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Abstract 

 

Evaluation of the impact of DNA Sequence Variations on in vivo Transcription Factor 
Binding Affinity 

By Jiahui Jiang 

 

 

Genome-wide association studies (GWASs) identified huge amounts of single nucleotide 
variants (SNVs) and thousands of SNVs within non-coding regions have associations with 
complex diseases. However, how non-coding SNVs specifically affect diseases is not clear yet. 
Recently, the number of studies focusing on the impact of these SNVs are increasing rapidly. A 
possible mechanism is that some non-coding SNVs can alter regulatory elements such as 
disrupting transcription factor (TF) binding sites, leading to the change of gene expression 
which result in diseases. Traditionally, it is assumed that SNVs within TF binding sites will 
impact the TF binding. However, increasing studies show that not all SNVs contribute to the 
TF binding since most TF binding motifs are not well conserved. Therefore, more information 
is needed to annotate SNVs within TF binding sites. In this study, we conducted a 
comprehensive survey to quantify the impact of SNVs on TF binding affinity using a creative 
sequence-based machine learning method. We found that only 20% SNVs within putative TF 
binding sites would be possible to significantly impact the in vivo TF binding.  
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1 Introduction 

Single nucleotide variant (SNV), also known as single-nucleotide polymorphism (SNP), is a 

variant of a single nucleotide at a specific location in genome. It is pretty common in human 

genome. In the past 15 years, considerable SNVs are the main topics in thousands of Genome-

wide association studies (GWAS), which is a powerful tool to identify the association between 

SNVs and the phenotypes. According to these studies, SNVs are considered to play an 

important role on a wide array of phenotypes (Welter, et al., 2014). With the development of 

technologies, SNVs are not only found in the protein-coding regions of the human genome, but 

also occur to the non-coding regions (Zhou, et al., 2020). Moreover, it has been demonstrated 

that SNVs, which are identified through GWAS, are enriched in non-coding regulatory regions 

to control and modulate gene expression (Williams, et al., 2019). It is expected that genetic 

variants have an association with the pathogenesis of diseases.  

 

SNVs fall within protein-coding regions have been verified to be associated with human 

diseases, but it is still not clear about the mechanism of non-coding variants. However, plenty 

of evidence suggests that genetic variants in the non-coding region may cause missing 

heritability, which results in human diseases (Zhang, et al., 2015). One possible mechanism 

currently considered is that the variation of short DNA motif may disrupt the binding affinity 

between transcription factor and enhancers (Pasquali, et al., 2014). Generally, using the position 

weight matrices (PWMs) to score a DNA motif is a common way to study the TF binding 

specificity (Stormo, 2000). By scanning sequences in the possible binding sites, PWM would 

assign a matching score to those sequences. The positions of those sequences whose matching 
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score above the arbitrary threshold would be considered as candidate TF binding sites (Hertz, 

et al., 1999). Then all SNVs occur to the binding sites would be marked for their potential 

functional impacts. Nevertheless, much information cannot be well conserved within TF 

binding sites, resulting in low functional impacts of SNVs at these locations. Although highly 

informative and experimentally determined PWMs are accessible in open databases such as 

FlyFactorSurvey (Zhu, et al., 2011) and JASPAR (Portales-Casamar, et al., 2010), they poorly 

consider the influence of mutations in a motif on probability because they assume all positions 

are independent. In order to accurately express the information contained in SNVs, more 

research besides PWM is needed. 

 

More researchers believe that an accurate computational model is helpful and necessary to 

identify and predict functional variation in specific binding sites. Recently, Ghandi’s group 

introduced an excellent method, kmer support vector machine (kmer-SVM), to predict 

regulatory DNA sequence using combinations of short (6 – 8 bp) k-mer frequencies. Compared 

to PWM approach, it is not necessary to have large amounts of data to determine the scoring 

threshold for kmer-SVM method. The key is whether k-mers are present or not. However, this 

method would be inaccurate when k becomes large, especially when Transcription Factor 

Binding Sites (TFBS) are over 8 bp. Based on the kmer-SVM, Ghandi’s group developed 

alternative method using gapped k-mers, gapped k-mers support vector machine (gkm-SVM) 

(Ghandi, et al., 2014), which can be applied on longer and more general sequences. The authors 

use sequencing-based assays to define gkm-SVM weights for k-mers so that they can quantify 

the functional importance of k-mers at TFBS. Moreover, the authors defined deltaSVM score 
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which is the gkm-SVM weight difference for a k-mer with or without SNVs. Therefore, they 

successfully quantify the effect of SNVs. 

 

In this study, we evaluated the impact of SNVs on TF binding using gkm-SVM method. First, 

we used gkm-SVM to train all 10-mers based on the TF’s ChIP-seq data to evaluate the TF 

binding potential. Then we used the deltaSVM method to quantify the effect of a SNV on the 

TF binding sites. It is essential to study and quantify the position-specified impact of SNVs 

throughout the genome, and we believe the deltaSVM scores based on ChIP-seq data can be a 

powerful resource for relative studies.  

 

In this work, we used ChIP-seq data from the Encyclopedia of DNA Elements (ENCODE) 

project (Consortium, 2012). Considering well-defined PWMs and availability from ENCODE, 

we selected 18 TFs in GM12878, which are BCL11A, CTCF, EGR1, GABPA, JUN, JUND, 

MAX, NANOG, POU5F1, RAD21, RFX5, SIX5, SRF, STAT1, TCF12, USF1, USF2 and YY1. 

For each TF, we measured SVM weights of all the 10-mers by counting the number of their 

occurrences in a ChIP-seq dataset. Then we surveyed the impact of all mutations within those 

10-mers with top SVM weights. Our results show that the most SNVs have little impact on the 

binding affinity, so more information of the functional SNVs is needed. 

 

2 Method 

The traditional way to evaluate the binding affinity of a TF is to calculate the probability of the 

TF based on the PWM. The impact of a SNV can be quantified through the probability 
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difference a TF with or without a mutation. However, PWM method poorly express the 

probability difference while the alternative method, gkm-SVM, can accurately convey the 

information using deltaSVM scores. In this study, we compared the difference between these 

two methods in assessing the TF binding affinity. 

 

2.1 Using Phenotype–Genotype Integrator (PheGenI) and UCSC Table Browser 

to find SNVs 

There are thousands of SNVs identified through GWAS, we selected those SNVs associated 

with certain diseases. We chose 11 common diseases including Alzheimer Disease, Asthma, 

Breast neoplasms, Cardiovascular diseases, Child Development Disorders, Colorectal 

Neoplasms, Crohn diseases, Lung neoplasms, Obesity, Psoriasis and Type 2 diabetes. We set p-

value 10-6 as the threshold for each disease on Phenotype–Genotype Integrator (PheGenI) 

website. Then we got thousands of disease-related GWAS SNVs and their specific position in 

the genome. Subsequently, we extended 10kb region centered on each GWAS SNV and this 

10kb region is regarded as case region. We input this 10kb region to UCSC Table Browser to 

locate all single SNV fall within the 10kb region. We believe all these SNVs may be associated 

with corresponding diseases. 

 

2.2 Using PWM method to evaluate motif 

PWM is one of the most popular bioinformatic methods for investigating motifs (Xia, 2012). 

In this part, we used 19 TF motif PWMs to scan the human reference genome GRCh37 (UCSC 

version: hg19). Take CTCF as an example: we identified 139,084 15-mer CTCF motif sites in 
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the whole genome using PWM method with the 80% minimum score. There are lots of 

duplicated 15-mer motif sequences and there are 48,804 unique 15-mer motif sequences. Then 

we screened out the motif sequences that contain the positions of the previously selected 

disease-related SNVs. Here, we regarded the hg19 genome as reference genome. Those selected 

motifs with the reference allele at the SNV position is the reference motif, while motifs with 

the alternative allele at the SNV position the alternative motif. A motif PWM score is the 

probability of a DNA motif, which is the product of relevant probabilities for each position 

based on the PWM matrix. The log-transformed probability difference between the reference 

motif and the alternative motif is defined as the motif delta-PWM score. The difference is 

regarded as the impact of a SNV. Since a 15-bp motif contains six different consecutive 10-

mers, we set the one with largest PWM score as the probabilistic value of the specific 10-mer, 

which is defined as 10-mer PWM score. 

 

2.3 Using gkm-SVM method to evaluate motif 

Gkm-SVM is a new sequence-based computational method to predict the effect of regulatory 

variation (Lee, et al., 2015). It requires positive training set and negative training set. We 

obtained ENCODE TF ChIP-Seq datasets from the GM12878 cell line. According to the narrow 

peaks provided by ENCODE, we treated peak regions and non-peak region as positive training 

set and negative training set respectively in order to apply gkm-SVM method. As a result, gkm-

SVM estimated the SVM weights for all possible 10-mers. For each SNV, in its flanking area, 

there are ten 10mers containing the SNV. The deltaSVM score of the SNV is defined as the sum 

of weights difference between the ten 10-mers containing the reference allele or the alternative 
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allele.  

 

However, there is no standard threshold to determine the significance of the weight difference 

for SNVs. Here, we selected 10,000 random non-motif sequences which are excluded by PWM 

scan probability threshold. These non-motif sequences have the same length with the motif 

sequences and are treated as the control set. For each base within the control set, we calculated 

the averaged deltaSVM scores. After we obtained large dataset of deltaSVM scores, we set the 

value of 2.5 percentile and 97.5 percentile of the deltaSVM scores as the empirical significant 

threshold. 

 

3 Results 

Currently, annotating non-coding variants is generally based on PWM method. All SNVs 

obtained from PWM method which are within the TF binding sites are considered to be 

associated with TF binding affinity. However, the impacts of those SNVs are not well-

quantified and there is no evidence about the indeed impact of every single SNVs within the 

TF binding sites. In this study, we applied a new method, gkm-SVM method to tell if all SNVs 

within the TF binding sites affect the TF binding affinity or only some of SNVs affect the TF 

binding affinity. We applied gkm-SVM method to 18 TFs in GM12878 cell line, including 

BCL11A, CTCF, EGR1, GABPA, JUN, JUND, MAX, NANOG, POU5F1, RAD21, RFX5, 

SIX5, SRF, STAT1, TCF12, USF1, USF2 and YY1. For each TF, according to the number of 

times of occurrence, we obtained every 10-mers’ weight from peak region. Then we selected 

top 1000 10-mers with highest PWM scores to conduct a completed survey on the impact of all 
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SNVs appearing within these 10-mers and compare the results obtained from two results. 

 

3.1 Correlation between PWM scores and gkm-SVM weights 

We first applied PWM method to get PWM scores for all 10-mers and screened out top 1000 

10-mers with highest PWM scores. Then we applied gkm-SVM method to calculate gkm-SVM 

weights for these 1000 10-mers. We found that the correlations between PWM scores and gkm-

SVM weights vary in terms of TFs and the correlations range from -0.081 to 0.787. Take CTCF, 

USF1, SIX5 and BCL11A for example (Figure 1), the correlations are 0.620, 0.787, 0.773, and 

0.021 respectively, indicating these two methods are not consistent to some extent. The 

complete results for all 18 TFs are in Supplementary Materials. For CTCF, USF1, and SIX5, 

two methods have a relatively strong and positive correlation relationship, while such 

correlation is not obvious in BCL11A. This indicates the PWM method may not well assess the 

TF binding potential considering PWM method assume mutually statistical independence 

between positions. Moreover, we selected top 20 10-mers with highest gkm-SVM weights and 

compare their corresponding PWM scores for the four TFs mentioned above (Figure 2). As we 

can see, some 10-mers with high gkm-SVM scores do not have high PWM scores. This 

phenomenon is particularly obvious for USF1 and SIX5, once again confirming the 

inconsistency between PWM method and gkm-SVM method.  

 

3.2 Potential association between TFs and complex diseases 

GWAS have shown that plenty of disease-related SNVs fall within the non-coding regions of 

the genome (Zhu, et al., 2017). These SNVs may be associated with complex diseases. A 
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possible mechanism is that some of these SNVs are located in the regulatory regions of the 

genome and they can weaken or disrupt the binding of TF, causing changes in gene expression 

to manifest diseases. In order to see whether the impacts of SNVs on a specific TF have a 

relationship with any complex diseases, we conducted a comprehensive survey on 11 diseases 

including Alzheimer Disease, Asthma, Breast neoplasms, Cardiovascular diseases, Child 

Development Disorders, Colorectal Neoplasms, Crohn diseases, Lung neoplasms, Obesity, 

Psoriasis and Type 2 diabetes. For each disease, we set p-values 10-6 as the threshold on 

PheGenI website to obtain all disease-related SNVs that meet the p-value requirement. We 

believe these SNVs are significantly associated with the specified disease. However, PheGenI 

only provide index SNVs while ignore other nearby SNVs which may be the most important 

factor in the disease. Therefore, we extended 5kb region up and down with those GWAS index 

SNVs as the center to increase the probability to capture the causal SNVs. We used UCSC table 

browser tool to obtain all SNVs located in the 10kb region. 

 

Next, we screened out SNVs in the 10kb region overlapped with any putative TF binding sites 

which is identified with PWM method. Then we calculated how many selected SNVs have 

significant deltaSVM scores exceeding the empirical thresholds. The false positive was defined 

as the proportion of SNVs with insignificant deltaSVM scores among selected SNVs. 

Traditionally, all SNVs within putative TF binding sites identified by PWM method are 

considered to be significantly associated with designated diseases. However, we found many 

SNVs within putative TF binding sites do not have significant deltaSVM scores, indicating 

inconsistency between two methods. The significance level is 0.05. Figure 3 shows the heatmap 
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of the false positive rates. Taking POU5F1 (TF) and AD (disease) as an example, there are 693 

SNVs found in the POU5F1 binding site while only 18 of them have significant deltaSVM 

scores, indicating not all SNVs inside the binding site have significant impact on POU5F1 in 

vivo binding. The false positive rates vary in terms of TFs and diseases, but the average rate is 

around 80% across 18 TFs for 11 diseases. This is a good evidence that in addition to PWM 

method, more information is needed to study the impact of SNVs on complex diseases. 

 

4 Discussion 

It is a big challenge to understand the functional impact of non-coding variants considering 

there is no golden standard to quantify the impact currently. Fortunately, studies on SNVs 

increase dramatically (Rojano, et al., 2019). More and more genomics and epigenomics data is 

provided to increase the chance to better understand the internal mechanism. With more 

comprehensive data, we aim to develop a better metric to quantify the impact of SNVs on in 

vivo TF binding affinity. Also, we believe the better metric could help us understand how non-

coding SNVs are associated with complex diseases. 

 

PWM method is the one of the most used method to evaluate the impact of SNVs on TF binding 

affinity. However, this method was developed for small amount of motif-enriched sequences, 

it would not be effective when the dataset is large (Hu, et al., 2010). Moreover, PWM method 

assumes mutually statistical independence between positions within a motif site (Zhou and Liu, 

2004), which limits our complete understanding of the binding of TF. Therefore, we applied an 

alternative metrics to assess the impact of SNVs using ENCODE ChIP-seq data. More 
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information would be offered in ChIP-seq data and this would help us better understanding the 

impact of SNVs besides traditional PWM method. 

 

In our results, for most TFs, the correlation between gkm-SVM method and PWM method is 

positive and consistent. However, for some TFs such as BCL11A and POU5F1, the correlations 

are pretty small and the correlation for POU5F1 is negative, indicating inconsistency between 

two methods. We believe gkm-SVM method is the better way to study the impact of SNVs to 

in vivo TF binding. Gkm-SVM method not only consider the mutual-dependence between 

positions, but also can apply on large dataset. Nevertheless, there are some limitations in our 

method. The ChIP-seq data we used to train is cell-type specific and the quality of the data 

varies over time. Having said that, these are both a disadvantage and an advantage. Cell-type 

specific and latest data can bring new and comprehensive information on TF binding, helping 

us understand the mechanism more deeply.  
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6 Figures 

 
Fig1. Correlation between PWM scores and gkm-SVM weights for top 1000 10-mers 
The correlation between PWM scores and gkm-SVM weights for (a) CTCF, (b) USF1, (c) SIX5, 
and (d) BCL11A are 0.620, 0.787, 0.773, and 0.021 respectively. 
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Fig2. Correlation between PWM scores and gkm-SVM weights for top 20 10-mers 
The top 20 10-mers comparison between PWM scores (blue bar) and gkm-SVM weights (black 
bar) for (a) CTCF, (b) USF1, (c) SIX5, and (d) BCL11A. 
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Fig3. Heatmap of the false positive rates of all 11 diseases for each motif 
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7 Supplementary Materials 

 
Fig4. Correlation between PWM scores and gkm-SVM weights for top 1000 10-mers for 
18 TFs 
 


