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Abstract 
 

The Role of the Human Gut Microbiome and Inflammation in Heat Related Illness Among 
Migrant Farmworkers  

 
By Christopher Carr 

 
 

 
 

Prolonged exposure to hot environments can lead to a continuum of conditions known as 
heat related illness (HRI). It has been well documented that the driving force behind the severity 
of HRI is septicemia. To examine the relationship between the gut microbiome and the body’s 
inflammatory response caused by septicemia, farmworkers exposed to at least two weeks of 
working in a hot environment were enrolled in a cross-sectional study. Levels of 
lipopolysaccharide-binding protein (LBP), C-reactive protein, proinflammatory cytokines IL-1-
beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-alpha, and IFN-gamma in both the 
serum and stool of subjects were measured along with gut microbiome alpha and beta diversity. 
It was hypothesized that individuals with higher levels of LBP would be better adapted to 
experiencing heat stress and would be protected against HRI. It was also hypothesized that the 
makeup of the gut microbiome would explain differences between the cases and controls.  
The results of the analysis found that stool CRP, stool IL-1-Beta, and stool IL-8 levels were 
significantly higher among cases. There were no significant differences between cases and 
controls among gut microbiome alpha or beta diversity. These results indicate cases had an 
increased inflammatory response to heat exposure meaning those with lower levels of CRP, IL-
1-Beta, and IL-8 in their stool were less likely to experience HRI. There was also a significant 
difference between gender for serum LBP, serum IL-8, serum and IL-13. The results of this 
study highlight the need for further investigate the differences between those that experience 
HRI and those that do not.   
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1. BACKGROUND/LITERATURE REVIEW 
A. Introduction the Heat Related Illness 

The thermoregulatory system is a key function that humans possess which allows the 

body to adapt to environments of varying temperatures. When this system fails to regulate body 

temperature in particularly hot environments, the body can experience hyperthermia. This is 

where the body is absorbing more heat than it is dissipating (1). A Heat Related Illness (HRI) is 

the medical term for the health problems that arise from hyperthermia. Heat exhaustion, heat 

cramps, heat syncope, rhabdomyolysis, and heat stroke are all common forms of HRI’s (1). Heat 

exhaustion occurs when the body is responding to excessive water and salt loss which can have 

symptoms of heat cramps if engaging in strenuous physical activity and heat rash. Heat syncope 

is a condition where dizziness occurs usually because of prolonged standing or sudden rising 

while exposed to a hot environment (2). Rhabdomyolysis is a condition where the muscle tissue 

within the body begins to break down due to prolonged heat stress (2). The most serious form of 

HRI is heat stroke, when this occurs the body is unable to cool via sweating and internal 

temperatures can rise to over 40 degrees Celsius which can lead to death if not promptly treated. 

Important factors that can play a role in the manifestation of HRI include high blood pressure, 

BMI, medications such as diuretics, dehydration status, and aging skin which prevents proper 

circulation and sweating (1). 

B. Population Affected by Heat Related Illness 

HRI’s are a prevalent problem in the United States and disproportionally affect seasonal 

employees of the agriculture industry during the summer months. It is estimated that there are 3 

million migrant farmworkers in the United States (3).  Approximately 72% of this population is 

reported to be foreign born, with 68% coming from Mexico (3). This population is at a 

disadvantage in many key areas such as language barriers, with 35% reporting that they were not 
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able to speak any English and 8% being able to speak English “somewhat” (3). In terms of 

education, 28% report completing secondary education grades 10 through 12 and only 9% report 

completing some form of higher education. Health insurance is also an issue with this 

population, 39% report being covered by unemployment insurance, 54% report no coverage, and 

only 7% report being covered by employer-provided insurance. Undocumented immigration 

status is also common among this population; it is estimated that 52% would be deemed illegal 

immigrants (4). This population was widely exposed to heat stress, 60% report being seasonal 

workers with an average of 42 hours of work a week and 25% working 50 or more hours (3). 

These statistics indicate that migrant farmworkers in the United States are both a large and 

vulnerable population exposed to heat stress.  

C. Epidemiology of Heat Related Illness  

 The CDC estimates that between 1979-2003 approximately 334 people died each year 

from HRI (5). In the United States, the leading cause of death among weather related exposures 

is heat (6). The HRI mortality rate among migrant farmworkers is 4 per 1,000,000 workers per 

year (7). This is 20 times higher than the HRI mortality rate among the general population which 

is .2 per 1,000,000 workers per year (7). The population of migrant farmworkers exposed is 

expected to increase due to farms needing to increase their production over time (7). The risk 

disparity is also expected to widen due to rising global temperatures and more severe heat waves 

as a result of climate change (7). The year of 2016 was the hottest year on record with global 

temperatures being 1.78 degrees Fahrenheit warmer than the mid-20th century mean (8).  
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D. Underlying Biological Processes of Heat Related Illness 

There is a need for further research on what causes HRI but the current knowledge shows 

that are four major pathways through which the body attempts to adapt to heat stress. The 

cardiovascular thermoregulatory response (CVTR), the production of heat shock proteins 

(HSP’s), an acute immune response, and a response to oxidative stress. The CVTR is the process 

that initiates sweating via cutaneous vasodilation to the periphery. This can cause a drop in blood 

pressure which must be controlled by splanchnic vasoconstriction. This response is heavily 

influenced by hydration and salt levels in the body. HSP’s are a class of proteins that are 

upregulated in many types of stress not just heat exposure. HSP’s stabilize new proteins or help 

refold proteins that were previously damaged by stress exposure (9). HSP’s specifically can 

protect the tight junctions of endothelial cells in the human gut (10). The result of continued 

splanchnic vasoconstriction is an oxygen-deficient state which results in an increase in oxidative 

stress. The effect of oxidative stress on the human gut can lead to the formation of gaps in the 

tight junctions of the epithelium. This is a problem due to the presence of pathogenic bacteria in 

the gut entering the circulatory system (11). This bacterial translocation can cause sepsis and 

inflammation. The acute immune response is the fourth pathway through which the body 

responds to heat stress. It involves the increase of cytokine levels in the circulatory system (12). 

The pro-inflammatory cytokines that are produced in response to heat stress are TNF-α, IL-1β, 

IL-6, IL-8, IL-10, and IFN-γ which function to activate neutrophils (12). It is hypothesized that 

the physiologic process the body undergoes during HRI is affected by the composition of the gut 

microbiome (GM) and the inflammatory process. 
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E. Introduction to the Gut Microbiome 

According to the National Institutes of Health, approximately 1-3% of the total mass of 

the average human body is comprised of microorganisms (13). These microorganisms, known as 

the microbiota, live commensally, symbiotically, and sometimes pathogenically with the body. 

These organisms are involved in roles such as the functioning of our metabolism, defense against 

harmful pathogens, and the strengthening of the immune system. The different types of microbes 

found in the human body are archaea, bacteria, eukaryotes, and viruses (14). These microbes can 

be found in areas of the body such as the skin, nose, and gut. The human gut is defined as the 

small and large intestines which are parts of the human digestive tract. The gut extends from the 

pyloric sphincter of the stomach to the anus. Most of the microbes found in the gut belong to two 

bacterial phyla, Firmicutes and Bacteriodetes (14). Microbiota living in and on the human body 

is hypothesized to be greater than 1012 cells/mL and contribute approximately 8 million protein-

coding genes (13). 

The GM is believed to contain the most diverse intrapersonal microbiota (15). Diversity 

of the microbes means both the type of cells present and their unique genetic codes. 

Interpersonally, the GM can vary between humans due to varying diets, environmental 

exposures, antibiotic consumption, and genetics (16). The degree of diversity of the microbiota 

can play a role in diseases such as obesity, irritable bowel syndrome, type II diabetes, and 

colorectal cancer (16). This highlights how the composition of the GM can manifest observable 

diseases. Surprisingly, the GM is resilient despite the daily introduction of foreign bacteria and 

regular immune surveillance conducted by the body 
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F. The Gut Microbiome, Immune System, Inflammation, and Sepsis 

A key process of the human body’s ability to maintain homeostasis is for balance to exist 

between the GM and the innate and adaptive immune system (17). Current evidence shows the 

GM plays a critical role in the growth of both the systemic and mucosal immune system (18). 

The challenge for the mucosal immune system is to differentiate between symbiotic, commensal, 

and pathogenic bacteria in the gut to maintain a healthy balance in the body (19).   

The importance of understanding the GM and its interaction with inflammatory processes 

and the relationship between inflammation and sepsis is ultimately going to show how the GM 

and inflammation affect HRI. Current knowledge shows that the development of heat stroke and 

ultimately death is driven by septicemia (20). Sepsis is a paradoxical three-stage condition where 

the body harms its own tissues in response to fighting infection. The three stages are the initial 

development of sepsis followed by severe sepsis, then septic shock, ultimately concluding with 

death (21). The inflammatory process is the body’s response to harmful stimuli with the goal of 

removing what is detrimental to the body and repairing the affected area. It is a complicated 

chain of events that involves the immune system and the circulatory system. Inflammation can 

occur both acutely and chronically. Sepsis is related to inflammation in that once it develops it is 

accompanied by Systemic Inflammatory Response Syndrome (SIRS) (22). When the 

inflammatory response is dysregulated, sepsis results, this is highlighted by the body’s shift 

towards an oxidative state. A surge in proinflammatory cytokines and chemokines during sepsis 

is what causes multi-organ failure and eventually death (20).  

The finding that heat stroke can be driven by septicemia rests heavily on being able to 

detect if bacteria translocated from the gut into the blood stream. Lipopolysaccharide (LPS), 

which is found in the cell walls of gram-negative bacteria, can provide a measure of the level of 
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bacterial translocation occurring within a subject’s body (20). During the acute immune phase 

response to heat stress, cytokines IL-1 and IL-6 are released and synthesize lipopolysaccharide-

binding protein (LBP) (23). This binding protein has been found to bind and effectively 

neutralize LPS. LBP is stored in the endothelial cells of the intestine and measuring LBP can 

indicate the level of bacterial translocation (24). It also means that people that are better adapted 

to deal with exposure to heat may have higher levels of LBP (24). Another biomarker involved 

in the inflammatory response is C-reactive protein (CRP) which is released by the liver (25). The 

role CRP plays is specifically to bind to the Fc receptor, a protein found on the surface of cells 

that contribute to the protective abilities of the immune system, and enhance the inflammatory 

response (25).  Due to HRI causing an inflammatory response, it is hypothesized that CRP levels 

will be elevated in the serum of study subjects, particularly in the study subjects that reported 

experiencing HRI. 

G. Study Aims 

This leads to the development of the hypothesis that certain biomarkers capable of being 

detected in both human serum and stool can highlight the role of the GM in HRI. It also 

introduces the question of whether the interpersonal differences in response to heat are explained 

by varying GM composition and that certain people may be better adapted to deal with heat 

exposure. The biomarkers that were examined include LBP, CRP, proinflammatory cytokines 

IL-1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-alpha, and IFN-gamma. GM 

diversity was also compared between study participants.  
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2. METHODS 

A. Overall Study Design 

 This study was conducted in collaboration with the Girasoles Study, a community based 

biomonitoring study examining the relationship between occupational heat exposure and 

physiologic responses among farmworkers in Florida (26). The subjects and data in this study 

were collected in association with the Farmworker Family Health Program (FFHP). The FFHP is 

a program that through partnership with the Ellenton Farmworker Clinic, provides medical care 

to migrant farmworkers and their children. The clinic itself travels to farms so farmworkers can 

receive care after their workday. The actual data was obtained from Dr. Vicki Hertzberg from the 

Nell Hodgson School of Nursing at Emory University. The original goal of this study was to 

recruit 60 participants, ultimately 39 participants consented, of which 37 subjects provided both 

questionnaire data and biological specimens. Microbiome data was analyzed for 35 subjects. 

Subjects were recruited from the Girasoles study and met the study criteria of being a 

farmworker between the ages of 18-54 that is currently working in the field and has been for at 

least two weeks. Those that weighed less than 80 pounds, had a disease history of the esophagus, 

stomach, or intestine, had dysphagia, or a pacemaker were excluded from the study. The study 

subjects were given a heat exposure questionnaire that was a modification of the questionnaire 

administered by the Girasoles Study (26). The questionnaire was administered by bilingual 

clinical research assistants to ascertain heat exposure and demographics of the subjects. The 

questionnaire data was stored in Emory University’s Research Electronic Data Capture 

(REDCAP) system. This study received IRB approval in April of 2016 (IRB#00086444).  
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B. Study Sample Collection and Processing  

Two rectal swabs, blood, and urine samples were collected from study participants. 

Approximately 1000 microliters of blood was obtained per subject via fingerstick. Plasma was 

isolated from the blood samples for testing of Lipopolysaccharide Binding Protein (LBP), C-

reactive Protein (CRP), and proinflammatory cytokines via the Emory Multiplexed 

Immunoassay Core (EMIC). Subjects provided a clean catch urine sample which was used to 

measure the urine specific gravity to determine dehydration status. Subjects provided two Catch-

All rectal swabs. These samples were used to obtain stool levels of LBP, CRP, and 

proinflammatory cytokines via EMIC as well as DNA extraction for GM profiling via the Emory 

Integrated Genomics Core (EIGC). The proinflammatory cytokines (IL-1-beta, IL-2, IL-4, IL-6, 

IL-8, IL-10, IL-12p70, IL-13, TNF-alpha, and IFN-gamma) present in the stool and serum 

samples were measured using a V-PLEX Proinflammatory Panel 1 human kit (MESO Scale 

Diagnostics, EMIC). Serum and stool levels of LBP were measured using the MESO Scale 

Human LBP kit (MESO Scale Diagnostics, EMIC). A Siemens 2161 Multistix 10SG reagent 

strip (CAT# AM-2166) was immersed in the urine samples to determine the specific gravity of 

the urine (values greater than 1.02 indicate dehydration). The GM was assayed from the stool 

with the help of EIGC facility. Microbial DNA was extracted from stool using the MoBio Power 

Soil kit.  After QC, the V3-V4 region was amplified for each sample, then barcoded, pooled, and 

sequenced on a MiSeq (Illumina).  The microbiome data was processed using a MoBio 

Powersoil DNA Isolation Kit. Illumina sequencing adapters and barcodes were used to amplify 

the 16s rRNA V3 and V4 regions. Sequence data was processed using Quantitative Insights into 

Microbial Ecology (QIIME) software (27). Downstream analysis was accomplished with the 
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PhyloSeq package, APE package, and using R studio and Statistical Analysis System (SAS) 

software (28, 29, 30, 31).  

C. Data Processing Procedures 

Using the questionnaire data, we created an outcome variable of HRI status. This was 

done by scoring survey questions on reported cramps, nausea, excessive sweating, confusion, 

dizziness, fainting, or headache. Every participant reported excessive sweating. We therefore 

defined HRI as the report of two or more symptoms other than excessive sweating. This 

definition is supported by existing literature on the topic (32).  

After processing the raw DNA sequencing data through QIIME, the data was imported 

into R studio software using the Phyloseq package. Here the OTU table and phylogenetic tree 

files were merged with the questionnaire and laboratory metadata from SAS using the Phyloseq 

function (28). The rarefy even depth function was used in R studio to rarefy the microbiome 

data. Mean read depth was (171,771), with two outlier samples where reads were less than 

15,000 reads.  These samples were dropped and samples were rarefied to 90,000 reads. Before 

rarefaction, there were a total of 7,017 taxa. After rarefying there were 5,592 total taxa.  

After the rarefaction step, the data were agglomerated to the genus level. Alpha diversity 

was calculated using the estimate richness function for both Chao1 measure and the Shannon 

index (28). Beta diversity of the data was also calculated and plotted using the ordinate function 

and Principle Coordinate Analysis in R. Both the Bray-Curtis and Weighted Unifrac distance 

plots were generated. The analysis of similarity function (anosim) in R was used to calculate the 

statistical significance of the Bray-Curtis distances. This was accomplished by converting the 

Phyloseq object to a Vegan object (34). This was achieved using the veganotu and vegdist 

functions (34). Relative abundance of each genus was calculated using the transform sample 
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count function. To identify the top ten most abundant genera, the data was sorted using the taxa 

sums function (28). 

In SAS, the excel spreadsheets that contained the laboratory biomarker data were merged 

with the questionnaire data using the merge function within the data step procedure (31). For the 

values of the biomarker data that were below the detection range, the lower limit of detection of 

the specific assay, as found on the MESO Scale Diagnostic website, was divided by the square 

root of 2 (33). This data was exported from SAS for statistical analysis in R. Summary statistics 

were calculated for the samples using the means procedure (31).   

D. Data Analysis Procedures 

The biomarker data that was collected in this study was compiled and read into R 

statistical software from SAS. The specific variables were the serum and stool levels of LBP, 

CRP, and the proinflammatory cytokines. The values for each of the biomarkers from both the 

stool and serum samples were log transformed and a principle component analysis was 

conducted on the biomarker data using the prcomp function in R (30). Log transformation was 

done due to the small number of samples and a highly-skewed distribution of the data.  

Bivariate analysis was conducted in SAS. The Chao1 Measure and Shannon Index values 

were exported from R and merged with the compiled dataset in SAS. Since the data was highly 

skewed and the sample size was not large, the Wilcoxon rank-sum test, a nonparametric test, was 

used to examine each of the continuous variables of interest with respect to the HRI outcome, 

urine specific gravity, and gender. Due to small sample size, Fisher’s Exact Test was utilized for 

categorical variables.  

Pearson’s correlation analysis was conducted in R using the corrplot function (35). This 

was done to determine the correlations among the stool biomarkers and among the serum 
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biomarkers. Simple Linear Regression was conducted on the stool and serum biomarker 

variables with Wilcoxon rank-sum test p-values less than 0.10. Few variables were significant at 

the typical 0.05 level so for this study a higher p-value was used. The variables that were chosen 

were serum CRP, serum IL-2, stool CRP, stool LBP, stool IL-1 Beta, and Stool IL-8. The 

variables were regressed on the relative abundance of the top ten genera found in the gut. Since 

this analysis was part of a pilot study, simple linear regression was carried out even though 

assumptions for regression analysis were not met.  

Utilizing the results of the univariate, bivariate, and simple linear regression results a 

final logistic model was built that aimed to quantify the risk of developing HRI based on a given 

set of predictors. Due to the small sample size of the study, overfitting the model was a concern. 

With a larger sample size, the collinearity between the predictor variables would be assessed 

using condition indices. Interaction and confounding would also be assessed while building the 

model. The variables that were selected to be predictors in the model with HRI status as the 

outcome were BMI and Stool CRP. BMI was selected because of its relationship with the GM 

and to comorbidities which can affect biomarker levels. BMI also takes into account lifestyle and 

diet of the study subjects. Stool CRP was selected because it is a biomarker of inflammation and 

was found to be significantly higher among subjects that had HRI compared to subjects that did 

not have a HRI.  
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3. RESULTS 

A. Descriptive Statistics of Cohort 

 The study population included 37 total observations with 35 contributing microbiome 

data after rarefaction. Tables 1, 2, and 3 show demographic results, the nonparametric bivariate 

analysis, and the top ten genera found in the GM samples. Table 1A shows the descriptive 

statistics for the population that was analyzed. Approximately 83.7% of participants of the study 

were male. The average age of the participants ± the standard deviation (SD) was 33.5 ± 8.4 

years old. Approximately 67% of subjects had a urine specific gravity of over 1.02 indicating 

that they were dehydrated. A total of 6 participants were classified as normal weight which is a 

BMI between 18.5 and 24.9. There were 20 participants classified as overweight which is a BMI 

between 25.0 and 29.9. The remaining 11 participants were classified as obese with a BMI 

greater than 30.0.  

The subjects were predominantly immigrants, 91.2% reported that their nationality was 

Mexican, 1 subject reported being from the United States, and 2 were unknown. There were 

45.9% of subjects that reported having smoked greater than 100 cigarettes in their lifetime. A 

majority of the farmworkers, 73.7%, reported working with vegetables in the field. Table 1A 

shows the number of participants that reported each of the HRI symptoms. All 37 of the 

participants reported excessive sweating, 25 reported having experienced a headache, 20 

reported dizziness, 16 reported nausea, 14 reported cramps, 9 reported confusion, 2 reported 

fainting, and 4 reported having experienced another symptom. After creating the HRI variable, 

23 subjects (62%) experienced 2 or more symptoms other than excessive sweating. This left 14 

subjects that did not experience HRI by this definition. Table 1B summarizes the stool and serum 

biomarker variables LBP, CRP, proinflammatory cytokines IL-1-beta, IL-2, IL-4, IL-6, IL-8, IL-
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10, IL-12p70, IL-13, TNF-alpha, IFN-gamma, and microbiome alpha diversity for the total 

samples. Table 1C shows these variables by HRI Status.  

B. Bivariate Analysis and Microbiome Analysis 

Tables 2 A, B and C show results for statistical tests. The results of the Wilcoxon rank-

sum test and Fisher’s exact test between cases and controls is shown in Table 2A. Based on an 

alpha of 0.05, there were two variables that were significantly different between those with HRI 

and those without. The mean value of stool CRP, stool IL-1-Beta, stool IL-8 were found to be 

significantly higher among cases of HRI when compared to controls (p-values = 0.033, 0.007, 

0.042 respectively). Table 2B shows the Wilcoxon rank-sum test and Fisher’s exact test results 

using the dichotomized urine specific gravity variable as the outcome variable. There were no 

statistically significant differences between those that were dehydrated and those that were not at 

an alpha of 0.05. Table 2C shows the results of the Wilcoxon rank-sum test and Fisher’s exact 

test using biological gender as the outcome variable. Serum LBP, serum IL-8, serum IL-13, and 

serum TNF-alpha were all significantly higher in females than in males (p-values = 0.019, 0.005, 

0.007, 0.024 respectively). The Fisher’s exact test of BMI and gender was also statistically 

significant (p-value = 0.012).  

 Tables 3A, 3B, and 3C show the relative abundance of the top ten phyla and genera 

present in the GM of total the samples and then by HRI status. The top three in both cases and 

controls are Prevotella, Bacteriodes, and Faecalibacterium from the phyla Firmicutes and 

Bacteroidetes. Figure 1 shows the Chao1 Measure of GM alpha diversity based on HRI status. 

Figure 2 shows the Shannon Index of GM alpha diversity. No significant differences based on 

HRI status are seen. Figures 3 and 4 show the Bray-Curtis and Weighted Unifrac plots, 

respectively. These figures do not show a clustering of the points based on HRI status or gender. 
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Analysis of similarity conducted on the Bray-Curtis distances showed no significant difference 

based on HRI status (ANOSIM R Statistic = 0.038, p-value = 0.246). The results of the principle 

component analysis examining all the biomarkers with respect to HRI found that the first 

principle component was heavily weighted with the serum biomarkers and the second principle 

component was heavily weighted with the stool biomarkers. These first two principle 

components explained 47.71% of the variation between HRI and no HRI.  

C. Correlation Analysis and Linear Regression 

 Correlation analysis is shown in Figure 5 and Figure 6. Those figures show the Pearson’s 

Correlation Coefficient between the different biomarkers that were analyzed in this study. 

Among the correlations of the serum biomarkers, serum LBP levels were not significantly 

correlated with other serum biomarkers. Among the stool biomarkers, stool LBP levels were 

significantly associated with stool IL-8 levels and stool IL-4 levels (Pearson’s correlation 

coefficient = 0.62, 0.79, P-value = <0.0001, <0.0001 respectively).  

 The simple linear regression of the biomarker variables and the relative abundance of the 

top ten genera present in the gut did not yield significant linear relationships. To further examine 

these variables, simple linear regression was carried out based on HRI status and these linear 

relationships were also not significant. The results of the logistic regression model with HRI 

status as the outcome variable and stool CRP and BMI as predictors was not significant. Stool 

CRP had an OR of 1.002 with 95% C.I. 0.999-1.004. BMI had an OR of 1.086 and a 95% CI of 

0.908-1.299.   
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4. DISCUSSION 

 The original aims of this pilot study were to explore the potential differences between 

subjects that experienced HRI and subjects that did not among the migrant farmworker cohort. It 

was originally hypothesized that certain biomarkers may be protective against developing HRI. 

A set biomarkers were examined from the stool, serum, and urine of the study subjects along 

with GM data and other descriptive variables. This was to be carried with the goal of 

determining differences between subjects that experienced HRI and those that did not. The 

hypotheses of this study were based on the human body’s response to heat stress which causes a 

proinflammatory state resulting in bacterial translocation from the gut into the bloodstream. This 

can result in sepsis and potentially death. The specific protein, lipopolysaccharide (LPS), is a 

hallmark of bacterial translocation from the gut. The body’s response to combat levels of LPS is 

to synthesize lipopolysaccharide binding protein (LBP) which neutralizes LPS. This led to the 

hypothesis that subjects with higher levels of LBP would be better protected from the body’s 

response to heat stress. LBP levels in both the stool and serum along with CRP, proinflammatory 

cytokines IL-1-beta, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-alpha, and IFN-gamma 

levels were all analyzed with respect to HRI status. The results did not show a significant 

difference in stool and serum LBP levels between those with HRI and those without. The 

biomarkers that were significantly different based on HRI status were stool CRP and stool IL 1 

Beta levels. These biomarkers were significantly higher among subjects that experienced HRI (p-

values = 0.033 and 0.007 respectively). This indicates that the HRI group had higher stool 

inflammatory biomarkers than those that did not experience HRI and potentially indicates those 

that experienced HRI had higher levels of proinflammatory cytokines, and CRP.  
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 As part of the exploratory analysis, the biomarker predictors were examined with respect 

to gender and dehydration status as outcomes. No significant difference between dehydration 

status among the stool and serum biomarkers was found. Serum LBP, IL-8, and IL-13 levels 

were all significantly higher among females when compared to males. This indicates that females 

exposed to environmental heat could potentially be at a lower risk of experiencing HRI. Gender 

differences between LBP, CRP, and proinflammatory cytokines could be explored in future 

research studies.  

Since bacterial translocation from the gut occurs during the body’s response to heat 

stress, the other hypothesis of this study was that the makeup of an individual’s microbiome can 

also play a role in developing HRI. This was addressed by analyzing both the alpha and beta 

diversity of the GM with respect to HRI status. There was no significant difference seen between 

subjects that experienced HRI and those that did not. Bray-Curtis and Weighted Unifrac plots 

showed no differences between HRI and no HRI. Alpha diversity measures Chao1 and Shannon 

Index differences between HRI and no HRI showed that the GM alpha diversity was not 

significantly different between the two groups. Based on the existing literature it is known that 

low diversity of the human GM can play a role in chronic diseases like Irritable Bowel 

Syndrome, and Crohn’s Disease (14).  

Simple linear regression looking at the potential linear relationships between serum and 

stool biomarker levels with relative abundance of the top ten genera of the GM did not find 

significant results. The R2 values for these indicated that little variation was explained in these 

models. The logistic model created to determine the risk of developing HRI based on a set of 

predictor variables was also not significant. The odds ratios associated with Stool CRP and BMI 

were slightly higher than 1.0 (OR’s = 1.002, 1.086 respectively). However, both confidence 
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intervals contained the 1.0, the null value. This indicates that among these samples higher BMI 

and higher Stool CRP levels were not significantly increasing the odds of developing HRI.  

 The data collected for this study provided a comprehensive biomarker and GM profile for 

each subject. This allowed for analysis of the inflammatory state and the microbiome with 

respect to the outcome variable which in this case was HRI. The limitations of this study were 

largely due to sample size and the selection of the samples. Enrollment of a subject required that 

they be a farmworker that had been working in the field for at least two weeks prior to selection. 

This resulted in every subject in the cohort being exposed to heat and reporting excessive 

sweating which can be a sign of HRI. This potentially decreased the differences that would be 

seen between the subjects that were designated as cases or controls. Those that were classified as 

not having HRI could have been experiencing HRI which could explain why no differences were 

seen in the GM and most of the biomarker results. Another limitation of the study is how 

difficult the microbiome is to analyze. It is highly influenced by many different factors which 

will result in greater variability of the results which is why it necessitates a large sample size to 

analyze. 

More research is needed to explore the role inflammation and the GM plays in HRI. This 

is an issue that affects approximately 3 million people in the United States with many more 

millions around the world. It is an issue that is going to be exacerbated by climate change. The 

overall results of this study suggest that the differences between those that experienced HRI and 

those that did not could be explained by proinflammatory cytokines, gender, CRP, and LBP. 

These results do justify a larger study because multiple variables were just above statistical 

significance (serum CRP, serum IL-2, stool LBP, stool LBP) and a study with larger sample size 

would have more power to detect these differences. Future studies need to enroll an appropriate 
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group of controls that while they are representative of the case population they are not exposed to 

environmental heat and have a more even distribution of gender. The subjects of this study were 

also predominantly overweight and obese, future studies should seek to enroll subjects that have 

a more even distribution of BMI since it is known to influence the GM (36). This would provide 

a more accurate differentiation between those that experienced the outcome of interest in this 

study and those that did not. This could potentially be achieved by studying a cohort of 

farmworkers that work at a location with indoor and outdoor work environments and measuring 

the same variables as this study; LBP, CRP, proinflammatory cytokines IL-1-beta, IL-2, IL-4, 

IL-6, IL-8, IL-10, IL-12p70, IL-13, TNF-alpha, and IFN-gamma along with the GM makeup and 

diversity. This would provide more accurate results on the affect heat exposure has within the 

human body.  
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TABLES: 

Table 1A - Subject Demographics and Lab Results 

  

HIAMI  
Study Subjects  

(n=37)  
Male Gender;  n (%) 31 (83.7) 
Age (years); mean (SD) 33.5 (8.4) 
BMI   

Underweight <18.5; n (%) 0 
Normal Weight 18.5-24.9; n (%) 6 (15.8) 
Overweight 25-29.9; n (%) 20 (52.6) 
Obese > 30; n (%) 11 (29.7) 

Urine Specific Gravity; n (%)   
> or = 1.02 25 (67) 

Nationality; n (%)   
United States  1 (2.7) 
Mexico 34 (91.2) 
Other  2 (5.4) 

Smoking History (> 100 cigarettes); n % 17 (45.9) 
Everyday Smoker; n % 7 (18.4) 

Crops Worked With; n (%)   
Vegetables  27 (72.9) 
Oranges   2 (5.4) 
Other  8 (21.6) 

Self Reported Heat Related Illness Symptoms; n (%)  
Cramps 14 (37.8) 
Nausea  16 (43.2) 
Excessive Sweating 37 (97.3) 
Confusion  9 (24.3) 
Dizziness  20 (54.1) 
Fainting 3 (8.1) 
Headache 25 (67.6) 
Other  4 (23.5) 

Heat Related Illness*; n (%)   
2 or more symptoms (other than excessive sweating) 23 (62) 
3 or more symptoms  14 (37.8) 
4 or more symptoms  5 (13.5) 

*Defined as having two or more symptoms: cramps, nausea, excessive sweating, confusion, dizziness, fainting, headache.  
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Table 1B - Lab Results and Microbiome Alpha Diversity 

  

HIAMI  
Study Subjects  

(n=37)  
Serum; mean (SD)   

CRP (ng/mL) 4917.77 (11442.22) 
LBP (ng/mL) 2489.88 (1623.07) 
TNF-alpha (pg/mL) 9.21 (12.70) 
IL-1-Beta (pg/mL) 53.58 (75.18) 
IL-2 (pg/mL) 0.23 (0.22) 
IL-4 (pg/mL) 0.06 (0.05) 
IL-6 (pg/mL) 4.08 (13.93) 
IL-8 (pg/mL) 203.49 (567.26) 
IL-10 (pg/mL) 0.64 (1.35) 
IL-12p70 (pg/mL) 0.13 (0.15) 
IL-13 (pg/mL) 0.66 (0.56) 
IFN-gamma (pg/mL) 4.56 (2.91) 

Stool; Mean (SD)   
CRP (pg/mL) 670.21 (1614.02) 
LBP (ng/mL) 0.18 (0.39) 
TNF-alpha (pg/mL) 0.96 (1.23) 
IL-1-Beta (pg/mL) 10.97 (18.99) 
IL-2 (pg/mL) 5.30 ( 11.80) 
IL-4 (pg/mL) 0.08 (0.08) 
IL-6 (pg/mL) 0.40 (0.78) 
IL-8 (pg/mL) 124.20 (234.74) 
IL-10 (pg/mL) 0.25 (0.42) 
IL-12p70 (pg/mL) 0.52 (0.51) 
IL-13 (pg/mL) 1.79 (3.07) 
IFN-gamma (pg/mL) 4.22 (7.83) 

Alpha Diversity; mean (SD)   
Choa1 101.96 (15.63) 
Shannon 2.54 (0.27) 
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Table 1C - Lab Results and Microbiome Alpha Diversity by HRI Status 

  

No Heat  
Related Illness 

(n=14) 

Heat Related  
Illness (n=23) 

Serum; mean (SD)     
CRP (ng/mL) 2021.45 (2998.01) 6680.69 (14154.16) 
LBP (ng/mL) 2536.97 (1089.07) 2461.22 (1899.38) 
TNF-alpha (pg/mL) 8.82 (12.08) 9.44 (13.32) 
IL-1-Beta (pg/mL) 38.65 (25.69) 62.67 (92.90) 
IL-2 (pg/mL) 0.26 (0.19) 0.21 (0.24) 
IL-4 (pg/mL) 0.05 (0.06) 0.05 (0.05) 
IL-6 (pg/mL) 7.27 (22.61) 2.14 (2.32) 
IL-8 (pg/mL) 317.83 (899.55) 133.89 (187.08) 
IL-10 (pg/mL) 0.41 (0.35) 0.77 (1.69) 
IL-12p70 (pg/mL) 0.12 (0.19) 0.13 (0.11) 
IL-13 (pg/mL) 0.71 (0.69) 0.63 (0.47) 
IFN-gamma (pg/mL) 5.20 (3.98) 4.18 (2.01) 

Stool; Mean (SD)     
CRP (pg/mL) 192.38 (250.57) 961.05 (1998.0) 
LBP (ng/mL) 0.20 (0.30) 0.16 (0.44) 
TNF-alpha (pg/mL) 1.13 (1.93) 0.08 (0.47) 
IL-1-Beta (pg/mL) 3.21 (5.07) 15.69 (22.66) 
IL-2 (pg/mL) 6.94 (14.04) 4.29 (10.42) 
IL-4 (pg/mL) 0.08 (0.03) 0.08 (0.10) 
IL-6 (pg/mL) 0.23 (0.13) 0.50 (0.98) 
IL-8 (pg/mL) 25.94 (33.10) 184.01 (282.20) 
IL-10 (pg/mL) 0.33 (0.57) 0.20 (0.29) 
IL-12p70 (pg/mL) 0.50 (0.33) 0.52 (0.60) 
IL-13 (pg/mL) 1.73 (2.76) 1.83 (3.31) 
IFN-gamma (pg/mL) 5.56 (11.89) 3.34 (3.84) 

Alpha Diversity; mean (SD)     
Choa1 104.22 (13.29) 100.46 (17.16) 
Shannon 2.52 (0.26) 2.55 (0.28) 
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Table 2A - Bivariate Analysis with HRI Status* 

  
Wilcoxon rank-sum test 

exact two-sided Fisher’s exact test 

P-value  
Age 0.647   
BMI   0.068 
Gender   1.000 
Smoking History (> 100 cigarettes)   0.744 
Serum     

CRP  0.071   
LBP  0.298   
TNF-alpha  0.963   
IL-1-Beta  0.653   
IL-2  0.076   
IL-4  0.714   
IL-6  0.938   
IL-8  0.566   
IL-10  0.525   
IL-12p70  0.340   
IL-13  0.822   
IFN-gamma  0.987   

Stool     
CRP  0.033**   
LBP  0.060   
TNF-alpha  0.231   
IL-1-Beta  0.007**   
IL-2  0.546   
IL-4  0.486   
IL-6  0.632   
IL-8 0.042**   
IL-10  0.654   
IL-12p70  0.610   
IL-13  0.746   
IFN-gamma  0.632   

Urine Specific Gravity  0.909   
Alpha Diversity     

Choa1 Measure 0.428   
Shannon Index 0.829   

*Comparing 2 or less symptoms of HRI to greater than 2 symptoms (other than excessive sweating) 

**Significant p-value (<0.05) 
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Table 2B - Bivariate Analysis with Urine Specific Gravity* 

  
Wilcoxon rank-sum test 

exact two-sided Fisher’s exact test 

P-value  
Age 0.822   
BMI   0.457 
Gender   1.000 
Smoking History (> 100 cigarettes)   1.000 
Serum     

CRP  0.088   
LBP  0.101   
TNF-alpha  0.761   
IL-Beta  0.088   
IL-2  0.169   
IL-4  0.812   
IL-6  0.553   
IL-8  0.810   
IL-10  0.052   
IL-12p70  0.292   
IL-13  0.398   
IFN-gamma  0.910   

Stool     
CRP  0.061   
LBP  0.772   
TNF-alpha  0.737   
IL-Beta  0.377   
IL-2  0.327   
IL-4  0.471   
IL-6  0.713   
IL-8  0.360   
IL-10  0.377   
IL-12p70  0.761   
IL-13  0.835   
IFN-gamma  0.343   

Urine Specific Gravity      
Alpha Diversity     

Choa1 Measure 0.139   
Shannon Index 0.409   

*Comparing dehydrated to not (specific gravity > 1.02 is dehydrated)  

**Significant p-value (<0.05) 
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Table 2C - Bivariate Analysis with Gender* 

  
Wilcoxon rank-sum test 

exact two-sided  Fisher’s exact test 

P-value 
Age 0.930   
BMI   0.012** 
Gender     
Smoking History (> 100 cigarettes)   0.188 
Serum     

CRP  0.643   
LBP  0.019**   
TNF-alpha  0.024**   
IL-Beta  0.455   
IL-2  0.888   
IL-4  0.812   
IL-6  0.095   
IL-8  0.005**   
IL-10  0.053   
IL-12p70  0.452   
IL-13  0.007**   
IFN-gamma  0.214   

Stool     
CRP 0.247   
LBP  0.633   
TNF-alpha  0.856   
IL-Beta  0.532   
IL-2 0.888   
IL-4  0.059   
IL-6  0.385   
IL-8  0.673   
IL-10  0.230   
IL-12p70  0.104   
IL-13  0.673   
IFN-gamma  0.920   

Urine Specific Gravity     0.9589 
Alpha Diversity     

Choa1 Measure 0.922   
Shannon Index 0.080   

* Male vs. Female 

**Significant p-value (<0.05) 
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Table 3A - Top Genera by Relative Abundance Sums for Total Samples 

All Samples 
Phylum  

(next taxanomic rank if 
unclassified)  

Genus  
(next taxanomic rank if unclassified) 

Mean Relative  
Abundance 

Bacteroidetes Prevotella 0.3186 
Bacteroidetes Bacteroides 0.0693 
Firmicutes Faecalibacterium 0.0466 
Firmicutes Unclassified (family Ruminococcaceae) 0.0371 
Firmicutes Unclassified (family Lachnospiraceae) 0.0357 
Firmicutes Sporobacterium 0.0345 
Firmicutes Finegoldia 0.0334 
Firmicutes Peptoniphilus 0.0311 
Firmicutes Unclassified (order Clostridiales) 0.0301 
Firmicutes Dialister 0.0287 

 

 

Table 3B - Top Genera by Relative Abundance Sums among No HRI Subjects 

No Heat Related Illness 
Phylum  

(next taxanomic rank if 
unclassified)  

Genus  
(next taxanomic rank if unclassified) 

Mean Relative  
Abundance 

Bacteroidetes Prevotella 0.3477 
Bacteroidetes Bacteroides 0.0682 
Firmicutes Faecalibacterium 0.0518 
Firmicutes Unclassified (family Ruminococcaceae) 0.0429 
Firmicutes Unclassified (family Lachnospiraceae) 0.0402 
Firmicutes Sporobacterium 0.0395 
Firmicutes Unclassified (order Clostridiales) 0.0333 
Firmicutes Finegoldia 0.0297 
Firmicutes Peptoniphilus 0.0265 
Firmicutes Dialister 0.0231 

 

 

 

 

 



 
  
 

 

30 

Table 3C - Top Genera by Relative Abundance Sums among HRI Subjects 

Heat Related Illness 
Phylum  

(next taxanomic rank if 
unclassified)  

Genus  
(next taxanomic rank if unclassified) 

Mean Relative  
Abundance 

Bacteroidetes Prevotella 0.2992 
Bacteroidetes Bacteroides 0.0700 
Firmicutes Faecalibacterium 0.0432 
Firmicutes Finegoldia 0.0358 
Firmicutes Peptoniphilus 0.0343 
Firmicutes Unclassified (family Ruminococcaceae) 0.0333 
Firmicutes Unclassified (family Lachnospiraceae) 0.0327 
Proteobacteria Campylobacter 0.0324 
Firmicutes Dialister 0.0323 
Firmicutes Sporobacterium 0.0311 
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FIGURES: 

 

 

 

 

 

 

 

 

Figure 1 - Shannon Index Alpha Diversity Plot by HRI Status 
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Figure 2 - Chao1 Measure Alpha Diversity Plot by HRI Status 
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Figure 3 - Principle Coordinate Analysis Plot of Bray-Curtis Distances 
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Figure 4 -  Principle Coordinate Analysis Plot of Weighted Unifrac Distances 
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Figure 5 - Correlation Plot of Serum Biomarkers 
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Figure 6 - Correlation Plot of Stool Biomarkers 


