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Abstract 
 

Food Flows to Assess Community Exposure to Escherichia Coli O157:H7 in Romaine Lettuce 

By Thomas Burke 
 
 
 

 
 
Length:   
 
In 2018, there were two E coli O157:H7 nationwide outbreaks tied to romaine lettuce 
consumption with product originating from Yuma, Arizona and the Salinas, CA growing 
regions.1, 2 Principles in “First in, First out” (FIFO) and other industry practices to maximize 
sellable product may create conditions in which some consumers have more risk of consuming 
romaine subject to temperature abuse and/or subject to other food safety risks. Proximity to food 
distribution centers may affect quality and potential safety given transit time to the ultimate retail 
destination. This ecological study utilizes a Poisson regression to evaluate the hypothesis that 
proximity to primary distribution node (DN) (i.e. the immediate first destination of product 
originating from Yuma County, Arizona) influences case counts at the county level. The model 
utilizes the Food Flows dataset created by Lin et al to find primary distribution nodes and 
calculated proximity distances through Python. Average county temperatures in March 2018 
were also included to account for its influence on cold chain integrity. Other covariates evaluated 
were age proportions for persons under 15 and over 60, which are ages of special vulnerability to 
illness from E coli O157:H7. The final model includes average March temperature, the exposure 
of interest, and an effect modifier of temperature on DN proximity. We find a relation between 
DN proximity and case counts in the Yuma outbreak, with a risk ratio of 5.86 (95% CI 3.08, 
11.2) for an increase of 250 kilometers, while holding temperature constant. Overall, increased 
distance from a DN portends increased risk for cases in the Yuma outbreak. Higher temperatures 
were also associated with an increase in risk. Because of the inability to include potential 
confounders, ecological bias is a primary concern to the interpretation of the results. Further 
exploration using Bayesian methods for mapping supply chain risk may better account for inter 
county variations in underlying covariates. Public health entities should consider attaching 
supply chain characteristics as a component of data collection in epidemiologic analyses to 
improve evaluation of future food safety outbreaks. 
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Introduction and Concept 
 

In recent years, the United States has seen significant foodborne outbreaks associated with fresh 

leafy greens, especially romaine lettuce. In 2018, there were two Escherichia coli O157:H7 

nationwide outbreaks tied to romaine lettuce consumption with product originating from Yuma, 

Arizona and the Salinas, CA growing regions.1, 2 Investigations of both of these outbreaks 

identified the pathogen strain and vehicle relatively quickly, but inefficiencies and industry 

practices necessitated officials to issue broad recalls of all romaine lettuce originating from these 

growing regions.3 Through environmental assessments and review from the traceback 

investigations, it is hypothesized that contamination of leafy greens happens through irrigation 

water, being in close proximity with Concentrated Animal Feeding Operations (CAFOs).1, 2 Due 

to a variety of factors including zoning laws, it is unlikely the systemic issues that cause these 

types of contamination will be resolved in the near future.4 Fresh produce, in addition to these 

systemic factors, inherently is a riskier food group due to the lack of microbial kill steps.  

 

Because of the ongoing risk to the population, there would be benefit in supplementing supply 

chain information for risk profiles in fresh produce. If food safety authorities could use supply 

chain characteristics or factors of the “built environment” of the food distribution system to 

establish risk profiles based on geography, surveillance systems and food industry practices 

could be improved. Herein is a converging of knowledge between supply chain management, 

food science of cold storage, and epidemiology to better understand how supply chains affect 

consumers. 
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Hypothesis 
 

Fresh romaine consumed by Americans is primarily grown in two regions of the United States: 

Yuma, AZ and Salinas, CA. During their respective growing seasons, up to 75% of Romaine 

lettuce available to consumers originates from these regions.5 The hypothesis for this project is 

that risk of consuming contaminated romaine is not uniformly distributed based on supply chain 

flows. Principles in “First in, First out” (FIFO) and other industry practices to maximize sellable 

product may create conditions in which some consumers have more risk of consuming romaine 

subject to temperature abuse and/or subject to other food safety risks. Proximity to distribution 

centers may affect quality and potential safety given transit time to the ultimate retail destination. 

Ultimately the research question is “Do industry practices based on the geography of distribution 

in food supply chains influence the case counts in county level data in the Yuma valley 

associated E. coli O157:H7 outbreak in Romaine lettuce?”  

Background 
 

E coli O157:H7 and Outbreaks Associated with Leafy Greens including Romaine Lettuce 

 

An often-cited statistic from the Centers for Disease Control and Prevention (CDC) is that the 

United States annually experiences 48 million illnesses, 128,000 hospitalizations, and 3,000 

deaths resulting from foodborne pathogens.6 Most types of food carry the potential for foodborne 

disease, but fresh food and vegetables are a prominent commodity type that have been implicated 

in multi-state foodborne illness outbreaks. Pathogens associated with fresh fruits and vegetables 

include Escherichia coli, Clostridium spp., Bacillus cereus, Listeria monocytogenes, Salmonella, 
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and Vibrio.7 Among outbreaks identified by CDC, 390 outbreaks from 2003 to 2012 were 

associated with E. coli, including 4,928 illnesses, 1,272 hospitalizations, and 33 deaths.8 In 

outbreaks of E coli, 65% came from consumption of food versus environmental and other 

avenues of infection.8  

 

E coli has only been recognized as an important food safety pathogen since the 1980s.9 Its 

primary reservoir is cattle, with primary transmission through consumption of contaminated 

food.9 Transmission vehicles include food and water, direct human-to-human, and animal contact 

(including their environment).8 Sources of contamination at pre-harvest include contaminated 

irrigation and surface water, contaminated soils, and introduction from domestic and wild 

animals.7 The epidemiologic picture has changed over recent decades due to the confluence of 

several food factors.10 International food commodity trade flows have influenced the shape and 

configuration of food supply chains.10 Centralized and rapid food distribution systems, as well as 

food consumption patterns, have considerably influenced the epidemiology of produce 

associated foodborne disease outbreaks.10  

 

As noted above, foodborne outbreaks associated with leafy greens, such as romaine lettuce, are 

complex public health problems. The short perishability, supply chain conditions, raw 

consumption, and production environment of romaine lettuce mean that the commodity has some 

inherent risk that requires public health infrastructure vigilance. Exemplifying this, there has 

been seasonality and regularity of romaine lettuce outbreaks since 1988 (seen in Figure 1).5 

When analyzing outbreaks of E coli, leafy greens accounted for 7% of all outbreaks from 2003-

2012.8 In CDC’s studies of E coli outbreaks, leafy greens had the highest median outbreak size at 
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16 cases, with 0.8% of illnesses resulting in death, the highest rate among food categories 

studied8 All foodborne E coli outbreaks in this analysis were multi-state.8 

 

Figure 1: Seasonal Variation in Romaine Shipments, 2018 from USDA. 5. 

 

From 1998-2018, outbreaks associated with romaine lettuce most frequently occurred in the 

months of March, April, September and October.5 USDA also notes that Yuma and the 

California Central Valley account for the vast majority (>75%) of romaine production for the 

US.5 These conditions create a scenario in which public health officials need to better understand 

how supply chain conditions may portend outbreak counts. Due to the entrenched challenges in 

seasonality, regularity, and rigidity of produce supply chains, being able to utilize knowledge on 

the built environment may improve surveillance and traceback investigations. 

 

Despite advances in understanding E coli O157:H7, the epidemiology of the pathogen is still 

unclear.9 The pathogen is ubiquitous in agricultural environments and may be spread through a 
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variety of species, wild and domestic. Cattle tend to shed E coli O157:H7 into the environment, 

with shedding peaking in the spring-summer months, but that knowledge does not necessarily 

extend to being able to better respond to outbreaks among food.9 It is uncertain whether other 

species are also involved in its spread, and its survival on various foodstuffs is still being 

studied.9 It has also been found to persist in the environment for some time, up to 6 months in 

sedimentary soils.9  

 

Public Health Consequences 
 

Challenging to the food safety considerations of E coli is the extremely low infective dose, 

meaning that any proliferation of the pathogen through a compromised cold chain may mean 

illnesses.9 Severe illnesses resulting from E coli include hemorrhagic colitis (HC) and hemolytic 

uremic syndrome (HUS).9 E coli variants are categorized by their virulence factors: 

enterotoxigenic, enteropathogenic, enteroaggregative, cytolethal distending toxin producing, and 

lastly enterohemorrhagic (EHEC), the subject to this study.9 Raw foods with EHEC had higher 

rates of hospitalization.8 Signs and symptoms include severe diarrhea (often bloody), severe 

stomach cramps, and vomiting.8 Additionally, hemolytic uremic syndrome is a contributing 

factor to severe illness and death.8 O157:H7 is an archetypal EHEC strain, producing verotoxin 

(Shiga-like toxins), which are responsible for the HC and HUS manifestations.9 Because fresh 

produce is constantly exposed to the environment, it has a complex microflora picture, with 

microbial populations exceeding 10^8 CFU/G at times.11 Coliform counts are known to be up to 

10^4 CFU/g in surveyed products.11 These can make routine screening and testing of food 

samples difficult, thereby making this study more relevant.11 
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Description of Supply Chains 

 
When modeling perishable fresh vegetables, considerations that go into supply chain strategy 

include postharvest behavior of crops, effects of weather, transportation time, postharvest decay, 

labor, and delivery costs.12 The enactment of the Food Safety Modernization Act and subsequent 

rules, such as the FSMA Final Rule on Sanitary Transportation of Human and Animal Food, 

show that a preventative model to retain cold storage of food has been a priority of the US 

government.13 It is notable that leafy green vegetables have potential contamination points all 

along preharvest, harvest, processing, packaging, distribution, and preparation/consumption by 

the consumer.7 14 In handling fresh produce, temperature abuse can occur, which impacts its 

quality and microbial safety.14 Postharvest, improper food handling by harvesters and others 

along the supply chain can contaminate produce.7 In supply chain management, perishability is 

defined as the number of units of product which outdate or perish.15 Decay is generally modelled 

in units lost rather than value lost.15 Longer retail storage of lettuce is associated with E coli 

O157:H7 growth.14 Long-term temperature abuse is easier to model than short term (i.e. defrost 

cycles of refrigeration units).14  

 

The above information pertains to the overarching goal, which is to preserve the value of 

perishable crops as much as possible.12 For produce brokers, there is a tradeoff between time to 

reach the consumer and cost.12 To balance this tradeoff, cold storage, biocides, and other food 

processing techniques are used to preserve value while also maintaining food safety.12 Along 

with market uncertainties and yield and maturation of perishable crops, the shelf life and 

logistics cold chain are limiting factors.12 Food producers, distributors, and retailers use 

monitoring to manage fresh produce as it is moving through its cold chain.14 However, it is 
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challenging to keep this cold chain consistent throughout the distribution chain especially when 

there are multiple handoffs of product along the value chain.14 Other factors that may influence 

temperature abuse include the physical location in a truck and pallet on E coli growth.14  

 

US agricultural and food trends have influenced the food safety picture especially regarding 

fresh produce.16 With an emphasis on export markets, US agriculture moved to dependence on 

urban centers and coastal export facilities for transportation of goods, many of which are distant 

from the production region itself.16 For fresh produce, the US primarily sees the highway system 

as the transportation means for distribution, with 94% of fresh vegetables being transported by 

truck.16 Major shipping areas, as noted by the US Department of Transportation, are located 

along the coastal rim of the US: California, Florida, Texas, and the East Coast.16 However, there 

is seasonal variation to these shipment patterns.16 Generally, studies have found that cold storage 

is maintained, though this can be compromised in warmer climates.14 Retail storage is where the 

most significant temperature abuse occurs and where 1-3 days of storage can occur.14 Fresh cut 

romaine can have visual appearance of freshness while still being contaminated.15  

 

Population at Risk 

 
Host factors that may impact acquiring infection by STEC include age, immunity, health status, 

use of antibiotics and antimotility agents, stress, and genetic factors.10 Food consumption 

patterns may also influence risk of foodborne illness resulting from E coli contaminated romaine 

lettuce.10 Risk groups, and therefore confounding variables, include children (0-14) and the 

elderly (>60).9  
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Model Justification 

 
Taking all of this background into account unveils a situation for which a model that analyzes 

supply chain characteristics can inform our understanding of risk on a county level in multi-state 

foodborne outbreaks. When building the model, factors that should influence the case counts 

include age, sex, temperature at the county of interest where retail storage occurs, and the 

exposure of interest, proximity to primary distribution node. 

Methodology 
 

This project models the supply chain characteristics that may contribute to an influence of county 

geographic location on county case counts in the 2018 E coli O157:H7 outbreak associated with 

romaine lettuce from Yuma county, Arizona. To account for the spatial relationship of the supply 

chain, the project includes the framework developed by Lin et al.17 The Food Flow Framework 

was created to understand direct food flows on a county level basis in the United States, heavily 

leveraging the Freight Analysis Framework.17  While the Food Flow Framework was explored as 

the primary spatially defined exposure, in this case, intensity of food freight at a county level, the 

ultimate research question is whether geographic location from primary distribution nodes (DNs) 

influences case counts in a multi-state outbreak.18 Because the study is assessing this exposure at 

an aggregate level, it is an ecological study.  

 

In forming the methodology, first referenced was Statistical Methods in Environmental 

Epidemiology by Thomas.18 In the spatial methods section, Thomas references a methodology 

for accounting for spatial variation of natural radiation and its relationship to childhood leukemia 
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using a hierarchical Bayesian model with Poisson regressions accounting for local variability and 

a log-linear mixed model to account for the spatial structure between districts.19  

With this as a beginning basis to build a methodology, the study aims were evaluated against the 

criteria for a justified ecological study design. In Chapter 25 of Modern Epidemiology, 3rd 

edition, there are 5 rationale for conducting ecological analyses with low cost and convenience, 

measurement limitations of individual-level studies, interest in ecologic effects, and simplicity of 

analysis and presentation being pertinent to this study.20 The analysis takes advantage of 

secondary data sources to evaluate an ecologic effect (i.e. supply chain patterns on foodborne 

illness risk). Choices and practices among industry supply chain actors contribute to the overall 

system. This type of measure is not one that can be measured on an individual basis. Indeed, the 

analysis is particularly focused on the ecological effect from primary distribution; the supply 

chain distribution node from production and processing to regional distribution centers; and 

those patterns on the overall exposure profile. An ecological study is well justified for this 

study’s hypothesis, given the above reasons.  

 

One aim of this ecological study is to ascertain the contextual effect of supply chain topology on 

foodborne illness incidence in multi-state outbreaks traced to Romaine lettuce. The hope is that 

this model may be used for other multi-state outbreaks or aggregates of multi-state outbreaks to 

see if geographic location influenced the incidence of cases. As is known, ecological studies 

have application, but are liable to misinterpretation and/or bias. The chosen covariates are 

focused on reducing potential from unequal confounding distributions on case count frequency 

and geographic distribution.  
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More complicated models were explored before arriving at using a Poisson regression. In 

assessing spatial effects of an aggregate exposure, a hierarchical Bayesian model was used in 

several studies and methods papers.19, 21, 22 Bayesian analysis uses prior knowledge (prior 

distribution) in combination with the sample distribution (posterior) to make an inference about 

the data. This is well suited in spatial analyses where varying levels of individual risk are 

uncertain but can be guessed.23 The given model utilizes only a Poisson regression from a 

frequentist perspective with a view to explore a more complicated analysis in the future.  

 

At its core, this study relies on a Poisson distribution, assuming the event of becoming ill from 

contaminated Romaine during this period to be a rare event. While foodborne illness is common, 

the vast majority come from cross-contamination and temperature abuse at the point of 

preparation or consumption, rather than food ingredients and products themselves.  

Data Source Description 
 

Population 

 
As an ecological study, the population studied is the US population in the lower 48 states 

(excluding Alaska and Hawaii) in the 84 days of the Romaine lettuce outbreak. Because we are 

studying distribution of food from Yuma, Arizona, especially in the context of trucking traffic 

and supply chain practices thereof, the food flows to the non-contiguous states are not relevant 

for this study. Product shipped to Hawaii and Alaska utilize a different supply chain 

configuration relying on primarily air freight. County demographic information, including sex 

and age, were obtained through the US Census Bureau’s American Community Survey.24 These 
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data are estimates on a county level basis demarcated by age and sex.24 By using this dataset, 

population data were obtained for every US county, identified through their FIPS code.24, 25 

 

Food Flows Description and Primary Distribution Node Proximity 

 
The food flows data from Lin et al. encompasses a comprehensive effort to describe food 

commodities on a county to county transfer basis. The intention of the database is to understand 

the structure of US food distribution. They have 7 SCTG codes which they modeled: 

 

Table 1: Standard Classification of Transported Goods Used for Food Flows Data 

SCTG Model 

1 Animals and Fish (live) 
2 Cereal grains (including seed) 
3 Agricultural Products (excludes animal feed, cereal grains, and forage products) 
4 Animal feed, eggs, honey, and other products of animal origin 
5 Meat, poultry, fish, seafood, and their preparations 
6 Milled grain products and preparations, and bakery products 
7 Other prepared foodstuffs, fats and oils 

 

While these categories seem vague, for our purposes, they help articulate the picture of food 

flows coming from Yuma County. Restricting the food flow data to originating from Yuma 

county resulted in 81 counties (excluding Hawaiian counties), the map (Figure 2) below shows 

the presumptive primary distribution counties. This distribution is well aligned with our 

hypothesis. Primary and secondary processing would commonly occur in nearby counties, 

illustrated below. Additionally, there is to be expected primary distribution nodes leading north 

towards Canada. The other counties seen are near population centers across the US, though 

surprisingly few in the northern Midwest.  
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Figure 2: Primary Distribution Nodes from Yuma County Arizona 

 

 

The data reveal the food flow from the Yuma region show diverse agricultural output, but with 7 

the highest, which includes Romaine lettuce among products (Table 2). Standard Classification 

of Transported Goods Codes are at the right.  

 

Table 2: Standard Classification of Transported Goods Volumes in Kilograms for Yuma Primary Distribution Nodes 

SCTG Volume (in Kilograms) 
1 82822 
2 204405717 
3 189201926 
4 208906867 
5 0 
6 57457286 
7 495893478 
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While the flow volume data itself is interesting, this model is studying the effect of the food 

miles and cold chain integrity contributing to the risk of E coli infection in the Yuma outbreak. It 

is assumed that trade nodes are delivering a roughly equivalent amount of romaine lettuce per 

capita, though there may be some regional variation. To derive the proximity to nearest 

distribution node, Python was used to generate a temporary dictionary with key value pairs of 

DN FIPS code to distance for each given FIPS code in the dataset. After calculating each 81 

distances, the algorithm selected the lowest one and its corresponding distance as the exposure. 

 

Temperature Data 

 
Because the clear influence of environmental temperatures on cold chain integrity, the average 

county temperature in March of 2018 was used as a covariate. These values were obtained from 

NOAA26. 
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Model Analysis 
 

Proposed Model 

 
Given the exploratory nature of this study, a Poisson regression with counties as subunits and 

aggregate covariates was chosen to evaluate the influence between distance from primary 

distribution center and US county case counts in the 2018 Yuma outbreak. The basis for this 

model is below: 

!"#$(&) =
)!

!

*!
 

 

For counts yi in area i (in this case US counties), there is an independently identically Poisson 

distribution of cases, with the expectation in area i as ei. Multiplied by the qI as the area risk, we 

get: 

,"	, ##.	~	!"#$()"1"),			#	 = 	1, . . . . , 4 

 

In the literature review, potential confounding variables, associated with the exposure, which is a 

measure of supply chain configurations and thereby geographic distribution, and the outcome, 

county counts of E coli O157:H7. These covariates are described in the data dictionary, but are 

briefly described below in Table 3. 
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Table 3: Variable Descriptions for Model 

Variable name in dataset Variable Description Reason for inclusion 
Distances Distance to Food Flow Center Exposure of interest 
Mar_y March Average Temperature in 

2018 
Environmental temperature at point of retail 
was highlighted as potential reason for 
increased E coli growth in produce supply 
chains. 

PropU15 County Proportion of population 
under age 15 in 2018 

Severe illness among persons under 15 are 
more probable and thereby more likely to 
contribute to case counts 

PropOver60 County Proportion of population 
over 60 in 2018 

Severe illness among persons over 60 are 
more probable and thereby more likely to 
contribute to case counts 

PropFemale County Proportion of population 
that is female sex in 2018 

Dietary habits and risk among women who 
are pregnant may contribute to greater risk of 
illness form E coli 

Offset 
TotalPop County population in 2018 Used for offset in Poisson Regression 

 

The overall full model with covariates is below: 

ln(&") = ln 7
8(9")
ℓ"

;

= 	<$ + <%>#$?@4A)$ + <&B@C_, + <'!C"EF15 + <(!C"EHI)C60

+ <)!C"EL)M@N) +	O%!C"EHI)C60 ∗ !C"EL)M@N) +	O&!C"EF15

∗ !C"EL)M@N) +	Q%B@C_, ∗ >#$?@4A)$ 

 

To model this in SAS 9.4, the “offset” is carried over to model the loglinear association of the 

expected value. Because the model is explicitly evaluating the effect on this outbreak, the 

duration of the outbreak was used to estimate the person time exposed to contaminated lettuce 

from this specific public health event. The offset in this model is Person-Years calculated below: 

ℓ = R"?@N!"E ∗ S
84
365

W 
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With the offset, the model being derived from the dataset is thus: 

ln(8(9")) = 	<$ + <%>#$?@4A)$ + <&B@C_, + <'!C"EF15 + <(!C"EHI)C60

+ <)!C"EL)M@N) +	O%!C"EHI)C60 ∗ !C"EL)M@N) +	O&!C"EF15

∗ !C"EL)M@N) +	Q%B@C_, ∗ >#$?@4A)$ + ln	(ℓ) 

 

The null and alternative hypotheses for this model are: 

X$:	<% = 0 

X*:	<% ≠ 0 

 

The model is seeking to determine whether the distance to primary distribution nodes of the food 

flows from Yuma County Arizona explains variation in county-level case counts within the 2018 

E coli 0157:H7 outbreak associated with romaine lettuce originating from Yuma County while 

controlling for local county average temperature in March, vulnerable population proportions 

(under 15 and over 60), and proportion of female sex. These group level proportions to adjust for 

confounders have been used in other spatial regression analyses.27, 28 

 

Analysis of Exposure 

 
The Lin et al. food flows dataset was chosen to evaluate the research question about the 

influence of supply chain topology on the occurrence of cases in multistate foodborne disease 

outbreaks, especially in fresh produce. The supply chains of fresh produce, especially like the 

products implicated in this outbreak, follow a fairly uniform pattern of Critical Tracking Events. 

Produce is harvested at farms, then packed and shipped to copackers, processors, and 

distributors. At these junctures, fresh produce is comingled and copacked with a multitude of 
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potential sources (though all from Yuma County). These are the points where products enter 

their form in which consumers will eventually consume the product. After this, cold chain 

storage, shelf life, practices among distributors, and environmental factors may influence the 

ability of E coli to proliferate and make a product more likely to create a case of foodborne 

illness.  

 

This variable was calculated through the use of midpoint data of the latitude and longitude of 

county midpoints. The algorithm, described in the Python code in Appendix 2, finds the nearest 

DN and calculates the distance between county midpoints.  Below the variable is described in 

Table 4 and Figure 3. 

Table 4: Basic Statistical Measures for Distribution Node Proximity in Kilometers 

Basic Statistical Measures 
Location Variability 

Mean 253.8 Std Deviation 146.2 
Median 247 Variance 21376 
Mode 0 Range 761 
    Interquartile Range 219 

 

 
Figure 3: Histogram of Distribution Node Proximity in Kilometers 
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The most common value is 0 at 81, which accounts for the 81 DNs identified through the food 

flows dataset. The median and mean are centered around 250 kilometers. The data seem 

relatively normally distributed, though with a slight right skew. There appear to be no outright 

outliers. The three highest values are in Montana. 

 

Analysis of Covariates 

 
Temperature in March 

 

Table 5: Statistical Measures for Average County Temperatures in Degrees Fahrenheit for March 2018 

Basic Statistical Measures 
Location Variability 

Mean 44.8 Std Deviation 9.66 
Median 42.7 Variance 93.3 
Mode 43.4 Range 51.2 
    Interquartile Range 12.4 

 

 

 

Figure 4: Histogram for Average County Temperatures in Degrees Fahrenheit for March 2018 
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March temperature is skewed right, which makes sense given a small fraction of southern US 

lower 48 counties having relatively warm temperatures in March. There are no extreme outliers 

and the mean and median are close to each other, suggesting uniformity in the distribution. 

Temperature was kept in Fahrenheit so that all temperatures would be positive for ease of 

parameter interpretation. 

 

Proportion Under 15 

Table 6: Statistical Measures for US County Proportion of Population Under Age 15 in 2018 

 
Basic Statistical Measures 

Location Variability 
Mean 0.1844 Std Deviation 0.02991 
Median 0.1838 Variance 0.0008948 
Mode 0.1713 Range 0.2815 
    Interquartile Range 0.03332 

 

Figure 5: Histogram for US County Proportion of Population Under Age 15 in 2018 

 

 

Proportion of the population under the age of 15 is normally distributed with a mean centered at 

around 20%. 
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Proportion Over 60 

Table 7: Statistical Measures for US County Proportion of Population Over Age 60 in 2018 

Basic Statistical Measures 
Location Variability 

Mean 0.2532 Std Deviation 0.05606 
Median 0.2493 Variance 0.00314 
Mode 0.1846 Range 0.5857 
    Interquartile Range 0.06577 

 

Figure 6: Histogram for US County Proportion of Population Over 60 in 2018 

 

 

Proportion over 60 have some outliers, mostly due to retirement communities in Florida, but the 

overall distribution of the proportion over 60 follows a normal distribution. None of the outliers 

appear to be due to error. 
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Proportion Female Sex 

Table 8: Statistical Measures for US County Proportion of Population Female Sex in 2018 

Basic Statistical Measures 
Location Variability 

Mean 0.4995 Std Deviation 0.02353 
Median 0.5040 Variance 0.0005538 
Mode 0.5000 Range 0.3761 
    Interquartile Range 0.01685 

 

Figure 7: Histogram for US County Proportion of Population Female Sex in 2018 

 

 

The proportion of female sex have fairly expected values with some extreme values skewed 

towards high male populations, which is known, especially in rural US counties. These outliers 

also do not seem to be in error. 
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Analysis of Case Count Data  
 

Table 9: Frequency Data by US County 

Yuma Outbreak Case Counts 
count Frequency Percent Cumulative 

Frequency 
Cumulative 

Percent 
0 2999 96.40 2999 96.40 
1 71 2.28 3070 98.68 
2 14 0.45 3084 99.13 
3 13 0.42 3097 99.55 
4 7 0.23 3104 99.77 
6 2 0.06 3106 99.84 
7 2 0.06 3108 99.90 
9 2 0.06 3110 99.97 

10 1 0.03 3111 100.00 
 

Table 10: Statistical Measures for US County Case Counts 

 
Basic Statistical Measures 

Location Variability 
Mean 0.0707 Std Deviation 0.498 
Median 0 Variance 0.248 
Mode 0 Range 10.0 
    Interquartile Range 0 

 

Data that are publicly available on foodborne disease outbreaks are typically aggregated to the 

state level. The data obtained from CDC gave more granular detail on the geographic location of 

cases included in the outbreak workup. When fitting this model, all possible exposed counties 

were included besides Alaska and Hawaii. 202 cases were included in the dataset, with 8 cases 

from Alaska excluded. The CDC case count data also included environmental samples, which 

were also excluded. Figures 8 and 9 show the epidemiologic profile of this outbreak, with the 

somewhat prolonged epidemic curve and the diverse geographic picture in the case count map. 
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Figure 8: Epidemic Curve for 2018 E Coli O157:H7 Outbreak Associated with Romaine Lettuce from Yuma Arizona2 

 

 

Figure 9: Case Count Map for 2018 E Coli O157:H7 Outbreak Associated with Romaine Lettuce from Yuma Arizona2 
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Model Building 

 
First collinearity was assessed through the use of the “Collin” macro analyzing the covariate 

matrix generated from proc gen mod. In running the collinearity macro, it was found that all 

population proportions had collinearity issues with the model. Various attempts to reduce 

collinearity were conducted including combining “at risk” population proportions (under 15 and 

over 60) into one variable and multiple log transformations. Each resulted in condition indices 

(CNIs) over 30. To preserve parameter estimate stability, these variables were excluded from the 

model.  

 

After accounting for collinearity, the remaining variables in the model include ND distance and 

March average temperature. Interaction of temperature and DN proximity was examined due to 

the potential influence of higher temperatures on compromising cold chain integrity. The effect 

modifier was found to be significant using a Wald test. The SAS code can be found in Appendix 

1. The final model after assessing for interaction is below. 

ln(8(9")) = 	<$ + <%>#$?@4A)$ + <&B@C_, + Q%B@C_, ∗ >#$?@4A)$ + ln	(ℓ) 

 

The resulting output for the model is below: 

Table 11: Parameter Estimates for Final Model 

Analysis Of Maximum Likelihood Parameter Estimates 
Parameter DF Estimate Standard 

Error 
Wald 95% 

Confidence Limits 
Wald 
Chi-

Square 

Pr > ChiSq 

Intercept 1 -14.6598 0.2516 -15.1529 -14.1668 3395.89 <.0001 
distances 1 0.0071 0.0013 0.0045 0.0096 28.93 <.0001 
mar_y 1 0.0427 0.0051 0.0327 0.0527 70.11 <.0001 
distances*mar_y 1 -0.0002 0.0000 -0.0002 -0.0001 31.82 <.0001 
Scale 0 0.5284 0.0000 0.5284 0.5284 
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Table 12: Goodness of Fit Statistics for Final Model 

Criteria For Assessing Goodness Of Fit 

Criterion DF Value Value/DF 

Deviance 3107 867.4183 0.2792 

Scaled Deviance 3107 3107.0000 1.0000 

Pearson Chi-Square 3107 2874.8931 0.9253 

Scaled Pearson X2 3107 10297.5616 3.3143 

Log Likelihood   -1580.7582   

Full Log Likelihood   -567.4793   

AIC (smaller is better)   1142.9587   

AICC (smaller is better)   1142.9716   

BIC (smaller is better)   1167.1295  

 

The deviance over degrees of freedom metric shows an underdispersed dataset that is opposite 

the issue usually seen in Poisson regressions. To account for the underdispersion, the 

Deviance/DF statistic was fixed to 1.  

 

Analysis Conclusion 

 
Due to lack of additional attributes to the underlying case count data, proportions of at-risk 

groups were included in the model building to account for their confounding with the exposure 

and the outcome. Because the exposure, which is proximity to primary distribution nodes, and 

the outcome, which are case counts of E coli O157:H7, could both be associated with age and 

sex demographics, they were chosen to be examined as part of the model. However, in assessing 

for collinearity, all of these proportions could not be included. This collinearity is not entirely 

surprising, but it brings some caveats to the interpretation of the model, especially when trying to 
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account for ecological bias. When including the exposure and the confounders that were not 

collinear, we arrive at a model that does show that distance from primary distribution node 

contributes to the frequency of case counts seen in the 2018 E coli O157:H7 outbreak when 

controlling for environmental temperature. Below are a range of expected values with various 

temperatures and distances.  

Table 13: Expected Values with Hypothetical Temperature and Distance Data with Varying Person-Time 

Temperature 
(Fahrenheit) 

Distance 
(km) 

Expected 
Value (1 
PY) 

Expected 
Value (1 
million PY) 

30 0 1.55E-06 1.55 
30 250 4.09E-05 2.04 
30 500 0.00108 2.68 
35 0 1.92E-06 1.92 
35 250 6.50E-05 1.96 
35 500 0.00221 2.01 
40 0 2.37E-06 2.37 
40 250 0.000103 1.89 
40 500 0.00451 1.51 

 

Figure 10: Graph of Expected Value of 1 for 100,000 PY 
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Table 14: Risk Ratios for Hypothetical Temperature and Distance Data 

Contrast Estimate Results 

Label Mean 
Estimate 

Mean L'Beta Estimate Standard 
Error 

L'Beta Chi-Square Pr > ChiSq 

Confidence Limits Confidence Limits 

RR 0 km 1.00 1.00 1.00 0.00 0.00 0.00 0.00 . . 

RR 250 km 5.86 3.08 11.2 1.77 0.329 1.12 2.41 28.93 <.0001 

RR 500 km 34.3 9.47 125. 3.54 0.657 2.25 4.82 28.93 <.0001 

RR 0 km 5 F 1.24 1.18 1.30 0.214 0.0255 0.164 0.26 70.11 <.0001 

RR 250 km 5 F 5.92 3.21 10.9 1.78 0.312 1.17 2.39 32.50 <.0001 

RR 500 km 5 F 28.3 8.64 92.6 3.34 0.605 2.16 4.53 30.51 <.0001 

RR 0 km 10 F 1.53 1.39 1.69 0.427 0.051 0.327 0.528 70.11 <.0001 

RR 250 km 10 F 5.98 3.34 10.69 1.79 0.297 1.21 2.369 36.37 <.0001 

RR 500 km 10 F 23.3 7.87 69.0 3.15 0.554 2.06 4.23 32.32 <.0001 

RR 0 km 20 F 2.35 1.92 2.87 0.855 0.102 0.65 1.05 70.11 <.0001 

RR 250 km 20 F 6.10 3.58 10.37 1.81 0.271 1.28 2.34 44.51 <.0001 

RR 500 km 20 F 15.8 6.46 38.6 2.76 0.456 1.87 3.65 36.60 <.0001 
 



 

Discussion 
 

From the start of this project, ecological bias was the primary concern. Given that the data were 

mostly count data and the units of analysis are counties rather than individuals, being able to 

account for county to county variations in confounders is important. As Wakefield describes, 

covariates in aggregate counties could easily account for the association between the exposure 

and the outcome.22 In this analysis, we have not been able to include population demographics as 

a constituent to the model, which may influence the susceptibility of a county to have cases in a 

multi-state outbreak. Additional covariates could also conceivably influence this model, such as 

number of physicians, laboratory testing capacity, socioeconomic status, or number of retail 

stores. These attributes were not found in the literature as potential confounders, but the list 

illustrates how ecological bias may be introduced into this model.  

 

In epidemiology, studies try to model the counterfactual; attempting to account for most to all 

plausible factors to elucidate the causality between the exposure and the outcome. Here, the 

model has one intended measure of interest, proximity to DN, with one confounder, average 

county temperature in March, and an effect modification term between these two variables. In 

terms of the variables that may truly impact the susceptibility of supply chain configurations in 

case counts, these two factors do have the potential to give a model that gives us some useful 

information, but the model only gives enough for us to provide a path forward for further 

investigation.  
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As described above, the interpretation of this model is complicated by the inability to model 

some probable confounders and interaction terms. Looking at the final model, when controlling 

for average US county temperature in March, a 250-kilometer difference in primary DN 

proximity results in a risk ratio of 5.86 (95% CI 3.08, 11.2) of having a case of E coli 0157:H7 in 

Romaine lettuce coming from Yuma County, Arizona. Both DN proximity and temperature are 

positively associated with increased case counts, but there is negative interaction between these 

two. As ambient temperature increases, the expected value of cases decreases for similar 

distances. This model does corroborate findings in the literature review where integrity of the 

cold chain increases as both distances and environmental temperatures increase.  

 

For generalizability, this model was based on a specific outbreak for a reason. The contamination 

of product was at the point of production but was not necessarily localized to a single or few 

farms. The prevailing hypothesis for the origins of the Yuma Romaine Outbreak is contaminated 

irrigation water resulting in product containing E coli. In the traceback investigation, the product 

was only deduced to be produced in Yuma County Arizona; there was no single implicated 

product type, processing facility or other convergence point. This outbreak gave a more 

generalizable picture of the influence on supply chain factors than other outbreaks for these 

reasons. Products of a variety of types were being shipped to every corner of the United States. 

Ultimately, the preclusion of underlying covariates in the aggregated jurisdictions does not allow 

us to really make a claim on the magnitude or direct effect of these factors but can give us a path 

forward to investigate further.  
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Even without elucidating the true causality, the model does suggest there may be a relationship 

between supply chain configuration and temperature that could have implications for bettering 

food safety systems. First, there has been a reevaluation in the food system with the advent of 

Covid-19 on the reliance of highly integrated, consolidated supply chains towards more localized 

food processing. Second, cold chain integrity still seems to be a challenge for fresh produce 

coming from Yuma County. 

 

This study has several caveats including data collection and model complexity. The aggregate 

level statistics including case counts, temperatures, and supply chain information are crude 

measures. The model is also perhaps too simple for the ultimate research question.  

 

The initial model helped delineate whether a relationship exists between proximity to supply 

chain primary distribution node and a county experiencing cases in a multi-state outbreak among 

Romaine lettuce originating from Yuma County, Arizona. As explored in the methods section, 

using Bayesian methods over a frequentist approach may better model this data, providing a 

better method of modeling aggregate level confounders. This project also could inform the 

approach that epidemiologists take when considering data collection. By systematically 

incorporating supply chain data, surveillance systems and investigation techniques could be more 

effectively modeled. 
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Appendix 1: SAS Code 
 
libname yuma "H:\My Documents\Thesis\"; 
 
PROC IMPORT OUT= WORK.YUMA_final  
            DATAFILE= "H:\My Documents\Thesis\Yuma_final_added.xlsx"  
            DBMS=EXCEL REPLACE; 
     RANGE="Sheet1$";  
     GETNAMES=YES; 
     MIXED=NO; 
     SCANTEXT=YES; 
     USEDATE=YES; 
     SCANTIME=YES; 
RUN; 
 
 
data yuma; 
 set work.yuma_final; 
 ln_n = log(TotalPop*(84/365)); 
 PropAtRisk = PropU15 + PropOver60; 
 ln_risk = log(PropAtRisk); 
 ln_female = log(PropFemale); 
run; 
 
 
proc contents data = yuma; 
run; 
 
*Analysis of distances; 
 
proc univariate data = yuma; 
 var distances; 
 histogram / normal; 
run; 
 
proc freq data = yuma; 
 tables distances; 
run; 
 
*Analysis of mar_y (temperature data); 
 
 
proc univariate data = yuma; 
 var mar_y; 
 histogram; 
run; 
 
 
*Analysis of propU15; 
 
 
proc univariate data = yuma; 
 var PropU15; 
 histogram; 
run; 
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*Analysis of propOver60; 
 
 
proc univariate data = yuma; 
 var PropOver60; 
 histogram; 
run; 
 
proc freq data = yuma; 
 tables PropOver60; 
run; 
 
*Analysis of PropFemale; 
 
 
proc univariate data = yuma; 
 var PropFemale; 
 histogram; 
run; 
 
*Analysis of count; 
 
proc univariate data = yuma; 
 var count; 
 histogram / midpoints = 0 to 10 by 1; 
run; 
 
proc freq data = yuma; 
 tables count; 
run; 
 
*run full model; 
 
proc genmod data = yuma; 
 model count = distances mar_y PropU15 PropOver60 PropFemale 
PropU15*PropFemale PropOver60*PropFemale distances*mar_y / dist=poisson link 
= log offset = ln_n dscale; 
run; 
 
*run reverse bionomial; 
 
proc genmod data = yuma; 
 model count = distances mar_y PropU15 PropOver60 PropFemale 
PropU15*PropFemale PropOver60*PropFemale distances*mar_y / dist=nb link = log 
offset = ln_n; 
run; 
 
*Assess collinearity; 
 
 
proc genmod data = yuma; 
 model count = distances mar_y PropU15 PropOver60 PropFemale 
PropU15*PropFemale PropOver60*PropFemale distances*mar_y / dist=poisson link 
= log offset = ln_n dscale covb; 
 ods output genmod.parminfo=parms; 
 ods output genmod.covb=covdsn; 
run;  



 39 

 
%COLLIN(COVDSN=COVDSN, PROCDR=GENMOD, PARMINFO=Parms, OUTPUT=collintable); 
 
*female sex is collinear; 
 
proc genmod data = yuma; 
 model count = distances mar_y PropU15 PropOver60 distances*mar_y / 
dist=poisson link = log offset = ln_n dscale covb; 
 ods output genmod.parminfo=parms; 
 ods output genmod.covb=covdsn; 
run;  
 
%COLLIN(COVDSN=COVDSN, PROCDR=GENMOD, PARMINFO=Parms, OUTPUT=collintable); 
 
*proportion of U15 and Over60 correlated; 
*New variable which is population at greater risk; 
 
proc genmod data = yuma; 
 model count = distances mar_y PropAtRisk distances*mar_y / dist=poisson 
link = log offset = ln_n dscale covb; 
 ods output genmod.parminfo=parms; 
 ods output genmod.covb=covdsn; 
run;  
 
%COLLIN(COVDSN=COVDSN, PROCDR=GENMOD, PARMINFO=Parms, OUTPUT=collintable); 
 
*log transformed variables; 
 
proc genmod data = yuma; 
 model count = distances mar_y ln_risk ln_female distances*mar_y / 
dist=poisson link = log offset = ln_n dscale covb; 
 ods output genmod.parminfo=parms; 
 ods output genmod.covb=covdsn; 
run;  
 
%COLLIN(COVDSN=COVDSN, PROCDR=GENMOD, PARMINFO=Parms, OUTPUT=collintable); 
 
 
 
*log transformed at risk population; 
 
proc genmod data = yuma; 
 model count = distances mar_y ln_risk distances*mar_y / dist=poisson 
link = log offset = ln_n dscale covb; 
 ods output genmod.parminfo=parms; 
 ods output genmod.covb=covdsn; 
run;  
 
%COLLIN(COVDSN=COVDSN, PROCDR=GENMOD, PARMINFO=Parms, OUTPUT=collintable); 
 
*without any population; 
 
proc genmod data = yuma; 
 model count = distances mar_y distances*mar_y / dist=poisson link = log 
offset = ln_n dscale covb; 
 ods output genmod.parminfo=parms; 
 ods output genmod.covb=covdsn; 
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run;  
 
%COLLIN(COVDSN=COVDSN, PROCDR=GENMOD, PARMINFO=Parms, OUTPUT=collintable); 
 
 
*Assess for interaction; 
 
proc genmod data = yuma; 
 model count = distances mar_y distances*mar_y / dist=poisson link = log 
offset = ln_n dscale covb; 
run;  
 
*estimates; 
proc genmod data = yuma plots; 
 model count = distances mar_y distances*mar_y / dist=poisson link = log 
offset = ln_n dscale covb; 
 estimate "RR 0 km" distances 0; 
 estimate "RR 250 km" distances 250; 
 estimate "RR 500 km" distances 500; 
 estimate "RR 0 km 5 F" distances 0 mar_y 5 distances*mar_y 0; 
 estimate "RR 250 km 5 F" distances 250 mar_y 5 distances*mar_y 1250; 
 estimate "RR 500 km 5 F" distances 500 mar_y 5 distances*mar_y 2500; 
 estimate "RR 0 km 10 F" distances 0 mar_y 10 distances*mar_y 0; 
 estimate "RR 250 km 10 F" distances 250 mar_y 10 distances*mar_y 2500; 
 estimate "RR 500 km 10 F" distances 500 mar_y 10 distances*mar_y 5000; 
 estimate "RR 0 km 20 F" distances 0 mar_y 20 distances*mar_y 0; 
 estimate "RR 250 km 20 F" distances 250 mar_y 20 distances*mar_y 5000; 
 estimate "RR 500 km 20 F" distances 500 mar_y 20 distances*mar_y 10000; 
run;  
 
proc univariate data = yuma; 
 var climate_distance; 
 histogram; 
run; 
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Appendix 2: Python Data Cleaning Code 
 
 
#!/usr/bin/env python 
# coding: utf-8 
#Python code for Data Cleaning and Confounder Calculations 
#Thomas Burke 
#MPH Epidemiology Thesis 
#July 21 2020 
 
 
# Summary: This code was used to assign FIPS (Federal Information Processing 
Standards) codes to the obtained Excel spreadsheet obtained 
# from CDC. It also took the food flows (primarily from US DoT Framework), 
Census and NOAA data which were identified as potential 
# confounders. All these relied on FIPS identification on counties to merge 
datasets.  
 
# Because some complicated calculations regarding geography were to be used, 
Python was chosen to clean the data. Data were loaded to 
# dataframes in pandas. 
import pandas as pd 
import numpy as np 
 
 
#uploading excel of CDC Case Count County Data of Romaine Lettuce Outbreak 
into dataframe 
df_yuma = pd.read_excel('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma.xlsx') 
print(df_yuma) 
 
 
#Load FIPS codes into dataframe. This dataset is merely the fips code, 
county, and state. 
df_fips = pd.read_excel('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/fips.xlsx') 
print(df_fips) 
 
#split polyname (county and state were formatted as strings) into dictionary 
split_cells = {} 
for i in df_fips['polyname']: 
    split_cells[i] = i.split(",") 
print(split_cells) 
 
#map split_cells dictionary to FIPS dataframe by FIPS code 
df_fips["split_cells"] = df_fips["polyname"].map(split_cells) 
print(df_fips) 
 
#change split cells to state code. Because the CDC data used state codes 
rather than names 
states = pd.read_csv('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/states.csv') 
states['State'] = states['State'].str.lower() 
print(states) 
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#join the states dataframe to the yuma one. Performed an "outer" join in case 
of errors/misspellings 
df_yuma_2 = pd.merge(df_yuma, states, left_on = "SourceState", right_on = 
"Code", how = 'outer') 
df_yuma_2["SourceCounty"] = df_yuma_2["SourceCounty"].str.lower() 
print(df_yuma_2) 
 
#match fips code in yuma dataset. This operation was not perfect, but 
automated the FIPS assigning based on county and state name 
#This code works by cycling through each entry of the CDC data, finding a 
match by county, then by state, and then assigning 
#the corresponding FIPS code. While statements were used to index the data 
element for each iteration. The superceding while statement 
#cycles this logic through each FIPS code. 
j=3084 
i=0 #fips 
x=0 #yuma 
y=314     
df_yuma_2['fips'] = 0   
while i <= j: 
    while x <= y: 
        if df_fips['split_cells'][i][1] == df_yuma_2['SourceCounty'][x]: 
            print(x) 
            print(i) 
            if df_fips['split_cells'][i][0] == df_yuma_2['State'][x]: 
                df_yuma_2['fips'][x] = df_fips['fips'][i] 
                print(i) 
                print(df_fips['fips'][i]) 
                print(x) 
        x +=1 
    x = 0 
    i +=1 
 
df_yuma_2 
 
#write to excel to save file. For future projects, will make an immutable 
dataset, but used excel saves to keep progress 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma2.xlsx') as writer: 
     df_yuma_2.to_excel(writer) 
 
#Example of reloading if need be. 
df_yuma_2 = pd.read_excel('/Users/tburke/Documents/Emory Class Files/Thesis 
and Research/E Coli Papers/untitled folder/Yuma2.xlsx') 
 
#load data frame of Census population data, specifically from American 
Community Survey. Gives Age, Gender data on every county 
df_pop = pd.read_csv('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/cen_age_data.csv') 
 
#Loading to new dataframe 
#Cleaning FIPS data for misspellings, ambiguous data or missing values. The 
FIPS code 55079 was assigned to errors or missing values. 
#There was one legitimate 55079 (Milwaukee, Wisconsin), so cleaning was by 
index. 
 
#missing values 
df_yuma_3 = df_yuma_2 
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df_yuma_3['fips'][16] = np.nan 
df_yuma_3['fips'][19] = np.nan 
df_yuma_3['fips'][94:136] = np.nan 
df_yuma_3['fips'][139] = np.nan 
df_yuma_3['fips'][203:213] = np.nan 
df_yuma_3['fips'][218:226] = np.nan 
df_yuma_3['fips'][230] = np.nan 
df_yuma_3['fips'][240] = np.nan 
df_yuma_3['fips'][242:251] = np.nan 
df_yuma_3['fips'][252:254] = np.nan 
df_yuma_3['fips'][258] = np.nan 
df_yuma_3['fips'][265] = np.nan 
df_yuma_3['fips'][288] = np.nan 
df_yuma_3 
 
#Cleaning FIPS data for misspellings and other errors 
df_yuma_3['fips'][65] = 53053 
df_yuma_3['fips'][73] = 36061 
df_yuma_3['fips'][79] = 36061 
df_yuma_3['fips'][81] = 12057 
df_yuma_3['fips'][83] = 51059 
df_yuma_3['fips'][152] = 6059 
df_yuma_3['fips'][159] = 6095 
df_yuma_3['fips'][160] = 6095 
df_yuma_3['fips'][163] = 6095 
df_yuma_3['fips'][165] = 6095 
df_yuma_3['fips'][166] = 6095 
df_yuma_3['fips'][171] = 6095 
df_yuma_3['fips'][175] = 6095 
df_yuma_3['fips'][194] = 6059 
df_yuma_3['fips'][199] = 6055 
df_yuma_3['fips'][229] = 6037 
df_yuma_3['fips'][241] = 26159 
df_yuma_3['fips'][267] = 27137 
df_yuma_3['fips'][271] = 27007 
df_yuma_3['fips'][295:298] = 1097 
df_yuma_3['fips'][231:240] = 0 
 
 
#delete rows from previous merge. From states which had no cases (artefact 
from previous merge) 
#print(df_yuma_3.index[301:]) 
df_yuma_3 = df_yuma_3.drop(df_yuma_3.index[301:315]) 
df_yuma_3 
 
#write to excel file to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yumax.xlsx') as writer: 
     df_yuma_3.to_excel(writer) 
 
#Census ACS data had extra digits in front. Stripped these first 5 to get 
fips codes 
df_pop['fips'] = df_pop['id'].apply(lambda x: x[-5:]) 
df_pop 
 
 
#merge (all US counties) pop sex data with CDC data by fips. Converted them 
to floats for merging. 
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df_yuma_3['fips'] = df_yuma_3['fips'].astype(float) 
df_pop['fips'] = df_pop['fips'].astype(float) 
 
df_yuma_4 = pd.merge(df_yuma_3, df_pop, left_on = "fips", right_on = "fips", 
how = 'outer') 
df_yuma_4 
 
 
#write yuma4 to excel file to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma4.xlsx') as writer: 
     df_yuma_4.to_excel(writer) 
 
#attach food flows data 
#load data frame of population data 
df_flows = pd.read_csv('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/yumadata.csv') 
 
#merge combined data on yuma 
df_yuma_5 = pd.merge(df_yuma_4, df_flows, left_on = "fips", right_on = "des", 
how = 'outer') 
df_yuma_5 
 
#write yuma5 to excel file to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma5.xlsx') as writer: 
     df_yuma_5.to_excel(writer) 
 
df_yuma_5.info 
 
#drop unnecessary columns 
#del df_yuma_5['Unnamed: 0_x'] 
#del df_yuma_5['Unnamed: 0.1'] 
del df_yuma_5['TypeDetails'] 
del df_yuma_5['Exposure'] 
del df_yuma_5['Traveled_To'] 
del df_yuma_5['Abbrev']  
del df_yuma_5['Code'] 
del df_yuma_5['polyname'] 
df_yuma_5 
 
#write new dataframe to excel file to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma6.xlsx') as writer: 
     df_yuma_5.to_excel(writer) 
 
#add latlong data to a dataframe 
df_latlong = pd.read_excel('/Users/tburke/Documents/Emory Class Files/Thesis 
and Research/E Coli Papers/untitled folder/fipslatlong.xlsx') 
df_latlong 
 
#merge County demographic data plus cases to latlong data by fips code 
df_yuma_7 = pd.merge(df_yuma_5, df_latlong, left_on = "fips", right_on = 
"fips", how = 'outer') 
#the latlong information were in strings, so they needed to be converted to 
floats for calculations 
df_yuma_7['lat'] = df_yuma_7['lat'].str.strip("°") 
df_yuma_7['long'] = df_yuma_7['long'].str.strip("°") 
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df_yuma_7['lat'] = df_yuma_7['lat'].astype(float) 
df_yuma_7['long'] = df_yuma_7['long'].str.slice(1) 
df_yuma_7['long'] = df_yuma_7['long'].astype(float) 
df_yuma_7['long'] = df_yuma_7['long']*-1 
df_yuma_7 
 
#assigning latlong data to food flows dataframe 
df_flows_2 = pd.merge(df_flows, df_latlong, left_on = "des", right_on = 
"fips", how = 'left') 
df_flows_2['lat'] = df_flows_2['lat'].str.strip("°") 
df_flows_2['long'] = df_flows_2['long'].str.strip("°") 
df_flows_2['lat'] = df_flows_2['lat'].astype(float) 
df_flows_2['long'] = df_flows_2['long'].str.slice(1) 
df_flows_2['long'] = df_flows_2['long'].astype(float) 
df_flows_2['long'] = df_flows_2['long']*-1 
df_flows_2 = df_flows_2.drop(df_flows_2.index[81]) 
df_flows_2 
 
#save dataframes to excel files to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma7.xlsx') as writer: 
     df_yuma_7.to_excel(writer) 
         
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/flows_2.xlsx') as writer: 
     df_flows_2.to_excel(writer) 
 
#To find the distance between primary distribution site and county, needed to 
make a dictionary with food flows FIPS code and latlong 
 
df_flows_dict = df_flows_2 
df_flows_dict['latlong'] = list(zip(df_flows_dict.lat, df_flows_dict.long)) 
#df_flows_dict = df_flows_dict[['lat', 'long']].values.tolist() 
flows_dict = df_flows_2.groupby('fips')['latlong'].apply(list).to_dict() 
flows_dict 
 
 
#find distance lists. Geopy finds distances between geographic points taking 
into account the Earth's curvature. 
import geopy.distance 
 
#example 
coords_1 = flows_dict[4005][0] 
coords_2 = flows_dict[53005][0] 
 
print(geopy.distance.distance(coords_1, coords_2).km) 
 
#make all county plus case data with latlong tuple 
df_yuma_8 = df_yuma_7 
df_yuma_8['latlong'] = list(zip(df_yuma_8.lat, df_yuma_8.long)) 
df_yuma_8 
 
 
#This calculation took the dictionary of all primary distribution nodes and 
calculated the distance between them and the given county. 
#It stored these FIPS:distance value pairs in a temporary dictionary and then 
selected the smallest value. Distance to primary 
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#distribution was a variable of interest for this study. It used a boolean to 
see if their were entries in the dictionary to account 
#for missing values. 
 
i = 0 
j = 3411 
df_yuma_8['distances'] = 0 
df_yuma_8['nearest_dist'] = '' 
while i<=j: 
    temp_dict = {} 
    for a in flows_dict: 
        if np.isfinite(df_yuma_8['latlong'][i]).all(): 
            distance = geopy.distance.distance(flows_dict[a], 
df_yuma_8['latlong'][i]).km 
            temp_dict.update({ a: distance }) 
            print(geopy.distance.distance(flows_dict[a], 
df_yuma_8['latlong'][i])) 
    if bool(temp_dict): 
        temp = min(temp_dict.values())  
        res = [key for key in temp_dict if temp_dict[key] == temp]  
        df_yuma_8['distances'][i] = temp 
        df_yuma_8['nearest_dist'][i] = res 
    i +=1 
     
df_yuma_8 
 
 
#write to excel to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma9.xlsx') as writer: 
     df_yuma_8.to_excel(writer) 
 
 
#Average March temperature was also a variable of interest. Gathered average 
county temperature data for March 2018. 
df_climate = pd.read_csv('/Users/tburke/Documents/Emory Class Files/Thesis 
and Research/E Coli Papers/untitled folder/climate.csv') 
 
#reduced to just fips and march 2018 average temperature data 
df_climate_18 = df_climate_19[['fips','mar']] 
df_climate_18 
 
#merging with overall dataset 
df_yuma_10 = pd.merge(df_yuma_8, df_climate_18, left_on = "fips", right_on = 
"fips", how = 'left') 
df_yuma_10 
 
#examining in excel 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma10.xlsx') as writer: 
     df_yuma_10.to_excel(writer) 
 
#NOAA does not have average county temperature for every county (about 30% of 
entries do not have climate) 
#A similar calculation was performed as above to calculate the closest county 
where temp data is available 
 
#first need to make a dataframe of latlong data for climate 
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df_climate_18['fips'] = df_climate_18['fips'].astype(float) 
df_latlong['fips'] = df_latlong['fips'].astype(float) 
df_climate_latlong = pd.merge(df_climate_18, df_latlong, left_on = "fips", 
right_on = "fips", how = 'inner') 
 
df_climate_latlong['lat'] = df_climate_latlong['lat'].str.strip("°") 
df_climate_latlong['long'] = df_climate_latlong['long'].str.strip("°") 
df_climate_latlong['lat'] = df_climate_latlong['lat'].astype(float) 
df_climate_latlong['long'] = df_climate_latlong['long'].str.slice(1) 
df_climate_latlong['long'] = df_climate_latlong['long'].astype(float) 
df_climate_latlong['long'] = df_climate_latlong['long']*-1 
 
df_climate_latlong['latlong'] = list(zip(df_climate_latlong.lat, 
df_climate_latlong.long)) 
df_climate_latlong 
 
#make a dictionary of fips, lat long associated with temperature data 
climate_dict = 
df_climate_latlong.groupby('fips')['latlong'].apply(list).to_dict() 
climate_dict 
 
df_yuma_11 = df_yuma_10 
df_yuma_11 
 
#Ran a similar algorithm as above, but for climate. Because the amount of 
calculations is high, the algorithm checked if there 
#was climate data already before finding the closest neighbor.  
i = 0 
j = 3413 
df_yuma_11['climate_distance'] = 0 
df_yuma_11['nearest_climate_fips'] = '' 
while i<=j: 
    temp_dict = { 
    if np.isnan(df_yuma_11['mar'][i]): 
        for a in climate_dict: 
            if np.isfinite(df_yuma_11['latlong'][i]).all(): 
                distance = geopy.distance.distance(climate_dict[a], 
df_yuma_11['latlong'][i]).km 
                temp_dict.update({ a: distance }) 
                #print(geopy.distance.distance(climate_dict[a], 
df_yuma_11['latlong'][i])) 
                print(i) 
        if bool(temp_dict): 
            temp = min(temp_dict.values())  
            res = [key for key in temp_dict if temp_dict[key] == temp]  
            df_yuma_11['climate_distance'][i] = temp 
            df_yuma_11['nearest_climate_fips'][i] = res 
    else: 
        df_yuma_11['nearest_climate_fips'][i] = df_yuma_11['fips'][i] 
    print(i) 
    i +=1 
     
df_yuma_11 
 
#output dataset to examine 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma11.xlsx') as writer: 
     df_yuma_11.to_excel(writer) 
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#merge county dataset with climate data 
#the calculation inserted a list with one data element rather than a float 
df_yuma_12 = df_yuma_11 
#fixing the datatype issue 
i=0 
j=3413 
 
while i <=j: 
    if type(df_yuma_12['nearest_climate_fips'][i]) == list: 
        df_yuma_12['nearest_climate_fips'][i] = 
df_yuma_12['nearest_climate_fips'][i][0] 
    i+=1 
#merging datasets 
df_yuma_12 = pd.merge(df_yuma_12, df_climate_18, left_on = 
"nearest_climate_fips", right_on = "fips", how = 'inner') 
df_yuma_12 
 
 
#do same datatype treatment for nearest_dist 
i=0 
j=3413 
 
while i <=j: 
    if type(df_yuma_12['nearest_dist'][i]) == list: 
        df_yuma_12['nearest_dist'][i] = df_yuma_12['nearest_dist'][i][0] 
    i+=1 
 
#output file again 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma12.xlsx') as writer: 
     df_yuma_12.to_excel(writer) 
 
 
#Set missing data to 0 
i=0 
j=3413 
 
while i <=j: 
    if type(df_yuma_12['nearest_climate_fips'][i]) == str: 
        df_yuma_12['nearest_climate_fips'][i] = 0 
    i += 1 
 
#examine file in excel 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma12x.xlsx') as writer: 
     df_yuma_12.to_excel(writer) 
 
 
#merge climate and nearest distance. Assigns temperature based on fips or 
closest fips 
df_yuma_12['nearest_climate_fips'] = 
df_yuma_12['nearest_climate_fips'].astype(float) 
df_yuma_13 = pd.merge(df_yuma_12, df_climate_18, left_on = 
"nearest_climate_fips", right_on = "fips", how = 'left') 
df_yuma_13 
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#examine file 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma13.xlsx') as writer: 
     df_yuma_13.to_excel(writer) 
 
#Data cleaning and reading the file for analysis 
 
#drop unnecessary columns 
df_yuma_14 = df_yuma_13[['fips_x', 'PFGE-XbaI-status', 'TotalPop', 'Female', 
'under5','5to9','10to14','60over','medianAge','distances','nearest_dist','cli
mate_distance','nearest_climate_fips','mar_y']] 
 
df_yuma_14 
#The dataset is 3414 rows × 14 columns 
 
#drop missing values of fips 
df_yuma_15 = df_yuma_14[df_yuma_14['fips_x'].notna()] 
df_yuma_15 = df_yuma_15[df_yuma_15['fips_x'] > 0] 
#The dataset is 3324 rows × 14 columns. These are all non-county cases. This 
means that 90 values are not included from 300 
#positive IDs from CDC. These are largely environmental samples. More 
information in the analysis. 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma15.xlsx') as writer: 
     df_yuma_15.to_excel(writer) 
      
 
#drop missing values for population data medianAge. This was mostly a merge 
artefact. 
df_yuma_16 = df_yuma_15[df_yuma_15['medianAge'].notna()] 
df_yuma_16 
#same size as Yuma 14 3324 x 14 
 
#drop nan's for mar_y 
df_yuma_17 = df_yuma_16[df_yuma_16['mar_y'].notna()] 
df_yuma_17 
#3245 rows × 14 columns. Some county population fips were of puerto rico. Not 
relevant to this analysis. 
 
#examine file in excel 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma17.xlsx') as writer: 
     df_yuma_17.to_excel(writer) 
 
#remove Alaska and Hawaii. Because this study was looking at examining the 
trucking infrastructure, Hawaii and Alaska were excluded 
#Though Alaska had significant cases (8), its distribution pattern is too 
different for us to focus on the primary cold chain 
#storage and other characteristics. 
df_yuma_18 = df_yuma_17 
df_yuma_18 = df_yuma_18.drop(df_yuma_18[(df_yuma_18.fips_x > 1999) & 
(df_yuma_18.fips_x < 3000)].index) 
df_yuma_18 = df_yuma_18.drop(df_yuma_18[(df_yuma_18.fips_x > 14999) & 
(df_yuma_18.fips_x < 16000)].index) 
#df_yuma_18 = df_yuma_17[df_yuma_17['fips_x'] < 2000 & 
df_yuma_17['fips_x'] >2999] 
df_yuma_18 
 



 50 

#fully clean dataset examined 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma_clean.xlsx') as writer: 
     df_yuma_18.to_excel(writer) 
 
#Removing duplicate rows (counts from CDC) and adding counts as own column 
df_yuma_19 = df_yuma_18 
#df_yuma_19['count'] = 1 
df_yuma_19 
 
df_yuma_20 = df_yuma_19.drop_duplicates() 
df_yuma_20 
 
#use df_yuma_19 to count the duplicates. PFGE XbaI was a variable all counts 
had but no other counties had. This was to prevent 
#single counties being counted as cases but retained single county counts. 
count_dict = df_yuma_19.groupby('fips_x')['PFGE-XbaI-
status'].apply(list).to_dict() 
count_dict 
 
#The dictionary counted how many 'PFGE XbaI status' entries. Then this 
algorithm judged whether those dictionaries contained 
#strings or not. If it did, it counted how many strings to arrive at the case 
count. 
count_dict_2 = {} 
for i in count_dict: 
    if type(count_dict[i][0]) == str: 
        a = i 
        b = len(count_dict[i]) 
        count_dict_2.update({ a:b }) 
    else: 
        a = i 
        b = 0 
        count_dict_2.update({ a:b }) 
    i+=1 
     
count_dict_2 
 
#mapping case count dictionary to dataset and dropping duplicates 
df_yuma_20 = df_yuma_19 
df_yuma_20["count"] = df_yuma_20["fips_x"].map(count_dict_2) 
df_yuma_20 = df_yuma_20.drop_duplicates() 
df_yuma_20 
 
 
#calculated dataset examination 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma_final.xlsx') as writer: 
     df_yuma_20.to_excel(writer) 
 
 
#make final variables 
#proportion female 
df_yuma_21 = df_yuma_20 
df_yuma_21['PropFemale'] = df_yuma_21['Female'] / df_yuma_21['TotalPop'] 
#under 15 
df_yuma_21['PropU15'] = (df_yuma_21['under5'] + df_yuma_21['5to9'] + 
df_yuma_21['10to14'])/ df_yuma_21['TotalPop'] 
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#over 60 
df_yuma_21['PropOver60'] = df_yuma_21['60over'] / df_yuma_21['TotalPop'] 
#expected value for each cell 
expected_PT = 202/((326500498-732438-1420491)*(84/365)) 
df_yuma_21['expectedValue'] = df_yuma_21['TotalPop'] * expected_PT 
df_yuma_21 
 
#final output for SAS 
with pd.ExcelWriter('/Users/tburke/Documents/Emory Class Files/Thesis and 
Research/E Coli Papers/untitled folder/Yuma_final_added.xlsx') as writer: 
     df_yuma_21.to_excel(writer) 
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Appendix 3: Data Dictionary 
 

 
Variable Name Description Variable Type Values Source Original or 

Derived 
fips_x Federal Information Processing Standards (FIPS) 

code. A standardized way of categorizing state 
counties or county equivalents (e.g. Louisiana 
Parishes). Discontinued for most agencies, this 
identifier is still used by the Department of 
Transportation for their Freight Analytical 
Framework, the basis of the Food Flows dataset.  

numeric N/A American 
Community 
Survey 
(Census); Food 
Flows; NOAA 
Climate Data 

original 

PFGE-Xbal-
status 

Pulse Field Gel Electrophoresis status. Not used 
in the Analysis; an artefact from data processing. 

string N/A CDC original 

TotalPop County total population in 2018 numeric [102, 
10098052] 

American 
Community 
Survey (Census) 

original 

Female County female population in 2018 numeric [44, 5121264] American 
Community 
Survey (Census) 

original 

under5 County population under 5 in 2018 numeric [8, 624745] American 
Community 
Survey (Census) 

original 

5to9 County population ages 5-9 in 2018 numeric [5, 607905] American 
Community 
Survey (Census) 

original 

10over14 County population ages 10-14 in 2018 numeric [0, 626594] American 
Community 
Survey (Census) 

original 

60over County population over age 60 in 2018 numeric [39, 1847041] American 
Community 
Survey (Census) 

original 
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medianAge Median age of the county in 2018 numeric [21.7, 67] American 
Community 
Survey (Census) 

original 

distances Distance in Kilometers to nearest Distribution 
Node 

numeric [0, 761] Food Flows derived 

nearest_dist FIPS code of the nearest Distribution Node numeric N/A Food Flows derived 
climate_distance Distance in Kilometers to closest climate data numeric [0, 402] NOAA Climate 

Data 
derived 

nearest_climate FIPS code to nearest climate data numeric N/A NOAA Climate 
Data 

derived 

mar_y Temperature in Fahrenheit of the county or the 
nearest county in March of 2018 

numeric [23.7, 74.9] NOAA Climate 
Data 

original 

count Number of cases in individual county in 2018 
Yuma Romaine Lettuce Outbreak 

numeric [0, 10] CDC Data derived  

PropFemale Proportion of county population that are female 
in 2018 

numeric [0.210, 0.586] American 
Community 
Survey (Census) 

derived 

PropU15 Proportion of county population that are under 
15 years of age in 2018 

numeric [0.060, 0.342] American 
Community 
Survey (Census) 

derived 

PropOver60 Proportion of county population over the age of 
60 in 2018 

numeric [0.063, 0.649] American 
Community 
Survey (Census) 

derived 

expectedValue Expected value based on person time numeric [0.000, 27.3] CDC Data derived 
ln_n Offset used for Poisson Regression numeric  American 

Community 
Survey (Census) 

derived 

 


