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Abstract 

 The cerebral cortex can be organized into dimensions of brain regions with shared 

genetic influences on cortical thickness. Such dimensions represent novel cortical phenotypes 

that can facilitate future genomic investigation into diverse and complex behavioral traits. 

Understanding the underlying organizational principles of genetic influences on brain structure is 

a critical step towards a mechanistic model of how specific genes influence brain anatomy and 

possibly mediate neuropsychiatric risk. The current study models the structure of genetic 

correlations among regional measures of cortical thickness using Genomic Structural Equation 

Modeling (Genomic SEM), a recently developed R package that applies the methods of 

structural equation modeling to genetic covariances. Factor analyses identified eight genomic 

brain factors that do not conform to traditionally defined brain structure boundaries and relate to 

a combination of biological and structural principles instead. Such findings highlight the 

complexity of genetic influences on cortical morphology and set the stage for elucidating the 

micro and macrostructural bases of complex traits such as personality and psychopathology.  
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Genomic Architecture of Regional Measures of Cerebral Cortical Thickness 

The brain is a plausible biological mechanism through which genes influence the 

development of complex behavior. As such, intermediate phenotypes along the pathway from 

genes to behavior, such as variation in brain structure, can facilitate future genomic investigation 

into diverse traits. Regional measures of cortical thickness (CT) are highly heritable (Winkler et 

al., 2010), influenced by many genetic variants, and have been reliably associated with important 

life outcomes (Grasby et al., 2020; Valk et al., 2020). Cerebral CT reflects cytoarchitectural 

characteristics (e.g., the density and arrangement of neurons) and demonstrates changes over the 

course of development (Valk et al., 2020). In addition, cerebral CT can be especially sensitive to 

regional disease-specific effects, including both factors such as neuroinflammation that can 

increase CT and factors such as excessive synaptic pruning that decrease CT (Valk et al., 2020).  

Heritability (h2) is the proportion of the total variation in a given phenotype within a 

population that is attributable to genetic variation (Smoller et al., 2019). Winkler et al. (2010) 

assessed the heritability of cortical thickness in a sample of families collected for genetic studies. 

Roughly 69% of the variation in average thickness across the cerebral cortex was found to be due 

to genetic variation in the population (h2 = 0.691 ± 0.119), and the average heritability of 

thickness in individual regions was 50% (ℎ2̅̅ ̅ = 0.501 ± 0.142; Winkler et al., 2010). Variability 

in genes can shape neural structure or activity in regions specialized for emotional or cognitive 

functions, which in turn should influence the expression of behavioral traits. In support of this 

proposition, Grasby et al. (2020) found that genetic variants that influence brain structure also 

shape brain function. Grasby et al. (2020) demonstrated that common genetic variants that 

influence regional CT also affect various behavioral traits such as general cognitive function, 

Parkinson’s disease, depression, neuroticism, ADHD, and insomnia. As such, CT represents a 
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particularly promising structural measure for investigating the neural products of genes that play 

a role in shaping complex behavior. Such investigations take a neurogenetic approach, which 

aims to better understand associations found between genetic variability, brain, and behavior.  

Neuroimaging genetics, a technique based on GWAS of in vivo brain measures, has been 

a uniquely valuable strategy for illustrating how genetic variants, including those that influence 

complex behavior, can modulate specific neural processes. The goal of genome-wide association 

studies (GWAS) is to find regions in the genome where variation affects a phenotype. Single 

nucleotide polymorphisms (SNPs) are the most frequently occurring genetic variation in the 

human genome and are important markers in many studies that link sequence variations to 

phenotypic changes (Kim & Misra, 2007). A SNP is a difference in the nucleotide base present at 

a particular site in the DNA sequence (i.e., the ‘C allele’ or the ‘T allele’ at a specific locus). 

Genotyped samples with neuroimaging data are now large enough to employ genome-

wide association studies (GWAS) as a means of identifying specific genetic variants associated 

with cortical thickness. In an ongoing effort to identify genetic variants that affect brain 

structure, the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium 

recently conducted genome-wide association meta-analyses of regional measures of cortical 

thickness across 50 cohorts (Thompson et al., 2019). Genome-wide significant loci associated 

with regional cortical thickness were located near genes that had been previously implicated in 

crucial neurodevelopmental processes including cell differentiation, migration, adhesion, 

myelination, and pruning (Grasby et al., 2020). Analysis of the genetic architecture of cortical 

thickness has potentially large clinical implications. For example, decreased cortical thickness in 

schizophrenia is thought to correspond to loss of neuropil (i.e., dendrites, axons, and synapses) in 

accordance with the synaptic overpruning hypothesis (Spocter et al., 2012). The synaptic 
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overpruning hypothesis of schizophrenia posits that exaggerated pruning of synapses during 

adolescence and young adulthood explains the onset of the disorder at that age (Keshavan et al., 

2020). Decreased thickness in schizophrenia has been suggested to target specific developmental 

modules, or communities of cortical areas with similar growth trajectories of cortical thickness 

(Alexander-Bloch et al., 2014). These modules develop in synchrony during normative 

adolescence and are likely composed of regions influenced by overlapping sets of genes.  

Genetic Correlations Between Brain Regions 

While it is theoretically possible that the genetic influences on different brain regions are 

independent of one another, evidence of such genetic autonomy is limited. Instead, the 

neurodevelopment of multiple structurally distinct brain regions is mediated by common genetic 

factors (Schmitt et al., 2007, 2010). Pleiotropy refers to the phenomenon whereby the same 

genetic variants influence two or more phenotypes, or in this case, influence the thickness of two 

or more cortical regions. A genetic correlation estimates the degree of overlap between the 

genetic influences on one trait and the genetic influences on a different trait. Patterns of inter-

regional genetic correlations form a complex, heterogeneous network and suggest widespread 

pleiotropic effects whereby the same genetic variants influence the thickness of multiple cortical 

regions (Alexander-Bloch et al., 2019). In addition, significant genetic correlations in measures 

of CT between nearby regions are largely convergent with postmortem correlations in gene 

expression (Alexander-Bloch et al., 2019; Hawrylycz et al., 2012). One of the goals of 

neuroimaging genetics is to define brain systems that are modulated by genetic variation, 

including groups of brain regions with shared genetic influences on CT via pleiotropy.  

Prior investigations of patterns of genetic correlations in cortical thickness between brain 

regions have demonstrated support for a higher-order genetic architecture of cortical thickness. 
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Chen et al. (2013) aimed to identify the boundaries of cortical divisions that are maximally 

genetically correlated (i.e., under control of shared genetic influences on cortical thickness). The 

authors used pair-wise genetic correlations between CT measures from every two points 

(vertices) on the cerebral cortex to generate genetically based subdivisions, which corresponded 

closely to meaningful structural and functional regions. Chen and colleagues determined the 

most appropriate number of clusters to explain patterns in the genetic correlation data was twelve 

based on maximizing quantitative indices of within-group cohesion and between-group 

separation. Cohesion reflects how closely related (genetically) the regions in a cluster are and 

separation determined how distinct or well-separated a cluster is from other clusters (Chen et al., 

2013). The twelve identified clusters were largely bilaterally symmetric (left and right 

hemispheres were mirror images) and spatially contiguous, such that within hemispheres clusters 

were composed of anatomically adjacent regions. While some cluster boundaries mapped onto 

traditionally parcellated regions (i.e., Brodmann’s areas) or gyral patterns, others did not.  

Alexander-Bloch et al. (2019) also investigated the higher-order genetic architecture of 

regional CT but did not assess the question of brain parcellation directly (i.e., how best to divide 

the brain into distinct regions). Alexander-Bloch et al. (2019) used graph theoretical techniques 

to model a matrix of genetic correlations between CT measures in 68 regions defined by the 

Desikan-Killiany atlas (Desikan et al., 2006). These are the same 34 regions as in the data from 

ENIGMA Consortium (Grasby et al., 2020) but with contralateral homologs (i.e., the same 

region represented in each cerebral hemisphere) as separate regions. The authors also found that 

modules were largely composed of bilaterally symmetric, spatially contiguous regions of the 

cortical surface. Only five regions had higher genetic correlations with any other region than 

with their homolog in the opposite hemisphere. Exceptions included canonical language areas 
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with known functional asymmetry in the inferior prefrontal cortex (e.g., the left bank of the 

superior temporal sulcus, left pars opercularis and triangularis) as well as the left rostral middle 

frontal gyrus and right caudal anterior cingulate (Alexander-Bloch et al., 2019).  

Unlike Chen et al. (2013), Alexander-Bloch et al. (2019) found optimal partitions across 

a wide range in terms of the number of modules, which suggests that there is no single number of 

clusters that most naturally represents the higher-order genetic structure of CT. Correlations in 

gene expression were higher within modules as opposed to between modules, and this was 

consistent across a range of modular resolutions (Alexander-Bloch et al., 2019). The authors 

interpret this multiscale modular structure as potentially indicative of a hierarchical organization 

where larger modules are at least partially composed of smaller modules across spatial scales.  

Overall, genetic correlations are strongly influenced by the anatomical distance between 

brain regions such that the relationship is approximated by a quadratic polynomial (Figure 1A; 

Alexander-Bloch et al., 2019). Anatomical networks at whole-brain and cellular scales as well as 

functional networks in several species consistently demonstrate conservation of wiring costs and 

small-world topology (Vértes et al., 2012). Various explanations have been proposed for the 

ontogeny of this spatial constraint, including the increasing metabolic cost of connections 

between brain regions with increasing anatomical distance (Bullmore & Sporns, 2009). The total 

metabolic cost of building a physical connection and maintaining communication between brain 

regions increases with distance (Bullmore & Sporns, 2009). Lineage relationships of cortical 

neurons generated from proximal parts of the developing neuroepithelium may also explain the 

observed spatial constraint (Hawrylycz et al., 2012). It is possible that shared genetic variance 

results when neurons that comprise two regions derive from neural stem cells in similar germinal 

zones within the proliferative neuroepithelium at similar time periods (Hawrylycz et al., 2012).  
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For a physically embedded network like the brain, the distance penalization process that 

maintains the principle of spatial contiguity could be mediated mechanistically by the distance-

related fall-off in concentration gradients of growth factors during fetal neurodevelopment 

(Alexander-Bloch et al., 2019). Animal studies support this molecular model of spatial 

constraints in genetic correlations. The mammalian cerebral cortex is divided into areas 

(arealization) early in neurogenesis by genes whose expression defines regional boundaries 

(Rubenstein & Rakic, 1999). The arealization of the cerebral cortex is initiated by patterning 

centers (e.g., anterior telencephalon) that secrete signaling molecules, which regulate the position 

and size of cortical areas (Rakic, 2009). This gradated expression of transcription factors in 

cortical progenitors is established by intrinsic genetic mechanisms. For example, fibroblast 

growth factor (FGF) has been shown to regulate the arealization of the cortex from a source in 

the anterior telencephalon (Rakic, 2009). Gene transfer in mouse embryos has been used to 

introduce a posterior source of FGF8, a member of the large FGF signaling family that is widely 

expressed during embryogenesis, and this perturbation profoundly changes the somatosensory 

map of the cerebral cortex (Fukuchi-Shimogori & Grove, 2001). This genetic manipulation leads 

to ectopic duplication of distinct cytoarchitectonic areas (i.e., somatosensory fields), supporting 

the role of signaling molecules in specifying positional identity during arealization. In addition, 

expression of the ID2 gene, a transcriptional regulator of cell differentiation in developmental 

pathways, respects the boundary of the sensory and motor cortex (Koppenhafer et al., 2022). 

  Regional specification in the cerebral cortex depends on interactions between intrinsic 

properties of cortical cells (i.e., gradients of signaling molecules established by gene expression) 

and input from subcortical structures such as the thalamus (Rubenstein & Rakic, 1999). 

According to the radial unit hypothesis, surface area is primarily driven by the number of radial 
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columns perpendicular to the surface of the brain, while cortical thickness is largely determined 

by the horizontal layers (including neurons and neuropil) during cortical development (Rakic, 

2009). Genetically established gradients are responsible for directing axonal projections toward 

target neurons, forming a scaffolding along which neurons that populate the cortex migrate 

radially to their final locations in cortical layers II–VI (Winkler et al., 2010). Early area 

patterning is subsequently refined into disjunctive cortical maps based on neural activity as well 

as sensory and thalamocortical connections (O’Leary et al., 2007).Thalamocortical axon (TCA) 

input relays sensory information from the periphery to the cortex, and the differentiation of many 

anatomical features that distinguish cortical areas (e.g., architecture and distribution of output 

projection neurons) depend to a large extent on TCA input (O’Leary et al., 2007). Area-specific 

TCA targeting is likely primarily controlled intracortically by graded axon guidance molecules.  

  Additional organizational principles underlying the pattern of genetic correlations for 

cortical thickness appear to reflect maturation timing, primary versus association cortices, a 

priori functional boundaries, and neuroanatomical connectivity (Alexander-Bloch et al., 2019; 

Chen et al., 2013; Chen et al., 2008). Sensorimotor regions and the frontal, temporal, and 

occipital poles mature before higher-order association areas. Chen et al. (2013) found that the 

regions that matured early were grouped together in the same genetic clusters, despite some 

spatially discontinuity (e.g., primary motor merged with somatosensory clusters, anterior 

temporal merged with ventral frontal clusters including the frontal pole, and the two occipital 

clusters merged). The cross-regional genetic patterning of cortical thickness also partially 

corresponds to neuroanatomical connectivity. High genetic correlations between distal, 

noncontiguous regions may relate to underlying long-range fiber tract structures (e.g., 

thalamocortical or intracortical connections; Rimol et al., 2010). The modules identified by 
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Alexander-Bloch et al. (2019) and Chen et al. (2013) largely respect a priori functional 

boundaries. In particular, the medial occipital, dorsolateral prefrontal, ventromedial prefrontal, 

and limbic systems were all relatively well delineated (Figure 1B; Alexander-Bloch et al. 2019).  

More recently, factor analyses have been used to formally model the genetic overlap 

across regional measures of cortical thickness within the Genomic Structural Equation Modeling 

(Genomic SEM) framework (Grotzinger et al., 2022). When conducting factor analyses, 

behavioral scientists often want to represent a large set of measured variables using a smaller, 

more parsimonious set of latent variables, while still preserving the essential information (e.g., 

correlations between variables) contained within the original data (Zwick & Velicer, 1982). 

Confirmatory factor analyses allow for the assessment of fit between observed data (i.e., a 

genetic covariance matrix) and an a priori theoretical model that specifies the hypothesized 

relations between latent factors and their observed indicator variables (i.e., individual brain 

regions; Loehlin & Beaujean, 2017). Genomic SEM is a recently developed statistical method 

that can model the shared genetic architecture of complex traits by applying traditional structural 

equation modeling principles to genetic covariances (Grotzinger et al., 2019). Characterizing the 

genetic correlations between brain regions serves as a step toward identifying novel phenotypes 

for genetic association studies of complex behavioral traits and providing etiological insights.  

The Current Study 

The current study capitalized on publicly available, summary-level data (i.e., summary 

statistics representing regression coefficients and their standard errors for the regression of each 

region’s cortical thickness on each SNP) from a recent GWAS of cortical thickness conducted by 

the ENIGMA Consortium (Grasby et al., 2020). The aim of the current study was to model 

genetic correlations among regional measures of cortical thickness with latent dimensions. In 
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addition, tentative neurobiological hypotheses are advanced for this dimensional structure with 

suggestions for future efforts to characterize the resulting anatomical genetic dimensions.  

 Although the ENIGMA Consortium analyzed both surface area and cortical thickness in 

their genome-wide meta-analysis of neuroimaging phenotypes, CT was chosen as the primary 

structural index as the spatial distribution of heritability for surface area follows a more 

homogeneous pattern (Winkler et al., 2010). A larger degree of regional variation on genetic 

influences suggests that regional differences in thickness are more likely to reflect underlying, 

regional cytoarchitectonic differences (Winkler et al., 2010). In addition, unlike for surface area, 

controlling for total thickness had only a modest effect on regional heritabilities for thickness 

measures (Eyler et al., 2012). This is suggestive of unique genetic influences on regional CT that 

are not shared with the genetic factors that determine overall thickness of the cortex.  

Genomic SEM was used to organize the 34 parcellated regions of cerebral cortex from 

the ENIGMA Consortium into anatomical genetic dimensions, or clusters of brain regions with 

shared genetic influences on cortical thickness via pleiotropy. Genomic SEM is a novel 

extension of linkage disequilibrium (LD) score regression that uses association statistics from 

genetic variants across the genome to estimate the genetic correlation between two traits of 

interest (Bulik-Sullivan et al., 2015). Genomic SEM fits structural equation models to genetic 

covariance matrices derived from GWAS summary statistics, without needing individual-level 

data. Genomic SEM also transforms different measures of effect sizes (e.g., beta, odds ratio) for 

harmonization across GWAS and importantly, accounts for the use of GWAS summary statistics 

from samples of varying and potentially unknown degrees of overlap (Grotzinger et al., 2019). 

A heatmap of genetic correlations estimated using Genomic SEM across the cortical 

regions in the current study indicated pervasive overlap in associated genetic variants (Figure 2). 
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Based on this widespread pleiotropy and previous attempts to represent regional variation in CT, 

functional specificity and model fit was not wholly sacrificed for parsimony. A series of 

exploratory factor analyses (EFAs) were first estimated, where the regions freely loaded on 2, 3, 

4, 5, 6, or 8 factors. All four variants of the 7-factor solution failed to run in Genomic SEM due 

to technical problems. A series of confirmatory factor analyses (CFAs) were then specified based 

on these EFAs and subsequently fit in Genomic SEM, for which model fits were compared in an 

effort to adjudicate between models and further examine those that appeared to best recapitulate 

the observed genetic correlations between regions. This analysis of the genome-wide architecture 

of cortical thickness is situated within and contributes to a larger effort to determine the 

biological, functional, and clinical relevance of varying levels of structural brain organization.  

Methods 

Summary Statistics: ENIGMA 

The current study utilized publicly available summary statistics provided by the 

ENIGMA Consortium (Grasby et al., 2020) for regional cortical thickness averaged across both 

hemispheres in European ancestry individuals. Summary statistics are defined as the aggregate p-

values and association data for every variant analyzed in a genome-wide association study 

(GWAS). Grasby et al. (2020) extracted measures of cortical thickness from in vivo whole-brain 

T1-weighted magnetic resonance imaging (MRI) scans using FreeSurfer MRI-processing 

software (Fischl, 2012). Global volume and mean CT were quantified for each individual across 

the whole cortex and cortical thickness was quantified within 34 distinct gyral-defined regions.  

Regional boundaries were defined by the Desikan-Killiany atlas, which partitions the 

cortex based on gyral anatomy labeled from between the depths of the sulci (Desikan et al., 

2006). Sulci are grooves or depressions in the cerebral cortex while gyri are ridges; together they 



 17 

GENOMIC ARCHITECTURE OF CORTICAL THICKNESS                     

  

  

  

make up the characteristic folded appearance of the brain in humans and other mammals 

(Campero et al., 2014). Although the definitions of the regions of the Desikan-Killiany atlas 

follow macroanatomic landmarks, not cytoarchitectonic (i.e., at the cellular level) landmarks, 

there is evidence suggesting a substantial overlap between them. Whole-brain histology of 

postmortem human brains and surface-based analyses have demonstrated that cortical folding 

patterns align with changes in the laminar distribution of neuronal cell bodies (cytoarchitecture) 

and are able to predict the localization of Brodmann’s areas (Fischl et al., 2008). The primary 

GWAS of regional measures included the global measure of mean thickness as a covariate to 

identify genetic variants specific to each region. The European ancestry sample included in the 

analyses conducted by Grasby et al. (2020) comprised 33,992 participants (23,909 from 49 

cohorts in the ENIGMA Consortium and 10,083 from the UK Biobank; see Table 1).  

Quality Control Procedures 

Quality control filters for estimating the genetic covariance and sampling covariance 

matrices followed the defaults in the Genomic SEM (Grotzinger et al., 2019) implementation of 

linkage disequilibrium score regression (LDSC; Bulik-Sullivan et al., 2015). These filters 

included restricting to SNPs present in HapMap3 with information scores (INFO) > .9 and a 

minor allele frequency (MAF) > 1%. Approximately 90% of sequence variation among 

individuals is due to common variants (Gibbs et al., 2003). HapMap 3 is the third phase of the 

International HapMap project, which aims to characterize sequence variants, their frequencies, 

and correlations between them (Gibbs et al., 2003). MAF refers to the frequency at which the 

less common allele at a locus occurs in a given population. A SNP’s MAF can have many effects 

on analyses as allele frequency is associated with the structure of local linkage disequilibrium 

(LD) and the relative size of the association statistic (i.e., regression coefficient for a SNP; 
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Coleman et al., 2016). LD refers to the nonrandom association of alleles at different loci, such 

that the alleles at neighboring polymorphisms on the same chromosome are associated within a 

population more often than if they were unlinked. SNPs were filtered by MAF as lower minor 

allele count limits the validity of conclusions drawn from analyses of SNPs.  

GWAS use commercial SNP microarrays to genotype large numbers of genetic markers. 

However, SNP microarrays currently can only genotype up to one million of the 9–10 million 

common SNPs in the assembled human genome (Lin et al., 2010). Imputation infers untyped 

SNPs from known genotypes based on haplotypes from the International HapMap project, 

boosting power by increasing SNP coverage (Lin et al., 2010). Specific haplotypes reflect unique 

combinations of SNPs that reside near each other on a chromosome and tend to be inherited 

together. Poorly imputed data were filtered out based on INFO scores, which relate to the quality 

of the imputation for each variant. The linkage disequilibrium (LD) scores used for LDSC were 

calculated using the European subsample of the 1000 Genomes phase 3 project (Auton et al., 

2015). SNPs in LD with a causal variant show elevated test statistics in association analysis 

proportional to the LD (measured by r2) with the causal variant (Bulik-Sullivan et al., 2015). The 

LD score of a variant is defined as the sum of LD r2 between that variant and all other variants in 

a 1 centimorgan (cM) region. LD scores excluded the major histocompatibility complex (MHC) 

region due to the high degree of LD outliers (i.e., loci with extensive long-range LD) in this 

region, as such outliers are known to have disproportionate and undue influence on estimates of 

genetic correlations produced from LD score regression (LDSC; Bulik-Sullivan et al., 2015).  

Linkage Disequilibrium Score Regression 

 For two highly polygenic traits, the cross-trait genetic correlation can be calculated as the 

correlation of the genetic effects of numerous SNPs on the two traits (Bulik-Sullivan et al., 
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2015). Genomic SEM is a novel extension of LD score regression, which can be used to produce 

SNP-based heritability estimates and calculate the genetic covariance among separate 

phenotypes using GWAS summary statistics (Grotzinger et al., 2019). SNP-based heritability 

measures the proportion of phenotypic variance explained by all measured SNPs in GWAS. The 

resulting variable in cross-trait LDSC is the product of two Z statistics (i.e., SNP effect size 

divided by its SE) for testing non-zero heritability, each taken from a GWAS of a distinct trait. 

Regression of these GWAS association statistics on LD scores partitions the statistics into a part 

that covaries with LD scores (the slope) and a part that does not (the intercept; Lee et al., 2018). 

The slope of LD score regression is proportional to the genetic covariance between the two traits 

of interest and the intercept is a useful measure of confounding (i.e., bias from sample overlap).  

  The bivariate LDSC intercept reflects the phenotypic correlation weighted by 

proportional sample overlap, thereby providing a quantitative index of the sampling dependence 

across the ENIGMA summary statistics (Bulik-Sullivan et al., 2015). Sample overlap (re-use of 

subjects between GWA studies) leads to non-independent data sets and in turn, spurious 

correlations between the summary statistics from two GWAS. Sample overlap only affects the 

intercept from bivariate LDSC and not the slope, so the resulting estimates of genetic correlation 

will not be biased by sample overlap. As such, any upward departure of the intercept from zero is 

indicative of confounding, which can then be corrected for so that estimates are not biased.  

 Using LD score regression, Genomic SEM estimates a genetic covariance matrix of all 

included traits, S, in which diagonal elements represent SNP-based heritability, and off diagonal 

elements represent genetic covariance between two variables (see Figure 2 for genetic heatmap). 

The estimation uncertainty is accounted for in a sampling covariance matrix, V, which contains 

squared standard errors of the estimates (genetic variances and covariances) in S on the diagonal 
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and the covariance between each pair of elements of S in the off diagonal. The off-diagonal 

elements of V capture potential sample overlap across traits (Grotzinger et al., 2019). 

Exploratory Factor Analyses 

 In order to explore the full scope of factor solutions, exploratory factor analyses (EFAs) 

were used as a data-driven method of generating hypotheses to help guide the specification of 

alternative models for later structural equation modeling with Genomic SEM. Such a data-driven 

method was utilized as the patterns of genetic correlations between regional measures of cortical 

thickness have previously been shown to reflect multiple non-mutually exclusive organizing 

principles: spatial contiguity, bilateral symmetry, neuroanatomical connectivity, anatomic 

distance, functional boundaries, developmental/maturational timing, gradients of transcription 

factors (i.e., signaling molecules), and gene expression (Alexander-Bloch et al., 2019; Chen et 

al., 2013). EFAs were conducted using the factanal R package for two to eight factor solutions 

using the promax rotation (Beaujean, 2013). Promax is an oblique rotation that first assumes the 

factors are orthogonal and then relaxes the rotation to allow them to correlate (Russell, 2002). An 

oblique method was preferable to an orthogonal method due to theoretical reasons derived from 

prior research (i.e., SNPs associated with different brain regions are not entirely distinct).  

Confirmatory Factor Analyses 

 Using Genomic SEM, confirmatory factor analyses (CFAs) specified on the basis of 

these EFAs were subsequently fit to the genetic covariance matrix (S) produced by LD score 

regression (Grotzinger et al., 2019). For the CFAs, individual regions were assigned to factors 

when the absolute value of their standardized loading (λ) exceeded 0.2 in the corresponding 

EFAs. Factor loadings can be interpreted like simple regression coefficients, representing the 

relationship of each variable to the underlying factor. If the absolute value of a brain region’s 
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standardized loading did not achieve 0.2 for any factor, the region was assigned to the factor on 

which it had the standardized loading of the largest magnitude. For regions with evidence of 

cross-loadings (|λ| > 0.2 for 2 or more regions), these cross-loadings were included in the 

confirmatory models. Grotzinger et al. (2020) used 0.2 as a more lenient threshold for their 

previous investigation of the genome-wide factor structure of psychiatric traits. As such, it was 

selected as the standardized loading criterion for the current analyses so that the ability of 

confirmatory models to recapitulate the data (i.e., variance-covariance matrix) was not sacrificed 

in pursuit of parsimony. Additionally, a common factor model was tested to determine whether a 

single, general factor is sufficient to describe the data.  

Models were estimated using unit variance identification (i.e., factor variances were fixed 

to 1) and the diagonally weighted least squares (DWLS) estimator as it incorporates the V matrix 

in model fitting (Grotzinger et al., 2019). For each of the two through eight factor solutions, four 

models were tested: an orthogonal factors model, correlated factors model, bifactor model, and 

modified bifactor model (Figure 3). The only difference between the orthogonal and correlated 

factor models specified based on the EFA results was that specific factors were not allowed to 

correlate in the former and were allowed to correlate in the latter. The bifactor models consisted 

of a general factor that captured shared genetic variation across the 34 brain regions, as well as 

orthogonal specific factors (defined by the same brain regions from the orthogonal and correlated 

factors models) that modeled residual genetic covariation not accounted for by the general factor. 

In the modified bifactor models, the specific factors were allowed to correlate with one another.  

Confirmatory models were evaluated using a combination of goodness-of-fit statistics 

and model characteristics (average median factor loading, factor loading squared, and standard 

error of loadings). Goodness-of-fit statistics included the χ2 statistic, Akaike information criteria 
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(AIC), comparative fit index (CFI), and standardized root mean square residual (SRMR). All 

four goodness-of-fit statistics are provided for each confirmatory model as per the defaults in 

Genomic SEM. 2 tests the null hypothesis that the variance-covariance matrix implied by a 

model is equal to the observed variance-covariance matrix. A non-significant result for this test 

typically indicates good model fit, thus it is desirable not to reject this null hypothesis. However, 

the χ2 statistic is almost always statistically significant for models with larger sample sizes (e.g., 

>10,000 participants) as it becomes too sensitive to very small discrepancies between implied 

and obtained covariance matrices (Barrett, 2007). For the current analyses, χ2 was used as a 

comparative measure of fit with lower values indicating better fit (Grotzinger et al., 2019). AIC 

was also used as a comparative fit index, with lower values again indicating better fit. AIC has 

similar problems to those of the χ2 statistic since it is a simple transformation of χ2 that adjusts 

for model complexity. As such, CFI and SRMR were additionally used to assess model fit. 

CFI is an incremental fit index directly based on the non-centrality parameter, which is a 

measure of the degree to which a null hypothesis is false (Kirk, 2012). An incremental fit index 

such as CFI is analogous to R2 and places the model being tested on a continuum between the fit 

of the worst possible model (null model, value of zero) and the fit of the best possible model 

(value of one). For CFA, the usual convention for the null or independence model is to allow all 

the variables in the model to have variation but no correlation and to have freely estimated means 

and variances. SRMR is defined as the standardized difference between the observed correlations 

and the model-implied correlations. It is presumed that the best fitting model has a SRMR of 

zero. CFI values greater than 0.9 and SRMR values less than 0.08 generally indicate good model 

fit (Hu & Bentler, 1999). However, Barrett (2007) and Hayduk et al. (2007) caution against strict 

reliance on cutoffs for acceptable fit and recommend detailed diagnostic investigations into 
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model characteristics. It should also be noted that a good-fitting model is not necessarily a valid 

model, thus parameter estimates were also carefully examined for each individual confirmatory 

model tested. For example, models with nonsensical results (e.g., standardized factor loadings or 

correlations greater than one, negative residual variances) can be “good-fitting” models.  

Results 

 Linkage disequilibrium score regression applied to the ENIGMA summary statistics for 

the 34 bilateral averages of regional cortical thickness indicated pervasive genetic overlap across 

regions. Higher genetic correlations were observed among certain groups of cortical regions, for 

example, the occipital and cingulate cortices were relatively well delineated in the genetic 

heatmap (Figure 2). This LDSC correlation structure was formally modeled by first estimating 

exploratory factor analyses with two through eight-factor solutions, as described above. A series 

of confirmatory factor models were subsequently fit using Genomic SEM and specified based on 

these EFAs, also as described above (see Table 2 for fit statistics of all models tested). 

 Based on fit statistics alone, the modified bifactor model consisting of a general factor 

and eight correlated specific factors that modeled covariation not accounted for by the general 

factor was the best “fitting” model (χ2[418] = 491427762, AIC = 491427762, CFI = 0.781, 

SRMR = 0.073). However, close examination of the full model output revealed that multiple 

standardized factor loadings were estimated as larger than one, rendering this factor solution 

invalid, or at least implausible. The next best model based on fit statistics alone was the bifactor 

model with eight orthogonal specific factors (χ2[466] = 605755437, AIC = 605755437, CFI = 

0.730, SRMR = 0.088; see Table 4 for factor loadings). It is important to note that on average, a 

given bifactor confirmatory model will tend to fit better than other models (e.g., a correlated 

factor model) regardless of the true data generating process in the population (Markon, 2019). 
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The tendency of bifactor models to flexibly fit (or overfit) any dataset better, independent of the 

population model, is partly accounted for by their greater number of parameters (Markon, 2019). 

Bifactor models are more likely to capture chance features of any given dataset that might not 

replicate (Markon, 2019). As such, bifactor models are prone to positive bias in model selection.  

 Fit statistics and a lack of nonsensical parameter estimates can only provide so much 

information regarding local model fit. As such, Waldman and colleagues have advocated for the 

use of alternative additional indices to augment standard model fit statistics (Waldman et al., 

2022). For the 24 confirmatory models that successfully ran and converged in Genomic SEM, 

these additional indices were calculated: the mean, median, and standard deviation of the 

standardized factor loadings (λs), standard error (SE) of λs, and squared λs for each factor, which 

reflect the percentage of variance in a variable explained by the factor. In addition, the median of 

these three statistics calculated per factor were (1) averaged across all factors in the orthogonal 

and correlated factors models or (2) averaged across only specific factors and also across all 

factors including the general factor in the bifactor and modified bifactor models. The eight 

correlated factors model had a larger average median factor loading and factor loading squared, 

but also a higher average median standard error of loadings across all factors (𝑀𝑒𝑑̅̅ ̅̅ ̅̅  λ = 0.435,  

𝑀𝑒𝑑̅̅ ̅̅ ̅̅  SE of λ = 0.126, 𝑀𝑒𝑑̅̅ ̅̅ ̅̅  λ2 = 0.199) compared to the bifactor model with eight specific 

factors averaged across specific factors (𝑀𝑒𝑑̅̅ ̅̅ ̅̅  λ = 0.330,  𝑀𝑒𝑑̅̅ ̅̅ ̅̅  SE of λ = 0.104, 𝑀𝑒𝑑̅̅ ̅̅ ̅̅  λ2 = 0.116) 

and across all factors (𝑀𝑒𝑑̅̅ ̅̅ ̅̅  λ = 0.329,  𝑀𝑒𝑑̅̅ ̅̅ ̅̅  SE of λ = 0.103, 𝑀𝑒𝑑̅̅ ̅̅ ̅̅  λ2 = 0.115; Table 3). The 

eight factors in the correlated factors model had low genetic correlations between them (average 

absolute value of factor intercorrelation rg = 0.251), which could be evidence of relatively 

distinct genetic underpinnings for each of the eight factors. On the other hand, it is also potential 

evidence of an overfactored solution, or a solution with too many cross-loadings (individual 
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brain regions loading on two or more factors). Both the eight correlated factors and bifactor 

models represent viable contenders for the best fitting model based on examination of goodness-

of-fit statistics, parameter estimated, and model characteristics and were considered further. 

Discussion 

 The current study examined the multivariate genomic architecture of cortical thickness 

and identified eight specific latent factors using the largest available neuroimaging genomic 

dataset (Thompson et al., 2019). Exploratory and confirmatory factor analyses of the genetic 

covariance between measures of regional cortical thickness revealed a higher-order structure that 

respected many of the organizing principles demonstrated in the literature. Consistent with prior 

findings (Alexander-Bloch et al., 2019; Chen et al., 2013), novel genomic factors of the cortex 

were largely topologically clustered. Most exceptions to the principle of spatial contiguity for 

regions within a factor have been previously shown to have either indirect or direct connectivity, 

whether functional or structural (Makris et al., 2005). The regional composition of the eight 

specific factors in the correlated factors and bifactor models (Figure 4) also reflected high 

genetic correlations among primary cortices (i.e., visual, motor, somatosensory cortices) 

compared to between primary and association cortices. The findings of the current study were 

examined in the broader context of the neuroimaging literature to better understand these novel 

factor structures. Characterizing the biological, functional, and clinical relevance of these novel 

brain factors is a necessary step before using these factors to gain mechanistic insight into 

complex traits. Ultimately, these latent brain factors can be used as novel phenotypes to reveal 

the extent to which genetic variants that influence the development of specific cortical regions 

also influence outcomes like the development of personality and risk for psychopathology.  
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Characterization of Resulting Genomic Factors 

 When considering the general factor in the bifactor models tested, it is important to note 

that the GWAS summary statistics from the ENIGMA Consortium used in the current study 

included a global measure of mean thickness as a covariate. Although global brain structure is 

highly heritable, considerable regional variability in the magnitude of genetic influences on 

cortical thickness has been demonstrated in previous analyses (Winkler et al., 2010). Rimol et al. 

(2010) investigated the heritability of cortical thickness on a continuous basis across the entire 

cortical surface and found strong evidence of regionally-specific patterns rather than a single, 

global genetic factor. Additionally, Rimol et al. (2010) demonstrated that regional patterns of 

genetic correlations were largely consistent with a division between primary and association 

cortex, as well as broadly-defined patterns of brain gene expression, neuroanatomical 

connectivity, and brain maturation trajectories. The analytic pipeline of the current study 

adjusted for global covariance in order to utilize region-specific genetic variants, with the aim of 

identifying maximally separable genetic dimensions with distinct sets of brain regions. This 

analytic pipeline has the disadvantage of introducing potential bias by adjusting for a heritable 

trait (i.e., average CT), complicating the interpretation of a general factor in the bifactor models. 

The difficulty of estimating direct effects of genetic variants on a covariate-adjusted 

outcome is well appreciated in causal inference literature (Aschard et al., 2015). When adjusting 

for a covariate that has a genetic component, the adjusted association signals do not necessarily 

imply an association with regional thickness only but can correspond also to a bivariate signal on 

mean thickness and regional thickness (Aschard et al., 2015). The average bias of the genetic 

effect estimate in a covariate-adjusted analysis is a function of the correlation between the 

outcome and the covariate. If the effect of a genetic variant on thickness in a particular region 
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and the phenotypic correlation between CT in that region and mean thickness globally are in the 

same direction, the adjusted statistical test may have decreased power to detect the genetic 

variant as compared to the unadjusted test (Aschard et al., 2015). Conversely, if the genetic 

effect and the phenotypic correlation are in opposite directions, the adjusted statistical test can 

have increased power to detect the genetic variant when there truly is a direct genetic effect on 

the outcome (Aschard et al., 2015). In theory, global covariation is accounted for by modeling a 

latent general factor in the bifactor models (Loehlin & Beaujean, 2017). This interpretation is 

cautioned against in this case as the analytic pipeline adjusted for global covariation in CT. 

The observed patterns of genetic correlations and the resulting factor structure with 

respect to the eight specific factors does not lend itself to any simple interpretation in terms of 

cortex type or functional systems, as it appears to reflect many processes in combination. The 

results of the current study are consistent with multiple genetic factors with different, but 

partially overlapping patterns of influence, and like prior investigations of the genetic 

architecture of cortical thickness, no single explanation appears to be sufficient. Overall, the 

patterns of genetic correlations between regional measures of cortical thickness did not conform 

to traditionally-defined brain structure boundaries (e.g., lobular divisions, preservation of 

individual brain regions from the sulcal-based Desikan-Killiany atlas; Desikan et al., 2006). As 

such, the following review of neuroscience literature is intended to highlight possible 

interpretations for the distribution of brain regions across the eight factors (Figure 4). 

The eight specific genomic brain factors found in the current study appear to reflect 

several non-mutually exclusive organizing principles such as anatomical distance and structural 

and functional connectivity, similar to the findings of previous investigations (Alexander-Bloch 

et al., 2019; Chen et al., 2013). For example, the superior parietal cortex is heavily 
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interconnected (both anatomically and functionally) with the caudal middle frontal gyrus 

(Koenigs et al., 2009), and both regions loaded on Factor 2. Many neurons in the orbitofrontal 

cortex receive major visual input and are thought to represent the reinforcement association of 

visual stimuli (Rolls, 2004). In the current study, the medial orbitofrontal cortex and the occipital 

lobe both loaded on Factor 5. Regions in the prefrontal cortex (i.e., pars triangularis and 

opercularis, rostral middle frontal gyrus, superior frontal gyrus) loaded negatively on Factor 3 

while regions in the inferior parietal cortex had positive loadings on Factor 3. The negative factor 

loadings for prefrontal regions suggests that genetic variants that contribute to the expansion of 

CT in the inferior parietal cortex tend to also contribute to thinner cortex in prefrontal regions. 

The high genetic correlations between prefrontal cortex and inferior parietal cortex thickness 

might be accounted for by anatomical connectivity as they are at essentially at opposite ends of 

the dorsal component of the superior longitudinal fasciculus, a major intrahemispheric fiber tract 

(Makris et al., 2005). The occipitofrontal fasciculus extends rostrally to the superior frontal gyrus 

and premotor cortices (e.g., caudal middle frontal gyrus) and caudally to the precuneal area and 

the inferior parietal lobule (Makris et al., 2007). The superior and caudal middle frontal gyri as 

well as the precuneus and inferior parietal cortex all loaded on Factor 2. Makris et al. (2007) 

suggested a putative role for the occipitofrontal fasciculus in focusing attention in visual space 

by virtue of its connections with areas shown to play a role in visuospatial function. The role of 

structural connectivity in explaining genetic correlations among regional CT measures is 

unsurprising, as CT has been well-established as reflecting the elaboration of cortical circuitry.  

Overall, the eight specific factors found in the current study appear to reflect a 

biologically relevant partitioning of the cortex. Of the putative organizing principles suggested to 

underlie the patterns of interregional genetic correlations, structural connectivity appears to be 
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more well-justified by the neuroimaging literature compared to functional specificity. It can be 

problematic to infer the involvement of a specific cognitive process from the activation of a brain 

region (or co-activation of regions), and this kind of reasoning is known as “reverse inference.” 

Reverse inference has been previously criticized on the basis that it does not take into account 

how selectively the area is activated by the mental process in question (Hutzler, 2014). As 

specific brain region can be activated by a wide range of cognitive processes, functional 

interpretations of the specific factors found in the current study are cautioned against until 

additional functional neuroimaging resources (i.e., databases, metadata) are well developed.  

A more recent approach known as multivoxel pattern analysis (MVPA) can be used to 

formally test the ability to infer mental states from neuroimaging data. This approach uses tools 

from the field of machine learning to create statistical machines that can accurately decode the 

mental state that is represented by a particular imaging data set (large-scale decoding; Poldrack, 

2011). Major challenges for large-scale decoding are the lack of a sufficient database of raw 

functional MRI data and the scarcity of detailed metadata describing the tasks and processes 

associated with each data set (Poldrack, 2011). The development of large databases of task-based 

fMRI data such as the OpenfMRI project will help provide the data needed for such decoding 

analyses (Poldrack & Gorgolewski, 2017). Poldrack and colleagues are also currently developing 

a knowledge base that will serve as a framework for detailed annotation of neuroimaging 

databases as part of the Cognitive Atlas Project (Poldrack et al., 2011). Until these resources are 

well developed, the ability to classify mental states on a larger scale is largely theoretical. 

Cortical Thickness, Psychopathology, and Personality 

Genes presumably play a role in personality and psychopathology via involvement in the 

development and function of brain regions responsible for specific cognitive and emotional 
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processes (Rasetti & Weinberger, 2011). Endophenotypes are heritable, co-segregate with the 

disorder within families of patients, and reflect the actions of genes predisposing an individual to 

a disorder, even in the absence of diagnosable pathology (Miller & Rockstroh, 2013). Alterations 

in brain structure are promising candidate endophenotypes for psychopathology, as gray matter 

characteristics have been shown to be highly heritable (Winkler et al., 2010) and a multitude of 

studies have demonstrated abnormalities of brain structure in psychiatric disorders.  

Phenotypic correlations with regional measures of cortical thickness have been reported 

for ADHD (Almeida Montes et al., 2013), anxiety disorders (Bas-Hoogendam et al., 2018; Frick 

et al., 2013; Gold et al., 2017; Molent et al., 2018), obsessive-compulsive disorder (Fouche et al., 

2017), anorexia nervosa (Fuglset et al., 2016; Lavagnino et al., 2018), bipolar disorder (Hanford 

et al., 2016), conduct disorder (Hyatt et al., 2012), post-traumatic stress disorder (Wrocklage et 

al., 2017), antisocial personality disorder (Jiang et al., 2016), autism spectrum disorder 

(Khundrakpam et al., 2017), major depressive disorder (Li et al., 2020), and schizophrenia (Yan 

et al., 2019). However, statistical association of neuroimaging phenotypes with psychiatric 

diagnosis alone does not establish a mechanism of risk from brain-relevant genetic 

polymorphisms to the development of psychopathology (Bigos & Weinberger, 2010). 

Recent analyses suggest that genes that confer relatively broad liability to multiple 

psychiatric disorders act on neurodevelopment and the establishment of brain circuitry and 

additionally show heightened expression in the brain throughout the lifespan (i.e., not only in 

early brain development; Lee et al., 2019). Genome-wide significant loci associated with risk for 

multiple psychiatric disorders as well as genome-wide significant loci associated with regional 

measures of cortical thickness both play prominent roles in neurodevelopmental pathways 

(Grasby et al., 2020; Lee et al., 2019). Broad, generalized genetic risk for psychopathology may 
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shape the phenotypic (i.e., cognitive, affective) expression of psychiatric disorders by affecting 

brain structure and function, and ultimately behavior. Isolating the neural substrates of such 

genetic vulnerability is a necessary step toward characterizing the pathophysiological 

mechanisms that are shared across psychiatric disorders or unique to individual disorders.  

In the domain of personality, quantitative genetic analyses have recently demonstrated 

that shared genetic influences underlie the association between five-factor model (FFM) traits 

and local cortical structure (Valk et al., 2020). Personality traits are associated with a wide range 

of outcomes including physical health and subjective well-being, psychopathology, interpersonal 

relationships, occupational outcomes, and criminal activity (Ozer & Benet-Martínez, 2006). 

Genetic correlations have been found between Agreeableness and bilateral superior frontal gyrus 

CT, Openness and right temporal pole CT, and Neuroticism and right superior and lateral frontal 

CT (Valk et al., 2020). Genetic correlations between FFM traits and prefrontal regions may 

reflect the link between personality and high-level socio-cognitive and affective processes. 

Genetic variants that influence regional CT have recently been associated with complex 

cognitive abilities (Grasby et al., 2020). Further, cortical thickness of the left rostral middle 

frontal gyrus has been found to significantly mediate the relation between genetic variants and 

Neuroticism (Song et al., 2021). Overall, personality-related genetic variants are mainly involved 

in brain development, have the highest expression in the frontal cortex, and influence CT in key 

regions for emotion processing and regulation (Adelstein et al., 2011; Allen & Deyoung, 2016; 

Song et al., 2021; Valk et al., 2020; Yarkoni, 2015). Efforts to describe the emergence of 

personality have consistently implicated neural characteristics, but the extent to which regional 

cortical structure and personality share a genetic basis remains unclear. The specific factors 
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resulting from the current analyses can aid in phenotype definition for genetic association studies 

that examine the shared genetic basis of brain structure and personality and psychiatric traits.  

Limitations 

The current analyses have a number of limitations that should be noted. Primarily, 

additional analytic work is necessary to test alternative factor structures before resulting specific 

factors are used in future studies examining the relation between such cortical phenotypes and 

behavioral traits. Follow-up analyses that build on the current study will test alternative factor 

structures to try and determine the one in which the factors are the most reliable and valid. It is of 

note that the cortical thickness data from the ENIGMA Consortium reflects an heterogeneous 

sample ranging in age from 12 to 90 years old, and findings should be interpreted with this in 

mind (Grasby et al., 2020). CT is thought to reflect phenomena taking place in cortical 

maturation during intrauterine development (i.e., asymmetric division of progenitor cells; Rakic, 

2009) and during childhood and adolescence such as dendritic arborization, synaptic and axonal 

pruning, myelination, and apoptosis (Shaw et al., 2008; Vanderhaeghen & Cheng, 2010). There 

is also cross-sectional evidence that the extent of genetic and environmental influences on brain 

structure may change throughout childhood and adolescence (Rimol et al., 2010). Further study 

of patterns of genetic correlations among brain structural metrics is warranted to determine 

whether and how such patterns change across development. Another limitation of the ENIGMA 

Consortium data is that measures of CT were averaged across both hemispheres for each 

individual participant (Grasby et al., 2020). Hemispheric anatomical asymmetries and the 

lateralization of brain function (i.e., the tendency for some neural functions or cognitive 

processes to be specialized to one side of the brain or the other) have been shown to appear very 

early in life (Tzourio-Mazoyer et al., 2020). It is critical that factor analytic models of CT 
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continue to be evaluated in genetically informed neuroimaging datasets with more specific 

developmental windows and with separate summary-level data for each cerebral hemisphere.  

It must be highlighted that the results of the current study results are restricted to 

participants of European ancestry due to the availability of sufficiently well-powered GWAS 

data for this ancestral group. Many genome-wide association studies have been limited to 

subjects of a single ancestry to prevent population stratification due to race and ethnicity, or 

differences in LD structure across different populations. As such, it is a requirement of LD-score 

regression to produce estimates within a single ancestral population (Bulik-Sullivan et al., 2015). 

A goal of the current program of research is to include emerging samples that better reflect the 

world’s genetic diversity, with future analyses building on genetically informed datasets in non-

European ancestry populations. Without such representation in future analyses, the application of 

discoveries from neuroimaging genetics to improve research and society will be limited.  

Lastly, the analytic pipeline used in the current study may have introduced bias due to 

adjusting for a global metric of CT (i.e., mean thickness), which is a heritable trait. For example, 

it was not possible in the current study to equivocally determine whether a genetic correlation 

between mean thickness and regional thickness results from a direct effect of mean thickness on 

regional thickness (Aschard et al., 2015). Grotzinger et al. (2022) also modeled the multivariate 

genomic architecture of CT by applying Genomic SEM to summary statistics of regional CT 

from the ENIGMA Consortium. In contrast to the current study, Grotzinger et al. (2022) used 

summary statistics (Grasby et al., 2020) that were not corrected for a global structural metric and 

also assigned individual brain regions to a factor based on a more stringent threshold (EFA 

standardized factor loadings greater than .5). Grotzinger et al. (2022) found that a five-factor 

correlated factors model and bifactor model with five orthogonal specific factors both fit the data 
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well. By using unadjusted summary statistics, Grotzinger and colleagues were able to explicitly 

model the shared genetic variation across the 34 regions in the context of a bifactor model 

(Grotzinger et al., 2022). By using a more stringent threshold, their confirmatory factor models 

did not include any cross-loadings and in turn, the five factors in their correlated factors model 

were highly genetically correlated (average factor rg = .80; Grotzinger et al., 2022).  

Future Directions 

A future goal of the present program of research is to conduct the analyses of the current 

study again but with unadjusted summary statistics instead, so that global covariation can be 

explicitly accounted for by modeling a latent general factor in the bifactor models. At the same 

time, using the unadjusted summary statistics for regional cortical thickness would allow for a 

more psychometrically informed comparison with the findings of Grotzinger et al. (2022). 

Grotzinger and colleagues aimed to determine the number of genomic factors that could most 

parsimoniously represent the ENIGMA Consortium data (Grasby et al., 2020) and primarily 

sought to identify maximally separable genetic dimensions. As such, the authors applied several 

tests to the genetic correlation matrices derived from Genomic SEM, which pointed to a five-

factor solution (Grotzinger et al., 2022). Based on these tests, the authors conducted exploratory 

and confirmatory factor analyses only for: (1) a general factor solution, and (2) for the five-factor 

solutions. The current study aimed to not only parsimoniously model the genetic architecture of 

regional cortical thickness, but also to define cortical phenotypes that would facilitate future 

genomic investigation into complex behavioral traits. As such, the fit and construct validity of 

two through eight factor solutions was examined. Ultimately, further factor analyses of the 

ENIGMA cortical thickness data without global adjustments will need to examine a continuum 

of factor loading thresholds rather than using only one threshold for model specification.  
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To resolve any differences between the findings of Grotzinger et al. (2022) and those of 

the current study, future analyses will use the set of ENIGMA summary statistics that were not 

corrected for mean thickness (Grasby et al., 2020) and assign individual brain regions to a factor 

based on thresholds for EFA standardized factor loadings ranging from |0.2| to |0.5|. The current 

study used additional indices of model fit such as the mean, median, and standard deviation of 

the standardized factor loadings (λs), standard error (SE) of λs, and squared λs for each factor. 

As these indices were not calculated by Grotzinger et al. (2022), they will be estimated for their 

five-factor solution using factor loadings that were provided. The validity of factor solutions 

resulting from future reanalysis of the ENIGMA data can be compared to the validity of 

Grotzinger and colleagues’ solution by examining the patterns of genetic correlations with 

external variables for each set of factors. Grotzinger et al. (2022) observed no significant genetic 

relationships between their regional CT factors and psychiatric traits after correcting for multiple 

comparisons. This is in contrast to prior findings from quantitative genetic analyses that have 

demonstrated genetic correlations between regional measures of cortical thickness and various 

personality traits (Valk et al., 2020) as well as psychiatric phenotypes (Grasby et al., 2020).  

Ultimately, the strength of imaging genetics and genomics lies in its translational and 

integrative potential with other research approaches (e.g., non-human animal models, psychiatric 

genetics) to elucidate brain-based pathways that give rise to the vast individual differences in 

behavior as well as risk for psychopathology. Grotzinger and colleagues’ parsimony driven best 

fitting model is of limited utility for future genomic investigation into psychological traits due to 

its lack of genetic associations with external variables of interest. Imaging genetics and genomics 

can inform the neural mechanisms through which genetic and molecular differences impact 

cognition, emotion, and behavior in health and disease (Bogdan et al., 2017). However, valid 
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neurobiological phenotypes are a prerequisite for the appropriate application of the neurogenetic 

approach, which future analyses built on the current study will aim to generate and define.  

The cerebral cortex is a complex structure with many functional cortical areas that are 

distinguishable by differences in gene expression (Hawrylycz et al., 2012), morphology (Valk et 

al., 2020), and connectivity (O’Leary et al., 2007). Collectively, the results of the current study 

indicate that the pervasive genetic overlap across regional measures of CT is not reflective of a 

single dimension of macroscale organization. It will be important for future studies to examine 

the multivariate genomic factor structure of cortical thickness found in data from the ENIGMA 

Consortium as well as in independent samples to demonstrate its portability and replicability. 

Future studies should also more quantitatively characterize brain factors before examining the 

genetic associations between such factors and facets of personality and psychiatric disorders.  

Another critical future direction in the current program of research is to better understand 

the spatial organization of genomic brain factors by characterize their relationships with 

established molecular, cellular, and functional topographical maps. Similar to the methodology 

of Grotzinger and colleagues, the statistical significance of observed spatial correspondence 

between the boundaries defined by the present brain factors and those of canonical and meta-

analytic maps from the neuroimaging literature can be assessed (Grotzinger et al., 2022). Maps 

used in future analyses could include cortical maps derived from the BigBrain project 

(intracortical microstructure, laminar differentiation, cellular and neuronal density derived from 

post-mortem brain histology; Amunts et al., 2013), cell-type specific transcriptional signatures 

from the Allen Human Brain Atlas (Hawrylycz et al., 2012), cortical association maps obtained 

from Neurosynth (a platform for the automated meta-analyses of fMRI studies; Yarkoni, 2015), 

network maps of anatomical connectivity from the Human Connectome Project (Van Essen & 



 37 

GENOMIC ARCHITECTURE OF CORTICAL THICKNESS                     

  

  

  

Glasser, 2016), cytoarchitectural classes (e.g., granular, agranular cortex) defined by von 

Economo and Koskinas (Triarhou, 2007; von Economo & Koskinas, 1926), and functional 

intrinsic connectivity networks derived from resting-state functional magnetic resonance imaging  

(Yeo et al., 2011). Such future studies could capitalize on the recently developed ENIGMA 

Toolbox, an open platform for contextualizing neuroimaging data such as surface maps with 

respect to both microscale and macroscale brain organization (Larivière et al., 2021).  

Conclusion: In Search of Mechanistic Understanding 

 The overarching long-term goal of this research program is to integrate genomics with 

neuroscience to better understand complex behavioral traits such as personality and 

psychopathology. An important aspect of the current study is that the resulting factor solutions 

based on interregional genetic correlations do not map directly onto traditional parcellation 

schemes. The results suggest that different sets of genes influence different subregions, as such, 

regions bounded by traditional parcellation units may be of limited utility for genome-wide 

association studies. While the current analyses do not represent an exhaustive assessment of the 

patterns of genetic influences on cortical thickness, this approach appears to be promising.  

Characterizing patterns of genetic correlations among regional measures of brain 

structure has important implications for phenotype or neurobiological endophenotype definition 

in genetic association studies of complex behavioral traits. Factor analysis of patterns of genetic 

correlations can generate novel parcellation schemes with novel phenotypes. These novel 

phenotypes may be better suited than more traditional brain structure phenotypes for use in 

neuroimaging genetic studies of psychiatric and neurological disorders. In addition, 

characterizing such factors can aid in the development of rodent and possibly non-human 

primate models of cortical dysgenesis (i.e., aberrant cortical development) that mimic specific 
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genetic cortical disorders in humans. While scientific understanding of the genetic underpinnings 

of complex human traits remains limited, the current findings contribute to elucidation of the 

genetic architecture of the cerebral cortex, which has great potential to facilitate future genomic 

investigation into diverse traits. Joint analysis of summary-level data from different GWAS (i.e., 

GWAS of brain structure and GWAS of psychiatric disorders) provides new opportunities for 

further analyses and novel genetic discoveries, such as the shared genetic basis of complex traits.  
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Table 1 

Sample Size for Each Region Included in Grasby et al. (2020) 

 

Note. As certain SNPs were not present across all cohorts that comprise the ENIGMA 

consortium, the SNP-specific participant sample sizes were used for LDSC estimation. Sample 

size for each region ranged from 10,000 participants per associated SNP to indicated maximum.   
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Table 2 

Model Fit for Confirmatory Factor Models from Genomic SEM 

 

Note. Orthogonal bifactor model refers to a simple bifactor model, correlated bifactor to a 

modified bifactor model. The standardized 6 factor modified bifactor model failed to converge, 

indicating more general problems with the model solution such as misspecification. All four 

variants of the 7-factor solution failed to run in Genomic SEM due to technical errors. χ2 p-val 

and χ2 df refer to the p-value and degrees of freedom for the model χ2. AIC = Akaike information 

criteria; CFI = comparative fit index; SRMR = standardized root mean square residual.  
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Table 3 

Alternative Fit Indices for Eight Factor Confirmatory Models 

 

Note. Mean, median, standard deviation (SD) of standardized factor loadings (λs), standard error 

of λs, and squared λs are shown, as well as averages across all factors and only specific factors. 
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Table 4 

Confirmatory Factor Results from Cortical Thickness Measurement Model

 

Note. Table presents confirmatory factor analysis results for 34 brain regions specified based on 

the bifactor structure with eight specific factors. Standardized estimates of factor loadings are 

shown and were produced by estimating the model using the genetic correlation matrix as input. 

Negative loadings are depicted in red and positive in blue, intensity of color reflects magnitude. 

GEN = general factor, FAC = factor. [* for p ≤ 0.05; ** for p ≤ 0.01; *** for p ≤ 0.001] 
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Figure 1 

Relationship Between Genetic Correlations, Anatomical Distance, and Functional Boundaries 

 

Note. (A) Fit of a quadratic polynomial model to the relationship between genetic correlations 

between measures of regional cortical thickness and anatomical distance within hemispheres. A 

quadratic model fit better than a linear model, a cubic model, and an exponential decay model. 

(B) Illustration of the partition (modular community structure) with 8 cortical modules, each 

shown in a different color, found by Alexander-Bloch et al. (2019). Medial occipital regions are 

in purple, dorsolateral prefrontal regions in red, ventromedial prefrontal regions in blue, and 

limbic regions in green. Adapted from “Human cortical thickness organized into genetically-

determined communities across spatial resolutions,” by A.F. Alexander-Bloch et al., 2019, 

Cerebral Cortex, 29(1), p. 106-118.  

 

 

 

 



 44 

GENOMIC ARCHITECTURE OF CORTICAL THICKNESS                     

  

  

  

Figure 2  

Heatmap of Genetic Correlations 

 

Note. Genetic heatmap estimated using LD-score regression. All pair-wise correlations between 

thickness measures in 34 brain regions are shown with color scale indicating the strength of the 

genetic correlation. Names of regions are shown to the bottom of the heat map.  
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Figure 3 

Types of Confirmatory Models Tested 

 

Note. Four models were tested for each of the factor solutions derived from EFAs, examples of 

each type of confirmatory model are illustrated using path diagrams. Indicator (observed) 

variables are represented by blue rectangles, latent variables by red circles, factor loadings with 

single-headed arrows, and factor intercorrelations by double-headed arrows. Upper left panel 

depicts a single, common factor model. Upper right panel depicts a correlated factors model; an 

orthogonal factors model has the same structure but without factor intercorrelations. Bottom left 

panel depicts a bifactor model with orthogonal specific factors. Bottom right panel depicts a 

modified bifactor model, in other words, a bifactor model with correlated specific factors.  
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Figure 4 

Physical Location of Eight Genomic Factors  

 

Note. Brain regions color coded according to the eight genomic factors with right hemisphere in 

yellow and left in pink. (A) Factor F1, (B) F2, (C) F3, (D) F4, (E) F5, (F) F6, (G) F7, (H) F8. 
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