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Abstract

Deep Learning Approaches Towards Computerized Drug Discovery
By Bonggun Shin

Proposing a new drug candidate is an essential part of the drug discovery process,
consisting of many sub-tasks. Traditionally, these tasks have been tackled by chem-
istry and pharmaceutical experts and take years to design. Therefore, this thesis
aims to accelerate drug discovery by proposing deep-learning models that accom-
plishes these tasks effectively and quickly. For the target identification problem, we
propose new feature selection methods for both disease-related and prognosis-related
features. Next, we propose a new drug-target interaction model to perform the drug
re-purposing task. In this model, we present a new molecule representation to over-
come the limitation of the current models. We also propose a novel drug candidate
generation model that can modify an existing drug to meet given molecule proper-
ties. For each project, we present an empirical evaluation to show the competency
of the proposed approaches. In addition, we also provide analyses or case studies to
demonstrate the practicality of our approaches.
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1

Introduction

If even one new drug of the stature of penicillin or digitalis has been unjus-

tifiably banished to a company’s back shelf because of exceedingly stringent

regulatory requirements, that event will have harmed more people than all

the toxicity that has occurred in the history of modern drug development.

– William Wardell

Drug discovery is a challenging, time-consuming and costly process, which takes

an average of 9 to 12 years to develop a single drug [42]. Any failure in this costly

and lengthy process can lead to enormous financial losses. What’s worse is failures

occur quite often throughout the drug development pipeline. According to [43], the

estimated average cost to develop a new medicine and gain FDA approval is $1.4

billion. Among this amount, 40% of it is spent on the candidate compound genera-

Candidates Pre-clinical Phase 1 Phase 2 Phase 3
Time 4-5 years 1-2 years 1-2 years 1-2 years 2-3 years
Cost $550M $125M $225M $250M $250M
Molecules 5k-10k 10-20 5-10 2-5 1-2

Table 1.1: Traditional Drug Discovery and Development Process*. It consists of
drug candidate generation step (Candidates), cell-line and animal experiment step
(Pre-clinical), and three phase of human clinical tests (Phase 1,2, and 3).

* The table is adapted from the slide of Data Mining for Drug Discovery in KDD19.
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tion step as summarized in Table 1.1. In this step, around 5,000 to 10,000 molecules

are generated as candidates but over 99.9% of them will be eventually discarded and

only 0.1% of them will be approved to the market. This low approval rate is also

attributed to the stringent regulations to protect people from unknown adversarial

effects. However, as Wardell pointed out in the quote, it’s important to continue to

develop new drugs despite these difficulties. One of the efforts to overcome these

challenges is adopting computer-aided systems in many subtasks of the drug discov-

ery pipeline. With the help of intelligent and automated systems, subtasks of the

drug discovery process can be optimized to make the entire process cost-effective.

We first overview those subtasks in the pipeline (Section 1.1) and introduce the cur-

rent trends of computer-aided drug discovery (Section 1.2). Inspired by the areas

that have overcome the limitations and made many breakthroughs by applying deep

learning, we discuss what innovations we have made in drug discovery through this

work (Section 1.3).

1.1 Drug Discovery Pipeline

The drug discovery process involves several disciplines such as genomics, chemistry,

biology, and pharmacology, which can be summarized as a series of five stages (Fig-

ure 1.1).

/282

FDA 
Approval

Target 
Identification

Molecule 
Discovery

Molecule 
Optimization

Repurposing Generating

Pre-clinical 
Test

Clinical 
Test

Drug Candidates

Figure 1.1: Drug discovery pipeline and the sub-tasks in the Drug Cadidates phase.



3

• Target Identification: The goal of this stage is to find biological entities

(proteins, genes or RNAs) associated with a specific disease with which a pu-

tative drug interacts [4]. Found targets need to be validated using its ability

to regulate biological processes. Through numerous studies, we confirm the

relationships between the target and the disease state [123].

• Molecule Discovery: Molecule discovery involves the finding of synthetic

chemicals that shows a degree of efficacy for a given target and potentially aims

to cure diseases associated with the target [82]. Molecules can be divided into

two types based on its molecular weights: small and large molecules. In this

work, we refer to small molecules as molecules because they account for about

70% of all drugs1. When finding a molecule candidate, we can generate a new

molecule (Section 5) or repurpose a known molecule to a new target (Section 4).

• Molecule Optimization: At the molecule optimization stage, we improve the

potency and other important properties of a candidate molecule. The goal of

the optimization is to prioritize and select promising candidates with safety and

potency.

• Pre-clinical Test: These selected candidates are tested on animals for potency

and toxicity before tested on human volunteers. Using in vivo animal studies,

we also characterize toxicity profiles for various doses [147, 19].

• Clinical Test: The clinical test consists of three phases that investigate side-

effects, safety, dosage profiles, potency and other properties of the candidate

molecule on human volunteers [147]. If any drug passed all three stages of the

clinical test, then it is approved by FDA and available to the market.

The advancement of computing technology has led to the accumulation of large

biological entity databases with its bioactivity profiles [117, 83]. As such, the con-
1https://www.dcatvci.org/5852-small-molecules-still-leading-in-new-drug-approvals

https://www.dcatvci.org/5852-small-molecules-still-leading-in-new-drug-approvals
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ventional drug discovery methodology, which relies on manual works of expert groups

is reaching their limit, because the dataset is now too large for humans to extract

valuable information from it. This inefficient nature of the candidate generation step

serves as motivation to consider an alternative method, artificial intelligence (AI)

based drug discovery. The advantage of AI platforms is higher expected success rate

by reducing the processing time because it can systematically generate candidate

molecules and analyze immense amounts of chemical and biological data in a short

period of time.

1.2 AI in Drug Discovery

Recently, pharmaceutical giants have started to collaborate with small companies

actively developing drug discovery software using AI. As examples, Takeda Pharma-

ceutical is using Numerates AI platform to find small-molecules for oncology, gas-

troenterology, and central nervous system disorders. Pfizer integrates IBM Watson

for Drug Discovery into its pipeline to effectively utilize Pfizer’s scientific knowledge

with a set of machine learning methods expecting the improved search for immuno-

oncology drugs. Eli Lilly is supporting Atomwise to generate promising drug candi-

dates using its deep learning-based molecule screening tool. One might be skeptical

of this new approach because there have been few success stories, however, if shown

to be effective, then this would become a new standard pipeline because it could save

much time and cost. Not only that, just like many AIs have created innovation based

on deep learning, new drug development methodologies can make a big breakthrough

with deep learning.

In an image recognition task, for example, the performance of computer models

was significantly behind the one of a human until 2010, when the ImageNet [39] project

begun. In the ImageNet project, many people gathered, cleaned and annotated about
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1.4 billion of images, with which many researchers have proposed advanced deep learn-

ing models. With the help of the well-curated dataset and appropriate computational

power, many deep learning models can surpass human performance [65, 73, 129, 155].

Similar to computer vision, natural language process (NLP) has gone through a long

dark period, however, since Google AI’s BERT [41] and Transformer [160] have been

proposed, deep learning models have achieved another level. There are two main

factors to this success; availability of high-quality large data sets and the rapid de-

velopment of powerful computational hardware.

These success stories have motivated drug discovery researchers to adopt advanced

deep learning methods to one of the sub-tasks in the drug discovery pipeline. As

described in Section 1.1, there are many sub-tasks in the pipeline, many of which have

not adopted the recently developed deep learning techniques or still relied on manual

labors of experts. For example, the previous state of the art of the drug toxicity

prediction problem [181] had been based on an ensemble of three traditional machine

learning models with assorted features. Although it was accurate, it’s less practical

because preparing all these different kinds of features and feeding them into multiple

models are laborious. Recently, an end-to-end deep learning-based method [2] has

shown the most accurate prediction performance in the toxicity prediction. The

authors leveraged a large drug database, ZINC [74] to pre-train the network so that

a modern deep learning model could be used to solve the problem. Therefore, if a

deep learning model is carefully designed to effectively reflect the characteristics of

the problem, we can make breakthroughs in drug discovery.

1.3 Contributions

With this motivation, this dissertation aims to design a novel deep learning based

model for each of the selected sub-tasks in the drug discovery pipeline summarized in
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the green boxes in Figure 1.1. In particular, we focus on the following three subtasks

in this work:

• Target identification: We propose new feature selection methods for both

disease-related and prognosis-related features. A biological target can be asso-

ciated with a specific disease or a prognosis of a disease. Since the number of

genes is about 20,000, we can pose the target identification problem as a feature

selection task. Therefore, we introduce two feature selection algorithms with

respect to disease detection and prognosis awareness.

[Related publications]:

• Bonggun Shin*, Sungsoo Park*, Won Shim, Yoonjung Choi, Kil-

soo Kang, and Keunsoo Kang, Wx: a neural network-based feature se-

lection algorithm for transcriptomic data, Nature Scientific Report 2019

(IF=4.12)

• Bonggun Shin*, Sungsoo Park*, Ji Hyung Hong, Ho Jung An, Sang

Hoon Chun, Kilsoo Kang, Young-Ho Ahn, Yoon Ho Ko, and Keunsoo

Kang, Cascaded Wx: a novel prognosis-related feature selection frame-

work in human lung adenocarcinoma transcriptomes, Frontiers in Genetics

2019 (IF=3.79)

• Molecule Discovery (Drug repurposing): We propose a new drug-target

interaction model to perform the drug re-purposing task. In this model, we

present a new molecule representation to overcome the limitation of the current

models. In addition to experiments on benchmarks, we also present molecule

candidates from commercially available antiviral drugs that may cure the novel

coronavirus (COVID-19).

[Related publications]:

• Bonggun Shin, Sungsoo Park, Keunsoo Kang, and Joyce C. Ho, Self-

* indicates equal contribution
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Attention Based Molecule Representation for Predicting Drug-Target In-

teraction, MLHC 2019 (30.9%)

• Bo Ram Beck, Bonggun Shin, Yoonjung Choi, Sungsoo Park, and Ke-

unsoo Kang, Predicting commercially available antiviral drugs that may

act on the novel coronavirus (COVID-19) through a drug-target interac-

tion deep learning model, Computational and Structural Biotechnology

Journal (IF=4.72)

• Molecule Discovery (Optimized drug candidate generation): We pro-

pose a novel drug candidate generation model that can modify an existing drug

to meet given molecule properties. This model considers two subtasks at the

same times: molecule generation and molecule optimization.

[Related publication]:

• Bonggun Shin, Sungsoo Park, and Joyce C. Ho, Controlled Molecule

Generation via Self-Attention based Translation, Submitted to KDD ( 20%)

For each project, we present an empirical evaluation to show the competency of

the proposed approaches. In addition, we also provide analyses or case studies to

demonstrate the practicality of our approaches.

1.4 Outline

The rest of this dissertation is structured as three primary chapters. Chapter 2 and

Chapter 3 introduce two feature selection methods one for disease-related and another

for prognosis-related features. Both of them are based on neural networks and the

latter is built upon the former. In Chapter 4, we present a new drug-target interaction

model based on self-attention mechanism, which has shown its potential in the natural

language process domain. Chapter 5 propose a new controlled molecule generating

model which optimizes the input molecule to improve multiple properties in a single
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end-to-end model. Finally, Chapter 6 presents the conclusion of the dissertation and

discusses the future direction of the work.
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2

Disease-Related Target

Identification

The target identification projects primarily consist of two parts: the disease-related

feature selection algorithm (Section 2) and the prognosis-related feature selection

algorithm (Section 3). The two parts have been finished and published as first

authored papers to Nature Scientific Report [118] and Frontiers in Genetics [142],

respectively. Both of them, I was an equally contributed first author with Park.

2.1 Motivation

Gene (or protein) biomarkers clarify the health state of a patient and predict the

potential response to a candidate drug as well [109]. The conventional discovery pro-

cess of these biomarkers demands comprehensive requirements; a broad set of expert

groups, such as biologists, statisticians, and clinicians and other experimental sup-

ports, including laboratory and complicated software tools along with another group

of experts in these areas. The first stage of this process is based on the manual selec-

tion of genes or proteins with limited and biased information from the literature or

experts. Then, experimental validation is followed to confirm the selected biomarker



10www.nature.com/scientificreports/

12Scientific RepoRts | 5:13413 | DOi: 10.1038/srep13413

di!erent organs or di!erent tissues in the same organ. Interestingly, three types of kidney tumors don’t 
show these patterns. We found that KIRC and KIRP are more similar to each other than KICH since 
they share 36% of DE genes (Table 1). Studies have shown that KICH is less aggressive than KIRC and 
KIRP149,150.

Gene expression changes with phenotypic consequences are driven by mutations and epimutations. 
#e driver mutations and epimutations may be scattered in di!erent pathways. We hypothesize that 
some of these mutations or epimutations may disrupt a pathway responsible for cell cycle regulation 
that directly drives cells into uncontrolled proliferation, while others may lie within an organ-speci$c 

Figure 6. Pipeline of the analysis. 

Abbreviation Full Name
Number of 

Cancers
Number of 

Normals

BLCA bladder urothelial carcinoma 185 16

BRCA breast invasive carcinoma 955 106

COAD colon adenocarcinoma 244 23

HNSC head and neck squamous cell carcinoma 353 39

LIHC liver hepatocellular carcinoma 123 46

LUAD lung adenocarcinoma 450 58

LUSC lung squamous cell carcinoma 398 44

KICH kidney chromophobe 66 25

KIRC kidney renal clear cell carcinoma 497 72

KIRP kidney renal papillary cell carcinoma 127 28

PRAD prostate adenocarcinoma 166 38

THCA thyroid carcinoma 479 53

Table 4. Number of cancer and normal samples of 12 cancer types.

Figure 2.1: The conventional biomarker discovery pipeline using assorted machine
learning methods. Figure is from [120].

candidates. The selection of a promising biomarker is important and critical because

an experimental validation is costly. To satisfy these requirements, many machine

learning based biomarker selection methods have been proposed such as unsupervised

clustering [126], gene ontology (GO) analysis [40], sparse regularization [185], differ-

entially expression gene (DEG) analysis [98, 130], and a hybrid of existing methods

(PENG) [120].

Among these methods, DEG is widely used for the identification of biomarker

candidates. It narrows down to a succinct subset of genes from around 200,000 genes

by looking at significantly altered expressions among different groups with a statistical

threshold, an adjusted p-value of 0.05. Although it provides statistically meaningful

genes, it becomes less practical recently because the number of selected genes tends

to be increased to several thousand due to the increased number of raw features. The

major reason for increased features is the reduced cost of sequencing. Consequently,

it has become difficult for researchers to select the parsimonious sets of biomarker
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candidates from a large number of DEG results. To mitigate this problem, several

machine learning-based algorithms have been proposed [120, 132, 121]. In particular,

[120] extracted 14-gene signatures from multiple types of cancers using a pipeline of

various existing machine learning methods, as illustrated in Figure 2.1. These concise

signature gene panels are valuable in the diagnosis and treatment of cancer. However,

the complicated structure of this approach hinders it from widespread usage because

it requires running each pipeline methods separately, which is laborious and time-

consuming. To mitigate this problem, we aim to propose a new approach, called Wx,

that can achieve both high predictive accuracy and simplicity for users.

Wx is our feature selection model for disease-related target identification model.

The name Wx is the combination of a typical neural network weight (W) and input

(x) as the feature importance is calculated based on weights and inputs together.

Section 2.2 explains the formulation of the problem, and Section 2.3 details how we

train the weights, and presents the feature selection algorithms, Wx.
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2.2 Problem Definition

Disease-related Target Identification Task

• Data: Gene data with disease diagnosis

– X: 20,000 different genes (features)

– Y: cancer/normal (binary classification)

• Task: Select top k features that contributes

most in the classification task.

In this project, the goal is to select a concise subset of most important genes

from the whole 20,000 genes, the result of RNA sequencing data. Although [120]

successfully extracted 14 genes that show the promising predictive accuracy, it is not

an end-to-end model, rather it relies on many third-party libraries, which makes it

less accessible. Therefore, the proposed model should not only be easy to use, but

select the most informative features.

Let X be N number of gene expressions for tumor or normal samples, then it can

be formally expressed as X = {X1, X2, ..., XN}. Each Xi has J number of features

(Xi ∈ ℜJ), each of which conveys information regarding the total expression amount

of the corresponding gene. The output value Y ∈ ℜK is a one-hot vector that consists

of K numbers depending on how many classes it represents. In formal notation, the

vector Y can be expressed as Y = [y1, y2, · · · , yK ]. A binary class case, for example,

is to classify tumor samples out of normal samples. Then the i-th input data with

gene expression becomes Xi = [xi1, xi2, · · · , xiJ ], and the output becomes yi. If the

i-th data is from a normal sample, then yi = [1, 0], otherwise yi = [0, 1].
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2.3 Proposed Model: Wx

The proposed approach consists of three steps, training the network, extracting useful

vectors, and discriminating power analysis. Throughout these steps, we use a feed-

forward neural network with the softmax activation [119]. The reason why we use

softmax is that the dependent variable of this task is categorical. When illustrating

the idea, we assume the number of class is two for the simplicity, although the number

of categories can be arbitrary as presented in Algorithm 1.

Figure 2.2: Training step of Wx method. We train the given network using the
datasets consisting of genes as features and disease labels as the truth values of
outputs.

[Step 1] Training the network: Figure 2.2 shows how to train the given network

using the gene datasets. We denote each data sample as Xi and each corresponding

annotation as either normal (N) or cancerous (C). The model is an one-layered dense

network, therefore, we can denote the weights as WN and WC , each of these is a vector

with the dimension is equal to the number of features. In general, we can express this

network with the following equation:
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Ŷi;Θ(Xi) =



P (y = [1, 0, ..., 0]|Xi;W )

P (y = [0, 1, 0, ..., 0]|Xi;W )

...

P (y = [0, 0, ..., 0, 1]|Xi;W )


(2.1)

=
1∑K

k=1 exp(θ
⊤
k Xi)



exp(W⊤
1 Xi)

exp(W⊤
2 Xi)

...

exp(W⊤
KXi)


This softmax classification network includes the model parameters W = {W1,W2, ...,WK}

that are learned from the training data. With these parameters, the prediction of the

output, Ŷi, can be expressed as Equation 2.1 along with the input Xi. This network

is trained using the dataset (cancerous and normal samples as shown in Figure 2.2).

Figure 2.3: Vector extraction step of Wx method. We extract weights (WN ,WC) and
averaged input vectors (X̂N , X̂C) from the trained model.

[Step 2] Extracting useful vectors: With the trained model, we extract two

kinds of vectors to calculate the feature importance. The first group of vectors is the

trained parameters, W . For the binary case example in Figure 2.3, the parameter

vectors are WN and WC , the weights of normal class and the weights of cancer class,

correspondingly. Another group of vectors is the averaged input vectors denoted as
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X̂N and X̂C in Figure 2.3, which can be expressed in the following equation.

X̂k =
1

Nk

∑
Xi∈Class k

Xi (2.2)

The summation term in Equation 2.2, Xi ∈ Class k, represents all Xi’s where

Yi = k. Each averaged input vector is the element-wise mean of all input vectors that

belong to the class of interest. For the binary example in Figure 2.3, X̂N is calculated

from all normal samples, and X̂C is calculated from all cancer samples.

Figure 2.4: Discriminating power analysis.

[Step 3] Discriminating power analysis: For each class, we calculate an

element-wise product (Hadamard product) between the corresponding weight vec-

tor and the averaged input vector as follows:

WXk = Wk ⊙ X̂k (2.3)

Then, we get the absolute difference from all pairs of WXk and WXj, which is the

discriminating index (DI), the output of the method. Using this index, we can select

top-k important features. For the binary example in Figure 2.3, DI is calculated from

one absolute difference term from WXC and WXN .
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Algorithm 1 generalizes all these steps for a general case, where the number of

classes is greater than 2. The network parameters, W , and the dataset, X and Y ,

and the desired number of selected features, c, serves as the input to Discriminative

Index algorithm (Algorithm 1).

Algorithm 1: Discriminative Index
input : X,Y,Θ, c
output: c number of gene names

1 Let Xk be the input vector with class label k;
2 for k ← 1 to K do
3 X̂k ← average(Xk);
4 WXk ← θk ⊙ X̂k;
5 end
6 for j ← 1 to J do
7 DIj ← 0 ;
8 foreach combination pair (a, b) in {1, 2, · · · , K} do
9 DIj ← DIj + |WXa(j)−WXb(j)|

10 end
11 end
12 DIsort ← Sorted DI in descending order ;
13 Return top c gene names in DIsort;

The commentary of this algorithm is as follows.

• Classify X into K classes according to its corresponding Y which is denoted as

X1, X2, . . . , XK .

• For each Xk, take average for all instances to form an average vector, X̂k ∈ ℜJ

• Calculate the hadamard product between the parameter related to the k’th

softmax output value, θk and the average vector, X̂k, which is assigned to

WXk.

• Aggregate the element wise differences between all combination pairs of WXk

to get the discriminant index, DI ∈ ℜJ . The example with K = 3 is illustrated

in Figure 2.4.
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• After the iteration (Line 6-11 in Algorithm 1), the resulting DI is a vector of

size J . This vector is sorted to form the sorted index, DIsort.

• The final c features (genes) are the indices of the top c indices in DIsort.

2.4 Experiments

In the experiments, we use gene expression data (mRNASeq) of 12 different can-

cer types from the cancer genome atlas (TCGA). Each sample contains normalized

expression levels of 20,501 genes (features). A description of the TCGA data can

be found in Table 2.1. We also used other RNA-seq datasets for validation of the

proposed method; GSE720568 contains normalized expression levels of 23,686 genes

performed in 1,257 malignant and 3,256 benign samples. GSE4041921 consists of nor-

malized expression levels of 36,741 genes performed in 164 samples (87 lung cancer

and 77 adjacent normal tissues). GSE103322 contains normalized expression levels of

23,686 genes, performed in 5,578 head and neck squamous cell carcinoma single cells

(2,215 cancer cells and 3,363 non-cancer cells).

We choose the classification model as XGBoost [23] because it’s known as one

of the best classification models. We excluded each set of training samples when

validating the classification performance. For a fair comparison, we selected top 14

features among 20,501 like [120] did in their research. In formal notation, these new

inputs can be represented as Xvselected ∈ ℜN×c. Since this dataset is imbalanced and

data hungry, we use Leave-one-out cross validation (LOOCV), where only one sample

is set aside for the test and the rest of them are used as the train set.

The first part of the experiments is on TCGA datasets. As summarized in Ta-

ble 2.2, we compared our 14 features (Wx-14-UGCB) against Peng’s 14 [120] (Peng-

14-UGCB) and edgeR [130] for 12 different cancer types. Wx-14-UGCB outperformed

others on average by about 1.8%p. Specifically, out of 12 cancer types, Wx-14-UGCB
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Type ID Full name # of cancer
samples

# of normal
samples

# of total
samples

Cancer
Ratio

BLCA Bladder urothelial carcinoma 408 19 427 0.95
BRCA Breast invasive carcinoma 1101 113 1214 0.90
COAD Colon adenocarcinoma 286 41 327 0.87

HNSC Head and neck
squamous cell carcinoma 522 44 566 0.92

KICH Kidney chromophobe 65 25 90 0.72

KIRC Kidney renal
clear cell carcinoma 534 72 606 0.88

KIRP Kidney renal
papillary cell carcinoma 291 32 323 0.90

LIHC Liver hepatocellular carcinoma 374 50 424 0.88
LUAD Lung adenocarcinoma 517 59 576 0.89
LUSC Lung squamous cell carcinoma 502 51 553 0.90
PRAD Prostate adenocarcinoma 497 52 549 0.90
THCA Thyroid carcinoma 512 59 571 0.89

Table 2.1: The number of cancer and normal samples used in this study.

Model Wx Peng’s edgeR
BLCA 95.79 97.20 94.86
BRCA 98.19 96.38 91.78
COAD 94.51 87.20 98.78
HNSC 97.17 92.23 94.35
KICH 95.65 95.65 100.00
KIRC 99.67 96.70 99.34
KIRP 99.38 97.53 99.38
LIHC 90.57 94.81 87.74
LUAD 97.92 97.58 98.96
LUSC 98.19 96.75 99.28
PRAD 93.45 94.55 92.36
THCA 95.80 89.86 90.21
Average 96.72 94.93 94.81

Table 2.2: Classification accuracy comparison in different cancer types of TCGA
datasets(%).



19

4SCIENTIFIC REPORTS |         (2019) 9:10500  | �����ǣȀȀ���Ǥ���ȀͷͶǤͷͶ͹;Ȁ�ͺͷͻͿ;ǦͶͷͿǦͺͽͶͷͼǦ;

www.nature.com/scientificreportswww.nature.com/scientificreports/

�����������������������������������Ƥ����
���Ǥ� Our comparison revealed that UGCBs identi!ed by the 
Wx algorithm were comparable to or outperformed the UGCBs identi!ed by di"erent methods. We further vali-
dated the performance by evaluating the classi!cation accuracy of Wx-14-UGCB and Peng-14-UGCB with can-
cer and normal RNA-seq data from three independent cancer studies including a melanoma cohort (GSE72056) 
that had not been included in the 12 types of TCGA cancer cohort14,15 (Table 4). We calculated the classi!cation 
accuracy by dividing the samples in a given cohort into the training set (2,888 samples, 64%), validation set (723 
samples, 16%), and test set (902 samples, 20%). $en, the training set was used to train a model using a neural 
network (NN) algorithm and the validation set was used to assess how well the model had been trained. Finally, 
the test set was used to calculate the classi!cation accuracy with the trained model. $e comparison revealed 
that Wx-14-UGCB classi!ed malignant and non-malignant melanoma single cells better than Peng-14-UGCB 
(Table 4). With the expression levels of the genes in the Wx-14-UGCB set, 818 out of the 902 test samples were 
correctly classi!ed, whereas 633 out of 902 test samples were correctly classi!ed using the Peng-14-UGCB set. 
For the lung adenocarcinoma data set (GSE40419), Wx-14-UGCB showed 80.00% classi!cation accuracy when 
classifying lung cancer and adjacent normal cells, while Peng-14-UGCB showed 56.87% classi!cation accuracy. 
For the 5,578 head and neck squamous cell carcinoma single cells (2,215 cancer cells and 3,363 non-cancer cells) 

# of UGCBs 14 7
Type Wx Peng’s edgeR Wx Martinez-Ledesma’s
BLCA 95.79 97.20 94.86 95.79 96.26
BRCA 98.19 96.38 91.78 97.20 91.45
COAD 94.51 87.20 98.78 92.68 —
HNSC 97.17 92.23 94.35 95.05 92.57
KICH 95.65 — 100.00 97.83 —
KIRC 99.67 — 99.34 98.68 90.09
KIRP 99.38 — 99.38 100.00 —
LIHC 90.57 94.81 87.74 88.21 —
LUAD 97.92 97.58 98.96 97.92 90.27
LUSC 98.19 96.75 99.28 97.83 94.56
PRAD 93.45 — 92.36 90.55 —
THCA 95.80 — 90.21 95.45
Total 96.72 94.59 94.81 95.74 92.20

Table 3. Classi!cation accuracy comparison (%).

Figure 2. Performance of the Wx-14-UGCB on BRCA, LUAD, and LUSC RNA-seq data. AUC values are listed. 
ROC, receiver operating characteristic.

Figure 2.5: Performance of the Wx-14-UGCB on BRCA, LUAD, and LUSC RNA-seq
data. AUC values are listed. ROC, receiver operating characteristic.
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was the best on 6 cancer types, while Peng-14-UGCB and edgeR outperformed on

two and five sets, respectively. The comparison result of area under the curve (AUC)

values for BRCA, LUAD, and LUSC were 0.9944, 0.9943, and 0.9936, respectively

(Figure 2.5), showing excellent classification performance of the Wx-14-UGCB set.
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this with the remaining sample, was applied to each UGCB set. We first compared our 14 UGCBs (named 
Wx-14-UGCB) with the UGCBs (named Peng-14-UGCB) identi!ed by Peng et al.12 across seven cancer subtypes 
(BLCA, BRCA, COAD, HNSC, LIHC, LUAD, and LUSC). "e Wx-14-UGCB set, which was identi!ed by a neu-
ral network-based feature selection algorithm Wx, showed higher classi!cation accuracy than Peng-14-UGCB 
for !ve out of seven di#erent cancer types (Table 3).

"e di#erentially expressed gene (DEG) analysis is typically used as a standard procedure when comparing 
transcriptomes (whole genes) between two (or more) conditions18. "erefore, we compared the Wx-14-UGCB 
with the top 14 DEGs (named DEG-14-UGCB; sorted into ascending order of adjusted p value) identi!ed using 
a popular DEG analysis method called edgeR7. Similar to the above comparison, Wx-14-UGCB showed higher 
classi!cation accuracy than DEG-14-UGCB for 7 di#erent cancer types (Table 3). "e area under the curve 
(AUC) values of BRCA, LUAD, and LUSC were 0.9944, 0.9943, and 0.9936, respectively (Fig. 2), showing excel-
lent classi!cation performance of the Wx-14-UGCB set.

We further evaluated the identified UGCB (by the Wx algorithm) by comparing those reported by 
Martinez-Ledesma et al.13 (MartinezL-7-UGCB). Wx-7-UGCB showed higher accuracy than MartinezL-
7-UGCB for !ve out of six cancer types (Table 3). We repeated the evaluation with a di#erent algorithm called 
support-vector machine (SVM) (Table S2). "e result showed that XGBoost achieved higher classi!cation accu-
racy compared to SVM with the same UGCB set. "e overall trend of classi!cation accuracy is almost the same in 
XGBoost and SVM. Overall, the Wx-14-UGCB set, which was identi!ed using the neural network-based feature 
selection algorithm Wx, was comparable to or outperformed previously reported universal gene expression bio-
markers in terms of classi!cation accuracy, highlighting the Wx algorithm’s importance.

��������� �������� ���� ����ͷͶͶ��
���Ǥ� As shown in Fig.  1, approximately the top 100 UGCBs 
(Wx-100-UGCB) reached a plateau with the highest classi!cation accuracy. We wondered how many genes iden-
ti!ed by the Wx algorithm coincided with DEGs identi!ed using edgeR. Intriguingly, less than 35% of genes 
overlapped (Fig. 3). For example, a comparison of the top 500 biomarker candidate genes identi!ed by both algo-
rithms showed that only 45 genes (9.0%) were common. In the case of top 2,000 genes, only 379 genes (19.0%) 
overlapped. "us, there was substantial discrepancy between the algorithms with same gene expression data. 
Next, we performed gene ontology (GO) and network analysis to investigate the putative function of top 50 
UGCBs using Metascape19. Genes involved in the Fc gamma receptor dependent phagocytosis, antigen processing 
and presentation, and regulation of apoptotic signaling pathway were signi!cantly altered (Fig. S1), suggesting 
that the deregulation of these pathways might be a critical factor in the onset or progression of most cancers. 
Further investigations of these genes are warranted.

Figure 1. Classi!cation accuracy according to given number of genes. "e x-axis indicates the number of 
top genes (sorted in descending order by the DI values) used for the calculation and the y-axis represents the 
average accuracy.

Cancer type Wx (this study) Peng et al. Emmanual et al.
BLCA

EEF1A1, FN1, GAPDH, SFTPC, 
AHNAK, KLK3, UMOD, CTSB, 
COL1A1, GPX3, GNAS, ATP1A1, 
SFTPB, ACTB

KIF4A, NUSAP1, HJURP, 
NEK2, FANCI, DTL, 
UHRF1, FEN1, IQGAP3, 
KIF20A, TRIM59, CENPL, 
C16ORF59, UBE2C

SMAD2, RUNX2, ABTB1, ST5, CEBPB, SETDB1, CEBPG
BRCA JAK2, NFKBIA, TBP, RXRA, VAV1, HES5, NFKBIB
COAD (READ) EEF1A1, FOXG1, GADD45G, MAPK9, MYOC, SMAD2
HNSC DUSP16, KRT8, RAF1, MED1, PPARG, YWHAB, FABP1
LIHC —
LUAD DOK1, FUT4, INSR, ITGB2, SHC1, PTPRC, KHDRBS1
LUSC BRCA1, ETS2, HIF1A, JUN, LMO4, PIAS3, RBBP7
KICH

—

—
KIRC AR, HGS, RUNX1, BCL3, BRCA1, STAT2, ITGA8
KIRP —
PRAD —
THCA —

Table 2. Gene expression biomarkers identi!ed by di#erent studies.

Figure 2.6: Classification accuracy according to given number of genes. The x-axis
indicates the number of top genes (sorted in descending order by the DI values) used
for the calculation and the y-axis represents the average accuracy.
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(GSE103322), Wx-14-UGCB showed 81.10% classi!cation accuracy when classifying cancer and non-cancer 
cells, while Peng-14-UGCB showed 68.28% classi!cation accuracy. In summary, the top 14 genes (Wx-14-UGCB) 
identi!ed by the Wx algorithm could potentially be used as novel gene expression biomarkers for the detection 
of various types of cancers, although its use might be limited by clinical di"culties associated with RNA-based 
applications. Further experimental investigations are required to validate the Wx-14-UGCB.

Discussion
#e next-generation sequencing (NGS) technique has opened up a new era in investigating genes and genomes 
by generating genome-wide molecular maps including the genome, transcriptome, and epigenome. Demand 
for NGS in many research !elds has been growing rapidly since NGS can be used as a new kind of microscope, 
transforming information of entire molecules into numeric values20. However, this approach has given rise to 
another di"cult problem; selecting appropriate genes (or loci) for directing the next step of a given study. For 
example, in the case of the human genome, selecting reasonable genes (features) from a list of expression levels 
over approximately 60,000 genes (or up to 190,000 transcripts) has become a major bottleneck. Many researchers 
have selected genes from a list of di$erentially expressed genes that is (DEGs) typically identi!ed by a DEG iden-
ti!cation algorithm with an adjusted p value of 0.05 (or less) for multiple tests. However, as the number of samples 
increases, the number of DEGs tends to increase, up to several thousand genes. #erefore, there is a demand for a 
method that automatically recommends the ideal gene set for biomarker candidates.

In this study, we have developed a neural network-based feature selection algorithm called Wx. #e Wx algo-
rithm provides a discriminative index (DI) score for each gene. #e higher the DI score, the greater its in%uence 
on the classi!cation of the given two groups of samples. #us, when selecting genes for biomarkers, researchers 
can select the highest genes sorted (in descending order) by the DI score, and this can guarantee the highest clas-
si!cation accuracy, as shown in this study.

#e 14 gene signatures (Wx-14-UGCB) identi!ed by the Wx algorithm included the housekeeping gene 
GAPDH, which has been used in many studies as a control (or reference) gene (Table 2). Recently, several con-
cerns about using the GAPDH gene as a housekeeping gene has been reported21–25. Our result also indicated that 
the GAPDH gene was one of the highest DI-score genes, and this gene should therefore be used with caution as a 
control gene in gene expression experiments such as qRT-PCR. Interestingly, another well-known housekeeping 
gene ACTB was ranked 14 out of 20,501 genes (Table S1), suggesting that both GAPDH and ACTB genes might 
be unsuitable housekeeping genes for gene expression experiments, particularly in cancer studies. #e expression 
levels of the GAPDH and ACTB genes and the genes in the Wx-14-UGCB set in various cancer types also con-
!rmed the variable expression levels of those genes between cancer and normal samples (http://!rebrowse.org). 
Further investigations of the remaining genes such as FN1, EEF1A1, COL1A1, SFTPB, SFTPC, and ATP1A1 will 
shed light on the identi!cation of novel biomarker genes for a pan-cancer cohort.

One of the disadvantages of arti!cial neural network-based approaches when applied to biomedical data is 
that a large number of samples are needed to achieve good classi!cation or regression performance. We observed 
relatively lower classi!cation accuracy (Table S3) when the Wx algorithm was applied to a non-cancer transcrip-
tomic data set (GSE105127), which contains normalized expression levels of 65,671 transcripts performed in 
the pericentral (n = 19), intermediate (n = 19), and periportal (n = 19) regions of the human liver isolated by 

Figure 3. Comparison of genes identi!ed by Wx and edgeR. #e x-axis indicates the number of top genes used 
for the comparison and the y-axis represents the percentage of overlap between the gene sets.

GSE id Cancer type Wx-14-UGCB Peng-14-UGCB
GSE72056 Melanoma 90.71 70.22
GSE40419 Lung adenocarcinoma 80.00 56.87

GSE103322 Head and neck squamous cell carcinoma (primary tumors and 
lymph node metastases; single-cell transcriptomes 81.10 68.28

Table 4. #e classi!cation accuracy of the UGCBs identi!ed by di$erent methods.

Figure 2.7: Comparison of genes identified by Wx and edgeR. The x-axis indicates the
number of top genes used for the comparison and the y-axis represents the percentage
of overlap between the gene sets.

As shown in Figure 2.6, approximately the top 100 UGCBs (Wx-100-UGCB)

reached a plateau with the highest classification accuracy. We wondered how many

genes identified by the Wx algorithm coincided with DEGs identified using edgeR.
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Supplementary Figure 1. Key networks of the top 50 genes with highest DI scores 

are shown. 

 

Figure 2.8: Key networks of the top 50 genes with highest DI scores are shown.

Intriguingly, less than 35% of genes overlapped (Figure 2.7). For example, a compar-

ison of the top 500 biomarker candidate genes identified by both algorithms showed

that only 45 genes (9.0%) were common. In the case of top 2,000 genes, only 379

genes (19.0%) overlapped. Thus, there was substantial discrepancy between the algo-

rithms with the same gene expression data. Next, we performed gene ontology (GO)

and network analysis to investigate the putative function of top 50 UGCBs using

Metascape [156]. Genes involved in the Fc gamma receptor dependent phagocytosis,

antigen processing and presentation, and regulation of apoptotic signaling pathway

were significantly altered (Figure 2.8), suggesting that the deregulation of these path-

ways might be a critical factor in the onset or progression of most cancers. Further

investigations of these genes are warranted.

GSE id Cancer type Wx-14-UGCB Peng-14-UGCB
GSE72056 Melanoma 90.71 70.22
GSE40419 Lung adenocarcinoma 80.00 56.87
GSE103322 Head and neck squa-

mous cell carcinoma
81.10 68.28

Table 2.3: The classification accuracy of the UGCBs for non TCGA dataset (%).

We further validated the performance by evaluating the classification accuracy of

Wx-14-UGCB and Peng-14-UGCB with cancer and normal RNA-seq data from three
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independent cancer studies including a melanoma (GSE72056), Lung adenocarcinoma

(GSE40419), and head and neck squamous cell carcinoma (GSE103322) that had not

been included in the 12 types of TCGA cancer cohort [179, 154]. We calculated the

classification accuracy by dividing the samples in a given cohort into the training set

(2,888 samples, 64%), validation set (723 samples, 16%), and test set (902 samples,

20%). Then, the training set was used to train a model using a neural network (NN)

algorithm and the validation set was used to assess how well the model had been

trained. Finally, the test set was used to calculate the classification accuracy with

the trained model. As shown in Table 2.3, Wx-14-UGCB significantly outperformed

Peng-14-UGCB by large margin. Specifically, with the expression levels of the genes

in the Wx-14-UGCB set, 818 out of the 902 test samples were correctly classified,

whereas 633 out of 902 test samples were correctly classified using the Peng-14-UGCB

set. For the lung adenocarcinoma data set (GSE40419), Wx-14-UGCB showed 80.00%

classification accuracy when classifying lung cancer and adjacent normal cells, while

Peng-14-UGCB showed 56.87% classification accuracy. For the 5,578 head and neck

squamous cell carcinoma single cells (2,215 cancer cells and 3,363 non-cancer cells)

(GSE103322), Wx-14-UGCB showed 81.10% classification accuracy when classifying

cancer and non-cancer cells, while Peng-14-UGCB showed 68.28% classification accu-

racy. In summary, the top 14 genes (Wx-14-UGCB) identified by the Wx algorithm

could potentially be used as novel gene expression biomarkers for the detection of

various types of cancers, although its use might be limited by clinical difficulties asso-

ciated with RNA-based applications. Further experimental investigations are required

to validate the Wx-14-UGCB.
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2.5 Discussion

The proposed algorithm estimates the classification power of genes in a given gene

expression data set using the discriminative index (DI) score algorithm. Researchers

can intuitively select gene-expression biomarker candidates from the DI scored gene

list.

Cancer type Wx-14-UGCB Peng-14-UGCB
BLCA

EEF1A1, FN1, GAPDH, SFTPC,
AHNAK, KLK3, UMOD, CTSB,

COL1A1, GPX3, GNAS, ATP1A1,
SFTPB, ACTB

KIF4A, NUSAP1, HJURP, NEK2,
FANCI, DTL, UHRF1, FEN1,

IQGAP3, KIF20A, TRIM59, CENPL,
C16ORF59, UBE2C

BRCA
COAD(READ)
HNSC
KICH
KIRC
KIRP
LIHC
LUAD
LUSC
PRAD
THCA

Table 2.4: Gene expression biomarkers identified by different studies.

Our interesting finding is that the 14 gene signatures (Wx-14-UGCB) identified

by the Wx algorithm includes the housekeeping gene GAPDH (Table 2.4), which has

been used in many studies as a control (or reference) gene. Recently, several concerns

about using the GAPDH gene as a housekeeping gene has been reported [56, 46, 6,

146, 17]. Our result also indicated that the GAPDH gene was one of the highest

DI-scored genes, and this gene should therefore be used with caution as a control

gene in gene expression experiments. Interestingly, another well-known housekeeping

gene ACTB was ranked 14 out of 20,501 genes (Table 2.5), suggesting that both

GAPDH and ACTB genes might be unsuitable housekeeping genes for gene expression

experiments, particularly in cancer studies. Further investigations of the remaining

genes such as FN1, EEF1A1, COL1A1, SFTPB, SFTPC, and ATP1A1 will shed light

on the identification of novel biomarker genes for a pan-cancer cohort.

One of the disadvantages of artificial neural network-based approaches when ap-
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Rank Gene Discriminative Index (arbitrary number, higher is better)
1 EEF1A1 1.65849
2 FN1 1.61224
3 GAPDH∗ 1.50260
4 SFTPC 0.96081
5 AHNAK 0.71224
6 KLK3 0.56306
7 UMOD 0.55580
8 CTSB 0.42822
9 COL1A1 0.41349
10 GPX3 0.37308
11 GNAS 0.36476
12 ATP1A1 0.34630
13 SFTPB 0.33725
14 ACTB∗ 0.32997
15 ACPP 0.32805
16 FTL 0.31993
17 P4HB 0.31076
18 A2M 0.30867
19 PIGR 0.29527
20 DCN 0.29410
21 EEF2 0.28864
22 CLU 0.28477
23 ACTG1 0.25872
24 PABPC1 0.24866
25 SPARC 0.24861
26 CTSD 0.24328
27 RPL3 0.23105
28 RPL8 0.22458
29 ALDOA 0.21630
30 B2M 0.21391
31 MYH11 0.21365
32 TPT1 0.20991
33 HLA-B 0.20859
34 TXNIP 0.20725
35 HSP90AB1 0.20676
36 MGP 0.20396
37 APP 0.20064
38 PKM2 0.19627
39 ALB 0.19292
40 ALDOB 0.19162
41 KRT13 0.18497
42 C4A 0.18036
43 CALR 0.17827
44 APLP2 0.17746
45 ENO1 0.17689
46 HLA-A 0.17441
47 GSN 0.17034
48 COL1A2 0.16909
49 MYH9 0.16713
50 APOE 0.16215

Table 2.5: Genes ranked by the discriminative index score. ∗ indicates genes known
as house keeping genes.
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Number of top features
(genes) identified by

WX

Classifier Liver (GSE105127)
Pericentral

(n=19)
Intermediate

(n=19)
Periportal

(n=19)

10 XGBoost 57.89 50.00 50.00
SVM 68.42 72.22 0.00

20 XGBoost 78.95 66.67 50.00
SVM 73.68 44.44 0.00

30 XGBoost 84.21 72.22 62.50
SVM 73.68 27.78 6.25

50 XGBoost 84.21 66.67 50.00
SVM 78.95 33.33 0.00

100 XGBoost 84.21 61.11 62.50
SVM 84.21 55.56 0.00

200 XGBoost 84.21 77.78 81.25
SVM 84.21 61.11 0.00

Table 2.6: Classification accuracy (%) of non-cancer transcriptomic data set.

plied to biomedical data is that a large number of samples are needed to achieve good

classification or regression performance. We observed relatively lower classification

accuracy (Table 2.6) when the Wx algorithm was applied to a non-cancer transcrip-

tomic data set (GSE105127), which contains normalized expression levels of 65,671

transcripts performed in the pericentral (n = 19), intermediate (n = 19), and peripor-

tal (n = 19) regions of the human liver isolated by laser-captured microdissection [14].

In addition, selected features from the same data set vary depending on algorithms.

In our comparison, there were no overlaps between the top 14 genes identified by

Wx or Pengs. This kind of inconsistency is caused mainly by the algorithmic differ-

ence, as reported in several differentially expressed gene analysis studies [50, 29, 164].

Thus, it is difficult to establish which algorithm is better by comparison without ex-

perimental verification. Therefore, the usefulness of the 14 genes (Wx-14-UGCB) for

cancer biomarkers should be validated with extensive experimental evidence in the

near future.

In summary, the Wx algorithm developed in this study estimates the classification
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power of genes in a given gene expression data set using the discriminative index

(DI) score algorithm. Researchers can intuitively select gene-expression biomarker

candidates from the DI scored gene list. Further experimental validation will be nec-

essary to prove the Wx algorithms usefulness.

2.6 Contribution

In this project, my contributions are as follows.

• Designed the study with Park and Kang.

• Developed the algorithm with Park and Shim.

• Analyzed the result with Ki.Kang, Park, Ke.Kang, and Choi.

• Wrote the manuscript with Ki.Kang, Park, Ke.Kang, Shim, and Choi.
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3

Prognosis-Related Target

Identification

In the second biomarker identification project, we aim to extend the first feature

selection method (Chapter 2) to a regression task. The first feature selection method

(Chapter 2) is dealing with a discrete target label, while the target value of this

project is a survival time, which is continuous. Therefore, we cannot directly use

the previous method in a prognosis-related feature selection problem. To solve this

problem, we present a new feature selection method called Cascaded Wx algorithm.

3.1 Motivation

In this project, the goal is to select a concise subset of most important genes from the

whole 20,000 genes, the result of RNA sequencing data that can classifying high/low

risk cohorts. We focus on lung caner patients because lung cancer is the most com-

monly diagnosed cancer and the second most common cause of cancer-related deaths

worldwide [12]. Most lung cancer cases are nonsmall cell lung cancer (NSCLC), and

lung adenocarcinoma (LUAD) accounts for more than 50% of all NSCLCs. Recently,

survival rates for LUAD patients have been greatly improved with the development
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of improved treatment approaches, including surgical or radiation techniques, and the

introduction of targeted therapies and immunotherapies tailored to the molecular or

immunologic characteristics of tumors. However, the survival rate is still only about

50% for potentially curatively resected LUAD [171]. To optimize clinical interven-

tion, it is important to identify which patients have poor prognoses. The prediction

of prognosis requires an extensive knowledge of various aspects of cancer biology and

an understanding of relevant clinical information such as TNM stage, histology, and

genetic mutations [61]. Among the clinical features, TNM staging is the most suc-

cessful clinical parameter in practice and is widely used to predict patients prognoses.

However, this staging method still has room for improvement in the era of genomic se-

quencing, where abnormalities in multiple genes can be detected simultaneously [134].

Among the various genome-wide applications, the gene expression signature is the

most promising approach to the prediction of clinical outcomes [159, 128, 24], as

a suite of expressed genes reflects the identity of a given cell population. Several

gene expression-based clinical applications such as MammaPrint [168] and Oncotype

DX [18] are being used in clinical practice. These applications predict patients’ prog-

noses and drug and/or chemotherapy responsiveness by examining the expression

levels of a defined gene set. Therefore, the identification of a particular gene set

associated with clinical findings is crucial in many disease research studies.

Recent technological advancements in clinical genome sequencing using next-

generation sequencing (NGS) technologies provide opportunities to understand the

relationships between gene expression and tumor phenotypes [86]. For example, sev-

eral studies classify NSCLC patients into subgroups with differing clinical outcomes

using gene signatures [22, 148, 11, 173]. However, the results of such studies have

been unsatisfactory in terms of discrepancies between identified gene signatures. The

possible reasons for the inconsistent results among the studies include the use of small

samples compared to the number of genes (high-dimensional data), the use of differ-
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ent platforms, and the problems with feature preprocessing steps. In addition, there

are no robust methods for analyzing such high- dimensional data effectively.

Machine learning (ML) algorithms can be a useful approach to the analysis of

high volumes of data if a model is well constructed with high-quality input data for

training. Numerous variations of the original ML algorithms have been developed

and applied to a variety of problems [95, 118, 183, 49]. In molecular biology, NGS

technologies, which revolutionized the profiling approach by sequencing huge numbers

of given short DNA fragments, have been generating enormous amounts of data these

days [60]. Because of this, there is an urgent need to develop ML-based algorithms

that can effectively analyze such high volumes of genomic data. Support vector ma-

chines (SVM; [21]), k-nearest neighbors [30], multilayer perceptrons [103], decision

trees [25], random forest (RF; [182]) algorithms, logistic regression, and gradient

boosting machines [102] are ML algorithms that are frequently used to analyze big

data. However, these methods were not originally designed to extract prognostic fea-

tures from patients’ data. Recently, several ML-based algorithms have been proposed

to select a subset of key features (genes) for classification [3, 176, 52] or to identify

prognostic features [167] from high-throughput molecular profiling data. There is still

room for improvement, however, as new deep learning algorithms continue to emerge

in the field of ML [41, 122].

To effectively analyze multidimensional datasets, dimension-reduction algorithms

such as feature selection are often required. Principal component analysis (PCA;

[169]), nonnegative matrix factorization [90], kernel PCA [107], graph-based kernel

PCA, linear discriminant analysis [106], and generalized discriminant analysis [7] are

algorithms that are widely applied to high-dimensional biomedical datasets. In ad-

dition to these approaches, several studies recently used artificial neural networks to

predict clinical outcomes in lung cancer patients [77, 172, 64]. However, these ap-

proaches do not fully take into account available information such as high-throughput
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profiling data (e.g., transcriptomes) and/or clinical information for feature selection.

To address these problems, we developed a novel feature selection framework called

Cascaded Wx (CWx) to enhance the efficiency of feature selection and the accuracy

of prediction for given patients prognosis. Our analyses revealed that the CWx frame-

work selected more prognosis-related features than algorithms in categories such as

similarity-based, sparse learning-based, ML-based, and statistical-based models, high-

lighting the potential value of our proposed framework for biomedical data.

3.2 Problem Definition

Prognosis-related Target Identification Task

• Data: Gene data with survival time

– X: 20,000 different genes (features)

– Y: Time to event (decease)

• Task: Select top k features that contributes

most in classifying high/low risk cohorts.

Gene expression data (mRNASeq) of The Cancer Genome Atlas (TCGA) lung

adenocarcinoma (LUAD) were obtained from Firehose at The Broad Institute (https:

//gdac.broadinstitute.org). From the whole data, we extracted gene features,

survival values, and censoring information, which can be formally represented as

X ∈ ℜn×d, S ∈ ℜn, and C ∈ ℜn, respectively; n is the number of patients, and d

is the feature dimension. If Ci = 0 (uncensored patients), the survival time interval

(Si) represents the time between the start of observing the patient status and the

https://gdac.broadinstitute.org
https://gdac.broadinstitute.org
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event time (date of death). If a patient datum is right censored (Ci = 1), the sur-

vival time interval (Si) represents the time elapsed between the start of observing the

patient status and the end of the study. Among the 507 LUAD patients, there are

183 uncensored (death event occurred) samples and 324 right-censored samples. Each

sample contained read counts (expression levels) of 20,501 genes. These count-based

values are abundant for a few specific transcripts (highly expressed genes), a factor

that prevents a model from finding a good pattern. To mitigate this problem, we use

a log transformation:

Xnew
ij = log2(Xij + 1)

for i ∈ n and j ∈ d. A constant, 1, is added to the read count value of each gene

before applying the logarithm function to avoid the numerical problems. Min-max

normalization is then applied to the log-transformed data. With these datasets, the

objective is to select the optimal gene set associated with patients prognoses using

the survival information.

3.3 Proposed Model: Cascaded Wx

The proposed method was based on the Wx algorithm [118] (Chapter 2), which iden-

tifies key genes discriminating different classes. As this method was designed for a

classification problem, we extend it to be applicable to the patient cohort grouping

task with continuous survival values. The basic concept of the proposed algorithm

(cascaded WX, CWx) is to guide the feature selection algorithm by efficiently orga-

nizing the training curriculum from an easy to hard one. For each stage we select

a subset of the training samples (patients). There are multiple stages with different

difficulty levels. By doing this, the model will automatically reduce the number of

features (genes). The three stage example is summarized in (Figure 3.1). In the

first step, patients are divided into high- and low-risk cohorts according to whether
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(death event occurred) samples and 324 right-censored samples. 
For other cancer types, there were 283, 940, 227, and 79 right-
censored samples for LUSC, BRCA, BLCA, and READ, respectively. 
Each sample contained read counts (expression levels) of 20,501 
genes. !ese count-based values were abundant for a few speci"c 
transcripts (highly expressed genes), a factor that prevents a 
model from "nding a good pattern. To mitigate this problem, we 
used a log transformation:

 X Xij
new

ij= +log2 1( ), 

for i ∈ n and j ∈ d. A constant, 1, was added to the read count 
value of each gene before applying the logarithm function to 
avoid problems with zeros. Min-max normalization was then 
applied to the log-transformed data.

Development of a Novel Prognosis-Related 
Feature Selection Framework: CWx
!e proposed method was based on the Wx algorithm 
(Park et al., 2017), which identi"es key genes discriminating 
between di#erent groups, such as normal vs. cancer, based on 
transcriptome (RNAseq) data. !e top features were selected 
using the following discriminating power (DP) equation:

 
DP W X W Xj normal j normal cancer j cancer= −ˆ ˆ

, ,  

Wnormal and Wcancer represent trained weights linked to the 
normal and cancer output of the so$max, respectively. ˆ

,X j normal  
is the average of the feature j for the class, “normal,” and likewise, 
ˆ

,X j cancer  is the average of feature j for the class, “cancer.” As this 
method was designed to be applied to a classi"cation problem, we 
cannot apply it to the survival analysis as is. !erefore, in this study, 
we propose a novel prognosis-related feature selection algorithm, 
CWx, which identi"es prognosis-associated features (genes) 

from a large amount of patient transcriptome data, together with 
clinical information. !e basic concept of the CWx algorithm is to 
improve learning performance by reducing the number of samples 
(patients) and the number of features (genes) over the course 
of three steps (Figure 1). In the "rst step, patients were divided 
into high- and low-risk cohorts according to whether they have 
survived for 3 years. For example, 115 deceased patients within 
3 years in a training set formed one group (28.4%; high risk), 
whereas 104 patients who lived more than 3 years formed another 
group (25.7%; low risk). !e remaining patients (186, 45.9%) 
were right censored, meaning that there was no information as 
to whether these patients were deceased within 3 years. !ese 
right-censored patients were excluded in the training stage. !e 
second and third steps are similar to the "rst step with di#erent 
cuto#s (2 versus 4 years and 1 versus 5 years, respectively). As 
with the strategy of reducing the number of samples, the number 
of features (genes) was also reduced by a quarter in each step. One 
quarter of the features was selected according to the importance 
determined by our previous Wx feature selection algorithm (Park 
et al., 2017). A total of 19,960 genes were used as input features 
a$er removing genes with no variance. !e "nal output is a set 
of genes ranked by prognostic weights, estimated in a manner 
similar to the Wx algorithm (Park et al., 2017). !e code for the 
CWx algorithm is available on the GitHub website (https://github.
com/deargen/DearCascadedWx).

Survival Evaluation Model
!e survival evaluation model used in this paper is the Faraggi–
Simon method (Faraggi and Simon, 1995), which is a nonlinear 
proportional hazards model. !is model incorporates a negative 
log-partial likelihood as a cost function, which can be represented 
as follows:

 
log ( ) ( , ) log ( , )

::
L f X e xi

f
j

j S Si C j ii
θ θ θ= −
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FIGURE 1 | An example of CWx’s feature selection procedure. Input samples (patients) are reduced through three cascaded steps using different criteria. 
Three-year, 2 versus 4-year, and 1- versus 5-year cutoffs for categorizing samples into either high- or low-risk groups are used at first, second, and third steps, 
respectively. Input features (genes) are also reduced by a quarter in each step. Finally, the prognostic potential of features can be estimated according to the weights 
calculated from the trained neural network.

Figure 3.1: An example of CWx’s feature selection procedure. Input samples (pa-
tients) are reduced through three cascaded steps using different criteria. For each
step, a different cutoff criteria is used in an easy to hard manner. For example, three-
year, 2 versus 4-year, and 1 versus 5-year cutoffs for grouping samples into either high-
or low-risk groups are used at the first, second, and third steps, respectively. Input
features (genes) are also reduced by a quarter in each step. Finally, the prognostic
potential of features can be estimated according to the weights calculated from the
trained neural network.

they have survived for 3 years. For example, 115 deceased patients within 3 years

in a training set formed one group (28.4%; high risk), whereas 104 patients who

lived more than 3 years formed another group (25.7%; low risk). The remaining pa-

tients (186, 45.9%) were right censored, meaning that there was no information as to

whether these patients were deceased within 3 years. These right-censored patients

are excluded in the training stage. The second and third steps are similar to the first

step with different cutoffs (2 versus 4 years and 1 versus 5 years, respectively). As

the number of samples is decreased by each step’s criteria, the number of features

(genes) was also reduced by a quarter in each step. One quarter of the features were

selected according to the importance determined by our previous Wx feature selection

algorithm. A total of 19,960 genes were used as input features after removing genes

with no variance. The final output after these three steps is a set of genes ranked by

prognostic weights, estimated in a manner similar to the Wx algorithm.
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3.4 Experiments

We compared the proposed algorithm, CWx, to the following supervised feature selec-

tion algorithms from five different categories: i) ML based models: RF [13], SVM [28],

and Extreme Gradient Boosting (XGBoost) [23]; ii) similarity based models: fisher

score [45], ReliefF [87], and trace ratio (Trace ratio) [110]; iii) sparse learning-based

models: multi-task feature learning via efficient l2,1-norm minimization (LLL21) [96]

and robust feature selection (RFS) [111]; iv) statistical based models: Fscore; and V)

others : cox proportional hazard (CoxPH) [31]. These algorithms calculate a score

for each given feature, so the performance of each cancer prognosis prediction can

be estimated by comparing the highest-scoring features selected by each algorithm.

We also compared CWx to CoxPH and Coxnet as baseline methods for prognosis

prediction. Feature selection criteria for CoxPH and Coxnet were P value and beta

coefficients, respectively.
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(light blues in Figure 2B) were used for training both a feature 
selector and a survival model. For the survival model, we used 
conventional negative log likelihood. !e Kaplan–Meier survival 
plot with the log-rank test and c-index was also used to evaluate 
the genes identi"ed by each algorithm.

RESULTS

Comparison of Feature Selection 
Algorithms for Prognosis Prediction
To compare the prognosis-related gene selection performance of 
CWx with the current state-of-the-art feature selection algorithms, 
we used TCGA transcriptome data (expression levels of 20,501 
genes) of LUAD (n = 507) together with clinical information. !e 
dataset contained 324 censored and 183 events (deceased). Patients 
were categorized into either the high-risk group or the low-risk 
survival group according to a 3-year survival outcome (censored or 
deceased), making this a binary classi"cation problem. We compared 
the proposed algorithm, CWx, to the following supervised feature 
selection algorithms from "ve di#erent categories: i) ML-based 
models: RF (Breiman, 2001), SVM (Cortes and Vapnik, 1995), 
XGBoost (Chen and Guestrin, 2016), and connection weight 
(Olden et al., 2004); ii) similarity-based models: Fisher score 
(Duda et al., 2012), ReliefF (Kononenko, 1994), and Trace ratio 
(Nie et al., 2008); iii) sparse learning-based models: multitask 
feature learning via e$cient l2,1-norm minimization (LLL21; Liu 
et al., 2009) and RFS (Nie et al., 2010); iv) statistical-based models: 
Fscore and DESeq2 (Love et al., 2014); and v) others: CoxPH (Cox, 
1972). !e information theoretical-based algorithms such as max-
relevance min-redundancy (Peng et al., 2005), conditional mutual 
info maximization (Fleuret, 2004), and conditional infomax feature 
extraction (Lin and Tang, 2006) were excluded for evaluation due 
to the small numbers of features identi"ed by the algorithms (<100 
features). !ese algorithms calculate a score for each given feature, 
so the performance of each cancer prognosis prediction can 
be estimated by comparing the highest-scoring features selected 
by each algorithm. !e Python package “skfeature-chappers” 
(version 1.0.3; https://pypi.org/project/skfeature-chappers/) was 

used for the feature selection algorithms, and the top 100 features, 
as ranked by the feature importance score (or feature coe$cient) 
calculated by each algorithm, were used for the comparisons. !e 
importance assigned to features by ML algorithms, which were 
not originally intended for feature selection, was determined by 
estimating the importance for XGBoost and RF and by assessing 
a coe$cient for SVM. !e “xgboost” Python package (version 
0.71) was used to apply the XGBclassifer” function, and the “scikit-
learn” Python package (version 0.19.1) was used to apply the “SVC” 
(SVM) and “RandomForestClassifer” functions. We also compared 
CWx to CoxPH and Coxnet as baseline methods for prognosis 
prediction. Feature selection criteria for CoxPH and Coxnet were P 
value and beta coe$cients, respectively. Because Coxnet produced 
less than 50 genes, we could not calculate the c-index of the top 
100 genes for Coxnet. We therefore used the results from Coxnet, 
with all known genes used a%er model learning, as the baseline 
performance for comparison. !e results indicated that CWx was 
superior to the other methods in terms of c-index when comparing 
the top genes (cumulative) from 1 to 100 in LUAD samples (Figure 3 
and Table 1). We also evaluated the algorithms with the log-rank 

FIGURE 3 | Comparison of feature selection algorithms with cumulative top k genes. Violin plot shows the c-indexes of the top genes (cumulative from 1 to 100 
in lung adenocarcinoma (LUAD) samples; n = 100) identified by each algorithm (left). White circles indicate the medians; box limits inside the polygons indicate the 
25th and 75th percentiles as determined by R software; whiskers extend 1.5 times the interquartile range from the 25th and 75th percentiles; polygons represent 
density estimates of data and extend to extreme values. Asterisks (*P < 0.05 and ***P < 0.001) indicate the results of one-way ANOVA (P < 0.0001) with post hoc 
test (pairwise t test with Bonferroni–Holm correction). x- and y-axes indicate the number of cumulative top genes and c-index, respectively (right).

TABLE 1 | Summary of c-indexes for lung adenocarcinoma (LUAD) patients 
using top genes.

Top 5 Top 10 Top 50 Top 100

CWx 0.5670 0.5786 0.5971 0.5932
CoxPH 0.5077 0.5072 0.5709 0.5709 
DESeq2 0.5943 0.6148 0.5813 0.5727 
XGBoost 0.5833 0.5687 0.5719 0.5849 
RF 0.5541 0.5593 0.5752 0.5741 
SVM 0.5121 0.5230 0.5054 0.5415 
Fscore 0.4981 0.5161 0.5641 0.5805 
ReliefF 0.5215 0.5377 0.5569 0.5704 
Trace ratio 0.5502 0.5624 0.5616 0.5539 
Fisher score 0.5756 0.5814 0.5903 0.5742 
RFS 0.5639 0.5111 0.5650 0.5546 
LLL21 0.4927 0.4915 0.5470 0.5614 
Connection weight 0.5319 0.5424 0.5882 0.5917

The red and bolded texts represent the first and second highest scores in each category, 
respectively.

Figure 3.2: Violin plot of the comparison of feature selection algorithms with top 100
genes. The metric is a c-index with the selected 100 genes in lung adenocarcinoma
(LUAD) samples for each algorithm (left). White circles indicate the medians; box
limits inside the polygons indicate the 25th and 75th percentiles as determined by R
software; whiskers extend 1.5 times the interquartile range from the 25th and 75th
percentiles; polygons represent density estimates of data and extend to extreme val-
ues. Asterisks (∗p < 0.05 and ∗ ∗ ∗p < 0.001) indicate the results of one-way ANOVA
(p < 0.0001) with post hoc test (pairwise t test with BonferroniHolm correction).
x- and y-axes indicate the number of cumulative top genes and c-index, respectively
(right).

The results indicated that CWx was superior to the other methods in terms of
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c-index when comparing the top genes (cumulative) from 1 to 100 in LUAD samples

(Figure 3.2).
Cascaded Wx for Prognosis AnalysisShin et al.

8 July 2019 | Volume 10 | Article 662Frontiers in Genetics | www.frontiersin.org

!e CWx framework was designed to select the optimal 
gene set  associated with patients’ prognoses using the survival 
information of a given cohort and changing the separation criteria 
between high- and low-risk groups through a three-step cascade 
method. !erefore, the CWx algorithm can be applied to the 
identi#cation of prognosis-related genes associated with a range of 
diseases, not only LUAD (Figure S1). In addition, CWx has a linear 
execution time to complete the feature selection steps depending 
on the number of samples. Some information theoretical-based 
feature selection algorithms take longer to #nish the feature 
selection procedure. In contrast, one of the disadvantages of CWx 
is that it can only handle right-censored data within 3 years due 
to the binary classi#cation of patients into either high- or low-risk 
groups. However, all of the supervised feature selection algorithms 
have this problem when applied to survival analysis. One possible 

solution to this issue is to select features directly from a given 
neural network training model using a negative log-likelihood cost 
function that can handle the whole sample for survival analysis.

One of the key pathways related to the prognosis of LUAD 
patients identi#ed by the CWx framework was the Wnt signaling 
pathway. A recent study has shown that two distinct subpopulations 
of cells, one with high Wnt signaling activity and another forming 
a niche that provides the Wnt ligand, are activated in LUAD. 
In addition, in vitro and in vivo studies have suggested that Wnt 
responsiveness contributes to the survival of cancer cells and the 
maintenance of a stem cell-like niche cell phenotype (Tammela 
et al., 2017). Interestingly, several prognosis-related genes identi#ed 
by the CWx framework have been previously reported in LUAD 
studies. For example, glycogen synthase kinase 3 is a central regulator 
of cellular metabolism, development, and growth and is frequently 

FIGURE 4 | Gene ontology (GO) analysis of top 100 genes. GO analysis was performed using Metascape (http://metascape.org/gp/index.html) with top 100 genes 
(default parameters were used). The significance of a given GO term is represented by gray (significant) or white (nonsignificant) bars with a P cutoff value of 0.0001.Figure 3.3: Gene ontology (GO) analysis of top 100 genes. GO analysis was performed

using Metascape (http://metascape.org/gp/index.html) with top 100 genes (default
parameters were used). The significance of a given GO term is represented by gray
(significant) or white (nonsignificant) bars with a P cutoff value of 0.0001.

Next, we performed Gene Ontology (GO) analysis to identify the biological path-

ways associated with the top 100 genes. This analysis revealed that the gene set iden-

tified by CWx was associated with the Wnt signaling pathway (Figure 3.3), one of
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the key pathways regulating development, and closely associated with many cancers.

The gene sets identified by the other algorithms were related to different pathways

such as “positive regulation of JNK cascade” (CoxPH), “central carbon metabolism in

cancer” (Fisher score and Fscore), “O-glycan biosynthesis, mucin type core” (LLL21,

RF, and XGBoost), “mitotic nuclear division” (Trace ratio), “regulation of gene si-

lencing” (RFS), and “GPCR ligand binding” (SVM). Differences between the gene

sets identified by the different algorithms, and their associated biological pathways,

need to be further investigated in future studies.

3.5 Discussion

Our evaluation using 507 TCGA LUAD transcriptomes revealed that the proposed

model outperformed the other methods by effectively training the algorithm from an

easy to hard problem. This finding means that the gene set found by CWx is one of

the best candidate gene sets to predict patients prognoses. In addition, CWx has a

linear execution time to complete the feature selection steps depending on the number

of samples. While the information theoretical-based feature selection algorithms take

longer to finish the feature selection procedure.

One of the key pathways related to the prognosis of LUAD patients identified

by the CWx framework was the Wnt signaling pathway. A recent study has shown

that two distinct sub-populations of cells, one with high Wnt signaling activity and

another forming a niche that provides the Wnt ligand, are activated in LUAD. In

addition, in vitro and in vivo studies have suggested that Wnt responsiveness con-

tributes to the survival of cancer cells and the maintenance of a stem cell-like niche

cell phenotype [151]. Not only that, many CWx found genes have been previously

reported in LUAD studies [161, 101, 78, 1, 139, 51, 177].
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3.6 Contribution

In this project, my contributions are as follows.

• Designed the study with Park, Ko, and Kang.

• Developed the algorithm with Park.

• Wrote the manuscript with Park, Hong, Ko, and Kang.
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4

Drug Repurposing

The molecule discovery is divided into two tasks: drug repurposing (Chapter 4) and

optimized drug candidate generation (ODG, Chapter 5). The result of the drug re-

purposing project have been published to the machine learning for healthcare confer-

ence [144]. In addition, one of the case studies has been submitted to Computational

and Structural Biotechnology Journal.

4.1 Introduction

Many diseases are caused by abnormal protein levels, therefore, a drug is designed to

target particular proteins. However, a drug may not work well for a decent portion of

patients, because an individual’s response to a drug varies depending on the genetic

inheritance [163]. Unfortunately, pharmaceutical companies focus only on a majority

cohort of patients as drug discovery is an expensive process. The reduction of the

cost of the drug discovery process will not only lead to drugs costing less, resulting

in reduced healthcare costs for a patient but can also allow companies to develop

personalized drugs based on genetics.

Among the many parts of the drug discovery process, predicting drug-target in-

teractions (DTI) is an essential one. DTI is difficult and costly as experimental assays
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not only take significant time but are expensive. Furthermore, only less than 10% of

the proposed DTIs are accepted as new drugs [66]. Therefore, in silico (performed

on a computer) DTI predictions are much demanded since it can expedite the drug

development process by systemically suggesting a new set of candidate molecules

promptly, which can save time and reduce the cost of the whole process by up to

43% [43].

In response to this demand, three types of in silico DTI prediction methods

have been proposed in the literature: molecular docking, similarity-based, and deep

learning-based models. Molecular docking [157, 100] is a simulation-based method us-

ing the 3D structured features of molecules and proteins. Although it can provide an

intuitive visual interpretation, it is difficult to obtain a 3D structure of a feature and

cannot scale to large datasets. To mitigate these problems, two similarity-based meth-

ods, KronRLS [116] and SimBoost [66] have been proposed using efficient machine

learning methods. However, using a similarity matrix has two downsides. Firstly,

feature representation is limited in the similarity space, thereby ignoring the rich in-

formation embedded in the molecule sequence. For example, if a brand new molecule

is tested, the model will represent it using relatively unrelated (dissimilar) molecules,

which would make the prediction inaccurate. Secondly, it necessitates the calculation

of the similarity matrix which can limit the maximum number of molecules in the

training process. To overcome these limitations, a deep learning-based DTI model,

DeepDTA [114], was proposed. It is an end-to-end convolutional neural network

(CNN)-based model that eliminates the need for feature engineering. The model

automatically finds useful features from a raw molecule and protein sequence. Its

success has been demonstrated on two publicly available DTI benchmarks. Although

this work illustrated the potential of a deep learning-based model, there are several

areas for improvement:

• CNNs can’t model potential relationships among distant atoms in a raw molecule
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sequence. For example, with three layers of CNNs each with a filter size of 12,

the model can capture associations in atoms up to 35 distances in a sequence.

We posit that the recently proposed self-attention mechanism can be used to

capture any relationship among atoms in a sequence, and thereby provide a

better molecule relationship

• The one-hot encoding used to represent each molecule fails to take advantage of

existing chemical structure knowledge. An abundance of chemical compounds

are available in the PubChem database [55], from which we can extract useful

chemical structures for pre-training the molecule representation network.

• Fine-tuning is a type of transfer learning where weights trained from one net-

work can be transferred to another so that the weights can be adjusted to the

new dataset. Thus, we can transfer the weights learned from the PubChem

database to our DTI model. This will help our model to use the learned knowl-

edge of a chemical structure while tailoring it to predicting DTI interactions.

With these observations, we propose a new deep DTI model, Molecule Transformer

DTI (MT-DTI), based on a new molecule representation. We use a self-attention

mechanism to learn the high-dimensional structure of a molecule from a given raw

sequence. Our self-attention mechanism, Molecular Transformer (MT), is pre-trained

on publicly available chemical compounds (PubChem database) to learn the com-

plex structure of a molecule. This pre-training is important, because most datasets

available for DTI training has only 2000 molecules, while the data for pre-training

(PubChem database) contains 97 millions of molecules. Although it does not contain

interaction data but just molecules, our MT is able to learn a chemical structure

from it, which will be effectively utilized when transferred to MT-DTI (our model).

Therefore, we transfer this trained molecule representation to our DTI model so that

it can be fine-tuned with a DTI dataset. The proposed DTI model is evaluated on two
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well-known benchmark DTI datasets, Kiba [152] and Davis [35], and outperforms the

current state of the art (SOTA) model by 4.9% points for Kiba and 1.6% points for

Davis in terms of area under the precision-recall curve. Additionally, we demonstrate

the usefulness of our trained model using a known drug list targeting a specific pro-

tein. The trained model generates all FDA approved drugs with high rankings in the

drug candidate lists. The demonstrated effectiveness of the proposed model can help

reduce the cost of drug discovery. Furthermore, precise molecule representation can

enable drugs to be designed for specific genotypes and potentially enable personalized

medicine.

Technical Significance We propose a novel molecule representation, adapting the

self-attention mechanism that was recently proposed in Natural Language Process

(NLP) literature. This is inspired by the idea that understanding a molecule sequence

for a chemist is analogous to understanding a language for a person. We introduce

a new way to train the molecule representation model to fit the DTI problem using

an existing corpus to achieve a more robust representation. With this (pre)trained

molecule representation, we fine-tune the proposed DTI model and achieve new SOTA

performances on two public DTI benchmarks.1

Clinical Relevance With our new model, we can potentially lower medication

costs for patients, which can help make drugs more affordable and help patients be

more adherent. In addition, this can serve as the stepping stone for designing person-

alized medication. Through the proper representation of molecules and proteins, we

can better understand the properties of patients that make a drug helpful or not [127].
1The demo is publicly available at

: https://mt-dti.deargendev.me/

https://mt-dti.deargendev.me/
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4.2 Related Work

Predicting drug-target interaction traditionally focused on a binary classification

problem [174, 10, 158, 15, 58, 27, 16, 113]. The most recent approach tackling this

binary classification problem is an interpretable deep learning based model [53]. Al-

though these methods show promising results on binary datasets, they are simplifying

protein-ligand interactions by thresholding affinity values. In order to model these

complex interactions, several methods have been proposed, which can be categorized

into three kinds. The first category of these models is molecular docking [157, 100],

which is a simulation-based method. These methods are not scalable, due to heavy

preprocessing. To overcome this downside, the second category, similarity-based

methods, was proposed. They are KronRLS [116] and SimBoost [66], which is based

on the calculation of similarity matrix of inputs. With the advent of deep learning,

two deep learning-based methods have been proposed [53, 114]. Like these models, our

model is also based on deep learning, but our proposed model has a better molecule

representation, and improves its performance through a transfer learning technique.

Deep learning-based transfer learning, pre-training and fine-tuning, have been

applied to various tasks such as computer vision [133, 54], NLP [71], speech recog-

nition [75, 99], and health-care applications [141]. The idea is to use appropriate

pre-trained weights to improve results in corresponding tasks, which also can be

found in our experimental results.
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4.3 Problem Definition

Drug Target Interaction

• Data: Molecules in SMILES format and pro-

teins in FASTA format

– X: molecule and protein

– Y: affinity score

• Task: Predict a affinity score for a given pair of

inputs.

4.4 Proposed Model: Molecule Transformer-Drug

Target Interaction

We introduce a new drug-target interaction (DTI) model and a new molecule rep-

resentation in this section. The basic motivation of the proposed model is that the

structure of molecule sequences is shown to be very similar to the structure of natural

language sentences in that contextual and structural information of atoms are impor-

tant when understanding the characteristics of a molecule [76]. Specifically, each atom

interacts with not only neighboring atoms but also long distant ones in a simplified

molecular-input line-entry system (SMILES) sequence, a notation that encodes the

molecular structure of chemicals. However, the current SOTA method using CNNs

can’t relate long distance atoms when representing a molecule. We overcome this

using the self-attention mechanism. We first describe the proposed MT-DTI model

architecture (Figure 4.1) with input and output representation. We then elaborate on

each of the three main building blocks of our MT-DTI model, the character-embedded

Transformer layers (Molecule Transformers, Figure 4.2a, Section 4.4.2), the character-
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M
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Figure 4.1: The Proposed DTI Model Architecture. Inputs are molecule (SMILES)
and protein (FASTA) and the regression output is the affinity score between these
two inputs.

embedded Protein CNN layers (Protein CNNs, Figure 4.2b, Section 4.4.3), and the

dense layers to model interactions between a drug and a protein (Interaction Denses,

Figure 4.2c, Section 4.4.4). Then, we explain the process for pre-training the molecule

transformers (MT) (Section 4.4.2).

4.4.1 Model Architecture

The MT-DTI model takes two inputs: a molecule represented by the SMILES [165] se-

quence and a protein represented by the FASTA [94] sequence. A molecule represented

using the SMILES sequence is comprised of characters representing atoms or structure

indicators. Mathematically, a molecule is represented as IM = {m1,m2, . . . ,mLM
},

where mi could be either an atom or a structure indicator, and LM is the sequence

length, which varies depending on a molecule. This molecule sequence is fed into the

Molecule Transformers (Section 4.4.2), to produce a molecule encoding, Menc ∈ REM .

Another type of input, a protein with FASTA sequence, also consists of characters of

various amino acids. A formal protein representation is IP = {p1, p2, . . . , pLP
}, where

pj is one of the amino acids, and LP is the sequence length, which varies depending on

a protein. This protein sequence is the input of the Protein CNNs (Section 4.4.3) and
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generates a protein encoding, Penc ∈ REP . Note that the encoding vector dimension

EM and EP are model parameters. Both of the encodings, Menc and Penc are together

fed into the multi-layered feed-forward network, Interaction Denses (Section 4.4.4),

followed by the last regression layer, which predicts the binding affinity scores.

Multi-Layered Molecule Transformers

Character Embedding

Self-Attention

FeedForward

Self-Attention

FeedForward

MBERT Representation

(a) Molecule Trans.

Multi-Layered Protein CNNs

Character Embedding

CNN

CNN

MaxPool Representation

(b) Protein CNNs.
Multi-Layered Interaction Block

Representation Concatenation

Dense

Dense

(c) Interaction Denses.

Figure 4.2: Three parts of the proposed model.

4.4.2 Molecule Transformers

Molecule Transformers (Figure 4.2a) are multi-layered bidirectional Transformer en-

coders based on the original Transformer model [160]. The Transformer can model a

sequence by itself without using a recurrent neural network (RNN) or CNN. Unlike

these previous sequence processing layers (RNN or CNN), Transformer can effectively
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encode the relationship among long-distance tokens (atoms) in a sequence. This pow-

erful context modeling enables many Transformer-based NLP models to outperform

previous methods in many benchmarks [160, 41]. Molecule Transformers is a mod-

ification of the existing Transformer, BERT [41], to better represent a molecule by

changing the cost function. Before plugging it into the proposed model (Figure 4.1),

we pre-train it using the modified masked language model task, which was introduced

in the BERT model [41]. Each Transformer block consists of a self-attention layer

and feedforward layer, and it takes embedding vectors as an input. Therefore the first

Transformer block needs to convert an input sequence into the form of vectors using

the input embedding.

Input Embedding

The input to the Molecule Transformers is the sum of the token embeddings and

the position embeddings. The token embeddings are similar to the word embed-

dings [108], in that each token, mi is represented by a molecule token embedding

(MTE) vector, ei. These vectors are stored in a trainable weights MTE ∈ RVM×DM ,

where VM is the size of the SMILES vocabulary and DM is the molecule embedding

size. A MTE vector itself is not sufficient to represent a molecule sequence with a

self-attention network, because a self-attention doesn’t consider the sequence order

when calculating the attentions, unlike other attention mechanisms. Therefore, we

add a trainable positional embedding (PE)2, pi ∈ RLmax
M ×DM , to ei that makes the final

input representation, xi where Lmax
M is the maximum length of a molecule sequence,

which is set to 100 in this study. This process is illustrated in Figure 4.3.

We add five special tokens to the SMILES vocabulary to make a raw molecule

sequence compatible with our model. [PAD] is for dummy padding to ensure the

sequence has a fixed length. [REP] is a representation token that is used when fine-
2Please refer to [41] for more details.
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Figure 4.3: An example of molecule token embedding (MTE) and positional em-
bedding (PE) to make the model input xi for a given molecule sequence of methyl
isocyanate (CN=C=O).

tuning the Transformer in the proposed MT-DTI model. [BEGIN]/[END] indicate

the beginning or end of the sequence. These tokens are useful for the model when

dealing with a sequence longer than Lmax
M . When it is truncated on both sides, the

absence of [BEGIN]/[END] tokens serve as an effective indicator of a truncation.

Methyl isocyanate (CN=C=O), for example, can be represented with 9 tokens;

[REP] [BEGIN] C N = C = O [END]

Each token is transformed into a corresponding vector by referencing MTE and PE.

Self-Attention Layer

These transformed input vectors, xi, are now compatible with an input to a self-

attention layer. Each self-attention layer is controlled by a query vector (qi), key

vector (ki), and value vector (vi), where i ∈ {0, 1, . . . , Lmax
M }, all of which are different

projections of the input, X (xi ∈ RLmax
M ×DM ), using trainable weights, WQ ∈ RDM×Dq ,

WK ∈ RDM×Dk , and W V ∈ RDM×Dv , shown correspondingly in Figure 4.4a. Then,

the attention weights are computed as:
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Z = Attention(Q,K, V ) (4.1)

= softmax
(
QKT

√
Dk

)
V ∈ RLmax

M ×Dv

Dk is the dimension of the key (one of the Z’s in Figure 4.4b). Thus, the learned

relationship between the atoms can span the entire sequence via the self-attention

weights.
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Figure 4.4: Put your caption here

Feed-Forward Layer

Similar to multiple filters in convolutional networks, a Transformer can have multiple

attention weights, called multi-head attention. If one model has H-head attention,

then it will have Zh = Attention(XWQ
h , XWK

h , XW V
h ), where h ∈ {1, 2, . . . , H}.

These H number of attention matrices, Zh, are then concatenated (shown on the

left of Figure 4.4c) and projected using WO ∈ RH·Dv×DM (shown on the middle of

Figure 4.4c) to form a final output of a Transformer, Xout ∈ RLmax
M ×DM (shown on

the right of Figure 4.4c).
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pre-training

We adopt one of the pre-training tasks of BERT [41], the Masked Language Model.

Since the structure of molecule sequences are shown to be very similar to the structure

of natural language sentences [76] and there are abundant training examples, we

hypothesize that predicting masked tokens is an effective way of learning a chemical

structure. We adopt a special token, [MASK], for this task. It replaces a small

portion of tokens so that the task of the pre-training model is to predict the original

tokens. We choose 15% of SMILES tokens at random for each molecule sequence, and

replace the chosen token with one of the special tokens, [MASK] with the probability

of 0.8. For the other 20% of the time, we replace the chosen token with a random

SMILES token3 or preserve the chosen token, with an equal probability, respectively.

The target label of the task is the chosen token with the index. For example, one

possible prediction task for Methyl isocyanate (CN=C=O) is

input : [REP] [BEGIN] C N = [MASK] = O [END]

label : (C, 5)

Fine-tuning

The weights of the pre-trained Transformers (Section 4.4.2) are used to initialize the

Molecule Transformers in the proposed MT-DTI model (Figure 4.1). The output of

the Transformers is a set of vectors, where the size is equivalent to the number of

tokens. To obtain a molecule representation with a fixed length vector, we utilize the

vector of the special token, [REP] in the final layer. This vector conveys the compre-

hensive bidirectional encoding information for a given molecule sequence, denoted as

M rep ∈ RDM .
3Since the [MASK] token does not exist when testing, we need to occasionally feed irrelevant

tokens when training.
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4.4.3 Protein CNNs

Another type of input to the proposed MT-DTI model is a protein sequence. We

modified the protein feature extraction module introduced by [114] by adding an

embedding layer for the input.4 It consists of multi-layer CNNs with an embedding

layer to make a sparse protein sequence continuous, and a pooling layer to represent

a protein as a fixed size vector. For a given protein sequence, Ip, each protein to-

ken, pj is converted to a protein embedding vector by referencing trainable weights,

PTE ∈ RVP×DP , where VP is the size of the FASTA vocabulary and DP is the protein

embedding size. Let P ∈ RLmax
P ×DP be a matrix representing the input protein, where

Lmax
P is the maximum length of a protein sequence, which is set to 1000 in this study.

This protein matrix P is fed into the first convolutional layer and convolved by the

weights c1 ∈ Rs1×DP , where s1 is the length of the filter. This operation is repeated

m1 times with the same filter length. Then this first convolution layer produces a

vector PC1 ∈ RLmax
P −s1+1, where elements in PC1 convey the s1-gram features across

the sequence. Multiple convolutional layers can be stacked on top of the previous

output of the convolutional layer. After v number of convolution layers, the final

vector, PC1 ∈ R(Lmax
P −s1−s2···−sv+v)×mv , is fed into the max pooling layer. This max

pooling layer selects the most salient features from the vectors produced by the filters

from the last layer. Then, the output of this max pooling layer is a vector P rep ∈ RDP

(mv = DP ).

4.4.4 Interaction Denses

A molecule representation (M rep ∈ RDM , Section 4.4.2) and a protein representa-

tion (P rep ∈ RDP , Section 4.4.3) are concatenated to create the input of Interac-

tion Denses, MP rep ∈ RDM+DP . Interaction Denses approximates the affinity score

through a multi-layered feed-forward network with dropout regularization. The final
4Adding an embedding layer slightly improves the accuracy of the DTI model.
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Dataset # of Compounds # of Proteins # of Interactions TRN DEV TST
DAVIS 68 442 30,056 20,037 5,009 5,010
KIBA 2,111 229 118,254 78,836 19,709 19,709

Table 4.1: Statistics of the Davis and Kiba datasets. TRN/DEV/TST: training,
development, evaluation sets.

layer is a regression layer associated with the regression task for the proposed MT-

DTI model. The weights of the network are then optimized according to the mean

square error between the network output (ŷ) and actual affinity values (y).

4.5 Experiments

4.5.1 Datasets

Drug-Target Interaction

The proposed MT-DTI model is evaluated on two benchmarks, Kiba [152] and Davis [35],

because they have been used for evaluation in previous drug-target interaction stud-

ies [116, 66, 114]. Davis is a dataset comprised of large-scale biochemical selectivity

assays for clinically relevant kinase inhibitors with their respective dissociation con-

stant (Kd) values. The original Kd values are transformed into log space, pKd, for

numerical stability, as suggested by [66] as follows:

pKd = − log10(
kd
1e9

)

While Davis measures a bioactivity from one source of score, Kd, Kiba combines

heterogeneous scores, Ki, Kd and IC50 by optimizing consistency among them. Sim-

Boost [66] filtered out proteins and compounds with less than 10 interactions for

computational efficiency, and we follow this procedure for a fair comparison. The

number of compounds, proteins and interactions of the two datasets are summarized

in Table 4.1. To facilitate comparison and reproducibility, we followed the same 5-fold
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cross validation sets with a held-out test set which is publicly available5.

Pre-training Dataset

We downloaded the chemical compound information from the PubChem database [55]6.

Only canonical SMILES information were used to maintain consistency of representa-

tion. A total of 97,092,853 molecules are available in the canonical SMILES format.

Drugbank Database

The DrugBank database comprises a bioinformatics and cheminformatics resource

that provides known drug-target interaction pairs. To prove the effectiveness of drug

candidates generated by our model, we designed a case study (Section 4.6.1) using

this database. We extracted 1,794 drugs from the database, excluding any compounds

that were used when training our model. These selected compounds were the input

to the trained model (by Kiba dataset) along with a specific protein to generate

corresponding Kiba scores. The scores were used to find the best candidate drugs

targeting that protein.

4.5.2 Training Details

Molecule Transformer is first trained with the collected compounds from the Pub-

Chem database (Section 4.5.1), and then the trained Transformer is plugged into the

MT-DTI model for fine-tuning.

Pre-training

We use 97 million molecules for pre-training. Before feeding it to the Molecule Trans-

former, we tokenize each molecule at the character level. If the length of the molecules
5https://github.com/hkmztrk/DeepDTA/
6ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/

https://github.com/hkmztrk/DeepDTA/
ftp://ftp.ncbi.nlm.nih.gov/pubchem/Compound/CURRENT-Full/SDF/
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is more than 100, we truncate its head and tail together to have a fixed size of 100.

We choose the middle part of the longer sequence so that the model can easily distin-

guish truncated sequences by simply looking at the existence of [BEGIN] and [END]

tokens. The network structure of the Molecule Transformer is as follows. The number

of layers is 8, the number of heads is 8, the hidden vector size is 128, the intermediate

vector size is 512, the drop-out rate is 0.1, and the activation is Gelu [67]. These

parameters are picked from preliminary experiments and the hyperparameters used

in the NLP model, BERT [41]. We hypothesized that finding a chemical structure

might be roughly 2-4 times easier task than finding a language model, because the size

of the SMILES vocabulary is smaller than natural languages (70 vs 30k). Although

the SMILES vocabulary is 400 times simpler, the number of tokens in the PubChem

molecule datasets is about 2.4 times more than what BERT used to pre-train (8B vs

3.3B). This indicated that the molecules might have more complexity than expected

when only considering the size of the vocabulary. Therefore we used parameters that

were 2-4 times smaller than BERT. We note that there may be other parameter

sets that can yield even better performance. We use the batch size of 512 and the

maximum token size of 100, which enables it to process 50K tokens in one batch.

Considering the average length of the compound sequence is around 80, there are

approximately 8 billion tokens in the training corpus. We pre-train Molecule Trans-

former for 6.4M steps, which is equivalent to 40 epochs (8B/50K*40=6.4M). With

an 8-core TPU machine, the pre-training took about 58 hours. The final accuracy of

the Masked LM task was about 0.9727, which is comparable to the 0.9855 achieved

by BERT on natural language.

Fine-tuning

The specifications of the Molecule Transformer in the MT-DTI model are the same

as the one used when pre-training (Section 4.5.2). The Protein CNNs (Section 4.4.3)



53

consists of one embedding layer, three CNN layers, and one max pooling layer. It

uses 128-dimensional vectors for the embedding layer. For CNN blocks, we denote

the filter size as K and the number of the filter as L. The final model parameter

settings of CNNs are K1, K2, K3 = 12(Kiba), 8(Davis) and L1 = 32, L2 = 64, L3 = 96.

The max pooling layer selects the best token representations from the last CNN layer,

which makes the feature length as 96. Interaction Dense (Section 4.4.4) is comprised

of three feed-forward layers and one regression layer. The layer sizes, when training

Kiba, are 1024, 1024, 512 in order of the feature input to the regression layer and

the learning rate, γ, is 0.0001. We reduce the network complexity when training

Davis due to the small number of training samples. We use two feed-forward layers

of sizes 1024 and 512. The learning rate is adjusted to 0.001. The entire network

uses the same dropout rate of 0.1. All the hyper-parameters are tuned based on the

lowest mean square error of the development sets for each fold, and the final score is

evaluated on the held-out test set with the model at 1000 epochs.

4.5.3 Evaluation Metrics

We use four metrics to evaluate the proposed model: mean squared Error (MSE),

concordance index (CI) [59], r2m, and area under the precision-recall curve (AUPR).

MSE is a typical loss in the optimizer. CI is the probability that the predicted scores

of two randomly chosen drug-target pairs, yi and yj, are in the correct order:

CI = 1

N

∑
yi>yj

h(ŷi > ŷj),
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where N is a normalization constant (the number of data pairs) and h(·) is a step

function [114]:

h(x) =


1, x > 0

0.5 x = 0

0, else

The r2m [125, 135] index is a metric for quantitative structure-activity relationship

models (QSAR models). Mathematically,

r2m = r2 ∗ (1−
√

r2 − r20),

where r2 and r20 are the squared correlation coefficients with and without intercept,

respectively. An acceptable model should produce an r2m value greater than 0.5.

Since AUPR is a metric for binary classification, we transform the regression scores

to binary labels using known threshold values [66, 152]. For Davis, pairs with pKd ≥

7 are marked as binding (1), others as no binding (0), and for Kiba, pairs with

KIBA score ≥ 12.1 are marked as binding (1), others as no binding (0).

4.5.4 Baselines

For the baseline methods, two similarity-based models and one deep learning-based

model, the current SOTA, are tested. One of the similarity-based models is Kro-

nRLS [116], whose goal is to minimize a typical squared error loss function with a

special regularization term. The regularization term is given as a norm of the pre-

diction model, which is associated with a symmetric similarity measure. Another

similarity-based model is Simboost [66], which is based on a gradient boosting ma-

chine. Simboost utilizes many kinds of engineered features, such as network metrics,

neighbor statistics, PageRank [115] scores, and latent vectors from matrix factoriza-

tion. The last one is a deep learning model, which is the SOTA method in predicting
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Datasets Method CI (std) MSE r2m (std) AUPR (std)

Kiba

KronRLS 0.782 (0.001) 0.411 0.342 (0.001) 0.635 (0.004)
SimBoost 0.836 (0.001) 0.222 0.629 (0.007) 0.760 (0.003)
DeepDTA 0.863 (0.002) 0.194 0.673 (0.009) 0.788 (0.004)

MT-DTIw/oFT 0.844 (0.001) 0.220 0.584 (0.002) 0.789 (0.004)
MT-DTI 0.882(0.001) 0.152 0.738(0.006) 0.837(0.003)

Davis

KronRLS 0.871 (0.001) 0.379 0.407 (0.005) 0.661 (0.010)
SimBoost 0.872 (0.002) 0.282 0.644 (0.006) 0.709 (0.008)
DeepDTA 0.878 (0.004) 0.261 0.630 (0.017) 0.714 (0.010)

MT-DTIw/oFT 0.875 (0.001) 0.268 0.633 (0.013) 0.700 (0.011)
MT-DTI 0.887(0.003) 0.245 0.665(0.014) 0.730(0.014)

Table 4.2: Test set results of the proposed MT-DTI model, MT-DTI model without
fine-tuning (denoted as MT-DTIw/oFT ), and other existing approaches.

drug-target interactions, called DeepDTA [114]. It is an end-to-end model that takes

a pair of sequences, (molecule, protein), and directly predicts affinity scores from

the model. Features are automatically captured through back propagation of the

multi-layered convolutional neural networks.

4.5.5 Results

The comparisons of our proposed MT-DTI model to the previous approaches are

shown in Table 4.2. Reported scores are measured on the held-out test set using five

models trained with the five different training sets. The best model parameters are

selected based on the development set scores. MT-DTI outperforms all the other

methods in all of the four metrics. The performance improvement is more noticeable

when when there are many training data where the improvements of Kiba are 0.019,

0.042, 0.065, and 0.04 compared with Davis’s improvements of 0.009, 0.016, 0.035,

and 0.016, for CI, MSE, r2m, and AUPR, respectively. Furthermore, our model tends

to be more stable with a larger training set, with the lowest standard deviation for CI

and AUPR. Another interesting point is that our method without fine-tuning (MT-

DTIw/oFT in Table 4.2) produced competitive results. It outperforms the similarity

based metrics and performs better than Deep-DTA for some metrics. This suggests
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that the molecule representation using pre-training learns some useful chemical struc-

ture that can be exploited by the interaction denses model.

4.6 Case Studies

4.6.1 Anticancer Drug Discovery

We performed a case study using actual FDA-approved drugs targeting a specific pro-

tein, epidermal growth factor receptor (EGFR). This protein is chosen because this

is one of the famous genes related to many cancer types. We calculated the interac-

tion scores between EGFR and the 1,794 selected molecules based on the DrugBank

database (see Section 4.5.1 for the details). These scores are sorted in descending

order and summarized in Table 4.3.

EGFR is a transmembrane protein that is activated by binding of ligands such as

epidermal growth factor (EGF) and transforming growth factor alpha (TGFa) [68].

Mutations in the coding regions of the EGFR gene are associated with many cancers,

including lung adenocarcinoma [145]. Several tyrosine kinase inhibitors (TKIs) have

been developed for the EGFR protein, including gefitinib, erlotinib, and afatinib.

More recently, Osimertinib was developed as a third generation TKI targeting the

T790M mutation in the exon of the EGFR gene [149]. Since the direct binding of

these drugs to EGFR protein is well known, we tested whether our proposed model

can identify known drugs for the EGFR protein.

Biological Insights

The result indicated that our model successfully identified known EGFR targeted

drugs as well as novel chemical compounds that were not reported for association

with the EGFR protein. For example, the first and second generation TKIs, such

as Erlotinib and Gefitinib, and Afatinib, respectively, were predicted to exhibit high
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Ranking Compound ID Compound Name KIBA Score
1 208908 Lapatinib∗ 14.002403
2 11557040 Lapatinib Ditosylate∗ 13.811217
3 10184653 Afatinib∗ 13.404812
4 16147 Triamcinolone Acetonide Sodium Phosphate 13.147043
5 5485201 Naltrexone Hydrochloride 13.114577
6 123631 Gefitinib∗ 13.111686
7 60699 Topotecan Hydrochloride 13.108758
8 5360515 Naltrexone 13.065864
9 441351 Rocuronium Bromide 13.032806
10 6918543 Almitrine Mesylate 13.016999
11 176870 Erlotinib∗ 12.885199
12 23422 Tubocurarine Chloride Pentahydrate 12.87076
13 6000 Tubocurarine 12.809549
14 11954379 Erlotinib Variant∗ 12.782704
15 11954378 Erlotinib Hydrochloride∗ 12.768639
16 3389 Prolixin Enanthate 12.737285
17 23724988 Oxycodone Hydrochloride Trihydrate 12.709352
18 14676 Methdilazine Hydrochloride 12.662965
19 5281065 Ibutilide Fumarate 12.650397
20 9869929 Avanafil 12.635439
21 60700 Topotecan 12.618897
22 5360733 Nalbuphine Hydrochloride 12.610958
23 5282487 Paroxetine Hydrochloride Hemihydrate 12.608804
24 66259 Oxymetazoline Hydrochloride 12.557486
25 5311066 Desonide 12.538858
26 2247 Astemizole 12.536284
27 11954293 Asenapine 12.534941
28 11304743 Riociguat 12.527533
29 82153 Flunisolide 12.527164
30 71496458 Osimertinib∗ 12.507524

Table 4.3: Compound ranking based on the predicted Kiba scores when the target is
EGFR protein. All compounds are from Drugbank database excluded any compounds
in Kiba dataset. [Compound Name]∗ represents a known EGFR targetting drug.
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affinity to the EGFR protein (Table 3). Lapatinib [104], which inhibits the tyro-

sine kinase activity associated with two oncogenes, EGFR and HER2/neu (human

EGFR type 2), was predicted to exhibit the highest affinity. Osimertinib was also

identified. Interestingly, chemical compounds targeting opioid receptors (naltrexone

hydrochloride, nalbuphine hydrochloride, and oxycodone hydrochloride trihydrate)

for pain relief, antihistamines (methdilazine hydrochloride and astemizole), antipsy-

chotic medication for schizophrenia (Prolixin Enanthate and Asenapine), and corti-

costeroids for skin problems (Triamcinolone acetonide sodium phosphate, Oxymeta-

zoline hydrochloride, Desonide) were predicted to be associated with EGFR. Among

these chemical compounds, Astemizole was suggested as a promising compound when

treated with known drugs for lung cancer patients [47, 37]. Therefore, further inves-

tigations of these chemicals may provide a new therapeutic strategy for lung cancer

patients.

4.6.2 Antiviral Drug Discovery

We performed another case study to suggest candidate molecules for the novel coro-

navirus found in Wuhan of China (COVID-2019). As the infection of COVID-2019

is rapidly spreading and there is a lack of effective treatment options for it, various

strategies are being tested in many countries, including drug repurposing. In this

case study, we used our MT-DTI model to identify commercially available drugs that

could act on viral proteins of COVID-2019.

Target Proteins: We first narrow down potential target proteins that could in-

hibit the infection of the virus by referencing the previous coronavirus studies [88, 93,

20, 166, 170, 180, 91]. As a result, we extract the following six target sequences from

the COVID-2019 whole genome sequence, from the National Center for Biotechnology

Information (NCBI) database: 3C-like proteinase, RNA-dependent RNA polymerase,

helicase, 3’-to-5’ exonuclease, endoRNAse, and 2’-O-ribose methyltransferase.
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Small molecules Kd in nM
Atazanavir 94.94
Remdesivir 113.13
Efavirenz 199.17
Ritonavir 204.05

Dolutegravir 336.91
Asunaprevir 581.77
Ritonavir* 609.02
Simeprevir 826.24

Table 4.4: DTI prediction results of antiviral drugs available on markets against a
COVID-2019 targeting 3C-like proteinase. Ritonavir is expressed in canonical and
isomeric SMILES, and * indicates the isomeric SMILES of ritonavir.

Training Data: Since this case study is real world problem that requires a

broader set of molecules and proteins, we pre-process and combine two bigdata

sources in the literature: the Drug Target Common (DTC) database [153] and Bind-

ingDB [97] database. Three types of efficacy value, Ki, Kd, and IC50 are integrated

by a consistence-score-based averaging algorithm (13) to make the Pearson correla-

tion score over 0.9 in terms of Ki, Kd, and IC50. The MT-DTI model trained by these

integrated dataset has the potential power to predict interactions between antiviral

drugs and COVID-2019 proteins because it covers a wide variety of species and target

proteins unlike DAVIS or KIBA that only include a small portion of human proteins.

Result: The COVID-2019 3C-like proteinase was predicted to bind with atazanavir

(Kd 94.94 nM), followed by remdesivir, efavirenz, ritonavir, and other antiviral drugs

that have a predicted affinity of Kd > 100 nM potency (Table 4.4).

No other protease inhibitor among antiviral drugs was found in the Kd < 1,000

nM range. Although there is no real-world evidence about whether these drugs will

act as predicted against COVID-2019 yet, some case studies have been identified.

For example, a docking study of lopinavir along with other HIV proteinase inhibitors

of the CoV proteinase (PDBID 1UK3) suggests atazanavir and ritonavir, which are

listed in the present prediction results, may inhibit the CoV proteinase in line with
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Small molecules Kd in nM
Grazoprevir 8.69
Ganciclovir 11.91
Remdesivir 20.17
Atazanavir 21.83
Daclatasvir 23.31
Acyclovir 26.66
Etravirine 33.09
Entecavir 52.83
Efavirenz 76.70

Asunaprevir 78.36
Abacavir 131.51

Dolutegravir 150.15
Lomibuvir 280.96
Penciclovir 312.93
Triflurdine 315.79
Danoprevir 405.66
Ritonavir 624.30
Saquinavir 704.86
Raltegravir 832.25
Lamivudine 999.92

Table 4.5: DTI prediction results of antiviral drugs available on markets against a
COVID-2019 targeting RNA polymerase.

the inhibitory potency of lopinavir [36]. According to the prediction, viral proteinase-

targeting drugs were predicted to act more favorably on the viral replication process

than viral proteinase through the DTI model (Table 4.5-4.9). The results include

antiviral drugs other than proteinase inhibitors, such as guanosine analogues (e.g.,

acyclovir, ganciclovir, and penciclovir), reverse transcriptase inhibitors, and integrase

inhibitors.

Among the prediction results, atazanavir was predicted to have a potential binding

affinity to bind to RNA-dependent RNA polymerase (Kd 21.83 nM), helicase (Kd

25.92 nM), 3’-to-5’ exonuclease (Kd 82.36 nM), 2’-O-ribose methyltransferase (Kd

of 390.67 nM), and endoRNAse (Kd 50.32 nM), which suggests that all subunits of

the COVID-19 replication complex may be inhibited simultaneously by atazanavir

(Table 4.5-4.9).
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Small molecules Kd in nM
Remdesivir 6.48
Simeprevir 23.34
Atazanavir 25.92
Grazoprevir 26.28
Asunaprevir 28.20
Telaprevir 40.75
Ritonavir 41.60
Lopinavir 78.49
Darunavir 90.38
Ganciclovir 108.21
Penciclovir 129.41
Etravirine 175.50
Raltegravir 299.81

Dolutegravir 333.32
Nelfinavir 365.96
Indinavir 401.78
Efavirenz 412.86
Entecavir 452.78
Ritonavir* 462.20
Boceprevir 510.35
Lomibuvir 543.41
Acyclovir 661.76

Table 4.6: DTI prediction results of antiviral drugs available on markets against a
COVID-2019 targeting helicase.
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Small molecules Kd in nM
Simeprevir 13.40
Efavirenz 39.55

Remdesivir 45.20
Danoprevir 49.26
Ganciclovir 56.29
Penciclovir 71.76
Atazanavir 82.36
Entecavir 82.78

Daclatasvir 110.47
Grazoprevir 111.90
Asunaprevir 117.26

Ritonavir 182.51
Lomibuvir 182.65
Darunavir 195.73
Raltegravir 306.99

Dolutegravir 326.89
Lopinavir 959.76

Table 4.7: DTI) prediction results of antiviral drugs available on markets against
COVID-2019 targeting 3’-to-5’ exonuclease.

Small molecules Kd in nM
Efavirenz 34.19

Atazanavir 50.32
Remdesivir 70.27
Ritonavir 124.36

Danoprevir 235.15
Grazoprevir 277.87
Dolutegravir 349.63
Lomibuvir 398.81
Lopinavir 472.08
Darunavir 562.40
Nelfinavir 576.82
Telaprevir 618.11
Abacavir 619.79

Raltegravir 727.37
Boceprevir 891.62

Table 4.8: DTI prediction results of antiviral drugs available on markets against a
COVID-2019 targeting endoRNAse.
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Small molecules Kd in nM
Remdesivir 134.39
Atazanavir 390.67
Efavirenz 423.00

Boceprevir 433.93

Table 4.9: DTI prediction results of antiviral drugs available on markets against a
COVID-2019 targeting 2’-O-ribose methyltransferase.

Also, ganciclovir was predicted to bind to three subunits of the replication com-

plex of the COVID-19: RNA-dependent RNA polymerase (Kd 11.91 nM), 3’-to-5’

exonuclease (Kd 56.29 nM), and RNA helicase (Kd 108.21 nM). Lopinavir and riton-

avir, active materials of AbbVies Kaletra, both were predicted to have a potential

affinity to COVID-19 helicase (Table 4.6) and are suggested as potential MERS thera-

peutics [38]. Recently, approximately $2 million worth of Kaletra doses were donated

to China [70], and a previous clinical study of SARS by Chu et al. [26] may sup-

port this decision. Another anti-HIV drug, Prezcobix of Johnson & Johnson, which

consists of darunavir and cobicistat, was to be sent to China [70], and darunavir

is also predicted to have a Kd of 90.38 nM against COVID-19s helicase (Table 4.6).

However, there was no current supporting literature found for darunavir to be used as

a CoV therapeutic. Although remdesivir is not a FDA approved drug, its predicted

potency to COVID-19 resulted as follows: against RNA-dependent RNA polymerase

(Kd 20.17 nM), helicase (Kd 6.48 nM), 3’-to-5’ exonuclease (Kd 45.20 nM), 2’-O-ribose

methyltransferase (Kd of 134.39 nM), and endoRNAse (Kd 70.27 nM).

4.7 Discussion

This paper proposes a new molecule representation using the self-attention mecha-

nism, which is pre-trained using publicly available big data of compounds. The trained

parameters are transferred to our DTI model (MT-DTI) so that it can be fine-tuned

using two DTI benchmark data. Experimental results show that our model outper-
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forms all other existing methods with respect to four evaluation metrics. Moreover,

the first case study of finding drug candidates targeting a cancer protein (EGFR)

shows that our method successfully enlists all of the existing EGFR drugs in top-30

promising candidates. In addition, the antiviral drug discovery case study shows that

the proposed method can produce useful results in a very short time.

This suggests our DTI model could potentially yield low-cost drugs and provide

personalized medicines. Our model can be further improved as the proposed attention

mechanism is also applied to represent proteins. However, we didn’t explore this

direction for two reasons. One reason is that the length of a protein sequence is

ten times longer than a molecule sequence on average, which takes a considerable

amount of time for computation. Another reason is the need for a protein dataset

which contains enough sufficient information to pre-train the model. Unfortunately,

such a dataset is not readily available.

4.8 Contribution

In this project, my contributions are as follows.

• Designed the study with Dr. Ho.

• (solely) Developed the algorithm

• Ran experiments with Park

• Analyzed the results with Dr. Kang and Dr. Ho
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5

Molecule Generation

In this chapter we present another way of molecule discovery, molecule generation.

The proposed method combines a molecule generation model and a molecule op-

timization model. We submitted this work to Knowledge Discovery in Databases

conference 2020.

5.1 Introduction

Drug discovery is an expensive process. According to DiMasi et al. [43], the estimated

average cost to develop a new medicine and gain FDA approval is $1.4 billion. Among

this amount, 40% of it is spent on the candidate compound generation step. In this

step, around 5,000 to 10,000 molecules are generated as candidates but 99.9% of

them will be eventually discarded and only 0.1% of them will be approved to the

market. This inefficient nature of the candidate generation step serves as motivation

to design an automated molecule search method. However, finding target molecules

with the desired chemical properties is challenging because of two reasons. First, an

efficient search is not possible because the search space is discrete to the input [85].

Second, the search space is too large that it reaches up to 1060 [124]. As such, this

task is currently being tackled by chemistry and pharmaceutical experts and takes
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years to design. Therefore, this study aims to accelerate the drug discovery process

by proposing a deep-learning (DL) model that accomplishes this task effectively and

quickly.

Recently, many methods of molecular design have been proposed [9, 138, 48, 57, 33,

89, 112, 63, 137, 175]. Among them, Matched Molecular Pair Analysis (MMPA) [62]

and Variational Junction Tree Encoder-Decoder (VJTNN) [81] formulated molecu-

lar property optimization as a problem of molecular paraphrase. Just as a Natural

Language Process (NLP) model produces paraphrased sentences, when a molecule

comes in as an input to these models, another molecule with improved properties is

generated by paraphrase. Although MMPA was the first to try this approach, it is

not effective unless many rules are given to the model [81]. To mitigate this problem,

Jin et al. [81] proposed VJTNN, an end-to-end molecule optimization model without

the need for rules. By efficiently encoding and decoding a molecule with graphs and

trees, it is the current state-of-the-art (SOTA) model for optimizing a single prop-

erty (hereby referred to as a single-objective optimization task). However, it cannot

optimize multiple properties at the same time (a multi-objective optimization task)

because the model inherently optimizes only one property. As noted by Vogt et al.

[162], Shanmugasundaram et al. [140], the actual drug discovery process frequently

requires balancing of multiple compound properties.

With these motivations, we propose a new DL-based end-to-end model that can

optimize multiple properties in one model. By extending the preceding problem for-

mulation, we consider the molecular optimization task as a sequence-based controlled

paraphrase (or translation) problem. The proposed model, controlled molecule gener-

ator (CMG), learns how to translate the input molecules given as sequences into new

molecules as sequences that best reflect the properties of the molecules we want. Our

model extends the Transformer model [160] that showed its effectiveness in machine

translation. CMG encodes raw sequences through a deep network and decodes a new
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molecule sequence by referencing that encoding and the desired properties. Since

we represent the desired properties as a vector, this model inherently can consider

multiple objectives simultaneously. Moreover, we present a novel loss function using

pre-trained constraint networks to minimize generating invalid molecules. Lastly, we

propose a novel beam search algorithm that incorporates these constraint networks

into the beam search algorithm [105].

X
Ŷ

pX

pY

PropNet

p̂Y

Y

Molecule Translation Net

SimNet

L!

LP

LS

(a) The overall architecture at training.

X

pX

pY

Molecule Translation Net Ŷ PropNet

SimNet

ŶŶŶ

BeamScore

Ŷ

(b) The overall architecture at prediction.

Figure 5.1: The proposed controlled molecule generator model.

We evaluate the proposed model using two tasks (single-objective optimization

and multi-objective optimization) and two analysis studies (case study and ablation

study)1. We compare our model with six existing approaches including the current

SOTA, VJTNN. CMG outperforms all baseline models in both benchmarks. In addi-

tion, the our model shows the biggest diversity in the output molecule distribution.
1Code and data are available at https://anonymous.url

https://anonymous.url
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The case study demonstrates the practicality of our method through the target affin-

ity optimization experiment using an actual experimental drug molecule. Lastly, the

ablation study not only shows the effectiveness of each sub-part, but demonstrates

the superiority of the proposed model itself without the sub-parts.

Contribution: The contributions of this paper are summarized as below;

• We formulate the multi-objective molecule optimization task as a sequence-

based controlled molecule translation problem.

• We propose a new self-attention based molecule translation model that can

reflect the multiple desired properties.

• We introduce new loss functions to incorporate the pre-trained constraint net-

works.

• We propose a novel beam search algorithm using the pre-trained constraint

networks.

• We present how to curate appropriate training data to train the proposed model.

5.2 Related Work

Molecule property optimization: Molecule property optimization models can

be divided into two types depending on the data representation: sequence repre-

sentations and graph representations. One of the earlier approaches using sequence

representations utilizes encoding rules [165], while the recent ones [57, 138, 89] are

based on DL methods that learn to reconstruct the input molecule sequence. This

is related to our work in terms of the input representation, but they offer subpar

performance when compared to the SOTA models. Another group of research uses

graph representations conveying structural information [32, 80, 136, 92, 34]. Among

them, VJTNN [81] and MMPA [62, 44, 34] are closely related to our work because
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they formulate the molecule property optimization task as a molecule translation

problem. From the model perspective, MMPA is a rule-based model and VJTNN

is a supervised DL model. Although our approach is also based on a DL method,

there is a big difference in practical use cases. A single VJTNN model is capa-

ble of optimizing a single property, while the proposed model can optimize multiple

properties by using the controlled decoder. With these differences, we formulate the

molecule property optimization task as a “controlled” molecule “sequence” transla-

tion problem. Other molecule generation methods include Junction Tree Variatinal

Auto Encoder (JT-VAE) [79], Variational Sequence-to-Sequence (VSeq2Seq) [57, 5],

Graph Convolutional Policy Network (GCPN) [178], and Molecule Deep Q-Networks

(MolDQN) [184].

Natural Language Generation Model: Our model is inspired by the recent suc-

cess in molecule representation using the self-attention technique [143]. By adopting

the BERT [41] architecture to represent molecule sequences, their model becomes the

SOTA in the drug-target interaction task. In terms of the model architecture, our

work is related to Transformer [160] because we extend it to be applicable to the

molecule optimization task. There is a controlled text generation model [72] in NLP

domain. It is related to ours because they feed the desired text property as one of

the inputs. However, all of these methods are designed for NLP tasks, therefore, they

cannot be directly applied to molecule optimization tasks.

Transfer learning: DL-based transfer learning by pre-training has been applied to

many fields such as computer vision [133, 54], NLP [71], speech recognition [75, 99],

and health-care applications [141]. They are related to ours because we also pre-train

the constrained networks and transfer the weights to the main model.
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5.3 Problem Definition

Controlled Molecule Generation

• Data: Molecules in SMILES format

– X: Molecule

– pX: The property vector of the input

molecule, X

– Y: New molecule

– pY: The property vector of the output

molecule, Y

• Task: Produce a new molecule, Y, that best

reflects pY by optimizing X

Given an input molecule X, its associated molecule property vector pX , and the

desired property vector pY , the goal is to generate a new molecule Y with the property

pY with the similarity of (X,Y ) ≥ δ. Note that δ is a similarity threshold and the

similarity measure is Tanimoto molecular similarity over Morgan fingerprints [131].

Formally, for two Morgan fingerprints, FX and FY , where both of them are binary

vectors, the Tanimoto molecular similarity is defined as,

sim(FX , FY ) =
|FX ∩ FY |
|FX ∪ FY |

(5.1)

5.4 Proposed Model: Controlled Molecule Gener-

ator

In this section, we introduce the proposed model, controlled molecule generator

(CMG), for generating new molecules with user-specified desired properties and sim-
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ilarity to an input molecule.

5.4.1 Model Overview

Our model extends the Transformer [160] to a molecular sequence by incorporating

molecule properties and additional regularization networks. Inspired by the pre-

vious success in applying the self-attention mechanism to represent a molecule se-

quence [143], we treat each molecule just like a natural language sequence. As noted

by [76], the context and structure information of atoms is important when understand-

ing the properties of molecules, just as we use context and structure information when

understanding natural language.

However, this NLP technique cannot be directly applied, because the structure of

the molecular sequence differs from natural languages, where the hierarchy is a letter-

word-sentence. Not only that, there is no training data available that is collected for

the molecule translation task, while there are ample datasets in the NLP domain. To

fill these gaps, we propose the controlled molecule generation model (Figure 5.1) and

present how we gather the training data for this network (Section 5.5.1). We optimize

the proposed model using three loss functions as briefly shown in Figure 5.1(a). In

addition, we propose two constraint networks (Section 5.4.4 and Figure 5.3), includ-

ing property prediction network (Figure 5.3(a)), and similarity prediction network

(Figure 5.3(b)) to train the model more accurately. Lastly, we also present how we

modify the beam search algorithm [105] to best exploit the existing auxiliary networks

(Section 5.4.5), as briefly shown in Figure 5.1(b).

5.4.2 Background

To efficiently present the idea of the proposed model, we briefly overview Trans-

former [160], the basic building block of the proposed model.

Input Embedding: For a given input sequence, X = {x1, x2, · · · , xi, · · · , xL}, xi ∈
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RV , where L is the length of the sequence and V is the number of vocabulary, we

transform each token into a continuous vector, which is the sum of a token embed-

ding vector and the positional embedding vector. These token embeddings are sim-

ilar to word embeddings [108] except they are randomly initialized, therefore, each

token, xi is transformed into vi ∈ Rd, where d is the token embedding size. The

token embeddings themselves are not sufficient to represent a sequence with a self-

attention network, because a self-attention doesn’t consider the sequence order when

calculating the attention, unlike other attention mechanisms. Therefore, we add a

fixed positional embedding, pi ∈ Rd, to vi that makes the final input representation,

ei = vi + pi, ei ∈ Rd.

Self-Attention Layer: These transformed vectors, ei, are the inputs of the

encoder, consisting of multiple stacks of a self-attention layer and a feed-forward

network. Each self-attention layer possesses three dense networks; a query network

(fθQ , θQ ∈ Rd×h), key network (fθK , θK ∈ Rd×h), and value network (fθV , θV ∈ Rd×h),

where h is the hidden dimension. With these three networks, each input vector, ei

is projected into three utility vectors, a query vector (qi), key vector (ki), and value

vector (vi). Now, the output of a self-attention layer is computed as:

S = Attention(Q,K, V ) (5.2)

= softmax(QKT

√
h

)V ∈ RL×h

This self-attention computation (Equation 5.2) can be repeated H number of

times with the same input, forming the multi-head attention.

Feed-Forward Layer: The outputs of this multi-head attention are concatenated

and projected using another dense network, called an intermediate dense layer, which

parameter is represented as θO ∈ RH·h×d. Then, it forms the final output of one

encoder block, oi ∈ Rd.

Encoder: The Transformer encoder is multiple stacks of the two layers; the self-
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attention layer and the feed-forward layer explained above. Note that the sequence

length is preserved because the self-attention is applied to its own sequence, which

preserves the input-output length. Therefore, the final output of the Transformer

encoder is zi ∈ Rd, which is compatible to be an input to another encoder.

Decoder: The Transformer decoder includes not only the same sub-layers as the

Transformer encoder but one additional layer, the cross attention layer. It is similar

to the self-attention layer in that it’s controlled by three vectors, (qi, ki, vi). The

difference is that its attention weights are calculated between the last unit’s output

of the Transformer encoder and each unit of the decoder, while the self-attention layer

calculates its weights between the same layers.

Loss Function: The output of the last unit of the Transformer decoder is passed

through the two dense layers, one for producing logits for all tokens and another

for producing vocabulary probabilities for all tokens, Ŷ = {ŷ1, ŷ2, · · · , ŷj, · · · , ŷM},

where M is the number of the output tokens. Given an output sequence, Y =

{y1, y2, · · · , yj, · · · , yN}, and the predictions, Ŷ , the loss function is a cross entropy

that can be formally defined as:

LT (θT ;X, pX , pY ) (5.3)

= − 1

N

1

M

∑
n∈N

∑
j∈M

∑
v∈V

yv,j,n · log(ŷv,j,n)

θT denotes all parameters of the Transformer and N represents the number of

training samples.

5.4.3 Molecule Translation Network

In the molecule translation network, two major modifications are applied to the Trans-

former model [160]. The first change is applied to the molecule embedding. The input

molecule is represented by the simplified molecular-input line-entry system (SMILES)

sequence [165]. It is comprised of characters representing atoms or structure indica-
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Figure 5.2: The molecule translation network.

tors. To mark the beginning and the end of a sequence, we add “[BEGIN]” token at

the first position of the sequence and “[END]” token at the last. Mathematically, a

molecule is represented as XL = {x1, x2, . . . , xL}, where xi could be either an atom

or a structure indicator, and L is the sequence length, which varies depending on

a molecule. Since the input sequence is a series of characters without any spaces,

we tokenize this sequence into a list of a single token, then pass these tokens to the

Transformer encoder. Another modification is that we add chemical property aware-

ness to the hidden layer of the Transformer model. We enrich token vectors of the last

encoder by concatenating property vectors to each of the token vectors as shown in

Figure 5.2. Formally, let zi be the token vectors in the last encoder. Then, the the new

encoding vector becomes z′i = (zi, pX , pY ) ∈ Rd+2k, where k represents the number

of properties. Although it might be seen as a simple method, this empirically shows

the best result among other types of configurations, such as property embeddings,

disentangled encodings (property and non-property encodings), and concatenating

property differential information instead of providing two raw vectors. The increased
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vector size can be handled by adjusting the three weights of the projection network

(θQ, θK , and θV ) in the last encoding layer.

Curation of the Training Data: Since CMG is based on sequence translation,

we need to appropriately curate the dataset. Similar to the previous work [81], we

gather molecule pair (X,Y ) so that similarity(X,Y ) ≥ δ from the available molecule

list. Next, we calculate property scores pX and pY using the third-party tool. The

detailed information can be found in Section 5.5.

5.4.4 Constraint Networks

As described in Section 5.4.2, the cost function of the Transformer network (Equa-

tion 5.3) is the cross entropy between the target (yi) and predicted molecule (ŷi). We

hypothesize that this information is not enough to teach the generating model, be-

cause the error signals generated by that loss function can hardly capture the valuable

information, such as if a predicted sequence pertains to the desired property or if it

satisfies the similarity constraint. With this motivation, we add two constraint net-

works; the property prediction network (Section 5.4.4) and the similarity prediction

network (Section 5.4.4).

Property Prediction Network

Since the model complexity of the Transformer is quadratic in the input length,

additional networks should be as simple as possible and yet accurate. Therefore,

we employ a single layer of Bidirectional Long Short Term Memory [69] (BiLSTM)

network in the proposed constraint networks. As shown in Figure 5.3(a), the property

prediction network (PropNet) takes the predicted molecule sequence (ŷj) as an input.

A left-to-right LSTM layer encodes an input vector (ŷj) into a hidden vector,
−→
h j ∈ Rd

by the following equations;
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p̂2
<latexit sha1_base64="abYNL6wGZGtcTZW/ttTL983pfM4=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxSzp16b9csWtunOQVeLlpAI5Gv3yV28Qs1TxCJmkxnQ9N0E/oxoFk3xa6qWGJ5SN6ZB3LY2o4sbP5gdPyZlVBiSMta0IyVz9PZFRZcxEBbZTURyZZW8m/ud1Uwyv/UxESYo8YotFYSoJxmT2PRkIzRnKiSWUaWFvJWxENWVoMyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBgqe4RXeHO28OO/Ox6K14OQzx/AHzucP0Q+Qag==</latexit>

p̂3
<latexit sha1_base64="+Makk8qOGKuBdg3X8ZBM8sSg8Vg=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69BIvgqSStoMeiF48VbKu0oWy2m3bp7ibsToQS+iu8eFDEqz/Hm//GbZuDtj4YeLw3w8y8MBHcoOd9O4W19Y3NreJ2aWd3b/+gfHjUNnGqKWvRWMT6ISSGCa5YCzkK9pBoRmQoWCcc38z8zhPThsfqHicJCyQZKh5xStBKj70RwSzp16f9csWrenO4q8TPSQVyNPvlr94gpqlkCqkgxnR9L8EgIxo5FWxa6qWGJYSOyZB1LVVEMhNk84On7plVBm4Ua1sK3bn6eyIj0piJDG2nJDgyy95M/M/rphhdBRlXSYpM0cWiKBUuxu7se3fANaMoJpYQqrm91aUjoglFm1HJhuAvv7xK2rWqX6/W7i4qjes8jiKcwCmcgw+X0IBbaEILKEh4hld4c7Tz4rw7H4vWgpPPHMMfOJ8/0pSQaw==</latexit>

…

…

…

DENSE

…

Shared
biLSTM Layer

ŷ1
<latexit sha1_base64="XhvwZaMNNNWCK0LlEg8YpykU6TU=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy223bpbhJ2J0II/RVePCji1Z/jzX/jts1BWx8MPN6bYWZeEEth0HW/ncLa+sbmVnG7tLO7t39QPjxqmSjRjDdZJCPdCajhUoS8iQIl78SaUxVI3g4mtzO//cS1EVH4gGnMfUVHoRgKRtFKj70xxSzte9N+ueJW3TnIKvFyUoEcjX75qzeIWKJ4iExSY7qeG6OfUY2CST4t9RLDY8omdMS7loZUceNn84On5MwqAzKMtK0QyVz9PZFRZUyqAtupKI7NsjcT//O6CQ6v/UyEcYI8ZItFw0QSjMjsezIQmjOUqSWUaWFvJWxMNWVoMyrZELzll1dJq1b1Lqq1+8tK/SaPowgncArn4MEV1OEOGtAEBgqe4RXeHO28OO/Ox6K14OQzx/AHzucP3UmQcg==</latexit>

ŷ2
<latexit sha1_base64="zVpXf0hYogVque5JhuxmdJg66UE=">AAAB8HicbVBNS8NAEJ3Ur1q/qh69LBbBU0mqoMeiF48V7Ie0oWy2m3bpbhJ2J0IJ/RVePCji1Z/jzX/jts1BWx8MPN6bYWZekEhh0HW/ncLa+sbmVnG7tLO7t39QPjxqmTjVjDdZLGPdCajhUkS8iQIl7ySaUxVI3g7GtzO//cS1EXH0gJOE+4oOIxEKRtFKj70RxWzSr0375Ypbdecgq8TLSQVyNPrlr94gZqniETJJjel6boJ+RjUKJvm01EsNTygb0yHvWhpRxY2fzQ+ekjOrDEgYa1sRkrn6eyKjypiJCmynojgyy95M/M/rphhe+5mIkhR5xBaLwlQSjMnsezIQmjOUE0so08LeStiIasrQZlSyIXjLL6+SVq3qXVRr95eV+k0eRxFO4BTOwYMrqMMdNKAJDBQ8wyu8Odp5cd6dj0VrwclnjuEPnM8f3s6Qcw==</latexit>

ˆyM
<latexit sha1_base64="KJMM8+rshKNYjHIK5sHcxKGs5Xw=">AAAB8HicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04kWoYD+kDWWz3bRLN5uwOxFK6K/w4kERr/4cb/4bt20O2vpg4PHeDDPzgkQKg6777aysrq1vbBa2its7u3v7pYPDpolTzXiDxTLW7YAaLoXiDRQoeTvRnEaB5K1gdDP1W09cGxGrBxwn3I/oQIlQMIpWeuwOKWbj3t2kVyq7FXcGsky8nJQhR71X+ur2Y5ZGXCGT1JiO5yboZ1SjYJJPit3U8ISyER3wjqWKRtz42ezgCTm1Sp+EsbalkMzU3xMZjYwZR4HtjCgOzaI3Ff/zOimGV34mVJIiV2y+KEwlwZhMvyd9oTlDObaEMi3srYQNqaYMbUZFG4K3+PIyaVYr3nmlen9Rrl3ncRTgGE7gDDy4hBrcQh0awCCCZ3iFN0c7L8678zFvXXHymSP4A+fzBwfkkI4=</latexit>

…

Shared
biLSTM Layer

x2
<latexit sha1_base64="vdTCQWpAcdEoAqjXndSIH2U27gw=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qlX7ZXKbsWdgSwTLydlyFHvlb66/ZilEVfIJDWm47kJ+hnVKJjkk2I3NTyhbEQHvGOpohE3fjY7dUJOrdInYaxtKSQz9fdERiNjxlFgOyOKQ7PoTcX/vE6K4ZWfCZWkyBWbLwpTSTAm079JX2jOUI4toUwLeythQ6opQ5tO0YbgLb68TJrVindeqd5dlGvXeRwFOIYTOAMPLqEGt1CHBjAYwDO8wpsjnRfn3fmYt644+cwR/IHz+QMOgo2l</latexit>

x1
<latexit sha1_base64="MWSDWkw1NdOauHNwPQkLknLX4o4=">AAAB6nicbVBNS8NAEJ34WetX1aOXxSJ4KkkV9Fj04rGi/YA2lM120y7dbMLuRCyhP8GLB0W8+ou8+W/ctjlo64OBx3szzMwLEikMuu63s7K6tr6xWdgqbu/s7u2XDg6bJk414w0Wy1i3A2q4FIo3UKDk7URzGgWSt4LRzdRvPXJtRKwecJxwP6IDJULBKFrp/qnn9Uplt+LOQJaJl5My5Kj3Sl/dfszSiCtkkhrT8dwE/YxqFEzySbGbGp5QNqID3rFU0YgbP5udOiGnVumTMNa2FJKZ+nsio5Ex4yiwnRHFoVn0puJ/XifF8MrPhEpS5IrNF4WpJBiT6d+kLzRnKMeWUKaFvZWwIdWUoU2naEPwFl9eJs1qxTuvVO8uyrXrPI4CHMMJnIEHl1CDW6hDAxgM4Ble4c2Rzovz7nzMW1ecfOYI/sD5/AEM/o2k</latexit>

xM
<latexit sha1_base64="fZnybbYySksWSrntsOUwcLWLhYs=">AAAB6nicbVDLSgNBEOyNrxhfUY9eBoPgKexGQY9BL16EiOYByRJmJ5NkyOzsMtMrhiWf4MWDIl79Im/+jZNkD5pY0FBUddPdFcRSGHTdbye3srq2vpHfLGxt7+zuFfcPGiZKNON1FslItwJquBSK11Gg5K1YcxoGkjeD0fXUbz5ybUSkHnAccz+kAyX6glG00v1T97ZbLLlldwayTLyMlCBDrVv86vQiloRcIZPUmLbnxuinVKNgkk8KncTwmLIRHfC2pYqG3Pjp7NQJObFKj/QjbUshmam/J1IaGjMOA9sZUhyaRW8q/ue1E+xf+qlQcYJcsfmifiIJRmT6N+kJzRnKsSWUaWFvJWxINWVo0ynYELzFl5dJo1L2zsqVu/NS9SqLIw9HcAyn4MEFVOEGalAHBgN4hld4c6Tz4rw7H/PWnJPNHMIfOJ8/N26NwA==</latexit>

�!
h Ŷ

M
<latexit sha1_base64="nB2cjazuCbs5Gj+5QMshNemwNWs=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSlIFXRbduBEq2Ie0MUym02boJBNmbpQSsnXjr7hxoYhb/8Cdf+P0sdDWAxcO59zLvfcEieAaHOfbWlhcWl5ZLawV1zc2t7btnd2GlqmirE6lkKoVEM0Ej1kdOAjWShQjUSBYMxhcjPzmPVOay/gGhgnzItKPeY9TAkbybdyRxla8HwJRSj5kYe5nV/ld1gkJZLd57tslp+yMgeeJOyUlNEXNt786XUnTiMVABdG67ToJeBlRwKlgebGTapYQOiB91jY0JhHTXjb+JMeHRuninlSmYsBj9fdERiKth1FgOiMCoZ71RuJ/XjuF3pmX8ThJgcV0sqiXCgwSj2LBXa4YBTE0hFDFza2YhkQRCia8ognBnX15njQqZfe4XLk+KVXPp3EU0D46QEfIRaeoii5RDdURRY/oGb2iN+vJerHerY9J64I1ndlDf2B9/gCog5uU</latexit>

 �
h Ŷ

M
<latexit sha1_base64="mc99CD5s3TAIQON16FM502pdWew=">AAACCHicbVDLSsNAFJ3UV62vqEsXBovgqiRV0GXRjRuhgn1IU8NkOmmGTjJh5kYpIUs3/oobF4q49RPc+TdOHwttPXDhcM693HuPn3CmwLa/jcLC4tLySnG1tLa+sbllbu80lUgloQ0iuJBtHyvKWUwbwIDTdiIpjnxOW/7gYuS37qlUTMQ3MExoN8L9mAWMYNCSZ+67QtucBoClFA9ZmHvZVX6XuSGG7DbPPbNsV+wxrHniTEkZTVH3zC+3J0ga0RgIx0p1HDuBboYlMMJpXnJTRRNMBrhPO5rGOKKqm40fya1DrfSsQEhdMVhj9fdEhiOlhpGvOyMMoZr1RuJ/XieF4KybsThJgcZksihIuQXCGqVi9ZikBPhQE0wk07daJMQSE9DZlXQIzuzL86RZrTjHler1Sbl2Po2jiPbQATpCDjpFNXSJ6qiBCHpEz+gVvRlPxovxbnxMWgvGdGYX/YHx+QPHKpsX</latexit>

 �
h X

M
<latexit sha1_base64="hfzWeNdfJzm9VYyYSsa9Vyhfg2g=">AAACAnicbVBNS8NAEN34WetX1JN4CRbBU0mqoMeiFy9CBfsBbSyb7aRdutkNuxulhODFv+LFgyJe/RXe/Ddu2xy09cHA470ZZuYFMaNKu+63tbC4tLyyWlgrrm9sbm3bO7sNJRJJoE4EE7IVYAWMcqhrqhm0Ygk4Chg0g+Hl2G/eg1RU8Fs9isGPcJ/TkBKsjdS19zvC2AxCjaUUD+kg66bX2V3ayrp2yS27EzjzxMtJCeWode2vTk+QJAKuCcNKtT031n6KpaaEQVbsJApiTIa4D21DOY5A+enkhcw5MkrPCYU0xbUzUX9PpDhSahQFpjPCeqBmvbH4n9dOdHjup5THiQZOpovChDlaOOM8nB6VQDQbGYKJpOZWhwywxESb1IomBG/25XnSqJS9k3Ll5rRUvcjjKKADdIiOkYfOUBVdoRqqI4Ie0TN6RW/Wk/VivVsf09YFK5/ZQ39gff4AvJSYSQ==</latexit>

�!
h X

M
<latexit sha1_base64="uLessZoiCtIHlUtCJP0DTzlAtZI=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4KkkVdFl040aoYB/QxjCZTpqhk5kwM1FKCLjxV9y4UMStP+HOv3HaZqGtBy4czrmXe+8JEkaVdpxva2FxaXlltbRWXt/Y3Nq2d3ZbSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6MBpyHFSBvJt/d7wtiSDiKNpBQPWZT72XV+l3Vy3644VWcCOE/cglRAgYZvf/X6Aqcx4RozpFTXdRLtZUhqihnJy71UkQThIRqQrqEcxUR52eSHHB4ZpQ9DIU1xDSfq74kMxUqN4sB0xkhHatYbi/953VSH515GeZJqwvF0UZgyqAUcBwL7VBKs2cgQhCU1t0IcIYmwNrGVTQju7MvzpFWruifV2s1ppX5RxFECB+AQHAMXnIE6uAIN0AQYPIJn8ArerCfrxXq3PqatC1Yxswf+wPr8AZsvmMY=</latexit>

�!
h X

M
<latexit sha1_base64="uLessZoiCtIHlUtCJP0DTzlAtZI=">AAACA3icbVDLSsNAFJ34rPUVdaebwSK4KkkVdFl040aoYB/QxjCZTpqhk5kwM1FKCLjxV9y4UMStP+HOv3HaZqGtBy4czrmXe+8JEkaVdpxva2FxaXlltbRWXt/Y3Nq2d3ZbSqQSkyYWTMhOgBRhlJOmppqRTiIJigNG2sHwcuy374lUVPBbPUqIF6MBpyHFSBvJt/d7wtiSDiKNpBQPWZT72XV+l3Vy3644VWcCOE/cglRAgYZvf/X6Aqcx4RozpFTXdRLtZUhqihnJy71UkQThIRqQrqEcxUR52eSHHB4ZpQ9DIU1xDSfq74kMxUqN4sB0xkhHatYbi/953VSH515GeZJqwvF0UZgyqAUcBwL7VBKs2cgQhCU1t0IcIYmwNrGVTQju7MvzpFWruifV2s1ppX5RxFECB+AQHAMXnIE6uAIN0AQYPIJn8ArerCfrxXq3PqatC1Yxswf+wPr8AZsvmMY=</latexit>

 �
h X

M
<latexit sha1_base64="hfzWeNdfJzm9VYyYSsa9Vyhfg2g=">AAACAnicbVBNS8NAEN34WetX1JN4CRbBU0mqoMeiFy9CBfsBbSyb7aRdutkNuxulhODFv+LFgyJe/RXe/Ddu2xy09cHA470ZZuYFMaNKu+63tbC4tLyyWlgrrm9sbm3bO7sNJRJJoE4EE7IVYAWMcqhrqhm0Ygk4Chg0g+Hl2G/eg1RU8Fs9isGPcJ/TkBKsjdS19zvC2AxCjaUUD+kg66bX2V3ayrp2yS27EzjzxMtJCeWode2vTk+QJAKuCcNKtT031n6KpaaEQVbsJApiTIa4D21DOY5A+enkhcw5MkrPCYU0xbUzUX9PpDhSahQFpjPCeqBmvbH4n9dOdHjup5THiQZOpovChDlaOOM8nB6VQDQbGYKJpOZWhwywxESb1IomBG/25XnSqJS9k3Ll5rRUvcjjKKADdIiOkYfOUBVdoRqqI4Ie0TN6RW/Wk/VivVsf09YFK5/ZQ39gff4AvJSYSQ==</latexit>

�!
h Ŷ

M
<latexit sha1_base64="nB2cjazuCbs5Gj+5QMshNemwNWs=">AAACCXicbVDLSsNAFJ34rPUVdelmsAiuSlIFXRbduBEq2Ie0MUym02boJBNmbpQSsnXjr7hxoYhb/8Cdf+P0sdDWAxcO59zLvfcEieAaHOfbWlhcWl5ZLawV1zc2t7btnd2GlqmirE6lkKoVEM0Ej1kdOAjWShQjUSBYMxhcjPzmPVOay/gGhgnzItKPeY9TAkbybdyRxla8HwJRSj5kYe5nV/ld1gkJZLd57tslp+yMgeeJOyUlNEXNt786XUnTiMVABdG67ToJeBlRwKlgebGTapYQOiB91jY0JhHTXjb+JMeHRuninlSmYsBj9fdERiKth1FgOiMCoZ71RuJ/XjuF3pmX8ThJgcV0sqiXCgwSj2LBXa4YBTE0hFDFza2YhkQRCia8ognBnX15njQqZfe4XLk+KVXPp3EU0D46QEfIRaeoii5RDdURRY/oGb2iN+vJerHerY9J64I1ndlDf2B9/gCog5uU</latexit>

 �
h Ŷ

M
<latexit sha1_base64="mc99CD5s3TAIQON16FM502pdWew=">AAACCHicbVDLSsNAFJ3UV62vqEsXBovgqiRV0GXRjRuhgn1IU8NkOmmGTjJh5kYpIUs3/oobF4q49RPc+TdOHwttPXDhcM693HuPn3CmwLa/jcLC4tLySnG1tLa+sbllbu80lUgloQ0iuJBtHyvKWUwbwIDTdiIpjnxOW/7gYuS37qlUTMQ3MExoN8L9mAWMYNCSZ+67QtucBoClFA9ZmHvZVX6XuSGG7DbPPbNsV+wxrHniTEkZTVH3zC+3J0ga0RgIx0p1HDuBboYlMMJpXnJTRRNMBrhPO5rGOKKqm40fya1DrfSsQEhdMVhj9fdEhiOlhpGvOyMMoZr1RuJ/XieF4KybsThJgcZksihIuQXCGqVi9ZikBPhQE0wk07daJMQSE9DZlXQIzuzL86RZrTjHler1Sbl2Po2jiPbQATpCDjpFNXSJ6qiBCHpEz+gVvRlPxovxbnxMWgvGdGYX/YHx+QPHKpsX</latexit>

ŝ
<latexit sha1_base64="zft0RJb7mD3s88vhv61j863SQxs=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0lqQY9FLx4r2A9oQ9lsN+3SzSbsToQS+iO8eFDEq7/Hm//GbZuDtj4YeLw3w8y8IJHCoOt+O4WNza3tneJuaW//4PCofHzSNnGqGW+xWMa6G1DDpVC8hQIl7yaa0yiQvBNM7uZ+54lrI2L1iNOE+xEdKREKRtFKnf6YYmZmg3LFrboLkHXi5aQCOZqD8ld/GLM04gqZpMb0PDdBP6MaBZN8VuqnhieUTeiI9yxVNOLGzxbnzsiFVYYkjLUthWSh/p7IaGTMNApsZ0RxbFa9ufif10sxvPEzoZIUuWLLRWEqCcZk/jsZCs0ZyqkllGlhbyVsTDVlaBMq2RC81ZfXSbtW9a6qtYd6pXGbx1GEMziHS/DgGhpwD01oAYMJPMMrvDmJ8+K8Ox/L1oKTz5zCHzifP6nxj8g=</latexit>

(a) Property Prediction Network. Gray indicates unused 
vectors.

(b) Similarity prediction network. The biLSTM layer is 
simplified because the details are described in (a). One 
biLSTM layer is being shared by two input sequences.  

biLSTM biLSTM biLSTM

Figure 5.3: Two Constraint Networks.
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ij = σ(WiY [: j] + Uihi−1 + bi (5.4)

fj = σ(WfY [: j] + Ufhi−1 + bf (5.5)

Cj = ii ⊙ tanh(WcY [: j] + Uchi−1 + bc) + fj ⊙ Cj−1 (5.6)

oj = σ(WoY [: j] + Uohi−1 + bo (5.7)

hj = oj ⊙ tanh(Cj) (5.8)

If we apply these same equations with different parameters on the opposite direc-

tion of the input, we get another hidden vector,
←−
h j ∈ Rd. We concatenate the last

two vectors from each direction, (
−→
h M and

←−
h M), to create the property feature vector

(hprop = (
−→
h M ,

←−
h M) ∈ R2d). This feature vector is fed into a dense network with two

hidden layers. The output of the first dense layer has 100 neurons and the dimension

of the next layer’s output is the same as the property dimension. Since the property

values are not strictly from 0 to 1, we don’t apply any activation function to the last

dense layer, while we apply the RELU activation on the first dense layer. Since we

have the property prediction, p̂Y and the desired property (pY ) from the input, we

can create another loss function, which will enrich error signals by adding property

awareness in predicting a molecule. The loss function is formally written as,

LP (θT ;X, pX , pY ) =
1

N

∑
n∈N

|pY n − p̂Y n|2 (5.9)

Note that the parameters of PropNet are pre-trained using all molecules in the

training set. Since all properties can be calculated using a third-party library, prop-

erty annotations can be automated. Once pre-trained, the parameters are transferred

to the CMG network. When training the main network, we freeze the weights of

PropNet such that its role in the main network is consistent.

Implementation Details: We use 64-dimensional hidden vectors in the biLSTM

layer, and 100 dimensions in the second last dense layer. We use Adam optimizer [84]
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with default parameters set by Tensorflow Keras2. The batch size is 4,096 and the

number of epochs is 1,000. The best model was selected by evaluating 20% of the data,

the validation set of PropNet described above. As a result, we selected the model at

the 715th epoch, the mean square error (MSE) on the test set is 0.08554. Considering

the values of QED and DRD2 range from 0 to 1, and the values of penalized logp

typically range from -10 to 10, this MSE is small enough to be used as a property

estimation.

Similarity Prediction Network

Another constraint network is the similarity prediction network (SimNet). It takes

two sequences as an input, one is a predicted molecule sequence (ŷi) and the other one

is the input molecule sequence (xi). Since one of the requirements of the model is to

generate a molecule that is similar to input, we hypothesize that adding error signals

to the loss function predicted by SimNet could be useful. We employ one layer of

BiLSTM for SimNet, which is shared by two different inputs because two sequences

need to have the same feature representation in order to be compared against each

other. Applying the BiLSTM layer to a predicted molecule sequence will produce a

feature vector of the predicted molecule, hpredicted ∈ R2d. Likewise, the feature vector

of the input molecule is hinput ∈ R2d. We concatenate these two feature vectors as

(hpredicted, hinput) ∈ R4d, so that the next two dense networks can capture the similarity

between the two. The output of the first dense layer has 100 neurons with RELU

activation, and the output of the next layer has one neuron with sigmoid activation

because SimNet is designed for a binary classification task (similar or not). For the

training dataset for SimNet, we annotate all training molecule pairs with either 1

(if similarity≥ δ) or 0 (otherwise), by calculating the similarity using a third-party

library. We let sn be the binary label of the similarity between the two molecules
2https://www.tensorflow.org/api_docs/python/tf/keras

https://www.tensorflow.org/api_docs/python/tf/keras
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in n’th data, and ŝn be the predicted output of SimNet for the same input data.

With these labels and the predictions of SimNet, we can create the last loss function,

formally written as,

LS(θT ;X, pX , pY ) =
1

N

∑
n∈N

sn log ŝn + (1− sn) log (1− ŝn) (5.10)

When training the whole model, we transfer the trained SimNet weights into the

whole model and freeze the SimNet weights for the same reason as PropNet presented

in Section 5.4.4. The SimNet network configuration is illustrated in Figure 5.3(b).

Implementation Details: We use 64-dimensional hidden vectors in the biLSTM

layer, and 100 dimensions in the second last dense layer. We use the same optimizer

as PropNet. The batch size is 4,096 and the number of epochs is 1,000. The best

model was selected by evaluating 20% of the data, test set set of SimNet described

above. As a result, we selected the model at the 755th epoch, which recorded the

prediction accuracy of the test set as 97.59%.

The weights of these two constraint networks are transferred to the corresponding

part in the main CMG model. These constraint networks in CMG are frozen when

training CMG and predicting a new molecule using it.

CMG Loss Function

By combining Equations (5.3)-(5.10), we can obtain the CMG loss function:

LCMG = LT + λpLP + λsLS, (5.11)

where λp and λs are weight parameters.

5.4.5 Modified Beam Search with Constraint Networks

When generating a sequence from CMG at testing, there is no gold output se-

quence that it can reference. Therefore we need to sequentially generate tokens until
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Algorithm 2: Modified Beam Search
1: Input: Candidate molecules: C1, C2, · · · , Cb,

Corresponding beam scores: s1, s2, · · · , sb
Input molecule: X
Desired property vector: pY

2: for i = 1 to b do
3: p̂i ← PropNet(Ci)
4: pd ← |pY − p̂i|
5: spn ← reduce_mean(1− pd)
6: ssn ← SimNet(X,Ci)
7: si ← si + (spn + ssn)
8: end for
9: best_index ← argmax si

10: Output: Cbest_index

we encounter the "[END]" token, like other sequence-based algorithms. For this pro-

cess, a typical way is the beam search, where the model maintains top b number of

best candidate sequences when predicting each token. When all candidate sequences

are complete and ready, the model outputs the best candidate in terms of a beam

score, a cumulative log-likelihood score for a corresponding candidate. We hypothe-

size that other non-best candidates might be better than the chosen one in terms of

the purpose of a task. For example, there is a possibility that low ranked molecules

could be closer to the desired properties than the top molecule selected by the beam

search.

Unlike a typical Transformer model, CMG has PropNet and SimNet, that can be

used to evaluate candidates before naively selecting one according to beam scores.

Therefore, we propose a modified beam search algorithm using our constraint net-

works as summarized in Algorithm 2. It runs with b number of the completed can-

didates along with corresponding beam scores. For the property evaluation, we first

get the predicted property of each candidate and get the absolute difference from

the desired property (Line 3-4 in Algorithm 2). Since this difference is desired to be

small, we calculate the property evaluation score (spn) by subtracting them from one
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(Line 5 in Algorithm 2). The property could have multiple values, therefore, we take

an average of all elements of this difference vector. For the similarity evaluation, we

get the predicted similarity between the input X and each candidate Ci (Line 6 in

Algorithm 2). Since we expect a candidate should be similar (label 1) to the input,

we regard the predicted similarity as the raw score from SimNet. By adding these

two predicted scores to the original beam scores, we obtain the modified beam scores

(Line 7 in Algorithm 2). With this new score, we can select the best candidate (Line

9-10 in Algorithm 2).

5.4.6 Diversifying the Output

Unlike other variational models (VSeq2Seq and VJTNN), the proposed one encodes a

fixed vector that is able to generate a single output for one input. In order to diversify

the output for a fixed input, we re-parameterize the desired vector, (p1, p2, p3), as

random variable by adding a Gaussian noise with a user-specified variance.

p̃k ∼ N(pk, σk) (5.12)

For example, if the desired property vector is (p1, p2, p3), we feed (p1+α, p2+β, p3+γ),

where α, β and γ are samples drawn from N(0, σ1), N(0, σ2), and N(0, σ3).

5.5 Experiments

We compare the proposed model with state-of-the-art molecule optimization methods

in the following tasks.

Single Objective Optimization (SOO): This task is to optimize an input

molecule to have a better property while preserving a certain level of similarity be-

tween the input molecule and the optimized one. Since developing a new drug usually

starts with an existing molecule [8], this task serves as a good benchmark.
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ZINC DRD2D ZINC ∪ DRD2D
# of mol. 249,455 25,695 260,939

Table 5.1: Molecules used in this study. About 54% of DRD2D molecules also belong
to ZINC, therefore, the total number of molecules for this study is 260,939.

Multi-Objective Optimization (MOO): This task reflects a more practical

scenario in drug discovery, where modifying an existing drug involves optimizing mul-

tiple properties simultaneously, such as similarity, lipophilicity scores, drug likeness

scores, and target affinity scores. Since improving one property might often result in

sacrificing other properties, this task is harder than a single-objective optimization

task.

To present multi-faceted aspects of the proposed model, we additionally perform

the following case studies.

Case Study: To evaluate the effectiveness of the proposed model, we present the

result of an actual drug optimization task with an existing molecule in an experimental

phase.

Ablation Study: For ablation study, we report the validity of the constraint

networks both in training and testing phases.

5.5.1 Datasets

Training Set for CMG: As described in Table 5.1, we use the ZINC dataset [150]

and the DRD2 related molecule dataset (DRD2D) [112] for our experiments. This

is the same set of molecules as what Jin et al. [81] used to evaluate their model

(VJTNN). This set is chosen since Jin et al. [81] set up the benchmarks with this

data, one of which (single-objective optimization) is used in our study. From these

260k molecules, we exclude molecules that appear in the development and the test set

of VJTNN, resulting 257,565 molecules. With these molecules, we construct training

datasets by selecting molecule pairs (X,Y ) with the similarity is greater than or
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equal to 0.4, following the same procedure in [81, 34]. The main difference from

their curation processes is that we add all pairs of molecules even if any property

is decreased. By doing this, we provide a more ample dataset to a deep model, so

that it could be helpful in finding more useful patterns. As a result, the number of

pairs in training data is significantly bigger than theirs. Among all possible pairs

(257K × 257K = 67B), we select 10,827,615 pairs that satisfies similarity condition

(≥ 0.4). With the same similarity condition, Jin et al. [81] gathered less than 100K

due to additional constraints of training sets, where the property values of each output

molecule should be greater than the ones of the corresponding input. As previous

related works [81, 89] did, we pre-calculate the following three chemical properties of

all molecules in the training set:

• Penalized logP (PlogP) [89]: A measure of lipophilicity of a compound,

specifically, the octanol/water partition coefficient (logP) penalized by the ring

size and synthetic accessibility.

• Drug likeness (QED): A measure of drug-likeness based on the quantitative

estimate of drug-likeness proposed by Bickerton et al. [8]

• Dopamine Receptor (DRD2): A measure of molecule activity against a

biological target, the dopamine type 2 receptor.

Training Set for PropNet: Among 260,939 molecules, we excluded all molecules

in the test sets of the two tasks; single-objective optimization, multi-objective opti-

mization. The number of these remained molecules is 257,565. We construct the

dataset for PropNet by arranging all molecules as inputs and the corresponding three

properties as outputs. We randomly split this into the training and validation sets

with a ratio of 8:2.

Training Set for SimNet: We use a subset of all 10,827,615 pairs in the CMG

training set due to the simpler network configuration of SimNet. When sub-sampling
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pairs, we tried to preserve the proportion of the similarity in the CMG dataset to best

preserve the original data distribution. The reason behind this effort is that preserving

the similarity distribution could possibly contribute to the SimNet accuracy although

SimNet only uses binary labels. In addition, we try to preserve the similar/not-similar

ratio to be about to the same. By sampling about 10% of data, we gathered 997,773

number of pairs and the ratio of the positive samples is 49.45%. We randomly split

this into the training and validation set with a ratio of 8:2.

All molecules are represented in the SMILES format, and we parse them into a

single character. Since the number of possible characters in the SMILES format is

71 and there are two special tokens, the size of the vocabulary is 73 when parsing a

molecule data into a sequence of vocabulary ids.

5.5.2 Pre-Training of Constraint Networks

We pre-train the two constraint networks using the training sets described in Sec-

tion 5.5.1. The best models were selected by evaluating 20% of each dataset, the

validation sets. The weights of these two constraint networks are transferred to the

corresponding part in the main CMG model. These constraint networks in CMG are

frozen when training CMG and predicting a new molecule using it.

5.5.3 Single Objective Optimization

The first task on which we evaluate the proposed model is the single objective opti-

mization task proposed by Jin et al. [79]. The goal is to generate a new molecule with

an improved PlogP score under the similarity constraint (δ = 0.4). We used the same

development and test sets provided by Jin et al. [79]. The number of data samples in

the development set and the test set are 200 and 800, correspondingly.

Baselines: We compare the proposed method with the following baselines; MMPA,

JT-VAE, GCPN, VSeq2Seq, MolDQN, and VJTNN introduced in Section 5.2.
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Since Jin et al. [81] ran and reported almost all of the baseline methods on the

single property optimization task (PlogP improvement task) with the same test sets,

we cite their experiment results. For MolDQN, which is published after VJTNN, we

referenced the scores from MolDQN paper [184].

Following the same experimental setup with the baselines [81], we generate 20

molecules for a single input molecule and record one valid molecule with the maximum

PlogP improvement.

Implementation Details: We use 4 layers and 8 heads of self-attention and

feed-forward layers for both the encoder and the decoder. The hidden vector size is

128 and the dimension of the intermediate dense layer is 256. We set the maximum

sequence length to be 150 because the max length used in the previous self-attention

based molecule representation model [143] was 100 and the default buffer size of a

typical Transformer model is 50% of its maximum sequence length. For the two

constraint networks, we use the same configuration as pre-training models of them so

that they are compatible with each other when transferring the weights. We use Adam

optimizer [84] with the learning rate=2.0, β1 = 0.9 and β2 = 0.997. We train the

proposed model (CMG) using 10M of the training set (Section 5.5.1) for 500 epochs

with a batch size of 4,096. The dimension of the property vector is three, where the

first one is PlogP, the second one is QED, and the last one is DRD2 values. We use

the desired property vector of {XP logP , 0.0, 0.0} with the sampled offset parameters

of α = {−1.0,−0.5, 0.0, 0.5, 1.0}, β = {0.1, 0.6} and γ = {0.52, 0.8}.

Metrics: Since the task is to generate a molecule with an improved PlogP

value, we measure an average of raw increments and its standard deviation among

valid molecules with the similarity constraint met. Specifically, among 20 generated

molecules for a given input, if none of them satisfies the similarity constraint (δ = 0.4),

then we score that sample as 0, otherwise, we choose one molecule with a maximum

increment as VJTNN did [81]. After we repeat this for all 800 molecules in the test
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Method Improvement Diversity
MMPA 3.29 ± 1.12 0.496
JT-VAE 1.03 ± 1.39 -
GCPN 2.49 ± 1.30 -
VSeq2Seq 3.37 ± 1.75 0.471
MolDQN 3.37 ± 1.62 -
VJTNN 3.55 ± 1.67 0.480
Proposed 3.92 ± 1.88 0.545

Table 5.2: Single objective optimization performance comparison on the penalized
logP task. MolDQN results are from, and the scores of other baselines are from.

set, we report the average and standard deviation. In addition to the improvement

score, we also measure the diversity defined by Jin et al. [81]. Although this diversity

measure has been used by previous researches, it is limited in that it encourages the

outputs to have low similarity around the threshold. However, if we need to generate

diverse molecules around the similarity threshold, then this diversity measure can

serve as the right metric.

The diversity measure is the average pairwise Tanimoto distance between the two

molecules in each pair, where the distance is dist(X,Y ) = 1−sim(X,Y ). We measure

the distances between an input molecule and validly generated molecules among 20

outputs. Then the final score is the average of them. With this metric, we can

compare the diversity of learned output distributions.

Result: After we train the model using the training set described in Section 5.5.1,

we generate new molecules by feeding inputs including desired chemical properties to

the trained model. As discussed in Section 5.4.6, we add offsets to desired properties

so that the output can be diversified. Since the number of generated samples for each

input is set to 20, we use the desired property vector of {XP logP , 0.0, 0.0} with a total

of 20 combinations of (α,β,γ) that are sampled from the user-defined distributions.

We select the best model using the development set, and the test set performance of

that model is reported in Table 5.2. In the PlogP optimization task, the proposed

model outperforms all baselines including the current SOTA, VJTNN, in terms of
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both the average improvement and the diversity by a large margin. Considering

the two recently proposed methods (MolDQN and VJTNN) are competing in 0.18

difference, the proposed one surpasses the current SOTA by 0.37 improvement. The

same trend can be found in the diversity comparison. The proportion of valid output

molecules generated by CMG is approximately 90%, while VJTNN records 100%.

This indicates that once CMG produces valid molecules, then their improvements

are big enough to compensate for loss from the invalid molecules (about 10% of all

outputs).

We also experimented with other single objective optimizations, QED and DRD2.

Unlike the PlogP case, where CMG outperforms the previous methods, these cases

show that CMG failed to outperform others. The reason stems from the distribution

of the training set. The proportions of pairs with the QED and DRD2 improvement

in the training set are just 5.9% and 0.08%, respectively. Therefore, when optimizing

for QED or DRD2, the model would not fully extract the useful information from

the training set. Since our model is trained once for all tasks (SOO and MOO), this

small portion of information would potentially impact negatively for certain single

property optimizations, such as QED and DRD2.

5.5.4 Multi Objective Optimization

The single objective optimization task has served as a standard benchmark in the

deep-learning based molecule generation field [79, 178, 81]. However, the actual drug

discovery process frequently requires balancing of multiple compound properties [162,

140]. Therefore we set up a new benchmark, multi-objective optimization (MOO). In

this task, we jointly optimize three chemical properties for a given molecule. We set

up the success criteria of the generated molecules in the MOO task as follows:

• sim(X,Y ) ≥ 0.4



88

Method Success Rate
All Samples (2365) Sub Samples (50)

VJTNN 3.56% 4.00%
MolDQN - 0.00%
Proposed 6.98% 6.00%

Table 5.3: Multi objective optimization performance comparison.

• PlogP improvement is at least 1.0

• QED value is at least 0.9

• DRD2 value is over 0.5

To create the development set of this task, we merge all three different develop-

ment sets provided by VJTNN, consisting of 1,038 molecules. Among those molecules,

we exclude any molecules that already satisfy either the QED or DRD2 criteria. After

this filtering, the final development set contains 985 molecules. We perform the same

procedure for the test set, which reduces the number of molecules from 2,452 to 2,365.

Baselines: For this task, we include the top two baselines (MolDQN and VJTNN)

from the SOO task. While MolDQN can perform the MOO task by simply modifying

the reward function, VJTNN can’t perform as it is because it is designed for a single

property optimization. Here are how we prepare those baselines for the MOO task.

• MolDQN: The reward function of MolDQN for this task is defined as

r =
1

8
1(sim(X,Y ) ≥ 0.4)

+
1

8
1(P logP (Y )− P logP (X) ≥ 1.0)

+
1

8
1(QED ≥ 0.9) +

1

8
1(DRD2 > 0.5)

+
1

8
sim(X,Y ) +

1

8
P logP (Y ) +

1

8
QED(Y ) +

1

8
DRD2(Y )

The first four terms represent the exact goal of the task, and the last four

terms provide continuous information about the goals. Since one MolDQN
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model should be trained for each test sample and it requires significant time,

evaluating all 2,365 samples requires more than three months with a 96-CPUs

server. Therefore, we sub-sample the test set into 50 while preserving the

original distribution3 and we use it for the proxy evaluation of MolDQN. For

each input, we generate 60 samples4 after training the model (with exploration

rate set to zero) and report success if at least one of them satisfies the success

criteria defined above.

• VJTNN: We sequentially optimize an input molecule using three trained mod-

els from VJTNN (models for PlogP, QED, and DRD2). Firstly, the PlogP

model generates 20 molecules for an input molecule. We select the most similar

molecules that satisfy PlogP criteria. Then, for this selected molecule, the QED

model generates another 20 molecules that optimize QED values. We again se-

lect the most similar molecules that satisfy PlogP and QED criteria. Finally,

the DRD2 model generates 20 molecules and we report success if any of them

satisfies the success criteria.

Implementation Details: We use the same configuration and the same training

sets used in the previous task, SOO. We select the best model based on the develop-

ment set (985 samples). When predicting a new molecule, we sample 60 molecules per

input for a fair comparison to the baselines. In this task, we use the desired property

vector of {XP logP , 0.0, 0.0} and the sampled offset parameters, α = {1.0, 2.0, 3.0},

β = {0.91, 0.94, 0.97, 1.0}, and γ = {0.51, 0.6, 0.7, 0.8, 0.9}.

Result: We only compare VJTNN for all samples due to the infeasible running

time of MolDQN as mentioned above. As Table 5.3 shows, the proposed model is
3When sub-sampling, we tried to preserve the proportion of the PlogP values because other

properties are already filtered by the corresponding thresholds. Not only that, to best get unbiased
samples, we vary random seeds and select one that the success rate of VJTNN and the proposed
method can be approximately matched with the corresponding all-sample results.

4We relaxed the 60-sample-condition and inspected all states (molecules) during the training
because the success rate was 0% at the 50-test set. However, the success rate remains the same as
0% even if we inspect all molecules.
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Method Success Rate ±
VJTNN 3.56 -3.42

Proposed

PNet SNet MBS2� 2� 2� 6.98 -2� 2� □ 6.72 -0.26
□ 2� 2� 6.77 -0.212� □ 2� 6.26 -0.72
□ □ 2� 5.33 -1.65
□ □ □ 5.33 -1.65

Table 5.4: Ablation study. MBS is modified beam search, PNet is PropNet, and SNet
is SimNet.

almost two times more successful in this task. The sub-sample experiment shows

similar performance for VJTNN and ours, while MolDQN is not able to generate any

successful samples.

5.5.5 Ablation Study

To illustrate the effect of the two constraint networks and the modified beam search,

we present the result of the ablation study in Table 5.4. We use the MOO task for

this comparison, and the result of VJTNN is also included for the reference. It’s

worthwhile to note that the proposed model without any constraint networks and

the modified beam search still outperforms VJTNN by 1.77% point. The component

with the biggest contribution is SimNet that improves the performance by 0.72%

point from the model without it. Another interesting thing is the success rates of

the last two models in Table 5.4 are identical. The possible explanation is that if a

model is trained without any constraint networks, the neurons generating candidate

molecules could not properly convey any information about similarity and properties

that can be exploited in the modified beam search.
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By MolDQN 
PlogP=1.77 (+0.73)

QED=0.75 (+0.04)

DRD2=0.03 (+0.03)

similarity
=0.40

similarity=0.44Aniracetam 
PlogP=1.04

QED=0.71


DRD2=0.0000023

By Proposed Method 
PlogP=0.69 (-0.35)

QED=0.68 (-0.03)


DRD2=0.77 (+0.77)

Figure 5.4: A case study: The Aniracetam optimization task to improve DRD2 score.
The molecule produced by the proposed model achieved the better DRD2 score than
the molecule optimized by MolDQN5.

5.6 Case Study

We performed a case study using an actual drug that is under the experimental stage

targeting Dopamine D2 receptor (DRD2). From Drugbank6, we first enlist all DRD2

targeting drugs that are in either experimental or investigational stages. Among these

28 drugs, we select the lowest DRD2 scored drug, named Aniracetam7 for this study.

The goal is to improve DRD2 score with minimum perturbation of other properties.

Baselines: Since one VJTNN model optimizes one property, we just run the

DRD2 VJTNN model trained by Jin et al. [81] by feeding Aniracetam. For MolDQN,

the reward function becomes simpler as follows:

r =
1

2
1(sim(X,Y ) ≥ 0.4) +

1

2
DRD2(Y )

Implementation Details: We use the same configuration and the same training
6https://www.drugbank.ca/
7Aniracetam: COC1=CC=C(C=C1)C(=O)N1CCCC1=O

https://www.drugbank.ca/
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sets used in the two previous tasks, SOO and MOO. We select the best model based

on the development set of DRD2 task provided by VJTNN. In this task, we use

the desired property vector of {XP logP , 0.0, 0.0} and the sampled offset parameters,

α = {0.0}, β = {−0.1,−0.05, 0.0, 0.05, 0.1}, and γ = {0.6, 0.7, 0.8, 0.9}. We allow 20

generated samples for the proposed method and VJTNN, while we evaluate all states

of MolDQN samples.

Result: In Figure 5.4, we compare the molecules generated by MolDQN8 and

ours9, excluding the result of VJTNN, because VJTNN didn’t generate valid (sim(X,Y ) ≥

0.4) molecules. In terms of the predicted DRD2 scores, our molecule reached 0.77

whereas MolDQN’s molecule only recorded 0.03. For the other two properties which

should be unchanged, our molecule seems to be stable with changes in PlogP by -0.35

and QED by -0.03 when compared with the MolDQN molecule that showed larger

changes especially in PlogP. Although one case study cannot prove the general su-

periority of the proposed model, the proposed model consistently outperforms other

baselines in all benchmarks (SOO, MOO, and the case study).

5.7 Discussion

This paper proposes a new controlled molecule generation model using the self-

attention based molecule translation model and two constraint networks. We pre-train

and transfer the weights of the two constraint networks so that they can effectively

regulate the output molecules. Not only that, we present a new beam search al-

gorithm using these networks. Experimental results show that the proposed model

outperforms all other baseline approaches in both single-objective optimization and

multi-objective optimization by a large margin. Moreover, the case study using an ac-

tual experimental drug shows the practicality of the proposed model. In the ablation
8MolDQN Molecule: C=C(c1ccc(OC)cc1)N1CCCC1
9Proposed Molecule: COc1ccccc1N1CCN(C2CC(C(=O)N3CCCC3=O)=C2c2ccccc2)CC1
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study, we present how each sub-unit contributes to model performance.

5.8 Contribution

In this project, my contributions are as follows.

• Designed the study with Dr. Ho.

• (solely) Developed the algorithm

• Ran experiments with Park

• Analyzed the results with Dr. Ho
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Conclusion

The availability of well-curated biological and chemical datasets and appropriate com-

putational power has motivated this dissertation work, deep learning approaches in

computerized drug discovery. Although many machine learning based attempts have

shown its potential compared to the conventional drug discovery methodology, they

have been limited in modeling complex and large datasets effectively.

Inspired by many successes of deep learning based methods in other domains, this

dissertation investigates the deep learning approaches for four sub-tasks in the drug

discovery pipelines. In particular, we focus on two parts: target identification (Wx

and CWx) and molecule discovery (MT-DTI and CMG).

Wx is a disease-related target identification model that selects a succinct set of

potential target using an end-to-end feature selection neural network. Wx provides

a simple way of identifying biological targets while previous methods rely on a long

pipeline of machine learning methods and human labors. In addition to the simplicity

of use, the results on various cancer classification tasks illustrate the superiority of

the proposed method. Moreover, some of the genes we found using Wx matches those

found to be important in recent studies.

CWx is a disease-related target identification model that is based on Wx to
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predict patient prognosis with a small set of features. CWx outperforms the other

methods by effectively training the algorithm from an easy to hard problem. In

addition, CWx has a linear execution time to complete the feature selection steps

depending on the number of samples. While the information theoretical-based feature

selection algorithms take longer to finish the feature selection procedure. Not only

that, CWx found genes have been confirmed that they contribute to the survival by

other studies.

MT-DTI is a molecule transformer based drug target interaction prediction

model that adapts and modifies the self-attention mechanism, which is pre-trained

using publicly available big data of compounds. Although this big dataset is not

directly related to the downstream tasks, the proposed pre-training is shown to be

useful in DTI tasks. Experimental results show that our model outperforms all other

existing methods with respect to four evaluation metrics. Moreover, the first case

study of finding drug candidates targeting a cancer protein (EGFR) shows that our

method successfully enlists all of the existing EGFR drugs in top-30 promising can-

didates. In addition, the antiviral drug discovery case study shows that the proposed

method can produce useful results in a very short time.

CMG is a controlled molecule generation model that is based on the Transformer

model with two constraint networks. CMG successfully adapts self-attention based

translation model in the controlled molecule optimization task using a desired prop-

erty vector. Not only that, we further improve the model by adding two contraint

networks that predict necessary characteristics of the generated molecules. We also

present a new beam search algorithm using these constraint networks. Experimental

results show that the proposed model outperforms all other baseline approaches in

both single-objective optimization and multi-objective optimization by a large margin.

Moreover, the case study using an actual experimental drug shows the practicality of

the proposed model.
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Future Direction

There are several ways to improve and extend the proposed methods.

Interpretable DTI: In MT-DTI, we present the best DTI model, however, it

is a black box model that doesn’t provide precise binding pocket information, which

could be valuable in other tasks of the drug discovery. By successful employing

an appropriate attention mechanism to the DTI model, we can develop better and

interpretable DTI models.

Protein representation: This dissertation has only explored the molecule rep-

resentation via deep networks. Therefore, one possible direction is a new protein

representation using deep networks. We only used the amino acids sequence for a

protein, however, it actually forms three dimensional structures which contain much

more information than a sequence. If we can effectively represent a protein using a

predicted 3D structure, then the performance of downstream tasks could be improved.

Protein protein interaction: Once we have the better protein representation,

we can apply the new representation to the protein protein interaction (PPI) task.

Since a protein itself can be served as a drug, if we can understand complex PPI among

many protein, it could be beneficial in developing antibody based drug development.
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