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Abstract

Improved Algorithm for Independent Component Analysis (ICA) with the Relax
and Split Approximation

By Sijian Fan

Independent component analysis (ICA) has been increasingly used to separate sources
and extract features in signal processing and neuroimaging studies. To overcome its
computational problems with local optima, as well as problems with non-smooth and
non-convex objective functions, relax and split optimization was applied in this study
and comparisons were made between the refined algorithms and the popular FastICA
algorithm. A tuning parameter was used to control the relaxation and sparsity level
of the Relax-Laplace method (with an objective function derived from the Laplace
density), and to control the relaxation level of the Relax-logistic method (with an
objective function derived from the logistic density).

We conducted a simulation study to examine the impact of the tuning parameter
on accuracy and sensitivity to initialization. We found smaller values of the tun-
ing parameter can lead to accurate estimates of the components while having fewer
issues with local optima relative to FastICA, while larger values can result in inaccu-
racies. Running 1000 times with a pool of 50 initializations, we found Relax-Laplace
algorithm was the most accurate and consistent one compared with Relax-logistic,
FastICA-logistic, and FastICA-tanh.

We conducted a multi-subject analysis of functional magnetic resonance imaging
(fMRI) data from the Human Connectom Project using Relax-Laplace, FastICA-
logistic, and FastICA-tanh. In a pool of 50 initializations, the Relax-Laplace returns
the same result for all initializations, whereas both FastICA-logistic and FastICA-
tanh converged on the estimate of the argmax in just over half of the initializations.
Moreover, the Relax-Laplace produced sparse figures for the rs-fMRI data that high-
light features of resting-state networks.
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Chapter 1

Introduction

Independent component analysis (ICA) is a method for blind source separation com-

monly used in signal processing and neuroimaging. The goal of ICA is to find a linear

transformation of the original data to recover independent components, or make the

components as independent as possible [7]. Two dominant applications of ICA are

separating sources and extracting features [6]. In cognitive neuroscience, ICA is a

popular approach to separate brain signals, and it is commonly applied to functional

magnetic resonance imaging (fMRI) [1]. Resting-state fMRI (rs-fMRI) is measured

when participants are assigned without particular task, wherein spontaneous fluctu-

ations in brain activity are measured across time [2]. Group ICA can be applied

to multi-subject resting-state fMRI data to estimate independent components. The

independent components correspond to resting-state “networks,” or regions of the

brain that tend to spontaneously co-activate [3].

ICA is a challenging computational problem because it commonly involves non-

convex optimization, which arises due to orthogonality constraints and can be made

worse by the choice of non-linearity in the objective function. In practice, di↵erent

measurements of independence are used in di↵erent ICA methods, such as minimum

mutual information (MI), maximum likelihood (ML), and negentropy [4]. Actually,
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these measurements are related with each other: under the constraint of orthogonal

matrices, the problem of minimizing MI will be equivalent to the problem of maxi-

mizing ML, and also be equal to the measurement of negentropy. The very popular

FastICA method applied an approximation on the measurement of negentropy, where

log hyperbolic cosine is generally used as the contrast function during approximation

[6]. Because it works very fast even for a large dataset, FastICA method has been

used in fMRI analysis. Evaluations has already been made to assess its performance

on applications to rs-fMRI data [9]. In the evaluation, the issue of local optima ap-

peared even when only two components were mixed, like the asymmetric mixture

of two normal densities. Situations would become worse if using more complex non-

convex functions. Local optima can produce dramatically di↵erent estimators in both

simulations and fMRI applications. To deal with this problem, starting with multi-

ple initialization is not always a valid option due to the large computation expense,

especially when dealing with big data-set.

In real practice, principle component analysis (PCA) is often used for data whiten-

ing and pre-processing before ICA, and the dimension reduction can help to save a

lot of computation time. However, PCA may remove important information due to

the reduction of dimensions, which can no longer be recovered. Recently, methods

like linear non-Gaussian component analysis (LNGCA) was proposed to deal with

such situations [8]. This method formulated a linear non-Gaussian component model

with Gaussian noise component, maximum likelihood was used to represent the most

important information in the data, rather than the variance in PCA. However, this

method has even more problems with local optima, further improvements are needed

to get a better performance of ICA.

The goals of this study are two-fold: 1) propose algorithms that are less sensitive

to initialization, thus reducing the computational challenges arising from performing

ICA algorithms with hundreds of initial values; 2) utilize the Laplace distribution
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in the objective function, which results in a sparse ICA. Historically, sparse ICA

was a challenging problem due to the non-smoothness of the Laplace density, which

prevents the use of the classic FastICA algorithm involving an approximative Newton

step. Zheng et al. developed the relax-and-split algorithm for sparse ICA, which they

implemented in the Julia programming language [10, 11] . Here we translate their

algorithm to the R programming language and conduct a novel simulation study.

In Section 2, we will introduce briefly about the methods used in this study, mainly

focusing on the general structures of ICA, LNGCA and the relax and split method to

improve existing ICA algorithms. Simulation and applications on real data will also

be introduced. In Section 3, we will talk about the results generated by simulation

and apply the relax-and-split algorithm to Group ICA of rs-fMRI from the Human

Connectome Project. In Section 4, we will discuss the findings of this study, as well

as the restrictions or limitations of our methods.
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Chapter 2

Method

2.1 Classic ICA and Linear Non-Gaussian Com-

ponent Analysis (LNGCA)

The typical expression of classic ICA algorithm is X = MS, where X 2 Rm is a

random vector, S 2 Rn is the independent components random vector with mutually

independent elements, and m and n are usually assumed to be equal so that M 2

Rm⇥n is a square matrix.

To allow dimension reduction in ICA, Linear Non-Gaussian Component Analysis

(LNGCA) was proposed using the concepts of signal and noise [8]. It expanded the

classic ICA expression as the following:

X = MSS+MNN (2.1)

where X 2 Rm is a random vector, S 2 Rn is the independent components vector,

and N 2 Rm�n is the noise vector. Correspondingly, we can show the dimension of

MS 2 Rm⇥n, MN 2 Rm⇥(m�n), and therefore M = [MS,MN] (by concatenation) will

be full rank.
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The classic ICA can be viewed as a noise-free version under this expression for

LNGCA, namely n = m or m� 1. One Gaussian component is allowed here because

the last component can be derived from others. For identifiability, we assume E(S) =

0, E(N) = 0, and E(SST ) = In, namely the data is centered by their mean to have

zero mean and unit variance. The target of ICA is to estimate the unmixing matrix

W = M
�1. Then W is identifiable up to sign and permutation of the columns. We

will introduce the methods briefly below.

2.2 Entropy and Mutual Information

In signal processing, entropy is used to measure the quantity of information. Here

we apply this concept to measure the information of vectors after unmixing by ICA.

Denote H(y) as the entropy of a given vector y = [y1, y2, ..., yn]T with density function

of f(.),

H(y) = �
Z

f(y) log f(y)dy (2.2)

Then we can define the mutual information (MI) between random variables X and Y:

MI = I(X;Y ) = H(X)�H(X|Y ) (2.3)

Suppose we have a classic ICA model with S 2 Rm as the signal vector, then its

mutual information will be defined as the sum of marginal entropy minus its joint
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entropy [7]:

MI = I(S1;S2; ...;Sm) =
mX

i=1

H(Si)�H(S)

= �
Z

log

 
mY

i=1

fSi(Si)

!
fS(S)dS+

Z
log (fS(S)) fS(S)dS (2.4)

=

Z
log

✓
fS(S)Qm

i=1 fSi(Si)

◆
fS(S)dS

where fS(S) denotes the joint density function of S, and fSi(Si) denotes the marginal

density function of ith component in S. Let FS as the distribution of S, let FSi as

the marginal distribution of Si, we can have FS =
Qm

i=1 FSi if the vector S contains

truly independent components, and the mutual information will be exactly zero.

For the ICAmodel ofX = MS with k identically distributed samples x1,x2, ...,xk,

we examine among the set U (U 2 Rm⇥m) to find the true unmixing matrix W

(W 2 Rm⇥m), where U is orthogonal matrices after data pre-whitening. In practice,

the x1, . . . ,xk are not independent, but the objective functions can still successfully

unmix signals. In spatial ICA of fMRI, k correspond to the number of voxels, or

volumetric pixels. Let S be the truly independent signal vector, we can define the

objective function from equation (4) as

LMI(U) = �
kX

j=1

mX

i=1

log fSi(u
0
ixj) +

kX

j=1

log fS(Uxj) (2.5)

where u0
i is used to represent ith row of U matrix to match the column vectors (xj).

Since the second part is invariant to rotations of U under the orthogonal assumption,

the problem in ICA becomes:

Ŵ = argmin
U

�
kX

j=1

mX

i=1

log fSi(u
0
ixj) (2.6)

The above equation is equivalent to maximize the maximum likelihood for the ob-
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served data x1, ...,xk, namely the criterion of minimum mutual information is equal

to the criterion of maximum likelihood under the orthogonal assumption.

2.3 Negentropy and Approximation for FastICA

Algorithm

Negentropy is a normalized entropy but with better properties, it is invariant un-

der linear transformations. Based on the equation (2) in above and a vector y =

[y1, y2, ..., yn]T , the negentropy can be expressed as the following:

J(y) = H(yGauss)�H(y) (2.7)

where yGauss ⇠ N(0, E(yyT )) is a Gaussian distribution with the same covariance

matrix with y. Thus, negentropy can be used as a measurement for non-Gaussianity

[6], which is very helpful to explain mutual information. Similar to the equation (4),

under the ICA structure of X = MS, the mutual information can be expressed as

MI = I(Si;S2; ...;Sm) = J(UX)�
mX

i=1

J(u0
iX) (2.8)

where U is an estimator for the true unmixing matrix W as mentioned above.

FastICA was then develpoed based on the negentropy with the approximation of

J(X) ⇡ c[E{G(X)}� E{G(Y)}]2 (2.9)
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where c is a constant, and G is a nonquadratic function with common choices of

G1(y) =
1

a1
log(cosh(a1y))

g1(y) = tanh(a1y)

G2(y) = log(1 + e
y·a)

g2(y) =
a · ey·a

1 + ey·a

The derivative is given for the future use in the following parts. And now we can

have a new objective function for ICA:

LFastICA(U) =
mX

i=1

"
1

m

kX

j=1

E{G(u0
ixj)}� E{G(Y)}

#2
(2.10)

where E{G(Y)} is a constant. This objective function can be maximized by using an

approximative Newton’s step in a fixed-point algorithm [6]. For the FastICA method,

both “log cosh” (FastICA tanh) and “logistic” (FastICA logistic) were applied in this

study. Note the logistic function is used in the Infomax algorithm, which uses gradient

descent, but here we use the FastICA algorithm for the logistic objective function.

2.4 Relax and Split Optimization for ICA

The idea of relax and split optimization was proposed by Peng Zheng and Aleksandr

Aravkin [10] for nonsmooth and nonconvex problems. Here we apply this algorithm

to deal with non-smooth objective functions like Laplace density, which can greatly

improve the performance of ICA, especially when we observed high dimensional data.

Sparse components will be estimated under the Laplace density (Sparse ICA). Besides,

since relax and split algorithm is also compatible with smooth functions, we also

applied it on the objective function derived from logistic density. Other extremely
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irregular (nonconvex) function G can also use the similar procedure to reduce the

sensitivity to initialization values. Below we introduce the general structure of using

relax and split optimization.

Based on the goal of minimizing mutual information, we will arrive at the problem:

min
U

f(UX), s.t.UT
U = I, (2.11)

where X 2 Rm⇥k is the whitened observed data matrix, U is the orthogonal transfor-

mation matrix that estimates the true unmixing matrixW, and f(X) =
P

i

P
j G(xij).

Using the relax and split problem class, we can express the original problem under a

structure like:

min
x

h(Ax) + g(x), (2.12)

where h(.) can be nonsmooth and nonconvex functions, and g(.) is a quadratic func-

tion. Here, we introduce an auxiliary variable V and consider the relaxed objective,

the above question can be written as the following:

argmin
U,V

f(V) +
1

2⌫
kV �UXk2F , s.t.UT

U = I, (2.13)

where the parameter ⌫ is a tuning parameter whose impact we evaluate in Result 3.1.

The general steps are summarized in Algorithm 1.

The choice of f(.) in (2.13) will impact which optimization can be used in the

sub-problem 2(ii) in Algorithm 1. When updating V, we considered the Laplace (i.e.,

double exponential) density, which has a closed form solution (Part 2.5), and the

logistic function, which can be optimized using Newton’s method (Part 2.6). The

Laplace density is also used in the Lasso, and can also be considered an L1 penalty

on the magnitude of the elements of the independent components. The closed form
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Algorithm 1: Relax and Split Algorithm for ICA

Inputs : V
(0), ⌫, whitened data X

Output: U
(n),V(n)

1. Initialize: k=0 and V
(0) is equal to the first three principle components

2. While not converged
(i). U(k+1)  argminUTU=I kV(k) �UXk2F
(ii). V(k+1)  argminV f(V) + 1

2⌫ kV �U
(k+1)

Xk2F
(iii). k  k + 1

solution is easy to apply for a big data with simple coding structures. The logistic

density is also used in InfomaxICA. Here we use Newton’s method in combination

with the relax-and-split framework, which is to very useful to deal with smooth G

functions.

Updating U is equivalent to the orthogonal Procrustes problem, which is solved

using a singular vector decomposition (SVD), see Part 2.7.

2.5 Solution for Laplace Density

Independent components can be estimated by assuming the components have a Laplace

density. Sparse components will be produced under the Laplace density:

f(x) =
1

2�
e
� |x�µ|

� (2.14)

where µ here is equal to 0 since we have centered the data. The variance is 2�2, and

therefore we set � =
p
2
2 to make the default situation with unit variance.

To start up, we first express the ICA algorithm as the goal of minimizing mutual

information, which eventually is the same as maximizing its log likelihood function
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as mentioned at equation (6):

Ŵ = argmin
U

�
kX

j=1

mX

i=1

log fSi(u
0
ixj)

= argmin
U

�
kX

j=1

mX

i=1

G(u0
ixj) (2.15)

Then, under the relax and split structure with the auxiliary variable V = UX,

we will get a relaxed problem with the following expression:

argmin
V(k)

kX

j=1

mX

i=1

�G(vij) +
1

2⌫
kvij � (UX)ijk2F , or (2.16)

argmax
V(k)

kX

j=1

mX

i=1

G(vij)�
1

2⌫
kvij � (UX)ijk2F (2.17)

where G(vij) = log fLaplace(vij) is the log likelihood of Laplace density data. To solve

this problem, we can consider its sub-problem:

argmax
vij

G(vij)�
1

2⌫
(vij � (UX)ij)

2 (2.18)

And now we can get to its closed form solution with the following steps:

Take derivative: G0(vij)�
1

⌫
(vij � (UX)ij)

set
= 0

Log-likelihood: G0(vij) =
@ log fLaplace(vij)

@ vij
=

1

f(vij)
· @f(vij)

@ vij

= � |vij|0

�
= �sign(vij)

�

Plug in the G
0: � sign(vij)

�
� 1

⌫
(vij � (UX)ij)

set
= 0

It can be simplified to the following equation:

vij +
⌫

�
· sign(vij) = (UX)ij (2.19)
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which we should discuss in two situations given ⌫,� > 0:

8
><

>:

1. (UX)ij > 0 : sign(vij) > 0

2. (UX)ij < 0 : sign(vij) < 0

Therefore, we can get sign((UX)ij) = sign(vij) and solve the problem:

vij = (UX)ij �
⌫

�
· sign(vij)

= |(UX)ij| · sign((UX)ij)�
⌫

�
· sign((UX)ij)

= (|(UX)ij|�
⌫

�
) · sign((UX)ij) (2.20)

2.6 Newton’s Method for Continuous Functions

When dealing with continuous functions, Newton’s method is often applied to find

the minimum values, which is computationally friendly and is able to find a converged

solution in most cases. As previously discussed, ICA is a problem to minimize the

mutual information, or equivalently, to maximize log-likelihood. We know that the

question of finding the minimum (or maximum) can be transferred to the question of

finding roots of its first derivative when the function is smooth and without boundary.

This is the point why we can apply Newton’s method here.

In practice, di↵erent density functions f(.) can be used to get the log-likelihood

function, here we use the logistic density to show the procedure:

f(vij) =
e
(vij�µ)·a

� 1
a · (1 + e(vij�µ)·a)2

, (a < 0) (2.21)

This logistic density has variance of a2⇡2

3 and mean of µ. Under the relax and split

framework, we still start from the problem of minimizing mutual information, and
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then arrive at the sub-problem as mentioned in the equation 2.18:

argmax
vij

G(vij)�
1

2⌫
(vij � (UX)ij)

2
F (2.22)

where G(vij) is the log-likelihood function that needs to be maximized. When we

centered the data to have mean zero and unit variance, it will be the following form

with a = � ⇡p
3
:

G(vij) = log f(vij) = a · vij + log(�a)� 2 · log (1 + e
a·vij) (2.23)

And then, we can follow these steps to apply Newton’s method:

Original equation: argmax
vij

G(vij)�
1

2⌫
kvij � (UX)ijk2F

First derivative: G0 � 1

⌫
(vij � (UX)ij) = a� 2a · evij ·a

1 + evij ·a
� 1

⌫
(vij � (UX)ij)

Define Z(vij): Z(vij) =
2a · ⌫ · evij ·a

1 + evij ·a
+ (vij � (UX)ij)� a · ⌫

Take the derivative: Z 0(vij) =
4a2 · ⌫ · evij ·a

(1 + evij ·a)2
+ 1

Newton’s Method: vn+1 = vn �
Z(vn)

Z 0(vn)
, (n = 0, 1, 2, ...)

(Stop gradient updating when V is converged.)

2.7 Orthogonal Procrustes Problem

As for the problem of updating matrix U in the relax and split optimization:

argmin
UTU=I

kV �UXk2F , s.t.UT
U = I (2.24)
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We first expand the quadratic term to derive its closed form solution:

kV �UXk2F =
X

i,j

(V �UX)2i,j

=
X

i,j

(V)2i,j + (UX)2i,j � 2(V)i,j(UX)i,j

= kVk2F + kUXk2F � 2tr(VT
UX)

= kVk2F + kXk2F � 2tr(XV
T
U)

Thus, the problem of updating matrix U is equivalent to maximize tr(XV
T
U). Let

Ũ⌃̃ṼT be the singular value decomposition of XV
T , we then have:

tr(XV
T
U) = tr(Ũ⌃̃ṼT

U)

= tr(ṼT
UŨ⌃̃)

LetC = Ṽ
T
UŨ, then it will also be orthogonal as the product of orthogonal matrices.

Since ⌃̃ is a diagonal matrix, we can have:

tr(C⌃̃) =
nX

i=1

Cii · ⌃̃ii,

where Cii are non-negative values. To maximize this equation under the orthogonal

assumption, we will need to make the Cii = 1 so that:

C = Ṽ
T
UŨ = In,

U = ṼŨ
T (2.25)
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2.8 Simulation Study

We simulated data under the structure of LNGCA model with three true signals (m =

3) out of a total of 50 components. The true signals can be plotted as 33⇥33 images,

which when vectorized corresponds to k = 1089 observations for each component, and

the “active” pixels will show in the shape of “1”, “2 2”, or “3 3 3”. Four algorithms

were tested to compare their performance of recovering independent components:

1. Relax and split approximation using Laplace density (Relax-Laplace);

2. Relax and split approximation using logistic density (Relax-logistic);

3. FastICA using log cosh function (FastICA-tanh);

4. FastICA using logistic function (FastICA-logistic).

To measure the accuracy of each ICA method, we used the sign- and permutation-

invariant mean-squared error (PMSE) to represent the minimum distance (dMD) as

Risk used in their linear non-Gaussian component analysis [8]. Let Ŵ denote the

estimated unmixing matrix derived by four methods, andW denote the true unmixing

matrix, we examine dMD(Ŵ,W) to check the accuracy and the consistency of results.

Given di↵erent initial values, we simulated 250 times for each algorithm. Di↵erent

scale parameters of ⌫ were also examined in order to determine the e↵ect of the

sparsity-controlling parameter on non-convexity.

Another measurement of accuracy is the probability of getting the first success

that recover all the three independent components, in a pool of 50 initialization values.

Geometric distribution is applied to calculate the probability. After repeating 1000

times (i.e. 50 initialization each time), we can calculate the average probability for

these 1000 experiments as well as its confidence interval, which then can be used to

evaluate accuracy and consistency for each algorithm.
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2.9 Real Data Application

The real data used in this study are the 25 principal components from the 1200-

subjects HCP data release (March 2017), containing 1003 subjects with four com-

plete rfMRI runs (4800 total timepoints). Data were preprocessed by the HCP as

described in the minimal preprocessing pipelines [5]. This resulted in data in gray-

ordinate space, which includes approximately 60,000 cortical vertices and 30,000 sub-

cortical voxels. Data was temporally demeaned and variance normalized. Melodic

Incremental Group PCA was conducted and the top 25 components retained. We

then conducted ICA on these components. This is equivalent to conducting group

ICA[3].

To check the consistency of ICA methods, we run 50 times with di↵erent initial-

ization values here, and select the estimator with the minimum mutual information

(or the maximum non-Gaussianity) as the best estimator, then calculate the distance

between each estimator and the best estimator.

Connectome Workbench (v1.4.2) is used to visualize the ICA maps and compare

the di↵erence among the best estimators that generated by each method.
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Chapter 3

Results

3.1 Tuning Scale Parameters

The simulated data contain both the observed data matrix (X) and the true signal

matrix (S). Using the LNGCA models, we specified 3 signal components out of total

50 components, so that the other 47 ones are defined as noise. The following figures

visualize the data as images.

(a) Simulated X matrix (b) Simulated S matrix

Figure 3.1: Visualization of simulated data in 33⇥ 33 images

For the method of Relax-Laplace, we tested the scale parameter ⌫ of being 0.1,
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0.5, 1 and 2. With a larger parameter of ⌫, the resulting algorithm tends to be

less accurate (Figure 3.2). A smaller ⌫ might produce more accurate and consistent

results but it uses more computation time. Meanwhile, with a smaller ⌫, the results

will be less sparse, which should also be taken into consideration when applying to

fMRI data.

Figure 3.2: Relax-Laplace method with di↵erent scale parameters (⌫)

For the method of Relax-logistic, we tested the scale parameter ⌫ of being 0.1,

0.5, 1 and 2. Similar to the situation of Relax-Laplace, with a larger parameter of

⌫, Relax-logistic will be less accurate, a smaller ⌫ will produce more accurate and

consistent results but consume more computation time (Figure 3.3).
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Figure 3.3: Relax-logistic method with di↵erent scale parameters (⌫)

For the method of Relax-Laplace, we choose ⌫ = 1 with the consideration of

accuracy and also the sparsity of the outputs.

For the method of Relax-logistic, We also tested for ⌫ = 0.01. It can still increase

the accuracy but consumes much more time to find a converged solution. Thus, we

choose ⌫ = 0.1 with the consideration of accuracy and computation time.

3.2 Convergence and Accuracy of the 4 Methods

Using the optimized parameter ⌫ for the method of Relax-Laplace and the method of

Relaxed-logistic, we did simulation with 250 times for all the four methods (Figure

3.4).
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Figure 3.4: Simulation results with 250 iterations

From the above figures, we learned that the Relax-Laplace are more accurate

under the current scale parameters. The Relax-logistic as well as FastICA methods

will have a higher chance to fail recovering all three true components.

3.3 The First Success Probability of the 4 Meth-

ods

The first success is defined as recovering all the 3 components in the simulation data,

namely the minimum distance (dMD) is approaching zero. Here, we used the criterion

of “less than 0.1” to decide the successful results based on the convergence situations

found in Figure 3.

During our simulation, a pool of 50 initialization was used in each iteration, and
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a total of 1000 iterations were repeated. Geometric distribution was then used to

calculate the probability of getting the first success (Table 3.1).

Method N Probability 95% CI

1 Relax-logistic 989 0.048 0.048± 0.001

2 Relax-Softmax 999 0.084 0.084± 0.002

3 FastICA-logistic 985 0.051 0.051± 0.001

4 FastICA-tanh 992 0.056 0.049± 0.001

Table 3.1: The probability of getting the first success within 50 initializations

The method of Relax-Laplace turned out to have the highest probability among

the four methods, the other three were similar to each other. All of the variance is

small, indicating the estimation is consistent across the 1000 times simulation.

Taking the average of probabilities from the table, we can generate a figure of

cumulative mass function to show the four methods (Figure 3.5).
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Figure 3.5: Cumulative mass functions of 4 methods using average probabilities

From this figure, we can get the same results as the Table 3.1. The Relax-Laplace

method will have a greater probability to achieve the first success given a same number

of try.
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3.4 Applications on the Real Data

We also applied the methods on the real data from 1003 subjects made public by

the Human Connectome Project. Data matrix has the dimension of X 2 R91282⇥25,

and the method of Relax-Laplace with ⌫ = 1 was used to produce sparse signals.

FastICA-logistic and FastICA-tanh were also applied to compare the consistency and

accuracy. However, we didn’t apply Relax-logistic on the real data since it would

produce similar accuracy like the FastICAs under ⌫ = 0.1, and it consumes more

time if we use ⌫ = 0.01 for a better performance.

Based on the log likelihood values, we selected the best estimator from a pool of

50 estimators, then calculated the minimum distance dMD between each estimator

and the best one (Figure 3.6).

Figure 3.6: Minimum Distances from the best estimator

Using the criterion of dMD < 0.1, we can calculate the probability of matching the
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best estimator: Relax-Laplace = 1, FastICA-logistic = 0.54, FastICA-tanh = 0.56.

Therefore, we can make a plot of the cumulative mass function under a geometric

distribution (Figure 3.7).

Figure 3.7: Cumulative mass functions using the probability of matching the best
estimator in HCP real data application

To visualize the components, we used the Connectome Workbench to map the

data on a brain surface. The following figure shows the di↵erence between Fas-

tICA methods and Relax-Laplace method. Since the two FastICA methods produced

similar results, here we only presented the comparisons between FastICA-tanh and

Relax-Laplace (Figure 3.8).
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Figure 3.8: Motor Cortex Visualization: FastICA-tanh (Left) vs Relax-Laplace
(Right)

Similarly, we can show the visualize of the default mode network (Figure 3.9).

Figure 3.9: Default Mode Network Visualization: FastICA-tanh (Left) vs Relax-
Laplace (Right)

The FastICAs produced signals everywhere on the brain, whereas the Relax-

Laplace produced sparse signals under the Laplace density. We can control the scale

of sparsity by changing the parameter of ⌫.
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Chapter 4

Discussion

Relax and split optimization used in this study allows the optimization of a non-

convex objective function, which arises due to orthogonality constraints. It also allows

the optimization of non-smooth objective functions, like the Laplace density, which

can be used to encourage sparsity.

Relax-Laplace has a simple coding structure that can be applied to large data

sets, is computationally e�cient, and results in sparse matrices. We can also change

the scale parameter to control the sparsity of its outcomes.

Another thing to note for Relax-Laplace method is the tuning scale parameter ⌫.

In this study, we only conducted a grid search on ⌫ = 0.1, 0.5, 1 and 2. However, the

result shows that being smaller does not always improve the performance of Relax-

Laplace. For example, when applying on the real data, the consistency of estimators

with ⌫ = 1 is better than estimators with ⌫ = 0.5. Further evaluations can be made

to try di↵erent scale parameters and increase the experiment size.

Relax-logistic method used in this study has met more problems with its scale

parameter. From 0.01 to 2, we found that a smaller ⌫ can always improve its ac-

curacy and consistency. However, using ⌫ = 0.01 consumes much more time than

Relax-Laplace and the two FastICA methods, which therefore limited its application
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on large data sets. Of course, we are not restricted on the logistic density, other

smooth functions are also possible to use the relax and split optimization with the

approximation of Newton’s method.
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