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Abstract 

 

Quantifying animal social behavior during pair bond formation 
 

By Sena Agezo 

 

 

Pair bonding is a complex social process that involves behavioral changes across contexts, 

including sociosexual interactions and parental care. A pair bond is thus a complex state that 

manifests across an animal’s behavioral repertoire. Despite such complexity, this state is typically 

characterized with reference to only a few behaviors, often only one at a time. For example, in 

prairie voles, a canonical mammalian model of pair bonding, a bond is usually inferred only by 

observing one behavior, partner huddling, or another resident-intruder attack. Here, we 

characterize how the process of pair bonding alters a complete repertoire of natural behaviors. 

Specifically, we investigate prairie voles with their oxytocin receptors knocked out since the 

receptors are thought to be necessary for pair bond formation.  

We tracked the postures of voles during the early phase (3hrs) of a 48-hr cohabitation by 

leveraging the advances in deep-learning algorithms such as DeepLabCut. However, these 

algorithms exhibit poor tracking accuracy when the animals spend more time with each other, 

performing key social behaviors such as huddling and mutual grooming. Hence, we implemented 

a pipeline that combines multiple deep-learning-based tracking methods to obtain detailed and 

high-accuracy postural trajectories of multiple animals.  

Using the postural trajectories, we implemented an unsupervised method to map the 

behavior of the animals and observed that prairie voles show a gradual temporal evolution of the 

behavioral repertoire from locomotory-like movements to more stationary-like behaviors. In 

addition, we found that the mutant voles, with the oxytocin receptors knocked out, show more 

stationary-like behavior than wild-type animals. However, contrary to the current knowledge in 

the field and despite the subtle behavioral difference we observed, we found that the oxytocin 

receptors are not necessary for pair bond formation in prairie voles. 
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LIST OF FIGURES 

Figure 1.1. A partner preference test to assess pair bond formation. Female prairie voles were 

paired with male conspecifics under varying conditions. A. Schematic of partner preference test 

performed in a 3-chamber. B Time spent in side-by-side contact with the partner and the stranger 

during a 3-hr preference test (Adapted from Williams et al., 1992) 6 

 

Figure 1.2. Oxytocin promotes prosocial behaviors in humans. A. A schematic of a Cyberball game 

and ball-toss distribution, where a participant engages in a multi-round ball-toss game over a 

computer network with three fictitious partners, classified as good, neutral, and bad. The “good” 

profile (A) sent, on average, 70%, of its played balls to the participant (P). The “neutral” profile 

(B) sent 30%, and player C (the “bad” profile) sent 10% of its played balls to the participant. B.  

Ball-toss distributions for healthy subjects and for patients with HF-ASD treated with oxytocin or 

placebo. C. Time course of ball tosses sent by participant P to players A (good) and C (bad) in a 

regularly spaced bin, an interval between player A’s tosses n and n+2. (Adapted from Andari et 

al., 2010) 9 

 

Figure 1.3. Overexpression of OTR facilitates alloparental behavior and partner preference in 

female prairie voles. A. Autoradiography shows the OXTR binding density in Sham, GFP, OTR, 

and Miss groups. The control group, “Sham,” received no injection of AVV-OTR. The “GFP” 

control group received bilateral accumbal infusions of a virus expressing the GFP gene. The 

OXTR-expressing virus was bilaterally injected into the nucleus accumbens of the experimental 

group “OXTR.” The other control group, “Miss,” received bilateral injections outside the nucleus 

accumbens. B. The latency to approach pups in all four groups. C. Time spent licking and 

grooming pups. D. Time spent in immobile side-by-side contact with a partner or stranger after a 

cumulative 18 h cohabitation period. (Adapted from Keebaugh et al., 2011) 11 

 

Figure 1.4. OT knock-out (OTKO) mice fail to display social recognition despite apparently 

normal olfactory and spatial learning abilities. A. Male mice were allowed to investigate the same 

ovariectomized (OVX) female during each of four successive 1-min trials. B. Mice investigated 

different OVX stimulus females in each repeated trial. (Adapted from Ferguson et al., 2000) 12 

 

Figure 1.5. Significant induction of Fos-IR in wild type with intact OTRs. Male mice were 

considered Exposed if they had a social encounter with an ovariectomized female for 90 sec. 

Otherwise, they were deemed unexposed if they were not provided with a social experience. 

Photomicrographs showing c-Fos-immunoreactive cells after a social encounter in OTKO (a, d, g) 

and WT (b, e, h) males in the medial amygdala (MeA; a, b), the bed nucleus of the stria terminalis 

(BNST; d, e), and the medial preoptic area (MPOA; g, h). Measurement of the number of c-Fos 

cells per square millimeter in those brains, an indication of neural activation (c, f, i). (Adapted 

from Ferguson et al., 2001) 13 

 

Figure 1.6. Oxytocin enhances social recognition by modulating the olfactory system. Adult 

female rats were exposed for 5 min to a same-sex juvenile rat (sample phase). After returning to 

the home cage for 120 min, the adult rat was re-exposed to the previous and, at the same time, to 

a novel same-sex juvenile for 3 min (recognition phase). A. Social recognition memory is 

expressed as the percentage of time the test animal spent exploring the novel social partner over 
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the total time exploring both same-sex interaction partners. B. TGOT-induced normalized 

excitatory postsynaptic currents (sEPSC) rate in fast-spiking neurons in the AON. C. TGOT-

induced normalized inhibitory postsynaptic currents (sIPSC) in mitral cells in the MOB. (Adapted 

from Oettl et al., 2016) 15 

 

Figure 1.7. The oxytocin system and other neurochemicals in the social brain network. During 

social interaction, odorant cues released from a soon-to-be partner are processed in the main 

olfactory bulb (MOB). The PVN releases OT to bind the receptors in the anterior olfactory nucleus 

(AON) to activate the excitatory neurons, which activate MOB's inhibitory neurons. The activation 

of MOB by the OT fibers of the AON causes it to suppress the spontaneous firing activity, which 

might be responding to random odorants, and amplify the social cue that is received from the 

partner. The salient sensory information is transferred along one of several possible pathways to 

the amygdala, which receives projections from MOB and accessory olfactory bulb. OT acts in the 

medial amygdala (MeA) and basolateral amygdala (BLA) to facilitate olfactory learning and 

memory. In addition, a social engram of neurons within the hippocampus (Hipp) is activated to 

retain information about the partner. Concurrently, rewarding experiences such as mating during 

social interaction activate the VTA to release dopamine into the nucleus accumbens (NAc) and 

prefrontal cortex (PFC). The connection between PFC and NAc under the regulation of OT guides 

the animal's behaviors in the social context. (Adapted from Walum et al., 2018) 20 

 

Figure 2.1. Low-dimensional representation of the behavioral dynamics of C. elegans. A. Image 

of a C. elegans captured under microscopy and the tracking of a curve along the center of the body. 

B. Dimensional decomposition of the posture into four eigenmodes (with their eigenvectors - 

referred to as eigenworms) that capture 95% of the shape variance of the animal. The population-

mean eigenvectors (red) are highly reproducible across individual worms (black). C. The 

probability distribution of the first two mode amplitudes, r(a1, a2), shows a ring of nearly constant 

amplitude. D. At different positive and negative amplitudes for the third mode, the animal assumes 

different body postures with bends in the dorsal and ventral directions. E. Trajectories in the 

deterministic dynamics. A selection of early-time trajectories is shown in black. At late times these 

same trajectories collapse to one of four attractors (red): forward and backward crawling and two 

pause states. (Adapted from Stephens et al., 2008) 27 

 

Figure 2.2. Dynamics of collective behaviors in animals. A. A representation of an individual in 

the model centered at the origin: zor = zone of repulsion, zoo = zone of orientation, zoa = zone of 

attraction. The possible ‘‘blind volume’’ behind an individual is also shown. A = field of 

perception. B. A plot of the group polarization pgroup (left) and angular momentum mgroup (right) as 

a function of changes in the size of the zone of orientation ∆ro and zone of attraction ∆ra: The 

areas denoted as (a–d) correspond to the area of parameter space in which the collective behaviors 

(C), respectively, are found. Area (e) corresponds to the region in parameter space, where groups 

have a greater than 50% chance of fragmenting. (C) The collective behaviors exhibited by the 

model: (a) swarm, (b) torus, (c) dynamic parallel group, (d) highly parallel group. (Adapted from 

Couzin and Krause, 2003) 29 

 

Figure 2.3. A schematic of the representation of animals’ behavioral repertoire. A. A hypothetical 

ethogram that shows a moment-by-moment classification of each animal’s behavior. B. A 
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theoretical behavioral space with the behaviors of the animals clustered together based on their 

stereotypy. 31 

 

Figure 2.4. A schematic representation of grouping behaviors into orders for animals (a) and (b). 

A. Examples of a first-order grouping showing an individual (a) approaching another stationary 

animal (b) and an animal (a) moving away, either escaping or ordinary departure, from the other 

individual (b). B. A second-order grouping shows an animal (a) approaching another and then 

huddling with them (a) or the two animals huddling and one (b) departing. C. Examples of a third 

order where an individual (a) approaches another to probably orally or anogenitally investigate the 

other animal (b), where either animal (a) or (b) escapes. (Adapted from de Chaumont et al., 2012)

 36 

 

Figure 2.5. A pipeline for mapping behavior into a lower-dimensional representation. Images from 

a video of a behaving animal are rotationally and translationally aligned to be invariant. The image 

data is decomposed into a low-dimensional embedding. A wavelet transform is then applied to the 

decomposed postural data to generate a spectrogram. These spectrograms are used to construct 

spectral feature vectors that we embed into two dimensions using t-distributed stochastic neighbor 

embedding (t-SNE). Lastly, a watershed transform is applied to identify resolvable peaks 

associated with stereotyped behaviors in the distribution (Adapted from Berman et. al., 2014) 38 

 

Figure 2.6. A behavioral mapping of social behavior of paired fruit flies. A. A schematic of the 

arena with the paired fruit flies. Flies of the same sex or opposite sex were paired together and 

videotaped for 30 minutes to record their behaviors. B. A map (left) showing the 2D projection of 

the behavior of the flies. Black lines indicate coarse-grained regions based on hand labeling. A 

bubble plot (middle) summarizing the relative densities and transitions between coarse behavior 

regions. The right plot shows the names of the classified coarse-grained regions from the map. C. 

A comparison of the relative densities of the female and male flies when paired with either the 

same or opposite sex. D. Stacked behavioral density plots show the frequency of each coarse 

behavior given distance to the interaction partner dp. A sliding window of 1 mm was used to 

calculate density at.1 mm increments with centers ranging from.1 to 18 mm. (Adapted from 

Klibaite and Shaevitz, 2020) 41 

 

Figure 3.1. A behavioral space for prairie voles created with a multi-animal tracking tool. Male 

and Female prairie voles were paired for 24 hours. We recorded their behavior during the first 2 

hours of cohabitation. Then, we applied a multi-animal DeepLabCut to track their postures. Given 

the poses, we built a behavioral map based on the approach outlined in the previous chapter. The 

map shows regions with peaks that are meant to indicate stereotyped behaviors. However, some 

of these peaks are generated by bad tracking errors (Red box). Refer to this link for samples of 

videos from these regions:  

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Figure_3.1_Videos 48 

 

Figure 3.2. Computer vision and machine learning tools to track animal behavior. A. Tracking of 

multiple fruit flies. Foreground pixels are grouped to detect individual flies. The purple component 

corresponds to one fly; the large black part corresponds to three. The tracker splits this large 

component into 1–4 clusters. The penalty based on cluster size is shown for each choice. B. Pose 

estimation of two mice with distinct coat colors using information from both the top view camera 
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and depth sensor. An ellipse that best fits an animal detected in the segmented 3D video frames is 

used to describe the animal's position, orientation, shape, and scale.C. Tracking of multiple adult 

zebrafish. The method consisted of identifying fingerprints or signatures of the animals that served 

as reference images. The fingerprints were made based on the intensity and contrast maps extracted 

from the video frames. By aggregating enough reference images, they could accurately track each 

individual. (Adapted from Branson et al., 2009, Hong et al., 2015, and Pérez-Escudero et al., 2014)

 50 

 

Figure 3.3. An example illustrating an application of deep-learning tools for human pose 

estimation of multiple people in real-world images. (Adapted from Insafutdinov et al., 2016) 52 

 

Figure 3.4. An example illustrating an application of DeepLabCut to track the pose of a mouse and 

a fly. A. A typical architecture of a deep neural network (DNN) is used in predicting the body-part 

locations based on the corresponding image. B. Example of body part prediction for a mouse 

showing the network’s prediction (yellow cross) matching human annotator’s labels (red cross). 

C. Example frames and body part predictions for a fly in different poses. (Adapted from Mathis 

et. al., 2018) 53 

 

Figure 3.5. A standard workflow pipeline for using deep-learning-based markerless tracking 

methods. First, take a raw video of the animals and then label desired points on body parts. A deep 

neural network is trained on the labels from human annotators. The network infers animal’s body 

points on video data. 55 

 

Figure 3.6. A typical architecture of an autoencoder. The autoencoder comprises two main parts – 

the encoder and the decoder. The encoder produces a latent representation from the input data, fed 

into the input layer. The decoder transforms the latent representation into an output, which is 

identical but not the same as the input. (Adapted from Géron, 2019) 56 

 

Figure 3.7. Comparison between pose estimation generated by tracking tools (e.g., SLEAP) and 

Autoencoder. A) SLEAP tracked points show unlabeled body points on the animal. B) Applying 

the autoencoder labels the missed body points from A. C) SLEAP tracking wrongly labels a body 

point for one vole on the other. D) Autoencoder fixes swapped body points 58 

 

Figure 3.8. A block diagram figure of autoencoders. A. A schematic of a stacked autoencoder. B. 

An illustration of a variational autoencoder.  (Adapted from Géron, 2019) 59 

 

Figure 3.9. Examples of fake tracked points generated using variational autoencoders. These points 

were not from an actual vole. 60 

 

Figure 3.10. A schematic of the architecture of the primary autoencoder we used in the thesis 62 

 

Figure 3.11. Dropout Neural Net Model. Left: A standard neural net with two hidden layers. Right: 

An example of a thinned net produced by applying dropout to the network on the left. Crossed 

units have been dropped. 65 
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Figure 3.12. Performance of networks on different numbers of training datasets. The networks 

were tested on 500 frames that they were not trained on. Overall, both SLEAP and DLC performed 

better when trained with more labeled data.  Each black point represents the average Euclidean 

distance (RMSE) for a body part of an individual 68 

 

Figure 3.13. Comparison between the stacked and the variational autoencoder. The top figure 

shows the stacked autoencoder's lower mean squared error for the validation loss compared to the 

variational autoencoder. The bottom figure indicates no difference in the validation accuracy 

between the two models. 70 

 

Figure 3.14. Comparing the behavioral map generated by the tracking tool and the autoencoder. A 

behavioral space created with only a tracking tool (e.g., maDLC) (A) and a combination of an 

autoencoder and tracking tool (B). C. Using GMM to if the tracked points in the behavioral regions 

had the correct vole shape in both A and B. The tracking improves by applying the Autoencoder 

to the tracked outputs from SLEAP. (***p < 0.001, Student t-test) 71 

 

Figure 3.15. Pipeline for robustly tracking multi-animal poses. A schematic of the pipelines for 

fixing tracking errors using Autoencoder combined with idTracker/TRex (A) or manual correction 

(B). 74 

 

Figure 4.1. The experimental paradigm with its timeline. The subject voles were initially recorded 

with a novel animal or the future partner (Exp. A) in a chamber separated by a transparent divider. 

If they were recorded with a novel animal in Exp. A, then in Exp. B they were paired with the 

future partner animal or vice versa. The subject animal was paired with their partner for 48 hours. 

Following the cohabitation, the solo separated behavior was repeated in the same order as before 

the cohabitation. Therefore, Exp. A == Exp. D and Exp. B == Exp. E. After it, we performed a 

social preference test for 2 hours. 83 

 

Figure 4.2. Pipeline for robustly tracking animals. A) The pipeline to implement a multi-animal 

pose-estimation deep learning method to track the posture of the animals. B) Adding an 

autoencoder to improve tracking and manually correct the swapped animal identities with the aid 

of a GUI 85 

 

Figure 4.3. Calculating the metrics for MotionMapper. A) Schematic for calculating the Euclidean 

distances and ‘Joint’ angles between body points. B) Pipeline for generating a low-dimensional 

set of time series for MotionMapper. 87 

 

Figure 4.4. Pipeline for MotionMapper. A Morlet wavelet transform is applied to the transformed 

postural time series to create a spectrogram for each feature. Subsequently, t-SNE is used to map 

each point in time into a two-dimensional plane, and that is then clustered into ‘behavioral’ regions 

by a watershed transform.  (Adapted from Berman et. al., 2014) 89 

 

Figure 4.5. Female CRISPR KO shows pair bonding behaviors. A. Schematic of social preference 

test.  B-C. CRISPR KO, like WT, animals spend more time in their partner’s and stranger’s zone 

for 2 hours (B) and within 10-minute blocks (C). D-E.  CRISPR KO and WT travel more in their 
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partner’s zone than in the stranger's. Mean  SEM, n= 12 WT and 16 CRISPR KO; *p<0.05, 

**p<0.01, ***p<0.0001; N.S., not significant 93 

 

Figure 4.6. CRISPR KO female prairie voles do not show any deficit in locomotor activity. A. 

Schematic of the behavioral paradigm. A transparent divider with holes is used to separate animals. 

B – C. The total distance traveled by animals in both the first and second sessions. D.  Schematic 

showing distance threshold to consider an animal near the divider. E-F. Time spent near the divider 

by the animals. *p<0.05, **p<0.01, ***p<0.0001; ns, not significant 94 

 

Figure 4.7. Behavioral map of the voles during the early phase (first 3 hours) of cohabitation. A) 

A PDF of the stereotyped behaviors marked by boundary lines from the watershed transform B) 

Hierarchical cluster of behaviors into coarse-grained regions 96 

 

Figure 4.8. Transition probabilities and behavioral modularity. (A) Behavioral space probability 

density function (PDF). B) One-step Markov transition probability matrix =1, overlayed with the 

behavioral clusters from the information bottleneck calculation. (C-D) Transitions rates are plotted 

on the behavioral map with =1 (C) and =5 (D). 97 

 

Figure 4.9. Behavioral densities as a function of time. We split the behavioral repertoire into 30 

minutes time bins. We see a gradual evolution from locomotion-like behavior in the early 

cohabitation period to more stationary-like behavior in the later hour. 99 

 

Figure 4.10. Differences in behavior between CRISPR KO and WT female animals. A) Behavioral 

PDF map of recordings of all the CRISPR KO females B) Behavioral PDF map of recordings of 

all the WT females. C) Difference between the two PDFs in A) and B). Outlined areas are 

statistically significantly different regions across the two maps. 100 

 

Figure 4.11. Behavioral densities as a function of time. Behavioral densities for CRISPR KO and 

WT female voles are broken down into 30-minute intervals. WT females perform very active-like 

behavior during the early part of cohabitation and gradually transition to idle-like behavior later. 

In contrast, CRISPR KO females are more idle-like during the entire period 101 

 

Figure 4.12. Examining the behavioral covariances. (A) The covariance matrix of the mean 

behaviors is sorted according to the information bottleneck clusters. (B) The eigenvalues of the 

covariance matrix. The first two eigenvalues (blue) are larger than the eigenvalues returned from 

shuffling the behavioral density matrix (the error bars are the standard deviation of the shuffled 

data) (C) The eigenvectors corresponding to the first (top) and second (bottom) eigenvalues plotted 

on the behavioral map. 102 

 

Figure 4.13. Projections of the CRISPR and WT females' data onto the first eigenvector (A) and 

the second eigenvector (B) plotted as a function of time. Projections of the CRISPR and WT pair 

data onto the first eigenvector (C) and WT female and male pair onto the first eigenvector (D). 

The dots are values for individual animals. Mean and SEM plot for the line and error bars. 104 

 

Figure 4.14. Spectrograms of the wavelet transformation of behaviors. Certain behaviors like 

escape (top left) and oral investigation (top right) show similar frequency patterns which could 
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lead them being clustered together as the same behavior. Also, the behaviors like huddling (bottom 

left) would be selected over defensive upright (bottom right) when clustered together because the 

y occur more 106 

 

Figure 4.15. CRISPR KO animals move less compared to WT. Examined the durations of 

investigatory (oral, anogenital investigation and approach) and aggressive (escape and defensive 

upright) behaviors displayed toward a partner.  *p<0.05, **p<0.01, ***p<0.0001; ns, not 

significant 107 
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Chapter 1. UNDERSTANDING THE ROLE OF THE OXYTOCIN 

SYSTEM IN PAIR BONDING THROUGH THE LENS OF THE 

PRAIRIE VOLE MODEL 

 

1.1 Introduction 
 

In this chapter, I will discuss the role of the oxytocin system in social behavior, 

specifically pair bonding. I will review the literature covering how the oxytocin system regulates 

the behavior of animals via its actions in different brain areas and talk about prairie voles, an 

animal model that has provided much of our knowledge about the oxytocin system and pair 

bonding. In addition, I will discuss the role of other neurochemicals, such as arginine vasopressin 

and dopamine, and their interactions with oxytocin to modulate social behaviors. Finally, I will 

conclude with the leading hypothesis about how oxytocin acts within the social brain network to 

regulate social behavior in animals. 

 

1.2 Background 

Social behaviors consist of a complex set of interactions between individuals. These 

interactions involve animals performing many different actions, with the repertoire of these 

behaviors evolving as the nature of the social interaction changes. Animals might engage in 

social interaction for a varied set of reasons, like for survival and reproduction. These social 

behaviors could be aggressive, which might take the form of fighting with other conspecific 

animals to gain a mate, for a new territory, to show dominance and maintain a social hierarchy, 

or to keep a territory (Varley and Symmes, 1966; Kravitz and Huber, 2003). In addition, these 
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social behaviors could be performed to protect them against other animals, like communicating 

the imminent approach of a predator or a competing rival clan group (Clutton-Brock et al., 1999; 

Ridley et al., 2013).  

Alternatively, the animals might behave more affiliative toward each other and possibly, 

in the process, form social bonds (e.g., a parental behavior where either or both female and male 

animals care for their young). The social bond can be at a collective level, where a group of 

animals combines their efforts to care for and train their young (Kappeler, 1997; Kappeler and 

Van Schaik, 2002). Conversely, it can also be a pair bond that exists between the two adult 

sexes, where both parents care for the young together, have a selective preference for their 

partner, and share and protect their territory (Getz and Carter, 1980; Thalmann, 2001). 

Studying how pair bonds are formed between two individuals is a research topic that 

underlies much of the work in this thesis. How do animals develop and maintain social bonds, 

particularly socially monogamous pair bonds? What neural circuits and states underlie the 

formation of these bonds? In the rest of this chapter, I will discuss pair bonds and the 

neurobiology behind them, reviewing studies investigating neurochemicals like oxytocin and its 

receptor and their involvement in facilitating the formation and maintenance of social bonds. 

There have been extensive and excellent reviews written on this subject, so I will refer the reader 

to these Refs (Sue Carter et al., 1995; Insel and Young, 2001; Burbach et al., 2006; Walum and 

Young, 2018; Froemke and Young, 2021). 

 

1.3 Social Monogamy 

Social monogamy is a sociosexual relationship between two individuals, with this 

association either being exclusively social and sexual or only social (Walum and Young, 2018). 

In an exclusively social and sexual bond, the adult individuals (a single breeding female and a 
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single breeding male) form an attachment where they only mate with each other, take care of 

their young, and defend their territory against intruders. However, in the solely social case, they 

perform all social behaviors like biparental care and territory defense except for exclusively 

mating with one partner. 

Humans are likely to engage in an exclusive social and sexual monogamous pair bond, 

but solely social monogamy is more typical in the animal kingdom. This non-exclusively 

sociosexual monogamy is commonly observed within the avian species, approximately 90% of 

birds (Cockburn, 2006). With 9% of mammalian species considered socially monogamous 

compared to the 68% and 23% that are classified as solitary and living in social groups, 

respectively. Among this low percentage of mammals regarded as socially monogamous, 

primates make up 29% of them (Lukas and Clutton-Brock, 2013).  

There are biological and evolutionary reasons why animals transitioned from solitary and 

group living into social monogamy, with one reason being the contribution of both sexes in 

providing for the young and protecting them from infanticide from other competing males 

(Chapais, 2021). Another reason is mate-guarding, where individual fights to protect their 

partner from an intruding conspecific mate or prevent them from seeking another mate (Chapais, 

2021).  

A trait that characterizes social monogamy is a pair bond, where the male and female 

cohabitate with each other and have a long-term selective attachment (Sue Carter et al., 1995). In 

humans, individuals forming pair bonds have the added advantage of promoting familial 

cooperation and encouraging diverse mate selection to prevent inbreeding (Gavrilets, 2012). 

Studies in humans also show a link between positive health and being in a social relationship 

(House et al., 1988), where individuals involved in social relationships had fewer depressive 
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symptoms and improved inflammatory responses (House et al., 1988; Kiecolt-Glaser and 

Newton, 2001; Kiecolt-Glaser et al., 2005). From observing the human and nonhuman benefits 

of being in a pair bond and with the goal of gaining knowledge about their neural underpinnings, 

the study of animal models in the laboratory that perform such behavior has become invaluable 

to the field of social neurobiology. 

 

1.4 Prairie Voles: A Premier Animal Model for Pair Bonding 
 

In studying a specific behavior and its neural underpinnings, especially in a laboratory 

environment, it is ideal to have a suitable animal model that exhibits appropriate ethological 

properties to gain a better biological understanding of the behavior. For example, we have gained 

considerable knowledge about motor learning and consolidation of learning through animal 

models like songbirds, whose juvenile animals can learn the songs of adult birds (Warren et al., 

2011). Another example is the study of the auditory system, where bats serve as an excellent 

model because of their highly optimized echolocation behavior (Masters and Jacobs, 1989). Flies 

and worms have been extensively studied in how they interact with their environment to feed, 

mate, and fight to elucidate feeding, sexual, and aggressive behaviors (Avery and Horvitz, 1990; 

Mann et al., 2013; Cheriyamkunnel et al., 2021). Even in the overused and overgeneralized mice 

animal model, researchers have investigated behaviors such as parental behavior and 

vocalization and their associated neural mechanisms (Chong et al., 2020; Dunlap et al., 2020).  

Prairie voles (Microtus ochrogaster), over the last three to four decades, have emerged as 

the premier model for studying animal pair bonding.  The prairie voles are socially monogamous 

microtine rodents primarily found in central North America (Keller and Krebs, 1970; Ophir et 

al., 2007). In the wild, it is highly probable to capture a pair of male and female prairie voles in a 
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live trap compared to meadow voles (Microtus pennsylvanicus), which are considered socially 

promiscuous. The captured voles are likely to be the same pair if the trappings are repeated 

multiple times (Getz et al., 1981). In addition, when a male and a female prairie vole are paired 

together in the laboratory setting, they form long-lasting, enduring bonds (Getz et al., 1981). 

These stable social bonds are characterized by biparental care, where both sexes contribute 

equally to nurturing the young and defending their territory against intruders. On the contrary, 

such biparental behaviors are not observed in the meadow and montane voles (Microtus 

montanus).  

When prairie voles are tested in a partner preference test, a simple behavioral paradigm to 

assess pair bond formation (Figure 1.1) (Williams et al., 1992), the paired individuals spend most 

of the time in side-by-side physical contact with their partners compared to strangers, animals 

that are novel to the pair (Gavish et al., 1983; Carter et al., 1988). In addition to the selective 

preference for their partners, paired males and females that have had sexual contact show highly 

aggressive behaviors toward unfamiliar conspecifics as a way to guard their mates compared to 

sexually naïve individuals (Getz and Carter, 1980; Getz et al., 1993). Owing to the prairie voles 

showing the following factors, (i) an apparent behavior to identify factors that initiate or inhibit 

the formation of attachment bonds, (ii) an attachment behavior that is selective and enduring, and 

finally, (iii) a measurable and manipulatable behavior, as defined by Insel and Young, they 

provide the appropriate model to study the neurobiology of pair bonding (Insel and Young, 

2001).  

From the studies into the neurobiology of pair bonding in prairie voles (and other non-

monogamous species like mice and meadow voles), we have gained insight into the role of 

neuropeptides such as oxytocin, vasopressin, dopamine, and other related neurochemicals like 
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serotonin (5-HT) and the opioid signaling. Additionally, we are developing a clear picture of 

brain circuitry and areas that are regarded as the social brain centers. This network of brain 

regions, including the nucleus accumbens, the amygdala, the hippocampus, and the prefrontal 

cortex, have neuronal projections and receptors that, when manipulated, can alter the ability of 

the animal to form a social bond. 

 

1.5 Oxytocin 

Initially implicated in uterine contractions during labor and promoting milk ejection from 

the mammary gland during lactation (Dale, 1906; Freund-mercier et al., 1988), Oxytocin (OT) is 

a nine amino-acid peptide (Cys-Tyr-Ile-Gln-Asn-Cys-Pro-Leu-Gly-NH2) that regulates social 

behaviors like pair bonding and maternal care (Pedersen et al., 1982; Williams et al., 1994; Sue 

Carter et al., 1995; Young et al., 2001; Numan and Young, 2016).  

OT is considered an evolutionarily conserved neuropeptide with oxytocin-like 

neurochemicals existing in varying species, from insects to fish to mammals (Stafflinger et al., 

Figure 1.1. A partner preference test to assess pair bond formation. Female prairie voles 

were paired with male conspecifics under varying conditions. A. Schematic of partner 

preference test performed in a 3-chamber. B Time spent in side-by-side contact with the 

partner and the stranger during a 3-hr preference test (Adapted from Williams et al., 1992) 
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2008). OT, and its closely related neurochemical, arginine vasopressin (to be discussed later), 

share genetic and biological similarities and are thought to have originated from an ancestral 

gene vasotocin, which is found in reptiles and other vertebrates (Acher et al., 1996). In species 

like birds and fish, OT has homologous, such as mesotocin and isotocin, which are associated 

with social behaviors, survival, and reproduction (Acher et al., 1996). 

In the prairie vole, OT is synthesized in the paraventricular nucleus (PVN) and supraoptic 

nucleus (SON) of the hypothalamus (Bargmann and Scharrer, 1951). The PVN has 

magnocellular and parvocellular cells that make oxytocin, while the SON has only magnocellular 

cells which synthesize them. The OT synthesized by the magnocellular and parvocellular is 

released by three modes of transmission to the body and brain. The first of these modes is the 

endocrine release, where the PVN and SON cells, with their axonal fiber projection to the 

posterior pituitary gland, secrete OT into the bloodstream (van den Pol, 2012). The second mode 

of transmitting OT is via paracrine release, where OT is secreted from the dendrites and cell 

bodies of the neurons into the cerebrospinal fluid (de Kock et al., 2003). In both the endocrine 

and paracrine secretions, OT is meant to act as a hormone. Finally, in the third transmission 

mode, OT is released at the axon terminal via vesicles to the cell body and dendrites of neurons 

that synapse with the PVN and SON cells. 

In the endocrine and paracrine secretions, the OT released into the bloodstream is 

implicated in having both peripheral and central functions to facilitate uterine contraction, 

lactation, and parental care (Dale, 1906; Summerlee and Lincoln, 1981; Gimpl and Fahrenholz, 

2001; Francis et al., 2002). During the onset of labor and lactation, there is a significant increase 

in the OT receptors (to be discussed later) in the uterus and the mammary gland associated with 

an up-regulation of OT in the bloodstream to help promote uterine contraction and milk 
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production. And in parental care, involving mothers becoming attached to their infants, there is 

an upregulation of OT in the bloodstream, coupled with the paracrine release in the cerebrospinal 

fluid during parturition. At the same time, the synaptic transmission of OT via the axon terminals 

of the PVN and SON neurons is thought to promote maternal attachment in some species, like 

mice and rats, to their young (Dölen et al., 2013).  

In addition to facilitating uterine contraction and parental care, the release of OT centrally 

in the brain plays an essential role in mediating pair bond formation in animals. When OT is 

infused via intracerebroventricular (ICV) injection into the prairie voles, the animals that receive 

OT instead of artificial cerebrospinal spinal fluid spend more time in side-by-side contact with 

their partner compared to a stranger, an indication that OT promotes partner preference 

(Williams et al., 1994). However, a peripheral (subcutaneous) injection of OT does not elicit this 

partner preference response. The central release of OT produces a preference for the partner in 

both male and female prairie voles (Cho et al., 1999a). It has been observed that during social 

interactions, the extracellular concentration of OT increases in the female prairie voles (Ross et 

al., 2009). And in human studies, although they need to be interpreted with caution, the infusion 

of OT via nasal spray is thought to promote prosocial behaviors such as increased contact with 

the eye region of human faces in males with and without autism during social interactions 

(Figure 1.2) (Guastella et al., 2008; Andari et al., 2010; Auyeung et al., 2015).  After the 

intranasal infusion of OT, humans are likely to engage in trust-like behaviors and reduce fear-

associated and betrayal-aversion behaviors during social interaction (Kirsch et al., 2005; Kosfeld 

et al., 2005). Even though there is skepticism as to the mode of delivery of OT, there is some 

evidence to show that intranasal infusion elicits increased elevation of OT in the blood and CSF 
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(Neumann et al., 2013; Modi et al., 2014; Freeman et al., 2016). The activity of OT is mediated 

by binding to their canonical receptors, oxytocin receptors (OTR). 

 

1.6 Oxytocin Receptors 

The OTRs are G protein-coupled receptors encoded by a single gene that is conserved 

across species (Inoue et al., 1994). They are widely expressed throughout the body and brain and 

can be found in the uterus, kidney, heart, mammary gland, and brain (Gimpl and Fahrenholz, 

2001).  In the periphery, the binding of OT to the OTRs is implicated in mediating reproductive 

Figure 1.2. Oxytocin promotes prosocial behaviors in humans. A. A schematic of a 

Cyberball game and ball-toss distribution, where a participant engages in a multi-round 

ball-toss game over a computer network with three fictitious partners, classified as good, 

neutral, and bad. The “good” profile (A) sent, on average, 70%, of its played balls to the 

participant (P). The “neutral” profile (B) sent 30%, and player C (the “bad” profile) sent 

10% of its played balls to the participant. B.  Ball-toss distributions for healthy subjects 

and for patients with HF-ASD treated with oxytocin or placebo. C. Time course of ball 

tosses sent by participant P to players A (good) and C (bad) in a regularly spaced bin, an 

interval between player A’s tosses n and n+2. (Adapted from Andari et al., 2010) 
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functions in both females and males, like parturition and lactation and erectile function and 

copulation, respectively. In the brain, the OTRs are densely expressed in areas associated with 

the social brain network, such as the nucleus accumbens, the amygdala, the prefrontal cortex, and 

the olfactory bulb. The expression in the brain varies widely from one species to another. For 

example, even within closely related species like prairie voles and meadow voles, there is a 

higher concentration of OTRs in the nucleus accumbens and amygdala in the prairie voles than 

in the promiscuous meadow and montane voles (Shapiro and Insel, 1992; Olazábal and Young, 

2006). Across species, there is an elevated expression of the OTR in the lateral septum of mice 

and meadow voles compared to the prairie vole and rats. At the same time, the prairie voles have 

higher OTRs in both the shell and core of the accumbens and the caudate putamen than in mice 

and rats (Olazábal and Young, 2006). Even within the same species, there is a natural variation 

of the OTR expression in the brain. Due to a single nucleotide polymorphism in the gene, some 

prairie voles have a high expression of OTR in the nucleus accumbens than others with low 

expression in the same brain region (King et al., 2016).  Given the varying degree of OTR 

expression across different animal species, especially in the prairie voles, we have gained a wide 

sphere of knowledge about its possible role in social behavior.  

Early work with OTRs in prairie voles showed how central they are to pair bond 

formation and other social behaviors. ICV infusion of oxytocin receptor antagonist (OTA) 

inhibits paired animals' preference for their partners (Williams et al., 1994). Even after mating, 

when an OTA is centrally infused into the brain of prairie voles, it reduces the partner preference 

formation (Insel and Hulihan, 1995).  In subsequent studies, a site-specific injection of OTA into 

the nucleus accumbens or prelimbic cortex blocks mating-induced pair-bond formation in female 

prairie voles (Young and Wang, 2004). Using viral techniques such as RNA interference to 
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knock down the OTR in the accumbens, thereby reducing its density, inhibits the pair bonding 

(Keebaugh et al., 2015). 

 

Conversely, taking advantage of this viral technique to overexpress the OTRs within the 

accumbens via viral-mediated gene transfer also facilitates the formation of partner preference in 

the prairie voles (Figure 1.3) (Keebaugh and Young, 2011). Related to the individual genetic 

variation of the OTRs in the accumbens, voles that overly express OTR show a significant 

preference for the partners compared to voles will low expression of them (King et al., 2016). In 

slice preparations, voles that had social experience through pair bonding significantly increased 

Figure 1.3. Overexpression of OTR facilitates alloparental behavior and partner preference 

in female prairie voles. A. Autoradiography shows the OXTR binding density in Sham, 

GFP, OTR, and Miss groups. The control group, “Sham,” received no injection of AVV-

OTR. The “GFP” control group received bilateral accumbal infusions of a virus expressing 

the GFP gene. The OXTR-expressing virus was bilaterally injected into the nucleus 

accumbens of the experimental group “OXTR.” The other control group, “Miss,” received 

bilateral injections outside the nucleus accumbens. B. The latency to approach pups in all 

four groups. C. Time spent licking and grooming pups. D. Time spent in immobile side-

by-side contact with a partner or stranger after a cumulative 18 h cohabitation period. 

(Adapted from Keebaugh et al., 2011) 
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the amplitude of the excitatory postsynaptic current and potential in the nucleus compared to 

virgin animals, which had no social encounter 

 

1.7 Influence of the Oxytocin System in the Social Brain Network 

The OT system (OT and OTRs) are not only associated with the accumbens regarding 

social behavior. We have also learned much about their roles in social recognition and memory 

from other species, like mice and rats. In mutant mice, where the oxytocin gene has been 

knocked out, the mice fail to remember their social interactions with a conspecific animal that 

they were exposed to as compared to the wild-type animals (Figure 1.4) (Ferguson et al., 2000; 

MacBeth et al., 2009). The OT knockout mice spent approximately equal time investigating mice 

they interacted with in four sessions. On the contrary, the wild types spent lesser time on each 

subsequent session, which is the typical behavior of mice in exploring familiar individuals. The 

Figure 1.4. OT knock-out (OTKO) mice fail to display social recognition despite apparently 

normal olfactory and spatial learning abilities. A. Male mice were allowed to investigate the 

same ovariectomized (OVX) female during each of four successive 1-min trials. B. Mice 

investigated different OVX stimulus females in each repeated trial. (Adapted from Ferguson 

et al., 2000) 
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lack of social recognition and memory was not due to the mice’s inability to smell, recognize 

objects or have spatial memory, but it was a result of the OT being necessary for such a task. In 

the same studies, when OT was administered via acute intraventricular infusion to mutant mice, 

social memory was rescued, i.e., the mice spent lesser time in subsequent trials after exposure to 

the stimulus mice. However, an injection of OTA inhibited the social memory of the wild types 

but not the mutant mice. In a subsequent study, when OT was injected before an initial encounter 

with a stimulus animal, the mutant mice were likely to recognize the animal versus if the 

injection was given after the first social exposure (Figure 1.5) (Ferguson et al., 2001) 

Figure 1.5. Significant induction of Fos-IR in wild type with intact OTRs. Male mice were 

considered Exposed if they had a social encounter with an ovariectomized female for 90 sec. 

Otherwise, they were deemed unexposed if they were not provided with a social experience. 

Photomicrographs showing c-Fos-immunoreactive cells after a social encounter in OTKO (a, 

d, g) and WT (b, e, h) males in the medial amygdala (MeA; a, b), the bed nucleus of the stria 

terminalis (BNST; d, e), and the medial preoptic area (MPOA; g, h). Measurement of the 

number of c-Fos cells per square millimeter in those brains, an indication of neural activation 

(c, f, i). (Adapted from Ferguson et al., 2001) 



 14 

Further studies have narrowed down to specific brain regions to how the OT system 

modulates social recognition and memory. For example, as shown in experiments by Popik and 

van Ree, 1991, the infusion of OT in the medial preoptic area promoted the social recognition of 

adults of stimulus juvenile rats, where the resident rats spent less time on repeated exposure to 

the same juvenile than when they received a saline placebo (Popik and van Ree, 1991). 

Similarly, studies that have looked at early gene c-Fos, an immediate protein marker indicating a 

neural response, in the medial amygdala, the bed nucleus of the stria terminalis, and the medial 

preoptic area showed significant induction of Fos-IR in wild types than mutant OT knockout 

mice when they are repeatedly exposed to a stimulus animal (Ferguson et al., 2001). In addition, 

site-specific infusion of OT in the medial amygdala rescues the social recognition in mutant 

mice, and in contrast, injection of OTA into the same area of wild types inhibits the recognition. 

Adding to growing knowledge about OT in the social brain network, using 

channelrhodopsin2, a light-activatable opsin that leads to excitation, to optogenetically stimulate 

the PVN in mice caused a significant increase in the social memory of the stimulus animals 

compared to a control that did not receive the same optogenetic stimulation (Figure 1.6A) (Oettl 

et al., 2016). And for other brain areas of interest like the anterior olfactory nucleus (AON), 

using a slice preparation to determine their role, when a selective OT agonist, TGOT, is applied 

or its OT fibers are ontogenetically activated, there is an increase in the firing activity of the 

AON cells, as captured by the high-frequency of both the excitatory postsynaptic current in AON 

and the inhibitory postsynaptic current in the main olfactory bulb (MOB), which receives 

projections from the AON (Figure 1.6B-C) (Oettl et al., 2016). This activation of OTR in AON is 

thought to modulate the firing activity of MOB cells by suppressing background firing activity 

and increasing the peak firing responses to odors.  



 15 

 

The OT system influences cognitive and memory centers like the prefrontal cortex (PFC) 

and hippocampus. In the PFC, an area associated with the brain's executive functions and goal-

directed behavior, when the OTR expressing pyramidal-like neurons in the PFC are activated, 

they inhibit social recognition in mice, making them spend considerably equal time with novel 

and familiar animals (Tan et al., 2019). Likewise, looking at the hippocampus, the OTRs are 

expressed in the dentate gyrus, CA1, CA2, and CA3 cells. When the OTRs expressing neurons in 

the hippocampus of mice are blocked, the animals cannot form a social memory of their 

encounters (Raam et al., 2017). However, when TGOT is applied to slice preparation of the 

hippocampus, it increases the probability of evoked postsynaptic firing while simultaneously 

reducing the baseline activity of CA1 pyramidal cells (Owen et al., 2013).  

Figure 1.6. Oxytocin enhances social recognition by modulating the olfactory system. Adult 

female rats were exposed for 5 min to a same-sex juvenile rat (sample phase). After returning 

to the home cage for 120 min, the adult rat was re-exposed to the previous and, at the same 

time, to a novel same-sex juvenile for 3 min (recognition phase). A. Social recognition memory 

is expressed as the percentage of time the test animal spent exploring the novel social partner 

over the total time exploring both same-sex interaction partners. B. TGOT-induced normalized 

excitatory postsynaptic currents (sEPSC) rate in fast-spiking neurons in the AON. C. TGOT-

induced normalized inhibitory postsynaptic currents (sIPSC) in mitral cells in the MOB. 

(Adapted from Oettl et al., 2016) 
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1.8 Arginine Vasopressin 

The OT system does not work by itself to modulate social behavior during pair bonding 

but has an interplay with other systems such as the arginine vasopressin (AVP), dopamine (DA), 

serotonin (5-HT), and opioids. AVP is a nine-amino acid (Cys-Tyr-Phe-Gln-Asn-Cys-Pro-Arg-

Gly-NH2) that shares a similar protein structure to OT except at the third and eighth positions. 

AVP is thought to have evolved some few million years before oxytocin from their ancestral 

precursor vasotocin. It is also synthesized in the PVN and SON of the hypothalamus and released 

into the brain and body along similar pathways to OT (Barberis and Tribollet, 1996; Caldwell 

and Young, 2006). Unlike OT, AVP has three G protein-coupled receptors, V1aR, V1bR, and 

V2R. However, studies have shown that there is cross-talk between AVP and OTs: AVP can 

bind to OTRs and its three receptors, while OT has an affinity for its receptor, OTR, V1aR, and 

V1bR (Kimura et al., 1994; Chini et al., 1995; Hawtin et al., 2000; Song et al., 2014). Therefore, 

it is no doubt that AVP and its receptors have been implicated in facilitating pair bonding in 

voles.  

An ICV infusion of AVP in male prairie voles induces partner preference, with the 

animals spending more time huddling with their partners than with strangers (Winslow et al., 

1993; Cho et al., 1999b). Conversely, when antagonists are administered to the V1aRs in the 

ventral pallidum and the lateral septum, the male prairie voles do not prefer their partners over a 

stranger (Liu et al., 2001; Lim and Young, 2004). Furthermore, using viral-vector-mediated 

techniques, like RNA interference, to knock down the V1aRs produces similar results of voles 

not showing any preference (Barrett et al., 2013).  

However, unlike the OT system, which is thought to promote affiliative behaviors, the 

AVP system is associated with aggressive behaviors like fighting and defense (Ferris et al., 1997; 
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Veenema et al., 2007; Veenema and Neumann, 2008). And these aggressive behaviors are 

viewed as a mate-guarding approach adopted by prairie voles to protect their partners, offspring, 

and territory against intruders and as a way to maintain their social bonds (Walum and Young, 

2018). 

 

1.9 Dopamine 

In addition to the OT and AVP systems, DA helps facilitate the pair bond formation 

between prairie voles. The nucleus accumbens, which expresses receptors for dopamine, receives 

dopaminergic neurons from the ventral tegmental area. Studies have shown that when DA 

agonists are also peripherally administered, male and female prairie voles without mating with 

their opposite-sex conspecific animal show a preference for the partners. Conversely, an infusion 

of nonspecific DA antagonists peripherally into the body blocks mating-induced partner 

preference in both male and female prairie voles (Wang et al., 1999; Aragona et al., 2003). In 

addition, a site-specific injection of the DA antagonist into the accumbens blocks mating-

induced partner preference.  

It is known that the nucleus accumbens has two types of DA receptors, D1 and D2 

receptors. Infusion of selective D2-like receptor (but not D1-like receptor) antagonist inhibits 

mating-induced partner preference in both male and female prairie voles (Wang et al., 1999; Liu 

and Wang, 2003). On the contract, injecting a D2-like receptor (but not a D1-like receptor) 

agonists without mating facilitates partner preference. It is an indication that D2-like receptors 

are necessary for the formation of a pair bond.  

The D1-like receptors, on the other hand, are involved in the maintenance of the pair 

bonds. After the voles have been paired for a while (at least more than 48 hours), D1-like (but 
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not D2-like) receptors are expressed more in the nucleus accumbens. Such that blockade of the 

D1-like (but not D2-like) receptors within the nucleus accumbens abolish the aggressive 

behavior towards strangers (Aragona et al., 2006). 

 

1.10 Opioids 

The activity of DA is conjoined with that of opioids. The neurons that express D2-like 

receptors contain enkephalin, an endogenous ligand for μ-opioid receptors that mediate 

motivation and positive hedonics (Peciña and Berridge, 2005), whereas neurons containing 

dynorphin, the endogenous ligand for κ-opioid receptors that mediates aversion and negative 

affect, express D1-like receptors (Stevens Negus, 2011). Peripheral administration of μ-opioid 

receptor antagonists prevents bond formation (Burkett et al., 2011). Similarly, site-specific 

injection of μ-opioid receptor antagonists into the caudate putamen and NAc shell (but not NAc 

core) blocks partner preference (Burkett et al., 2011; Resendez et al., 2013).  

Conversely, peripherally and site-specific administration of κ-opioid receptor antagonists 

significantly decreases selective aggression in pair-bonded male prairie voles toward an intruder 

(Resendez et al., 2012). However, this blockade of the κ-opioid receptor does not affect their 

affiliative behaviors.  

The current hypothesis in the field is that both D1-like and κ-opioid receptors interact to 

mediate selective aggression. Therefore, if either one or both receptors are activated, voles are 

likely to engage in an attacking behavior (Resendez et al., 2016). 
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1.11 Endocannabinoids 

Recent research from our lab has shed light on the interaction between endocannabinoids 

(eCBs) and the OT system in pair-bonded voles. The eCBs are thought to act as retrograde 

regulators of synaptic transmission between cells (Castillo et al., 2012). Currently, there are two 

known types of eCB receptors, CB1 and CB2 receptors, and among these eCB receptors, the 

CB1 has been implicated in pair bonding. When CB1 receptors are blocked with an antagonist in 

slice preparations of pair-bonded females (but not virgin females), a TGOT-induced excitatory 

postsynaptic potentiation is inhibited, possibly indicating the eCB system is necessary for OT 

activation (Borie et al., 2021). Conversely, when a CB1 agonist is applied, there is an increase in 

the excitatory postsynaptic potentiation in the cells, similar to if TGOT was applied to those 

cells. 

 

1.12 The social salience hypothesis 

Given the knowledge that we have garnered from the studies on the influence of the OT 

system in regulating social behaviors in prairie voles, mice, rats, and primates, a leading question 

that arises is how does the OT system work within the social brain network to facilitate the 

formation of a pair bond between animals? One leading hypothesis in the field is the social 

salience hypothesis.  

The social salience hypothesis postulates that OT is released from the PVN into the social 

brain centers during social interaction to make the social information salient. This salience is 

achieved through recognizing an individual's pleasurable and rewarding encounter with its 

conspecific and developing a memory about the individual's identity. The process is 
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accompanied by a plasticity that occurs in brain regions such that a subsequent exposure with the 

individual, even after a brief separation, evokes the rewarding effect (Figure 1.7).  

 

 

Figure 1.7. The oxytocin system and other neurochemicals in the social brain network. During 

social interaction, odorant cues released from a soon-to-be partner are processed in the main 

olfactory bulb (MOB). The PVN releases OT to bind the receptors in the anterior olfactory 

nucleus (AON) to activate the excitatory neurons, which activate MOB's inhibitory neurons. 

The activation of MOB by the OT fibers of the AON causes it to suppress the spontaneous 

firing activity, which might be responding to random odorants, and amplify the social cue that 

is received from the partner. The salient sensory information is transferred along one of several 

possible pathways to the amygdala, which receives projections from MOB and accessory 

olfactory bulb. OT acts in the medial amygdala (MeA) and basolateral amygdala (BLA) to 

facilitate olfactory learning and memory. In addition, a social engram of neurons within the 

hippocampus (Hipp) is activated to retain information about the partner. Concurrently, 

rewarding experiences such as mating during social interaction activate the VTA to release 

dopamine into the nucleus accumbens (NAc) and prefrontal cortex (PFC). The connection 

between PFC and NAc under the regulation of OT guides the animal's behaviors in the social 

context. (Adapted from Walum and Young, 2018) 
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1.12.1 Social Sensory Stimulus Transmission 

To put the social salience in a better context of the social brain, given the knowledge 

gained so far, when an animal, for example, a prairie vole, is paired with a conspecific, the vole 

receives visual, auditory, and odorant cues from the other individual. Although the visual, 

auditory, and somatosensory cues have not been extensively explored regarding the social 

salience model for bond formation, much is known about the sensory information via olfaction.  

The odorant cues from the individual soon-to-be partner are processed in the main 

olfactory bulb (MOB), which has few OT terminals and receptors (Vaccari et al., 1998). The 

MOB receives projections from an OTR-dense anterior olfactory nucleus (AON) (Freund-

Mercier et al., 1987), which directly receives OT neurons from the PVN (Knobloch et al., 2012). 

According to the social salience model, the PVN releases OT to bind to the receptors in AON to 

activate the excitatory neurons, which then activates MOB's inhibitory neurons (Oettl et al., 

2016). The activation of MOB by the OT fibers of the AON causes it to suppress the 

spontaneous firing activity, which might be responding to random odorants, and amplify the 

social cue that is received from the partner. This manner of OTR recruitment shows the OT 

system's role in increasing the signal-to-noise ratio, a component of the salience hypothesis.  

The salient sensory information is then transferred along one of several possible 

pathways to the amygdala, which receives projections from MOB and the accessory olfactory 

bulb. In the amygdala, specifically in the medial amygdala, MeA, the OT system facilitates 

encoding social information about the partner's identity. Studies have shown that when the OTRs 

in MeA are inhibited with antagonists, mice are unable to recognize a familiar animal, and 

inversely when OT is infused into the MeA of OT knockout mice, the social recognition is 

rescued (Ferguson et al., 2000, 2001).  
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Another amygdala area implicated in the circuitry for the social salience model is the basolateral 

amygdala (BLA), which receives projections from the OT expressing glutamatergic neurons of 

the prefrontal cortex (PFC) (Tan et al., 2019). It is thought that OT enables social recognition by 

coordinating the temporal and spatial coupling of social stimuli between the PFC, BLA, and 

hippocampus. Hence, any dysregulation that disrupts the synchronization within this circuitry 

leads to an impairment of the social memory of a partner. As evidenced by a study by Tan and 

colleagues (Tan et al., 2019), when they optogenetically activated OTR expressing pyramidal-

like PFC neurons, either at the cell body or the axon terminals to BLA, they impaired the social 

recognition of familiar mice. 

 

1.12.2 Social Recognition and Memory 

As part of the bond formation, the animals must recognize their partners so that they do 

not waste time trying to refamiliarize themselves. In addition to the recognition, the animals must 

create a memory (social) of their encounters with their partner since, during their interactions, 

they could have rewarding experiences such as mating (Mermelstein and Becker, 1995; Becker 

et al., 2001; Ross et al., 2009). To form a social memory of the partner, the brain engages the 

hippocampus, an area historically associated with memory formation (Duvernoy, 1988). The 

hippocampus receives projection from the PVN and expresses OTRs in both the dorsal and 

ventral parts. The hippocampus also sends projections to the nucleus accumbens via ventral CA1 

neurons. Inhibition of these projections prevents the animals from remembering the encounters 

with their conspecific partner (Okuyama et al., 2016). Therefore, during a social interaction with 

a partner, the information about the partner is encoded in the neurons in the hippocampus. 

However, this encoding is not on all the neurons; instead, a subset of them, which is referred to 

as an engram. Such that the reactivation of this engram of cells leads to recall of the memory 
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about the partner. In addition to having a social memory engram, the activation of OTR-

expressing neurons leads to an enhanced signal-to-noise ratio by increasing the probability of 

firing activity and reducing spontaneous activity (Owen et al., 2013). 

 

1.12.3 Social Gating 

With the animals having encoded a social recognition and memory of their partners, they 

would have to create a positive, rewarding association with the behaviors such as mating, 

huddling, and allogrooming they shared with them. This social information is transferred to the 

nucleus accumbens, an area thought to promote the likelihood and vigor of behaviors to achieve 

motivationally goals either with rewarding or avoidance of aversive consequences (Floresco, 

2015). The nucleus accumbens receives cortical and limbic projections from the prefrontal 

cortex, amygdala, hippocampus, and dopaminergic inputs from the ventral tegmental area (VTA) 

(Floresco et al., 1997, 1999, 2008).  One can view the accumbens as a servant to many masters, 

and one of its requirements is to gate social behavior. As seen in other brain areas expressing 

OTRs, the nucleus accumbens receives many projections from the PVN. The OT released by the 

PVN binds to the high-concentration OTRs in accumbens and, in so doing, modulates the social 

behavior of animals. The interplay of the OT system with other neurochemical systems like AVP 

and DA facilitates the performance of prosocial and affiliative behaviors in a manner that 

increases the signal-to-noise ratio of social cues received from a conspecific partner.  

In summary, the social salience hypothesis presents a model through which we observe 

the OT increasing the signal of social cues between animals and suppressing the noise of later 

signals from other animals or objects so that a pair bond is established and maintained. 
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1.13 Concluding Remarks 

It may look like we have a clear picture of the OT system's role in forming pair bonds, 

especially in prairie voles. However, a recent publication by Berendzen and colleagues paints a 

different view. They showed that by using advanced viral techniques, like CRISPR-Cas9, to 

knock out the OTR, prairie voles exhibit a strong preference for a partner (Berendzen et al., 

2022). The mutant voles, with OTR, knocked out globally both centrally and peripherally, are 

capable of forming pair bonds, i.e., they spend a significant time in side-by-side contact with 

their partner compared to strangers when assayed with the partner preference paradigm. As you 

will read in chapter 4 of this manuscript, we also replicated these findings in our experiments.  

Another aspect of pair bond formation that has yet to be explored is the behavioral 

dynamics of forming bonds. Most studies discussed in this chapter only measured the voles' 

behavior after forming a bond. They did not quantify the social behaviors of the animals as they 

interacted with one another. In chapter 2, we will consider how to measure animal social 

behavior. Then in chapter 3, we will discuss the advancement we have made to improve the 

detailed tracking of social behavior to enable the investigation of the behavioral dynamics of 

forming pair bonds. Chapter 4 investigates how knocking out OTRs alters the voles' social 

behavior during pair bond formation. Finally, we will end with a chapter on future directions and 

possible experiments to further our understanding of animals' social behavior. 
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Chapter 2. THE ENIGMA OF QUANTIFYING SOCIAL BEHAVIOR 

2.1  Introduction 

In this chapter, I will present our perspective on measuring animal social behaviors. First, 

I will explain what has been done to measure behavior in a general context, from individual to 

collective behaviors. Second, I will talk about the gap in measuring social behavior and the 

challenges faced in trying to do so. Third, I will then present our framework for addressing this 

gap and what has been done to measure behaviors in social contexts. Finally, I will conclude 

with why measuring social behavior accurately and precisely is important. 

 

2.2  Background 

In the mid-twentieth century, when Nikolaas Tinbergen and Konrad Lorenz presented 

their viewpoint of measuring animal behavior (Tinbergen, 1952, 1963; Lorenz, 1966; Hess et al., 

1982), it was contrary to the popular approach adopted by Skinner and other behaviorists (Jones 

and Skinner, 1939), which focused on measuring a response to stimulus in learned behavior. For 

example, instead of quantifying the number of times a rat pressed a lever for food in a controlled 

experimental setup, Tinbergen and Lorenz were more interested in measuring the innate behavior 

of the animal in a naturalistic setting. For example, the gaping beak reaction of young thrushes to 

the presence of food from their mother or two male sticklebacks fighting during nuptials 

(Tinbergen, 1952). To this end, they had one central question in mind, and that was why animals 

behave as they do. 

To answer this trivial but complex question, one needs to understand the internal and 

external causes of the behavior and, to an extent, the ontogeny of the behavior. Beyond that, the 

appropriate language is required to describe the set of actions that the animal performed to 
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execute the behavior. The language can take the form of descriptive words indicating every 

sequence of behavioral steps; for example, in the gaping reaction of young thrushes, the young 

birds open their beaks wide when they observe their parent tower over them with food. However, 

this language could be more precise if some metrics were associated with it, i.e., the distance and 

height of the parent bird need to be from their young to elicit the gaping reaction from the chicks.  

The goal of attaining such quantitative precision and details in describing innate behavior 

gave rise to the computational ethology field. The field of computational ethology relies on 

applying mathematics and physics to quantify the innate behavior of animals in their naturalistic 

environments. In this field, two areas that have greatly benefited from the progress made are the 

studies of animals' individualistic and collective behaviors. In regard to collective behaviors, we 

are referring to behaviors of large groups of animals, e.g., a swarm of bees, and a flock of birds. 

In individualistic behaviors, i.e., the sequences and repertoire of behaviors performed by 

a single animal, there has been substantial progress in understanding the movement dynamics of 

the animal (Richard and Dawkins, 1973; Stephens et al., 2008; Branson et al., 2009; Berman et 

al., 2014; Wiltschko et al., 2015). Several nicely written reviews cover the progress of 

quantifying single animal behaviors (Anderson and Perona, 2014; Brown and De Bivort, 2018; 

Datta et al., 2019; Pereira et al., 2020). For example, work by Stephens and colleagues showed 

that the motion of C. elegans can be reduced to a set of low-dimensional representations 

sufficient to describe the animal's behavior (Stephens et al., 2008). By recording the movement 

of the C. elegans under a microscope and assuming several arc lengths annotated along the body 

of the animal were descriptive of their posture, they applied a computational approach (principal 

component analysis) to decompose the posture into four modes that represented the forward and 

backward motion of the nematode, its turning behavior, and Omega configuration, and the shape 



 27 

of the head and tail region of the worm (Figure 2.1). Given the low-dimensional representation, 

they found equations that described some animal motions and were able to quantitatively predict 

the response of the animals when they altered the temperature of their environment.  

 

 

Like quantifying individual behavior, theoretical and computational models have spurred 

an understanding of collective animal behaviors. Theoretical models like the agent-based model 

have been developed to define a set of rules to govern the behavioral dynamics of animals in 

large groups (Aoki, 1980; Morgan and Okubo, 1981; Reynolds, 1987; Couzin and Krause, 2003). 

Figure 2.1. Low-dimensional representation of the behavioral dynamics of C. elegans. A. Image 

of a C. elegans captured under microscopy and the tracking of a curve along the center of the 

body. B. Dimensional decomposition of the posture into four eigenmodes (with their 

eigenvectors - referred to as eigenworms) that capture 95% of the shape variance of the animal. 

The population-mean eigenvectors (red) are highly reproducible across individual worms 

(black). C. The probability distribution of the first two mode amplitudes, r(a1, a2), shows a ring 

of nearly constant amplitude. D. At different positive and negative amplitudes for the third 

mode, the animal assumes different body postures with bends in the dorsal and ventral 

directions. E. Trajectories in the deterministic dynamics. A selection of early-time trajectories 

is shown in black. At late times these same trajectories collapse to one of four attractors (red): 

forward and backward crawling and two pause states. (Adapted from Stephens et al., 2008) 
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These rules consider the agent's direction (an individual animal within the group), the alignment 

of the agent relative to other individuals, and the force factor in determining the attraction and 

repulsion between the agents. For example, Couzin and colleagues showed that by slightly 

modifying the underlying rules that govern the dynamics of interactions among the animals, they 

could explain different collective behavioral states of animals (Couzin and Krause, 2003). By 

altering the distances an agent maintains to remain in certain zones, such as the zones of 

attraction, orientation, and repulsion relative to other individuals (Figure 2.2A), they could 

influence the group polarization and group angular momentum (Figure 2.2B). A change in the 

group polarization and momentum meant the collective behaviors transitioned from a swarm-like 

state to a highly parallelized state (Figure 2.2C). Hence, when animals exhibited attraction and 

repulsion behaviors but low parallel alignment with their neighbors and low momentum, they 

exhibited swarm-like behaviors, as seen in mosquitoes. And as the behavioral interactions build 

up to have a high degree of alignment and maintain a strong force of attraction and repulsion 

between the animals, they show a dynamic parallel group like the aggregation of bird flocks and 

a school of fish. 

 Despite the wealth of understanding gained from both ends of the spectrum of 

quantifying individualistic and collective behaviors, there is a considerable gap in knowledge 

regarding measuring social behavior in two to three animals. We do not have the same precise 

and detailed theoretical and computational models to explain the social interactions between two 

or three animals. 

 

 



 29 

 

 

 

2.3  The question of social behavior 

The limitation of not having the same level of a detailed mathematical framework for 

social interaction between two or three animals might be due to being unable to clearly 

distinguish the animals' behaviors. For example, when an animal approaches another and is in 

face-to-face contact for a short moment with them, is the behavior classified as an approach to 

oral investigation or just an approach (see a video sample of the described behavior in prairie 

voles - https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_2_Videos)? What if a few 

Figure 2.2. Dynamics of collective behaviors in animals. A. A representation of an individual 

in the model centered at the origin: zor = zone of repulsion, zoo = zone of orientation, zoa = 

zone of attraction. The possible ‘‘blind volume’’ behind an individual is also shown. A = field 

of perception. B. A plot of the group polarization pgroup (left) and angular momentum mgroup 

(right) as a function of changes in the size of the zone of orientation ∆ro and zone of attraction 

∆ra: The areas denoted as (a–d) correspond to the area of parameter space in which the 

collective behaviors (C), respectively, are found. Area (e) corresponds to the region in 

parameter space, where groups have a greater than 50% chance of fragmenting. (C) The 

collective behaviors exhibited by the model: (a) swarm, (b) torus, (c) dynamic parallel group, 

(d) highly parallel group. (Adapted from Couzin and Krause, 2003) 

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_2_Videos
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seconds after the animal that approached attacks the other, is the entire bout considered an 

approach-to-attack, or it needs to be broken down into sub-modules describing every sequence? 

Alternatively, the difficulty of developing detailed metrics to quantify social behavior might 

primarily lie in its definition. Do we take the idea that when two or three animals are performing 

a set of behaviors within the presence of each other as a social behavior? Or do the animals need 

to interact with one another before we say they are engaged in social behavior? Or does the 

context of being a social setting dictate that any sequence of animal behaviors should be 

considered social behavior? Where and when does one behavior start and stop, and when does 

another follow during social interactions? One quickly begins to appreciate how difficult it is to 

define ‘social behavior’ for a few animals. In the rest of this chapter, we present our framework 

for measuring social behavior. 

 

2.4  Social Behavior 

To provide this computational and mathematical model to measure social behavior, we 

have first to answer the question of what social behavior is. Taking on a simplistic view, we 

define social behavior as any movement that animals perform that is either affected by or affects 

another individual(s). These behaviors can have a noticeable direct cause-response effect, such as 

fighting or mating between animals, or a subtle form, such as the posture and orientation of the 

animals before engaging in a fight. Even with this simplistic definition, several questions arise, 

and an example is at what time scale are we considering social behavior to happen? The time 

spent performing the social behavior can range from a quick thrust forward to attack another 

individual, which might indicate a short time scale of seconds, to longer time scales, for 

example, a parental care behavior of feeding the young. 
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2.5  Framework for measuring social behavior 

To quantify the social behavior of animals, we propose a framework that focuses on 

measuring the animals' moment-by-moment social behaviors (i.e., an ethogram) as they interact 

with each other (Figure 2.3A). In our framework, we will adopt the short time scale of social 

behavior from milliseconds to minutes to allow us to observe the gradual temporal evolution of 

the animal’s behavior, marked with different frequencies. To this end, we can capture when a 

Figure 2.3. A schematic of the representation of animals’ behavioral repertoire. A. A 

hypothetical ethogram that shows a moment-by-moment classification of each animal’s 

behavior. B. A theoretical behavioral space with the behaviors of the animals clustered together 

based on their stereotypy. 
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behavior initially occurs, how often it occurs, and when it gradually tapers off or stop to happen. 

In addition, given that we would have an ethogram of both animals, we can consider 

synchronization among the individuals, possibly due to imitations or just spontaneous activities 

that happen to be performed simultaneously. 

In addition to the ethogram framework, we propose creating a representation that 

captures the animals' stereotyped and non-stereotyped behavioral patterns (Figure 2.3B). 

Therefore, we build a two- or three-dimensional behavioral space where frequently occurring 

(stereotyped) behaviors are clustered in their own regions, and non-commonly observed (non-

stereotyped) behaviors are grouped by themselves. This idea of creating a behavioral space that 

maps the social behavior of the animals would allow us to identify behaviors that are either 

unique to each individual or shared among the group. As we shall see later in this chapter, we 

can quantify behavioral transitions based on this map. 

 

2.6  Developing a pipeline for the framework 

To measure the social behavior of the animals, we have first to record the social 

interactions, track their postures, then classify and analyze their behaviors. The first step of 

recording social behaviors is critical in determining the output of the behavioral measure. It is 

because the recording medium can take several modes, from videography to microphone to 

movement detectors like accelerometers and IR beam-break sensors. Each medium for recording 

the behavior would have its unique advantage; for example, microphones are ideal for capturing 

sound-generated behaviors like vocalizations. For example, an adult songbird teaching a juvenile 

bird how to sing, a mating call between frogs and meerkats making sounds to alert its gang of a 

possible intruder are social behaviors. IR beam-break sensors are suitable for determining when 
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an animal crosses a threshold to interact with another animal. The number of times the beam is 

broken can be considered a measure of the interest level that the animal shows toward the other.  

 

2.6.1  Videography 

However, in our framework for measuring social behavior, we will limit our recording 

mode principally to videography, although measured acoustic information can be later embedded 

into the framework to expand the context of the behavior. The video recording provides 

information about the movement dynamics (i.e., kinematics) of the animals and their 

environment, which not be captured by the microphone and other recording devices. In addition, 

it offers a high spatiotemporal resolution of the animals' behaviors.  

 Videography has benefited considerably from the advancements in developing high-

speed and high-resolution recording cameras. There are designs of 2-dimensional cameras that 

have a resolution and frame rates capable of capturing the detailed, subtle, and fast-moving body 

parts of an animal that define their behavior. For example, some cameras can capture the fast 

wing flapping of birds or insects and a Sierra Nevada salamander shooting out its tongue in less 

than 20 milliseconds to catch an insect (Deban and Richardson, 2011). In addition, some cameras 

can provide depth information to create a 3-dimensional (3D) resolution (Hong et al., 2015; 

Wiltschko et al., 2015) of the animals. Even with 2D cameras, 3D reconstructions of the animals 

can be generated based on how the cameras are positioned (Nath et al., 2019; Dunn et al., 2021; 

Marshall et al., 2021). We would refer the reader to extensive reviews on video recording in 

these references (Dell et al., 2014; Robie et al., 2017).  
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2.6.2  Tracking 

After recording the social behaviors, the next step in the pipeline for the framework is to 

track the animals’ positions and postures. The early technology in this field of animal tracking 

was centered around annotating their center of mass. These methods were computer vision and 

machine learning-based approaches used to track the position and posture of animals (Spink et 

al., 2001; Branson et al., 2009; Pérez-Escudero et al., 2014; Hong et al., 2015). However, over 

the last decade, owing to the advancement in deep learning knowledge, there has been an 

explosion of methods that have led to identifying multiple body points besides the centroid of the 

animal (Mathis et al., 2018; Graving et al., 2019; Pereira et al., 2019; Lauer et al., 2021). 

Researchers can simultaneously track multiple animals' noses, limbs, tails, and other body points. 

Not only are the postures tracked in the 2D, but there are also 3D annotations of the animals that 

can be labeled.  

 Despite highlighting the advances in methods to track the postures of multiple animals, 

there are still limitations that we would like to point out. The multi-animal tracking tools cannot 

maintain the animal's identities robustly and reliably throughout the entire recording. This issue 

is more prominent when the animals are near each other. The issue of swapping identities could 

be less of a problem if knowing the animal’s identities was optional. However, in most cases 

knowing the identity is essential because it could provide insight into the temporal evolution of 

social behavior for a specific animal. For example, in an experiment involving male and female 

prairie voles during cohabitation to form social bonds, it is important to know their identities 

because there might be a sexual dimorphism regarding how they interact. For example, males 

might show more aggressive behaviors than females, which might be more defensive. In the next 
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chapter, I will delve more into the limitations of the multi-animal deep learning approaches and 

the solutions we have developed to resolve them. 

 

2.7  Extracting ethograms 

For this framework we have set up, we would assume that we have perfect 2D or 3D 

tracking with no swapping errors or mislabeled body points of the postures of the animals. With 

the perfectly tracked points, we can build a behavioral classifier to extract the behaviors 

performed by each animal. As with all classifiers, they need to be trained with a set of features 

and predefined behaviors. These features can be obtained from the animals' position, orientation, 

distance, and speed from the tracked body points. The identification of behaviors to train the 

classifier remains to be the challenging part. As discussed earlier, the precise labeling of the 

behavior seen can vary widely from observer to observer. Although to the animal, its intention of 

the behavior it desires to perform is known, scientists would never know it, but instead must 

impose a description based on their knowledge and expectation. To resolve this dilemma, we 

suggest the behavioral annotation be done by three individuals (although a larger number would 

be ideal but not feasible because of limited personnel to score behaviors in most laboratories). As 

suggested by the scorers, the consensus definition of behavior and its average start and stop times 

can be used in the classification. Given the features and defined behaviors, a machine learning 

classifier such as a support vector machine (SVM), adaptive boosting (AdaBoost), and random 

decision forest (TreeBagger) or a deep learning recurrent neural network can be trained to 

identify a moment-by-moment classification of the behaviors.  
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This ethogram of behavior provides a basis for understanding the spatiotemporal 

evolution of social behaviors among individuals. An approach that can be adopted is to group the 

behaviors into three event categories (de Chaumont et al., 2012). These groupings can reveal 

how behaviors emerge for a set of actions as the animals interact with one another. For example, 

A single continuous movement of an animal towards, away from, and following other 

individuals can be categorized as a first-order event (Figure 2.4A). This event is based on the 

Figure 2.4. A schematic representation of grouping behaviors into orders for animals (a) 

and (b). A. Examples of a first-order grouping showing an individual (a) approaching 

another stationary animal (b) and an animal (a) moving away, either escaping or ordinary 

departure, from the other individual (b). B. A second-order grouping shows an animal (a) 

approaching another and then huddling with them (a) or the two animals huddling and one 

(b) departing. C. Examples of a third order where an individual (a) approaches another to 

probably orally or anogenitally investigate the other animal (b), where either animal (a) or 

(b) escapes. (Adapted from de Chaumont et al., 2012) 
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relative speed of movement and change in distance between the animals. When two first-order 

events are combined, for example, two individuals have side-by-side contact, and then one 

moves away to interact with an object or another animal, that can be considered a second-order 

event (Figure 2.4B).  A third-order event can be extracted in the last categorization when two 

second-order events are temporally concatenated (Figure 2.4C). In this event, one animal goes to 

contact with another, both have a brief period of social interaction, either side-by-side contact, 

oral-oral interaction, or oral-genital, and one animal then escapes.  From the temporal evolution, 

you can create a hierarchical structure of behavior transition. The hierarchical behavioral 

transition (to be discussed later in this chapter) would show the likelihood of certain behaviors 

occurring before or after others (de Chaumont et al., 2012). 

 

2.8  Mapping behavior into a space 

Although creating an ethogram of the moment-by-moment behavior through the 

prescribed approach presented above might capture the social behaviors of the animals, it is 

likely to be biased by the subjective classifications of the human annotators. Also, due to 

anthropomorphic expectations, subtle interactions might be overlooked. Hence, we propose 

mapping the postural dynamics of the animals into a space that maps their stereotyped behaviors. 

This theoretical framework gained initial precedence in single-animal behavioral quantification 

by mapping their movements into a representation that reveals their behavioral repertoire 

(Berman et al., 2014). In this approach, an unsupervised method (MotionMapper) creates a 2D 

probabilistic space of the stereotyped behaviors based on the animals' video data or tracked 

points (Figure 2.5).  
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The MotionMapper algorithm takes the postural time series of the animal’s movement as 

inputs to build the behavioral space. However, in the context of social behavior, certain choices 

that differ from those used in the original implementation for a single animal need to be made. 

Are the postural time series of each animal treated separately, or is a single postural time series 

that describes shared information between the animal used as the basis for mapping the social 

behavior? Either choice would have its advantage, where a separate postural time series provides 

a clear picture of each animal’s posture that allows unique identification of an individual’s 

behavior at any given time within the behavioral space. Alternatively, in using the shared 

postural time series, the redundancy in knowing each animal’s posture is avoided because social 

behaviors should produce distinctive effects on the postures of the individuals to allow their 

identification. A third choice for the time series would be to have both individual and shared 

information about the poses of the animals. It will be an over-parameterization, but it ensures 

redundancy in the postural dynamics.  

Figure 2.5. A pipeline for mapping behavior into a lower-dimensional representation. Images 

from a video of a behaving animal are rotationally and translationally aligned to be invariant. 

The image data is decomposed into a low-dimensional embedding. A wavelet transform is then 

applied to the decomposed postural data to generate a spectrogram. These spectrograms are 

used to construct spectral feature vectors that we embed into two dimensions using t-distributed 

stochastic neighbor embedding (t-SNE). Lastly, a watershed transform is applied to identify 

resolvable peaks associated with stereotyped behaviors in the distribution (Adapted from 

Berman et. al., 2014) 
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In either case, this postural time series that describes the body configuration of the animal 

remains a high-dimensional measurement, and so, similar to other approaches that can infer the 

behavior of animals by performing a postural decomposition (Stephens et al., 2008), 

MotionMapper performs a dimensionality reduction technique, like Principal Component 

Analysis (PCA), to reduce the postural data in a low-dimensional time series.  

To extract the stereotyped behaviors but ensure that their dynamics naturally emerge for 

the reduced postural time series, MotioMapper performs a wavelet transformation on the data. 

This wavelet transformation creates a multi-scale time and frequency resolution allowing for the 

representation of the postural dynamics at different time scales.  This idea of transforming the 

data from the time to frequency domain is critical to the concept of quantifying the stereotypy of 

behavior. It is because several different approaches could have been taken to extract the 

stereotyped behaviors (See (Berman, 2018) for extensive discussion on this topic).   

An alternative approach to wavelet transformation is to fit a statistical model, like an 

Autoregressive Hidden Markov Model (AR-HMM) (as executed in the Motion Sequencing 

(MoSeq) approach), to the postural data (Wiltschko et al., 2015). This method extracts sub-

second (200-400 milliseconds) motifs from the time series data. Although MoSeq pulls 

dynamical and behavioral representations from the time series, as Berman points out, the 

approach is highly dependent on the time scale selected to define the behavioral states (Berman, 

2018). It is a limitation because the animal’s behaviors might happen at different time scales. 

Therefore, one must choose and test several time scales to model their desired behaviors.  

A substitute method is to find predefined modules of behaviors of varying time lengths 

within the data. These modules serve as behavioral templates so that time series patterns that 

match them are used to extract the behaviors (Schwarz et al., 2015; Gomez-Marin et al., 2016). 
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Although there is an advantage of obtaining the desired behaviors, this approach is limited by 

having to know all desired behaviors that an animal is likely to perform. It removes the ability to 

identify subtle and unknown behaviors in the animal’s repertoire.  

Transforming the postural time series data into the frequency by performing a wavelet 

transformation removes the burden on the user to define the time series templates or their 

durations to match the data accurately.  

The process of transforming data into the frequency domain creates high-dimensional 

data. To ensure that the local structure is preserved when performing a dimensional reduction on 

the data, MotionMapper uses a non-linear embedding algorithm, t-stochastic nearest neighbor 

embedding (tSNE) (Van Der Maaten and Hinton, 2008). Using tSNE means points close to each 

other in the high dimensional space would be preserved to be together in the lower dimensional. 

Unlike PCA, where the goal is to capture the variance and preserve the global distance structure 

within the data, the tSNE algorithm is a manifold learning technique that seeks the preservation 

of local distance over global ones.  

With the data in a reduced dimensional form, MotionMapper chooses a watershed 

algorithm to cluster the behavioral states. The watershed algorithm captures repeated motifs as 

stereotyped behaviors by assigning data points to the same cluster that reach the same local 

maximum by ascending a local gradient. Conversely, to assign the cluster, a Gaussian Mixture 

Model (GMM) can be fitted to the data (Todd et al., 2017). The GMM assumes the data is drawn 

from a probability distribution formed by summing mixture components and assigns points to 

cluster if its mixture component has the maximum posterior probability. 
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Although MotionMapper was initially developed to map the behavior of single animals, 

there are recent publications to show that it can be extended to a social context to uncover 

sequences of social behaviors shared among animals. For example, the MotionMapper has been 

used to study how fruit flies alter their behaviors in different social pairings (Klibaite and 

Shaevitz, 2020). Here, the authors showed that from the extraction of a repertoire of stereotyped 

behaviors, paired fruit flies performed more posterior grooming and wing movements during 

Figure 2.6. A behavioral mapping of social behavior of paired fruit flies. A. A schematic of the 

arena with the paired fruit flies. Flies of the same sex or opposite sex were paired together and 

videotaped for 30 minutes to record their behaviors. B. A map (left) showing the 2D projection 

of the behavior of the flies. Black lines indicate coarse-grained regions based on hand labeling. 

A bubble plot (middle) summarizing the relative densities and transitions between coarse 

behavior regions. The right plot shows the names of the classified coarse-grained regions from 

the map. C. A comparison of the relative densities of the female and male flies when paired 

with either the same or opposite sex. D. Stacked behavioral density plots show the frequency 

of each coarse behavior given distance to the interaction partner dp. A sliding window of 1 mm 

was used to calculate density at.1 mm increments with centers ranging from.1 to 18 mm. 

(Adapted from Klibaite and Shaevitz, 2020) 
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social interactions than when they were in a non-social context of being alone. Females in a 

same-sex pairing or opposite-sex pairing with males were less likely to move around compared 

to a same-sex pairing of males (Figure 2.6C). This increased locomotory activity might be due to 

the high likelihood of the males fighting each other. They also observed that by comparing how 

similar the behavioral maps of the flies are, courting males showed a more different behavioral 

repertoire than other fly pairings, which was likely driven by courtship-specific song and wing 

behaviors (Figure 2.6D). In addition, they observed that paired flies were likely to synchronize 

their behaviors. 

 

2.9  Measuring hierarchy and predictability in social behaviors 

Animals might go through a sequence of actions to perform a behavior, with some 

actions occurring before or having precedence over others. The structure that exists within these 

sequences is a possible indication of a temporal organization of the behaviors. For example, there 

is a high probability that tongue grooming precedes front leg grooming in flies, but the inverse is 

not true, with almost zero probability (Richard and Dawkins, 1976). In addition, the fly 

grooming movement falls into two clusters, anterior and posterior grooming activities. Hence, a 

fly is likely to perform interchangeably tongue and head grooming for anterior movement and 

abdomen and wing grooming for posterior actions. If the flies were covered in dust, they 

performed a predictable, sequential cleaning of the anterior parts, the head and antennae, the 

abdomen, and their wings and thorax (Seeds et al., 2014). What this temporal organization offers 

is an idea of hierarchy and the predictability of behavior.  

The hierarchical organization of behavior, although primarily explored in single animal 

behavior, can be extended to study the social behaviors of animals. During social interaction, 
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paired male flies cycle through a loop of fast approach, slow approach, and wing threat (Chen et 

al., 2002). When it performs a wing threat, a fast or slow approach likely follows this behavior. 

However, in the fast approach phase, they are likely to also engage in boxing and tussling, which 

is not seen when they are in slow approach and wing threat behaviors.  

Markovian and non-Markovian models can be adapted to measure hierarchical structure 

in social behaviors. One can fit a Markov and its variant of hidden Markov models to the 

transitions of behavioral repertoire obtained from the behavioral states of spatiotemporal and 

time-frequency analysis (Chen et al., 2002; Wiltschko et al., 2015). However, using a Markov 

model, one inherently assumes that social behavior happens in a single discrete timescale and 

that the current behavior is defined only by the one preceding it. Alternatively, one can take a 

longer time scale where a current behavioral state depends on a history of previous states.  

With this assumption, a non-Markovian approach, like the information bottleneck, can be 

applied to the transition matrix of the behavioral states (Tishby et al., 2000). The information 

bottleneck method, an approach initially developed to assign the relevance of information 

quantitatively, can be extended to extract hierarchy out of a sequence of behaviors (Berman et 

al., 2016). In this framework, the goal is to maximize the information about a future behavioral 

state while holding the information about the past states fixed. Berman et al. showed that by 

using the information bottleneck method, they observed fly behavioral repertoire to be organized 

in a hierarchical manner (Berman et al., 2016). The fine-grained behaviors of the flies, such as 

right and left-wing grooming and wing waggle, were predictive of short-time structure and 

coarser representation, like wing movement and locomotion, predict actions that with further 

away in time. 
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2.10  Why care about measuring social behavior? 

In as much as the common saying goes, “humans are social creatures,” and there is an 

inherent desire to understand our social nature, a wide variety of species, from C. elegans, fruit 

flies, birds, fish, and rodents to non-human primates, engage in some form of social behavior 

(Tinbergen, 1952; Anderson, 1998; De Bono et al., 2002; Bialek et al., 2014; Durisko et al., 

2014). These evolutionary preserved social behaviors might serve different purposes, from 

feeding, courtship, fighting, and migration to animal decision-making.  

As Chiel and Beer put it, the brain has a body, and its motor output is reflected in the 

behavior (Chiel and Beer, 1997). Hence, measuring social behavior can provide insights into 

how the brain processes input signals from the environment, including social cues, and couples 

that with its internal state to dictate its actions. By carefully quantifying the movements of 

animals in space, time, and frequency domains, we can understand what states the brain is in and 

what information it considers relevant prior to executing an action. Since neuroscience has 

greatly advanced in being able to record multiple neural activities across different brain regions 

in multiple animals (Kawasaki et al., 2013; Dikker et al., 2017; Zhang and Yartsev, 2019; 

Anpilov et al., 2020), it is desirable that the precise quantification of social behavior can match 

the field. With it, we can gain insights into the neural activity that underlies social experiences.  

One can leverage the information quantified from social behaviors to detect social deficits such 

as autism. For example, using the distance between a tracked point on the head and center of 

animals and their behavior classifier, Hong et al. showed that an autistic-like mouse model, 

Black and Tan Brachyury (BTBR), spent significantly less time socially investigating a 

conspecific compared to wild-type animals.  
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In addition, measuring social behavior would help uncover how genetic variations might 

mediate social interactions. In studying the social investigation behavior of mice, Hong et al. 

showed that two strains of mice behaved differently towards conspecifics. The standard strain 

wild type, C57BL/6N, male mice closely investigate other males for longer durations. However, 

strains considered aggressive, NZB/B1NJ, exhibited more attack and less close investigation 

behaviors towards intruder males. 

 

2.11  Concluding Remarks 

In this chapter, we have discussed social behavior and the challenge most scientists face 

in measuring it. We then provided a framework on how to quantify social behavior. This 

framework entailed building a moment-by-moment classification of behavior and projecting the 

behavioral repertoire of the animals into a space based on their stereotypy. We talked about the 

choices a scientist has to make when selecting this framework and the biases inherited from 

them. For example, in building moment-by-moment classification through a supervised 

approach, the scientist is inherently biased toward the selections of the labeling generated by the 

human annotators. With creating a social behavioral map, although the representations are 

generated from the data, the choices in the algorithms used dictate the outcomes. In addition, the 

behavioral map representation primarily relies on stereotyped behaviors and less on non-

stereotyped behaviors. Therefore, the less occurring non-stereotyped behaviors, which are likely 

to precede and dictate the stereotyped behavior, are overlooked, and hence, a complete 

representation of the social behavior of the animals is not obtained. Despite these limitations, we 

anticipate that as better theoretical frameworks are developed, and advancements are made in 

tools to study behavior, we will build a clearer picture of the dynamics of social behavior. 
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Chapter 3. DEVELOPING A PIPELINE FOR ROBUSTLY AND 

PRECISELY TRACKING MULTIPLE ANIMALS IN A SOCIAL 

CONTEXT 

 

3.1  Introduction 

In this chapter, I will present a pipeline that we developed to track the postures of 

multiple animals robustly. First, I will give a history of tracking animal behavior and the 

advancements made. Then, I will discuss the limitations of the tracking tools currently applied to 

label the positions and poses of animals in a social context. Subsequently, I will present our 

approach to building a pipeline that addresses the limitations of the current tools. Finally, I will 

propose suggestions for altering the pipeline to improve its robustness in more complicated 

scenarios in a social context. 

 

3.2  Background 

As discussed in the previous chapter, tracking the postures of animals is essential to the 

process of measuring animal social behavior. After videotaping the social interactions of the 

animals, the next step in the framework to quantify their social behaviors is to track them. The 

tracked information provides insights into the spatiotemporal position, orientation, and poses of 

the animals that serve as inputs to either creating a moment-by-moment classification of the 

social behavior or building a behavioral space representing the stereotyped behaviors of the 

animals.  

Before the development of computer-automated tracking tools, tracking animal behavior 

mainly required humans to label the animal’s positions and trajectories (Bayne and Scullard, 
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1978; Buelthoff et al., 1980; Moran et al., 1981). This human annotation approach meant a poor 

spatiotemporal resolution of the animal’s poses, with overlooked time points. In addition, it was 

highly time-consuming, imprecise, subjective, and labor-intensive. However, as computers 

became cheaper and more available, and with the development of theoretical and mathematical 

approaches to track behavior, there was a gradual shift to more automated tracking methods, 

which meant better spatiotemporal resolution of the animal’s posture (Bar‐Shalom et al., 1990; 

Noldus et al., 2001; Spink et al., 2001).  

Much of the early automation was driven by computer vision and machine-learning 

approaches, with the primary goal of tracking the center of mass of an animal and its head 

orientation over time (Branson et al., 2009; Dankert et al., 2009). Subsequently, owing to the 

advancement in deep learning knowledge in the last decade, there has been an explosion of 

methods that have led to identifying multiple body points besides the centroid of the animal 

(Mathis et al., 2018; Graving et al., 2019; Pereira et al., 2019; Lauer et al., 2021). Now, 

researchers can simultaneously track multiple animals' noses, wings, limbs, tails, and other body 

points, from insects, rodents, and non-human and human primates. Hence, providing adequate 

data points to quantify animal social behaviors. 

As it will be further discussed later in this chapter, despite these advancements, there are 

still lingering issues where tracked-body points switch with one another on the same animal or 

are swapped with those of a different animal. The limitation is more prominent when the animals 

are close to each other. To such an extent that when we use the tracked points to build a 

behavioral space of the social behavior of prairie voles (based on the framework discussed in the 

previous chapter), we find that some of the clustered behavioral regions are made from spurious 

tracking (Figure 3.1).   
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Given the poor tracking issues that lead to spurious behavioral maps, we decided to 

develop a pipeline that combines an Autoencoder, a deep learning network, with the existing 

tracking methods to fix the swapping issues robustly. This pipeline was primarily tested with 

rodents, specifically prairie voles; nonetheless, we think it can be extended to other animal 

models, like flies and primates.  

In the rest of this chapter, I will highlight the earlier tracking work with computer vision, 

machine learning, and deep learning. Subsequently, I will discuss in detail the pipeline we 

developed, explaining its features, successes, and limitations in the sections. 

 

Figure 3.1. A behavioral space for prairie voles created with a multi-animal tracking tool. Male 

and Female prairie voles were paired for 24 hours. We recorded their behavior during the first 

2 hours of cohabitation. Then, we applied a multi-animal DeepLabCut to track their postures. 

Given the poses, we built a behavioral map based on the approach outlined in the previous 

chapter. The map shows regions with peaks that are meant to indicate stereotyped behaviors. 

However, some of these peaks are generated by bad tracking errors (Red box). Refer to this link 

for samples of videos from these regions:  

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Figure_3.1_Videos 

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Figure_3.1_Videos
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3.3  Behavior tracking using computer vision and machine learning 

The initial approach to automated animal behavior tracking involved using computer 

vision and machine learning tools to identify a single point (center of mass) of an individual 

animal (Noldus et al., 2001; Spink et al., 2001). With the tracked center of mass, researchers 

could monitor the animal’s trajectory and quantify its distance traveled, speed, and time spent at 

a location. This meant scientists could achieve high throughput in investigating exploratory 

behaviors and their related neurological underpinnings like anxiety, stress, social novelty, and 

sociality (Spink et al., 2001; Post et al., 2011).  

However, to achieve this goal of tracking an animal's centroid position, these methods 

relied on having a single animal in behavioral setups that were optimized to allow object-

background segmentation and have fewer objects (e.g., food pellets, beddings) in the recording 

apparatus. Therefore, further advancements were needed to overcome these limitations to allow 

for quantifying single animal behavior in more naturalistic settings (Branson et al., 2009). The 

new methods that were developed were expanded to apply to more social paradigms involving 

two or more animals (Dankert et al., 2009; Pérez-Escudero et al., 2014). Hence, scientists could 

now leverage the ability to track multiple animals to study their collective behavior. For 

example, taking advantage of the ability to track multiple animals, Pérez-Escudero and 

colleagues observed that adult zebrafish, having explored their environment for a period 

(approximately 3 hours), spontaneously switched from shoaling to territorial behavior. In 

addition, when they studied the social behavior of multiple medaka fish, they saw a hierarchical 

structure of leadership-followership behavior within the group, which was preserved over 

multiple days and was very stable. 
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Subsequently, these computer vision methods were extended to label other body points, 

such as an animal's nose, mid-body, and tail, to expand from only tracking the animal's center of 

mass. For example, labeling the additional body points in rodents was beneficial for researchers 

to build machine learning classifiers that could be used to extract affiliative and investigation-

like behaviors, which include oral-oral, oral-genital, and side-by-side contacts (de Chaumont et 

al., 2012). The initial iterations of the methods were developed for 2D videos, which meant they 

were limited to handling the vertical movements of the animals, like rearing, mounting during 

Figure 3.2. Computer vision and machine learning tools to track animal behavior. A. Tracking 

of multiple fruit flies. Foreground pixels are grouped to detect individual flies. The purple 

component corresponds to one fly; the large black part corresponds to three. The tracker splits 

this large component into 1–4 clusters. The penalty based on cluster size is shown for each 

choice. B. Pose estimation of two mice with distinct coat colors using information from both 

the top view camera and depth sensor. An ellipse that best fits an animal detected in the 

segmented 3D video frames is used to describe the animal's position, orientation, shape, and 

scale.C. Tracking of multiple adult zebrafish. The method consisted of identifying fingerprints 

or signatures of the animals that served as reference images. The fingerprints were made based 

on the intensity and contrast maps extracted from the video frames. By aggregating enough 

reference images, they could accurately track each individual. (Adapted from Branson et al., 

2009, Hong et al., 2015, and Pérez-Escudero et al., 2014) 
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sex, and resolving occlusions between the animals. However, as technology advanced to 

introduce 3D cameras with depth-sensing capabilities, the methods were adapted to utilize 3D 

information to capture the animal's behavior (Hong et al., 2015). 

Despite the advancement, researchers had to adopt artificial means to make the methods 

work, especially in the social context. For example, they had to color the fur of the animals or 

use animals that had distinct coat colors because when the animals spent long durations near 

each other, like during huddling, and crossed each other’s paths multiple times, the tracked 

points were swapped. Hence, more sophisticated tools using deep learning methods had to be 

leveraged to tackle the tracking issue.  

 

3.4  Behavior tracking with deep learning approaches 

The technological advancement in computing systems, marked by the development of 

graphical processing units (GPUs) and high multithreading and multiprocessing central 

processing units (CPUs), segued into the application of deep learning methods. As defined by 

Francois Chollet (François Chollet, 2017), “Deep learning is a specific subfield of machine 

learning: a new take on learning representations from data that puts an emphasis on learning 

successive layers of increasingly meaningful representations.” Deep learning is built on the idea 

of the neural network structure of the brain. To illustrate a simplistic relationship between 

machine learning and deep learning – take a function 𝑦 =  𝑓∗(𝑥), where in machine learning, the 

goal would be to learn the rules that map input 𝑥 to the output 𝑦. In deep learning, the 

relationship would be considered as a neural network structure with “layers,” where 𝒚 =

 𝒇𝟑(𝒇𝟐 (𝒇𝟏(𝒙))) (Goodfellow lan, Bengio Yoshua, 2016). 
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The use of deep learning approaches In tracking animal behavior was preceded by 

advances in the field of annotating the behaviors of humans (Andriluka et al., 2014; Insafutdinov 

et al., 2016). For example, Insafutdinov and colleagues showed that deep learning-based 

techniques could be used to estimate the poses of humans in complicated real-world settings, 

such as people dancing and walking, while still maintaining the identities of the individuals.  

 

Following this advancement, some groups studying animal behavior, including the 

Mathis and Murthy labs, leveraged deep-learning tools to track animals. Mathis et al. published 

DeepLabCut (DLC) (Mathis et al., 2018), and Pereira et al. released LEAP Estimate Animal 

Poses  (LEAP) (Pereira et al., 2019).  DLC and LEAP, the two most popular tools in the field, 

Figure 3.3. An example illustrating an application of deep-learning tools for human pose 

estimation of multiple people in real-world images. (Adapted from Insafutdinov et al., 2016) 
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have similar backbones for using a convolutional neural network (CNN) in their architecture, but 

their implementations for how to track the animal pose slightly differ (to be discussed shortly).  

 

Given that our research primarily focuses on studying prairie voles, we will continue our 

discussion regarding the use of these tools in studying rodent behavior. However, it should be 

noted that these tools, among several others (Graving et al., 2019; Günel et al., 2019; Shukla and 

Arac, 2020; Liu et al., 2021), are species-agnostic and can be used to track behavior in other 

Figure 3.4. An example illustrating an application of DeepLabCut to track the pose of a mouse 

and a fly. A. A typical architecture of a deep neural network (DNN) is used in predicting the 

body-part locations based on the corresponding image. B. Example of body part prediction for 

a mouse showing the network’s prediction (yellow cross) matching human annotator’s labels 

(red cross). C. Example frames and body part predictions for a fly in different poses. (Adapted 

from Mathis et. al., 2018) 
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animals, like fruit flies, fish, and primates, which was not the case in the computer vision 

methods that were tailored to specific animal groups. 

By deploying these tools in tracking rodent behavior, one went from only being able to 

track a centroid and the head of an animal to tracking the tail, ears, and limbs (Figure 3.4). 

Therefore, instead of having only the centroid and head, which would likely tell the position and 

orientation of the animal, we could recreate a behavior such as grooming and rearing from the 

animal’s pose. 

The deep-learning framework was not only beneficial for creating postures, but it also 

expanded the capabilities of methods like idTracker (Pérez-Escudero et al., 2014), which used a 

computer vision approach to identify multiple animals (20-30). In the original method, the 

identification was achieved by finding a fingerprint of an animal which was based on an image 

intensity of a reference frame of the individual. This signature was used then to maintain the 

animal’s identity in the video data. However, by implementing a CNN backbone, Romero-

Ferrero et al. published idTracker.AI (Romero-Ferrero et al., 2019), which could track up to 100 

animals while maintaining their identities. In this new implementation, they had a CNN that 

would learn the uniqueness of the individuals and a second CNN that could handle complex 

scenarios like when they crossed each other’s path.  

Notwithstanding, idTracker.AI was only designed to track centroids, and DLC and LEAP 

could only label the poses of a single animal but not multiple ones. Lauer et al. developed a 

multi-animal tracking tool called multiple animal DeepLabCut, maDLC, (Lauer et al., 2022), 

built on earlier work, DLC, and similarly, Pereira et al. also published Social LEAP 

(SLEAP)(Pereira et al., 2022), an advancement on LEAP to track multiple animals.  
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As in previous versions, maDLC and SLEAP had different implementations of CNNs and 

methods to annotate body points on multiple animals and maintain their identities. maDLC 

implemented a bottom-up approach, and SLEAP used both a bottom-up and a top-down process.       

In the bottom-up approach, they first estimate the labeled body points on all the animals 

and then group the points belonging to each individual based on their connectivity. The 

implementation is performed with only one network. In contrast, the top-down approach requires 

two networks. The first network locates the anchor point, and the second connects the other body 

points to the reference. Based on the number of animals one needs to track, it is usually more 

efficient to use the bottom-up approach to track the dataset with many animals and the top-down 

with data with fewer animals.   

Despite the successes of maDLC and SLEAP in estimating the poses of multiple animals, 

when we apply them to prairie voles, we notice that they cannot maintain the animals’ identities 

throughout the entire recording (see an example video here: Bad Tracking). When the animals 

are some distance from each other, both methods perform well in maintaining the animals’ 

identities. However, the likelihood of swapped identities becomes significantly higher when the 

animals get closer to each other in mating or huddling. The methods fail to switch the key points 

Figure 3.5. A standard workflow pipeline for using deep-learning-based markerless tracking 

methods. First, take a raw video of the animals and then label desired points on body parts. A 

deep neural network is trained on the labels from human annotators. The network infers 

animal’s body points on video data. 

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Bad_Tracking
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back to the initial tracking animals. This limitation would be a problem if one needed to build a 

behavioral representation of the animal, which relied on their identities. 

 

3.5  Pipeline to fix pose estimation 

Given the tracking limitations during social contexts when the animals are close to each 

other for long periods, I developed a pipeline that combines a different deep learning method, an 

Autoencoder, with the output of the tools, like maDLC and SLEAP to obtain detailed and high-

accuracy postural trajectories of multiple animals. I will explain our approach and the choice 

made in the rest of the chapter.  

Figure 3.6. A typical architecture of an autoencoder. The autoencoder comprises two main 

parts – the encoder and the decoder. The encoder produces a latent representation from the 

input data, fed into the input layer. The decoder transforms the latent representation into an 

output, which is identical but not the same as the input. (Adapted from Géron, 2019) 
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3.5.1  Autoencoders 

Autoencoders are deep-learning neural networks designed to learn the underlying non-

linear function of a data input by encoding the information into a latent (dimensional reduced) 

representation (Géron, 2019). The term deep describes the number of neural layers created for 

the encoder and decoder; usually, more than two layers can be considered a deep network.  

What is typical for autoencoders is that they have an encoder and decoder part of the 

network, where they (encoder and decoder) are identical but inverse (Figure 3.6). They are 

identical in the number of neurons in the network and the connections between the neuron nodes. 

Conversely, they are inverse in that the encoder is designed to take a data input of a high 

dimension and reduce it into a latent representation, which is usually a lower dimension. The 

decoder, in its part, is meant to take the latent representation generated by the encoder and 

recreate an outer representation approximately like the input data. It is critical that the outer 

representation is not the same as the input data because that would mean the autoencoder only 

copied the input data to the output. The goal of the autoencoder, like every other deep learning 

approach, is to learn from the data. Essentially, the autoencoder must learn the functions that 

govern the input data. The advantage of learning from the data, but not merely copying from the 

data, is that the autoencoder can act as a filter for noise that might be embedded in the data. For 

example, if we had a function 𝑦 =  𝑓∗(𝑥) + 𝑛(𝑥), where ‘f*(x)’ is the actual function and n(x) is 

the added noise. The autoencoder would filter out the noise, n(x), and retain the true function 

𝑦 =  𝑓∗(𝑥).  

In addition to acting as a noise filter, the autoencoder can be considered a nonlinear 

dimensionality reduction technique used to reduce data dimensions. For example, in creating the 

latent representation from the data, which can be regarded as having a high dimension, the 
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autoencoder compresses the data (the encoding process) to a low dimension. If the activation 

function (to be discussed later) is linear, the autoencoder essentially becomes a principal 

component analysis (PCA) (Géron, 2019). We would later see the benefit of the autoencoder 

being a dimensional reduction technique in Chapter 4 for creating a behavioral repertoire of 

social behavior.  

 

3.5.2  Autoencoder Architecture 

In designing the architecture for the autoencoder, we had to make several choices, from 

the type of autoencoder to the formatting of the input data to the number of neurons in the 

network to the selection of the activation function and the optimizers. We needed to build a tool 

Figure 3.7. Comparison between pose estimation generated by tracking tools (e.g., SLEAP) and 

Autoencoder. A) SLEAP tracked points show unlabeled body points on the animal. B) Applying 

the autoencoder labels the missed body points from A. C) SLEAP tracking wrongly labels a 

body point for one vole on the other. D) Autoencoder fixes swapped body points 
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to improve the tracked points generated by either maDLC or SLEAP and so go from figures 

3.7A and 3.7C to figures 3.7C and 3.7D (see example videos: Bad Tracking and Good Tracking). 

In general, we had to decide on the following: 

(i) Type of Autoencoder 

(ii) The structure of the data input 

(iii) The number of layers  

(iv) The number of neurons in each layer 

(v) The activation functions 

(vi) Add batch normalization or dropout or both 

(vii) The loss function(s) 

(viii) The optimizers 

I will take each listed point above and explain the decisions we made behind them and 

why we made them. I have written a python package with the complete code to implement the 

autoencoder on tracked data (https://github.com/senakoko/AutoPoseMapper). 

Figure 3.8. A block diagram figure of autoencoders. A. A schematic of a stacked autoencoder. 

B. An illustration of a variational autoencoder.  (Adapted from Géron, 2019) 

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Bad_Tracking
https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Good_Tracking
https://github.com/senakoko/AutoPoseMapper
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3.5.3  Type of Autoencoders 

There are two major types of autoencoders – the stacked autoencoder and the variational 

autoencoder. The stacked autoencoder is considered the vanilla (simple) kind of autoencoder, 

where all the neurons (this term will be fully explained later in section 3.5.6) within the 

autoencoder are connected. Its architecture is typically symmetrical around the latent layer 

(coding layer) (Figure 3.8A). In contrast, the variational autoencoder has a latent representation 

produced from the mean and standard deviation coding layer (Figure 3.8B). Therefore, instead of 

a single layer representing the encoded information, as seen in the stacked autoencoder, the 

encoder for the variational autoencoder generates values for two layers, the mean  and standard 

deviation  layers. The values from the mean and standard deviation layers are then randomly 

sampled to create coding outputs, which serve as input to the decoder part. One can imagine the 

coding as a Gaussian distribution, where samples are taken from it to train the decoder. Since the 

variational autoencoder has a mean and standard deviation layer, it is considered probabilistic 

and generative. It is defined to be probabilistic because, from the mean and standard, one can 

sample random values that would lead to indeterministic outputs. It is generative because a new 

instance of the data that never existed can be created. For example, figure 3.9 show the tracking 

of voles that were not taken from a real vole. They are fake. 

 

Figure 3.9. Examples of fake tracked points generated using variational autoencoders. These 

points were not from an actual vole. 
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3.5.4  The structure of the data input 

In our autoencoder, the data input is the tracked points generated by animal tracking 

tools, like maDLC and SLEAP. We advise that the tracked points are ego-centered prior to using 

them as input. Ego-centering the data aligns all the tracked points to a reference point so that it 

can be imagined that the animal is always facing the same direction at every time, irrespective of 

its real-world coordinates. Although figure 3.9 is a set of fake tracked points, it can be observed 

that the animals are facing the same direction. Ego-centering can also be viewed as a way to 

standardize the data input since all the tracked points are centered on a reference point.  

 

3.5.4  The number of layers 

A layer of autoencoder, like any other deep neural network, consists of multiple units 

referred to as neurons (to be discussed shortly) that transform the data. For example, a layer is 

analogous to a brain region, like the nucleus accumbens, because it comprises neurons that 

receive projections of other neurons and send their axonal fibers to other neurons in different 

brain regions. Determining the number of layers for the autoencoder is arbitrary, but generally, 

the more layers (the deep) autoencoder, the better it performs (François Chollet, 2017).  

However, despite being arbitrary, testing the autoencoder on data and checking its validation loss 

is the practical way to know how many layers to have. The validation loss refers to the error 

between the prediction of the network and the actual data point. The network with the lowest 

validation loss is generally the best.  
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3.5.6  The number of neurons in each layer 

The neurons are the units within the layers of the autoencoder. They are essentially 

functions that transform their inputs. Similar to the number of layers, determining the number of 

neurons is arbitrary, and more is better. In our design of the autoencoder, we chose a dense 

structure, meaning every neuron in a layer is fully connected to the neurons in the next layer but 

not to the other neurons within the same layer (Figure 3.6). In addition, we selected the number 

of neurons as powers of 2. It is because the power of 2s is computationally efficient and makes 

the neural networks train faster on the graphical processing units (GPUs) (François Chollet, 

2017).  

 

From testing a different number of neurons and layers, I found that the architecture 

presented in figure 3.10 performed the best. The performance was characterized based on 

obtaining the lowest value for the loss function during training and validation. The loss function 

was the mean squared error (to be discussed later in this section). I also evaluated the accuracy of 

the network based on its validation accuracy, where the network was tested on data it was not 

trained on. 

Figure 3.10. A schematic of the architecture of the primary autoencoder we used in the thesis 
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3.5.7  The activation functions 

The activation function is typically a nonlinear function that is applied to the hidden units 

of an artificial neural network to determine its outputs (Goodfellow lan, Bengio Yoshua, 2016). 

If one had a neuron unit with the function ℎ𝑖 = 𝑔(𝑥𝑇𝑊:,𝑖 +  𝐶𝑖), ‘g’ will be the activation 

function, e.g., a rectified linear unit (ReLU) that dedicates the output for a given range. There are 

several activation functions, such as sigmoid, tanh, rectified linear unit (ReLU), and exponential 

linear unit (ELU), that can be applied in deep learning networks given a task. In designing our 

network, we chose a scaled exponential linear unit (SELU) as the activation function. We 

selected this function because it has an internal normalization that can adjust the mean and 

variance from the previous layers. Its ability to scale the mean in the positive and negative 

direction is not available in ReLU, a commonly used activation function.  The SELU function 

allows the network to converge faster and helps prevent vanishing gradients (when the gradients 

go to zero). Each layer of a neural network can have its unique activation function, but, given the 

properties of SELU to converge faster and prevent vanishing gradients, we chose it for every 

layer except for the last one, the output layer.  The output layer is meant to have a different 

function that allows its results to match the input. 

𝑓(𝛼, 𝑥) =  𝜆 {
𝛼(𝑒𝑥 − 1)

𝑥
 
𝑓𝑜𝑟 𝑥 < 0

𝑓𝑜𝑟 𝑥 ≥  0
 

The alpha  (1.67) and lambda  (1.05) hyperparameters are predefined (not learned from the 

training) for the activation function (Klambauer et al., 2017). 

 

3.5.8  Regularizing the network 

In general, it is always a good practice during the application of a learning algorithm to 

regularize it in the form of using a penalty (François Chollet, 2017; Géron, 2019). Regularizing 
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prevents the algorithm from over or under-learning the representation that makes up the data. 

One way to do so is through batch normalization. 

 

3.5.8.1  Batch Normalization 

Batch normalization is a form of regularizing artificial neural networks to prevent 

neurons' saturating and gradients from vanishing in the deep layers (Mehta et al., 2019). With 

saturating neurons and vanishing gradients, the weights of the neurons remain constant or go to 

zero, which is not ideal because one would want the weights to be adjusted as the network learns 

from the data. Therefore, the goal of batch normalization is to achieve a stable distribution of 

activation values throughout the training of the network (Ioffe and Szegedy, 2015). Although it is 

not fully understood in the field, batch normalization is thought to regularize the network by 

introducing some randomness into the training sample. In addition to acting as a regularizer, 

batch normalization increases the learning rate of the networks and accelerates the learning rate 

decay (Ioffe and Szegedy, 2015). Hence, we implemented it after every network layer. 

 

3.5.8.2  Dropout 

Dropout is another way to regularize a network by preventing it from overfitting on the 

data (Srivastava et al., 2014).  In dropout, a set of units are randomly selected in each layer and 

are left out during a training epoch (Figure 3.11). Leaving out units is temporary and 

probabilistic because the dropped units might be added back to the network in the next run, and 

the process is random. In addition, applying dropouts is an alternative way of training several 

different networks on the data. It offers the least expensive way to do so because it is 

computationally costly to train several networks and find the correct hyperparameters. Adding 
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dropouts inherently creates a different network. It also introduces randomness into the network, 

which helps to prevent overfitting.  

 

The fraction of units that are dropped can range from 0 to 1. However, it is ideal that the 

fraction of left-out units is 0.2 to 0.5 (Srivastava et al., 2014). In our experiments, values between 

0.2 and 0.5 produced similar results, so we used 0.2. Another essential advantage of having 

dropouts is that it allows a network to perform well on sparse data. Hence, if there are missing 

values in the data, which is likely due to untracked body points by maDLC or SLEAP, the 

network learns the underlying nature of the data and, therefore, can generate better predictions of 

those values. Thus, in our network, we applied dropout to every layer to increase the 

randomness.   

 

Figure 3.11. Dropout Neural Net Model. Left: A standard neural net with two hidden layers. 

Right: An example of a thinned net produced by applying dropout to the network on the left. 

Crossed units have been dropped. 
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3.5.9  Loss function 

The loss function is used to evaluate a model’s performance by calculating the deviation 

of its prediction from the actual data response (Mehta et al., 2019). It is sometimes referred to as 

the error, cost, and objective functions. In general, the closer the output of the loss function is to 

zero for continuous numerical data and the probability is near 0 or 1 for categorical data, the 

better the model is. For continuous data, the mean square and absolute errors are commonly used 

loss functions, and cross-entropy is a regularly used cost function for categorical data. Since our 

goal is to predict coordinates values for tracked points, we used mean square error for our model. 

It was possible to have used a regularized cost function with a Lasso regression penalty (L1 

norm) or Ridge regression penalty (L2 norm). However, since we had already implemented 

batch normalization and dropout, we did not add those. 

𝑬(𝒘) =  
𝟏

𝒏
 ∑(

𝒏

𝒊=𝟏

𝒚𝒊 −  𝒚̂𝒊(𝒘))𝟐 

3.5.10 Optimizers 

Musstafa defines an optimizer as a learning algorithm used to minimize the loss function 

or maximize the accuracy of a model (Musstafa, 2021). It can be seen as a mathematical 

approach to adjusting the weight and biases of function with respect to the loss function. An 

example of an optimizer is gradient descent. Gradient descent is a standard optimization 

algorithm that iteratively changes the weight and biases of a model to attain the local minimum 

of a convex function. However, straightforward gradient descent is not applicable in most 

models due to certain factors, like having a complex convex and nonconvex function and a large 

dataset. Variations of the gradient descent, such as stochastic gradient descent with/ without 

momentum, and mini-batch gradient descent, introduce parameters like learning rate to help deal 
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with the large datasets issues and allow the functions to converge at their global minimum at a 

faster speed. The global minimum is the point at which the model has the lowest error.  In our 

model, we chose adaptive moment estimation (Adam) as the optimizer. Adam is an efficient 

stochastic optimization that computes individual adaptive learning rates for different parameters 

from estimates of the first and second moments of the gradients (Kingma and Ba, 2015). Adam 

combines components of two optimizers, AdaGrad and RMSProp, to make it computationally 

efficient. 

𝑤𝑡 =  𝑤𝑡−1 −  
𝜂

√𝑆𝑑𝑤𝑡
−  𝜀

∗ 𝑉𝑑𝑤𝑡
 

𝑏𝑡 =  𝑏𝑡−1 −  
𝜂

√𝑆𝑑𝑏𝑡
−  𝜀

∗ 𝑉𝑑𝑏𝑡
 

Where ‘w’ and ‘b’ are the weights and biases of a neuron, respectively. 

 

3.6  Results and Discussion 

Our pipeline for robustly tracking the postures of multiple animals is as follows: 

(i) Given raw videos of prairie vole interaction, take random samples of images from 

them 

(ii) Label the body parts of the animal that one is interested in.  

(iii) Train maDLC or SLEAP on the labeled data 

(iv) Use the trained network to make predictions on the raw videos  

(v) Apply autoencoder on the tracked data generated by either maDLC or SLEAP 

(vi) Manually correct swapped identities or wrongly tracked body points 
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Following this pipeline, firstly, we had to decide on the number of annotated frames to 

train a maDLC or SLEAP network. Generally, the more labeled frames, the better the network's 

performance. Hence, to illustrate this point, we trained multiple networks on different numbers 

of labeled data and then tested the networks on data they had never seen before. We annotated 

250, 1000, and 2000 frames with two prairie voles. Then, we trained both SLEAP and maDLC 

networks on the labeled data. Subsequently, we used the networks to predict a video of two voles 

from a different dataset, which they were not trained on. In this video, we generated 500 frames 

and manually annotated the body parts of the animals.  

Figure 3.12. Performance of networks on different numbers of training datasets. The networks 

were tested on 500 frames that they were not trained on. Overall, both SLEAP and DLC 

performed better when trained with more labeled data.  Each black point represents the average 

Euclidean distance (RMSE) for a body part of an individual 
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To test the accuracy of the networks, we measured the Euclidean distance (root mean 

square, RMSE) between the network-generated labels and those of the human scorer for the 500 

frames. This metric is averaged over the set of images for each body part and each animal. In this 

accuracy test, the network had to correctly predict the body parts’ locations and assign them to 

the right individual. Therefore, a high RMSE value means the network either predicted 

inaccurate body part location, labeled the wrong animal, or both. We observed that training the 

networks on 2000 frames generated significantly more accurate results than on 250 frames (had a 

lower RMSE value). An equivalent test of the networks on 2000 frames produced very similar 

results to Figure 3.12 (data not shown).  

The next decision to be made regarding the pipeline is which animal tracker method 

should be used. We observed that with a low number of labeled (250) frames, both maDLC and 

SLEAP are comparably bad (SLEAP with a slight advantage). With 1000 annotated data, 

SLEAP significantly outperforms maDLC. However, with 2000 frames, both tracking tools 

produced similarly improved performances, with maDLC being a little better. At 8000 frames, 

the results remain comparable (data not shown). Therefore, when training with 2000 or more 

labeled frames, one can select SLEAP or maDLC and expect commensurable tracking results. 

However, as one starts to annotate more than 20,000 frames (like in our case, where we labeled 

60,000 frames for the thesis work), there are rather practical considerations that need to be made. 

We have found that maDLC had an efficient implementation that allowed it to load and use all 

the labeled data to train its network. SLEAP, on the other hand, stopped working when we tried 

to use such a large dataset.  
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As we introduced at the beginning of the chapter, the tracked results generated by either 

SLEAP or maDLC are unreliable enough to create a behavioral space. Hence, one is likely to 

have a map with spurious tracking points. Therefore, we developed the autoencoder to fix the 

tracking issues.  

Several choices were made in building the autoencoder, especially the autoencoder type. 

We found that the stacked autoencoder trained better on the data than the variational autoencoder 

(Figure 3.13). Although the variational autoencoder is generative and can create fake animal 

Figure 3.13. Comparison between the stacked and the variational autoencoder. The top figure 

shows the stacked autoencoder's lower mean squared error for the validation loss compared to 

the variational autoencoder. The bottom figure indicates no difference in the validation 

accuracy between the two models. 
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postures (that look real) (Figure 3.9), which might be a good indication that the network has 

learned the representation, we observed that the stacked autoencoder had a lower validation loss 

(mean squared error) compared to it. The variational autoencoder is likely to have exploding 

gradients (unusually high values for the weights and biases of the neurons in the network), 

leading to generating unlikely values. 

 

Figure 3.14. Comparing the behavioral map generated by the tracking tool and the autoencoder. 

A behavioral space created with only a tracking tool (e.g., maDLC) (A) and a combination of 

an autoencoder and tracking tool (B). C. Using GMM to if the tracked points in the behavioral 

regions had the correct vole shape in both A and B. The tracking improves by applying the 

Autoencoder to the tracked outputs from SLEAP. (***p < 0.001, Student t-test) 
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 Decisions about the hyperparameters, such as the number of neurons in a layer, the 

number of layers, optimizers, and the activation and objective functions, are essential in 

designing the autoencoder’s architecture. We would refer the reader to section 3.5 on the choice 

we made. The aim of building the autoencoder is to apply it to the trained points from either 

maDLC or SLEAP. However, before using it, the autoencoder must be trained similarly to the 

tracking tools. Therefore, we trained the stacked autoencoder to the data labeled for the tracking 

tools. This data is considered ground truth because it is user-curated from random frames in 

multiple videos where the animals assumed varying poses. This essential training process on 

randomly labeled frames from different videos teaches the autoencoder the postures that the 

animal is likely to adopt. 

When we applied the trained autoencoder to the tracked data from the tracking tools, we 

observed a significant improvement in the accurate estimation of body points (see figure 3.7 and 

example videos: Bad Tracking and Good Tracking). For example, when tracking tools could not 

label body points on the voles (figure 3.7A), the autoencoder correctly annotated those points 

(figure 3.7B). In addition, when the tracking tools produced other tracking errors, such as 

incorrectly labeling a body point of one vole on the other (For example, tracking the left ear of 

vole one as that of vole two) (figure 3.7C), the autoencoder correctly assigned them to the 

individuals that belonged (figure 3.8D). We, therefore, see using the autoencoder as imposing an 

animal-like prior (in our case, a vole-like prior) on the pose estimations. 

Given our primary goal to measure the social behavior of animals by creating a 

behavioral representation of their movement, we created maps using the tracked points with and 

without the autoencoder applied to them. We observed that when we quantified the regions in the 

behavioral map that had tracks with the correct vole shape, the map generated from the 

https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Bad_Tracking
https://github.com/senakoko/Thesis_Videos/tree/main/Chapter_3_Videos/Good_Tracking


 73 

combination of the tracking tools and autoencoder had a significantly higher percentage of the 

vole-like body (figure 3.14B) than the other map created with only the tracking methods (figure 

3.14A). We measured the accuracy of having a vole-like shape using a Gaussian-mixture model 

(GMM). The GMM was initially trained to the ground truth data used to train the tracking tools 

and the autoencoder. 

 

3.11  Conclusion 

In this chapter, we have shown that despite the advancement in the methods to estimate 

the poses of multiple animals, the tools cannot robustly track the animals when they are close to 

each other. In addition, they are likely to swap the identities of the annotated animals. Therefore, 

we developed a pipeline that combines an autoencoder with multi-animal tracking tools to 

resolve the labeling issues. We saw a significant improvement in the tracking, which led to 

building a reliable behavioral map of the social interactions of the animals.  

Despite the autoencoder's performance, it relies on the output of the maDLC or SLEAP 

as its input. This can be a significant problem when the predictions of maDLC or SLEAP are 

consistently wrong, i.e., the coordinates of body points are far from their desired position for a 

sequence of video frames. Such an instance can be seen as providing a weak or negative prior to 

the autoencoder model. Since our autoencoder has no image of the animal to rely on, its 

predictions would be wrong.  
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An alternative way is to build a convolutional neural network (CNN) to take the image 

data as input. The CNN would predict the centers of masses in the image. These centers of 

masses will then be used as additional input for the autoencoder. So, for the current frame, the 

autoencoder will compare how the predicted points are close to those values. If the centers of 

masses are close (in terms of Euclidean distance) to the prior predicted points for the previous 

frames, it would indicate that the tracking generated by maDLC or SLEAP is unreliable. The 

autoencoder would generate an animal-like shape guided by the earlier prediction and adjusted 

based on the centers of masses.  

 

One lingering issue that is a significant drawback for all the methods, including the 

autoencoder, is the swapping of animal identities. Similar to switching individual body points, 

swapping of tracked identities is likely to happen when animals huddle, are involved in a 

prolonged fight, and frequently cross each other’s path. We tried using idTracker Field (Romero-

Figure 3.15. Pipeline for robustly tracking multi-animal poses. A schematic of the pipelines for 

fixing tracking errors using Autoencoder combined with idTracker/TRex (A) or manual 

correction (B). 
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Ferrero et al., 2019) and TRex Field (Walter and Couzin, 2020) to resolve this problem. TRex is 

another multi-animal centroid tracking tool that works similarly to idTracker. idTracker and 

TRex are highly optimized to maintain the identities of multiple animals (up to a hundred). 

Therefore, the approach we adopted (as illustrated in Figure 2.15) was to track the video data 

with either idTracker or TRex and use the centroid positions they generated as ground truth to 

adjust the tracking after applying the autoencoder.  However, we noticed that idTracker and 

TRex still struggled to correctly identify and maintain the animals’ identities. 

Thus, the ultimate approach we used in this thesis work was manually correcting the 

missed tracking and the swapping identities. Therefore, after applying the autoencoder, we 

manually stepped through each frame of tracked points and fixed those instances where 

swapping occurred. Although it was prohibitively time-consuming, it was guaranteed to ensure 

accurate tracking over time. 

In the next chapter, I will show how we use this pipeline to quantify the social behavior 

of prairie voles as they form pair bonds.  
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Chapter 4. QUANTIFYING THE REPERTOIRE OF BEHAVIORS 

INVOLVED IN PRAIRIE VOLE SOCIAL BOND FORMATION 

4.1 Introduction 

 In this chapter, I leverage the pipeline discussed in chapter 3 to track the social behavior 

of prairie voles as they form social bonds. Using the tracked postures, I apply both unsupervised 

and supervised machine learning approaches to investigate the behavioral repertoire of prairie 

voles with genetically modified oxytocin receptors (OTRs). Specifically, I study voles with 

OTRs globally knocked out (both centrally and peripherally) using clustered regularly 

interspaced short palindromic repeats (CRISPR). With the CRISPR knockout (CRISPR KO) 

voles, I first replicate a recent finding about the role of OTRs in social bond formation. Then 

applying an unsupervised behavioral mapping approach, I extract the behaviors of the voles as 

they form pair bonds. In comparing CRISPR KO voles to wild-type control animals, I examine 

the subtle behavioral differences that are likely to emerge between the two groups. Finally, I take 

advantage of a supervised machine learning classifier to identify the subtle behavioral 

differences between the CRISPR KO and wild types as they form pair bonds.  

 

4.2 Background 

 Pair bonding is a complex social process that involves behavioral changes across contexts 

during sociosexual interactions. During the formation of a pair bond, animals perform many 

different actions, such as chasing, fighting, allogrooming, mating, and huddling, with the 

repertoire of these behaviors evolving over time as the nature of the social bond changes. These 

changes can be thought of as alterations in an animal’s underlying “hidden state” of social 
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engagement (Tinbergen, 1952; Dawkins, 1976) (e.g., when one shifts from being unfamiliar to 

familiar to being closely bonded with another).  

The formation of these pair bonds in animals is thought to be modulated by 

neurochemical systems acting within the brain to influence the behaviors of the animals to move 

towards a state of pair-bondedness. One of these neurochemical systems is the oxytocin system 

(OT), among several others, like arginine vasopressin, dopamine, and serotonin. The OT system 

is thought to act within the social brain network to promote social bond formation, maternal care, 

empathy-related behaviors, and parturition and lactation (Sue Carter et al., 1995; Insel and 

Young, 2001; Numan and Young, 2016; Walum and Young, 2018). The activity of OT is 

mediated by its highly selective receptors, OTRs. Although recent evidence indicates that there is 

a cross-talk, where the OT molecule can bind to vasopressin receptors (Kimura et al., 1994; 

Hawtin et al., 2000; Song et al., 2014).  

The OTRs are G protein-coupled receptors widely expressed throughout the body and 

brain; they can be found in the uterus, kidney, heart, mammary gland, and brain (Gimpl and 

Fahrenholz, 2001).  In the periphery, the binding of OT to the OTRs is implicated in mediating 

reproductive functions in both females and males, like parturition and lactation and erectile 

function and copulation, respectively (Dale, 1906; Summerlee and Lincoln, 1981; Swaney et al., 

2012). In the brain, they are densely expressed in the social brain areas, like the nucleus 

accumbens, the amygdala, the prefrontal cortex, and the olfactory bulb, and are implicated in 

mediating social behavior, specifically pair bonding (Shapiro and Insel, 1992; Olazábal and 

Young, 2006).  

Early work with OTRs shows that intracerebroventricular (ICV) injection of oxytocin 

receptor antagonist (OTA) inhibits pair bond formation (Williams et al., 1994). Even after 
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mating (since mating is thought to facilitate bond formation), when an OTA is centrally infused 

into the brain, it reduces the preference for a partner (Insel and Hulihan, 1995). Using viral 

techniques such as RNA interference to knock down the OTR in the accumbens, thereby 

reducing its density, inhibits pair bond formation (Keebaugh et al., 2015). Conversely, taking 

advantage of this viral technique to overexpress the OTRs within the accumbens via viral-

mediated gene transfer also facilitates the formation of partner preference in the prairie voles 

(Keebaugh and Young, 2011).  Related to the individual genetic variation of the OTRs in the 

accumbens, voles that have a high expression of OTR show a significant preference for the 

partners compared to voles with a low expression (King et al., 2016).  

Most of these studies revealing the role of OTRs in pair bonding were performed in 

prairie voles (Microtus ochrogaster). The prairie voles have emerged as a premier animal model 

for studying pair bonding. They are among the few percentages of mammals that are capable of 

forming pair bonds that involve biparental care, where both sexes contribute equally to naturing 

the young and defending their territory against intruders. In addition, the pair bonds formed by 

the voles are robust because it is observed both in the field and the lab (Getz et al., 1981).  When 

prairie voles are tested in a partner preference test, a simple behavioral paradigm to assess the 

choices of the animal (Williams et al., 1992), the paired individuals spend most of the time in 

side-by-side physical contact with their partners compared to strangers, animals that are novel to 

the pair (Gavish et al., 1983; Carter et al., 1988). In addition to the selective preference for their 

partners, paired males and females that have had sexual contact show highly aggressive 

behaviors toward unfamiliar conspecifics as a way to guard their mates compared to sexually 

naïve individuals (Getz and Carter, 1980; Gavish et al., 1983). 
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Contrary to what was previously thought of as the role of OTR in pair bond formation, a 

recent publication tells a different story. Berendzen and colleagues show that OTRs are not 

necessary for pair bond formation (Berendzen et al., 2022). Using a viral technology, CRISPR-

Cas9, they selectively knocked out the OTRs in the prairie voles, creating a mutant CRISPR 

knockout (CRISPR KO) voles null for the receptor. Their results indicate that the CRISPR KO 

voles, both males and females, show a strong preference for the partners when assayed with the 

pair preference test after seven days of pairing the mutant voles with opposite-sex wild types. In 

addition to being able to form pair bonds, the mutant voles displayed aggressive behaviors 

towards unfamiliar animals in the partner preference paradigm. They also found that the mutant 

voles showed bi-parental care and could bear viable pups similar to wild types. Before this work, 

Horie and colleagues, who developed mutant voles with the same viral technology, showed that 

the CRISPR KO voles exhibited alloparental behavior, as observed in wild-type animals, and 

were likely to spend significantly more time with another vole rather than an empty cup (Horie et 

al., 2019).  

In light of these results, several questions arise: what is the role of the OTRs in pair 

bonding if the end state of forming a bond is still achieved without them? Do the OTRs play a 

role in the overall social behaviors of animals? It is challenging to imagine that the OTRs highly 

expressed in areas of the nucleus accumbens, amygdala, prefrontal cortex, and brain regions 

considered part of the social centers do not have an adaptive benefit. In addition, OTR’s 

expression in the brain varies widely from one species to another. For example, even within 

closely related species like prairie voles and meadow voles, there is a higher concentration of 

OTRs in the nucleus accumbens and amygdala in the prairie voles than in the promiscuous 

meadow and montane voles (Shapiro and Insel, 1992; Olazábal and Young, 2006). Even within 
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the same species, there is a natural variation of the OTR expression in the brain. Due to a single 

nucleotide polymorphism in the gene, some prairie voles have a high expression of OTR in the 

nucleus accumbens than others with low expression in the same brain region (King et al., 2016).  

Given our decades of knowledge about OTRs, and that the publication by Berendzen et 

al., was only the recent work to show the counterevidence, we wanted to replicate their 

(Berendzen and colleagues) work to observe whether knocking the OTR with CRISPR-cas9 does 

not prevent the prairie voles from showing a preference for the partners. Secondly, much of the 

work involving the role of OTR in pair bond formation has primarily been centered on the end 

state of it, measuring the preference of vole for its conspecific partner using the partner 

preference assay(Williams et al., 1992; Keebaugh et al., 2015; King et al., 2016; Berendzen et 

al., 2022). There has been less work looking at the behavioral repertoire of the animals as they 

form pair bonds. For example, although Horie et al. measured social novelty, a test to detect the 

preference for investigating an unfamiliar conspecific compared to a familiar one, they did not 

analyze the behaviors performed during the familiarization process (Horie et al., 2019).  

Given that the OT system is thought to modulate the behavior of animals during social 

interactions by mediating the social recognition and identity of a conspecific individual and 

developing an association of a rewarding encounter with that animal (Ferguson et al., 2001; 

Okuyama et al., 2016; Shamay-Tsoory and Abu-Akel, 2016; Walum and Young, 2018), we 

hypothesized that the OTRs modulate the social dynamics of between prairie voles as they form 

pair bonds. By leveraging our ability to knock out the OTRs specifically, we could investigate 

how the behaviors of the mutants differed from the wild-type animals during bond formation but 

not only at the end state. Moreover, Berendzen and colleagues measured the end state of the pair 

bonds by performing the partner preference test assay and did not quantify the behavioral 
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interaction of the voles as they formed the pair bond. Therefore, we wanted to measure the 

behavior of the prairie voles as they formed pair bonds. 

 

4.3  Materials and Methods 

4.3.1  Experimental Model and Subject Details 

 The prairie voles (Microtus ochrogaster) laboratory-bred at Emory University were 

initially caught from the field in Illinois, USA. After weaning at postnatal day P20-23, the 

animals were housed in groups of two to three voles of same-sex siblings per cage.  

The animals were maintained on a 14:10 light/dark cycle with a temperature of 68 – 72 degrees 

Fahrenheit and humidity at 40-60%. They had ad libitum access to food (lab rabbit diet HF 

#5326) and water. Their cages were enriched with cotton pieces so that they could build nests. 

The experiments were conducted in accordance with the guidelines of the National Institutes of 

Health Guide for the Care and Use of Laboratory Animals and were approved by the Emory 

University Institutional Animal Care and Use Committee. 

 

4.3.2  CRISPR/Cas9 knockout prairie voles 

 The CRISPR-Cas9 knockout prairie voles were made according to the protocol 

developed by Horie (Horie et al., 2019; Horie and Nishimori, 2022), who specifically created the 

animals that were used in this experiment. In summary, an embryo taken from an ovulating 

female prairie vole is injected with Cas9-sgRNA ribonucleoprotein. The single guide RNA is a 

type of RNA molecule that binds to Cas9, an endonuclease, and directs it (Cas9) to the target 

DNA. The Cas9 acts as molecular scissors to cut DNA at the location specified by the guide 

RNA. The infected embryos are then transferred into pseudo-pregnant recipient females who 
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carry them until they deliver newborns. Tissues from the fingertips of the pups at P5 or ear 

punches at p21 are genotyped to check for the deletion of OTRs. To expand the colony, the 

founder voles, the first genetic line with knocked-out OTRs, are mated with wild-type partners to 

yield more knockouts. 

 

4.3.3  Animal Types 

We used only female prairie voles as the subject animals. We used 16 CRISPR KO and 12 wild 

types (WT) females. The WT females were siblings of the CRISPR KO voles. Their male 

conspecifics used in either the pairing or the other experimental recordings were WT animals. 

Both the female and male animals were sexually naïve, and also, the females were not 

ovariectomized or estrogen-primed for the experiments. 

 

4.3.4  Behavioral Paradigm 

 Once the voles were of adult age, after 60 days, they were used in the experiments. The 

behavior of the voles was recorded as illustrated in the figure 4.1. We initially placed the subject 

vole (a CRISPR KO or WT animal) in a chamber (24 inches wide by 12 inches high and breadth 

of 12 inches) separated by a Plexiglas with a novel (WT) or the partner-to-be (WT) animal for 30 

minutes. It was done to get an idea of the behavior of voles when they are alone but in the 

presence of another individual separated by a divider. To allow social stimulus transmission 

between the separated voles, we used transparent Plexiglas with multiple holes (1/16 inches in 

diameter) drilled in them so that the animals could see and smell the other conspecifics. We 

randomly alternated the individual recorded with the subject. If the subject was recorded with a 

novel animal in the first session, then in the second session, they were recorded with their 
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partner-to-be. Vice versa, the subject could have been recorded with the partner-to-be in the first 

session, then with the novel animal in the second session.  

 

Following the modified open field test, a solo separated session, we paired the subject 

animals with their partners for 48 hours. Previous studies have shown that at least 24 hours of 

cohabitation is sufficient to induce a partner preference, where individuals spend more time 

huddling with their partner compared to a stranger in a partner preference test (Williams et al., 

1992). We recorded the first and the last 3 hours of the cohabitation. When they were not being 

Figure 4.1. The experimental paradigm with its timeline. The subject voles were initially 

recorded with a novel animal or the future partner (Exp. A) in a chamber separated by a 

transparent divider. If they were recorded with a novel animal in Exp. A, then in Exp. B they 

were paired with the future partner animal or vice versa. The subject animal was paired with 

their partner for 48 hours. Following the cohabitation, the solo separated behavior was repeated 

in the same order as before the cohabitation. Therefore, Exp. A == Exp. D and Exp. B == Exp. 

E. After it, we performed a social preference test for 2 hours. 
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recorded, the paired animals were placed in their home cage and taken back to the vivarium. 

After cohabitation, we repeated the solo separated experiments in the same order as before the 

pairing. We did this experiment to see if the animals altered their behaviors after they were 

paired with their partner. 

Following this experiment, we performed a social preference test (SPT). The SPT is 

slightly different from the partner preference test, with the difference being that the partner and 

stranger are placed under a cup instead of being tethered in the SPT. The stranger in the SPT 

differs from the animal used in solo separated behavior recordings. We used a rectangular arena 

(30 x 8 inches) and put the partner and stranger under rectangular metallic cups (7 inches wide 

by 4 inches high and breadth of 4 inches). The mesh-like metallic cups were placed at the ends of 

the arena. The WT male animals were placed under the cups before the female CRISPR KO or 

WT animals were introduced into the middle of the chamber. We allowed the females to explore 

the arena for 2 hours and recorded the session. 

  

4.3.5  Tracking animals  

 As discussed in chapter 3, we developed a custom pipeline that combines multi-animal 

deep learning pose estimation technology, such as maDLC (Lauer et al., 2022) and SLEAP 

(Pereira et al., 2022), with an autoencoder to robustly track multiple animals (Figure 4.2). By 

adding the autoencoder, we can obtain detailed and high-accuracy postural trajectories of various 

animals. The pipeline helped us track instances, like when the animals spend more time with 

each other during behaviors such as huddling, mutual grooming, and mating, that are key to the 

social behavior of the voles. Although we had significant improvements in the tracking (please 

refer to chapter 3), there are times when the tracked points swap identities between animals. It is 
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a worrying limitation because it is ideal that we know the identity of the animals throughout the 

entire recording.  

 

To address this issue, we initially added a step to the pipeline by using idTracker 

(Romero-Ferrero et al., 2019), another deep-learning approach, to track the identities of animals. 

However, we realized that idTracker wasn’t robust enough to maintain the animal's identities in 

every instance. Hence, we manually corrected the swapped identity by stepping through the 

video frames. I built a graphical user interface (GUI) to make it easier to fix the identities 

(https://github.com/senakoko/poseCorrectionGUI). For the analysis in this dissertation, I used 

Figure 4.2. Pipeline for robustly tracking animals. A) The pipeline to implement a multi-animal 

pose-estimation deep learning method to track the posture of the animals. B) Adding an 

autoencoder to improve tracking and manually correct the swapped animal identities with the 

aid of a GUI 

https://github.com/senakoko/poseCorrectionGUI
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maDLC and trained the network on approximately 60,000 frames, although the creators suggest 

using 500 frames. I found that even 8000 frames could not generate a well-trained network. 

Given such a large training dataset, I discovered that the maDLC was better at handling the data 

than SLEAP. maDLC had a better algorithm for loading the data into the computer’s memory 

and graphical processing unit (GPU), which is used to train the network, than SLEAP. I tracked 

11 body points on each animal, which included points from the nose to the ears and along the 

body trunk to their tails.  

 

4.3.6  Unsupervised mapping of behaviors 

 Given our accurate and detailed frame-by-frame tracking of the posture of animals, we 

proceeded to measure their behaviors. One approach to quantify the behavior of the voles is to 

use the tracked x and y coordinates of the animal's center of mass to extract the trajectory and 

other metrics like the distance traveled and the animal's speed. Although such metrics help 

determine the locomotory behavior of the animals, they provide limited information about the 

animal’s behavioral repertoire, such as huddling and mating. We decided to use an unsupervised 

behavioral mapping approach, MotionMapper, (Berman et al., 2014), to measure the behavioral 

repertoire of the animals. This method takes an unbiased approach to extract stereotyped 

behaviors (where stereotyped behaviors refer to repeatable behavioral actions). Therefore, 

instead of a supervised machine learning approach (to be discussed later), where behaviors, such 

as huddling and escape, are predefined, the unsupervised MotionMapper helps avoid the human 

bias in scoring behavior and allows the revelation of the unknown subtle behaviors. In this 

analysis, we only applied the MotionMapper to only the first three hours of cohabitation data, not 

the last three hours, or the solo-separated behavior and SPT. We did this to avoid the behavioral 
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map being heavily skewed to stationary-like behaviors like huddling and sitting idle since they 

are common during solo and SPT periods. 

 

4.3.6.1  Transforming input data for MotionMapper 

 To implement MotionMapper, we modified the pipeline and parameters used in the 

original method to extract the behavior of animals. Since we tracked the body points of the 

animals, instead of an image as used in the initial approach, we calculated the Euclidean 

distances between these points on the vole (Figure 4.3). Therefore, for each body point, e.g., the 

nose, I measured its distance to all other tracked points, like the animal's left and right ears, hips, 

and tail. Since the voles were of different sizes, I normalized the distance by the area of the 

animal. I assumed the shape of the vole to be an ellipsoid, so I calculated its area.  

A =  π ∗ a ∗  b.  

Figure 4.3. Calculating the metrics for MotionMapper. A) Schematic for calculating the 

Euclidean distances and ‘Joint’ angles between body points. B) Pipeline for generating a low-

dimensional set of time series for MotionMapper. 



 88 

 a – the distance between the nose and mid-body 

b – the distance between the mid-body and the left/right end of the mid-waist of the body 

 

Since the area of the vole would vary at different times based on the animal's posture, I 

calculated its area at 1000 random time points and found the median value. That median value 

was used to normalize the distances. In addition to finding the distances, I found the “joint” 

angles between body points, for example, between the nose, mid-body, and left ear. However, 

unlike the distance, I did not need to normalize the angles since that would not be affected by the 

size of the vole. Therefore, by measuring the Euclidean distances and “joint” angles, when the 

animals performed a movement like running, grooming, rearing, and turning left or right, those 

actions were captured by a change in the magnitude of those values. 

 By measuring those metrics, we created a high-dimensional time series with 55 and 16 

features for the distances and angles, respectively. Since some of the features are highly 

correlated and it is computationally expensive to work with 71 features, we decided to reduce the 

dimensions of the data using an autoencoder. As discussed in chapter 3, the autoencoder 

functions like a non-linear principal component analysis (PCA). We decided that instead of 

combining the distance and angles into one data unit, we would treat them separately since they 

are different units. Therefore, we applied a separate autoencoder to the distance and angles 

(Figure 4.3). While there is no rigorous manner to determine the number of features for the 

reduced dimension, we used a PCA to determine the lower bound of dimensionality reduction, 

given that 95% of the variance is explained. We found that a lower dimension of 8 for each 

metric was ideal. Therefore, combining the latent representation from both autoencoders, we 
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have 16 features represented in the same unit. We then standardize each feature by centering it to 

its mean and scaling it to the unit standard deviation.  

  

 

4.3.6.2  Overview of modified MotionMapper pipeline 

 As performed in previous studies (Berman et al., 2014; Klibaite and Shaevitz, 2020; 

Overman et al., 2022), we applied a Morlet wavelet transform on the latent postural time series 

data to generate a spectrogram. This wavelet transformation creates a multi-scale time and 

frequency resolution allowing for the representation of the postural dynamics at different time 

scales. This idea of transforming the data from the time to frequency domain is critical to 

quantifying the stereotypy of behavior.  We sampled 50 points dyadically spaced between a 

minimum frequency of 0.5 Hz and a maximum of 15 Hz (determined by the Nyquist frequency 

of sampling frequency data, which was 30 Hz) from the spectrogram generated by the Morlet 

wavelet transform. Therefore, for each feature in the latent representation (16 in total) from the 

transformed postural time series, we have 50 frequency channels, resulting in 800 (16*50) 

dimensional feature vectors encoding the postural dynamics.  

Figure 4.4. Pipeline for MotionMapper. A Morlet wavelet transform is applied to the 

transformed postural time series to create a spectrogram for each feature. Subsequently, t-SNE 

is used to map each point in time into a two-dimensional plane, and that is then clustered into 

‘behavioral’ regions by a watershed transform.  (Adapted from Berman et. al., 2014) 
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Given that most of these features are strongly correlated, we applied a non-linear 

dimensionality reduction technique, t-distributed stochastic neighbor embedding, t-SNE, to 

reduce the dimensions. Maintaining the same parameters (like the perplexity) as used in the 

original method (since changing them did not alter our results), we used t-SNE to create a two-

dimensional (2-D) probability density function (PDF) across the map of the postural dynamic.  

We then applied a watershed transform to a gaussian smoothed 2-D transform from the t-

SNE. The watershed algorithm captures repeated motifs as stereotyped behaviors by assigning 

data points to the same cluster that reach the same local maximum by ascending a local gradient.  

 

4.3.7  Supervised extraction of behavior 

 The results obtained from the unsupervised mapping of behavior can sometimes be a 

bird-eye view of behaviors and, as we shall see later in the results section, behaviors that occur 

less often but share a similar frequency pattern with those that occur frequently can be lost in the 

classification of behaviors extracted. Therefore, we decided to implement a supervised machine-

learning approach to classify behaviors, such as oral and anogenital investigation, approach, 

attack, and escape, usually observed during a social interaction between animals. We leveraged 

the metrics, like the Euclidean distances and angles, computed from the unsupervised approach 

and included additional calculations to create a feature space. We calculated the distances 

between the nose and mid-body of one animal to the other body points of the second animal. We 

also found an individual’s orientation (angle from -180 to 180 degrees) relative to the other and 

computed each animal’s speed at different time lags (from 1 to 10).  We proceeded to score the 

cohabitation videos for behaviors, like oral and anogenital investigations, investigating the side 

of an individual, approach, attack, escape, and huddling, by marking the video frame at which 
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they start and stop. I have uploaded samples of the classified videos to Git Hub 

(https://github.com/senakoko/Thesis_Videos).  To aid the process of marking the start and stop 

frames, I built a GUI (https://github.com/senakoko/behaviorMarker). Given the features and the 

marked frames associated with the behaviors, we trained a support vector machine (SVM) to 

classify them.  

 

4.3.8  Statistical analysis 

We performed a non-parametric analysis in all cases when we evaluated for statistical 

significance. We chose an alpha value of 0.05. When we were comparing repeated measures of 

the samples, we performed a Wilcoxon signed rank test and did Mann-Whitney test for the 

independent group analysis. We used factorial analysis of variance (ANOVA) to compare 

multiple groups, followed by post hoc comparisons with Mann-Whitney. The data were shown 

as mean  standard error of the mean (SEM). All statistical analysis was performed using Scipy 

(version 1.10. 0) and Statsmodel (version 0.13.5) in Python. 

 

4.4  Results 

4.4.1  Oxytocin Receptor Knockout voles can form social bonds 

We sought to investigate whether the CRISPR KO voles could form social bonds and, in 

a way, replicate the results published by Berendzen and colleagues. We paired sexually naïve 

CRISPR KO female voles with wild-type (WT) males for 48 hours. Similarly, as controls, we 

paired naïve WT female voles with WT males. After the cohabitation, we performed modified 

partner preference tests – social preference tests (SPTs) to evaluate the preference for a partner 

over a novel stranger. The WT males (both partner and stranger) were placed under cups, 

https://github.com/senakoko/Thesis_Videos
https://github.com/senakoko/behaviorMarker
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restricting them from initiating the approach toward the experimental females and making 

physical contact with them. 

We evaluated the time the experimental females spent in the partner and stranger zones 

(within 3 inches from the edge of the cup) (Figure 4.5.A). We observed that CRISPR KO voles 

spent significantly more time in their partner zone than in the stranger zone, and similarly seen 

for the WT animals (Figure 4.5.B). When we broke the time spent in the zones into 10-minute 

time blocks, the CRISPR KO spent a considerable amount of time in their partner’s zone after 

the first 20 minutes, similar to the WT animals (Figure 4.5.C). We decided to investigate the total 

distance traveled by subject animals to identify if there were any locomotory differences. 

Although we observed that in the 2 hours of SPT, the CRISPR KO and WT animals traveled 

more within their partner’s zone, we did not see any difference between them (Figure 4.5.D). 

However, when we broke the distance traveled into 10-minute blocks, the WTs traveled more in 

their partner’s zone within the first 20 minutes than the CRISPR KO voles. This increase in the 

distance traveled observed in the WTs is due to them moving around more in their partner’s 

zone. The increased movement might be necessitated by their partner's activity under the cup. 

However, since we cannot track the partners due to the occlusion by cup, we are unable to 

completely ascertain how much of their behavior influences the behavior of the subject animals. 

From the overall results of the time spent and distance traveled, we observe similar outcomes as 

Berendzen and colleagues in that CRISPR KO animals show a strong preference for their 

partners. 
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4.4.2  Knocking out OTRs does not impair social curiosity and locomotory behavior 

 Given that the OTRs have been implicated in social behavior, we wondered if they 

modulated the behaviors of the animals during social interactions. Therefore, we wanted to 

Figure 4.5. Female CRISPR KO shows pair bonding behaviors. A. Schematic of social 

preference test.  B-C. CRISPR KO, like WT, animals spend more time in their partner’s and 

stranger’s zone for 2 hours (B) and within 10-minute blocks (C). D-E.  CRISPR KO and WT 

travel more in their partner’s zone than in the stranger's. Mean  SEM, n= 12 WT and 16 

CRISPR KO; *p<0.05, **p<0.01, ***p<0.0001; N.S., not significant 
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quantify the behavior of the voles as they formed a pair bond. However, before analyzing the 

social interaction during cohabitation, we sought to identify whether, by knocking out the OTRs, 

the behavioral activity of the voles, such as locomotion, would be altered.  

We performed a modified open field test where voles were placed in a chamber separated 

from a conspecific who could be a potential partner or a stranger (Figure 4.6.A). Hence, this 

modified open field had a social component, which is different from the traditional open field 

test - a solo animal behavioral measure without any other individual in the vicinity of the 

chamber. In this separation, the subject vole could see and smell the to-be partner or novel 

animal because we used a transparent Plexiglass and drilled several holes in it to allow the flow 

of scent. Since the OT system is implicated as a critical regulator of anxiety-like behavior and 

Figure 4.6. CRISPR KO female prairie voles do not show any deficit in locomotor activity. A. 

Schematic of the behavioral paradigm. A transparent divider with holes is used to separate 

animals. B – C. The total distance traveled by animals in both the first and second sessions. D.  

Schematic showing distance threshold to consider an animal near the divider. E-F. Time spent 

near the divider by the animals. *p<0.05, **p<0.01, ***p<0.0001; ns, not significant 
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social curiosity (Pisansky et al., 2017; Cohen and Shamay-Tsoory, 2018), would the knockout 

voles move around less frequently and spend less time near the divider that separates them?  

We quantified the locomotor activity of the animals in both sessions when recorded with 

a future partner and a novel. We observed that CRISPR KO significantly moved around less 

when compared to the WTs (ANOVA, p-value = 0.007) when the results of both sessions were 

combined, and it was significantly less in the second session than in the first (ANOVA, p-value 

= 0.03). However, when considering it as two separate experimental sessions, although the 

CRISPR KO animals were less likely to move around, we did not see any significant difference 

between them and the WT animals (p-value = 0.12 in session 1 and p-value = 0.08 in session 2, 

calculated using Posthoc Mann-Whitney non-parametric test) (Figure 4.6.B, Appendix A.2.1). 

When we looked at the time spent near the divider, which is a reflection of social curiosity and 

novelty – the interest to investigate another animal that can be sensed, we did not see a 

significant difference between the CRISPR KO and WT animals (p-value > 0.05 in both sessions 

2, calculated using Posthoc Mann-Whitney non-parametric test) (Figure 4.6.E, Appendix A.2.2). 

However, we did notice that WT males were likely to move around more and spend a significant 

amount of time near the partition than the female CRISPR KO animals. Taken together, the OTR 

does not influence the anxiety-like, and social curiosity-like behavior in female prairie voles. 

However, there is some activity-like difference between the female CRISPR KO animals and 

WT animals. This activity-like result is different from what was observed by Horie and 

colleagues (Horie et al., 2019). The difference is likely due to a behavioral setup. In Horie et al., 

they performed a traditional open-field test; hence the presence of another individual cannot 

influence the behavior of the subject animal.   
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4.4.3  Examining the behavioral repertoire of prairie voles during the early phase of 

cohabitation 

 Since we did not find any substantial difference (except for a likely increased locomotor 

activity) in CRISPR KO and WT animals in the social preference test and modified open field 

test, we sought to investigate the role of OTR in pair bond formation. We recorded the first three 

hours of cohabitation between opposite-sex prairie voles. The females were either CRISPR KO 

(n=16) or WT (n=12), and the males were always WT voles. Using our unsupervised behavioral 

mapping pipeline, we measured the behavioral repertoire of the voles during the early phase of 

cohabitation by creating a behavioral space, a two-dimensional probability density representation 

(Figure 4.7.A). To ensure that we can compare the behavioral repertoire between the female and 

male voles across the different groups of CRISPR KOs and WTs, we embedded all the animals 

into the same space. The behavioral map consisted of 19,323,150 frames across the data for the 

female and male voles.  Using the watershed algorithm, we segmented the PDF into 99 

Figure 4.7. Behavioral map of the voles during the early phase (first 3 hours) of 

cohabitation. A) A PDF of the stereotyped behaviors marked by boundary lines from the 

watershed transform B) Hierarchical cluster of behaviors into coarse-grained regions  
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discretized behavioral regions, with nearby regions corresponding to similar behaviors (Figure 

4.7.A). The 2D space revealed behavioral actions like rearing, oral investigation, grooming, 

chewing, locomotory behavior, and huddling, represented as distinct peaks in the behavioral 

map. Videos of these behaviors are uploaded to the GitHub repository 

(https://github.com/senakoko/Thesis_Videos).   – use the behavioral map with the numbers to 

identify the specific regions. 

 

Figure 4.8. Transition probabilities and behavioral modularity. (A) Behavioral space 

probability density function (PDF). B) One-step Markov transition probability matrix =1, 

overlayed with the behavioral clusters from the information bottleneck calculation. (C-D) 

Transitions rates are plotted on the behavioral map with =1 (C) and =5 (D). 

https://github.com/senakoko/Thesis_Videos
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Using a hierarchical approach, an information-bottleneck method (Tishby et al., 2000), 

we combined the fine-grained behavioral clusters into large segments (Figure 4.7.B). The 

information bottleneck method is a non-Markovian approach that maximizes the information 

about a future behavioral state while holding the information about the past states fixed. 

Therefore, coarser representations of behaviors are made of fine-grained behaviors that are 

closely similar in actions. We identified four prominent coarse-grained behavioral labels - 

grooming, chewing, locomotion, and idle-like behaviors. This identification was based on 

viewing randomly selected clips of behaviors from the regions within those clusters. While we 

note that several hierarchical coarse-grained could have been generated from the information-

bottleneck approach, we found these four clusters were representative of the voles' behavior after 

qualitatively examining them.  

To investigate the temporal pattern of the behaviors at different time scales, we computed 

the behavioral transition matrix. We calculated the probability that an individual moves a 

behavioral region ‘i’ to region ‘j’ after  transition steps. For a given =1, where the behavior 

transitions from one state to the next immediate state, we observed a local behavior transition; 

behaviors moving to the next ones that are closely associated with it (Figure 4.8B). When we 

organize the behavioral states by cluster generated from the information bottleneck method, we 

see a modular structure (Figure 4.8B-C). This modular structure is more pronounced when we 

plot the transition matrix at longer time scales (Figure 4.8.D). At longer time scales, we start to 

see that behavioral transition is non-Markovian, indicating that there is an underlying memory to 

its transition rather than only being Markovian. In plotting the transitions at longer time scales, 

we selected the Markov time (𝜏=5) that characterizes the decay time in the Markovian structure. 

The decay time was calculated with this equation:  
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𝑡2 =  −
1

𝑙𝑜𝑔 |𝜆2(1)|
 

Where 𝜆2(1) is the second largest eigenvalue describing the transition matrix (𝜏=1).  

  

We then sought to investigate how the behavioral repertoire of the voles changes over 

time. Dividing the behaviors into 30 minutes bins over the 3 hours, we observed that voles’ 

behavior transitioned from activity- and locomotory-like behaviors to more stationery-like 

behaviors such as huddling (Figure 4.9). An indication of the natural behavior of animals to 

explore new places, investigate and be wary of strangers before gradually settling down to non-

active behaviors when they have familiarized themselves with the area and the novel animals. 

Figure 4.9. Behavioral densities as a function of time. We split the behavioral repertoire into 

30 minutes time bins. We see a gradual evolution from locomotion-like behavior in the early 

cohabitation period to more stationary-like behavior in the later hour. 
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4.4.4  CRISPR KO animals show subtle behavioral differences as compared to WT 

animals 

 Given that we can measure the prairie voles’ behavioral repertoire and how they change 

over time, we were interested in how OTR would modulate them since it is implicated in 

regulating the social behavior of animals. In creating the behavioral map, we combined the data 

from the CRISPR KO females, WT females, and WT males and projected them into one space 

that allowed us to compare animal behaviors. Using a hierarchical bootstrapping approach, 

where we took 1000 random samples while correcting for multiple hypotheses, we compared the 

difference between the behavioral maps of the CRISPR females and WT females. We observed 

that CRISPR females were significantly more likely to engage in stationary- and huddling-like 

behavior than the WT females, who performed more active and locomotion-like behaviors 

(Figure 10).  

Figure 4.10. Differences in behavior between CRISPR KO and WT female animals. A) 

Behavioral PDF map of recordings of all the CRISPR KO females B) Behavioral PDF map 

of recordings of all the WT females. C) Difference between the two PDFs in A) and B). 

Outlined areas are statistically significantly different regions across the two maps. 
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4.4.5  Subtle differences between CRISPR KO and WT animals show up in the early 

stages of bonding 

 From observing the subtle differences in the behavioral repertoire between CRISPR KO 

and WT animals, we were interested in identifying whether there was a time component to the 

difference. Since we observed that the behavioral repertoire changes over time, we asked 

whether OTR similarly modulates the behavior differently at specific time points during 

cohabitation. Taking a similar approach as done earlier, we separated the maps for the CRISPR 

KO and WT female animals and divided them into 30-minute intervals. We identified that the 

WT animals engaged in locomotory-like behaviors in the first hour and thirty minutes and moved 

to more stationary-like behaviors (Figure 4.11). Although the CRISPR KO performed 

locomotory-like actions, the behaviors of the CRISPR KO were predominately more stationary-

like behaviors throughout the recorded period. In addition, we saw that the behavior of the WT 

Figure 4.11. Behavioral densities as a function of time. Behavioral densities for CRISPR KO 

and WT female voles are broken down into 30-minute intervals. WT females perform very 

active-like behavior during the early part of cohabitation and gradually transition to idle-like 

behavior later. In contrast, CRISPR KO females are more idle-like during the entire period 



 102 

males paired with either the CRISPR KO or WT females transitioned from locomotory-like 

actions to stationary-like behaviors over the course of the 3 hours (Appendix A.2.5.) 

  

One could have analyzed the total distance and speed based on the center-of-mass 

tracking and observed that the WTs moved more than CRISPR KO animals. However, you 

would have missed the subtle transition in the behavioral repertoire of the animals over time. The 

behavioral repertoire captures actions, such as escaping, approaching, and chewing, which 

cannot be represented in the quantification of the total distance. To further dissociate the 

Figure 4.12. Examining the behavioral covariances. (A) The covariance matrix of the mean 

behaviors is sorted according to the information bottleneck clusters. (B) The eigenvalues of 

the covariance matrix. The first two eigenvalues (blue) are larger than the eigenvalues returned 

from shuffling the behavioral density matrix (the error bars are the standard deviation of the 

shuffled data) (C) The eigenvectors corresponding to the first (top) and second (bottom) 

eigenvalues plotted on the behavioral map. 
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variance in the behavioral repertoire between the two groups, we measured the behavioral 

covariance matrix across all the animal types over time (Overman et al., 2022). Like the 

approach taken by Overman, we found a vector of probabilities P(i) based on the regions from the 

watershed transform (Figure 4.12A). Pj
(i) is the time-average probability that vole (i) performs 

behavior (j) during 3 hours of recording. To obtain a trajectory of the behavioral vector, we 

calculated P(i) for every 5 minutes within 3 hours. We then calculated the average behavioral 

vector for the animal groups (CRISPR KO females, WT females, and the respective conspecific 

WT male partners for the CRISPR KO and WT females).  

We then computed the covariance matrix of the set of mean behavioral vectors, M  

[1
(CRISPR KO) …36

(CRISPR KO) 1
(WT) …36

(WT) 1
(WT paired with CRISPR KO) …36

(WT paired with CRISPR KO) 

1
(WT paired with WT) …36

(WT paired with WT)]  100 x 144.  

The covariance matrix (C(M)  Cov(M)) reveals behaviors that are likely to increase or 

decrease with respect to each other in the animal groups (Figure 4.12A). We then performed an 

eigendecomposition on the covariance matrix to project it into a lower dimensional space to 

evaluate the modes that would likely explain the trajectories of the behavioral vectors. We 

observed that the first and second modes captured the behavioral vector above the eigenvector 

and eigenvalues from the covariance matrix of the independently shuffled columns of the 

behavioral vector M (Figure 4.12B). The modes, especially the first, seem to capture the 

locomotory-like and stationary-like behaviors of the voles (Figure 4.12B).  
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To observe how the lower dimensional representation of the voles changes with time, we 

projected each animal’s behavioral vector onto the eigenvalues (only focused on the first and 

second). The first eigenmode isolated behavior differences between the CRISPR KO and WT 

females (Figure 4.13). It confirmed our earlier observation from Figure 4.11, which showed the 

transition from locomotory-like behavior to a more stationary one, especially in WT animals, 

compared to predominantly stationary-like behavior in CRISPR KO animals. We also observed 

an evident sexual dimorphism in the projection of behavior between the CRISPR female and WT 

males, but not seen in the pairing between WT females and males (Figure 4.13). 

Figure 4.13. Projections of the CRISPR and WT females' data onto the first eigenvector (A) 

and the second eigenvector (B) plotted as a function of time. Projections of the CRISPR and 

WT pair data onto the first eigenvector (C) and WT female and male pair onto the first 

eigenvector (D). The dots are values for individual animals. Mean and SEM plot for the line 

and error bars.  
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4.4.6  The subtle behavioral difference between CRISPR KO and WT associated with 

oral investigation and movement activities  

 In creating the map of the voles' behavioral repertoire, one inherently assumes that 

behavior is stereotyped. However, behavior is not always stereotyped, and movement actions 

with similar frequency patterns can easily be clustered under one highly dominating behavior. 

When the postural time series is transformed into the frequency domain by applying the wavelet 

transformation, a crucial step in creating the behavioral map, we assume that all behaviors would 

have unique frequency dynamics that would allow us to cluster them separately. Our analyses 

show that certain behaviors have similar frequency patterns, as illustrated by their spectrograms 

(Figure 4.14). For example, a behavior like escape shares a frequency pattern similar to an oral 

investigation, and also, when you look at the spectrogram for stationary-like behavior, such as 

huddling and defensive upright, they have identical properties. Consequently, those comparable 

behaviors are likely to be clustered together, leading to that behavior that often happens during 

the social interaction between animals being identified as the primary behavior over the less 

frequent ones. A solution to this challenge is to perform a frequency template matching where 

templates based on specified behaviors are used to extract those behaviors from the wavelet 

transformation. Although there is an advantage of obtaining the desired behaviors, this approach 

is limited by having to know all desired behaviors that an animal is likely to perform. It removes 

the ability to identify subtle and unknown behaviors in the animal’s repertoire. 

However, since we took advantage of the unsupervised approach to identify subtle 

differences between CRISPR KO and WT females, we can narrow down to the time points 

where they occurred. Leveraging the features (the Euclidean distances and angles between body 

points on an animal - see methods and materials for details) extracted to create the modified 
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postural time series and other calculated metrics like the animals’ speed, we trained a supervised 

machine classifier, a support vector machine, to classify a set of predefined behaviors like oral 

and anogenital investigation, escape, and approach. We adopted the approach of using a 

classifier instead of manual scoring because the classifier allowed for higher throughput of 

labeling more behaviors compared to the human annotation.  

 

We focused on the first 30 minutes of social interaction to investigate the differences in 

behaviors. We observed that WT female animals were significantly more likely to perform an 

Figure 4.14. Spectrograms of the wavelet transformation of behaviors. Certain behaviors like 

escape (top left) and oral investigation (top right) show similar frequency patterns which could 

lead them being clustered together as the same behavior. Also, the behaviors like huddling 

(bottom left) would be selected over defensive upright (bottom right) when clustered together 

because the y occur more 
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oral investigation of their conspecific partner than the CRISPR KO females (Figure 4.15). We 

did not see any difference between the two groups in behaviors like defensive upright, anogenital 

sniffing, and investigating other body sides of the animal. Considering that from our earlier 

observation with the unsupervised approach, we saw that WT females performed locomotion-

like behaviors more than CRISPR females, we wanted to find what were those active behaviors. 

Applying the classifier to extract locomotion behaviors like approaching or escaping from a 

partner, we found that WT females were likelier to perform those behaviors (although not 

significant). When all locomotion-like behaviors were combined, we saw a significant increase 

in the WT compared to the CRISPR KO. Taken together, these results confirm our earlier 

observation based on the unsupervised approach and implicating OTRs in possible active-like 

behaviors.  

 

Figure 4.15. CRISPR KO animals move less compared to WT. Examined the durations of 

investigatory (oral, anogenital investigation and approach) and aggressive (escape and 

defensive upright) behaviors displayed toward a partner.  *p<0.05, **p<0.01, ***p<0.0001; 

ns, not significant 
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4.5  DISCUSSION 

In this chapter, we investigate the social behavior of prairie voles as they form pair 

bonds. We find that mutant voles with OTR knocked out show a subtle behavioral difference 

from WT animals. Given recent evidence by Berendzen and colleagues (Berendzen et al., 2022) 

showing that mutant voles with OTR knocked out can form pair bonds, which contradicted 

previous studies that indicated pharmacologically blocking or virally interfering with the OTRs 

prevents prairie voles from showing a preference for the partner, we wanted to investigate if 

OTR influences the behaviors of at some point during their interactions. Interestingly, by 

employing the same viral technique as Berendzen et al., using CRISPR-Cas9 to knock out the 

OTR globally in the voles, we show that voles can still form pair bonds (Figure 4.5). There are a 

few possibilities as to why our results (including that of Berendzen et al.) contrast with the 

previous studies. One possible reason is that although the OTRs are knocked out, the OT 

neurochemical binds to AVP receptors. Studies have shown that there is crosstalk between the 

OT and AVP systems, where OT binds to OTRs and AVP receptors, V1aR, and V1bR, and the 

AVP has an affinity for its three receptors, V1aR, V1bR, and V2R and OTR (Kimura et al., 

1994; Chini et al., 1995; Hawtin et al., 2000; Song et al., 2014). Hence, even though the OTR 

pathway might be eliminated, the AVP receptor pathways are sufficient to allow pair bonding in 

the prairie voles. The AVP system is implicated in pair bond formation in prairie voles (Liu et 

al., 2001; Lim and Young, 2004). Secondly, even if there was no strong binding between OT and 

AVP receptors, there is a chance of brain plasticity where the AVP pathway becomes the 

dominant channel for bonding. After the voles are weaned, they are placed together with same-

sex siblings. Therefore, it is probable that since the animals have to form a familial bonding to 
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coexist with one another, given that voles are very territorial and aggressive towards strangers, 

the AVP system becomes the main pathway through which the animals form social bonds.  

 To rule out the possibility of the brain developing a compensatory mechanism via the 

AVP system, future studies can leverage the CRISPR-Cas9 viral technique to knock out either 

only the AVP receptors or both AVP and OT receptors. In creating mutant voles with only AVP 

receptors knocked out, its role in modulating pair bond formation can be established, similar to 

the experiments in this research. If the voles do not form a pair bond by eliminating only the 

AVP receptors, we can attribute the AVP system as the primary pathway via which the animals 

form pair bonds. However, if they still form pair bonds, as we have seen here, one could then 

knock out both systems. Eliminating both the OT and AVP receptors takes away the chance of 

crosstalk, and hence it might provide a conclusive study of their roles in pair bonding. 

 A third reason why our results contradict previous studies could be because the 

pharmacological and viral approaches were not specific in targeting only OTRs. The OTR 

antagonists might have blocked other receptors, specifically AVP receptors, preventing the 

prairie voles from showing a preference for their partners.  

 Since there are genetic variations of OTRs within the same species (King et al., 2016) 

and varying OTR expressions in different brain areas and species (Shapiro and Insel, 1992; 

Olazábal and Young, 2006), we hypothesized that for adaptive reasons OTR might still influence 

the social behavior of animals during pair bond formation. We applied unsupervised behavioral 

mapping to extract the behaviors of the prairie voles during the early phase of cohabitation (first 

3 hours). Using this method, we were able to measure the behavioral repertoire for a large 

number of voles for a long duration, which would have been time-consuming and biased if done 

by a human annotator (Figure 4.7). We saw a gradual shift from locomotory and active-like 
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behavior to stationary and huddling behavior (Figure 4.9). In this behavioral repertoire transition, 

we observed that CRISPR KO females were likely to spend more time in a stationary mode than 

WT, which showed more active to idle-like behaviors (Figure 4.11). The Oxytocin system is 

implicated in regulating social approaches and escape behavior of animals (Pisansky et al., 2017; 

Cohen and Shamay-Tsoory, 2018; Terburg et al., 2018), and hence the WT animals, with intact 

OTR, were likely to move around more compared to the CRISPR KO voles.  

Although the unsupervised approach reveals the behavior repertoire of the animals, it 

does not cluster every possible animal behavior into its unique group. Some behaviors, like an 

escape and oral investigation, might be clustered together. Hence, we are likely to miss certain 

behaviors that are uniquely and differently performed by either the CRISPR KO or WT females. 

Since the spectrogram of some behaviors, as seen in figure 4.14, might have similar patterns, an 

approach that can be implemented is to perform wavelet matching, commonly used in spiking 

sorting in electrophysiological analysis (Ekanadham et al., 2014; Pachitariu et al., 2016). 

However, trying to perform a wavelet template-matching approach could become supervised, 

requiring the experimenter to have a foreknowledge of all behaviors they are interested in. It has 

the advantage of classifying the desired behaviors but would be limited to extracting other 

actions that are not predefined.  

In addition, in adopting the unsupervised method, we assume that behavior is stereotyped 

and create a behavioral representation that primarily clusters those stereotyped behaviors. 

However, there are non-stereotyped behaviors that might dictate the animals' movements. For 

example, as observed in fruit flies, they perform non-stereotyped behaviors approximately half 

the time (Berman et al., 2014; Todd et al., 2017). Therefore, we might not have wholly 

represented the entire behavioral repertoire of the prairie voles during pair bond formation. 
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Taking advantage of a supervised machine learning classifier, we looked at the first 30 

minutes of cohabitation and saw that CRISPR KO voles were less likely to investigate their 

partners orally and both approach and escape from them compared to the WT animals (Figure 

4.15). Therefore, although the OTR might not alter the end state of pair bondedness, it is likely to 

induce subtle behavioral differences in the voles as they form their bonds. 

Although we recorded and analyzed the behavioral repertoire of prairie voles during the 

first 3 hours of the pair bond formation, a pair bond is a complex state that manifests over long 

periods. Hence, the 3 hours of recording provide a limited picture of the bond formation. 

Analyzing a 48-hour (or at least 24 hours of recording, since 24 hours of cohabitation is 

sufficient for pair bond formation (Williams et al., 1992)) cohabitation of prairie voles social 

interaction will provide an extensive overview of the behavioral dynamics involved in pair bond 

formation. In addition to the videography, a recording of the vocalization of the voles will give 

extra information about their behavioral dynamics (we will further discuss this topic in the next 

Chapter).   

In conclusion, this work lays a foundation for applying quantitative methods to measure 

the social behavior of prairie voles and to encourage further investigation of the role of both OT 

and AVP receptors during pair bond formation. 

  



 112 

Chapter 5. CONCLUSION AND FUTURE DIRECTIONS 

5.1  Thesis Contribution 

The objective of this thesis is to quantify the social behavior of prairie voles during pair 

bond formation and the role of oxytocin receptors during the process. It has been a long-held 

view that oxytocin receptors are necessary for pair bond formation in prairie voles. However, 

recent studies (Berendzen et al., 2022) and our work here show the contrary. Thus, by 

quantifying prairie vole's social behavior, this work addresses the role of the oxytocin receptors 

during pair bond formation.  

We leveraged varying technological advancements, from using prairie voles with 

oxytocin receptors knocked out with CRISPR/Cas-9 to utilizing deep-learning approaches to 

quantify the animals’ social behaviors.  Using the CRISPR/Cas-9 knocked-out voles, we have a 

mutant animal model where we know the oxytocin receptors are absent globally, both centrally 

and peripherally. With these mutant animals, we could investigate whether the oxytocin 

receptors influence pair bond formation in prairie voles.  

We developed a pipeline that enabled us to robustly track the postures of the prairie voles 

during pair bond formation (See Chapter 3). Thus, with these postures, we can build a detailed 

behavioral representation of the animals’ social behavior. Previous studies have only quantified a 

subset of behaviors like huddling and mating, but not the entire behavioral repertoire of the 

animals. Hence, to our knowledge, no work has shown the detailed mapping of the vole behavior 

during the early phase (first 3 hours) of cohabitation.  

From our work, we find that although oxytocin receptors might alter some behaviors, like 

the activity level of the prairie voles, during pair bond formation, they are not necessary for bond 

formation.  
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5.2  Summaries of Chapters 

5.2.1  Chapter 1 summary 

In chapter 1, I introduced the oxytocin system and its purported role in facilitating social 

behavior, specifically pair bond formation. This chapter is primarily a review of studies about 

what is known regarding the neurochemical oxytocin and its canonical receptors, oxytocin 

receptors. The oxytocin system is thought to act both centrally in the brain and peripherally in 

the body. It is implicated in pair bond formation, parental care, uterine contraction, and lactation. 

Our knowledge of its role in facilitating pair bond formation comes from extensive studies in a 

premier animal model, prairie voles. The prairie voles, a socially monogamous rodent, have a 

dense expression of the oxytocin receptors in brain regions such as the nucleus accumbens, 

prefrontal cortex, and amygdala, considered social brain centers. And by manipulating the 

oxytocin system in these brain regions, we have observed alterations in the social behaviors of 

the prairie voles, from parental care and empathy to their preference for a partner.  

Through studies in the voles and other animals like mice and primates, we have 

developed a working hypothesis about the role of oxytocin in social behavior. The hypothesis 

postulates that the oxytocin system facilitates the salience of the social information received 

from a conspecific partner, such that the animal develops a memory of the other individual and 

associates a rewarding value to the interaction. In addition, we also highlight the role of arginine 

vasopressin, a closely related molecule to oxytocin, dopamine, opioids, and endocannabinoids.  
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5.2.2  Chapter 2 summary 

This chapter focuses on why it is essential to quantify social behavior and its difficulty. 

Contrary to measuring behavior in a single animal or collective behaviors of large groups, like a 

swarm of insects or birds or a gang of meerkats, quantifying social behavior in 2-3 animals 

remains under-explored. We lack the same level of detailed language in quantification and tools 

for measuring the social interaction of a couple of animals. Hence, I provide a perspective on 

how to address this gap. I propose a framework to measure the moment-by-moment 

classification of behaviors of the animals during social interactions and project the behavioral 

repertoire of the animals into a space based on their stereotypy. With the ethogram of the 

animals’ behaviors and two or three-dimensional space representation of their stereotyped 

behavior, we can better understand the complex dynamic nature of social behavior. 

Additionally, through this framework, we can investigate the hierarchical organization of 

behavior during social interactions. We can look at if future behaviors are only dependent on the 

current state of movement, a Markovian principle, or if there is memory in behavior, a non-

Markovian rule, where a current behavior is dependent on an action that happened sometime in 

the past (some distant behavioral state). Investigating social behavior is a lens to understanding 

the brain; therefore, by measuring social behavior, we can gain insights into how the brain 

processes input signals from the environment, including social cues, and couples that with its 

internal state to dictate actions. 

  

5.2.3  Chapter 3 summary 

In this chapter, I talked about the pipeline I developed to robustly track the social 

behavior of prairie voles during pair bond formation. Although there have been technological 
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advancements in annotating several body points on multiple animals in the last few years using 

deep-learning approaches, these tools struggle to accurately track the body points when the 

animals are in close contact. They either label a body part on the wrong individual or swap the 

animals’ identities. Therefore, I developed an Autoencoder, a deep-learning network, combined 

with the output of tracking tools, like maDLC and SLEAP, to fix the swapping issues. The 

Autoencoder learns the postures of the voles and imposes a vole-like prior on the tracked body 

points. Therefore, whenever there is a significant deviation from a possible vole-like shape, the 

Autoencoder impugns a fix on it. In such a manner that when the tracking tools don’t even label 

body points in some video frames, the Autoencoder makes a considerably good estimation of 

where they should be, based on its memory of the previous point and other current labeled ones. 

With the improved tracking, we can implement the framework discussed in chapter 2 to 

create a representation of the behavioral repertoire of the animals instead of having maps built 

from spurious body postures.  

 

5.2.3  Chapter 4 summary 

This chapter investigates the role of oxytocin receptors during pair bond formation. I 

combine the framework proposed in chapter 2 and the pipeline developed in chapter 3 to 

measure the social behavior in mutant and wild-type voles during the first 3 hours of 

cohabitation. By robustly tracking the postures of the paired voles and using an unsupervised 

method to project the behavior into 2D representation, I observed the temporal evolution of the 

vole behavior from locomotory-like movements to stationary-like actions like huddling. When 

the CRISPR-Cas9 mutant voles are compared to wild-type animals, the oxytocin receptor 

knockout animals exhibited more stationary-like behaviors than wild-type animals. To confirm 
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the presence of this subtle behavioral repertoire difference, I applied a supervised machine 

learning classifier to classify behaviors such as oral and anogenital investigation, attack, and 

locomotion behaviors like approaching and escaping. CRISPR/Cas-9 voles performed less of 

these behaviors compared to wild-type animals. However, despite subtle behavioral differences, 

we concluded oxytocin receptors were not necessary for pair bond formation in prairie voles. 

 

5.3  Future Directions 

This thesis work proposes a framework to measure social behavior in prairie voles during 

social behavior and contributes to understanding the possible role of the oxytocin receptors. 

However, it opens several questions that need to be addressed and further improvements that 

need to be made. These questions and improvements will be the focus of my discussion below. 

 

5.3.1  Beyond Videography 

In chapter 2, I proposed a framework for measuring the social behavior of 2-3 animals. 

However, it is reliant on taking a video recording of the social interactions of the animals, and 

this inherently excludes external sensory cues, like vocalizations, that cannot be captured with a 

camera. To fully understand the social behavior of animals, one must measure all the information 

that is likely to influence social interactions. Given that behavior is both spontaneous (driven by 

the animal’s internal state) and reactive (dictated by external cues), it is essential that 

communication via auditory or odorant cues is integrated into quantifying the social behavior. 

For example, studies in mice show that they emit ultrasonic vocalizations in different social 

contexts and that there is associated sexual dimorphism to it (White et al., 1998; D’Amato and 

Moles, 2001; Hanson and Hurley, 2012).  Sangiamo and colleagues show that mice were likely 
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to decrease the pitch of vocal signals during courting and aggressive behaviors and conversely 

increase them during non-dominant behaviors like fleeing from another animal (Sangiamo et al., 

2020). Therefore, by considering the communication information, one is likely to understand 

better why behavior captured with videography is performed at different frequencies or times 

during an interaction. A female animal might be receptive to a male that vocalizes more, hence 

more mating behavior between them, than a less vocal male, who might have fewer mating bouts 

(White et al., 1998; Hammerschmidt et al., 2009).  

 

5.3.2  What about non-stereotyped behaviors? 

In our framework, we discussed projecting the behavioral repertoire of animals in 2D 

representations that maps their stereotyped behaviors. Hence, we make this assumption of 

stereotypy. So, if a behavior happens to be non-stereotyped, we don’t group it by itself, or it is 

naively clustered next to a stereotyped action. Behavior is not always stereotyped, and animals 

perform non-stereotyped behaviors a considerable amount of time (Berman et al., 2014; Todd et 

al., 2017). Therefore, a behavioral mapping framework must carefully consider how to include 

those behaviors in the measurements.  

 

5.3.3  Extending from 2D to a 3D recording of social behavior 

In collecting the video data for measuring the social behavior of voles, we used a single 

camera mounted onto the chamber to record a 2D top view. This view limits the ability of the 

experimenter to quantify certain behaviors, like defensive upright and mounting, which are better 

identified with a side-view camera. Therefore, instead of a traditional 2D camera setup from 

either the top or side or from the bottom, we propose using a multi-camera view to allow the 
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recording of whole-body movement. While there are depth cameras that can give an extra 

dimensionality to the recorded data (Hong et al., 2015; Wiltschko et al., 2015), they are limited 

in tracking the full pose and struggle in naturalistic settings (Alhwarin et al., 2014). The multi-

camera setup would include using 3 or 6 cameras positioned to allow the complete 3D 

reconstruction of the skeletons of the animals (Dunn et al., 2021; Marshall et al., 2021). In 

addition to this three- or six-camera setup, one can add extra cameras to record from the bottom 

and top of the behavioral chamber to obtain a comprehensive of the animals’ movement. Next to 

the cameras, one should include microphones to record the vocalizations of the animals as they 

interact with each other (Sangiamo et al., 2020). A multi-microphone setup similar to the 

cameras’ can help an experimenter triangulate the vocalizations of the animals. 

 

5.3.4  Recording electrophysiological activity during social interaction 

Measuring social behavior is a lens to understanding the physiology of the brain, so in 

addition to quantifying social interactions of prairie voles during pair bond formation, the neural 

activity needs to be recorded. To increase our knowledge about pair bond formation in prairie 

voles, we need to record the electrophysiology activity from brain areas, such as the nucleus 

accumbens and the prefrontal cortex, to understand how they modulate the behavioral actions of 

the animals. Work from our lab has shown that functional connectivity between the medial 

prefrontal cortex and nucleus accumbens is predictive of how quickly animals express affiliative 

behavior towards a partner. This work was based on recording local field potential from these 

brain areas. Yet to be explored is the recording of single and multi-unit activity from the brain 

regions to understand how the spiking pattern could influence the social behaviors of the voles. 

One hypothesis will have held is that there is spike-field coherence (SFC) – a measure of 
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synchronization between the local field potential (LFP) and spike times – that occurs during 

affiliative behaviors (e.g., mating). In addition, we hypothesize that during social interactions, 

striatal neurons will “switch” from gamma oscillation at 50Hz to 80Hz, reflecting reward.  

The first hypothesis is premised on the studies that oxytocin is released into the network 

of social brain centers that drive SFC in the nucleus accumbens (Goto and O’Donnell, 2001, 

2002). Therefore, the release of oxytocin during affiliative behaviors is likely to cause SFC. For 

the second hypothesis, studies have shown that the striatal neural population oscillates in 

different frequency ranges and can switch from one band to another in a task-dependent manner 

(Berke, 2009; Gruber et al., 2009). For example, when animals move around, there is a 50Hz 

oscillation in the striatal neurons. However, if these animals are deprived of water and are cued 

to obtain a sweetened water reward, striatal neurons “switch” to oscillate at a high 80Hz gamma 

frequency during the reward period and then back to 50 Hz gamma after the reward ends (Berke, 

2009). Consequently, in a rewarding context like during mating, the striatal neural activity would 

switch 80 Hz oscillations.  

 

5.3.5  How about the arginine vasopressin system? 

In chapter 4, we observed that oxytocin receptor knockout female prairie voles could 

form pair bonds and that although there were subtle behavioral differences between them and the 

wildtypes, the oxytocin receptors were not necessary for bond formation. These results rise 

several questions, and one of them is, what if we knocked down the receptors at adult age? 

Boender from the Young lab performed such an experiment and saw that voles still showed a 

significant preference for their partner, even after 6 hours of cohabitation and up to 2 weeks 

(unpublished). How about the neurochemical itself, oxytocin? Before we discuss possible 
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experiments with it, we would like to consider arginine vasopressin receptors. It is known that 

there is a crosstalk between the oxytocin and vasopressin systems. AVP can bind to OTRs and its 

three receptors, while OT has an affinity for its receptor, OTR, V1aR, and V1bR (Kimura et al., 

1994; Chini et al., 1995; Hawtin et al., 2000; Song et al., 2014). Therefore, it is possible that 

oxytocin might be binding to the vasopressin receptors to facilitate pair bonding.  

Hence, to rule out this possibility, an experiment to perform is to knock out the 

vasopressin receptors. This can be done in two ways – first, knock out only the vasopressin 

receptors without touching the oxytocin receptors in one cohort of animals. Then in a second 

animal cohort, knock out both oxytocin and receptors. I hypothesize that the second cohort of 

prairie voles with the oxytocin and vasopressin receptors knocked out will not form pair bonds. 

Unlike in the first cohort, where the chance of crosstalk remains, the animals in the second 

cohort would show similar results to those of receptor antagonists experiments. Since using 

pharmacology antagonists likely blocks both receptors because of their lack of specificity. 

However, if the first cohort does not show a preference for their partner, then the vasopressin 

receptors are the primary factor (necessary) for pair bond formation in prairie voles.  

What if, even after knocking out both receptors, the voles still show a preference for their 

partners? Since oxytocin may bind to other receptors that we do not know about or induces the 

activity of other systems like dopamine to facilitate pair bond formation, the next step should 

target the neurochemical. One should knock out oxytocin. Although there are several 

implications of knocking out oxytocin since it mediates reproductive functions and physiological 

processes (Gimpl and Fahrenholz, 2001), this experiment will hone in on the necessity of 

oxytocin for pair bond formation. 
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5.3.6  How much deeper can we go? 

In the thesis, we leveraged deep-learning approaches to track the animals’ postures and 

robustly fix swapping issues associated with them. Despite these approaches, maintaining 

animals’ identities remained a challenge leading us to correct switched points manually. We 

proposed adding a convolutional neural network to the pipeline so that the autoencoder was not 

solely reliant on the output of the tracking tools (i.e., maDLC and SLEAP). However, one can 

take it a step further by including transformers.  

Transformers are deep-learning networks capable of self-supervised training (i.e., they do 

not need a training set generated by the user but instead train themselves by finding samples) to 

learn context and track relationships between sequences in the data (Vaswani et al., 2017). 

Although we don’t fully comprehend how they work, studies show they have been effective in 

natural language processing for predicting the next word in a sentence (Devlin et al., 2019; 

Radford Alec et al., 2019). For example, if one uses the most recent version of Microsoft word, 

one will notice that it suggests the subsequent word or phrase to type as one writes. Given their 

ability to predict the next sequence based on a context, the transformer could predict an animal’s 

future pose by knowing its current position and posture. maDLC have started experimenting with 

transformers in their pipeline (Lauer et al., 2022), but it does not yield the desired results of 

maintaining identities. One possible reason is that their transformer uses the direct tracked output 

of maDLC, which we have shown in chapter 3 is not good enough. Therefore, applying the 

transformer to the results from the autoencoder might be the solution. 
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Chapter 6. APPENDIX A. CHAPTER 4 SUPPLEMENTARY MATERIAL 

A.1  Meta Data of prairie voles used in experiments 

Note: The Vole #s is not continuous because, in addition to the CRISPR KO and WT animals 

analyzed in this thesis, I also recorded the behavior of high and low-expressing oxytocin 

receptors. 

 

Female KO -/- = CRISPR KO female animals 

Female KO +/+ = Wild-type female animals (Siblings of CRISPR KO female animals) 

 

Experimental 

Animal  

Animal 

Information 

Details 

Vole 05 DOB 7/11/21  
ID 3346613  
Animal Type Female - KO +/+  
Generation 48 

Partner DOB 6/12/21  
ID 3340127  
Animal Type Male - WT reg  
Generation 260 

Novel 1 DOB 6/12/21  
ID 3340128  
Animal Type Male - WT reg  
Generation 260 

Novel 2 DOB 6/7/21  
ID 3343003  
Animal Type Male - WT reg  
Generation 265    

Vole 06 DOB 7/11/21  
ID 3346612  
Animal Type Female - KO +/+ 
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Generation 48 

Partner DOB 6/12/21  
ID 3340128  
Animal Type Male - WT reg  
Generation 260 

Novel 1 DOB 6/12/21  
ID 3340127  
Animal Type Male - WT reg  
Generation 260 

Novel 2 DOB 6/7/21  
ID 3343002  
Animal Type Male - WT reg  
Generation 265    

Vole 11 DOB 8/11/21  
ID 3352395  
Animal Type Female - KO -/-  
Generation 38 

Partner  DOB 6/7/21  
ID 3343003  
Animal Type Male - WT reg  
Generation 264 

Novel 1 DOB 6/7/21  
ID 3343002  
Animal Type Male - WT reg  
Generation 265 

Novel 2 DOB 9/12/21  
ID 3358403  
Animal Type Male - WT reg  
Generation 265    

Vole 12 DOB 8/11/21  
ID 3352397  
Animal Type Female - KO +/+  
Generation 53A 

Partner  DOB 6/7/21  
ID 3343002  
Animal Type Male - WT reg  
Generation 265 
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Novel 1 DOB 6/7/21  
ID 3343003  
Animal Type Male - WT reg  
Generation 264 

Novel 2 DOB 9/12/21  
ID 3358402  
Animal Type Male - WT reg  
Generation 248    

Vole 13 DOB 8/27/21  
ID 3354777  
Animal Type Female - KO -/-  
Generation 50A 

Partner DOB 6/12/21  
ID 3340126  
Animal Type Male - WT reg  
Generation 260 

Novel 1 DOB 6/7/21  
ID 3343001  
Animal Type Male - WT reg  
Generation 265 

Novel 2 DOB 5/20/21  
ID 3340107  
Animal Type Male - WT reg  
Generation 270    

Vole 14 DOB 8/27/21  
ID 3354776  
Animal Type Female - KO -/-  
Generation 50A 

Partner DOB 6/7/21  
ID 3343001  
Animal Type Male - WT reg  
Generation 265 

Novel 1 DOB 6/12/21  
ID 3340126  
Animal Type Male - WT reg  
Generation 260 

Novel 2 DOB 5/20/21 
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ID 3340106  
Animal Type Male - WT reg  
Generation 270    

Vole 15 DOB 8/27/21  
ID 3354775  
Animal Type Female - KO -/-  
Generation 50A 

Partner  DOB 6/27/21  
ID 3344039  
Animal Type Male - WT reg  
Generation 263 

Novel 1 DOB 6/27/21  
ID 3344038  
Animal Type Male - WT reg  
Generation 263 

Novel 2 DOB 7/15/21  
ID 3349768  
Animal Type Male - WT reg  
Generation 270    

Vole 16 DOB 8/22/21  
ID 3354767  
Animal Type Female - KO -/-  
Generation 40 

Partner  DOB 6/27/21  
ID 3344038  
Animal Type Male - WT reg  
Generation 263 

Novel 1 DOB 6/27/21  
ID 3344039  
Animal Type Male - WT reg  
Generation 263 

Novel 2 DOB 7/15/21  
ID 3349767  
Animal Type Male - WT reg  
Generation 270    

Vole 17 DOB 8/7/21 
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ID 3352381  
Animal Type Female - KO +/+  
Generation 51 

Partner  DOB 6/29/21  
ID 3344034  
Animal Type Male - WT reg  
Generation 264 

Novel 1 DOB 6/27/21  
ID 3344037  
Animal Type Male - WT reg  
Generation 263 

Novel 2 DOB 6/20/21  
ID 3340112  
Animal Type Male - WT reg  
Generation 279    

Vole 18 DOB 7/14/21  
ID 3346618  
Animal Type Female KO +/+  
Generation 46 

Partner  DOB 6/27/21  
ID 3344037  
Animal Type Male - WT reg  
Generation 263 

Novel 1 DOB 6/29/21  
ID 3344034  
Animal Type Male - WT reg  
Generation 264 

Novel 2 DOB 6/20/21  
ID 3340104  
Animal Type Male - WT reg  
Generation 279    

Vole 27 DOB 8/31/21  
ID 3356144  
Animal Type Female - KO -/-  
Generation 49 

Partner  DOB 6/20/21  
ID 3340112 
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Animal Type Male - WT reg  
Generation 279 

Novel 1 DOB 6/20/21  
ID 3340104  
Animal Type Male - WT reg  
Generation 279 

Novel 2 DOB 9/22/21  
ID 3361176  
Animal Type Male - WT reg  
Generation 261    

Vole 28 DOB 8/31/21  
ID 3356143  
Animal Type Female - KO -/-  
Generation 49 

Partner  DOB 6/20/21  
ID 3340104  
Animal Type Male - WT reg  
Generation 279 

Novel 1 DOB 6/20/21  
ID 3340112  
Animal Type Male - WT reg  
Generation 279 

Novel 2 DOB 9/22/21  
ID 3361175  
Animal Type Male - WT reg  
Generation 261    

Vole 37 DOB 8/7/21  
ID 3352380  
Animal Type Female - KO +/+  
Generation 51 

Partner  DOB 9/21/21  
ID 3361178  
Animal Type Male - WT reg  
Generation 257 

Novel 1 DOB 9/21/21  
ID 3361177  
Animal Type Male - WT reg 
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Generation 257 

Novel 2 DOB 10/3/21  
ID 3362206  
Animal Type Male - WT reg  
Generation 275    

Vole 38 DOB 8/28/21  
ID 3354779  
Animal Type Female - KO +/+  
Generation 46 

Partner  DOB 9/21/21  
ID 3361177  
Animal Type Male - WT reg  
Generation 257 

Novel 1 DOB 9/21/21  
ID 3361178  
Animal Type Male - WT reg  
Generation 257 

Novel 2 DOB 10/3/21  
ID 3362205  
Animal Type Male - WT reg  
Generation 275    

Vole 39 DOB 8/16/21  
ID 3353394  
Animal Type Female - KO -/-  
Generation 47 

Partner  DOB 9/22/21  
ID 3361176  
Animal Type Male - WT reg  
Generation 261 

Novel 1 DOB 9/22/21  
ID 3361175  
Animal Type Male - WT reg  
Generation 261 

Novel 2 DOB 10/6/21  
ID 3362208  
Animal Type Male - WT reg  
Generation 260 
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Vole 40 DOB 9/21/21  
ID 3360215  
Animal Type Female - KO +/+  
Generation 55 

Partner  DOB 9/22/21  
ID 3361175  
Animal Type Male - WT reg  
Generation 261 

Novel 1 DOB 9/22/21  
ID 3361176  
Animal Type Male - WT reg  
Generation 261 

Novel 2 DOB 10/6/21  
ID 3362208  
Animal Type Male - WT reg  
Generation 260    

Vole 47 DOB 11/20/21  
ID 3369342  
Animal Type Female - KO -/-  
Generation 53B 

Partner  DOB 10/3/21  
ID 3362205  
Animal Type Male - WT reg  
Generation 275 

Novel 1 DOB 10/3/21  
ID 3362204  
Animal Type Male - WT reg  
Generation 275 

Novel 2 DOB 10/6/21  
ID 3362208  
Animal Type Male - WT reg  
Generation 260    

Vole 48 DOB 11/20/21  
ID 3369341  
Animal Type Female - KO -/-  
Generation 53B 
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Partner  DOB 10/3/21  
ID 3362204  
Animal Type Male - WT reg  
Generation 275 

Novel 1 DOB 10/3/21  
ID 3362205  
Animal Type Male - WT reg  
Generation 275 

Novel 2 DOB 10/6/21  
ID 3362207  
Animal Type Male - WT reg  
Generation 260    

Vole 49 DOB 11/20/21  
ID 3369344  
Animal Type Female - KO -/-  
Generation 53B 

Partner  DOB 10/6/21  
ID 3362208  
Animal Type Male - WT reg  
Generation 260 

Novel 1 DOB 10/6/21  
ID 3362207  
Animal Type Male - WT reg  
Generation 260 

Novel 2 DOB 10/6/21  
ID 3364356  
Animal Type Male - WT reg  
Generation 265    

Vole 50 DOB 11/20/21  
ID 3369343  
Animal Type Female - KO -/-  
Generation 53B 

Partner  DOB 10/6/21  
ID 3362207  
Animal Type Male - WT reg  
Generation 260 

Novel 1 DOB 10/6/21 
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ID 3362208  
Animal Type Male - WT reg  
Generation 260 

Novel 2 DOB 10/6/21  
ID 3364355  
Animal Type Male - WT reg  
Generation 265    

Vole 51 DOB 11/9/21  
ID 3368133  
Animal Type Female - KO -/-   
Generation 57 

Partner  DOB 10/6/21  
ID 3365356  
Animal Type Male - WT reg  
Generation 265 

Novel 1 DOB 10/6/21  
ID 3365355  
Animal Type Male - WT reg  
Generation 265 

Novel 2 DOB 10/10/21  
ID 3363661  
Animal Type Male - WT reg  
Generation 248    

Vole 52 DOB 11/9/21  
ID 3368132  
Animal Type Female - KO -/-   
Generation 58 

Partner  DOB 10/6/21  
ID 3365355  
Animal Type Male - WT reg  
Generation 265 

Novel 1 DOB 10/6/21  
ID 3365356  
Animal Type Male - WT reg  
Generation 265 

Novel 2 DOB 10/10/21  
ID 3363660 
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Animal Type Male - WT reg  
Generation 248    

Vole 53 DOB 12/5/21  
ID 3371326  
Animal Type Female - KO +/+   
Generation 54 

Partner  DOB 10/13/21  
ID 3363658  
Animal Type Male - WT reg  
Generation 257 

Novel 1 DOB 10/13/21  
ID 3363657  
Animal Type Male - WT reg  
Generation 257 

Novel 2 DOB 10/11/21  
ID 3364342  
Animal Type Male - WT reg  
Generation 274    

Vole 54 DOB 12/5/21  
ID 3371327  
Animal Type Female - KO +/+   
Generation 54 

Partner  DOB 10/13/21  
ID 3363657  
Animal Type Male - WT reg  
Generation 257 

Novel 1 DOB 10/13/21  
ID 3363658  
Animal Type Male - WT reg  
Generation 257 

Novel 2 DOB 10/11/21  
ID 3364343  
Animal Type Male - WT reg  
Generation 274    

Vole 55 DOB 11/7/21  
ID 3368141 
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Animal Type Female - KO +/+  
Generation 54 

Partner  DOB 10/10/21  
ID 3363661  
Animal Type Male - WT reg  
Generation 248 

Novel 1 DOB 10/10/21  
ID 3363660  
Animal Type Male - WT reg  
Generation 248 

Novel 2 DOB 10/11/21  
ID 3364343  
Animal Type Male - WT reg   
Generation 274    

Vole 56 DOB 11/7/21  
ID 3368140  
Animal Type Female - KO +/+  
Generation 56 

Partner  DOB 10/10/21  
ID 3363660  
Animal Type Male - WT reg  
Generation 248 

Novel 1 DOB 10/10/21  
ID 3363661  
Animal Type Male - WT reg  
Generation 248 

Novel 2 DOB 10/11/21  
ID 3364342  
Animal Type Male - WT reg   
Generation 274    

Vole 57 DOB 10/19/21  
ID 3364382  
Animal Type Female - KO -/-  
Generation 58 

Partner  DOB 10/13/21  
ID 3363656  
Animal Type Male - WT Reg  
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Generation 257 

Novel 1 DOB 10/10/21  
ID 3363659  
Animal Type Male - WT Reg   
Generation 248 

Novel 2 DOB 10/11/21  
ID 3364342  
Animal Type Male - WT reg   
Generation 274    

Vole 58 DOB 11/7/21  
ID 3368137  
Animal Type Female - KO -/-  
Generation 51 

Partner  DOB 10/10/21  
ID 3363659  
Animal Type Male - WT Reg   
Generation 248 

Novel 1 DOB 10/13/21  
ID 3363656  
Animal Type Male - WT Reg   
Generation 257 

Novel 2 DOB 10/11/21  
ID 3364341  
Animal Type Male - WT reg   
Generation 274 
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A.2  Supplemental Figures 
 

 

Appendix A.2.1 Locomotor activity of voles during the modified open field test. The 

total distance traveled by female animals in the first session (A) and second session(C). 

The total distance traveled by male animals in the first (B) and second sessions (D). 

*p<0.05, **p<0.01, ***p<0.0001; N.S., not significant 
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Appendix A.2.2 Time spent near divider by voles during the modified open field test. 

The time spent near divider by female animals in the first session (A) and second 

session(C). The time spent by male animals in the first (B) and second sessions (D). 

*p<0.05, **p<0.01, ***p<0.0001; N.S., not significant 
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Appendix A.2.3 Individual behavioral maps of CRISPR KO animals 

 

Appendix A.2.4 Individual behavioral maps of WT animals 
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Appendix A.2.5 Behavioral densities as a function of time. Behavioral densities for 

CRISPR KO female and WT male voles (A) and WT female and male voles (B) are 

broken down into 30-minute intervals. WT females and males perform very active-like 

behavior during the early part of cohabitation and gradually transition to idle-like behavior 

later. In contrast, CRISPR KO females are more idle-like during the entire period 
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