
Distribution Agreement 

In presenting this thesis as a partial fulfillment of the requirements for a degree from Emory 

University, I hereby grant to Emory University and its agents the non-exclusive license to 

archive, make accessible, and display my thesis in whole or in part in all forms of media, now or 

hereafter now, including display on the World Wide Web. I understand that I may select some 

access restrictions as part of the online submission of this thesis. I retain all ownership rights to 

the copyright of the thesis. I also retain the right to use in future works (such as articles or 

books) all or part of this thesis. 

 

Lingxin Cheng                                                                                                         April 13, 2021 



 

Local-to-Global Property of Transitive Subgroups of Sp 

 

by 

 

Lingxin Cheng 

 

David Zureick-Brown 

Adviser 

 

Department of Mathematics 

 

 

David Zureick-Brown 

Adviser 

 

Raman Parimala 

Committee Member 

 

Effrosyni Seitaridou 

Committee Member 

 

2021 



 

 

Local-to-Global Property of Transitive Subgroups of Sp 

 

By 

 

Lingxin Cheng 

 

David Zureick-Brown 

Adviser 

 

 

 

 

An abstract of 

a thesis submitted to the Faculty of Emory College of Arts and Sciences 

of Emory University in partial fulfillment 

of the requirements of the degree of 

Bachelor of Science with Honors 

 

Department of Mathematics 

 

2021 



 

Abstract 

Local-to-Global Property of Transitive Subgroups of Sp 

By Lingxin Cheng 

This paper analyzed the local-to-global property of symmetric groups.
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1. Introduction

The local-to-global question arises from the Galois representation of elliptic curves.

Consider the Galois group from to joint with n-torsion points on elliptic curve, then

Gal(Q(E[n])/Q) ⊆ GL2(n)

Lets Denote H(n) := Gal(Q(E[n])/Q), B to be the matrix group

1 ∗

0 ∗

.

If for any h ∈ H(n), ∃g ∈ GL2(n), b ∈ B s.t. ghg−1 = b, then there exists some

g ∈ GL2(n) s.t. gHg−1 ⊆ B.

The local-to-global problem wants to generate the proposition to general group: Let

H,B be two subgroups of G. Suppose every element of H is g-conjugate to an element

of B, then is H itself g-conjugate to a subgroup of B?

In this paper, I will mainly focus on dihedral groups and symmetric groups with prime

degree, i.e. the cases where G = D2n or Sp.

2. Dihedral Groups

Let G be a dihedral group, and let H, B be two subgroups of G.

We say the conjugation of H to B is locally true if for any element h ∈ H, we can

find an element g ∈ G, such that ghg−1 ∈ B.

We say the conjugation of H to B is globally true if there exists an element g in G

such that gHg−1 ≤ B.

If we have locally true implies globally true, then we say the local-to-global property
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is true.

In this section We got that if G is dihedral group, then Local to Global is true.

Lemma 2.1. If D2n’s subgroup H has odd order, then H’s conjugacy class is itself.

Proof. If H has odd order a, by Lemma, H is of the form < r
2n
a >.

If the g we choose from D2n is of the form rj, with 0 ≤ j ≤ n − 1, then for any

element h = r
2kn
a in H, ghg−1 = h, therefore gHg−1 = H.

If the g we choose from D2n is of the form srj, with 0 ≤ j ≤ n− 1, then for any

element h = r
2kn
a in H, ghg−1 = h−1, therefore we also have gHg−1 = H.

Lemma 2.2. If D2n’s non-cyclic subgroup H has even order, denoted b, and it’s index

2n
b

is odd, then it has 2n
b

conjugacy groups. The conjugacy groups are all of the form

< r
2n
b , srj >, with 0 ≤ j ≤ 2n

b
− 1.

Proof. If D2n’s non-cyclic subgroup H has even order, denoted b, and it’s index 2n
b

is even, then given H = < r
2n
b , srj >, it conjugates with all the groups of the form

< r
2n
b , srj′ >, with 0 ≤ j′ ≤ 2n

b
− 1 and j ≡ j′ (mod 2).

If D2n’s cyclic subgroup H is of the form < srj >, then its conjugacy classes are all

the groups of the form < sr±j−2m >.

Lemma 2.3. Given non-cyclic subgroup H of D2n has odd index b, then H has global

property to a subgroup B of D2n if and only if there exists an integer m, such that

m|H| = |B|.

Proof. Let P = gHg−1 for any g ∈ D2n, we have |H| = |P |. Therefore if the global
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property hold for H to some B, we have P ≤ B, implies that there exists an integer

m, such that m|H| = |B|.

Conversely, let B be a subgroup of D2n such that m|H| = |B| for some integer

m. Then H is of the form < rmk, srj >, where k = 2n
mb

and 0 ≤ j ≤ mk− 1, and B is

of the form < rk, srj′ >, where 0 ≤ j ≤ k − 1.

Let Q =< rmk >, no matter how we choose g ∈ D2n, we have gQg−1 = Q ≤ B.

For the set M = H Q, we have elements of gMg−1 = N are all of the form sramk−2j

with 0 ≤ a ≤ b, or all of the form sramk+2j with 0 ≤ a ≤ b. For any a, we have

amk − 2j ≡ −2j (mod mk) and therefore amk − 2j ≡ −2j (mod k). There fore we

can find one B′, such that all the elements of N is in B′. More specifically, the B′ is

the one whose the j′ of the srj′ is congruent to −2j. Therefore we get a B′ such that

gHg−1 = g(Q∪M)g−1 = gQg−1 ∪ gMg−1 = Q∪N ≤ B′. Given that H is non-cyclic

and has odd index, we know from the Lemma that H conjugates to all the group of

the same form as it, that is, < rmk, srj >, with k = 2n
mb

and 0 ≤ j ≤ mk − 1.

Therefore, given any Bi of the form < rk, srji′ >, where 0 ≤ ji′ ≤ k − 1. We can

find a subgroup Hi of Bi, which is of the form < rmk, srji ′ >, which is of the same

order of the corresponding H of this type B. Therefore for all this type H, we are

able to find a g ∈ D2n, such that Hi conjugate to it. Therefore all this type H has

global property to the corresponding B.

Lemma 2.4. Given non-cyclic subgroup H of D2n has even index b and given that

< r
2n
b , srj >, then if a subgroup B of D2n of even index, B is the conjugate of H if B is
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of the form < r
2n
mb , srj ′ > for some integer m with j′ ≡ j (mod 2) and 0 ≤ j′ ≤ 2n

bm
−1.

Proof. Similar to previous proof.

Theorem 2.1. There are no subgroup H of D2n that only has local property but does

not have global property.

Proof. Combine all the previous lemma, we can easily get this theorem.

3. Symmetric Group

Let G be a symmetric group, and let H, B be two subgroups of G.

We say the conjugation of H to B is locally true if for any element h ∈ H, we

can find an element g ∈ G, such that ghg−1 ∈ B.

We say the conjugation of H to B is globally true if there exists an element g in

G such that gHg−1 ≤ B.

Theorem 3.1. Every transitive permutation group of prime degree p must be one of

the following [J.D96].

(i) Sp or Ap

(ii) subgroup of AGL1(p).

(iii) a permutation representation of PSL2(11) of degree 11.

(iv) one of Mathieu groups M11 or M23 of degree 11 or 23.

(v) a projective group G with PSLd(q) ≤ G ≤ PΓLd(q), where qd−1
q−1 = p.
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Based on this Theorem we can sketch how to solve the problem. We can just

discuss the combination of (i) to (v) case by case.

H,B (i) (ii) (iii) (iv) (v)

(i)

(ii)

(iii)

(iv)

(v)

Lemma 3.1. If B is Sp, then Local-to-Global holds for all H.

Proof. Obvious.

Lemma 3.2. Let G be a transitive permutation group of prime degree p, then the

following is equivalent [J.D96]

(i) H is solvable

(ii) H has a normal Sylow p-subgroup

(iii) H has permutation isomorphic to a subgroup of affine group AGL1(p)

Lemma 3.3. if H and B are both solvable transitive permutation subgroup of Sp, then

the Local-Global property is hold.

Proof. AGL(1, p) = CpoCp−1. Therefore, Let a be a p-cycle, b be a p− 1 cycle, then

any subgroup of AGL(1, p) will be one of the following form: < a >, < bk >,< a, bk >,

with k|p − 1.Since we are talking about transitive groups, therefore we only need to
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consider < a > and < a, bk >. Given H =< a, bk1 > and B =< a, bk2 >, if k2|k1, then

H is subgroup of B, L-G holds. If k2 - k1, then local definitely fail, global also fail

because the size of H can’t divide B. And the case for H =< a, bk > and B =< a >,

both local and global fail, therefore L-G holds. If B =< a, bk > and H =< a >, then

H subgroup of B, therefore L-G also holds.

Lemma 3.4. If H is subgroup of AGL1(p), and B is Ap, then Local-to-Global holds.

Proof. We inherit the same notation in the previous lemma for AGL(1, p), then we

have a is even permutation, b is odd permutation. If H is < a >, then L-G definitely

holds. If H =< a, bk > with k even. Then both a and bk are even permutations,

therefore L-G holds. If H =< a, bk > with k odd. Then bk is odd permutation.

Therefore both local and global fail, therefore L-G holds.

Lemma 3.5. If H is a Mathieu group M11, then Local-to-Global holds.

Proof. By Magma Computation.

Lemma 3.6. If H is a Mathieu group M23, then Local-to-Global holds.

Proof. By Magma Computation.

Lemma 3.7. If H is a permutation representation of PSL2(11) of degree 11, and B

is a transitive subgroup of Sp, then Local-to-Global holds.

Proof. By Magma Computation.
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Theorem 3.2. If both H and B belongs to the (i) to (iv) category, then L-G holds.

Proof. Combine those previous lemma.

Lemma 3.8. If H is a projective group with PSLd(q) ≤ H ≤ PΓLd(q), and B is

AGL(1, p), then Global fail.

Proof. The size of H is too big to make global true.

Lemma 3.9. If B is a projective group with PSLd(q) ≤ H ≤ PΓLd(q), and H is Ap,

then Global fail.

Proof. The size of H is too big to make global true.

Lemma 3.10. If H is a projective group with PSLd(q) ≤ H ≤ PΓLd(q), and B is

M11 or M23, then Local-to-Global holds.

Proof. Can’t find any q s.t. qd−1
q−1 is 11 or 23.

4. Future Work

Once we solve the cases of transitive subgroups of Sp, We can try to analyze the

Local-to-Global properties for the transitive subgroups of Spq and Sp2 . There are

theorems characterize the transitive subgroups of Spq and Sp2 in a similar way as

what we are using in our paper. We can discuss the case for Spq and Sp2 , and finally

proceed to Sn = Spa11pa22pa33...pakk
.
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