

Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the requirements
for an advanced degree from Emory University, I hereby grant to Emory
University and its agents the non-exclusive license to archive, make accessible,
and display my thesis or dissertation in whole or in part in all forms of media,
now or hereafter known, including display on the world wide web. I understand
that I may select some access restrictions as part of the online submission of this
thesis or dissertation. I retain all ownership rights to the copyright of the thesis or
dissertation. I also retain the right to use in future works (such as articles or
books) all or part of this thesis or dissertation.

Signature:
_________________________________ _________
Yi Wang Date

How Openness of Platform and Complementary Software Shapes
Software Upgrade Strategy: Implications for the Competitive

Dynamics in the Software Industry

By

Yi Wang
Master of Business Studies

Business

Ramnath Chellappa, Ph.D.

Advisor

Anandhi Bharadwaj, Ph.D.

Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.

Dean of the James T. Laney School of Graduate Studies

Date

How Openness of Platform and Complementary Software Shapes
Software Upgrade Strategy: Implications for the Competitive

Dynamics in the Software Industry

By

Yi Wang
Master of Business, Nanyang Technological University, 2006

Bachelor of Management, Jilin University, 2003

Advisor: Ramnath Chellappa, Ph.D.

An abstract of
A thesis submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
In partial fulfillment of the requirements for the degree of

Master of Business Studies
in Business

2013

Abstract

How Openness of Platform and Complementary Software Shapes
Software Upgrade Strategy: Implications for the Competitive

Dynamics in the Software Industry

By

Yi Wang

This paper examines the determinants of software upgrade pace. First, I

examine whether the pace of software upgrade remains the same, increases, or

decreases throughout the software life cycle. Second, I explore how the pace of

software upgrade changes upon introductions of competing software and

complementary platforms. Finally, I investigate how openness at both the

software level and platform level moderate these relationships.

Results from a random sample of 300 software products reveal some

interesting results. First, software upgrade pace decreases over the life cycle of

software. Second, software with a higher level of openness tends to have faster

upgrade pace. Third, the results yield an inverted-U-shaped relationship between

platform openness and software upgrade pace. Finally, in contrast to the widely

adopted concept that OSS developers are non-strategic, they indeed react to the

strategic actions of their commercial counterparts and increase their level of

investment in OSS developments when facing new releases from their

commercial competitors.

How Openness of Platform and Complementary Software Shapes
Software Upgrade Strategy: Implications for the Competitive

Dynamics in the Software Industry

By

Yi Wang
Master of Business, Nanyang Technological University, 2006

Bachelor of Management, Jilin University, 2003

Advisor: Ramnath Chellappa, Ph.D.

An abstract of
A thesis submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
In partial fulfillment of the requirements for the degree of

Master of Business Studies
in Business

2013

Acknowledgement

I wish to express my deep appreciation to my parents, Weiyi Wang and Jinghua

Liu, and my husband, Rui Zhang. No matter how challenging this journey is,

every word and smile from them has helped me to find strength to continue my

work here. Words simply cannot express how much I love them all, and how

grateful I am for their unconditional love, sacrifice, and support during my entire

time at Emory. Without them, I most certainly would not be where I am today.

I'd also like to express my enormous gratitude to Dr. Christina Camp and Dr.

Carolyn Denard. They reached out to me when I needed help the most. Their

sincere care, valuable advice, and encouragement strengthened my confidence

and inspired me to hold my head up high to keep on pursing my dream. Without

their recognition and assurance, I couldn’t have fought every battle bravely.

I'd also like to thank Dr. Benn Konsynski. His values and visions have inspired

me to become a professor like him, who does superb research and also devotes to

cultivating students. But to top it off, he respects all students, including me, as

equal human beings. He respects our decisions, efforts, and research, and

genuinely cares about us (e.g., career, health, family).

Lastly, I would like to record my sense of gratitude to all the rest who have,

directly or indirectly, lent their helping hands to me in this journey.

Table of Contents

1. Introduction .. 1

2. Literature Review ... 9

3. Theory Development .. 21

3.1 Concept Definition: Software Upgrade vs. Software Update 21

3.2 Platform Openness: Opening Complementary Software Market ... 22

3.3 Licenses of Complementary Software .. 24

3.4 Age .. 26

4. Data and Sample ... 27

4.1 The Context of Operating Systems and Complementary Software 27

4.2 Sample... 29

4.3 Challenges with the Data .. 31

4.4 Variable Definition and Operationalization 34

5. Econometric Approach ... 36

5.1 Model Specification .. 37

5.2 Results ... 37

Table 1: Examples of Platform - Software Paradigm 39

Table 2: Heterogeneity in Software Openness ... 40

Figure 1: Research Model ... 41

Figure 2: Heterogeneity in Platform Openness (adapted from Boudreau

2010) ... 42

Figure 3: Data Structure .. 43

Table 3: Examples of Software Category Matching Scheme 44

Table 4: Descriptive Statistics .. 45

Table 5: Examples of Software Version Numbering Strategies 47

Table 6: An Example of Software Version Numbering Coding Scheme ... 47

Table 7: Software Release Cycle .. 48

Table 8: Examples of Software Version Numbering Coding Guideline 49

Table 9: Examples of OSS Licenses Coding Scheme (Adapted from Lerner

and Tirole 2005) .. 50

Figure 4: Examples of OS Upgrade History ... 51

Table 10: Results of Conditional Model of Recurrent Events 52

References ... 53

1

1. Introduction

Every software firm relies on software upgrade strategy, i.e., periodically

introducing new versions that are variants of their existing versions with

improved functionalities and features, as its critical product strategy. Proper

timing of software upgrade is the crucial element of this strategy as it significantly

affects profitability (Turner, Mitchell, and Bettis 2010). If software vendors

release upgrades too slowly, they clearly lose profits in the short run. In the long

run, they may even lose their market to competing firms (Sankaranarayanan

2007). On the contrary, if software vendors release upgrades too frequently, they

tend to suffer from a time inconsistency problem which leads to lost profits.

Despite the importance of software upgrade pace, surprisingly very few papers

have empirically examined it. Prior literature has established that vendors upgrade

software due to technical obsolescence of older versions over time, entry of more

competitors, technological advances, and expansion of consumer needs

(Greenstein and Wade 1998, Mehra and Seidmann 2008, Iizuka 2007, Yin, Ray,

Gurnani, and Animesh 2010). Drawing on this line of argument, I present seminal

econometric evidence in this paper on how software upgrade pace is shaped by

time and by the upgrades of competing and complementary software. More

importantly, recognizing the prevalence of open development in the software

industry, I further examine how openness influences these relationships.

 “Opening” technology by allowing outsiders to participate in its development

and commercialization (Shapiro and Varian 1999) has burgeoned over the last

2

two decades. It is particularly prevalent in the software industry because of the

modularity of software. The spectrum of openness in software industry applies to

both operating systems and complementary software, and ranges from allowing

independent developers to create complementary products (e.g., Windows OS,

Adobe Photoshop) to granting ownership to independent developers to advance

the technology itself (e.g., Linux, Mozilla Firefox).1 The central objective of this

strategy is to accelerate ongoing innovations by drawing on the diverse and in-

depth knowledge and expertise of a broader pool of external contributors

(Boudreau 2010). In particular, this strategy boosts the creation of extensions,

add-ons, and upgrades (Von Burg 2001, Von Hippel 2005), and also facilitates the

elimination of bugs and errors (e.g., Faugère and Tayi 2007, Kuan 2001, Langlois

1999). However, as the number of developers increases, developers’ incentive of

continuous investment in development is diminished. Therefore, it remains

largely unexplored and indecisive how openness shapes innovation, software

upgrades in particular. To fill in this gap, this paper aims to enrich our

understanding of how the pace of software upgrade is affected by internal drives,

external competitive events, and openness. The primary objective is three-fold:

first, I explore how the pace of software upgrade changes throughout software life

cycle; second, I examine how the pace of software upgrade changes upon the

1Please see Chesbrough et al. (2006) for broader notions of open innovation. Some
researchers draw on this broader concept of open innovation and examine how various
search strategies of external sources for new ideas facilitate innovative performance (e.g.,
Laursen and Salter 2006, Leiponen and Helfat 2009).

3

introductions of competing and complementary software; finally, I investigate

how openness at both software level and platform level influences software

upgrade pace over time, and how it shapes the responsiveness of software upgrade

pace to the release of competing and complementary software. In other words, I

am particularly interested in how software upgrade pace varies with different

degree of openness. Research model of this paper is shown in figure 1.

[Insert Figure 1 about here]

In the software industry, a technology platform is defined as one component

or subsystem of an evolving technological system. It serves as the technical core

around which complementary components, such as hardware, software, peripheral

products, and modules, can be developed (Gawer 2009, Gawer and Cusumano

2002). Table 1 lists some canonical examples of platforms and their

complimentary software, including Microsoft Windows (computer operating

systems) and Adobe Acrobat (software application2), Xbox (game console) and

Halo (game), and iOS (mobile operating system) and CNN mobile iPhone app

(mobile application), etc.

[Insert Table 1 about here]

Saliently, there is huge heterogeneity in the degree of platform openness and

complementary software openness in the software industry. Platform openness

has been defined in two ways in prior literature: (1) the degree of access granted

to independent developers (e.g., Baldwin and Clark 2006, Boudreau 2010, Farrell,

2 In this paper, I use "software application" and "software product" interchangeably.

4

Monroe, and Saloner 1998, Farrell and Weiser 2003, Von Hippel 2005), (2) the

level of control relinquished over the platform (e.g., Boudreau 2010, Farrell and

Katz 2000, Farrell and Klemperer 2007, Katz and Shapiro 1986, Shapiro and

Varian 1999).3 Figure 2 provides

[Insert Figure 2 about here]

an example of platform openness in the context of computer operating systems.

On one extreme, Linux is purely open. That is, code of Linux is open sourced and

licensed under the GNU General Public License (GPL); thus, it is a shared by

multiple owners who collaboratively contribute to the development of the Linux

kernel (Eisenmann, Parker, and Van Alstyne 2008). Any user can use Linux, and

any developer can develop complementary software applications for it, subject to

the provisions of the license and the rules of the open source software (OSS)

community. On the other extreme, Windows is proprietary, as it keeps complete

ownership and control over Windows. However, Microsoft grants licenses to

3 There are also other definitions and dimensions of openness that are not considered
in this study. For example, Eisenmann, Parker, and Van Alstyne (2009) identify distinct
roles playing in a platform-mediated network (i.e., platform sponsor, platform provider,
application developers, and end users) and propose a definition of platform openness
based on the extent that these roles are open to outsiders. Accordingly, a platform is open
if any organization or individual can use it, or if any party can bundle the platform with
hardware. West (2003) refers to openness as the degree to which the source code of an
operating system platform is released publicly. All these dimensions of openness are
legitimate; however, they are irrelevant to this study wherein I examine the effect of
openness on the development and release of complementary products. For example, there
is no reasonable casual link between broadly licensing a platform to hardware
manufacturers and the variety and speed of complementary product release. Similarly,
public availability of the source code of a platform may accelerate platform refinement,
but have no direct effect on complementary product development and release. Therefore,
these dimensions are not included or studied in this paper.

5

independent software vendors to develop software for its operating systems. Mac

OS is even more closed, as it requires an evaluation process that independent

developers must go through before their software can be officially sold in the Mac

App Store.

The openness of complementary software refers to the extent to which a

software license restricts a user’s ability to obtain, use, modify, and redistribute

the software and its source code. Table 2 lists definitions and examples of

software openness. Depending on the targeted audience, software licenses can be

classified into two broad categories: developer-side licenses and consumer-side

licenses. Developer-side licenses vary in the degree of freedom that software

developers are granted to modify and redistribute the software. These licenses can

be broadly sorted in the descending level of openness as follows: OSS licenses

and closed-source licenses (including perpetual ownership license, shareware, and

freeware). Although the fundamental philosophy behind each type of OSS

licenses is the same, current literature recognizes considerable variance in one

main property of OSS licenses: the extent of restrictiveness towards users’ ability

to redistribute modified versions of the software (e.g., Rosen 2005). Based on this

characteristic, various OSS licenses can be further classified into three categories

in ascending order of the degree of openness: highly restrictive licenses that

require the source code must be made generally available when the modified

version of the program is distributed (i.e., copyleft provision), and restrict the

mingling of the modified source code with other programs under different

licenses (i.e., viral provision), e.g., GPL; restrictive licenses that only require the

6

copyleft provision but not the viral provision (e.g., LGPL); and non-restrictive

licenses that require neither of the above provisions (e.g., BSD) (e.g., Lerner and

Tirole 2005b, Sen, Subramaniam, and Nelson 2008). The most important

implications of such differences is that unlike restrictive licenses, such as GPL,

non-restrictive licenses allow any developers to license the original source code

and any subsequent development (i.e., improved versions) as proprietary, opening

up the chance of appropriating profits.

[Insert Table 2 about here]

Consumer-side licenses differ in the degree that consumers can freely obtain

and use the software, thereby shaping consumers’ perception of the software.

These licenses can be sorted in the ascending order of the degree of openness as

follows: perpetual ownership license, shareware, and freeware/OSS. The

conventional commercial license is the perpetual ownership license, whereby

consumers acquire the permanent right to use and own the software by paying

upfront. Shareware, also termed trialware or demoware, involves giving away

certain level or type of consumption for free, while making money on commercial

consumption. The two most commonly employed shareware models are feature

limited free trial (FLFT) and time limited free trial (TLFT) (Anderson 2009).

FLFT involves offering a basic version of the product with limited functionality

for free, while charging for additional features in the premium version. This

marketing tactic allows consumers to evaluate the product before actually

purchasing it. For example, RealPlayer, a free media player, is the "light" version

of RealPlayer Plus, which offers many additional advanced features, such as

7

advanced CD burning, movie-on-demand service, and live music stations. TLFT,

on the other hand, allow users free access to the full version of the software

product, but only for a limited period of time. When the free trial period expires,

the software locks itself, and prompts users to purchase a registration key to

continue using it. For example, Adobe Photoshop CS 5 and Microsoft Office 2010

come with a 30-day and a 60-day free trial, respectively. Some commercial

software vendors even give away software for free, such as Internet Explorer and

Java, to boost the demand for complementary products. This form of software is

normally termed as freeware. For average consumers, OSS is often assimilated to

freeware. Although they are granted with the right to modify the software,

average consumers typically use only a small set of functionalities of any software,

and therefore do not appreciate the value associated with the right to modify

(Raghu, Sinha, Vinze, and Burton 2009).

I study the effect of openness on software upgrade pace in the context of

Computer Operating systems (OS)-software paradigm, in which OSs are

considered platforms and software applications developed to run on these

platforms are the complementary products. Specifically, I collect and compile

from various sources a novel panel dataset containing information on three major

computer OSs (i.e., Windows, Mac OS X, and Linux) and on their corresponding

complementary software. This context is a well-suited test-bed for the research

question at hand, because open development is particularly amendable to multi-

component systems of greater modularity (Boudreau 2010). In particular, these

three OSs represent heterogeneous levels of openness. On one extreme, Linux is

8

wholly open. Because its code is open sourced and released under GPL, it is

shared by multiple owners and any developer can develop complementary

software for it (Eisenmann et al. 2008). On the other extreme, Windows and Mac

OS X are more closed, as each corresponding company keeps complete ownership

of its operating system. Furthermore, Apple is stricter than Microsoft in the rights

and freedom granted to independent developers for complementary software

development. For example, Apple evaluates every software application to be sold

in the Mac App Store and charges 30% of developers’ revenue, whereas

Microsoft does not require either of these stipulations.

To the best of my knowledge, this paper is a seminal piece of work that

connects various isolated streams of literature together, including software license

literature, software sampling literature, and software upgrade literature, and

further provides novel empirical evidence to these areas which have been

dominated by theoretical work for several decades. Specifically, this paper

advances various streams of literature in the following ways.

First, by integrating various genres of literature, I build a comprehensive

model that systematically examines the determinants of software upgrade pace.

Second, this paper complements the limited literature in economics research that

analytically explores how the OSS entry affects innovative activities at the market

level. In particular, by exploring finer-grained data at the product-line level, I

pinpoint how software vendors adjust their upgrade strategies in response to

competitive pressures from OSS counterparts, and vice versa. Finally, in contrast

to the widely adopted vision that OSS developers do not act strategically, my

9

findings reveal that OSS developers under certain competitive scenarios indeed

react to the actions of their proprietary counterparts and adjust their levels of

investment in OSS developments. In extreme cases, inactivity reflected by

absence of software upgrades may indicate that developers have discontinued

their OSS development and switched to proprietary software (PS).

Results from a random sample of 300 software products reveal some

interesting results. First, software upgrade pace decreases over the life cycle of

software. Second, software of higher level of openness tend to have faster upgrade

pace. Third, the results yield an inverted-U-shaped relationship between platform

openness and software upgrade pace. Finally, in contrast to the widely adopted

concept that OSS developers are non-strategic, they indeed react to the strategic

actions of their commercial counterparts and increase their level of investment in

OSS developments when facing new releases from their commercial competitors.

The paper is organized as follows. In section 2, I review relevant literature on

software upgrades, software licenses, and platform openness. In section 3, central

concepts are defined and various hypotheses are developed. This is followed by

section 4, which describes data structure and explains econometric specifications

of the model used. Results are discussed in section 5.

2. Literature Review

This section reviews relevant literature on innovation, software openness, and

platform openness. I define central concepts and establish theoretical links among

them after reviewing the literature.

10

First and foremost, this paper is closely related to the broad literature of

innovation from domains including economics, marketing, and strategy.

Economists and marketing researchers are particularly interested in examining the

optimal entry timing of sequential innovation in the context of durable goods by

modeling consumers’ purchasing behaviors. The reason is that the timing has

significant implications for vendors’ profitability because they tend to suffer from

time inconsistency problems, wherein existing and new innovations cannibalize

each other’s demand (Coase 1972). Following Coarse (1972), additional research

has accumulated ample theoretical evidence suggesting that delayed introduction

is optimal (e.g., Dhebar 1994, Fishman and Rob 2000, Fudenberg and Tirole 1998,

Ellison and Fudenberg 2000). The theoretical rationale for delayed introduction is

that it enables vendors to extend the economic life span of the older generation of

innovation for longer periods, thus causing its value to depreciate more.

Consequently, consumers who have bought the older generation of innovation in

an earlier period would then be willing to pay more for the new generation of

innovation, allowing the vendor to charge a higher price for the new generation of

innovation and earn more profits. Building on the above work, Mehra and

Seidmann (2008) examine whether and how intervals between software upgrades

change over the life cycle of software. They also analyze how these changes are

affected by market characteristics, such as technological obsolescence and market

growth, as well as by product characteristics, such as network externalities. After

taking into considerations of the trade-offs between revenues from new

consumers and existing consumers and also the cost of developing upgrades, they

11

find that the optimal upgrade intervals monotonically increase during the life

cycle of software. In addition, they show that increases in technological

obsolescence and network externalities prolong upgrade intervals at early stages,

but shorten them as software matures.

Unlike marketing researchers and economists, organizational ecologists

examine the pacing of innovation through the lens of the routine-based theory of

organization. This school of thought posits that innovation is mainly internally

driven, and considers the time elapsed since the previous innovation as a critical

element of strategies governing the sequential release of innovations (Brown and

Eisenhardt 1995, Reinganum 1989, Turner et al. 2010). First, pacing innovation

releases based on the time between sequential innovations allows organizations to

balance the costs associated with the disruption of internal routines caused by the

new release with the costs of letting the older generation of innovation become

obsolete in the marketplace (Turner et al. 2010). This concept is in line with the

arguments of Cohen et al. (1996) and Bayus (1997) that a U-shaped relationship

exists between time and innovation development costs. In particular, compressing

the product upgrade interval (i.e., "project crashing") incurs significantly

increased costs, whereas elongating the interval results in increased obsolescence,

pushing up R&D costs. Second, a consistent innovation pace facilitates the

development and coordination of stable internal routines, which further facilitates

efficient resources allocation within organizations (Brown and Eisenhardt 1997).

While prior work in this stream of literature has mainly applied this theory to

empirically explain the effect of new product introduction on firm survival (e.g.,

12

Dowell and Swaminathan 2000, Lamberg, Tikkanen, Nokelainen, and Suur‐

Inkeroinen 2009), scant attention has been paid to empirically testing the

legitimacy of the theory itself, i.e., its power in explaining the pace of innovation.

To the best of my knowledge, Turner et al. (2010) is the only exception, which is

conducted in the office suite niche of the software industry. They find an inverted-

U-shaped relationship between the time since previous release and the probability

of next release, partly confirming the U-shaped relationship between time and

product development costs suggested by prior theoretical literature.

Overall, the foregoing literature on innovation has focused on the traditional

mode of innovation, i.e., "private production", and analyzed the optimal time of

upgrade based on costs and benefits. The common conclusion is that delayed

upgrade is optimal. However, such findings drawn from the "private production"

setting may not be applicable to the new context of "user-innovation", particularly

OSS development. The major reason is that the philosophies of these two

innovation modes are fundamentally different. While the "private production"

seeks to maximize profits and favors centralized governance, the burgeoning

"user-innovation" mode of production aims to maximize welfare. Many case

studies show that the "user-innovation" model leads to higher efficiency (Dalle

and Jullien 2003), better quality (Johnson 2002), and faster upgrades (Dalle and

Jullien 2003). Surprisingly, little work has examined the differences in

productivity between PS and OSS development. For example, Johnson (2006)

compares the incentives of software developers to report bugs within OSS

13

environment and PS development. He highlights two distinct characteristics of

OSS development: critical peer review and extensive idea sharing. Since OSS

developers are more concerned with software quality than compensation, they are

more motivated to report bugs and share ideas for potential improvements. In

contrast, PS developers are more concerned with their wages and career paths

than software quality. They are more incentivized to collude and suppress

information about bugs and ideas for improvements, because such reporting may

damage their reputations and career development. Thus, compared to PS

development, OSS development produces better-quality upgrades in a faster speed.

To the best of my knowledge, the closest work to this paper is Kuan (2001), who

provides the only set of empirical evidence that compares the rate of quality

improvement between OSS and PS. She measures the rate of quality improvement

by the rate of bug fixing during the life cycle of software, and collects limited data

on three software categories. Results from hazard ratio model suggest that bugs in

OSS generally get fixed more quickly than those in PS, confirming the common

assertion that OSS development leads to higher productivity compared with PS.

Unlike Kuan (2001), this paper looks at software upgrades rather than bug fix,

and uses data encompassing the entire software industry.

Notwithstanding rich theories that explain the timing of innovation from

various organizational perspectives, few organizations operate in isolation of

competitive environment where external events disrupt organizations’ internal

rhythm and trigger incentives to release new innovations (Turner et al. 2010).

Hence, a complementary perspective in the broad literature of innovation arises

14

that considers innovations primarily as a response to external environmental

factors, including changes to industry structure and market demand (Cohen 1995),

technological shifts (Cooper and Schendel 1976), competitive pressure

(Reinganum 1989), complementary pressure (Teece 1986), and institutional

pressure (DiMaggio and Powell 1983). For example, extant literature on

competitive dynamics in marketing research proposes that new product

introduction is one of the marketing-mix instruments incumbents utilize to

retaliate entrants’ competitive conduct. This literature further examines how

various factors, including entrants’ characteristics, incumbents’ characteristics,

industry characteristics, and interactions among these characteristics, affect the

direction, magnitude, and speed of new product introduction (e.g., Aboulnasr,

Narasimhan, Blair, and Chandy 2008, Bayus and Putsis Jr 1999, Bowman and

Gatignon 1995, Kuester, Homburg, and Robertson 1999). Particularly informative

to this paper are Iizuka (2007), Yin et al. (2010), and Turner et al. (2010), as they

examine how competition affects the upgrade frequency of durable goods. Iizuka

(2007) and Yin et al. (2010) examine the upgrade frequency of textbook editions

facing the competition from other publishers and retail used-book market. Both of

them show that publishers release editions more frequently when competition

increases. Turner et al. (2010) examine how market concentration shapes software

upgrade speed in response to releases of their competing and complementary

software. They find that as market concentration increases, the release of software

upgrades becomes less influenced by historical patterns and more responsive to

innovations from competing and complementary software.

15

In the economics research, competitive dynamics literature has seen a

burgeoning array of work that analytically examines competition between PS and

OSS, and its implications for innovative activity in the entire software industry, in

the PS market, as well as in the OSS market. Bitzer and Schröder (2006) and

Bitzer and Schröder (2007) are the first set of papers that probe this issue showing

a positive relationship between OSS entry and the technological level and rate of

innovation in the PS market as well as in the whole software industry. The entry

of OSS changes the market structure from a PS monopoly to a mixed duopoly

consisting of both PS and OSS; thus they formalize the effect of OSS entry by

examining how the change in market structure affects innovative activity

assuming that software producers compete for technological level rather than for

price or quantity. Bitzer and Schröder (2006) find that under the assumption that

the development costs of OSS are lower than those of PS, increased competition

incited by the entry of lower-cost OSS leads to a higher innovation rate of the

incumbents. At the market level, results further show that a pure OSS duopoly

dominates all other market structures, including monopolies, pure PS duopoly,

and mixed duopoly, in terms of innovation rate and technological level.

Extending Bitzer and Schröder (2006) by accounting for the total cost of owning

the software and the asymmetries in this cost between OSS and PS, Bitzer and

Schröder (2007) corroborate Bitzer and Schröder (2006)’s findings under the

assumption that the total cost of owning OSS is higher than that of PS.

In contrast, other researchers have found an anti-innovative effect upon entry

of OSS. For example, in a study that employs Hotelling’s model of horizontally

16

differentiated products, Chicu (2008) explicitly models the differences in

incentives for PS vendors to invest in quality improvements between mixed and

pure duopolies. Under the assumption that OSS developers are non-strategic, he

finds that the OSS entry actually hurts the innovation rate of PS vendors. In

particular, it is optimal for PS vendors to decrease costs by reducing innovation

expenditures and regain the lost market by reducing price, because they do not

anticipate OSS developers to retaliate by accelerating innovation. Whether such

“crowding-out” effect can offset the higher innovation level of OSS resulting in a

decrease in the overall innovation level of the entire software industry depends on

the strength of consumers’ preferences over their ideal products. In contrast, in the

pure duopoly of PS vendors who are strategic, the innovation level of the

incumbent increases with the innovation level of entrants. Thus, competition spurs

innovation, irrespective of consumers’ preferences over their ideal products.

Similar results have been found in other industries. For example, in a study that

models the competition between profit-maximizing investor-owned firms (i.e.,

IOFs) and open-membership, input-supplying cooperatives (i.e., Co-ops) in the

agricultural sector, Giannakas and Fulton (2005) show that the innovation level of

an IOF is lower when it competes with a co-op than when it competes with

another IOF.

Unlike most prior literature that takes zero-priced OSS products as given,

recent work by Athey and Ellison (2010) allows for much richer dynamics in the

OSS development movements. They examine how product characteristics,

developer characteristics, and competition from PS vendors affect the growth and

17

decline of the quality and developer mass of OSS products. By modeling

consumers’ decisions to buy or develop, they reveal that it is optimal for PS

vendors to strategically price below the static best to attract more consumers when

the importance of consumer altruism is not above a critical level. Such findings

are consistent with those of Chicu (2008) as well as Casadesus-Masanell and

Ghemawat (2006). Furthermore, they find that as the price of PS decreases, the

quality and developer mass of OSS is decreased, slowing down the growth of

OSS development. Thus, they are able to show that OSS developers are strategic;

in other words, OSS development can be influenced by the competitive conducts

of their proprietary rivals, in particular pricing strategies.

Several concerns stand out in the foregoing discussion of the literature on the

competition between OSS and PS. First, this literature is primarily theoretical.

Because researchers employ different model assumptions and setups, their

findings on how OSS entry affects the innovation incentives of PS vendors is

inconclusive, urging for a well-grounded theory and enlightening empirical

evidence. Second, there is a surprising paucity of research that examines how

OSS development reacts to the changes of the innovation activities of their

proprietary counterparts (An exception is Athey and Ellison (2010), but they

focus on the pricing strategies of PS). Under closer scrutiny, the most prominent

assumption in extant literature-that OSS developers are non-strategic-may not be

convincing. For example, PS development may steal OSS developers, and vice

versa. Thus, in this paper I allow for competitive dynamics between OSS and PS

in both direction, and examine their influence on software upgrade pace.

18

Second, because the extent of software openness is largely reflected by

software licenses, this study heavily draws on research scattered in both PS and

OSS literature examining the determinants and implications of various software

licensing strategies. PS literature is primarily interested in the consumer-side

licenses, and mainly takes an analytical lens to compare performance implications

of these licenses, including perpetual licenses vs. software as a service (e.g.,

Choudhary 2007), perpetual licenses vs. subscription contracts (e.g., Zhang and

Seidmann 2010), free trial licenses vs. perpetual licenses (e.g., Cheng and Liu

2011, Cheng and Tang 2010, Faugère and Tayi 2007, Niculescu and Wu 2010).

The underlying rationale for such performance implications is that these licensing

strategies significantly influence the mode and degree of freedom by which users

consume software, thereby to a great extant determining firms’ profitability.

However, an important element that mediates this connection is overlooked:

software licenses first influence software upgrade strategies, which in turn affect

performance. Abundant prior literature confirms the importance that product

strategies, such as software upgrade strategies, play in firm survival (Giarratana

and Fosfuri 2007). However, little research has empirically investigated the

determinants of software upgrade strategy, upgrade pace in particular. Therefore,

I fill this gap by examining how PS licensing strategies affect software upgrade

pace.

OSS literature mainly focuses on developer-side licenses and offers very

limited empirical evidence on the relationship between OSS licenses and software

development activities (e.g., Lerner and Tirole 2005b, Sen et al. 2008, Stewart,

19

Ammeter, and Maruping 2006). The underlying logic of such relationship is that

to the extent that OSS licenses define the degree of freedom by which software

developers can use, modify, and redistribute the software and source code, they

can significantly impinge upon developers’ incentive to participate and invest in

ongoing software development. Such continuous investment in software

development is crucial to maintain a steady upgrade pace. The pioneering work

by Lerner and Tirole (2005b) categorizes OSS licenses by their degree of

restrictiveness and investigates how different OSS licenses affect project success,

measured by developers’ activities. They reveal that OSS projects with less

restrictive OSS licenses tend to attract more development activities, including

more developers and more bugs fixed. Similarly, Fershtman and Gandal (2004)

show that projects with less restrictive licenses tend to produce more output,

measured by number of lines of source code per developer. In contrast, using the

total number of software releases as a measure of project success, Steward,

Ammeter, and Maruping (2006) find that OSS projects with more restrictive

licenses tend to release more upgrades. They argue that more restrictive licenses

serve to protect developers’ interests and maintain their motivation by limiting

opportunities for commercial exploitation. In a study which examines how

developers’ intrinsic and extrinsic motivations affect their choices of OSS licenses,

Sen, Subramaniam, and Nelson (2008) offer some explanations for the foregoing

inconsistent findings. They find that highly skilled developers who hold higher

intrinsic value towards problem solving are more motivated by more restrictive

20

OSS licenses. In contrast, developers who value peer recognition and social status

more highly are more motivated by less restrictive OSS licenses.

In closing, notwithstanding initial attempts to connect OSS licenses with OSS

development, little research has systematically examined the implications of OSS

licenses vis-à-vis PS licenses, a measure of software openness, for software

upgrade pace. These implications form the primary objective of this paper.

Finally, because I am interested in how platform openness affects

complementary software upgrade pace, this paper also pertains to literature that

examines the implications of various strategies associated with platform openness.

Prior literature on platforms and systems has offered some theoretical evidence

the implications of various modes of platform openness. For example, a number

of theoretical papers have considered how granting wide access to independent

developers of interoperable, mix-and-matchable components can foster vibrant

markets with diverse ideas and active experimentation (e.g., Farrell et al. 1998,

Farrell and Weiser 2003, Von Hippel 2005). Another distinct strand of literature

considers the ability of platform owners to stimulate innovation by relinquishing

control over their foundational platform technologies (e.g., Farrell and Katz 2000,

Farrell and Klemperer 2007, Katz and Shapiro 1986). Building on prior

theoretical work, Boudreau (2010) provides the very first set of empirical

evidence on how platform openness affects complementary product innovation in

the context of handheld computer industry. He proposes a trade-off between a

diversity effect and a disincentive effect that determines the net impact of

platform openness on rate of innovation. By differentiating between relinquishing

21

control over the platform and granting access to the platform, he empirically

disentangles the effects of these two aspects of platform openness. The results

yield an inverted U-shaped relationship between granting access to the platform

and rate of hardware innovation. This relationship suggests that when platform is

fully open, the deleterious effect of disincentive due to intense competition among

developers dominates the benefits from diverse input and knowledge. However,

he suggests caution when generalizing these results, because the precise

relationship between openness and innovation outcomes is subject to the

characteristics of the context.

3. Theory Development

3.1 Concept Definition: Software Upgrade vs. Software Update

I draw on Turner et al. (2010) ’s definition of generational product innovation

to define a software upgrade in this paper. A software upgrade represents as a

substantial advance in the technical performance of an existing software

application within a technological regime. Here, a technological regime is a

common set of scientific and technical principles that generates patterns of

solutions for particular technological problems and supports periods of

cumulative advance along accepted technological trajectories (Nelson and Winter

1982). Hence, a software upgrade substantially improves software functionality,

while meantime drawing on an established set of technical principles.

In contrast to a software upgrade that advances software functionality, a

software update represents a minor improvement, such as a bug fix or security

22

patch. For instance, consider the following software upgrades and updates of

Acrobat Adobe. In July 2008, Adobe Systems introduced Version 9.0 of Acrobat

Adobe Pro® for Windows product line. Version 9.0 of Acrobat Adobe Pro was a

software upgrade because it made the portable document format (PDF) more

dynamic and packed in more new features than prior versions did. In particular,

Version 9.0 featured PDF Portfolios, which for the first time allowed users to

convert a variety of video formats, including MOV and WMV, to flash content,

and further embed these flash contents within PDFs alongside word-processing

documents, image files, audio content, and even 3D models. A year later, Adobe

Systems introduced version 9.1.1 of Acrobat Adobe. This release was not a

software upgrade; it was instead a software update because it primarily refined

existing functionality by fixing some security vulnerabilities.

Identifying the distinction between software upgrades and software updates

depends on a variety of criteria relevant to the software industry in general and the

technical specification of software in particular. These criteria include software

version numbering strategies, software technical improvement specifications,

software upgrade pricing, etc. The empirical section of this paper develops a

version numbering coding scheme to systematically identifying software upgrades

by examining the wide variety of software version numbering strategies in

practice nowadays. This approach has been used in other work as the primary

method to identify software upgrade, and proven to be the most effective and

reliable approach, e.g., Turner et al. (2010).

3.2 Platform Openness: Opening Complementary Software Market

23

From the perspective of developers, a more open OS platform wherein access

to it is more liberally distributed to third-party developers can attract more

developers than a more closed OS platform (Schilling 2009). When an OS

platform is more open, the OS platform owner tends to grant broader freedom to

third-party developers regarding what kind of software they want to develop, what

functionalities to include, and when to release, provide more comprehensive

documentations and libraries of their application programming interface (API),

and offer more training programs. Therefore, developers are more motivated to

continue to invest in further software development. On the other hand, when an

OS platform is more closed, the OS platform owner tends to have more

restrictions on and controls over third-party developers’ access to its platform. For

example, the owner may restrict the total number of third party developers

involved, apply rigorous screening process, offer very limited resources on API,

or even undertake software development mainly in-house by herself. Developers’

motivation to continue to invest in software refinement is significantly impaired.

In addition, when an OS platform is more closed wherein the platform owner

exercises extensive control, third-party developers are more concerned to be

subjective to ex post hold-up hazards because the OS platform owner is tempted

to extract rents from them after the latter have conducted their R&D in software

development. Examples of such “rent-squeeze” strategies that platform owners

can employ include price squeeze, investment squeeze, exclusionary squeeze, and

extraction of side payments by threat of a squeeze (Farrell and Katz 2000). In

addition, Eisenmann et al. (2008) note that third-party developers also face

24

potential loss if a platform owner decides to fold independent developers’

software feature into its platform, and therefore make it accessible to every

consumer who buys their platforms. As a result, independent developers who are

anticipating being forced to offer consumers as much surplus as possible may not

be willing to continue to invest in software development ex ante (Farrell and Katz

2000, Farrell and Weiser 2003, Niedermayer 2007).

From consumers' perspective, consumers facing a more closed OS platform

are more likely to be concerned about being locked-in, thereby reducing their

willingness to buy. This normally will lead to a smaller installed base indicating a

less popular OS platform. Third-party developers anticipating a smaller customer

base are thus less motivated to develop complementary software for the OS

platform.

 Following this line of argument,

Hypothesis 1: Software that run on more open OS upgrade faster than those that

run on more closed OS.

3.3 Licenses of Complementary Software

Software is a classic example of product with modular architecture, the

importance of which is that improvements on any one module do not require

changes of any other modules of the product (Baldwin and Clark 2006, Narduzzo

and Rossi 2005). Such characteristic entails rapid software proliferation; that is

the access to and incorporation of existing software modular and components

greatly facilitates further incremental software development. Prior literature in

technological innovation has established that knowledge reuse is an important

25

mitigating factor for the cost of innovation, since returns on investment in the

creation of new knowledge hinge on the extent to which this knowledge can be

applied across the development of new processes and products (Langlois 1999).

To the extent that the use and modification of existing software modular and

components is typically governed by a software license, different types of licenses

with different provisions that specify conditions of source code disclosure will

significantly influence the likelihood and speed of software upgrade (West 2003).

In an OSL controlled environment wherein source code of existing software is

made available to all developers, further software development is accelerated, and

all developers will be better off (Parker and Van Alstyne 2010). On the contrary,

in a closed environment wherein commercial licenses govern, it is very difficult

and costly to obtain appropriate modules. As a result, significant portions of

software development efforts are spent on re-inventing instead of innovating,

thereby resulting in less and slow software upgrade.

More importantly, the fundamental philosophy of software development and

the corresponding decision making process of software upgrade are in general

different between commercial software vendors and OSS community.

Commercial vendors are tentative about software upgrade because they operate

towards profit-maximization (Bitzer and Schröder 2006), which entails a trade-off

between time-to-market and product performance, i.e., an early upgrade, to

quickly capture the benefits of first mover advantages, and the deferral of upgrade

release, to introduce a better product with enhanced functionality and quality

(Bayus 1997, Bayus, Jain, and Rao 1997, Cohen et al. 1996). Prior literature

26

establishes that delayed introduction of upgrade is better under various conditions,

such as when the new product market potential is large and when the existing

product has a high margin. On the contrary, the development of OSS is not

significantly restricted by cost and timing considerations. In fact, OSS community

follows the principle of “release early, release often” with the aim of quickly

solving the bugs given enough eyeballs (Raymond 2000). As a result, OSS is

more prone to incremental upgrades than commercial software. Therefore, I

hypothesize

Hypothesis 2: The level of software openness is positively associated with the

speed of software upgrade.

3.4 Age

From software development perspective, the software life cycle tends to start

with rapid bug fixing or beta testing updates, because at the initial stage,

functionality is most likely to be unstable and consumers' preferences are unclear.

Once software development enters into a mature and stable stage, upgrades are

mainly of functionality and feature increments, and thus take longer.

From the consumer perspective, particularly for commercial software,

vendors' incentive to introduce upgrades comes from two groups of consumers

they serve: new consumers and existing consumers. At the early stage of the

software life cycle where the size of the untapped market is large, the number of

and therefore the revenue from new consumers are greater, prompting software

vendors to quickly introduce upgrades to capture the additional markets. As the

market becomes mature and saturated over time, the number of and thus the

27

revenues from existing consumers are greater, resulting in slower upgrades

(Mehra and Seidmann 2008). The reason is that delayed upgrade enables vendors

to extend the economic life span of the old version, and therefore increase its

value to consumers. Consequently, consumers who have bought it in an earlier

period would then be willing to pay more for the new version, which enables the

seller to charge a higher price for the new version and earn more profit. Therefore,

I hypothesize

Hypothesis 3: The upgrade interval of software increases over the software life

cycle.

4. Data and Sample

4.1 The Context of Operating Systems and Complementary
Software

This investigation is conducted in the context of OS platform/software

paradigm, in which OSs are considered platforms and software that are developed

to run on OSs are the complementary software. In particular, I focus on three

major computer operating systems (i.e., Windows OS, Mac OS, and Linux OS)

and their corresponding complementary software. These OSs are chosen because

they have maintained leading positions in the OS market for years. More

importantly, they differ in the degree of openness both over time and with one

another. On one extreme, Linux OS is wholly open. Technically, its code is open

sourced and released under GPL; as a result, it is shared by multiple owners who

collaboratively contribute to the development of the Linux kernel while

28

simultaneously competing by offering differentiated yet compatible versions to

users (Eisenmann et al. 2008). Any developer can develop complementary

software for Linux OS, subject to the provisions of the license and the rules of the

OSS community. On the other extreme, Windows and Mac OS are relatively

closed, as each corresponding firm keeps complete ownership and control over its

operating system. However, they differ in the rights and freedom they grant to

independent software developers.

Apple and Microsoft each provide an operating system software development

kit (SDK) to independent developers for free. An SDK is a set of tools, code

samples, documentation, compilers, headers, and libraries that developers can use

to create applications that run on specific operating systems. The number of APIs

these toolkits contain tends to increase over time. For example, the toolkit for

Mac OS X introduced in 1999 had 8000 APIs, with Carbon included to ease the

transition from Mac OS 9. However, MS-DOS only offered limited APIs for

keyboard input, file operations, time control, and other functions. Later in the

80’s, Windows introduced more APIs that enabled developers to take advantage

of its graphical user interface (GUI). Throughout the 1990s, APIs for media

functionalities and networking were added gradually (Evans, Hagiu, and

Schmalensee 2006).

 In addition, developer programs including SDKs, pre-released software, and

various other development resources are provided through subscriptions. The

annual fee of the Microsoft Developer Network (MSDN) for Windows tends to

stay stable: $699 for new consumers and $499 for renewal. In contrast, the annual

29

fee for MAC OS developer program has been decreasing over the years: from

$499 for the Select tier and $3,499 for the Premier tier to flat fee of $99.

Finally, Apple requires third-party developers to submit their finished

products for examination to qualify them for listing on the Mac App Store.

Contrarily, Microsoft does not require any evaluation. In addition, while Apple

lets developers decide the price of their applications, it normally takes 30% of

developers’ revenues.

4.2 Sample

To test my hypotheses, a unique and comprehensive dataset was gathered

from two major software development and download websites:

www.versiontracker.com and www.sourceforge.net.

Sourceforge.net is one of the largest web spaces that organizes and maintains

open source software development projects. As of July 2010, the site hosted

around 240,494 projects with more than one million registered users and

developers (Sourceforge 2010). Each project has its own webpage, which lists the

project characteristics (e.g., software category, OS requirement, license type, and

targeted audience), prior release history, user ratings and reviews, and other

information. The website also offers a variety of services to hosted projects, such

as mailing lists, bug trackers, forums, file repositories, Concurrent Version

System (CVS) code repositories, Subversion (SVN) code repositories, and other

project management tools. The website also tracks the number of downloads of

each project and ranks them based on a combination of criteria, including number

of downloads, number of webpage visits, number of forum posts, number of CVS,

30

and number of tracker entries. Because of the abundant publicly accessible data

(Howison and Crowston 2004), sourceforge.net has been the main source of data

in most of the current OSS literature (e.g., Hahn, Moon, and Zhang 2008, Lerner

and Tirole 2005b, Stewart et al. 2006).

The counterpart to sourceforge.net for commercial software is

versiontracker.com, which is a member of the CNET family of sites and contains

extensive information on commercial software by tracking and publishing

software updates. The data from versiontracker.com span over 15 years from

1995 to 2010, covering over 300,000 software applications for four major

platforms: Windows, Mac, Palm, and iPhone. Each software application has its

own webpage, which lists its software category, OS requirement, new features,

license type, price, download statistics, and the entire upgrade history.

For this study, I collected information on all commercial software applications

listed on versiontracker.com released before August 2010. A web-content crawler

visited the web page of each software application; for each version of a software

application, it recorded release date, version number, price, license, category, OS

requirement, vendor, and other data.4 The resulting commercial software

subsample contains approximately 100,000 unique software and totally 320,000

versions released from February 1995 to August 2010. To match the commercial

software subsample, I collected information on all open source software listed on

sourceforge.net released before August 2010 from the SourceForge Research Data

4 This exercise started in March 2010 and was completed in October 2010.

31

Archive (SRDA)5. The SRDA receives monthly database snapshots from

sourceforge.net, and therefore provides more complete datasets for variables that

change on a monthly basis. This open source software subsample consists of

approximately 130,000 unique software and totally 350,000 versions released

from January 1995 to August 2010. In order to combine these two subsamples by

software categories, a broad matching scheme of software categories between two

samples is developed. Details are provided in table 3.

[Insert Table 3 about here]

This combination yields a final sample of 230,000 unique software and totally

670,000 versions. Table 4 provides descriptive statistics for all the variables in

this study.

[Insert Table 4 about here]

4.3 Challenges with the Data

The data reveal a multi-level structure as shown in figure 3. Take Apple Inc.

as an example. Apple (firm level) produces a wide range of software of different

functionalities for desktops and servers, e.g., multimedia software, internet

browser, instant messaging software (software category level). Examples of

multimedia software provided by Apple Inc. are QuickTime and Final Cut Pro

(business-line level). I refer to QuickTime or Final Cut Pro as a business line

because it is the organizational unit responsible for one or more product lines for

5 This data repository, located at http://zerlot.cse.nd.edu, is a by-product of an NSF-
funded research project on "Understanding Open Source Software". It is hosted by the
Department of Computer Science & Engineering, University of Notre Dame.

32

different OSs. Specifically, QuickTime provides multiple product lines, including

QuickTime for Windows OS and QuickTime for Mac OS (product-line level). In

contrast, Final Cut Pro is only made available for Mac OS (product-line level).

Such data structure poses challenge in deciding the appropriate level of

analysis. Since my variable of interest is the hazard (instantaneous probability) of

the subsequent software upgrade, I chose the product-line level (e.g., Microsoft

Excel for Windows OS) as the level of analysis, as opposed to the business-line

level that spans multiple product lines (e.g., Microsoft Excel, including all

products for Windows OS, Mac OS, and Linux OS) and the firm level (e.g.,

Microsoft Corp.). I made this choice for the following reasons. First and foremost,

software upgrades commonly occur within product lines (Turner et al. 2010).

Second, direct competitors are most properly identified within product lines.

Since I am particularly interested in the response pattern of a product line to new

releases from its competitors, product-line level is the appropriate level of

analysis. In addition, since I am also interested in how the new releases of

complementary OS platform influence the response action of a product line, this

reaffirms the choice of product line as the appropriate level of analysis. Finally,

there have been notable variations in market conditions, features and

functionalities, and release timing across different product lines of the same

software (e.g., Microsoft Excel for Windows OS vs. for Mac OS). Choosing

product line as the level of analysis enables us to capture these differences.

Moreover, since the event studied in this paper is the software upgrade,

additional complication arises from properly defining an upgrade. Following prior

33

literature, I define an upgrade as a substantial advance in the technical

performance of an existing software product within a technological regime

(e.g.,Turner et al. 2010). In other words, an upgrade is typically a major version of

a software application. To identify upgrades/major versions, I primarily rely on

examining software version numbering strategies. (Table 5 provides some

examples of numbering strategies.) Because there is a wide range of software

version numbering strategies currently in practice (e.g., sequence-based

versioning, development stage identifiers, year, date), I adopt one of the most

widely used numbering strategies, i.e.,

Major.Minor.[Revision].[Build].[Stage Indicator] [Pre-release Version]

as the scheme to systematically code software versions. An illustration is provided

in table 6. This scheme specifies the following:

 Major version/upgrade: An increase in major version suggests significant

addition in functionality, and drastic change in user interface, file format, and

API, all of which may introduce backward incompatibility.

 Minor version: An increase in minor version suggests addition of minor

features and major bug fixes, e.g., type crash, data loss, security.

 Revision: An increase in revision suggests a patch release/bug fix with no

features added.

 Build number: Build is the process of creating the application binaries for

a software release. Build number is incremented for each latest recompilation

of the code in progress towards a revision.

34

 Stage indicator: It may be appended to mark a special brew of the release,

usually depicting a quality-level. Stages include development/pre-alpha,

alpha, beta, release candidates, and final. Table 7 provides an illustration of

the software release cycle.

Next, I develop a version numbering coding guideline to address special terms

designating different stages of the software release cycle. Table 8 provides

examples of these special terms, and the detailed coding guideline. Specifically, I

use 1 to designate pre-alpha stage, 2 to designate alpha stage, 3 to designate beta

stage, and 4 to designate release candidate stage. For example, 1.0b2 is coded as

1.0.0.0.302.

After finishing coding software versions, I finally turn to classifying software

releases into major versions/upgrades and non-major versions. Specifically,

versions in which only the major version identifier is greater than zero are

identified as major versions/upgrades (e.g., AutoCAD 2.0, Adobe Illustrator

1988). Others in which at least one identifier except the major version identifier is

greater than zero are identified as non-major versions (e.g., AutoCAD 2.1, Adobe

Illustrator 5.5).

 [Insert Table 5, 6, 7, 8 about here]

4.4 Variable Definition and Operationalization

Dependent Variable. The Dependent variable is measured by the time interval

between two adjacent versions of a particular software application.

Focal Explanatory Variables. Platform Openness is measured by a

categorical variable of 1 if developers have to pay for APIs of a particular

35

platform, 2 if developers must go through an evaluation process and share

revenue with their platform, and 3 if none of these conditions are required by the

platform.

Software Openness. I distinguish between consumer-based licenses and

developer-based licenses. Adapting Lerner and Tirole (2005a), the developer-

based license is measured by a categorical variable of 0 for a least restrictive OSS

license, 1 for a restrictive OSS license, 2 for a highly restrictive OSS license, and

3 for a commercial license. Table 9 provides the details of OSS licenses coding

scheme. Consumer based license is measured by a categorical variable of 0 for

freeware, 1 for shareware, and 2 for priced licenses.

[Insert Table 9 about here]

Competitor Event. Competitor event is measured by a binary variable of 1 if a

competing software product releases an upgrade in the prior month, and 0 if not.

An alternative measure is the total number of upgrades released by competing

software in the prior month.

Complementary Event. Complementary event is measured by a binary

variable of value 1 if an OS platform releases an upgrade in the prior month, and

0 if not. Figure 4 roughly provides upgrade history of Mac OS and Windows OS.

Control Variables. Software Age. Age of software is measured by the time

between the release of its first version and the current version.

Software Category. I include dummy variables to capture the category of each

software product. There are in total 12 software categories: Multimedia,

36

Business/Profitability, Desktop Enhancement, Education, Graphics, Games,

Gadgets, Internet, IT/Network, Security, Systems, and Web & Development.

5. Econometric Approach

I now turn to the specification of the model used in my analysis. The goal of

this research is to characterize the influence of internal drives and external events

on software upgrade pace. These research questions, together with the complex

nature of the data, pose a number of challenges that must be accounted for in any

model specification. First, the data are right-censored; a software firm that did not

introduce a software upgrade by the end of the sample period could still do so

afterward. Second and most importantly, this analysis involves multiple failure

events, because a firm could release multiple upgrades within the sample period.

Such data follows a temporal sequence, wherein a firm was not at risk of releasing

its k+1th upgrade unless it had already introduced its kth upgrade. In this case, the

traditional survival analysis is not tenable, as the assumption of independence of

failure time is violated. To address this issue, I employ the recurrent event

survival model developed by Prentice, William and Peterson (1981) which

accounts for the lack of independence among multiple clustered failure times and

allows the baseline hazard to vary across different events. Finally, unobserved

heterogeneity at the business-line level and firm level could influence both

software characteristics (e.g., software openness) and software upgrade pace,

which will render the estimation biased. Several approaches can address this

source of endogeneity. One approach is to include business-line level fixed effects

and firm level fixed effects. Another approach is to include business-line level

37

frailty (i.e., random effects). For the current model specification, I employ the

first approach by adding business-line level and firm level dummies.

5.1 Model Specification

The model specification is as follows:

3

'

0 1 2

4

5 6

7

'
0 1

where CompetitorEvent PlatformEvent

Openness PlatOpenness

CompetitorEvent SoftOpenness + PlatformEvent Openness

Competitor

(, ,) () exp()

Soft

Soft* *

ki

k ki k s ki

ki ki

ki ki

ki ki ki ki

x

h t x h t t x

8

9 10 11

12 13

14

Event PlatOpenness + PlatformEvent PlatOpenness

SoftwareAge SoftwareAge SoftOpenness SoftwareAge

PlatOpenness TimeSincelast TimeSincelast SoftOpenness

TimeSin

*

* *

* *ki ki ki ki

ki ki ki ki

ki ki ki ki

 15

16 17

celast PlatOpenness SoftwareCategory

BusinessDummy FirmDummy

*ki ki ki

ki ki

where stratification occurs over k upgrade events, 0 1()k sh t t is the baseline

hazard of the kth upgrade event, kix is a vector of covariates affecting software i’s

hazard of the kth upgrade, and is a vector of unknown parameters to be

estimated.

5.2 Results

Results from a random sample of 300 software products reveal some

interesting results in table 10. First, software upgrade pace decreases over the life

cycle of software. Second, software with a higher level of openness tend to have a

faster upgrade pace. Third, the results yield an inverted-U-shaped relationship

between platform openness and software upgrade pace. In other words, software

developed to work on Windows OS that is at moderate level of openness tend to

38

upgrade faster than those for more closed Mac OS and more open Linux OS.

Finally, in contrast to the widely adopted concept that OSS developers are non-

strategic, they indeed react to the strategic actions of their commercial

counterparts and increase their level of investment in OSS developments when

facing new releases from their commercial competitors.

 [Insert Table 10 about here]

39

Table 1: Examples of Platform - Software Paradigm

Platform Complementary Software

Microsoft Windows (Operating Systems) Adobe Acrobat (Software)

Xbox (Game Console) Halo (Game)

iOS (Mobile) CNN app (Mobile Application)

40

Table 2: Heterogeneity in Software Openness

Developer side License
(Level of Openness in
descending order)

Example Consumer side License
(Level of Openness in
descending order)

Example

Less Restrictive License* e.g., Firefox (BSD) OSS, Freeware e.g., Firefox, IE

Restrictive License* e.g., PNETLink
(LGPL)

Shareware e.g., MS Office
2010 30-days
shareware,
Realplayer

Highly Restrictive License* e.g., ffdshow (GPL) Commercial e.g., Realplayer plus

Commercial Software with
open API

e.g., Adobe
Photoshop

Closed-Source Software,
e.g., Commercial,
Shareware, Freeware

e.g., Microsoft
Office, Adobe
Reader, IE

*OSS license categories are adapted from Lerner and Tirole (2002)

41

Figure 1: Research Model

42

Figure 2: Heterogeneity in Platform Openness (adapted from Boudreau 2010)

43

Figure 3: Data Structure

44

Table 3: Examples of Software Category Matching Scheme

Categories in this
paper

Sourceforge.net Categories Versiontracker.com
Categories

Internet Internet & Communication Internet
* Social
Bookmarking

*Internet
 * WWW/HTTP
 * Social Bookmarking

* Browser *Internet
 * WWW/HTTP
 * Browsers
 * Plug-ins and
add-ons
*Desktop Environment
 *Gnome

* Browsers

*User-Generated
Content

*Internet
 * WWW/HTTP
 * Dynamic Content
 * Message Boards
 * Blogging
 * Wiki
 * CMS Systems
 * Communications
 * BBS

*File Sharing *Communications
 *File Sharing

* File Sharing

* FTP *Internet
 * File Transfer Protocol
(FTP)
 * Other file transfer
protocol

* FTP

* Social Networking *Internet
 * WWW/HTTP
 * Dynamic Content
 * Social
Networking

* RSS / Podcast /
Blog

*Communication
 * RSS Feed Readers

* RSS / Podcast / Blog

*Search *Internet
 * WWW/HTTP
 * Indexing/Search

45

Table 4: Descriptive Statistics

Entire Upgrade History
Variables N Mean Std Dev Min. Max.
Age 645103 578.366 745.163 0 14026
Consumer-based
License 645103

0.642 0.786
0 2

Developer-based
License 645103

0.557 0.837
0 3

Windows OS 645103 0.691 0.462 0 1
Mac OS 645103 0.259 0.438 0 1
Linux 645103 0.289 0.453 0 1
Internet 645103 0.091 0.288 0 1
Communications 645103 0.050 0.219 0 1
Desktop Enhancement 645103 0.026 0.158 0 1
Education 645103 0.051 0.221 0 1
Business 645103 0.116 0.320 0 1
Games 645103 0.083 0.276 0 1
Web And Software
Development 645103

0.103 0.304
0 1

Multimedia 645103 0.112 0.315 0 1
Graphics 645103 0.076 0.265 0 1
Security 645103 0.058 0.233 0 1
System 645103 0.127 0.334 0 1
Network
Administration 645103

0.052 0.222
0 1

Drivers 645103 0.005 0.069 0 1
Gadget 645103 0.009 0.092 0 1
Formats and Protocols 645103 0.009 0.096 0 1
Other Nonlisted Topic 645103 0.032 0.177 0 1
of Major Version 645103 0.136 0.343 0 1
of Commercial
Software 645103

0.612 0.487
0 1

Time to Release 645102 326.989 662.997 0 11667
Total # of Software 214407

Major Version Upgrade History
Age 205801 149.490 446.331 0 7151
Consumer-based
License 205801 0.420 0.672 0 2
Developer-based
License 205801 0.667 0.875 0 3

46

Windows OS 205801 0.741 0.438 0 1
Mac OS 205801 0.186 0.389 0 1
Linux 205801 0.322 0.467 0 1
Internet 205801 0.096 0.294 0 1
Communications 205801 0.051 0.221 0 1
Desktop Enhancement 205801 0.031 0.174 0 1
Education 205801 0.050 0.217 0 1
Business 205801 0.100 0.300 0 1
Games 205801 0.136 0.343 0 1
Web And Software
Development 205801 0.108 0.310 0 1
Multimedia 205801 0.074 0.262 0 1
Graphics 205801 0.063 0.243 0 1
Security 205801 0.049 0.216 0 1
System 205801 0.115 0.319 0 1
Network
Administration 205801 0.048 0.214 0 1
Drivers 205801 0.005 0.072 0 1
Gadget 205801 0.019 0.138 0 1
Formats and Protocols 205801 0.011 0.103 0 1
Other Nonlisted Topic 205801 0.043 0.203 0 1
of Major Version 205801 0.494 0.500 0 1
of Commercial
Software 205801 0.535 0.499 0 1
Time to Release 205800 1373.180 1031.080 0 14819
Total # of Software 182299

47

Table 5: Examples of Software Version Numbering Strategies

Major.Minor.Revision Adobe Flash Player - 9.0.47

major.minor.Revision.Build Acme FooWare - 6.0.3.2246

major.minor.Revision.Build.StageIndicator.Pre-
releaseVersion

SSL-Explorer Enterprise
Edition - 1.0.0 RC10

Year of Release WordPerfect Office - 2003

Year of Release.Build Login King - 2005 Build 1088

Year.Month.Day ProjectTrack Personal -
2010.6.14

Year.Month.Day.Build Macrobject Word-2-Web -
2007.6.8.263

Table 6: An Example of Software Version Numbering Coding Scheme

3. 1. 1. 0 RC 2

Major Version

Minor Version

Revision

Build Number

Stage Indicator:
release candidate

Pre-release
Version

48

Table 7: Software Release Cycle

49

Table 8: Examples of Software Version Numbering Coding Guideline

Stage Examples of Key
Words

Version Numbering
Coding Guideline

Examples

Pre-Alpha Development
Release;
Development (Dev);
DEVTEST;
Pre-Alpha (PA);
Milestone (M)

1Dev1 =>
1.0.0.0.101

Serpens Sector - Dev 10 =>
0.0.0.0.110

1Dev12 =>
1.0.0.0.112

myTracks - 1.3 Dev4 =>
1.3.0.0.104

 RightWebPage - 0.2.78
pre-Alpha => 0.2.78.0.100

 MediaCoder - 0.6.2.4225
Dev. => 0.6.2.4225.100

Alpha Alpha (a);
Alpha Pack

1A1 => 1.0.0.0.201 DropWaterMark - alpha 8
=> 0.0.0.0.208

1A12 => 1.0.0.0.212 SuperCal - 1.1a11 =>
1.1.0.0.211

 Berkeley Madonna -
8.0.3a2 => 8.0.3.0.202

 LCLint 3.0.0.17 Alpha =>
3.0.0.17.200

Beta Beta;
Open Beta;
Public Beta (PB);
Beta Fix;
Test Beta;
Pre-release (PR);
Early Access (EA);
Release Preview;
Prototype

1B1 => 1.0.0.0.301 SSH Tunnel Manager - 2b2
=> 2.0.0.0.302

1B12 => 1.0.0.0.312 TAMS Analyzer - 2.35b11
=> 2.35.0.0.311

 dataComet-Secure -
10.2.1b1 => 10.2.1.0.301
Samba - 3.0.2pre1 =>
3.0.2.0.301

 Genius Connect - 4.0.1.0
beta 3 => 4.0.1.0.303

Release
Candidate

Gamma;
Delta;
Final Candidate
(FC);
Release Candidate
(RC);
Candidate

1RC1 => 1.0.0.0.401 Mozilla Firefox - 3 Release
Candidate 3 => 3.0.0.0.403

1RC12 =>
1.0.0.0.412

SquirrelMail - 1.4rc2 =>
1.4.0.0.402

 OpenOffice.org - 3.2.0
RC3 => 3.2.0.0.403

 iConf SDK (ActiveX) -
2.0.0.3 RC1 => 2.0.0.3.401

Revision Revision (Rev);
Extension (EXT);
Service Patch (SP);
Service Release (SR)

1SP1 => 1.0.1 SiSoftware Sandra Lite -
2007 SP1 => 2007.0.1

 Schedule It - 3.0 revision 2
=>3.0.2

50

Table 9: Examples of OSS Licenses Coding Scheme (Adapted from
Lerner and Tirole 2005)

Full Name
Unrestrictive
License

Restrictive
License

Highly
Restrictiv
e

 Adaptive Public License 1
 Academic Free License (AFL) 1
 Affero GNU Public License 1
 Apache Software License 1
 Apple Public Source License 1
 Artistic License 2.0 1
 Attribution Assurance License 1
 Boost Software License (BSL1.0) 1
 BSD License 1
 Computer Associates Trusted Open
Source License 1.1 1
 Common Development and
Distribution License 1
GNU General Public License with
Classpath exception (Classpath
License) 1
 Common Public Attribution License
1.0 (CPAL) 1
Educational Community License,
Version 2.0 1
Entessa Public License 1
European Union Public License 1
Fair License 1
wxWindows Library Licence 1
GNU General Public License (GPL) 1
GNU General Public License
version 3.0 (GPLv3) 1
IBM Public License 1
Common Public License 1.0 1
Intel Open Source License 1
GNU Library or Lesser General
Public License (LGPL) 1
GNU Library or "Lesser" General
Public License version 3.0
(LGPLv3) 1

51

Figure 4: Examples of OS Upgrade History

52

Table 10: Results of Conditional Model of Recurrent Events

Parameter Est.
Std.

Error
StdErr

Ratio
Chi-

Square
Pr >

ChiSq
Hazard

Ratio
OSS* 0.0143 0.0086 1.446 3.164 0.0753 1.017
Competitor
Event (OSS
upgrades) 0.0163 0.0125 1.521 1.6828 0.1906 1.023
Competitor
Event (Comm.
Upgrades) 0.0177 0.0129 1.477 1.7938 0.2001 1.033
age -0.0008 0.0000 4.371 4632.3522 <.0001 0.999
Internet -0.0655 0.0121 1.338 28.5476 <.0001 0.93
Communications -0.0263 0.0140 1.414 3.5235 0.0605 0.974
Business -0.0387 0.0129 1.432 8.9336 0.0019 0.842
Multimedia -0.0985 0.0127 1.415 59.7132 <.0001 0.907
Graphics -0.0324 0.0139 1.483 6.6909 0.0097 0.965
Security -0.0935 0.0180 1.813 30.6504 <.0001 0.905
System -0.0573 0.0126 1.427 20.5985 <.0001 0.944
Network

Administration -0.0531 0.0143 1.454 13.7391 0.0002 0.948
Win OS+ 0.0345 0.0057 1.403 41.3084 <.0001 1.038
Mac OS+ -0.0571 0.0054 1.311 103.1372 <.0001 0.834
*Commercial software is the baseline.
+ Linux OS is the baseline.

53

References

Aboulnasr, K., O. Narasimhan, E. Blair, and R. Chandy. 2008. "Competitive

response to radical product innovations." Journal of Marketing no. 72

(3):94-110.

Anderson, C. 2009. Free: The future of a radical price: Hyperion Books.

Athey, S., and G. Ellison. 2010. "Dynamics of open source movements."

Baldwin, Carliss Y., and Kim B. Clark. 2006. "The Architecture of Participation:

Does Code Architecture Mitigate Free Riding in the Open Source

Development Model?" Management Science no. 52 (7):1116-1127.

Bayus, B.L. 1997. "Speed to Market and New Product Performance Trade offs."

Journal of Product Innovation Management no. 14 (6):485-497.

Bayus, B.L., S. Jain, and A.G. Rao. 1997. "Too little, too early: Introduction

timing and new product performance in the personal digital assistant

industry." Journal of Marketing Research no. 34 (1):50-63.

Bayus, B.L., and W.P. Putsis Jr. 1999. "Product proliferation: An empirical

analysis of product line determinants and market outcomes." Marketing

Science:137-153.

Bitzer, J., and P.J.H. Schröder. 2006. "The impact of entry and competition by

open source software on innovation activity." The economics of open

source software development:219-246.

Bitzer, J., and P.J.H. Schröder. 2007. "Open source software, competition and

innovation." Industry and Innovation no. 14 (5):461-476.

Boudreau, K. 2010. "Open Platform Strategies and Innovation: Granting Access

versus Devolving Control." Management Science no. 56 (10):1849-1872.

54

Bowman, D., and H. Gatignon. 1995. "Determinants of competitor response time

to a new product introduction." Journal of Marketing Research:42-53.

Brown, S.L., and K.M. Eisenhardt. 1995. "Product development: Past research,

present findings, and future directions." Academy of Management

Review:343-378.

Brown, S.L., and K.M. Eisenhardt. 1997. "The art of continuous change: Linking

complexity theory and time-paced evolution in relentlessly shifting

organizations." Administrative science quarterly:1-34.

Casadesus-Masanell, Ramon, and Pankaj Ghemawat. 2006. "Dynamic Mixed

Duopoly: A Model Motivated by Linux vs. Windows." Management

Science no. 52 (7):1072-1084.

Cheng, H.K., and Y. P. Liu. 2011. "Optimal Software Free Trial Strategy: The

Impact of Network Externalities and Consumer Uncertainty." Information

Systems Research.

Cheng, H.K., and Q.C. Tang. 2010. "Free trial or no free trial: Optimal software

product design with network effects." European Journal of Operational

Research no. 205 (2):437-447.

Chicu, M. 2008. "Open Source Development and Software Innovation." Available

at SSRN 1406823.

Choudhary, V. 2007. "Comparison of software quality under perpetual licensing

and software as a service." Journal of Management Information Systems

no. 24 (2):141-165.

Coase, R.H. 1972. "Durability and monopoly." JL & Econ. no. 15:143.

Cohen, M.A., J. Eliashberg, and T.H. Ho. 1996. "New product development: The

performance and time-to-market tradeoff." Management Science:173-186.

55

Cohen, W.M. . 1995. "Empirical studies of innovative activity." In Handbook of

the Economics of Innovation and Technological Change, edited by

Stoneman P, 182-264.: Oxford: Blackwell.

Cooper, A. C., and D. Schendel. 1976. "Strategic responses to technological

threats." Business Horizons no. 19 (1):61-69.

Dalle, J.M., and N. Jullien. 2003. "Libre'software: turning fads into institutions?"

Research Policy no. 32 (1):1-11.

Dhebar, A. 1994. "Durable-goods monopolists, rational consumers, and

improving products." Marketing Science no. 13 (1):100-120.

DiMaggio, P.J., and W.W. Powell. 1983. "The iron cage revisited: Institutional

isomorphism and collective rationality in organizational fields." American

sociological review:147-160.

Dowell, G., and A. Swaminathan. 2000. "Racing and back-pedalling into the

future: New product introduction and organizational mortality in the US

bicycle industry, 1880-1918." Organization Studies no. 21 (2):405-431.

Eisenmann, T., G. Parker, and M. Van Alstyne. 2008. "Opening platforms: How,

when and why?" Harvard Business School Entrepreneurial Management

Working Paper No. 09-030.

Ellison, G., and D. Fudenberg. 2000. "The neo-Luddite's lament: Excessive

upgrades in the software industry." The RAND Journal of Economics no.

31 (2):253-272.

Evans, D.S., A. Hagiu, and R. Schmalensee. 2006. Invisible engines: how

software platforms drive innovation and transform industries: The MIT

Press.

56

Farrell, J., and M.L. Katz. 2000. "Innovation, rent extraction, and integration in

systems markets." The Journal of Industrial Economics no. 48 (4):413-

432.

Farrell, J., and P. Klemperer. 2007. "Coordination and lock-in: Competition with

switching costs and network effects." Handbook of industrial organization

no. 3:1967-2072.

Farrell, J., H.K. Monroe, and G. Saloner. 1998. "The vertical organization of

industry: Systems competition versus component competition." Journal of

Economics & Management Strategy no. 7 (2):143-182.

Farrell, J., and P.J. Weiser. 2003. "Modularity, Vertical Integration, and Open

Access Policies: Towards a Convergence of Antitrust and Regulation in

the Internet Age, 17 Harv." JL & Tech no. 85:97-101.

Faugère, C., and G.K. Tayi. 2007. "Designing free software samples: a game

theoretic approach." Information Technology and Management no. 8

(4):263-278.

Fershtman, C., and N. Gandal. 2004. "The determinants of output per contributor

in open source projects: An empirical examination." Available at SSRN

515282.

Fishman, A., and R. Rob. 2000. "Product innovation by a durable-good

monopoly." The RAND Journal of Economics no. 31 (2):237-252.

Fudenberg, D., and J. Tirole. 1998. "Upgrades, tradeins, and buybacks." The

RAND Journal of Economics no. 29 (2):235-258.

Gawer, A. 2009. "Platform dynamics and strategies: from products to services."

Platforms, Markets and Innovation, Cheltenham, UK.

57

Gawer, A., and M.A. Cusumano. 2002. Platform leadership: How Intel,

Microsoft, and Cisco drive industry innovation: Harvard Business Press.

Giannakas, K., and M. Fulton. 2005. "Process innovation activity in a mixed

oligopoly: The role of cooperatives." American Journal of Agricultural

Economics no. 87 (2):406-422.

Giarratana, M.S., and A. Fosfuri. 2007. "Product strategies and survival in

Schumpeterian environments: Evidence from the US security software

industry." Organization Studies no. 28 (6):909-929.

Greenstein, S.M., and J.B. Wade. 1998. "The product life cycle in the commercial

mainframe computer market, 1968-1982." The RAND Journal of

Economics:772-789.

Hahn, J., J.Y. Moon, and C. Zhang. 2008. "Emergence of new project teams from

open source software developer networks: Impact of prior collaboration

ties." Information Systems Research no. 19 (3):369-391.

Howison, J., and K. Crowston. 2004. The perils and pitfalls of mining

SourceForge. In 26th Interntional Conference on Software Engineering.

Edinburgh, Scotland.

Iizuka, T. 2007. "An empirical analysis of planned obsolescence." Journal of

Economics & Management Strategy no. 16 (1):191-226.

Johnson, J.P. 2002. "Open source software: Private provision of a public good."

Journal of Economics & Management Strategy no. 11 (4):637-662.

Johnson, J.P. 2006. "Collaboration, peer review and open source software."

Information Economics and Policy no. 18 (4):477-497.

Katz, M.L., and C. Shapiro. 1986. "Technology adoption in the presence of

network externalities." The journal of political economy:822-841.

58

Kuan, J. 2001. "Open source software as consumer integration into production."

Available at SSRN 259648.

Kuester, S., C. Homburg, and T.S. Robertson. 1999. "Retaliatory behavior to new

product entry." The Journal of Marketing:90-106.

Lamberg, J.A., H. Tikkanen, T. Nokelainen, and H. Suur‐Inkeroinen. 2009.

"Competitive dynamics, strategic consistency, and organizational

survival." Strategic Management Journal no. 30 (1):45-60.

Langlois, R.N. 1999. "Scale, scope, and the reuse of knowledge." Economic

Organization and Economic Knowledge: Essays in Honour of Brian J.

Loasby. Aldershot: Edward Elgar:239-254.

Lerner, J., and J. Tirole. 2005a. "The Economics of Technology Sharing: Open

Source and Beyond." The Journal of Economic Perspectives no. 19 (2):99-

120.

Lerner, J., and J. Tirole. 2005b. "The scope of open source licensing." Journal of

Law, Economics, and Organization no. 21 (1):20.

Mehra, A., and A. Seidmann. 2008. "Optimal Timing of Upgrades over a

Software Product's Life Cycle." Simon School Working Paper No. FR 08-

22.

Narduzzo, A., and A. Rossi. 2005. "The role of modularity in free/open source

software development." Free/open source software development:84–102.

Nelson, R.R., and S.G. Winter. 1982. An evolutionary theory of economic change:

Belknap press.

Niculescu, Marius F. , and D.J. Wu. 2010. "When Should Software Firms

Commercialize New Products via Freemium Business Models?" Georgia

Tech Working Paper.

59

Niedermayer, A. 2007. "On Platforms, Incomplete Contracts, and Open Source

Software." University of Bern discussion Paper dp0707.

Parker, G., and M. Van Alstyne. 2010. Innovation, openness & platform control.

Prentice, R.L., B.J. Williams, and A.V. Peterson. 1981. "On the regression

analysis of multivariate failure time data." Biometrika no. 68 (2):373.

Raghu, TS, R. Sinha, A. Vinze, and O. Burton. 2009. "Willingness to pay in an

open source software environment." Information Systems Research no. 20

(2):218-236.

Raymond, E.S. 2000. "The cathedral and the bazaar." Available from World Wide

Web: http://www. catb. org/~ esr/writings/cathedral-bazaar.

Reinganum, J.F. 1989. "The timing of innovation: Research, development and

diffusion." In Handbook of Industrial Organization, edited by R.

Schmalensee and R.D. Willig, 850-908. Elsevier Science Publishers.

Rosen, J. 2005. The naked crowd: Reclaiming security and freedom in an anxious

age: Random House Trade Paperbacks.

Sankaranarayanan, Ramesh. 2007. "Innovation and the durable goods monopolist:

The optimality of frequent new-version releases." Marketing Science no.

26 (6):774-791.

Schilling, M. 2009. "To Protect or to Diffuse? Tradeoffs in Appropriability,

Network Externalities and Architectural Control. A. Gawer, ed."

Platforms, Markets and Innovation:192-218.

Sen, R., C. Subramaniam, and M.L. Nelson. 2008. "Determinants of the choice of

open source software license." Journal of Management Information

Systems no. 25 (3):207-240.

60

Shapiro, C., and H.R. Varian. 1999. Information rules: Harvard business school

press Boston.

Stewart, K.J., A.P. Ammeter, and L.M. Maruping. 2006. "Impacts of license

choice and organizational sponsorship on user interest and development

activity in open source software projects." Information Systems Research

no. 17 (2):126.

Teece, D.J. 1986. "Profiting from technological innovation: Implications for

integration, collaboration, licensing and public policy." Research policy

no. 15 (6):285-305.

Turner, S.F., W. Mitchell, and R.A. Bettis. 2010. "Responding to rivals and

complements: How market concentration shapes generational product

innovation strategy." Organization Science no. 21 (4):854-872.

Von Burg, U. 2001. The triumph of Ethernet: technological communities and the

battle for the LAN standard: Stanford Business Books.

Von Hippel, E. 2005. Democratizing innovation: The MIT Press.

West, J. 2003. "How open is open enough?:: Melding proprietary and open source

platform strategies." Research Policy no. 32 (7):1259-1285.

Yin, S., S. Ray, H. Gurnani, and A. Animesh. 2010. "Durable products with

multiple used goods markets: Product upgrade and retail pricing

implications." Marketing Science no. 29 (3):540-560.

Zhang, J., and A. Seidmann. 2010. "Perpetual Versus Subscription Licensing

Under Quality Uncertainty and Network Externality Effects." Journal of

Management Information Systems no. 27 (1):39-68.

