.17E-06 0.043 0.11 0.34 0.12 
cg26923577 STARD5 5.02 1.20E-06 0.044 0.40 0.34 0.12 
cg18349420 AQP11 5.02 1.20E-06 0.044 0.06 0.34 0.12 
cg15689283 PDGFD 5.01 1.23E-06 0.044 0.14 0.34 0.12 
cg01159543 CBR1 -5.01 1.25E-06 0.045 -0.05 -0.34 0.12 
cg05359525 SLC44A5 5.01 1.26E-06 0.045 0.39 0.34 0.12 
cg23858094 ASXL3 5.01 1.26E-06 0.045 0.09 0.34 0.12 
cg07528940 PDGFD 5.00 1.28E-06 0.046 0.23 0.34 0.12 
cg25339619 KCNJ2 4.99 1.33E-06 0.047 0.04 0.34 0.12 
cg03125975 PDGFD 4.99 1.33E-06 0.047 0.08 0.34 0.12 
cg01918824 TRIM45 4.99 1.36E-06 0.048 0.53 0.34 0.12 
cg20459238 SNCG 4.99 1.37E-06 0.048 0.53 0.34 0.12 
cg13919821 ZNF502 4.99 1.37E-06 0.048 0.35 0.34 0.12 
cg06765956 LRFN5 4.98 1.42E-06 0.049 0.08 0.34 0.11 
cg18452347 RPL23AP53 4.97 1.47E-06 0.050 0.27 0.34 0.11 
cg15534578 TRIB1 4.97 1.47E-06 0.050 0.02 0.34 0.11 
cg25256669 RAB27A -4.97 1.51E-06 0.051 -0.04 -0.34 0.11 
cg00529567 HEG1 4.95 1.64E-06 0.054 0.45 0.34 0.11 
cg23678338 ATP10D 4.94 1.68E-06 0.054 0.28 0.34 0.11 
cg05498539 SNCG 4.94 1.71E-06 0.055 0.66 0.34 0.11 
cg23098371 CDC7 -4.94 1.72E-06 0.056 -0.17 -0.34 0.11 
cg22492435 ABCC2 4.92 1.86E-06 0.059 0.46 0.34 0.11 
cg09818397 LRRC8B 4.91 1.96E-06 0.062 0.18 0.33 0.11 
cg21856508 CRISPLD1 4.90 2.06E-06 0.064 0.06 0.33 0.11 
cg00437019 STON2 4.90 2.08E-06 0.065 0.24 0.33 0.11 
cg13944161 CPVL -4.89 2.10E-06 0.065 -0.06 -0.33 0.11 
cg10202113 DPYD 4.89 2.15E-06 0.066 0.41 0.33 0.11 
cg09361995 TTPA 4.88 2.24E-06 0.068 0.66 0.33 0.11 
cg20379470 STON1 4.88 2.25E-06 0.068 0.18 0.33 0.11 
cg15248091 CBLB 4.84 2.65E-06 0.077 0.57 0.33 0.11 
cg14145653 INSL6 4.83 2.76E-06 0.079 0.55 0.33 0.11 
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CpG Gene Statistic p-value FDR Beta r r2 
cg26616283 THSD7A -4.83 2.80E-06 0.080 -0.06 -0.33 0.11 
cg11281200 FGF12 4.83 2.85E-06 0.081 0.10 0.33 0.11 
cg15400117 THSD7A -4.81 3.01E-06 0.084 -0.05 -0.33 0.11 
cg16511333 DPYD 4.78 3.54E-06 0.092 0.10 0.33 0.11 
cg05946623 CDH8 4.76 3.75E-06 0.096 0.10 0.33 0.11 
cg09662906 PDGFD 4.73 4.44E-06 0.11 0.10 0.32 0.10 
cg13721814 PEX13 4.68 5.43E-06 0.12 0.02 0.32 0.10 
cg05448511 TRIM24 -4.59 7.92E-06 0.15 -0.18 -0.32 0.10 
cg03930781 TRIM24 -4.55 9.59E-06 0.17 -0.22 -0.31 0.10 
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Table S3-2: Significant DHMRs 
 

Gene Chrom Start End p-value FDR Sidak # 
probes 

B3GNT3 chr19 17905332 17906310 2.74E-32 5.48E-
32 

0 8 

CDCP1 chr3 45181094 45182104 5.01E-27 2.51E-
26 

0 4 

CUL7 chr6 43021181 43022045 3.15E-18 3.15E-
18 

0 10 

DNAAF1 chr16 84209087 84209610 1.03E-19 3.08E-
19 

0 3 

KCNE1 chr21 35883571 35884377 7.09E-19 7.09E-
19 

0 5 

P2RX7 chr12 121570559 121571069 1.07E-18 1.07E-
18 

0 7 

SGSM1 chr22 25170368 25171163 1.21E-17 8.48E-
17 

0 3 

SMUG1 chr12 54577268 54577736 1.96E-27 5.88E-
27 

0 4 

TOB2P1 chr6 28234525 28234681 4.34E-20 1.74E-
19 

0 4 

PSMD5 chr9 123606119 123606676 6.80E-17 6.80E-
17 

1.11E-
16 

4 

TMEM106A chr17 41363502 41364122 7.73E-17 7.73E-
17 

3.33E-
16 

12 

IL36RN chr2 113825068 113825528 3.40E-16 6.81E-
16 

4.44E-
16 

3 

NOS1AP chr1 162346511 162346614 5.07E-16 1.01E-
15 

4.77E-
15 

3 

ANKRD33B chr5 10565679 10566783 5.74E-14 5.74E-
14 

2.40E-
14 

3 

JAK3 chr19 17905332 17905967 1.76E-14 1.76E-
14 

4.65E-
14 

7 

DDX19B chr16 70332878 70333125 2.40E-14 2.40E-
14 

8.84E-
14 

7 

RNF39 chr6 30038720 30039477 9.50E-15 9.50E-
15 

1.43E-
13 

21 

ERCC6 chr10 50746568 50746730 3.72E-14 3.72E-
14 

1.46E-
13 

3 

MRPL2 chr6 43021181 43021777 7.52E-14 7.52E-
14 

1.50E-
13 

8 

IL36RN chr2 113819714 113820091 1.04E-13 1.04E-
13 

1.86E-
13 

5 
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Gene Chrom Start End p-value FDR Sidak # 
probes 

TMX4 chr20 8228450 8229346 1.71E-12 7.71E-
12 

3.31E-
13 

4 

SAR1B chr5 133967994 133968722 2.64E-13 2.64E-
13 

3.40E-
13 

10 

VAMP3 chr1 7831168 7832358 1.02E-12 1.02E-
12 

7.68E-
13 

7 

CHMP4A chr14 24682303 24682695 3.51E-13 3.51E-
13 

1.05E-
12 

5 

TOB2P1 chr6 28192457 28192602 2.08E-13 4.16E-
13 

2.14E-
12 

3 

IER3 chr6 30711138 30711681 9.87E-14 9.87E-
14 

2.23E-
12 

12 

STON2 chr14 81864623 81865008 5.46E-12 1.27E-
11 

3.43E-
12 

4 

SNCG chr10 88717364 88717927 4.15E-12 1.25E-
11 

4.51E-
12 

5 

ARMS2 chr10 124220091 124220505 9.78E-12 2.93E-
11 

1.77E-
11 

4 

ABL1 chr9 133709810 133710065 4.76E-12 4.76E-
12 

1.83E-
11 

3 

CACNG4 chr17 64959947 64960283 4.39E-11 4.39E-
11 

7.48E-
11 

4 

DYRK1B chr19 40324226 40325156 6.66E-11 6.66E-
11 

1.00E-
10 

12 

HTRA1 chr10 124220091 124220505 1.11E-10 3.32E-
10 

2.04E-
10 

4 

ADCY7 chr16 50300289 50300493 7.25E-11 7.25E-
11 

3.15E-
10 

6 

S100A13 chr1 153588548 153590244 8.97E-10 8.97E-
10 

6.15E-
10 

9 

THSD7A chr7 11871535 11871844 1.02E-09 1.70E-
09 

9.57E-
10 

4 

ATP1A4 chr1 160159453 160160767 1.57E-09 1.57E-
09 

1.29E-
09 

13 

PANK1 chr10 91352963 91353163 5.52E-10 5.52E-
10 

1.33E-
09 

3 

C2 chr6 32055370 32055630 3.41E-11 3.41E-
11 

1.87E-
09 

10 

AFF3 chr2 100722022 100722208 5.49E-10 5.49E-
10 

2.20E-
09 

3 

ZNF559 chr19 9488238 9488548 6.89E-10 6.89E-
10 

2.20E-
09 

3 

TUSC3 chr8 15397637 15398334 1.59E-08 1.59E-
08 

2.86E-
09 

7 
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Gene Chrom Start End p-value FDR Sidak # 
probes 

DSEL chr18 65296234 65296540 9.50E-11 1.40E-
10 

3.03E-
09 

3 

ETV7 chr6 36355542 36356245 2.48E-09 2.48E-
09 

3.19E-
09 

11 

PIK3C2B chr1 204459579 204459648 2.10E-10 2.10E-
10 

3.24E-
09 

5 

ASXL3 chr18 31020973 31021066 1.82E-09 3.65E-
09 

4.06E-
09 

3 

CATSPERG chr19 38794514 38794665 5.37E-10 5.37E-
10 

4.29E-
09 

5 

WDR91 chr7 134854206 134854552 3.10E-09 3.10E-
09 

5.08E-
09 

6 

ZBTB45 chr19 59024830 59024900 4.92E-10 4.92E-
10 

5.76E-
09 

3 

SNCG chr10 88719848 88720026 1.72E-09 2.58E-
09 

5.92E-
09 

3 

MMP24 chr20 33865797 33866065 1.67E-09 1.67E-
09 

6.39E-
09 

3 

LYNX1 chr8 143858414 143858637 8.85E-10 1.77E-
09 

6.63E-
09 

6 

NOP10 chr15 34631062 34631365 4.91E-09 4.91E-
09 

6.73E-
09 

3 

NOS1AP chr1 162350943 162351058 9.18E-10 9.18E-
10 

7.11E-
09 

4 

AQP11 chr11 77299805 77300118 2.96E-09 2.96E-
09 

7.21E-
09 

4 

TMX4 chr20 8638883 8639259 1.73E-08 2.60E-
08 

7.97E-
09 

5 

OR52E4 chr11 5841482 5841689 2.13E-09 2.13E-
09 

8.13E-
09 

3 

CASQ1 chr1 160159453 160160767 1.12E-08 1.12E-
08 

9.28E-
09 

13 

CBR1 chr21 37442104 37442386 5.73E-09 5.73E-
09 

1.22E-
08 

6 

CCDC62 chr12 123258736 123259331 7.46E-09 7.46E-
09 

1.55E-
08 

10 

SLC25A24 chr1 108742232 108742425 1.09E-08 1.09E-
08 

2.52E-
08 

4 

HPCAL1 chr2 10470114 10470466 9.94E-09 1.99E-
08 

2.93E-
08 

5 

ERAP2 chr5 96210230 96210395 1.17E-08 1.17E-
08 

3.05E-
08 

3 

XDH chr2 31637552 31637850 2.28E-08 2.28E-
08 

3.28E-
08 

3 
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Gene Chrom Start End p-value FDR Sidak # 
probes 

RABAC1 chr19 23578679 23578687 1.53E-11 1.53E-
11 

4.12E-
08 

3 

ZFP57 chr6 29631227 29631322 3.96E-10 3.96E-
10 

4.44E-
08 

3 

PDK2 chr17 48179239 48179460 1.40E-08 1.40E-
08 

9.36E-
08 

4 

EDEM2 chr20 34242979 34243250 3.03E-08 3.03E-
08 

1.09E-
07 

3 

HOXB2 chr17 46622012 46622155 1.45E-08 1.45E-
08 

1.48E-
07 

4 

ZNF208 chr19 22815701 22815854 9.89E-08 1.48E-
07 

1.54E-
07 

3 

SMUG1 chr12 54558274 54558300 3.12E-09 4.68E-
09 

1.68E-
07 

3 

SH3BP5 chr3 15311021 15311270 5.54E-08 5.54E-
08 

1.79E-
07 

4 

CALCOCO1 chr12 53693769 53694019 2.81E-08 2.81E-
08 

1.82E-
07 

6 

C2CD2 chr21 43374476 43374651 3.13E-08 3.13E-
08 

1.96E-
07 

3 

TRIM58 chr1 248083146 248083215 2.98E-08 1.19E-
07 

2.13E-
07 

3 

SLC27A1 chr19 17905589 17905836 4.34E-08 4.34E-
08 

2.75E-
07 

5 

ERGIC3 chr20 34242979 34243250 8.39E-08 8.39E-
08 

3.15E-
07 

3 

STARD5 chr15 81588069 81588309 1.47E-07 1.47E-
07 

3.38E-
07 

4 

SLCO4A1 chr20 61288142 61288352 4.36E-08 4.36E-
08 

3.59E-
07 

3 

RHOB chr2 20650578 20650793 1.44E-07 1.44E-
07 

3.70E-
07 

3 

TRAPPC4 chr11 43918794 43918833 4.07E-10 4.07E-
10 

3.74E-
07 

6 

MED1 chr17 37608096 37608295 5.54E-08 5.54E-
08 

4.05E-
07 

3 

ZNF229 chr19 44429318 44429628 1.12E-07 1.12E-
07 

4.80E-
07 

3 

ZNF100 chr19 863054 863245 6.88E-09 6.88E-
09 

5.36E-
07 

4 

B4GALT4 chr3 118948906 118949199 3.96E-07 3.96E-
07 

5.53E-
07 

4 

PDGFD chr11 103815860 103816170 6.61E-07 1.19E-
06 

5.69E-
07 

4 



 

   
   

                                                                                                                                                     97  

 

Gene Chrom Start End p-value FDR Sidak # 
probes 

SLC6A15 chr12 85307131 85307599 2.05E-06 2.05E-
06 

6.01E-
07 

6 

PRH1-PRR4 chr12 11322362 11322617 3.11E-08 3.11E-
08 

6.14E-
07 

3 

TRIM58 chr1 248005038 248005247 3.07E-07 4.09E-
07 

7.24E-
07 

3 

PLCB1 chr20 8229198 8229346 4.10E-07 6.14E-
07 

7.66E-
07 

3 

CDC42BPA chr1 226856447 226856528 5.84E-08 6.82E-
08 

7.94E-
07 

3 

PURA chr5 139493546 139493681 8.76E-08 8.76E-
08 

8.10E-
07 

6 

KATNB1 chr16 202482 202566 4.02E-09 4.02E-
09 

8.79E-
07 

3 

KRT81 chr12 52305261 52305476 2.24E-07 2.24E-
07 

1.33E-
06 

5 

TTLL4 chr2 219576383 219576540 1.52E-07 1.52E-
07 

1.53E-
06 

3 

GPNMB chr7 23285742 23285804 1.98E-07 1.98E-
07 

1.62E-
06 

3 

FCHO1 chr19 17905589 17905836 3.07E-07 3.07E-
07 

2.05E-
06 

5 

LY6K chr8 143782868 143782974 8.28E-09 8.28E-
09 

2.31E-
06 

3 

PHLDB1 chr11 2019624 2019737 7.52E-09 7.52E-
09 

2.38E-
06 

7 

P4HA2 chr5 132200490 132200667 6.65E-07 6.65E-
07 

3.22E-
06 

5 

CCDC124 chr19 17905589 17905836 6.45E-07 6.45E-
07 

4.48E-
06 

5 

ATF6B chr6 32055447 32055630 3.47E-07 3.47E-
07 

2.75E-
05 

6 

CCL28 chr5 43040998 43041153 9.42E-06 9.42E-
06 

2.82E-
05 

3 

STK19 chr6 30158059 30158091 1.76E-07 1.76E-
07 

7.95E-
05 

3 

SPN chr16 30124803 30124905 6.26E-05 6.26E-
05 

0.00082 3 

LAT2 chr7 27209197 27209282 1.41E-05 1.41E-
05 

0.0028 4 

BIRC5 chr17 75446431 75446593 0.0031 0.0031 0.027 5 
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Abstract 
 
5-hydroxymethylcytosine (5hmC), is formed through oxidation of 5-methylcytosine (5mC), and 
is found on the cytosine base of cytosine-phosphate-guanine (CpG) dinucleotides. Though it is 
believed to mainly serve as a transient intermediate in the DNA demethylation pathway, recent 
evidence suggests that 5hmC may play a functionally relevant role. Here, we have conducted an 
epigenome-wide association study (EWAS) to assess the association between placenta 5hmC, 
obtained through parallel bisulfite and oxidative bisulfite modification of DNA and array based 
assessment, and newborn birthweight using the Rhode Island Child Health Study (RICHS). We 
also also assess whether correction of 5mC data through the removal of the 5hmC signal impacts 
the observed results from traditional epigenome-wide studies that rely on BS modification-based 
5mC assessment alone. We identified 5hmC at one CpG in the CUBN gene to be significantly 
associated with birthweight (FDR < 0.05) and demonstrate that expression of that gene was also 
associated with birthweight. Comparison of EWAS effect estimates showed between 
5hmC+5mC and 5mC results indicate strong correlation (r = 0.77, p < 0.0001). Our study 
identified little evidence to suggest the 5hmC in the placenta is related to birthweight, and that 
traditional assessment of 5mC through bisulfite modification alone provides an accurate 
assessment of the state of CpG specific DNA methylation in the placenta.  
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Introduction 
 Low birthweight is associated with increased infant mortality, as well as morbidity later 

in life[1, 2]. Similarly, high birthweight is associated with an increased risk of adverse health 

outcomes in developing children and later in life[2, 3]. The placenta is the interface between 

mother and fetus. It plays a critical role in fetal growth and newborn growth outcomes through 

its functions of facilitating gas-, waste-, and nutrient-exchange, as well as growth factor and 

hormone production[4-7]. Placental function can be influenced through genetic variation as well 

as in response to the environment experienced in pregnancy. Epigenetic variation can be useful 

in understanding functional variation in the placenta[8-10].  

 5-methylcytosine (5mC) is one of the most abundant epigenetic modifications in the 

genome. It represents the addition of a methyl group to the 5th carbon position of an 

unmethylated cytosine, usually in the context of a cytosine-phosphate-guanine (CpG) 

dinucleotide[11-13]. As a functional epigenetic mark, 5mC plays a crucial role in genomic 

imprinting[14, 15], inactivation of the X-chromosome[16, 17], and transposon repression[18, 

19]. When localized to gene promoters, 5mC generally leads to transcriptional repression[20-23]. 

5-hydroxymethylcytosine (5hmC) is produced via the oxidation of 5mC by ten-eleven 

translocation (TET) methylcytosine dioxygenases[24-27]. 5hmC is highly enriched in the bodies 

of transcriptionally active genes, promoters, and enhancers[28-30].Though it is commonly 

believed that 5hmC acts as a transient intermediate on the demethylation pathway[24, 31, 32], 

recent evidence suggests that it may also be a stable epigenetic modification[33].  

 Previous work has shown that DNA methylation patterns in the placenta are significantly 

associated with infant growth[34], with methylation at a number of individual CpG sites 

demonstrating a significant association with birthweight[35, 36]. Despite these advancements 

linking placental methylation, birthweight, and long-term health outcomes[37, 38], there has 



 

   
   

                                                                                                                                                     104  

 

been limited assessment of associations between 5hmC in placenta and birthweight[24, 39]. 

Further, because the most common assay to estimate DNA methylation, bisulfite (BS) 

conversion, does not discriminate between 5mC and 5hmC at a given cytosine, most existing 

studies of placental DNA methylation assess combined CpG methylation. In this study, we aim 

to assess associations between placental 5hmC on birthweight, using parallel assays of total CpG 

methylation (BS-converted) and 5mC only (oxidative BS-converted) data, to provide a more 

complete picture of the placenta epigenome and its relationship with birthweight. As a secondary 

analysis, we will also assess if the correction of 5mC data through the removal of the 5hmC 

signal impacts the observed results from traditional epigenome-wide studies that are based on 

bisulfite modification-based 5mC assessment alone.  

Methods 
 
Study cohort 
 The Rhode Island Child Health Study (RICHS) is a mother-infant cohort recruited from 

the Women & Infants Hospital of Rhode Island (WIH, Providence, RI) between September 2009 

and July 2014. Mothers were 18-40 years old, with no history of psychological disorders and in 

good physical health, who delivered singleton infants free of any significant health complications 

at term ( ≥ 37 gestational weeks). The cohort was oversampled for infants born small for 

gestational age (SGA, <10% 2013 Fenton Growth Curve[40]) and large for gestational age 

(LGA, >90% 2013 Fenton Growth Curve). Infants who were appropriate for gestational age 

(AGA, 10-90% 2013 Fenton Growth Curve), and matched for gestational age and maternal age 

were also enrolled. The current study focuses on a subset of enrolled participants with available 

placental 5mC and 5hmC data (n = 213).  

Study covariates collection 
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Participant data, including study covariates of infant sex, birthweight, birth length, and 

gestational age were extracted from medical records. Parity was obtained from responses to an 

interviewer-administered questionnaire. Birthweight and birth length were Z-score transformed. 

Parity was recoded as ≥ 1 or 0 based on any documented history of pregnancy (≥ 1 if mother 

indicated “yes” when asked if they have ever been pregnant before, 0 if they indicated “no”).  

Placental sample collection  
 Placental parenchyma was obtained from the fetal side of the placenta, 2 cm from the 

umbilical cord insertion site, within 2 hours of delivery. All samples were free of maternal 

decidua. Samples were placed in RNALater at 4ºC for at least 72 hours, then removed, snap 

frozen in liquid nitrogen, pulverized, and stored at -80oC until extraction. 

CpG methylation and hydroxymethylation profiling and RNA-sequencing of transcripts 
 Assessment of methylation and hydroxymethylation were performed as previously 

described[41]. Briefly, BS and oxBS conversion were performed on placenta-derived DNA, 

following manufacturer’s optimized protocol of 500 ng gDNA input for downstream analysis 

using the Infinium HD Methylation EPIC Bead Chip Array.  

Quality control, normalization, and filtering of methylation and hydroxymethylation data 

were all performed in the R statistical programming language. We excluded cross-reactive 

probes, probes that failed p-value detection (p > 0.01) in > 1 sample, and probes overlapping 

single nucleotide polymorphisms (SNPs). Three samples were removed due to failing sex quality 

control or failing detection p-value (p-value > 0.01 in >2% of probes). Normalization of 

background correction, dye bias, and functional normalization for each of the BS and oxBS-

converted samples was performed via the R/Bioconductor package minfi (version 

1.24.0; https://www.bioconductor.org)[42]. Methylation data were exported from minfi as β-

values, which represent the proportion of methylated alleles at each CpG. Standardization across 

https://www.bioconductor.org/
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probe types was performed using subset quantile within-array normalization (SWAN)[43]. 

Estimation of 5hmC and 5mC β-values was performed using OxyBS (version 1.5)[44]. β-values 

were adjusted for batch effects using the ComBat function in R/Bioconductor package sva[45], 

and then logit-transformed (M-values) to better approximate a normal distribution[46]. Finally, 

we limited our analysis to autosomal probes only, to limit any confounding due to sex-specific 

effects. The final filtered, normalized dataset contained 689,815 CpGs.  

RNA-sequencing on placenta-derived RNA was performed as previously described[47]. 

Read counts were corrected for library size differences across samples using the trimmed mean 

of M-values (TMM) method. The data were then log2-transformed to account for the mean-

variance relationship, resulting in transcript counts expressed as log2TMM. 

Cell type estimations 
Proportions of constituent putative cell types in each placental sample were estimated 

using the reference-based R/Bioconductor package planet[48]. From this, we identified six 

putative constituent cells in placental samples: 1) trophoblasts, 2) stromal cells, 3) Hofbauer 

cells, 4) endothelial cells, 5) nucleated red blood cells, and 6) synctiotrophoblasts (STBs). 

Robust linear modeling of 5hmC and 5mC data (EWAS) 
 To assess the association between site-specific 5mC, 5hmC, and birthweight, we utilized 

an epigenome-wide association study (EWAS) design to fit a robust linear model, regressing 

methylation M-values for each CpG on birthweight Z-score for all samples. This was performed 

three separate times, one for each type of available methylation data: 1) 5hmC (generated by 

OxyBS), 2) 5mC (5mC only, generated from oxBS conversion), and 3) 5mC+5hmC (generated 

from BS conversion). EWAS were performed on samples with available 5hmC, 5mC+5hmC, 

and 5mC data, as well as available birthweight Z-score and covariate data (n = 213). Covariates 

were identified through univariate associations (p < 0.05) with any of the top 5 principal 
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components (PCs) for 5mC+5hmC data and birthweight Z-score. Model covariates included 

infant sex, birth length Z-score, gestational age, parity (coded as 0 = first pregnancy, ≥ 1 = not 

first pregnancy), and STB proportions. This analysis was performed in R. Models were run using 

the MASS R package[49]. Estimates, standard errors, test statistics, and p-values were generated 

using the lmtest R package[50]. The covariance matrix of the estimated coefficients was supplied 

using the sandwich R package[51, 52]. False discovery rates (FDR) were calculated using the 

Benjamini-Hochberg procedure[53]. CpGs with an FDR < 0.05 were considered differentially 

hydroxy/methylated with birthweight.  

Statistical tests 
 Correlations between methylation and hydroxymethylation proportions, as well as 

between EWAS effect estimates were performed through a Pearson’s correlation using the stats 

R package[54]. We employed a multivariate linear regression model to test for associations 

between 5hmC proportions at any significant CpGs and expression of genes annotated to the 

CpGs, fitting a model of: (log2TMM transcript counts) = B0 + B1(5hmC proportions) + 

B2(gestational age) + e. We employed a similar model to test for associations between transcript 

counts and birthweight z-score: (Birthweight Z-score) = B0 + B1(log2TMM transcript counts) + 

B2(gestational age) + e. Gestational age was included as a covariate in both models due to known 

associations between placental methylation, birthweight, gene expression, and gestational 

age[55-58].   

CpG annotation 
 To identify associated genes, gene compartments, and CGI regions for the CpGs in our 

analyses, we annotated CpGs using the R/bioconductor package 

IlluminaHumanMethylationEPICanno.ilm10b2.hg19[59]. The available gene compartments from 

the EPIC array package are as follows: 1) 5’ untranslated region (5’ UTR), 2) transcription start 
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site (TSS) 200 (1-200 base pairs (bp) upstream of the TSS), 3) TSS 1500 (201-1500 bp upstream 

of TSS), 4) 1st exon, 5) gene bodies, 6) exon boundaries, and 7) 3’ untranslated region (3’ UTR). 

CpGs that lie in either the TSS200 or TSS1500 intervals were combined into one “TSS” 

category. CpGs were annotated to a CGI “shore” if they were within a 2 kb region flanking a 

CGI, a CGI “shelf” if they were within a 2 kb region flanking a CGI shore, or an “open sea” if 

they were not within a shore, shelf, or CGI. CpGs were annotated to chromatin-based genomic 

categories using ChromHMM[60], derived from the Roadmap Epigenomics Consortium[61] and 

applied to fetal placenta cells. 

Results 
 
Sample cohort 
 This study analyzed data from 213 mother-infant pairs from the RICHS cohort, with the 

maternal and fetal participant characteristics displayed in Table 4-1. The sample consisted 

mainly of white mothers (77.1% of samples), with a mean age of 30.9 years. There was a nearly 

equal distribution of male and female infants (51.1% vs. 48.9%, respectively), with a mean 

gestational age of 39.4 weeks, and by study design, the sample was over-represented by infants 

born SGA (14.3%) and LGA (30.9%). 

Hydroxymethylation and methylation associations with birthweight  
 Comparison of individual CpG 5hmC and 5mC+5hmC β-values showed very little 

correlation (r = 0.34, p < 0.0001; Fig. 4-1A), while comparison of 5mC and 5mC+5hmC β-

values showed a much stronger concordance (r = 0.99, p < 0.0001) (Fig. 4-1B). 

 Using an EWAS of 5hmC data, and controlling for infant sex, birth length Z-score, 

gestational age, parity, and STB proportions, we identified 5hmC at one CpG demonstrating an 

epigenome-wide significant association with birthweight (β = 1.68, standard error (SE) = 0.31, 

FDR = 0.04; Fig. S4-1A). For the EWAS using 5mC+5hmC data, we identified methylation at 
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617 CpGs associated with birthweight (Fig. S4-1B). Among these 617 CpGs, we found a higher 

proportion trending positively with birthweight (n = 571, 92.5%). 5mC EWAS identified 41 

significant CpGs (Fig. S4-1C), with 28 of these (68.3%) positively associated with birthweight.  

 Comparison of effect estimates between the 5mC+5hmC EWAS and the 5hmC EWAS 

revealed very little correlation (r = 0.23, p < 0.0001) (Fig. 4-1C). 5hmC EWAS estimates were 

also far more variable, ranging from -1.76 to 1.81, while estimates resulting from 5mC+5hmC 

EWAS showed less variability, ranging from -0.53 to 0.49 (Fig. 4-1C). Comparing the effect 

estimates from the 5mC+5hmC EWAS to the 5mC EWAS showed greater concordance (r = 

0.77, p < 0.0001; Fig. 4-1D), and similarity in the ranges of effect estimates with 5mC EWAS 

estimates ranging from -0.49 to 0.55, similar to 5mC+5hmC range of -0.53 to 0.49 (Fig. 4-1D). 

The one CpG with 5hmC significantly associated with birthweight did not reach significance in 

the 5mC+5hmC EWAS (FDR = 0.57; Fig 4-1C). We identified 15 CpGs whose methylation was 

significantly associated with birthweight in both the 5mC+5hmC EWAS and 5mC EWAS (Fig. 

4-1D).    

 The single CpG showing differential 5hmC associated with birthweight was annotated to 

the body of the CUBN gene on chromosome 10. The CpG was located in a CGI “open sea”, and 

was annotated to an enhancer region and within a DNAse hypersensitivity site. Investigation of 

the relationship between 5hmC proportions at this CpG and RNA transcript counts of CUBN 

revealed no significant association between 5hmC and expression of CUBN (β = 5.98, p = 0.4). 

Assessment of CUBN transcript counts with birthweight Z-score, though, did reveal a significant 

positive association between CUBN expression and birthweight (β = 0.51, p < 0.001; Fig. 4-2).   

Discussion 
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In this study, we assessed the relationships between DNA hydroxymethylation with 

birthweight in 213 placentae from a US mother-infant cohort, as well as examined how 

correction for 5hmC in 5mC data could impact EWAS results. We used data from parallel 

bisulfite- and oxidative bisulfite-treated placental samples to estimate the proportion of 5hmC at 

more than 600,000 individual CpG sites for each sample, and a rigorous statistical approach to 

assess associations of individual CpG 5-hydroxymethylcytosine proportion with infant 

birthweight, independent of infant sex, birth length Z-score, gestational age, parity, and STB 

proportions.  

 We found 5hmC at one CpG (cg12867894) to be significantly associated with 

birthweight (β = 1.68, standard error (SE) = 0.31, FDR = 0.04) (Fig. S4-1A), with increased 

5hmC proportions at this locus associated with increased birthweight. This CpG is found on 

chromosome 10 in the body of the CUBN gene. CUBN encodes Cubilin, a plasma membrane 

receptor that aids in vitamin D metabolism[62, 63]. CUBN has been implicated in previous 

placenta-birthweight studies; one study[63] assessed the associations between genetic variants in 

placenta-derived DNA and birthweight, and identified three variants at the CUBN locus to be 

associated with low birthweight, independent of sex, race, and gestational age. A murine 

model[64] showed that Cubilin acts as a binding partner for galectin-3 (encoded by Lgals3) in 

the placental-fetal membrane, and dysregulation of placental Lgals3 has been shown to be 

associated with a number of pregnancy complications including intrauterine growth 

restriction[65]. This would suggest that reduced expression of CUBN could impact its ability to 

effectively bind Lgals3, which in turn could lead to growth restriction and lower birthweight, and 

our study adds to that evidence demonstrating that placental samples with higher CUBN 

expression were associated with larger birthweight infants (Fig. 4-2).   
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 The lack of significant birthweight-associated CpGs in the 5hmC EWAS may indicate 

that 5hmC does not play a role in controlling the function of the placenta for its role in fetal 

growth. This lack of association could also be driven by the low proportions of 5hmC and its 

limited variability in the placenta. Previous studies have shown that 5hmC is about 10-fold less 

abundant than 5mC across the genome[66], with a prior placental 5hmC study[41] showing 

limited levels of 5hmC at each CpG. Additionally, the larger estimates we observed in the 5hmC 

EWAS (in comparison to estimates from the 5mC+5hmC and 5mC EWAS’s) are also in line 

with the limited variability of 5hmC and thus limited power to detect effects of a smaller 

magnitude. Studies with a larger sample size would be needed to more comprehensively assess 

associations between placental 5hmC and birthweight, as well as other outcomes.  

 As a secondary analysis, we also assessed the influence of 5hmC in an EWAS using BS-

converted methylation data alone (5mC+5hmC data). We identified 617 CpGs with differential 

methylation associated with birthweight in the 5mC+5hmC EWAS (Fig. S4-1B), and CpG sites 

of differential methylation in the 5mC EWAS (Fig. S4-1C). Significant differential methylation 

of fifteen CpGs overlapped between the 5mC+5hmC and 5mC EWAS analyses (Fig. 4-1D), 

although generally the effect estimates were highlight correlated (r=0.77). The limited identified 

associations between 5hmC and the high correlation of effect estimates and beta values of 5mC 

data coming from either traditional bisulfite modification or oxidative bisulfite modification 

taken together suggests that the majority of the signal in 5mC+5hmC EWAS in the placenta is 

from 5mC.  

 The findings of this study should be interpreted in the context of its limitations. This is an 

observational study where placental methylation and birthweight were both measured at birth. 

Thus, it is difficult to determine the directionality of this relationship. Additionally, methylation 



 

   
   

                                                                                                                                                     112  

 

and birthweight were measured at term, and thus we cannot conclude that our results represent 

this observed relationship throughout development. Lastly, the RICHS cohort consists mostly of 

healthy, white mothers from the New England region of the United States, and thus these 

findings may not be generalizable to more diverse populations.  

 To our knowledge, this study provides one of the only examinations of 5hmC in the 

placenta and its relationship to birthweight. Utilizing parallel bisulfite and oxidative bisulfite 

methods and array-based assessments allowed us to also elucidate an exclusive 5mC signal at 

each CpG, and to perform a robust multi-EWAS analysis to explore not only 5hmC’s association 

with birthweight, but also if it is a significant artifact in EWAS of DNA methylation.  

Conclusion 
 DNA methylation has been linked to the development and function of the placenta 

throughout gestation, as well as long-term health outcomes, and this prenatal programming may 

manifest as the phenotype of birthweight. Here, we have shown that placental 

hydroxymethylation at the CUBN gene is associated with birthweight. While 5hmC is not absent 

in the placenta, we have provided evidence that correction of 5mC data through the removal of 

the 5hmC signal does not substantially impact the results obtained from using only BS-converted 

placenta DNA. Though additional studies are required to develop a more complete understanding 

of the associations between placental hydroxymethylation, methylation, and birthweight, these 

findings serve as a good stepping stone for researchers who aim to further investigate this 

relationship. 
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Tables 

  
 RICHS (n = 213) 
Maternal characteristics  
Age in years (mean, SD) 30.9 (4.8) 
Educational attainment (n, %)a  

High school or less 32 (15.0) 
Post-high school or junior college 104 (48.8) 

College 77 (36.2) 
Self-reported race/ethnicity (n, %)  

Asian 10 (4.7) 
Black 12 (5.6) 
Indian 2 (0.9) 

More than one race 3 (1.4) 
Unknown/not reported 19 (8.9) 

White 167 (78.4) 
Primigravida (n, %) 51 (23.9) 
Infant characteristics  
Age in weeks (mean, SD) 39.4 (1.0) 
Birthweight in grams (mean, SD) 3,540.5 (663.7) 
Birthweight category (n, %)b  

SGA 32 (13.0) 
AGA 117 (54.9) 
LGA 64 (30.0) 

Birthlength in cm (mean, SD) 50.6 (2.7) 
Sex (n, %)  

Male 109 (51.2) 
Female 104 (48.8) 

Table 4-1: RICHS participant demographics 
aTwo subjects with missing maternal education level. 
bInfants born with birthweight percentile ≤ 10% (small for gestational 
age [SGA]), 10-90% (appropriate for gestational age [AGA]), and ≥ 
90% (large for gestational age [LGA]) 
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Figures 
  

Figure 4-1: Comparison of placental hydroxymethylation and 
methylation β-values and resulting EWAS effect estimates. Comparison of 
A) 5hmC and B) 5mC β-values with 5mC+5hmC β-values. 5mC+5hmC data was obtained 
through BS-conversion of placental-derived DNA, while 5mC data was obtained through 
oxBS conversion. 5hmC data was obtained from maximum likelihood estimation of 
combined BS and oxBS data. β-values are represented as mean β-value for each CpG 
across all placental samples. Red line represents 1:1 correlation between β-values. 
Pearson’s correlation coefficient (R) and corresponding p-value from correlation between 
β-values are shown. Comparison of C) 5hmC EWAS estimates and D) 5mC EWAS 
estimates with 5mC+5hmC EWAS estimates. Each EWAS was fit with the following 
model: (5h/mC) = β0 + β1(Birthweight Z-score) + β2(Infant sex) + β3(Birthlength Z-score) 
+ β4(Gestational Age) + β5(Parity) + β6(STB Proportions) + ε. Blue point in panel C 
represents CpG that met significance (FDR < 0.05) in 5hmC EWAS, while orange, green, 
and purple points in panel D represent CpGs that meet significance in 5mC+5hmC EWAS, 
5mC EWAS, and in both EWAS’s, respectively. 

A B 

C D 

R = 0.77, p < 0.0001  R = 0.23, p < 0.0001  

R = 0.99, p < 0.0001  R = 0.34, p < 0.0001  

FDR < 0.05  5mC+5hmC FDR < 0.05 
5mC FDR < 0.05 
Both FDR < 0.05 
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Figure 4-2: Association between placental CUBN expression 
and infant birthweight Z-score. CUBN expression is represented as 
log2TMM transcript counts. Blue line represents linear regression model: 
(Birthweight Z-score) = β0 + β1(CUBN log2TMM) + β2(Gestational Age) + ε. 
Resulting effect estimate (β) and p-value are shown. 

β = 0.51, p < 0.001  
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Supplemental Figures 
  

Figure S4-1: EWAS’s between placental A) 5hmC, B) 
5mC+5hmC, and C) 5mC with birthweight Z-score. On the y-and-x-
axes, -log10(FDR) in the association of each CpG with birthweight Z-score and 
effect estimates, or the change in methylation or hydroxymethylation M-value per 
every one unit increase in birthweight Z-score, are shown respectively. Dashed red 
line represents FDR < 0.05 (Benjamini-Hochberg correction method), with 
colored points above lines representing CpGs that met significance cutoff.  
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Chapter 5 – Summary, Limitations, Future Directions, and Conclusions 
 

Summary 
Investigating the epigenetic landscape of placental 5hmC and its associations with gene 

expression and birthweight may provide insight into the epigenetic underpinnings of the 

DOHAD hypothesis. Fetal stressors resulting from maternal health and behaviors, and 

environmental exposures during pregnancy have been implicated in placental dysfunction[1-3]. 

However, abnormal placental pathologies are rare within the general population[4], and may not 

account for many of the gestational and longitudinal health outcomes that are susceptible to 

developmental programming. Epigenetic mechanisms in the placenta may be attributed to the 

developmental programming of long-term health outcomes in offspring and may represent more 

subtle but potentially important changes to placental function[5-8]. This work addressed how 

placental epigenetic alterations, particularly methylation and hydroxymethylation, associate with 

gene expression and birthweight, thereby providing one possible mechanism for how long-term 

health outcomes are developmentally programmed.     

 In chapter two, we reviewed the literature on placental methylation and early-life 

environmental exposures to understand how various early-life environmental exposures, 

including air pollution, maternal smoking, chemicals, trace metals, socioeconomic adversity, and 

circadian disruption, impact DNA methylation in the placenta. From this review, various themes 

emerged, which included how variability in methylation tends to work in an exposure-specific 

framework. However, comparing methylation levels across exposures from these various studies 

helped identify several candidate genes that exhibit differential methylation. Many of the 

reviewed studies that assess exposures in a trimester-specific framework found larger effects on 

methylation when the exposure occurred during the 1st trimester. We also identified some themes 



 

   
   

                                                                                                                                                     123  

 

related to temporal changes across studies; earlier studies generally assessed methylation in a 

targeted, gene-specific framework, while later studies have utilized epigenome-wide, array-based 

technology. Results from this chapter shed light on the link between the maternal-placenta 

environment, epigenetic variation, and long-term health. 

 In chapter three, using methylation and expression data from term placenta samples, we 

examined the association of 5-hydroxymethylcytosine (5hmC) with gene expression. We found 

that proportions of 5hmC and transcript abundance were largely CpG location-specific; among 

CpGs in the body of the gene, 5hmC increased as transcription of the gene increased. Using 

expression quantitative trait hydroxymethylation (eQTHM) analysis, revealed an overall positive 

association between 5hmC and expression. We observed significant enrichment and depletion of 

eQTHMs in enhancers and active transcription start sites (TSS), respectively. Finally, we 

identified a number of differentially hydroxymethylated regions (DHMRs), contiguous regions 

of the genome where 5hmC may be playing a more functionally relevant role. This chapter 

further elucidated the limited functional capacity and distribution of 5hmC in the placenta.  

 In chapter four, we examined the association between placental hydroxymethylation, 

methylation, and birthweight using an epigenome-wide association study (EWAS) design. For 

methylation, we used 5mC+5hmC data (derived from bisulfite (BS) conversion), as well as 5mC 

data (derived from the removal of the 5hmC signal through oxidative bisulfite (oxBS) 

conversion). For hydroxymethylation, we used a maximum-likelihood technique to obtain only a 

5hmC signal at each CpG. Together, these methods allowed us to developed a better understand 

of the effect BS and oxBS conversion has on methylation signals. Using the 5hmC data, we 

identified hydroxymethylation at one CpG to be significantly associated with birthweight. This 

CpG lies in the body of the CUBN gene, which has been shown to play a role in fetal growth. 
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5mC+5hmC and 5mC data identified a larger number of CpGs where methylation was 

significantly associated with birthweight, with the majority of these signals being positively 

associated with birthweight. Though we only identified a few relationships between 5hmC and 

birthweight, we did show that the characterization of 5mC is not overtly biased by 5hmC 

content, as evidenced by the strong correlation in the 5mC+5hmC and 5mC EWAS results. 

Results from this chapter shed light on a potential link between placental hydroxymethylation, 

methylation, and birthweight, and how correction of the 5mC signal through the removal of the 

5hmC signal impacts the observed results from traditional epigenome-side studies that rely on 

BS-conversion to assess methylation.  

 This work adds to a growing body of scientific literature that sheds light on the placental 

epigenome, and suggests epigenetic modifications in the placenta may be playing a role in birth 

outcomes. We also contribute to the emerging field of environmental exposure influence of 

placental methylation, by reviewing how environmental exposures placed on the fetus 

throughout gestation may affect methylation. While previous work within this field has shown 

that various environmental perturbations during pregnancy can explain changes in the epigenetic 

signatures of the placenta[9-13], the review we conducted is among the first to examine these 

associations in a cross-environmental framework. Though recent work into the functionality of 

5hmC has elucidated its role in promoting gene expression through the blockage of 

transcriptionally repressive methyl CpG-binding (MBD) proteins [14-18], few studies have 

empirically examined its association with gene expression. A previous study[19] from our lab 

leveraged publicly available placental gene expression data to evaluate associations with 5hmC, 

though the work described in this thesis is unique in that it is the first to utilize paired sample 

RNA-sequencing data to characterize this association empirically. Additionally, previous work 
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has shown placental methylation may represent the link between genetic and environmental 

influence on birthweight[20-22], though these studies generally assess these associations using 

BS-converted methylation data, which does not discriminate between 5mC and 5hmC. By 

performing a parallel oxBS conversion method, coupled with a maximum-likelihood estimation 

to generate a separate 5hmC readout, this study is the first to separately assess the associations 

between placental 5hmC and 5hmC with birthweight. 

 The findings from this study play into a larger relevance in the field of placental 

epigenetics and clinical outcomes. The functional annotation performed throughout this work 

highlights the critical role 5hmC plays in placental gene expression, as well as the roles of 5mC 

and 5hmC in fetal birthweight. As a central vascular organ that oversees fetal growth and 

development throughout gestation[23-25], proper function of the placenta is essential to ensuring 

successful gestational outcomes. Thus, perturbations to the molecular processes that occur within 

the placenta, including and especially gene expression, may result in placental dysregulation and 

subsequent programming of long-term health effects. As fetal growth restriction has been linked 

to the development of chronic diseases throughout life[26], the findings from this study have far-

reaching clinical implications. Additionally, placental development and fetal growth occur 

concurrently, and thus disruptions in either process may pose adverse effects to the other. 

Finally, many of the environmental exposures that we assessed (and their subsequent impact on 

placental methylation) are common exposures within the general population, and thus the 

findings from this study are applicable to the larger population.  

 Given the relationships between early-life environmental exposures, placental 

methylation and function, and long-term health outcomes, it is reasonable to suggest that 

epigenetic mechanisms such as placental hydroxmethylation and methylation may serve as 
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potential mechanisms for the developmental programming of chronic diseases. This work also 

aids in clinical biomarker discovery, as placental hydroxymethylation and gene expression are 

molecular processes that were detected at birth. Thus, this may allow for development of early 

intervention methods to help alleviate long-term health effects. 

Overall Limitations 
 The findings from this study should be analyzed and interpreted within the context of its 

limitations. Firstly, the placental tissue samples that were utilized were limited to term placenta, 

which presents challenges in characterizing epigenetic associations that are prevalent during pre-

term periods, yet may still play a role in health outcomes. Given existing federal policies and 

health practices, as well as the fact that the placenta needs to be delivered, samples cannot be 

taken during pregnancy without significant risk to the mother and infant. Thus, placenta tissue 

collected at birth is usually the only safe, legal, and ethical way to study molecular mechanisms 

associated with fetal growth and development.  

 Environmental exposure assessment, hydroxymethylation, methylation, gene transcript 

abundance, and birthweight were all measured at birth, making it difficult to elucidate a temporal 

or causal relationships between these exposures, processes, and outcomes. However, given the 

aforementioned federal policies and practices, it is difficult to obtain placental biomarker 

readouts prior to birth, and thus measuring these molecular hallmarks at birth is often the only 

available option. 

 The placenta is a highly complex tissue composed of various cell types[27, 28], and thus 

many of the observed associations may be cell-type specific. To overcome this, we employed a 

reference panel and method through R package planet[29], to estimate sample-specific cellular 

compositions. Recent single-cell sequencing studies within the placenta have shown a large 

representation of trophoblasts[30], and planet estimates using RICHS data have validated these 
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results, with more than 90% of cells in the placental samples being cytotrophoblasts and 

synctiotrophoblasts (STBs). To account for this cell-type heterogeneity, we included STB 

proportions as a covariate in our eQTHM and birthweight models.  

 The RICHS cohort is largely composed of white mothers of European descent, and the 

majority of these mothers are from the New England area of the United States. Due to the limited 

racial and ethnic diversity of the cohort, these findings may not be applicable to more diverse 

populations.  

Future Directions 
The field of placental epigenetics is ripe for additional mechanistic understanding, and 

emerging studies utilizing newer, more robust techniques for measuring methylation will only 

aid in this promise. A placental epigenetic clock can now be used to estimate epigenetic 

gestational age, and the difference between this and the actual gestational age can be used as a 

relevant outcome[31]. Additionally, as sequencing technology is being used more often in 

placental studies, this can potentially increase coverage and reveal distinct methylation patterns 

in genomic regions that may be missed using array-based and targeted approaches.  

Additional methods can also be employed to better understand the causality related to the 

developmental origins of health and disease. As mentioned earlier, environmental exposure 

assessment, 5hmC and 5mC, and gene expression were all measured at birth, thereby limiting 

any causal inference. Incorporating repeated measures of exposure throughout the entire 

pregnancy period will allow for a better understanding of the impacts of exposure on these 

molecular processes, as well as help craft a more concrete link between exposures, placental 

methylation and function, and long-term health outcomes.  

In order to further our understanding of the molecular mechanisms underlying the 

developmental origins of health and disease, more work is needed to characterize the 
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relationships between placental methylation and additional early life health outcomes, such as 

blood pressure, BMI, and neurodevelopmental and psychiatric phenotypes that may manifest in 

late childhood or early adulthood. Conducting longer, longitudinal-based studies using screening 

and diagnostic tools would allow for detection of some of these later-developing phenotypes. 

Recruitment of larger sample sizes would also yield sufficient statistical power to conduct 

mediation analyses, where molecular processes such as gene expression can be seen as causal 

mediators on the path to developmental outcomes. Utilizing larger sample sizes would also help 

rectify the aforementioned diversity problem in this study, as more diverse samples will allow 

for interaction between genetic, epigenetic, and environmental sources of variation throughout 

the gestational period. 

Conclusions 
 The characterization of placental 5hmC and its association with gene expression suggests 

a role for this mark in the placenta, though its lack of association with birthweight indicates it 

still has unknown phenotypic consequences. Changes in the placental epigenome in response to 

gestational conditions has been implicated in placental dysregulation, which in turn can lead to 

adverse pregnancy outcomes including preeclampsia and fetal growth restriction, highlighting 

the potential role of these epigenetic mechanisms in the developmental programming of long-

term health outcomes. Here, we have characterized associations between placental 5hmC and 

expression, as well as 5hmC and 5mC with birthweight. Considering these modifications are 

detectable at birth, it is hopeful that the findings of this study may be utilized to aid in the 

development of early intervention methods to help alleviate long-term health effects. Combined, 

this will aid in the ongoing fight to reduce the global prevalence of chronic diseases.     
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