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Abstract 
 

Multiple Approaches to Understanding the Intersection of  
Climate Change, Air Quality & Public Health 

 
By Jennifer D. Stowell 

 
An overwhelming majority of climate scientists have declared the validity of climate 

change and its potential threat to the environment and to living organisms on the planet. Though 
it is still taken lightly by some, temperatures across the globe are rising—especially near the 
poles where sheets of ice help to balance the conditions we experience in the troposphere. In fact, 
temperature anomalies have been tracked for many years by different entities, including both 
governmental and scientific organizations. Overwhelmingly, the temperature anomalies they 
have tracked deviate little from one another and follow nearly the exact same trend of warming 
in our atmosphere. Many skeptics consider the major cause of changes in climate to be natural 
increases of energy from the sun. While it is true that the sun has a natural, oscillating pattern of 
high and low energy, it has been operating on the same 11-year cycle for hundreds of years and 
with only slight increases in trend. However, global temperatures began to deviate from normal 
patterns in the 1950s and have continued to rise ever since. Hence, there must be something else 
causing temperatures to accelerate to such high levels. Aside from human development and some 
natural depletion of vegetation and forests, little else has changed in the total environment, save 
human activity. So, while there could be something at play of which we are unaware, it seems 
very likely that human activity is contributing to the problem in a significant way. This is evident 
when looking at levels of carbon dioxide (CO2). Since the industrial revolution, CO2 has 
continued to surpass natural levels that were seen prior to large-scale fossil fuel use. These CO2 
concentrations, similar to temperature, are also trending higher with little to no decrease.  

An important issue that we must consider when approaching the climate change issue, is 
the effect that it can have on living organisms. One of the most readily apparent ways in which 
climate change affects living things is through large decreases in air quality. Climate change can 
have both direct and indirect paths of affecting the air that we breathe. For instance, a direct path 
involves the direct formation of ozone (O3) in the troposphere where it can harm human health. 
With respect to indirect pathways, the effects of climate change on wildfire activity have been 
evident in the past few decades. This is considered an indirect effect of climate on air quality 
because rising temperatures can increase the incidence of wildfires—which in turn can dump 
toxic chemicals and particles into the atmosphere through the dissipation of smoke plumes. 

In this dissertation, the effect of climate change on air quality is approached in three 
different ways and on three different spatial scales. The first objective looks at the future changes 
in harmful tropospheric O3 on a national scale. This approach separates differences in 
concentration according to source: climate change or emissions policies. Using modeling 
methods to separate and predict future O3 by source adds to our understanding of the potential 
dangers to human health that we could experience in future years. With future O3 concentrations 
predicted by source, we can then project the impact on multiple morbidities and premature 
mortality. Results from this analysis showed that while the effect on morbidity varies between 
locations, it was evident that climate change could impact future mortality via O3 exposure. 
However, the real culprit of excess mortality due to O3 was emissions policy. Looking at two 



 

different predicted emissions scenarios, there was a significant difference in effects on mortality 
for scenarios in which allowed emissions are not restricted by emissions policies.  

Another objective estimates the association of present-day wildfire activity on 
cardiorespiratory events on a statewide scale. Using health records form the state of Colorado 
during the fire seasons (May-August) of 2011-2014, we can estimate the association between 
smoke PM2.5 exposure and adverse health outcomes. Using a two-stage modeling approach, we 
calculated the contribution of smoke PM2.5 to total PM2.5. Separating the contributions allowed 
us to examine the effects due solely to smoke PM2.5. It was evident from our results that smoke 
PM2.5 was associated with many respiratory morbidities, but not associated with cardiovascular 
disease. We also conducted stratified analyses on both age and sex. While no significant 
difference was observed for sex, several differences were apparent for age. One of the most 
striking results was the odds ratio or expected increase in risk of asthma exacerbation due to 
smoke PM2.5 exposure. The results suggest that risk increases by over 8% (95% CI: 1.06, 1.11) 
for every 1 µg/m3 increase in smoke PM2.5 exposure. This result is higher than risk reported in 
previous publications. One conclusion that we might draw is that smoke PM2.5 may be more 
toxic than background, ambient PM2.5. 

A third objective builds upon the results from the Colorado wildfire study and attempts to 
estimate future wildfire health impacts on a regional scale in the western US. Using complicated 
chemical transport models with and without included fire sources, we were again able to separate 
out smoke PM2.5, but in this instance, we are investigating potential future changes and health 
burden due to additional smoke PM2.5 exposure in the 2050s. This involved taking the difference 
between future smoke PM2.5 and present smoke PM2.5 in order to estimate potential smoke PM2.5 
increases we could expect in addition to our present exposure. Through this process and adopting 
the risk measurement and the incidence of emergency department visits from respiratory 
outcomes in the Colorado study, we were able to project the future health burden from smoke 
PM2.5.We observed a few hotspots that seem to be highly affected by future smoke PM2.5 
concentrations. These areas included northern Idaho, Nevada, and the coast of Oregon. However, 
it was also important to keep in mind the population distribution in comparison with the 
increased effects on human health. When looking at the results compared to changes in 
population, Montana stood as another area for concern. This was due to its relatively high 
increase in wildfire PM2.5 events and an overall decline in population that is expected by the 
2050s. 

Taken together, these three aims help us understand more about the relationship between 
air quality and climate change. And, in turn, this allows for us to draw out potential risk to 
human health that could be seen in the future. Looking at 3 different approaches with each on a 
different spatial scale allowed us to explore some of the assumptions that we might draw from 
future exposures to O3 and wildfire smoke PM2.5. Moving forward, it will be important to expand 
on these future impacts and find ways to attach monetary and other important values to these 
expected changes. This type of analysis could be beneficial in that it can be a tool for both 
informing policy and emergency response plans as we look to the changes that may be expected 
in the future.  
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1. INTRODUCTION 

1.1 Impact of climate change on air quality and human health through multiple pathways 

Climate change, while contested politically, receives overwhelming support from the 

scientific community, with over 97% of climate scientists acknowledging the threat it poses.1 In 

addition, many scientific entities have issued statements stating that climate change is a real 

concern.2 Climate change is defined as changes in long-term meteorological trends. These changes 

can affect weather patterns, disaster susceptibility, and migration of humans. Such changes have 

become apparent in the last few decades as we see regular record-breaking temperatures in many 

regions. Multiple countries and organizations have pledged to reduce their contributions to the 

known causal components of climate change, but extensive resistance in some groups is still a 

major issue. 

 Perhaps one of the reasons that climate change is such an inciting topic is the fact that some 

of it is natural.3 This complicates the issue by making it difficult to separate the anthropogenic 

effects from the natural. Changes in long-term weather patterns have undergone natural cycles of 

heat and ice. This is still the case and accounts for some of the changes we are experiencing.4 Some 

of these changes are natural responses to solar activity. Some would argue that the warming seen 

is due to changes in the sun’s energy emittance. However, the sun emits energy on a predictable, 

oscillating cycle of ~11 years and climate records continue to show this general pattern with only 

slight deviances.5 Additionally, if the conditions we are experiencing now were due solely to 

energy emitted by the sun, we would expect all layers of the atmosphere to be warming. However, 

that is not the case. The troposphere (level of the atmosphere in which we live) has seen continued, 

accelerated heating while other layers have not.6 
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 Another reason for which climate change has an uphill battle is the lag in detectable affects. 

On average, there is a 30-40-year gap between human behavior and its effects seen in current 

climate conditions.4 For example, the temperature increases we are experiencing today are likely 

due to emissions from the 1970s and 1980s. This delay in resulting effects such as temperature 

increase, contributes significantly to the debate and reluctance of human populations of enacting 

change. This is of course a huge obstacle and difficult to communicate because of the complexity 

of the issue. Hence, inciting change becomes a struggle between scientists who know the 

mechanics behind the processes and society—that finds it difficult to draw these connections. 

Another example of this complication is that, even if we were to cut our emissions to zero 

tomorrow, temperatures and extreme events will continue to increase for multiple decades. 

While there could be something we are unaware of, the likeliest explanation is that changes 

in climate are occurring due to increased human activity. CO2 has been rapidly rising since the 

dawn of the Industrial Revolution (about 1750).7 Levels of CO2 are approximately 45% higher 

than they were previously. In the climate research arena, levels of CO2 are used as a gauge for 

tracking the increases and decreases in most greenhouse gases (GHG). When we examine the 

tropospheric amounts of CO2 a consistent pattern arises. These levels have been consistently rising 

since the 1950s with only seasonal oscillations. Many studies have been done to show that CO2 

and the other GHGs cause warming.8,9 This is known without contestation. In fact, certain levels 

of GHG are necessary elements in the atmosphere that help to keep the troposphere habitable. For 

example, if the atmosphere were to instantly lose all GHGs tomorrow, the average annual 

temperature on earth would be close to -20° C or, roughly 0° F—our present average is near 60° 

F.10  
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Naturally occurring CO2 has been tracked actively since 1958 and levels from fossils and 

ice cores have aided in our understanding of the history of CO2 in our air. Historical data shows, 

when charted as far back as possible, CO2 levels remained much the same across the globe with a 

natural seasonal oscillating pattern around 280 parts per million (ppm). Levels today are above 

400 ppm. This suggests that something drastic has been increasingly raising the CO2 levels in the 

atmosphere. While there has been some loss of forest and increased developed land, there is 

nothing natural (that scientists are aware of) that could raise the levels that high in such a relatively 

short period of time.11 So, the likeliest explanation is that human activity changed drastically in 

the mid-18th century due to the burning of fossil fuels. Thus, while natural rises in GHGs have 

been seen—they tend to follow a seasonal oscillating pattern, scientists have yet to find a natural 

cause for the stark rises we see today. 

 One way that changing climate conditions have affected life on earth is the worsening of 

regional air quality. With the passing of the Clean Air Act of 1970, the public became more aware 

of ways that certain activities (i.e. exhaust from motor vehicles) might be contributing to 

pollution.12 Air quality is determined by a multitude of factors—relying, in part, on changes in 

harmful chemicals such as ozone (O3) and combinations of particulate matter (PM). It is important 

to note that changes in climatic conditions can have both direct and indirect influence on the overall 

air quality in a region. Potential resulting increase in air pollution is, therefore, concerning for 

many reasons—some of which may be in the form of potential positive feedback-loops between 

increasing temperature and worsening air quality. Higher temperatures tend to increase the 

presence and formation of many of these components, and, rising levels of at least some pollutants 

will contribute to continued temperature rise.  
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 Along with the detrimental effects to visibility and adaptation, climate changes can have 

serious effects on human health. Indeed, climate change can be linked to multiple pathways that 

influence human health. Air quality, as is our focus here, is greatly affected by a host of climate 

conditions such as temperature, humidity, and storm patterns. In this body of work, we investigate 

the direct effect of change on tropospheric O3 production and the indirect effects of change on air 

quality due to increased wildfire activity (see Figure 1-1 below). 

 

 

Intro Figure 1- 1 

Adverse Health Effects of Climate Change. Examples of the impact of climate change on health 

through multiple paths. 
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1.2 Direct effects of climate change: tropospheric ozone 

Ozone (O3) is a common secondary pollutant found in earth’s atmosphere. In the 

stratosphere, O3 is a necessary element to protect the planet from harmful ultraviolet (UV) 

radiation that would otherwise damage life found in the lower portion of the atmosphere known as 

the troposphere. The chemical constituents of the tropospheric atmosphere play a vital role in 

sustaining life. Chemicals like O3 in the troposphere, however, can have detrimental effects on 

humans and other life. O3 is considered a secondary pollutant, meaning that it is not directly 

emitted but is formed by other emissions. O3 is produced by various combinations of precursor 

pollutants (i.e., volatile organic carbons (VOCs) and nitrogen oxides (NOx)) in the presence of 

sunlight and heat.13 This is why O3 values tend to be higher in the summer, often with visible smog 

in the atmosphere. O3 in the lower levels of the atmosphere are expected to increase in future 

decades due to this reliance on sunlight for formation, continued heating, increases in solar 

radiation and production of precursory chemicals.  

1.2.1 Toxicology of tropospheric O3 

 As far back as the 1950s, the scientific community began to study adverse effects of O3 

exposure.14 The primary toxic effects come from oxidation and generation of free radicals. 

Additionally, O3 can decrease levels of compounds that are necessary in multiple human systems. 

These primary compounds include multiple antioxidants, such as ascorbate. Increases of protein 

oxidation is also present—resulting in what is referred to as oxidative stress.15 Multiple in-vitro 

and in-vivo studies support these statements. For example, in rats, exposure to O3 induced body 

weight loss, lung lesions, and oxidative stress. Additionally, early studies found that O3 had the 

potential to affect other organ systems.16,17 In conjunction with other studies, the push for cleaner 

air culminated in the Clean Air Act of 1970 and, since then, studies have become increasingly 
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more focused and complex.18,19 Early studies in human subjects began in the 1960s investigating 

the impact of O3 exposure on forced expiratory volume. In these controlled studies, an increase in 

shallow breaths was documented. It was also shown that increased respiration during exercise 

compounded the effects of exposure. While there are many pathways which O3 can affect human 

health, the most prominent is the increase in reactive oxygen species—which, in turn, can cause 

oxidative stress on the respiratory system. This is generally seen through increased airway 

responsiveness, with more extreme responses seen in asthmatics and other individuals with pre-

existing respiratory conditions. 

 

1.3 Direct effects of climate change on wildfire  

Wildfire activity has been steadily increasing across the globe for the last few decades. 

These increases are evident in the heightened frequency, size and severity of the fires.20-22 There 

are several meteorological and land use patterns that contribute to enhanced wildfire conditions, 

including higher temperatures, lower humidity, lower soil moisture content, and higher winds. 

Similarly, fuel sources (i.e., vegetation) and forest encroachment (converting forest space to 

agricultural or developed land) are large components of wildfire activity. As seen in recent history, 

wildfires have increased and worsened in response to changes in these and other factors. 

 Wildfires require a myriad of elements in order to start—we have touched on temperatures 

and soil moisture content; however, fires also require an igniting source. Some of these include 

lightning and human error, and, increased contact with plentiful fuel sources can complicate the 

human error component. For example, population continues to expand and inhabit more and more 

area on the globe. This is evident in deforestation and continued encroachment into forested or 

fuel-rich areas. This “intrusion” can be a result of the expansion of both urban and rural 
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communities closer to previously natural areas. This has been exceptionally displayed in the last 

few fire seasons in the state of California, where, despite the ignition source, property and human 

life were greatly impacted due to proximity to large fuel sources.23  

1.3.1 Indirect effects of climate change: PM2.5 from smoke 

The indirect effects of climate change on air quality via increasing wildfire activity has 

been recorded in past years. One of the many negative effects of wildfire activity is the resulting 

smoke plumes. Generally, the air surrounding a fire has high levels of material potentially toxic to 

living organisms24,25. A primary component of smoke is a mixture of particles (including both 

solids and liquid droplets) suspended in the air known as particulate matter (PM). PM constitutes 

a mixture of various chemical species including metals, nitrates, sulfates, and organic 

compounds.26 A general distinction used in delineating PM is particle size. Coarse PM or PM10 

denotes particles with an aerodynamic diameter between 2.5 and 10 micrometers (µm) and PM2.5 

(or “fine PM”) refers to particles that measure less than 2.5 µm in aerodynamic diameter. PM 

exposure is associated with a myriad of health problems, including asthma and other respiratory 

complaints.27-30 The extent of the exposure is related to the size of the particle—which determines 

how deep the particle can travel into the respiratory tract and bloodstream.26,30-34 Generally, smaller 

particles travel further into the respiratory system and have a stronger association with adverse 

health outcomes, including asthma exacerbation, decreased lung function, and even cardiovascular 

complaints.34 Hence, a consideration of PM2.5 exposures is necessary to better define potential 

future impacts of air quality on human health. 

States in the Rocky Mountain Region of the US (including Arizona, Colorado, Idaho, 

Montana, Nevada, New Mexico, Utah, and Wyoming) tend to be highly affected, with smoke 

plumes from individual fires often crossing multiple states.35 These states have experienced this 
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heightened activity coupled with steady increases in temperature, reduced rainfall, and soil 

moisture deficits.34,36-38 Again, this has been evident in the recent past and, with climate change, 

worsening conditions will continue to feed the ignition of wildfires. 

One of the biggest issues, however, with studying wildfire exposure is the difficulty of 

assigning actual exposure amounts due solely to smoke sources. Lessons learned from studies 

involving satellite-derived PM can aid in understanding the effects of smoke exposure. Previously, 

many studies have substituted ambient urban PM exposures for wildfire exposures.20,29 This is a 

potentially flawed practice since wildfire particulate matter can differ in composition from urban 

PM composition.20,39 While there is a wide range of PM2.5 found in ambient air at any given time, 

smoke from wildfires can produce significantly higher exposures to harmful compounds 

(specifically organic compounds) than are normally found in non-fire, urban settings.40-44 Each of 

these substances can affect the body differently depending on the dose or concentration of the 

exposure. These toxicological differences may lead to differences in how particulate matter from 

wildfire affects the human body. As stated previously, a large concern is how far these substances 

penetrate human biological systems.   

1.3.2 Toxicology of wildfire PM2.5 

Multiple toxicological studies indicate that wildfire PM2.5 may have different constituents 

than urban PM2.5 and this suggests potential differences in health outcomes from this source.39,45,46 

Small particles such as organic carbon may be responsible for stimulation of macrophage activity 

in the alveolar sacs, causing the release of proinflammatory cytokines. This action can eventually 

lead to increased oxidative stress.47,48 Wegesser et al. (2009) observed significant changes in 

macrophage and neutrophil counts in mouse lung samples exposed to wildfire PM compared to 

ambient air PM.44 An additional study by the same group expounded their findings, showing that 
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the concentration of PAHs (polycyclic aromatic hydrocarbons) in fire smoke could be 50-fold 

higher in fine PM over coarse PM.49 Coarse PM particles accounted for more of the inflammatory 

response and coarse PM from wildfire was shown to induce greater oxidative stress than ambient 

conditions. Additionally, wildfire PM caused significant antioxidant depletion over the ambient 

samples.49 In a toxicology study at the University of Southern California, Verma et al. (2009) 

found that the overall number concentration of particles increased by at least 2-fold during a fire 

event. Concentrations of CO and NO also increased (3-fold) with ozone and nitrogen dioxide 

minimally affected. Trace elements of manganese, potassium, phosphorus, and magnesium were 

all statistically elevated in wildfire samples. Verma et al. (2009) also documented higher 

concentrations of organic carbon during the fire event.43 Franzi et al. (2011) and Wong et al. (2011) 

looked specifically at the inflammatory responses due to wildfire smoke exposure. Wildfire PM 

was approximately 5 times more toxic to lung macrophages than ambient PM. Both papers show 

significant changes in reactive oxygen species and subsequent oxidative stress. Overwhelmingly, 

the additional oxidative stress placed on the human physiology by wildfire PM (both fine and 

coarse) leads to significantly higher cell degeneration and apoptosis.45,46  

 

1.4 Intersection between health, climate, air quality and wildfire events 

While the effects of climate change alone may not have a large impact on ambient 

particulate matter (PM), a link between climate change and an increase in wildfire episodes has 

been identified.50 This relationship can greatly affect the air quality on any given day during fire 

seasons. Taken together, the potentially complicated intersection between climate change, wildfire 

potential, and that of human health poses a unique concern for both environmental and health 

professionals. Specifically, while physical changes are usually the most readily apparent damage 
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from wildfires, smoke exposure can be very hazardous to human health and has yet to receive the 

same attention. Thus, moving forward, researchers need to explore options to better quantify 

wildfire smoke exposure and links to specific health outcomes. This combination of quantifying 

exposure and understanding the resultant health responses is critical to future policy, emergency 

response planning, and strategic access to health care during these events. 
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2. SIGNIFICANCE 

This project investigates potential climate-change driven effects on PM2.5 and O3 with an 

emphasis on the effects of wildfires. Through a combination of climate modeling and 

downscaling methods, this research builds connections between ambient air pollution, 

anthropogenic sources, wildfire smoke exposure, and predicted climate change. The results of 

this approach may help to answer key questions and to fill gaps in our current knowledge and 

predictive capabilities regarding wildfire exposure.  

 

2.1 Study Rationale 

Poor air quality poses a substantial health burden that spans all ages. While great strides 

have been made in certain air pollutants, others continue to increase. The WHO has estimated that 

more than 9 out of 10 people worldwide consistently breathe potentially toxic air. This exposure 

leads to an estimated 7 million deaths per year (https://www.who.int/airpollution/en/). Also, more 

than one third of deaths from stroke, heart disease, and lung cancer has been associated with toxic 

air exposures.1 In addition to this issue, there is the complication that climate change poses as the 

world gets hotter, more populated, and more industrialized. Increases in factors such as these feed 

back into the climate-health process and compounds the issue further. 

 Understanding the importance of improving our air quality requires observations and 

investigations into the pollutants and their sources. While tackling all air pollution at once seems 

daunting, it is more manageable to delve into the effects of individual pollutants or sources. The 

following aims were pursued to better understand the effects of O3 (from both emissions and 

climate change) and increasing wildfire smoke. 
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2.2 Description of aims 

Aim 1: Define the state of the science and the potential viability of alternative methods for 

separating emissions and climate change effects using climate modeling under multiple emissions 

scenarios. Hypothesis 1: Increased ozone concentrations under a higher anthropogenic emissions 

scenario will have a greater impact on human mortality in the future. Additionally, the separation 

of climate change and emissions effects is possible using a hybrid method of both statistical and 

dynamical downscaling and will offer a metric for the impact of planned emissions mitigation. 

Aim 2: Describe the impacts of wildfires and urban pollution on air quality and 

population health in the state of Colorado during the fire seasons of 2011-2014. Assess the 

impact of wildfire smoke based on current regulations and policies. Hypothesis 2: Wildfires 

related PM2.5 is associated with multiple health outcomes. Differences in effect will be seen 

when stratified on age.  

Aim 3: Estimate the impacts of increased future wildfires and urban pollution on air 

quality and population health in the Rocky Mountains Region. Assess the impact of future 

wildfire smoke predictions based on current regulations and policies. Hypothesis 3: Future 

wildfires and urban air pollution will increase in number and/or severity and will have a negative 

impact on the overall public health of the Rocky Mountain Region. 

 

2.3 Synopsis of purpose and intent 

The following chapters represent the body of work designed to achieve the above aims. 

Chapters 3 explores the complexities of scale, separation of climate and emissions policy, and 

specific modeling parameters that are prominent concerns when dealing with the study of air 
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quality and human health. Chapter 4 expands on the methods from these chapters to investigate 

the potential link between wildfire events and adverse health outcomes. Chapter 5 addresses the 

potential future impact of smoke PM2.5 exposure using what we have learned from the previous 

chapters. 
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3. SEPARATING THE EFFECTS OF CLIMATE CHANGE AND EMISSIONS 

[Manuscript 1] 

The Impact of Climate Change and Emissions Control on Future Ozone Levels: Implications 

for Human Health 

Jennifer D. Stowell, Young-min Kim, Yang Gao, Joshua S. Fu, Howard H. Chang, Yang Liu 

 

3.1 Abstract 

Overwhelming evidence has shown that, from the Industrial Revolution to the present, 

human activities influence ground-level ozone (O3) concentrations. Past studies demonstrate links 

between O3 exposure and health. However, knowledge gaps remain in our understanding 

concerning the impacts of climate change mitigation policies on O3 concentrations and health. 

Using a hybrid downscaling approach, we evaluated the separate impact of climate change and 

emission control policies on O3 levels and associated excess mortality in the US in the 2050s under 

two Representative Concentration Pathways (RCPs). We show that, by the 2050s, under RCP4.5, 

increased O3 levels due to combined climate change and emission control policies, could 

contribute to an increase of approximately 50 premature deaths annually nationwide in the US. 

The biggest impact, however, is seen under RCP8.5, where rises in O3 concentrations are expected 

to result in over 2,200 additional premature deaths annually. The largest increases in O3 are seen 

in RCP8.5 in the Northeast, the Southeast, the Central, and the West regions of the US. 

Additionally, when O3 increases are examined by climate change and emissions contributions 

separately, the benefits of emissions mitigation efforts may significantly outweigh the effects of 

climate change mitigation policies on O3-related mortality. 

  



19 

 

 

3.2 Background 

Since the Clean Air Act of 1970, atmospheric ozone (O3) concentrations have declined in 

the US. Nevertheless, the American Lung Association reported that, as of 2013, over 138 million 

people in the US (~44%) continue to live in areas where O3 levels exceed regulatory standards.1 

Among common air pollutants that impact public health, O3 is one of the most detrimental. Risk 

of O3-related adverse outcomes is a public health concern due to widespread O3 exposure, which 

is ubiquitous in industrialized regions. Research has consistently linked O3 exposure to a variety 

of adverse health outcomes including increased emergency room (ER) visits and hospitalizations, 

asthma exacerbation, cardiovascular stress, impaired lung function, and premature death.2-12 

Multiple studies have demonstrated the connections between climate change to O3 concentrations 

and these potential health outcomes. For example, Tagaris et al. found the highest climate-induced 

O3 increases coincided with the most densely populated areas in the US and increases in national 

premature mortality of approximately 300 additional deaths annually.8 Bell et al. also showed that 

climate change-induced O3 increases are associated with significant increases in premature 

mortality and ER/hospital admissions.3,4 Additionally, by comparing future O3 concentrations and 

associated adverse health outcomes from seven published studies, Post et al. showed substantial 

heterogeneity in the projections when different models and methods were considered.7 One such 

example found in this comparison of studies demonstrated a large discrepancy in O3-related excess 

mortality due to climate change among the studies examined (ranging from -600 deaths to over 

2,500 deaths annually).  

The primary drivers of ground-level O3 generation are precursor emissions (nitrogen oxides 

(NOx) and volatile organic compounds (VOCs)), presence of methane, and favorable 

meteorological conditions.13-15 Because both emissions and meteorology vary in space, O3 
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concentrations can be spatially heterogeneous at the scale of a few kilometers to tens of 

kilometers.16 Therefore, spatially-resolved estimates of O3 levels are important when evaluating 

its potential impact on air quality and human health as well as developing applicable mitigation 

and adaptation policies. However, as Post et al. reported, the coarse spatial resolution of global 

climate models (GCMs) cannot resolve the fine-scale features in future O3 levels.7  

Both dynamical and statistical downscaling approaches have been developed to address 

this resolution incongruence. Dynamical downscaling involves executing high-resolution regional 

climate models (RCMs) and air quality models using GCM outputs as boundary conditions. This 

method integrates atmospheric chemistry composition, allowing for extrapolation of future 

atmospheric conditions.15 However, the high computational demand (due to high-resolution, full-

chemistry simulations) limits the application to multiple GCM outputs and reduces the availability 

of these methods.17-19 Previous studies have used dynamical downscaling methods to study the 

impact of climate change on future O3 and air quality. At 36 km resolution, Nolte et al. used 

dynamical downscaling methods to show significant increases in summer O3 and a lengthening of 

the O3 season under a high emissions scenario as well as substantial decreases during the summer 

season under a lower emissions scenario.15 

Statistical downscaling methods use efficient statistical methods based on historical 

atmospheric patterns to relate coarse-resolution GCM simulations to finer grid results, which is 

much less computationally demanding.17 Previous studies have investigated the relationship 

between O3 and changes in meteorological conditions using statistical models. For example, Cox 

and Chu examined 100 meteorological variables for potential effects on ambient O3, and found 

that maximum surface temperature, wind speed, relative humidity, mixing layer, and cloud cover 

were significant. Both Dawson et al. and Camalier et al. found similar statistically significant 
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results showing that daily maximum temperature, relative and absolute humidity, wind speeds, and 

mixing height greatly affect O3 concentration.13,20,21 The limitations of statistical downscaling are 

mainly due to the assumption that the statistical association between O3 levels and meteorological 

conditions will remain the same in the future, which may not be realistic given potential future 

variations in atmospheric chemistry and emissions.22  

In addition to air pollution levels estimated at fine spatial scales, the impacts on future O3 

levels due to climate change and future emissions need to be assessed separately for effective 

mitigation measures. Above all, the impact of air pollution emissions control can have a more 

immediate effect on air quality and subsequent human health than the effects from slowing down 

climate change.23 Previously utilized emission scenarios, however, do not allow for such 

separation of O3 levels due to climate change and emissions. The latest Representative 

Concentration Pathways (RCPs) differ from previous emission scenarios such as the Special 

Report on Emissions Scenarios (SRES) by integrating current and planned environmental 

policies.24-26 As a result, RCP-based climate model simulations reflect the combined impact of 

both climate change and planned emission control on air pollutant levels.24 This integrated 

combination provides a platform to develop methods to examine the separate contributions of 

climate change and emissions. There are multiple RCP scenarios with underlying population 

growth, economic, and emissions assumptions.  RCP2.6, 4.5 and 6.0 all represent some form of 

improvement upon our current trajectory of growth and environmental policy. RCP8.5, however, 

represents a “business-as-usual” scenario in which nations choose to retain current economic, 

environmental, and social tracks.  For example, RCP4.5 represents a future scenario with medium 

to low greenhouse gas emissions, medium-level air pollution, less crop land, and low population 

growth. RCP8.5, on the other hand, is characterized by high population growth, low to medium 
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crop land use, increasing trends for methane and nitrous oxide, and higher concentrations of almost 

all air pollutants.26  

The objective of this study is to estimate the contribution of climate change and emissions 

control to future O3 levels separately at high spatial resolution in the Continental US. We present 

a hybrid dynamical-statistical downscaling approach to project and separate the impacts of climate 

change and air pollution emissions control on future O3 levels under both RCP4.5 and 8.5. 

Additionally, we expand our analysis and estimate county-level excess mortality due to projected 

O3 exposure in the 2050s and evaluate the spatial and temporal patterns of associated estimated 

health risks. The 2050s were selected for the future projected years based on the IPCC common 

use of 2050 as a threshold for major global temperature divergence (i.e. potential to rise above 

2°C).27 

 

3.3 Data & Methods 

Our four-step hybrid health impact projection approach is shown in Figure 3-1. Step 1 

involves a dynamical downscaling framework following two RCPs respectively. This framework 

is composed of a GCM, a RCM, and an atmospheric chemistry model, which estimates county-

level O3 concentrations in the 2050s due to the combined effects of climate change and 

environmental policies as described in RCPs. Step 2 develops a statistical downscaling model to 

estimate future changes in O3 concentrations from climate change, which uses both real-world 

historical climate conditions and high-resolution future climate conditions simulated by the RCM 

in step 1. Step 3 estimates the future change in O3 concentrations due to emissions only by 

subtracting the statistical downscaling results (Step 2) from the dynamical results (Step 1). Finally, 
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in step 4, the results from steps 1-3 are placed in a human health context by estimating the future 

excess mortality due to projected changes in O3 concentrations. 

 

 
Figure 3- 1 

Study Methods Flow. Flow of study methods depicting both dynamical and statistical results. 

Isolation of O3 attributable to emissions accomplished by taking the difference between the two 

illustrated downscaling methods. Excess deaths calculated by source for climate change only, and 

combined climate and emissions changes. Isolation of O3 attributed to emissions is achieved by 

taking the difference between the two methods. 

 

3.3.1 Dynamical downscaling for O3 due to changes in climate and air pollution emissions 

The Community Earth System Model version 1.0 (CESM 1.0) is a state-of-the-art global 

climate model developed by the National Center for Atmospheric Research (NCAR).28 As a fully 

coupled earth system model, there is a total of four components in CESM29: 1) the land surface 

component - Community Land Model (CLM4)30; 2) the ocean model and sea ice component - 
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Parallel Ocean Program version 2 (POP2)31 and Los Alamos National Laboratory Sea Ice Model, 

version 4 (CICE4)32; 3) the atmospheric chemistry module - adapted from the Model for Ozone 

And Related chemical Tracers version 4 (MOZART-4)33; and 4) the bulk aerosol model (coupled 

to the atmospheric component Community Atmosphere Model, CAM4), referred to as CAM-

Chem.33,34 More details regarding the configurations of CAM-Chem have been described in 

previous studies.17,35 CESM/CAM-Chem was continuously run from 2001-2059 under both 

RCP4.5 and RCP8.5 with spatial resolution of 0.9 degrees by 1.25 degrees.  

The dynamical downscaling framework was developed to conduct high resolution 

simulations (12 km) at two time slices from 2001 to 2004 for the baseline historical period and 

2055 to 2059 for future scenarios under RCP 4.5 and RCP 8.5.17,18 The Weather Research and 

Forecasting regional climate model (WRF, version 3.2.1) and the Community Multi-scale Air 

Quality Model chemistry model (CMAQ, version 5.0),36 were used in this study and detailed 

information on model configurations and dynamical downscaling technique was described in 

section 2 and 3 of Gao et al. (2013). Meteorological parameters such as hourly surface temperature, 

surface relative humidity, precipitation, zonal (U) and meridional (V) wind , planetary boundary 

layer height and pressure were generated by the WRF model whereas air pollutant concentrations 

such as O3 was simulated from CMAQ.37  The historical emissions (2001-2004) were based on US 

EPA’s National Emission Inventory, whereas the future emissions of O3 precursors were scaled 

based on RCP4.5 and RCP8.5, and more details can be found in Gao et al. 2013.17 Thus, the 

CESM/WRF-CMAQ system simulates O3 concentrations in the 2050s that reflect the influence of 

both climate change (i.e., changes in future meteorology) and changes in anthropogenic emissions 

at 12km spatial resolution.24 The combined effect of climate and emissions on future ozone 
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changes was investigated in Gao et al. (2013), and this study focuses on separating the effect of 

climate on future ozone concentrations. The detailed method is described in a subsequent section.   

We first computed differences in maximum daily average eight-hour (MDA8) O3 between 

the 2000s and the 2050s for each 12 km grid cell and aggregated values to the 3,109 counties to 

obtain annual county-level changes. To reduce the bias of model simulation, we calibrated future 

CMAQ MDA8 O3 levels based on the ratio of observed concentrations measured by the USEPA-

AQS and the results of the year-round CMAQ-modeled historic MDA8 O3 levels. A ratio method 

for calibration was preferred over the use of an additive bias correction. This technique was chosen 

primarily because, 1) the methods in this study design calculate changes between future and 

historical periods and an additive correction would be cancelled out, and 2) bias correction in this 

study is done spatially and ratio calibrations are more appropriate for capturing potential non-

linearity. Each county was assigned a population-weighted centroid based on the centroids from 

the 2010 US Census. Using 40km radius buffers, the five closest CMAQ points to each county 

centroid are identified and average O3 values were calibrated using the ratios mentioned above.38 

More details about the calibration method have been described elsewhere.39 

3.3.2 Statistical downscaling for O3 changes due to climate change  

In order to estimate changes in O3 levels between the 2050s and 2000s caused by climate 

change alone, we first developed a regression model to predict O3 concentrations with 

meteorological variables from the North America Regional Reanalysis (NARR) dataset.  The 

NARR dataset provides the base year (2001-2004) meteorological parameters for the statistical 

model. NARR is produced by the National Centers for Environmental Prediction and provides a 

wide range of observed climate parameters over North America on a 32 km grid.40,41 Prior to 

modeling and analysis, we compared the CESM-WRF simulations against NARR values at the 



26 

 

 

daily level, using a 30-day moving average.  Strong correlations of key variables between the two 

datasets confirmed the appropriateness of combining NARR and CESM-WRF in our approach 

(see Supplemental Table 1). For purposes of prediction, we computed annual medians of daily 

mean values for temperature, relative humidity, wind speed and direction, planetary boundary 

layer height, surface pressure and total annual precipitation for each 32 km (NARR) and 12 km 

(WRF) grid. We also calculated air stagnation which is defined as a day with surface daily wind 

speed < 3.2 m/s, wind speed at 500 hPa < 13 m/s, and slight or no precipitation (< 0.1 mm/day).42 

We then linked the MDA8 O3 concentrations with the NARR meteorological data by selecting the 

nearest NARR cell to the closest USEPA O3 monitoring site. Model development included all sites 

having at least two years of data (1,334 sites). In order to minimize impacts of short-term 

fluctuations and to focus on longer-term trends, we used a 30-day moving average window for all 

meteorological variables and MDA8 O3.  

To establish the associations between meteorological variables and MDA8 O3, we 

developed a multiple linear regression (MLR) model. We included natural cubic splines of time 

(Julian day) to control for the long-term trend of O3 concentration.43 Usage of natural cubic splines 

greatly improves the coefficients of determination (R2) for the model.44 The basic form of the 

model is as below: 

𝑦𝑦 = 𝛽𝛽0 +  �𝛽𝛽𝑘𝑘

8

𝑘𝑘=1

𝑥𝑥𝑘𝑘 + 𝑛𝑛𝑛𝑛(𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) + 𝜀𝜀 

Equation 3- 1 

where y is the 30 day moving-average MDA8 O3 concentration; xk is the 30 day moving-average 

value of the meteorological variables (temperature, relative humidity, planetary boundary height, 
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pressure, precipitation, and two horizontal wind components); ns(time) is the natural cubic splines 

of time (Julian day: four degrees of freedom), and 𝜀𝜀 is model error. We fitted this model for each 

EPA O3 monitoring site. We matched the estimated regression coefficients (β0 and βk’s) of the 

MLR model with the changes in meteorological variables between the 2050s and 2000s to obtain 

projected changes in O3 levels. We then interpolated the site-specific O3 changes to all 3,109 

counties using a nearest-neighbor approach. The NARR-MLR model estimates the average annual 

amount of change in O3 attributable to climate change alone. We then demonstrated the 

appropriateness of the chosen model using a 10-fold cross validation.  

3.3.3 Future O3 changes due to changes of air pollution emissions 

In order to isolate changes in O3 concentration attributable to future air pollution emissions 

alone, we calculated the differences between the concentrations generated in the previous two 

steps. The hybrid dynamical downscaling model involving the CMAQ-simulated O3 values 

represents the changes in future concentration attributable to a combination of climate change and 

change of anthropogenic emissions (∆O3 climate change + emissions). The statistical downscaling 

model, on the other hand, is an estimation of changes in concentration due to climate change alone 

(∆O3 climate change). Thus, subtracting the statistical model (climate change only) from the 

dynamical model (climate change and emissions) we are left with an estimation of the average 

annual contributions (ppb) from air pollution emissions control policies alone ((∆O3 emissions; 

see Equation (2)). 

∆O3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐+𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑎𝑎𝑒𝑒 −  ∆𝑂𝑂3 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑐𝑐ℎ𝑐𝑐𝑎𝑎𝑎𝑎𝑐𝑐  =  ∆𝑂𝑂3 𝑐𝑐𝑐𝑐𝑐𝑐𝑒𝑒𝑒𝑒𝑐𝑐𝑒𝑒𝑎𝑎𝑒𝑒 

Equation 3- 2 
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3.3.4 Population health impact of future O3 changes 

Population and mortality rate estimates, as well as concentration response function (CRF) 

coefficients are required to estimate the excess mortality (EM) due to future changes in MDA8 

O3.1,7,45 We utilize the four population projections developed by the Integrated Climate and Land-

Use Scenarios (ICLUS) project: ICLUS A1, B1, A2 and B2. ICLUS converts the global Special 

Report on Emissions Scenarios (SRES) settings into county-level projections.1,7,46,47 The SRES A1 

storyline represents a scenario of rapid development, and slow population growth, while the A2 

scenario represents regional economic development and much higher fertility rates. The B1 

scenario assumes similar conditions to A1, with a larger emphasis on sustainable growth and lower 

domestic migration. The B2 scenario includes regional growth similar to A1 with moderate 

population growth, and much lower migration.46 A comparison between the previous SRES 

projections and the new RCP projections has shown that climate conditions under RCP8.5 fall 

between the previous SRES A1 and A2 projections and RCP4.5 closely resembles atmospheric 

conditions under SRES B1.48 Each projected population was applied to both RCP4.5 and RCP8.5 

scenarios to reflect the differences between low and high emissions scenarios with varying 

population conditions. It is important to note that ICLUS scenarios have varying spatial resolutions 

due to differing projections in land and economic growth and, therefore, absolute deaths are 

difficult to compare across scenarios.49 Therefore, we chose to normalize each ICLUS scenario 

independently from one another in order to compare national impact and across counties within 

each ICLUS scenario. 

For the calculation of baseline mortality incidence, we used the predicted mortality rate for 

the year of 2050 at county level which is available from the Environmental Benefits Mapping and 

Analysis Program Community Edition 1.0.8 (BenMAP-CE) developed by the US Environmental 
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Protection Agency.50 The BenMAP-CE provides county-specific mortality rates derived from 

projected age-specific ratios of 2050 mortality rates to 2005 mortality rates.  

We based CRFs on the association between non-accidental, all-cause mortality and short-term 

exposure to MDA8 O3 as estimated by Bell et al., (RR = 1.0064 (95% CI: 1.0041-1.0086) per 15 

ppb).4 The estimate from Bell et al. comes from the National Morbidity, Mortality, and Air 

Pollution Study (NMMAPS) dataset and cover 95 major US cities.4 We estimated changes in EM 

at the county level using the following equation: 7,45 

∆𝑦𝑦𝑐𝑐 =  𝑃𝑃𝑂𝑂𝑃𝑃𝑐𝑐 × 𝑀𝑀𝑀𝑀𝑐𝑐 × [𝑡𝑡𝛾𝛾×∆𝐶𝐶𝑖𝑖 −  1] 

Equation 3- 3 

where ∆y is the expected number of deaths per year that may be attributed to changing air pollution 

levels (i.e., O3) at county i, POPi is population of county i; MRi is population mortality rate; 𝛾𝛾 is 

the concentration-response coefficient for MDA8 O3; and ΔCi is the difference in concentrations 

of MDA8 O3 between future (2050s) and baseline (2000s) levels of MDA8 O3. 

To evaluate the uncertainty of EM estimates attributable to the ranges of the CRF 

coefficients and mortality rates, we applied Monte Carlo simulations (10,000 random samples) for 

each county, assuming a normal distribution of independent county-specific means, mortality rates 

and standard errors of the population and concentration variables. We then estimated climate-

region and national level EM estimates by summing the county-level EMs. We also estimate 95% 

confidence intervals (CIs) of the EMs based on the mean and standard deviation of the Monte 

Carlo simulations at both levels.  
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3.4 Results 

3.4.1 Future O3 changes due to climate change 

CESM/WRF simulations indicate wide spatial variations in the meteorological variables 

used as the future model inputs (step 2) (Supplemental Figure 3-1). Annual medians of daily mean 

temperature show an increase of approximately 1.2°C and 2.3°C across the continental US under 

RCP4.5 and RCP8.5, respectively, showing greater increases in the northeast, southeast, central, 

northwest, and southern climate regions than in the west and southwest regions (see Figure 3-2A 

for NOAA-defined climate regions). Annual average relative humidity (RH) could increase 0.45% 

under RCP4.5and 1.1% under RCP8.5, with higher increases in the Central region. Averages of 

planetary boundary layer height are projected to decrease by 24.0 m under RCP4.5 and 25.2 m 

under RCP8.5. Meridional (N/S) wind speed will decrease in most inland areas of the US under 

both RCPs, with highest decreases in the Northwest region. Zonal (E/W) wind speed will decrease 

in much of the U.S. with some increase seen in the West and Southwest regions.  

Figure 3-2 depicts the MLR-estimated change in annual mean MDA8 O3 concentrations 

(2050s vs. 2000s) for both RCP4.5 and RCP8.5. For all 1,334 O3 monitoring sites, the MLR model 

performs well with relatively high R2 values (average R2=0.74). Figures 3-2C and 2D show the 

MDA8 O3 changes between the 2000s and the 2050s from the statistical downscaling model.  
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Figure 3- 2 

Average Annual Change in Tropospheric Ozone. Changes in O3 Concentrations between 2000s 

and 2050s. (A) O3 difference from combined climate change and emissions under RCP4.5; (B) O3 

difference from combined climate change and emissions under RCP8.5; (C) O3 difference from 

climate change under RCP4.5; (D) O3 difference from climate change under RCP8.5; (E) O3 

difference from emissions only under RCP4.5; and (F) O3 difference from emissions only under 

RCP8.5. Numbers represent US Climate Regions as defined by the National Climatic Data Center: 

1. Northeast, 2. Southeast, 3. East North Central, 4. Central, 5. West North Central, 6. South, 7. 

Southwest, 8. Northwest, and 9. West. 
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Climate change alone appears to cause some increase in MDA8 O3 average annual (ppb) 

concentration in most of the continental US except for some counties in the West and South 

regions. Overall, increases in MDA8 O3 due to climate change is projected to be 0.34 ppb (std. 

error 0.03) and 0.50 ppb (std. error: 0.04) under RCP4.5 and RCP8.5, respectively. The model 

performance was confirmed using a 10-fold cross validation comparing the results of the study 

model to the results from a series of models configured using both training and testing data. The 

validation resulted in less than 1% difference in root mean square error (RMSE, ~0.00001%). 

3.4.2 Future O3 levels due to climate change and changes in emissions 

As simulated by the CESM/WRF-CMAQ system, modest climate change and strict 

emissions control under RCP4.5 result in a nationwide decrease in future MDA8 O3 levels (on 

average 2.85 ppb, std. error: 0.03) except in a few large urban centers including Los Angeles, 

Chicago, and New York (Figure 3-2A). These hotspots of high O3 under RCP4.5 are likely caused 

by NOx decreases in large urban areas, resulting in reduced O3 titration and higher concentrations 

of O3.17 Under RCP8.5, national mean O3 level is projected to increase by ~1.33 ppb annually (std. 

error: 0.03, Figure 3-2B). With greater temperature rise, climate change only caused O3 levels to 

increase in more regions under RCP8.5 than under RCP4.5, but the spatial patterns of O3 changes 

are similar under these two scenarios (Figure 3-2D).  

3.4.3 Future O3 change due to changes of air pollution emissions 

Under RCP4.5, average national MDA8 O3 due to emissions alone decreases by 3.19 ppb 

(std. error: 0.04, Figure 3-2E). Comparing Figure 3-2C and 2E, it is clear that the O3 reduction due 

to the assumed lower precursor emissions outweighs the O3 increase due to higher temperature 

under RCP4.5. On the other hand, changes in future emissions alone under RCP8.5 would cause 

O3 levels to increase in the US except in the mid-Atlantic and Southeastern region (Figure 3-2F). 
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Despite the emission reduction of O3 precursors across all RCPs (including CO, NOx and 

MVOCs), nationally averaged MDA8 O3 may increase by 0.93 ppb (std. error: 0.05) in the 2050s 

under RCP8.5. 

 

Figure 3- 3 

Change in Mortality. RCPs 4.5 and 8.5 using ICLUS A2 Scenario. Annual averaged, county-level 

excess mortality normalized by population. RCP4.5 (low emissions scenario) and RCP8.5 (high 

emissions scenario) results displayed by contributing source (combined effects, climate change 
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and anthropogenic emissions). The combined effects represent the effects of both climate change 

and emissions. 

 Climate change only Emissions control only Combined effect 

REGION RCP4.5 RCP8.5 RCP4.5 RCP8.5 RCP4.5 RCP8.5 

National 72 47 -41 2167 50 2217 
(SE=456) (SE=525) (SE=1037) (SE=1386) (SE=615) (SE=900) 

Northeast 204 330 -2 365 208 678 

(SE=12) (SE=17) (SE=28) (SE=43) (SE=40) (SE=59) 

Southeast -47 -100 -186 405 -237 298 

(SE=10) (SE=17) (SE=14) (SE=35) (SE=5) (SE=19) 
East North 

Central 
-18 -35 22 161 4 126 

(SE=1) (SE=1) (SE=1) (SE=3) (SE=1) (SE=3) 

Central 76 87 -42 161 30 239 

(SE=4) (SE=4) (SE=7) (SE=12) (SE=11) (SE=15) 
West 
North 

Central 

5 5 -20 9 -15 13 

(SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) 

South -11 -13 -80 169 -91 152 
(SE=3) (SE=3) (SE=3) (SE=6) (SE=4) (SE=6) 

Southwest 20 18 -71 98 -52 114 
(SE=7) (SE=7) (SE=7) (SE=15) (SE=3) (SE=13) 

Northwest -12 -5 46 122 34 112 
(SE=2) (SE=2) (SE=6) (SE=8) (SE=5) (SE=9) 

West -143 -170 292 678 165 475 

(SE=154) (SE=182) (SE=355) (SE=468) (SE=199) (SE=287) 
Table 1- 1 

Short Term Excess Mortality under the ICLUS A2 Population Scenario. Projected excess deaths 

using ICLUS A2 population scenarios attributable to climate change only, anthropogenic 
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emissions only, and combined effects of both climate change and emissions for 2050s from baseline 

2000s by US climatic region. (SE: standard error). 

3.4.4 Population health impact of future O3  

Figure 3-3 displays the annual average, population-normalized county estimates for excess 

mortality in 2055-2059 for the ICLUS A2 scenario (high population growth) for both RCP4.5 and 

RCP8.5 per 100,000 persons. Emissions sources appear to play a significant role, especially in 

RCP8.5, with large increases in O3-related mortality for much of the West, Midwest, and Eastern 

US. Table 1 shows the estimated O3-related excess deaths by climate region for the ICLUS A2 

scenario under RCP4.5 and RCP8.5. The highest excess deaths are found from emissions-only 

sources (compared to climate change only sources) under RCP8.5 with the West, Southeast, and 

Northeast regions showing the largest impact. Similar patterns are found for other ICLUS 

population scenarios and data can be found in Supplemental Tables 2 and 3. 

Figure 3-4 highlights the state of California—an area of the US known for its pollution and 

related health issues. Shown together are the county-level O3 and mortality results for RCP8.5. 

Hot spots of O3 concentration increases and O3-related EM can be seen in areas surrounding the 

San Francisco Bay and Los Angeles County. Notably, changes in O3 concentration due to 

emissions appear to be highest in counties such as Los Angeles, Monterey, Orange, and San 

Joaquin. Meanwhile, O3 concentration due to emissions appear to be lowest in the upper counties 

and central valley. Overall, under ICLUS A2 and RCP8.5, O3-related EM due to climate change 

alone may increase by 180 deaths/year (std. error: 23.92) while under RCP4.5, 110 (std. error: 

21.63) excess deaths may be expected due to climate change. However, emissions may have a 

greater impact on estimated excess mortality in California exhibiting an increase of approximately 
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315 (std. error: 21.21) deaths under RCP8.5. Under RCP4.5 excess deaths due to emissions can be 

expected to increase at much lower rates with only 87 (std. error: 8.98) deaths/year in the 2050s. 

In predictions including both sources, excess deaths under RCP8.5 for the state of California may 

exceed 486 deaths/year (std. error: 44.13) while scenarios using RCP4.5 predict lower increases 

of 230 deaths/year (std. error: 30.55). 

 

 

Figure 3- 4 

California Case Study. Annual averaged, county-level changes in O3 and excess mortality 

normalized by population depicted for the state of California under RCP8.5. 
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3.5 Discussion 

3.5.1 Summary and impact of results 

Our results point to significant differences in the contributions of climate and emissions 

mitigation to future O3. Under both RCP scenarios, future emissions control policy will likely have 

a substantial impact on O3 levels and its associated health effects. Our hybrid downscaling 

approach suggests that changes in emissions may be the source of the main incongruities between 

RCP4.5 and RCP8.5. Thus, while climate change alone may cause some adverse health effects due 

to poorer air quality, substantial and more immediate health benefits may be achieved by emission 

mitigation of O3 precursors regardless of changing climate conditions especially under RCP8.5.  

In all RCPs, most emissions of O3 precursors are expected to decrease in the US due to 

nearly worldwide implementation of stricter environmental policies. However, the results under 

RCP8.5 suggest a rise in future O3 concentrations. It is important to note that, with the climate 

change effect removed, the predictions still include background O3 conditions. As is explained in 

Gao et al. 2013, the O3 changes in RCP8.5 primarily occurs in spring and winter, especially over 

the western US, due to increases in global methane emissions (60% by the end of 2050s). In 

summer and fall, particularly over the eastern US, the increase of methane emissions is offset by 

the large reduction in anthropogenic VOC and NOx emissions, leading to decrease of O3 

concentrations.17 Increases of O3 in RCP 8.5 were also found across a majority of the troposphere 

in Young et al. [2013], which attributes the higher ozone concentration to large increase of methane 

and greater stratospheric influx.52 The tropospheric ozone increase in RCP 8.5 was shown to 

enhance background ozone, further impacting regional modeling results through the boundary 

conditions. This enhanced background ozone can lead to elevated spring ozone in the western US 

and has also been documented by Lin et al. (2012).53  
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3.5.2 Comparison with current literature  

Several recent studies have demonstrated findings comparable to our results regarding the 

ozone changes in RCP 4.5 and RCP 8.5.54-56 In particular, as is shown in Gao et al. (2013; Figure 

3-5c), the ozone increases largely disappear when the boundary conditions were cleaner and 

methane emission increases were removed in RCP 8.5. The effect of global background ozone 

increase on regional downscaling results through boundary conditions was further shown by a 

more recent sensitivity study (Yahya et al. (2017), Figure 7i vs. Figure 7iii), showing clearly that 

the high ozone boundary conditions inherited from global models under RCP 8.5 contributed to 

majority of the ozone increases in US in regional model results.56 Thus, the combination of global 

background ozone increases and methane emission increases may be the main contributing factor 

for increases in O3 and O3-related EM under RCP8.5. Researchers have evaluated and proposed 

that the control of methane emissions may be an efficient way to reduce both tropospheric O3 and 

radiative forcing.15,57,58 

It is important to note that the estimated EM attributable to O3 changes vary significantly, 

showing both negative and positive results by region, as seen in Table 1 and Supplemental Tables 

2 and 3. Additionally, relatively high standard deviations are captured for most of the regional 

predictions. These reflect the varying EM from county-to-county within the regions. Further 

uncertainty is introduced with the CRF values which have been derived from short-term O3 

exposure (robust long-term estimates remain unavailable in the literature) with the assumption that 

county specific CRF coefficients are normally distributed. However, despite these limitations, the 

high-resolution hybrid downscaling system presented here allows the examination of EM at the 

county level, which is a major strength of our current study. As expected, county-level O3-related 
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EM is high in counties with higher populations. However, U.S. counties, in general, stand to 

benefit from emission changes under RCP4.5 scenarios.  

Since climate change can have important ramifications in California such as more severe 

and frequent wildfires and air pollution episodes, it has been the focus of extensive air pollution 

and climate research.22,59-61 For example, Mahmud et al. performed statistical downscaling 

methods in the state of California using temperature data from the National Center for Atmospheric 

Research (NCAR) Reanalysis and 1-hour maximum O3 values from two ground monitors.22 The 

air temperature data have a coarse spatial resolution (2.5° x 4°), which makes it difficult to be 

directly associated with daily O3 levels. Instead, linear regression models were developed between 

850-hPa air temperature and quartiles of O3 concentrations, posing an obstacle when linking O3 

exposure with population-specific concentration-response functions. Fujita et al., while using a 

high resolution (5 km) chose to utilize a chemical box model in which only one parameter could 

change at a time. While the methods vary significantly from those used in our study, the general 

trend of increasing O3 and emissions is still evident.61 Additionally, He et al. designed a study at a 

relatively low resolution (30 km) using multiple scenarios: climate change only, emissions only, 

and a boundary effect. Using CMAQ and the Sparse Matrix Operator Kernel Emissions Model 

(SMOKE), these scenarios were based on SRES A1B and A1FI. Generally, A1B is like the RCP4.5 

scenario used in our study in terms of greenhouse gas emission increases and anthropogenic 

emission decrease, however, A1FI is very different from RCP8.5. In A1fi, all anthropogenic 

emissions are projected to increase. In RCP8.5, VOC/NOx is actually projected to decrease with 

large increases in methane leading to consequent rises in ozone levels.60 Taken together, overall 

conclusions of these case studies are consistent with our results, but the use of hybrid downscaling 
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and the updated RCP scenarios strengthens our current study and lends more insight into the 

nuances of future ozone changes.  

3.5.3 Strengths and limitations 

While we have sought to improve on previous methods, some limitations remain. 

Uncertainties may lie in the estimation of the future mortality rate, CRF, population projection, 

the potential effect of interactions between temperature and O3, and O3 concentration 

predictions.62-66 We attempt to account for some uncertainty by evaluating EM estimates using a 

robust Monte Carlo method.  We acknowledge that other modeling frameworks have been 

proposed, however, we deemed our approach reasonable due to sufficient high model 

performance.63,65 Exploration of additional techniques, though a future direction of study, was 

beyond the scope of this analysis. Another drawback lies in the cubic splines of time used in the 

model as they may underestimate the contribution of climate change to O3 concentrations due to 

the removal of long-term trends. Additionally, the use of county-level resolution, while more 

precise than previous studies, may still cause some loss in detail of future O3 predictions. However, 

it is necessary to keep the resolution of this data consistent with the resolution of the health data 

for analysis purposes (i.e., health data kept at county level for privacy protection). Future efforts 

to improve on this analysis could include enhancements in pollutant data collection locations, the 

addition of co-pollutant effects, and the effects of pollutants on human morbidity. 

 

3.6 Study conclusions and future directions  

The results of this study demonstrate that potential increases in premature death and in 

adverse health effects of climate change induced O3 increases in the US may be substantially offset 

by the effect of emission reductions planned under RCP4.5. However, even with the reduction of 
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O3 precursors, O3-related excess mortality may still increase in the US, due to increases in methane 

emissions under RCP8.5. Thus, with responsible emissions policy, the effects of emission 

reduction of O3 precursors is poised to significantly offset the adverse health effects of O3 due to 

climate change. To prevent adverse health effects of this potential driver, it is important to continue 

to intensify mitigation efforts towards both GHGs and O3 precursor emissions. These efforts are 

likely to avoid great cost to human health and quality of life.  
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4. HEALTH EFFECTS OF SMOKE EXPOSURE 
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Associations of Wildfire Smoke PM2.5 Exposure with Cardiorespiratory events in Colorado 
2011-2014 
Jennifer D. Stowell, Guannan Geng, Eri Saikawa, Howard H. Chang, Joshua Fu, Cheng-En Yang, 
Qingzhao Zhu, Yang Liu and Matthew J. Strickland 

 

4.1 Abstract 

Substantial increases in wildfire activity have been recorded in recent decades. Wildfires 

influence the chemical composition and concentration of particulate matter ≤2.5µm in 

aerodynamic diameter (PM2.5). However, relatively few epidemiologic studies focus on the health 

impacts of wildfire smoke PM2.5 compared with the number of studies focusing on total PM2.5 

exposure. We estimated the associations between cardiorespiratory acute events and exposure to 

smoke PM2.5 in Colorado using a novel exposure model to separate smoke PM2.5 from background 

ambient PM2.5 levels. We obtained emergency department visits and hospitalizations for acute 

cardiorespiratory outcomes from Colorado for May-August 2011-2014, geocoded to a 4km 

geographic grid. Combining ground measurements, chemical transport models, and remote 

sensing data, we estimated smoke PM2.5 and non-smoke PM2.5 on a 1km spatial grid and aggregated 

to match the resolution of the health data. Time-stratified, case-crossover models were fit using 

conditional logistic regression to estimate associations between fire smoke PM2.5 and non-smoke 

PM2.5 for overall and age-stratified outcomes using 2-day averaging windows for cardiovascular 

disease and 3-day windows for respiratory disease. Per 1 µg/m3 increase in fire smoke PM2.5, 

statistically significant associations were observed for asthma (OR=1.081 (1.058, 1.105)) and 

combined respiratory disease (OR=1.021 (1.012, 1.031)). No significant relationships were 
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evident for cardiovascular diseases and smoke PM2.5. Associations with non-smoke PM2.5 were 

null for all outcomes. Positive age-specific associations related to smoke PM2.5 were observed for 

asthma and combined respiratory disease in children, and for asthma, bronchitis, COPD, and 

combined respiratory disease in adults. No significant associations were found in older adults. This 

is the first multi-year, high-resolution epidemiologic study to incorporate statistical and chemical 

transport modeling methods to estimate PM2.5 exposure due to wildfires. Our results allow for a 

more precise assessment of the population health impact of wildfire related PM2.5 exposure in a 

changing climate.  
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4.2 Introduction 

4.2.1 Increasing threat of wildfires  

Climate change, defined as the long-term change in global and regional weather patterns, 

has been extensively documented since the mid-to-late 20th century.1-4 Despite politically charged 

debates regarding the cause of the change, it is clear that climate change and its resulting extreme 

weather events may severely impact the health and well-being of populations across the globe.5-8  

One area that reflects the synergistic impact of climate change and human activity is the occurrence 

of wildfires. Notably, the Western US has seen consistent and rapid increases in wildfire activity 

since the 1980s. This increase has been characterized by rises in the frequency, severity, size, and 

total burned area associated with wildfires.9-11 Fire effects are often seen at great distances from 

the events due to large smoke plumes, sometimes extending across multiple counties or states.  

States in the Rocky Mountain region continue to exhibit climatic factors conducive to fire 

activity—including high temperatures, low soil moisture, decreased rainfall, and increased solar 

radiation.12-16 Conditions may become more suitable to large wildfires over time due to climate 

change.17-19 Consequently, wildfires place significant burdens on the human, economic, and 

environmental systems in areas surrounding and downwind from the burn zone. This is of 

particular concern given the impact that wildfire events can have on regional air quality and, 

subsequently, human health.20,21  

4.2.2 Particulate matter from smoke differs from ambient concentrations 

Wildfire smoke can produce significantly higher exposures to harmful compounds than are 

normally found in non-fire urban settings.22-24 Fine particulate matter (PM2.5, airborne particles 

less than 2.5 µm in aerodynamic diameter) is of particular concern due to its ability to travel deep 

into the human respiratory system and enter the blood stream.20,21,25-29 Smoke particles differ in 
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both size and composition from particles found in typical ambient PM from non-wildfire sources. 

It has been shown that organic compounds, such as methanol or formaldehyde, make up a 

significantly higher proportion of smoke PM2.5 when compared with ambient PM.23,20 These 

distinctions could have differing effects on human health outcomes and may vary by fuel source. 

This has been shown in both in vivo and in vitro studies using human cells and mice.31-33 While 

much is left to be understood about the toxicological differences, current literature has begun to 

elucidate potential differences between smoke and ambient PM sources. It is, therefore, important 

to differentiate between smoke and non-smoke PM2.5 when assessing the health impact of 

wildfires. 

4.2.3 Epidemiological approaches to studying the effects of wildfire smoke exposure  

While numerous epidemiological studies have established the associations between 

ambient PM2.5 and human health, relatively few studies have focused specifically on wildfire 

smoke.34-37 For example, Reid et al. published a study showing significant results for asthma during 

fire events (previous 2-day moving average) for a 5 µg/m3 change in PM2.5 concentration.20 While 

Reid et al. included satellite and chemical transport data, they were limited to the use of fire day 

and fire distance parameters to account for smoke PM instead of directly estimating smoke PM 

concentrations. Additionally, many studies are restricted to the use of ambient urban air pollution 

measurements, coupled with fire day indicators, to represent fire-related exposures. In addition, 

current guidelines for public health response to wildfire events rely heavily on changes of ambient 

total PM measurements due to a lack of information in wildfire-specific air quality.38 A few studies 

have distinguished among sources on larger scales.39-41 For example, Liu et al. derived metrics of 

smoke waves for distinguishing fire activity and evaluated the health impacts of smoke PM2.5.41 

Their chemical transport model simulations, however, were on a spatial grid of 0.5 x 0.67 degrees, 
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which may be too coarse to capture finer-scale spatial gradients of exposure, see Supplemental 

Figure 4-1. 

4.2.4 Importance of isolating smoke-related particulate matter 

Though there is consistent evidence for associations between wildfire events and disease, 

questions remain regarding the relationship between wildfire smoke PM2.5 and both respiratory 

and cardiovascular outcomes given the difficulty in estimating smoke PM2.5 exposure. Developing 

robust methods for understanding this complex relationship is vital to understand the potential 

future impacts of climate and wildfire events on human health.  Building upon previous studies, 

the goal of our study is to estimate the associations for multiple respiratory and cardiovascular 

acute health events in relation to wildfire smoke PM2.5 in Colorado during the fire seasons of 2011-

2014 using novel, high-resolution methods to separate wildfire smoke PM2.5 from background 

ambient PM2.5. 

 

4.3 Data & Methods 

4.3.1 Health data 

We obtained individual-level health data on daily hospitalizations and emergency 

department (ED) visits at all public and private hospitals for the fire seasons (May-August) of 

2011-2014 from the Colorado Department of Public Health and Environment. Information 

included in the patient records are dates of admission, residential address, age, sex, payer 

information and International Classification of Diseases version 9 (ICD9) codes for primary and 

secondary diagnoses. Patients admitted to the hospital through the ED were only counted once, 

and those with elective hospitalizations were excluded from analysis. 
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We analyzed multiple endpoints for primary cardiovascular and respiratory diagnoses. 

Respiratory outcomes include asthma (ICD9: 493), bronchitis (ICD9: 490), chronic obstructive 

pulmonary disease (ICD9: 491, 492, and 496), upper respiratory infection (ICD9: 460-465 and 

466.0), and combined respiratory disease (ICD9: 460-465, 466.0, 466.1, 466.11, 466.19, 480-486, 

487, 488, 490, 491, 492, 496, and 493). Cardiovascular outcomes include ischemic heart disease 

(ICD9: 410-414), acute myocardial infarction (ICD9: 410), congestive heart failure (ICD9: 428), 

dysrhythmia (ICD9: 427), peripheral/cerebrovascular disease (ICD9: 433-437, 440, 443, 444, 451-

453), and combined cardiovascular disease (ICD9: 410-414. 427, 428, 433-437, 440, 443, 444, 

451-453). Due to inadequate numbers, events in children were not analyzed for COPD or any 

cardiovascular outcomes.  

4.3.2 PM2.5 and meteorological data 

We sought to separate smoke PM2.5 from ambient sources. To accomplish this, daily mean 

PM2.5 concentrations were adopted and improved from our previous study by adding new data.42 

Briefly, mean concentrations were estimated using a two-model approach to combine information 

from high-resolution satellite AOD derived from the Multi-angle Implementation of Atmospheric 

Correction (MAIAC) algorithm, model simulations from the Community Multiscale Air Quality 

Modeling System (CMAQ), and ground measurements obtained from the U.S. Environmental 

Protection Agency (USEPA) for fire seasons in the state of Colorado (April-September, 2011-

2014). The first model (i.e. AOD model) utilized random forest modeling to incorporate MAIAC 

AOD, smoke mask, meteorological fields and land-use variables. The second model (i.e. CMAQ 

model) utilized statistical downscaling to calibrate the CMAQ PM2.5 simulations. Additional 

exposure modeling specifics can be found in Supplemental 2 and Supplemental Figure 4-2. The 

output exposure data have full coverage in space and time and can capture the large fire events at 
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a resolution of 1km x 1km (CV R2 =0.81 and RMSE =1.85 µg/m3). Compared to Geng et al. 

(2018), major improvements include new observation data from the National Park Service to 

capture PM2.5 enhancement near wildfires, allowing for a better representation of high values found 

during fire events (Supplemental 4-2 and Supplemental Figure 4-2).43,44 Additionally, a random 

forest approach was utilized instead of the original statistical downscaler for the AOD model. This 

improved the R2 of the AOD model from 0.65 to 0.92 and the gap-filled R2 from 0.66 to 0.81.42 

PM2.5 exposure values were then aggregated to a 4km x 4km grid to match the resolution of the 

health data.  

Fire count data were obtained using the MODIS fire count product to specify fire days for 

each grid cell.45  Wildfire and prescribed fire emissions were obtained from the US EPA emissions 

inventory for the study period. To calculate the wildfire smoke PM2.5 fractions, we used two 

CMAQ model scenarios–with and without smoke and dust particles. The differences between these 

scenarios were then divided by the total PM2.5 scenario to calculate the smoke PM2.5 fractions. The 

smoke PM2.5 fractions were then multiplied by the total satellite based PM2.5 exposure to get the 

smoke PM2.5 concentrations.  

4.3.3 Epidemiological modeling methods 

We estimated associations between short-term changes in air quality and ED visits and 

hospital admissions using a case-crossover study design.46 Each individual’s event day (i.e., date 

of ED visit or hospitalization) was matched with up to four non-event days, with matching based 

on grid location, day of week, and calendar month.47 Exposure and meteorology were assigned to 

each event day and corresponding non-event days based on the 4km x 4km grid cell in which the 

patient’s address is located. The 4km grid was chosen a priori through collective agreement 
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between the researchers and the Colorado State Health Department. This resolution was deemed 

the finest resolution we could use while still conserving confidentiality. We then used conditional 

logistic regression to estimate the associations between ED visits and hospitalizations for each 

outcome and exposure to non-smoke PM2.5 and smoke PM2.5. The final models for respiratory 

outcomes are shown in model specification 1 & 2 below: 

 

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝐘𝐘) =  𝜷𝜷�𝒍𝒍𝒍𝒍𝒍𝒍𝒕𝒕𝒍𝒍𝟑𝟑𝟑𝟑𝒕𝒕𝟑𝟑 𝑷𝑷𝑴𝑴𝟐𝟐.𝟓𝟓�+ 𝜷𝜷�𝒍𝒍𝒕𝒕𝒕𝒕𝒑𝒑𝟑𝟑𝟑𝟑𝒕𝒕𝟑𝟑�+ 𝒏𝒏𝒏𝒏(𝟑𝟑𝒍𝒍𝟑𝟑)                                                                                        

Equation 4- 1 

 

𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍𝒍 𝑷𝑷(𝐘𝐘) =  𝜷𝜷�𝒏𝒏𝒕𝒕𝒍𝒍𝒔𝒔𝒕𝒕𝟑𝟑𝟑𝟑𝒕𝒕𝟑𝟑 𝑷𝑷𝑴𝑴𝟐𝟐.𝟓𝟓�+ 𝜷𝜷�𝒏𝒏𝒍𝒍𝒏𝒏𝒏𝒏𝒕𝒕𝒍𝒍𝒔𝒔𝒕𝒕𝟑𝟑𝟑𝟑𝒕𝒕𝟑𝟑 𝑷𝑷𝑴𝑴𝟐𝟐.𝟓𝟓�+ 𝜷𝜷�𝒍𝒍𝒕𝒕𝒕𝒕𝒑𝒑𝟑𝟑𝟑𝟑𝒕𝒕𝟑𝟑�+ 𝒏𝒏𝒏𝒏(𝟑𝟑𝒍𝒍𝟑𝟑)                                              

Equation 4- 2 

where total3day PM2.5 represents the 3-day moving average for total PM2.5 (i.e., smoke + non-

smoke), temp3day is the 3-day moving average temperature, ns(doy) is a spline for day of year (two 

internal nodes per year), smoke3day PM2.5 represents the three-day moving average smoke PM2.5; 

and nonsmoke3day PM2.5 denotes three-day moving average PM2.5 not related to wildfires. 

Cardiovascular outcome models were conducted using the same models shown in model 

specifications 1 and 2, but with 2-day averaging windows. Exposure windows of 3-day average 

PM for respiratory outcomes and 2-day average PM for cardiovascular outcomes were decided a 

priori based on published studies and consensus information found in the latest Integrated Science 

Assessment from the USEPA.20,41,48-53 Sensitivity analyses were conducted using lag 0, lag 0-1 

and seven-day exposure windows for respiratory outcomes and lag 0 and three-day exposure 

windows for cardiovascular outcomes.  



56 

 

 

Other potential confounders were assessed (relative humidity, boundary layer height, heat 

index, wind speed). However, these parameters did not influence the results and were omitted in 

the final model. Analyses to examine the presence of potential effect modification were completed 

using sex and age-stratification. Age-stratified categories included children (0-18 years), adults 

(19-64 years), and older adult (65+ years). We conducted all analyses in R 3.4.3 (2017) and SAS© 

9.4.  

 

4.4 Results 

4.4.1 Exposure modeling and smoke contribution to PM2.5 levels 

A time series plot for modeled statewide daily mean PM2.5 concentrations is shown in 

Figure 4-1. Modeled total PM2.5 values ranged from close to 0 to 47.48 µg/m3, with an overall 

mean value of 4.67 µg/m3. The exposure model was also used to separate smoke PM2.5 from non-

smoke PM2.5. This separation is based on the CMAQ fraction, with total PM2.5 equal to the sum of 

non-smoke PM2.5 and smoke PM2.5. Ratios of smoke PM2.5 to total PM2.5 ranged from 0 to 99.56% 

(mean=0.006%), with smoke PM2.5 levels ranging from 0 to 37.34 µg/m3. The statewide daily 

mean smoke vs. total PM2.5 ratio is also shown for the entire study period (See Figure 4-2). As 

shown, concentrations varied year-to-year and between stations. This is likely due to the spatial 

variability of wildfires and varied smoke plume behavior due to factors such as prevailing wind 

speed and direction. To illustrate PM2.5 concentrations and ratios attributable to fire, Figure 4-3 

shows the domain-wide average total PM2.5 on fire days (smoke PM2.5 >1%) compared with the 

domain-wide average ratio of smoke PM2.5. For the entire study period, total PM2.5 averaged 7.87 

µg/m3 with average fire PM2.5 ratios at 28%. Figure 4-4 shows locations on a fire day near two 
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major fires that occurred during our study period. As shown in Figure 4-4A, high levels of smoke 

PM can be seen despite more moderate total PM2.5 concentrations. Figure 4-4B depicts a fire day 

with much higher total PM2.5 concentrations and the subsequent contributions of smoke PM. 

Additional analysis showed relatively little correlation between smoke PM2.5 and non-smoke PM2.5 

(Pearson correlation coefficient r=0.11, p<0.0001). The peaks of highest smoke PM2.5 ratios tended 

to correspond with active fire days. Figure 4-5 illustrates the modeled total PM2.5 and smoke PM2.5 

ratio for June 22, 2013, a peak fire day during the West Fork Fire Complex. As depicted, when 

compared to satellite imaging, the modeled smoke PM2.5 appears to capture the apparent visible 

smoke plume adequately. 
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Figure 4- 1 

Daily Mean Modeled PM2.5 for Fire Seasons 2011-2014 in Colorado. State-averaged time series 

data for fire seasons (May-August) 2011-2014 show total modeled PM2.5 levels by day, month, and 

year. 
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Daily Mean Ratio of PM2.5 Attributed to Wildfire. State-averaged time series data for fire seasons 

(May-August) 2011-2014 depicting ratio of modeled smoke PM2.5 to total modeled PM2.5. 

  

Figure 4- 2 
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Figure 4- 3 

Domain-wide Daily Mean Total PM2.5 and Mean Ratio of PM2.5 on Fire Days (Fire PM >1%). 

Time series depicting both total and ratio of modeled smoke PM2.5 to total modeled PM2.5.  
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Figure 4- 4 

Daily Mean Total PM2.5 and Mean Ratio of PM2.5 Attributed to Wildfire at Two Locations. Time 

series depicting both total and ratio of modeled smoke PM2.5 to total modeled PM2.5. A) Location 

near the High Park Fire (June 9-30, 2012) and B) Location near Waldo Canyon Fire (June 23-

July 10, 2012). Red boxes indicate active fire days. 

A. 

B. 
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Figure 4- 5 

Satellite Smoke Plume, Modeled Total PM2.5 and Smoke PM2.5 for West Fork Fire Complex, 

June 22, 2013. Modeled data corresponds to visible smoke plume as shown in A-C. A) Satellite 

image from June 22, 2013 with active West Fork Complex Fire.54 B) Total PM2.5 for Colorado on 

June 22, 2013. C) Amount of PM2.5 attributed to fire on June 22, 2013. 
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4.4.2 Epidemiological modeling 

After excluding duplicate events and events with non-geocoded addresses, 44,262 of 

490,368 (9%) of cases were excluded from the analysis. A total of 446,106 ED visit and 

hospitalization events were analyzed from the Colorado Department of Public Health and 

Environment. Of those included, there were 204,823 male and 241,283 female cases. The lowest 

case count occurred in 2011 (n=102,318), with the highest number of cases in 2014 (n=129,477). 

While many reasons could exist, the large increase seen in 2014 could be explained by changes in 

health seeking behavior due to wider Medicaid coverage resulting from the implementation of the 

Affordable Care Act.55 Other summary statistics on age groups and events per year are found in 

Table 1. 

Using conditional logistic regression models, we estimated the odds ratio for exposure to 

smoke PM2.5 and individual health outcomes. As shown in Figure 4-6 and Supplemental Table 1, 

we observed significant positive associations between 1 µg/m3 increases in 3-day moving average 

fire exposures and both asthma (OR 1.081, 95% CI (1.058, 1.105)) and combined respiratory 

disease (OR 1.021, 95% CI (1.012, 1.031)) in a model that adjusted for PM2.5 from other sources. 

There were no significant positive associations linked to cardiovascular outcomes and 2-day 

smoke PM2.5 exposures (see Figure 4-7 and Supplemental Table 2). However, some inverse 

associations were shown to be protective for cardiovascular outcomes. This could possibly be due 

to random error, or it may be that individuals with pre-existing cardiovascular disease stay indoors 

on days with fire activity.    
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Table 2- 1 

 

 

 

 

 

 

 

 

 

 

The models were also run using total PM2.5 for both cardiovascular and respiratory 

outcomes. Overall, the majority of the respiratory odds ratios for 3-day average total PM2.5 were 

either null or trending to positive (Supplemental Table 3). The odds ratios for ischemic heart 

disease, acute myocardial infarction, and dysrhythmia also suggest a trend toward a positive 

association (see Supplemental Table 4). The cardiovascular results for total PM2.5 included 

significant negative results for congestive heart failure, peripheral/cerebrovascular disease, and 

cardiovascular disease.  

We conducted sensitivity analyses for additional exposure windows. Using lag 0 for both 

respiratory and cardiovascular outcomes, similar results were seen with smoke PM2.5 exposure, 

Epidemiologic data descriptive statistics. 

 
 

Case Count 
Total Records 490,368 
            Geocoded  446,106 
          Non-geocoded  44,262 
  
Year of Event  
          2011 102,318 
          2012 102,574 
          2013 111,737 
          2014 129,477 
 
Age Ranges 

 

          0-18 y 94,022 
          19-64 y 202,665 
          65+ y 149,419 
 
Sex 

 

          Female 241,282 
          Male 204,823 
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with notable differences in overall upper respiratory infection (OR 1.015, 95% CI (1.005, 1.026) 

and upper respiratory infection in children (OR 1.018, 95% CI (1.004, 1.003), see Supplemental 

Figures 4-3 and 4-4. Using lag 0-1 for all respiratory outcomes, the results were again similar to 

the initial analysis with changes for overall and child-only upper respiratory infections; see 

Supplemental Figure 4-5. Using a 7-day averaging window for respiratory outcomes, asthma was 

the only outcome to have a significant positive association with smoke PM2.5 exposure (OR 1.081, 

95% CI (1.051, 1.112), see Supplemental Table 5). The associations for asthma, upper respiratory 

infection, bronchitis, and combined respiratory disease trended positive but not significant for 7-

day averaged total PM2.5 exposure (see Supplemental Table 6). A 3-day averaging window used 

for cardiovascular outcomes also yielded either null or negative results (Supplemental Tables 7 

and 8). 
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Wildfire Smoke PM2.5 Exposure and Respiratory Outcomes. Odds ratios for both total and age-

stratified respiratory outcomes per 1 µg/m3 increase in wildfire smoke PM2.5 exposure, arranged 

by outcome and age group. 

Figure 4- 6 
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Figure 4- 7   

Wildfire Smoke PM2.5 Exposure and Cardiovascular Outcomes.  

Odds ratios for both total and age-stratified cardiovascular outcomes per 1 µg/m3 increase in 

wildfire smoke PM2.5 exposure, arranged by outcome and age group. 
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4.4.3 Stratified analysis 

To investigate potential effect modification of the relationship between exposures and 

respiratory outcomes, we conducted stratified analyses based on sex and age. While most sex-

stratified total PM2.5 results were null, an association was seen in females for bronchitis (OR 1.007, 

95% CI (1.001, 1.013), see Supplemental Table 9), however, no significant results were observed 

for cardiovascular outcomes and both 2-day total and smoke PM2.5, (Supplemental Tables 10 and 

11). Associations for both female and male asthma cases and 3-day average smoke PM2.5 were 

significant, with higher odds shown in female cases (OR 1.096, 95% CI (1.064, 1.128)) than in 

male cases (OR 1.063, 95% CI (1.029, 1.098)). Female bronchitis cases (OR 1.054, 95% CI (1.010, 

1.101)) and female total respiratory cases (OR 1.027, 95% CI (1.015, 1.040)) were also positively 

associated with smoke PM2.5. Additional sex-stratified, 3-day average smoke PM2.5 results can be 

found in Supplemental Table 12. 

Additionally, some outcomes exhibited differences when stratified on age. After age-

stratification, there were no patterns found linking respiratory outcomes and total PM2.5 with any 

specific age group (Supplemental Table 13). Regarding smoke PM2.5, Figure 4-6 also depicts the 

ORs and associated confidence intervals for each of the respiratory outcomes by age group. In 

children ages 0 to 18 years, significant positive associations were seen for asthma (OR 1.075, 95% 

CI (1.035, 1.116)). Adults aged 19 to 64 years of age exhibited positive associations for asthma 

(OR 1.091, 95% CI (1.060, 1.122)), bronchitis (OR 1.044, 95% CI (1.005, 1.085)), COPD (OR 

1.056, 95% CI (1.015, 1.100)), and combined respiratory disease (OR 1.030, 95% CI (1.017, 

1.044)) (see also Supplemental Table 14). For individuals 65 and older, there were no significant 

positive associations seen for respiratory outcomes. We found no positive associations for age-

stratified total or smoke PM2.5 and any of the cardiovascular outcomes (See Figure 4-7 and 
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Supplemental Tables 15 and 16). Additional results for stratification analyses using a 7-day 

averaging window for respiratory outcomes and a 3-day averaging window for cardiovascular 

outcomes can be found in Supplemental Tables 17-24. Of note, associations for both childhood 

and adult asthma, adult COPD, and adult combined respiratory disease events were positively 

associated with 7-day average smoke PM2.5 (see Supplemental Table 17). 

 

4.5 Discussion 

4.5.1 Summary and impact of results 

In this study, we estimated associations between various health outcomes and acute 

exposure to non-smoke PM2.5 and smoke PM2.5 in the state of Colorado over a four-year period 

(2011-2014). The design of this study is centered on smoke PM2.5 contributions to health outcomes. 

This work builds on our previous work by improving exposure data metrics and expanding from a 

1-month pilot study.56 The exposure data considers both spatial and temporal variability by 

including the use of satellite data to enhance the exposure estimates on an improved spatial scale 

of 4km x 4km. Another unique aspect of our exposure assessment is that we were able to separate 

smoke PM2.5 from non-smoke sources and estimate risks attributable to wildfire smoke distinct 

from those due to PM2.5 exposures from other sources.  

As we hypothesized, many of the respiratory disease outcomes increased during periods of 

wildfire activity. For respiratory outcomes, we estimated an increase (OR=1.036 (95% CI: 1.022, 

1.050%)) in ED/hospitalizations per 1µg/m3 increase in fire smoke PM2.5 exposure. The magnitude 

of the association was largest for asthma (OR=1.081 (95% CI: 1.058, 1.105)). Additionally, we 

observed heterogeneity in the association estimates when stratifying by age group. Positive 
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associations were observed for asthma events, where ED/hospitalizations increased significantly 

in children (OR=1.075 (95% CI: 1.035, 1.116)) and in adults (OR=1.091, (95% CI: 1.060, 1.122)) 

whereas the association estimate was lower in magnitude and was less precise for older adults 

(OR=1.009 (95% CI: 0.920, 1.106)). Similarly, an increase was seen for combined respiratory 

diseases with increases in ED/hospitalizations and adults (OR=1.030 (95% CI: 1.017, 1.044)). 

Specifically, in the adult group, increases were also shown for both bronchitis (OR=1.044 (95% 

CI: 1.005, 1.085)) and COPD (OR=1.056 (95% CI: 1.015, 1.100)). As opposed to other studies, 

there was no association shown for respiratory diseases when stratified for the older adult age 

group.  

Unlike respiratory outcomes, we did not see a strong link between smoke PM2.5 and 

cardiovascular outcomes. Results for combined cardiovascular disease yielded null results 

(OR=0.998 (95% CI: 0.984, 1.011)). Similar results were shown for both the adult and older adult 

age groups. This is not wholly surprising given differing results in current literature regarding the 

links between cardiovascular outcomes and wildfire events. There are fewer examples of 

cardiovascular associations with wildfire smoke exposure compared to respiratory outcomes. 

Additionally, associations with cardiovascular outcomes tended to be substantially lower in 

magnitude than for the respiratory outcomes.  These differences are consistent with published 

studies on both types of outcomes.21,57-63 For example, in Deflorio-Barker et al. (2019), most 

cardiovascular outcomes were not significant with fire day PM2.5 using lag0-2. They also found 

similar results for smoke day all-cause cardiovascular outcomes were very similar to non-smoke 

days (OR 1.06 for smoke days vs OR 1.07 for non-smoke days).61 
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4.5.2 Comparison with current literature 

Our high-resolution epidemiological study furthers the current knowledge in the field by 

incorporating random forest modeling methods combining information from MAIAC AOD, 

CMAQ simulations, and ground measurements to elucidate the portion of PM2.5 present in the air 

due to wildfire smoke. Previous work has enhanced the spatial coverage and resolution of total 

PM2.5 estimates during wildfire events—with the key distinction that this study focuses on the 

separation of smoke PM2.5 from other sources. In most work, researchers compared smoke and 

non-smoke days using a variety of methods.20,64 For example, satellite measurements are 

increasingly used to augment the spatially sparse ground monitoring for PM. However, this 

remains a relatively new approach to capturing the smoke PM concentrations. A study by Liu et 

al. looked at the entire Western US at the county-level using combined satellite and ground data.41 

They defined a fire indicator variable, or “smoke wave,” which includes periods of at least two 

days of high pollution from wildfire smoke. Using this method, Liu et al. found associations 

between wildfire smoke exposure and various respiratory illnesses, but no associations with 

cardiovascular outcomes.  Reid et al. (2015) used a machine learning approach to integrate multiple 

data sources including smoke indicators such as the distance to the nearest fire cluster and a smoke 

intensity calculation. The use of more advanced methods for predicting PM2.5 exposure enhanced 

the exposure estimations, however, the PM2.5 concentrations were not separated into smoke and 

non-smoke concentrations.65  

Other work has utilized methods combining wildfire emissions and smoke plume 

modeling. For example, Hutchinson et al. examined similar epidemiological questions using 

exposure data derived from a model that combined the Wildland Fire Emissions Information 

System and the Hybrid Single-Particle Lagrangian Integrated Trajectories.39 Their study found 
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increases in respiratory events with null cardiovascular results. However, the methods denoted 

fire-specific emissions due to fire location and progression from modeled progression maps and 

may not capture exposures as well as the use of chemical transport models. Ultimately, while our 

results carry similar interpretations to both studies, subtle dissimilarities may be seen as we utilize 

different air quality evaluation products and higher-resolution meteorological and epidemiological 

data to better-define the local exposures for each event.  

The asthma association found in our study is substantially larger than those shown in 

previous publications. In addition to Reid et al. (2016), other studies found significant associations 

between smoke PM and health outcomes. Delfino et al. reported significant associations of 

OR=1.043 between asthma and 2-day moving average smoke exposure for 10 µg/m3 increase in 

total PM2.5 concentration (Delfino et al., 2009). In a more recent study, Reid et al. also found a 

significant association for asthma and previous 2-day moving average smoke exposure, with an 

OR of 1.050 during fire events for a 10 µg/m3 increase in PM2.5 (Reid et al., 2019). Factoring in 

the domain-wide average smoke PM2.5 ratio for the study period (~28% for days with >1% smoke 

PM), our result per 1 µg/m3 roughly translates to 1.08 per 4 µg/m3 of total PM2.5. This converted 

result is more aligned with previously reported values, and the larger effect estimate is likely due 

to improved exposure assessment. It is also important to remember that our methods are unlike the 

majority of previous literature. Namely, the general approach in previous studies is to model smoke 

exposure using smoke day indicators. Our approach differed in that we sought to isolate the actual 

concentration of PM2.5 directly from smoke. We originally hypothesized that there may be a 

difference in toxicity of smoke PM2.5 compared to non-smoke PM2.5. When compared with other 

literature, our findings suggest that smoke PM2.5 may actually be more damaging to human health. 

Aside from asthma outcomes, the majority of the health associations in this study fall in line with 
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those found in previous literature. For example, Deflorio-Barker et al. 2019 also demonstrated 

stronger associations with respiratory outcomes than those with cardiovascular disease; with 

asthma exhibiting the largest OR of 1.06.61  

While we did not investigate physiological mechanisms, these results may be explained by 

the toxicity of smoke PM2.5. Since different chemical compositions of PM2.5 may affect the body 

differently, it has been suggested that toxicological differences may play a role in how wildfire 

smoke PM affects the human anatomy and physiology. Multiple toxicological studies have shown 

differences in the composition and effects of wildfire smoke compared to ambient air.24, 66-69 It has 

been shown that the small particles found in wildfire smoke may be responsible for stimulation of 

mechanisms that lead to increased oxidative stress at the cellular level. Wegesser et al. (2009) 

observed significant changes in macrophage and neutrophil counts in mouse lung samples exposed 

to wildfire smoke PM compared to ambient air. An additional study by the same group, expanded 

on these findings to show that substances such as polycyclic aromatic hydrocarbons (PAH) can be 

present in much higher concentrations in smoke versus levels detected in ambient air.68 Franzi et 

al. (2011) looked specifically at the inflammatory responses due to wildfire smoke PM exposure. 

PM from wildfire smoke exhibited approximately five times more toxicity to lung macrophages 

than non-smoke exposure. This study also showed significant changes in reactive oxygen species 

and subsequent oxidative stress, leading to higher cell degeneration and potential apoptosis. 

Similarly, Kim et al. (2018) found significant increases in mouse lung neutrophils after exposure 

and that levels of lung toxicity were significantly associated with fuel type .24 
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4.5.3 Strengths and limitations 

Despite the strengths of our study, some limitations remain. While we sought to enhance 

the exposure estimates for individual cases, some exposure misclassification is still possible given 

the assumption that the location of a person’s address is a good representation of their short-term 

exposures to smoke PM. An additional limitation exists due to the use of modeled exposure data. 

However, as stated previously and despite this uncertainty, the model accurately captures the 

temporal and spatial trends of PM2.5 measured by ground monitors and, thus give an accurate 

representation of overall trends. Additionally, several health events were left out of the analysis 

due to issues with address geocoding or non-Colorado residency. However, the exclusions were 

relatively small with only 9% of cases not used in the final analyses. Additionally, our analyses 

lacked the ability to differentiate chemical compositions of PM2.5. Thus, we cannot link 

toxicological effects to our exposure metrics. Finally, the selection of averaging window size, 

though based on current literature, may also introduce error into the analysis.  

Notwithstanding these limitations, our methods lend insight into important challenges that 

remain in the wildfire smoke exposure and health effects literature. The use of higher resolution 

enhanced exposure data provides a new approach to assigning exposure to individual events. Using 

multiple data products, our method aids in distinguishing wildfire smoke PM2.5 from background 

PM2.5. Unlike ground monitors that provide spatially sparse measurements, the exposure model 

used here provides daily concentrations for each 4km x 4km grid cell in our epidemiological study.  

 

4.6 Study conclusions and future direction 

Supported by high-resolution PM2.5 exposure estimates, we found significant associations 

between wildfire smoke and acute respiratory outcomes in Colorado, despite an absence of 
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association with total PM2.5 concentrations. Our findings point to potential toxic differences 

between smoke and non-smoke PM2.5 exposure; suggesting that PM2.5 from wildfire smoke could 

pose a significant threat to public health. This is especially true given the expected climate change-

related impacts on wildfire incidence. It is, therefore, important to derive more accurate 

concentration-response relationships specific to wildfire smoke in order to develop a better 

understanding of future potential health risks based on increased wildfire activity. Taken together, 

the current analysis can inform public health agencies and healthcare systems regarding the 

potential future burden of wildfire smoke PM2.5 exposure within the context of climate change. 

This information may be a key element in evaluating and enhancing current preparations aimed at 

wildfire-event response readiness. 
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5. FUTURE HEALTH IMPACTS DUE TO SMOKE-RELATED PM2.5 EXPOSURE 

[Manuscript 3] 

Excess Respiratory Events Due to Future Increase in Wildfire in the Western US: A Health 
Impact Analysis 
Jennifer D. Stowell, Lin Wang, Qingyang Zhu, Eri Saikawa, Howard H. Chang, Joshua Fu, Cheng-
En Yang, Qingzhao Zhu, Yang Liu and Matthew J. Strickland 
 

5.1 Abstract 

Recent years have brought increased wildfire activity to the western US. A significant 

concern regarding wildfires is the exposure to smoke and the fine particulates (PM2.5) that found 

in the plumes. Using modeled fire season data (May-August) from present years (2003-2010) and 

modeled data from future years (2050-2059), climate and emissions models were run once 

including fire sources and once without. The difference between the results of these two models 

estimates the contribution of wildfire to total PM2.5. Using the present and future wildfire smoke 

PM2.5, we calculated the difference between the two models to estimate the future increase of 

smoke PM2.5. All exposure data was aggregated to county level. The mean increase in average 

daily smoke PM2.5 increase ranged from 0.05 to 9.5 µg/m3. Highest exposures occurred in northern 

Idaho, Nevada and the Oregon coast. Additionally, we calculated the mean daily percent of smoke 

PM2.5 as a ratio of total PM2.5. Results ranged up to 85% for the gridded data (41.5% after 

aggregation). Using the ICLUS A2 population scenario, we estimate the western US states could 

experience additional daily ED visits at a rate of 19.2 visits per 10,000 people. Finally, we assessed 

the potential cost increase due to these visits. Based on the 2017 average ED visit cost of $1,059, 

the region could experience over $200 million in additional health care costs during a single fire 

season. The results of these analyses point to the importance of understanding areas that may bear 
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heavier burdens during future wildfire seasons. This information may serve as a key tool in policy 

and emergency response planning.  
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5.2 Introduction 

Recent years have exhibited increased wildfire events, especially in the Western US. This 

heightened activity is generally characterized by increases in severity, frequency, size, and longer 

fire seasons.1,2 Smoke plumes from these additional fires can affect multiple wide areas, with 

plumes extending across county, state, and country lines. It has been suggested that climate change 

may explain some of these fire anomalies. Certain conditions increase the likelihood of a wildfire 

occurrence. These include higher temperatures, high winds, low soil moisture or drought, and 

urban development of forested areas.3-5 Most often, fires are started either by lightning or human 

error, and the chance of a fire event is heightened and complicated by continued favorable fire 

conditions due to changes in weather and long term climate shifts. Despite controversies in the 

political sphere, scientists continue to provide evidence for human-accelerated environmental 

changes that can result in increases for both extreme weather events and natural disasters such as 

fire. Therefore, it is critical that work continues to expand our understanding of the relationship 

between climate change, wildfire activity, and human health. 

 Climate and chemical transport models are used to project future conditions and include a 

myriad of parameters. Continued research seeks to enhance these models, giving predictions and 

projections more accuracy.1,6 This is especially important in forecasting to improve early warning 

and emergency health care services. In the case of wildfire activity, projecting areas where fires 

will have the biggest impact can be important when considering planning and policies surrounding 

public health practices and response. It is, therefore, imperative that advances in sophisticated 

climate models continue to receive both recognition and funding to improve predictions of future 

climate and emissions policies. 
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 One of the most significant threats to health from fire smoke exposure comes from the fine 

particulate matter less than 2.5 µm in aerodynamic diameter, or PM2.5. It has been suggested that 

the particulate constituents of wildfire smoke may actually be more toxic than ambient PM2.5, or 

urban air pollution.7,8 This could be due to the higher concentrations of harmful substances in 

smoke-related PM2.5 such as organic compounds like formaldehyde and methanol. Since little is 

known regarding the toxicity of particular types of PM2.5 substances and their presence in wildfire 

smoke, it is important to find ways to differentiate between ambient PM2.5 and smoke PM2.5 to 

enhance our understanding of the potential mechanisms affecting health outcomes.  

Previous work surrounding the effects of wildfire on human health have established certain 

associations between smoke exposure and multiple health outcomes. However, much of this 

research relies on the characterization of smoke as total PM2.5 on smoke days compared to non-

smoke days.9-13 Additionally, some previous research has used chemical transport models and 

unique fire contributions to model past fire episodes and predict the exposure levels in the 

surrounding areas. For example, Koman et al. (2019) uses the CMAQ runs with and without 

wildfire emissions sources to create a gridded smoke PM2.5 surface for the state of California.14 

They used a few approaches, including smoke waves to estimate the affected population. However, 

Koman et al. did not analyze any health outcomes. While these efforts have been informative, our 

understanding of the potential toxicity of smoke PM2.5 needs to be enhanced. This requires 

continued efforts to separate smoke PM2.5 concentrations from ambient PM2.5.  

 The objectives of this body of work include investigating applications of novel climate and 

wildfire modeling to future health predictions. This study seeks to address possible increases in 

smoke PM2.5 by using a modeling framework designed to separate fire contributions from all other 

sources of PM. Our approach includes estimating both present and future smoke PM2.5 and 
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calculating the increase in total particulates due smoke PM2.5. Using multiple present and future 

year (2003-2010 vs 2050-2059) meteorology and chemical transport models, we intend to separate 

smoke-related PM2.5 and calculate the increased public health burden due to future increased 

wildfire activity. 

 

5.3 Data & Methods 

5.3.1 Study Domain 

The study domain is shown in Figure 5-1 with multiple major cities. This region includes 

the states of Washington, Oregon, California, Nevada, Arizona, Idaho Montana, Wyoming, Utah, 

Colorado, and New Mexico. The Western US is made up of coastal lowlands, desert plains, and 

Figure 5- 1 

Western United States study domain. 
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mountainous regions with low-lying valleys. Much of the West receives less rainfall than states on 

the East Coast and arid conditions prevail in many areas. Perhaps the most striking characteristics 

of the region are the large mountain ranges that run from north to south (Rocky Mountain and 

Sierra Nevada Ranges). The topography and terrain of the area greatly affect the climate and 

weather patterns and patterns of development and urbanization. 

5.3.2 Exposure Modeling Framework 

 In efforts to approach this analysis in using novel methods, we utilized unique datasets 

derived from chemical transport model configurations. To assess the increase in PM2.5 from 

wildfire smoke, we chose to analyze data for the present scenario from the years 2003-2010 and 

the future dataset on the 2050-2059 IIASA (International Institute for Applied Systems Analysis) 

RCP8.5 configuration. Our approach is similar to Gao et al. 2012 and 2013, where meteorology 

was extracted using the Community Earth System Model v1.04 (CESM) to dynamically downscale 

meteorology from the Weather Research and Forecasting Model v3.2.1 (WRF). The CESM has 

four major components, one each for the atmosphere, land, ocean, and sea ice. The initial and 

boundary conditions for the Community Multiscale Air Quality Modeling (CMAQv5.2) included 

CAM4-Chem downscaling (Community Atmosphere Model with Chemistry). One main 

difference in our study compared with the Gao et al. studies is our use of different regional 

emission inputs for CMAQ present year simulations. These updated inputs came to us directly 

from collaborators at the EPA. Additional emissions input came from the Fire Inventory from 

NCAR (FINN v1.5),and the Global Fire Emissions Database (GFED4.1s) which are both daily fire 

emissions products designed as inputs for atmospheric chemistry modeling.  

Each climate/emissions model were run twice for both the present data and future data. 

These model runs consisted of one including all PM2.5 sources and one without the fire emissions 
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or no-fire simulations. For the present year no-fire simulations, we used the difference between 

the CMAQ inputs from the EPA and the first layer of the FINN fire model. For the future year no-

fire scenario, the fire emission signal was removed so that the data captured would represent all 

ambient PM2.5.   

5.3.3 Isolation of Smoke PM2.5 and Calculation of Increase for 2050-2059 

Using the two model runs (total and no-fire PM2.5) from both the future and present data, 

we were able to isolate the contribution of smoke PM2.5 for the impact assessment. The overall 

framework is illustrated in Figure 5-2. Step 1 involves running a present total model and present 

no-fire model as well as a future total model and its accompanying no-fire model. To isolate the 

PM2.5 from smoke, we subtracted the no-fire model outputs from the outputs of the total PM2.5 

runs. The difference of the total and no-fire scenarios results in a quantification of the smoke PM2.5 

contribution for each period. After calculating this parameter for both periods, we took the 

difference between the future and present scenarios to estimate the future increase in smoke PM2.5 

that we might expect under RCP8.5 conditions in the 2050s. With this parameter calculated, we 

matched the smoke PM2.5 increase to the CMAQ 12km grid. To spatially align our exposure data 

with our health data, we then aggregated the smoke PM2.5 data to the county level. 
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Figure 5- 2 

Calculating Increases in PM2.5 from Wildfire Smoke to use in a Health Impact Analysis. Flow 

chart outlining the approach to isolate increases in smoke PM2.5. Step 1 involves compiling two 

present models and two future models including one total PM2.5 model and one non-fire PM2.5 

model. Step 2 calculates the difference between total and non-fire PM2.5 for the 2000s and the 

2050s. Step 3 calculates the difference between future and present smoke-related PM2.5 to isolate 

increases in future smoke PM2.5. Step 4 involves a health impact assessment to determine the 

associations between respiratory health outcomes and smoke PM2.5 exposure. 

 

5.3.4 Epidemiological Metrics & Health Impact Assessment 

The health metrics used in this analysis came from previously published work on the 

association of health outcomes with wildfire activity in Colorado. The base population from that 
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study encompassed all persons in the state. Records were extracted from all public and private 

hospitals during the fire seasons (May thru August) of 2011-2013. The odds ratios (OR) for 

multiple cardiorespiratory outcomes were calculated using a case-crossover framework and 

logistic regression. From these ORs we were able to calculate state-specific concentration response 

functions (CRFs) for multiple outcomes. Additionally, we were able to calculate a statewide 

average incidence rate for each of the outcomes. Making certain assumptions, we applied these 

metrics to the Western US.  

 In addition to the CRFs and incidence measures taken from our previous work, future 

population projections are required to calculate the future burden of wildfire smoke exposure. In 

order to calculate baseline incidence of future respiratory ED visits, we used the average daily 

incidence from the Colorado study. For this analysis, we utilized the Integrated Climate and Land 

Use Scenarios (ICLUS) population projections. ICLUS projections use the global Special Report 

on Emissions Scenarios or SRS to estimate future population on county-level under certain 

potential future conditions. In this base estimation, we use the ICLUS A2 population, characterized 

by high fertility rates, low economic growth and little international migration. The choice of this 

population projection matches closely with our projected exposure scenario, RCP 8.5.  

 We estimated changes in ED visits for the years 2050-2059 at the county level using the 

following equation: 

 

∆𝐸𝐸𝐸𝐸 = ∆𝑛𝑛𝑡𝑡𝑠𝑠𝑠𝑠𝑡𝑡𝑃𝑃𝑀𝑀 ∗ ln(𝑂𝑂𝑀𝑀) ∗ 𝐸𝐸𝐸𝐸𝐸𝐸𝑛𝑛𝐸𝐸𝑡𝑡𝐸𝐸𝑡𝑡𝑛𝑛𝐸𝐸𝑡𝑡 ∗ 𝑝𝑝𝑠𝑠𝑝𝑝𝑝𝑝2  [1] 

 

where ΔED represents the future change in respiratory ED visits due to 1 µg/m3 increase in smoke 

PM2.5; ΔsmokePM is the calculated average increase in smoke PM2.5 from the difference 
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calculations used above; ln(OR) is the natural log of the odds ratio per 1 µg/m3 increase in smoke 

PM2.5 we calculated from our previous Colorado wildfire study; EDIncidence is the average daily 

incidence of respiratory ED visits, again take from the Colorado analyses; and popA2 is the 

projected county population according to the ICLUS A2 projection. 

 In addition to this base burden calculation, we selected multiple approaches to address and 

display the results on grid, county and state levels. Using the future ICLUS A2 population 

projections, we adjusted the numbers using population normalization as well and attempted a crude 

estimate of the costs associated with increased ED in the 2050s. We compared the population-

normalized events with straight counts per county and state. Additionally, we calculated the 

potentially monetary burden placed on the healthcare system. We chose to use the average cost of 

a 2017 ED visit (for any reason) as published by the non-profit Health Care Cost Institute. They 

estimated that the average cost of an ED visit had grown 146% from 2008 levels or, from $431 per 

visit in 2008 to $1,059 per visit in 2017. 

 

5.4 Results 

5.4.1 Isolation of Smoke PM2.5 and Calculation of Increase for 2050-2059 

We estimated the smoke PM2.5 and calculated the difference between 2050s levels and 

2000s levels. Figure 5-3A shows the distribution of the present smoke PM2.5 for the study domain 

on the CMAQ 12km grid. Figure 5-3B shows the distribution of future smoke PM2.5 for the study 

domain, and Figure 5-3C represents the difference or increase in smoke PM2.5.The mean increase 

ranged from 0.05 µg/m3 to 9.5 µg/m3. This represents the mean from 123 fire season days. Thus, 

the spatial distribution of the wildfire PM2.5 is likely higher on some days compared with others. 

Nevertheless, this figure helps us to visualize the areas with more prominent average exposure. As 
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shown, there appears to be higher potential exposures in Northern Idaho and Southwest Montana, 

the Oregon coast, and much of the state of Nevada. In order to use this data with the selected 

population projections, it was necessary to aggregate the data to county level.  

 

   

We also examined the smoke PM2.5 concentrations as a ratio of the total PM2.5 

concentration. Figure 5-4A plots the gridded daily smoke PM2.5 as a percentage of the total for the 

base years (2000s). As shown, on any given day, smoke PM2.5 could represent up to 85.0% of the 

total PM2.5 exposure. Figure 5-4B shows the gridded daily smoke PM2.5 for the 2050s. After 

aggregation to county level, the range of percentages is limited to a maximum of 41.5% due to the 

loss of resolution.  

Figure 5- 3 

Gridded and county-level daily increases in fire PM2.5.  Figure 5-3A depicts the present daily mean 

smoke PM2.5 for the 2000s on a 12km CMAQ grid. Figure 5-3B shows the future predicted daily 

mean smoke PM2.5 for the 2050s, and 5-3C shows the increase in smoke PM2.5 (i.e., difference 

between 3B and 3A). 
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Figure 5- 4 

Gridded and county-level daily increases in fire PM2.5 as a percentage of total PM2.5.  Figure 

5-4A depicts the gridded present daily smoke PM2.5 as a percentage of total PM2.5 on a 12km 

CMAQ grid. Figure 5-4B plots the gridded future daily smoke PM2.5 as a percentage of total 

PM2.5 on a 12km CMAQ grid. 

 

5.4.2 Epidemiological Metrics & Health Impact Assessment 

Another way to assess this data is to normalize the results by county population. 

Normalizing data by county population makes between county comparisons more direct and 

meaningful. As shown in Figure 5-5, normalizing changes some of the burden distribution, 

though the general overall trends remain. Some key variances are evident in central California, 

central Washington and Arizona, with less pronounced burden after accounting for the size of 
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population. However, even with normalizing, several of the burden “hotspots” remain such as 

Northern Idaho and the coast of Oregon. 

5.4.3 Statewide Potential Increased Burden 

We also chose to evaluate the data by each state to give additional context to potential 

burden evaluations. In Table 1, we see both population change and the potential increase in 

wildfire events. The states with the highest increase in ED per 10,000 persons appear to be 

Idaho, Montana, Nevada, Oregon, and Utah. However, it is important to look at the individual 

population growth for each state because some of this increase is likely due to population 

growth. Our analyses showed increases in population for most of the states. Two states, Montana 

and Wyoming, are expected to lose population under the ICLUS A2 scenario. Therefore, while 

the states mentioned show higher rates of increase, it is also important to look at changes in 

population. For example, Idaho has the highest rate of increase in total events, with a lower 

positive increase in population. However, the state of Montana has a lower rate of increase but 

loses population over the same period. Hence, emphasis on states with low population growth 

and relatively high rates of increase in ED events may be crucial to any action or policy plan 

decisions. 
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Figure 5- 5 

Total Fire Season Increase in Respiratory Events.  Plotted mean total # of events in a given fire 

season normalized by population. 
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Table 5- 1 

Statewide increases in smoke PM2.5 ED visits compared to increases in population.   
 

 

 
 

5.4.3 Potential Increases in Health Care Costs 

Along with increases in events and higher levels of PM2.5 from smoke, it is important to 

understand the potential impact on counties and states when it comes to the actual cost due to any 

increase. In Figure 5-6, the average annual increase in health care from these potential respiratory 

ED visits can be seen on the county level. These numbers again are normalized by population and 

represented as increase in cost due per 10,000 persons.  The distribution of the cost per county in 
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Figure 5-6 is very closely related to Figure 5-5 because it is a monetary calculation based on the 

annual fire season increase in ED visits. Thus, the areas of Idaho, Nevada, and Oregon continue to 

stand out as areas that may experience the largest monetary burden compared to other counties.  

In Table 2, the county numbers (shown in thousands of dollars) are aggregated to the state 

level to see the potential impact that statewide systems may experience. Looking at some of the 

identified hotspots, the burden on some states is higher when compared with the relative size of 

the state and potential resources. For instance, Idaho, with a much smaller population and total 

annual cost than a state like California, has a greater burden in cost per 10,000 persons than the 

most populated state. Based on the results shown in this table, it appears that the same states and 

counties that experience higher increases in additional events may carry a disproportionate burden 

when it comes to the actual cost increase associated with these events. 
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Figure 5- 6 

Predicted fire season total cost increase due to smoke PM2.5 exposure.  Average total fire 

season cost of increases in smoke PM2.5 (in thousands of dollars) normalized by population. 
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Table 5- 2 

Predicted statewide fire season total cost increase due to smoke PM2.5 exposure.  Increase in 

average fire season cost for increases in smoke PM2.5 in total state burden and burden 

normalized by population.  
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5.5 Discussion 

5.5.1 Summary and impact of results 

This research has sought to address some of the gaps in our understanding of health effects 

associated with smoke PM2.5 exposure. Using a complex modeling scheme, we were able to 

separate smoke PM2.5 from ambient levels for a present period (2003-2010) and a future period 

(2050-2059). By calculating the difference between future and present levels, we were able to 

estimate the increase in smoke PM2.5 that we might expect under RCP8.5 in the 2050s. 

Additionally, we adopted region-specific health metrics from our Colorado study to tailor our 

approach to typical Western US conditions. This included the use of both incidence rates and OR 

values for fire season respiratory ED visits estimated in our previous study.  

As we hypothesized, many areas in the study domain experienced substantial increases in 

smoke-related PM2.5 based on comparisons between future and present results.  For increased 

exposure to smoke PM2.5 across the region, we found an average season increase of 244 ED 

respiratory visits for every 10,000 persons. Increase in expected ED visits varied by county and 

state, with some consistent “hotspots” seen in northern Idaho, Nevada, and the coast of Oregon.  

Additionally, we compared these results normalized by population. While some of the spatial 

distribution of burden resulted, the same identified areas remained the highest in additional 

expected ED visits.  

It is true that some of this increase could be due to natural population growth. Thus, it was 

imperative that we compared the future expected population increase with the rate of fire season 

respiratory events. Using this strategy, Wyoming and Montana both exhibited significant loss to 

population, but retained some of the highest increases in ED visits. This is a useful comparison 
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since the burden will be felt by a smaller population—both in size of health effect and potential 

strain put on community and governmental entities. 

Given our hypothesis that fire smoke PM2.5 may be more toxic than ambient PM2.5 

concentrations, and, based on the results from our previous work, we also analyzed the results by 

the percent contribution of smoke PM2.5 to ambient PM2.5. After aggregation to county, the average 

daily smoke contribution ranged from 1.0-41.5% across all counties. While there was some loss to 

resolution as a result of aggregation, the overall pattern is informative and may be a useful tool in 

planning for future health impacts. 

This additional strain is also apparent in a crude glance at potential increases in monetary 

burden attributed to the additional ED visits related to fire smoke PM2.5. Using the 2017 estimated 

cost of an average ED visit, $1,059, we calculated the monetary burden by county. Similar patterns 

were seen with, again, Idaho, Nevada and Oregon experiencing some of the highest monetary 

impacts. The total fire-season cost for the region $219,355,965 or $20,351 per every 10,000 

persons. 

5.5.2 Comparison with current literature 

It is difficult to make direct comparisons between our study and previous literature since 

our methods do not closely resemble the different methods used in other published work. This is 

mostly due to the objective of directly attributing respiratory health outcomes to smoke-specific 

PM2.5 concentrations. For example, in Liu et al. (2016), estimates of future wildfire-specific PM2.5 

were derived from GEOS-Chem model simulations based on a future IPCC scenario, A1B.15 This 

scenario assumes moderate growth in global emissions. Using this framework, authors projected 

future fire PM2.5 levels on a 0.5 x 0.67 degree grid, aggregated to county level. In addition to the 

calculations of wildfire-specific PM2.5, the study used “smoke wave” events within their modeling 
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scheme. They define smoke waves as at least two consecutive days with smoke PM2.5 higher than 

the 98th quartile of all fire-specific PM2.5. Then, using population projections from the US Census, 

they calculated the future population for each county. Similar to our work, they calculated the 

change in number of respiratory admissions by taking the difference between future and present 

conditions. However, these were only calculated for the elderly population, or 65+.  

While the Liu et al. approach is promising, we made different choices for our projections 

based on the results of our previous Colorado smoke-specific PM2.5 analysis.16 In that study, we 

did not find significant associations for respiratory admissions among the elderly populations for 

3-day moving average smoke PM2.5 exposure. Additionally, we did not constrain our methods to 

any type of exposure categorization (such as smoke waves). Instead, we chose to estimate the 

overall and age-stratified burden for any amount of smoke-specific PM2.5 exposure using the 

CMAQ modeling framework. Finally, another significant difference in our analysis is 

normalization by population to better understand the future health burden using between-county 

comparisons. 

5.5.3 Strengths & limitations 

Our analysis includes some limitations, most of which surround the uncertainty of 

predicting future fire activity and resulting health effects. Some uncertainty comes from the 

exposure modeling procedures that were used to create both present and future gridded datasets. 

Due to the nature of modeling, especially predictive, there could be some exposure 

misclassification. Additionally, the metrics used for predicting the number of future ED visits came 

from a state-specific study in Colorado and may not be entirely appropriate to extend to the whole 

Western US domain. There is also chance for bias introduced by the ICLUS population inputs and 



102 

 

 

the RCP 8.5 inputs. Since each of these are predictions based on assumed conditions, either could 

introduce some error in our model configuration. 

 However, some limitations are to be expected when using new approaches to modeling 

environmental exposures and health effects. To our knowledge, this is the first study to use the 

CMAQ fire vs. no fire capabilities to project the difference between present and future impact of 

wildfires. Also, the inputs we used at some stages in our model are improved inputs directly from 

the EPA and may not be available for other studies. As mentioned, the health metrics for incidence 

and risk were taken from the Colorado study. This could be viewed as a strength given that 

conditions in the Western US are very different than areas in other wildfire studies.   

 

5.6 Study Conclusions and future directions 

The results of this work suggest that substantial increases in health burden may be seen by 

the mid-21st century. Using novel modeling methods and region-specific health metrics, we 

calculated future increases in adverse respiratory health outcomes. From this analysis, we 

identified counties in the Western US that may shoulder more health events and substantial 

associated costs.  Using a population-normalized approach, we calculated the increase in burden 

due to wildfire-specific PM2.5 by county. Using these methods, several counties exhibited disparate 

effects. Additionally, it was important to consider potential population growth for each county and 

state. After analysis, some other areas (such as Montana & Wyoming) were identified as 

shouldering some of the heaviest health and economic costs despite expected overall loss in 

population. Moving forward, it will be important to look at several permutations of our modeling 

scheme as well as incorporate other methods for future fire-related PM2.5. 
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6. CONCLUSIONS 

Air quality is gaining ground as one of the major concerns surrounding climate change and 

subsequent adaptation. Each year, an approximate 7 million deaths are linked to poor air quality, 

as estimated by the WHO. Additionally, the WHO estimates that 91% of the world’s population is 

exposed to air quality deemed unhealthy. Many studies have been conducted attempting to outline 

and quantify the impact of climate change on human exposures to worsening air quality. The 

overall goal of this body of work was to provide insight into key aspects of the epidemiology 

surrounding this growing health concern. Specifically, this research examined the excess mortality 

for increased exposures to O3 using multiple climate and emissions scenarios (Aim 1), 

characterized the impact of wildfire events on human health (Aim 2), and forecasted the future 

morbidity of smoke exposure due to changes in climate and emissions (Aim 3). 

 

6.1 Contribution of Aim 1 

Ozone is an important chemical found in earth’s atmosphere. Depending on the location in 

the atmosphere, O3 can have either helpful or detrimental impacts on the earth system. Aim 1 

focused on the mortality impact of O3 in the troposphere and projected the number of excess deaths 

from O3 exposure that might be expected in the 2050s. In Aim 1, we utilized multiple emissions 

and population scenarios to identify the differences in O3-related excess deaths. Through a hybrid 

modeling approach, we blended statistical and dynamical downscaling methods. This allowed for 

us to ascertain that changes in emissions may be the source of the main incongruities between high 

and low emission scenarios.  

The results from this study point to the differing contributions to O3 from climate change 

and emissions policies. Under both RCP4.5 and RCP8.5, we found that largest impact is likely to 
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be from changes in current emissions policies going forward. Using our hybrid dynamical 

downscaling method, we were able to separate projected future concentrations of O3 due to the 

separate “sources” of emissions and climate. We do know that climate change alone could cause 

adverse health outcomes and mitigation strategies will serve to alleviate some of that impact. 

However, it appears that substantial benefits may come from limiting our future emissions. This 

is clear in the comparison that we made between the RCP scenarios. It is important to note that, in 

each of the RCPs, O3 precursors are expected to decrease. However, our results using RCP8.5 

suggest an increase in future O3 concentrations. This could partly be due to large increases in 

global methane that have been estimated for the RCP8.5 scenario. 

In this national-scale mortality study, we investigated the differences in excess deaths due 

to the overarching source of the O3 concentrations (i.e., climate change or changes in precursor 

emissions). This study provides evidence that, while the impacts of both climate change and 

emissions policies play a part, the health burden of the exposure will vary greatly depending on 

the changes made to current policy and practices. Ultimately, these results can be used to inform 

future policy decisions and recommendations as the results show large decreases in excess deaths 

from O3 under stricter policy scenarios.  

We concluded that, while climate change alone may cause some adverse health effects due 

to poorer air quality, substantial and more immediate health benefits may be achieved by emission 

mitigation of O3 precursors regardless of changing climate conditions (especially under higher 

emission scenarios). The results of this investigation demonstrate potential significant rises in O3 

mortality due to differences in future emissions policies. Thus, as we demonstrated, climate change 

induced O3 increase in the US could be substantially offset by changes to worldwide emissions 

policies moving forward.   
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6.2 Contribution of Aim 2 

 Finding ways to demonstrate current health burden is a vital part of understanding potential 

future impacts of poor air quality. The purpose of Aim 2 was to address the extent of smoke PM2.5 

exposure under current conditions. Our study domain consisted of the state of Colorado and our 

health data represents all ED visits or hospitalizations from both private and public hospitals during 

the fire seasons of 2011-2014. Using high-resolution exposure modeling, we sought to isolate the 

contribution of smoke PM2.5 to ambient levels. This was made possible using satellite data, to 

enhance our exposure estimates on a 4km scale. Accounting for both spatial and temporal 

variability, we successfully separated smoke PM2.5 from other sources to better understand and 

quantify wildfire-specific exposures and their resulting health effects.  

 As we originally hypothesized, multiple respiratory outcomes were associated with 

increased smoke exposure. The results from our study estimated higher risk of respiratory ED 

events that are higher than those previously published in the literature. This was especially true for 

asthma cases where an OR of 1.081 was estimated. The interpretation of this measure is that an 

individual is at an 8% higher risk for and ED visit or hospitalization due to asthma on due to each 

increase in 1 µg/m3 smoke PM2.5 exposure. We also found significant increases in overall 

respiratory events, with some significant associations that are dependent on age stratification. For 

example, we found that the risk of a bronchitis event is statistically significant for adults and that 

we might expect a 4% increase in risk due to each unit of increase in smoke PM2.5.  

The findings from this study point to potential toxicological differences between smoke and 

ambient PM2.5. We found associations with multiple respiratory outcomes for the fire seasons 

(May-Aug) during 2011-2014. Our results suggest that future smoke exposure could pose a 

significant threat to public health. This analysis can inform public health and healthcare systems 
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regarding the potential future burden of wildfire smoke PM2.5 exposure within the context of 

climate change.  

The design of this Aim 2 focused on smoke PM2.5 contributions to multiple cardiorespiratory 

outcomes. We observed estimated increases in many of the respiratory outcomes during periods 

of wildfire activity. We also observed heterogeneity in the associations when stratifying by age. 

Associations were seen in asthma events and overall respiratory events. The effect was enhanced 

in children and adults presenting with asthma. Older adults did not exhibit a significant increase 

in respiratory outcomes. In the adult group, we observed increases in both bronchitis and COPD.  

Unlike some available literature, smoke PM2.5 was not significantly associated with any observed 

cardiovascular outcome.  

Our findings point to potential toxic differences between smoke and non-smoke PM2.5 

exposure; suggesting that PM2.5 from wildfire smoke could pose a significant threat to public 

health. This has been suggested in both in vitro and in vivo studies with human cells and animal 

studies. We did not differentiate by specific compounds in smoke PM2.5, but there seems to be a 

potential difference in exposure to fire vs. ambient PM2.5. This is especially true given the expected 

climate change-related impacts on wildfire incidence, with exposure and risk increasing with 

future wildfire activity.  

It is, therefore, important to derive more accurate concentration-response relationships (CRFs) 

specific to wildfire smoke in order to develop a better understanding of future potential health risks 

based on increased wildfire activity. Additionally, calculating CRFs for specific locations or 

regions may enhance our understanding of future wildfire PM2.5 exposure and the variation there 

might be from place to place. Thus, the calculation of CRFs from the results of this study tailor the 

potential impact to the state of Colorado and could be extrapolated to the surrounding region. 



109 

 

 

Taken together, the results of this analysis can inform public health agencies and healthcare 

systems regarding the potential burden of wildfire smoke PM2.5 exposure within the context of 

future climate change. This information may be a key element in evaluating and enhancing current 

preparations aimed at wildfire-event response readiness. 

6.3 Contribution of Aim 3  

 Using novel methods to predict future smoke related PM2.5, Aim 3 sought to describe the 

future impact of increasing wildfire on human health. Similar to Aim 2, we used complicated 

models to separate the future smoke PM2.5 contributions to ambient or total PM2.5. This was 

accomplished by calculating the differences in smoke PM2.5 concentrations between a present 

period (2003-2010) and a future estimation (2050-2059). This analysis was designed as a “base 

case” scenario to help us understand the future burden using multi-year averages to estimate 

predicted impact. This involved converting the results from Aim 2 into updated concentration 

response functions (CRF) based on the exposure-disease relationship shown in the previous aim.  

We also calculated the annual incidence of respiratory ED events using data from Aim 2. This 

application was expanded to include the entire Western US and provided respiratory ED visit 

projections for the 2050s.  

Multiple “hotspots” for fire smoke PM2.5 and increases in ED visits, including Idaho, 

Nevada and the coast of Oregon. However, there was a large loss of resolution in our exposure 

data due to county-level aggregation. The differences can be seen when placing gridded and 

aggregated maps side by side as done in Chapter 5. We approached this analysis from several 

angles. First, we were able to calculate the daily mean increase in smoke PM2.5. This was then 

analyzed using a ratio of smoke PM2.5 to ambient concentrations. In this comparison, even with 
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loss of detail from aggregation, some counties averaged more than 40% smoke PM2.5 on any 

given day.  

We also mapped the average increase in respiratory ED events for a single future fire 

season. This was done, again, using both the gridded data and the aggregated data. Not 

surprisingly much of the variation in the data was lost due to aggregation. Again, the same areas 

of Idaho, Nevada and Oregon stand out as areas with more future impact. However, we were not 

able to do a direct comparison between counties until we normalized by population. After 

accounting for the population in each county, we calculated rates of future events per 10,000 

people. The same hotspots emerged, but with some variations across the domain due to 

normalization. 

Next, we calculated the average percent increase in events for a fire season and compared 

that to a calculation of the rate of increase in population. It is true that some of our estimation is 

due to population growth. However, it became clear that there are states that could be not 

proportional to the other statues due to low increase or negative changes in population. The best 

example of this is Montana, where they have the second highest rate of increase in events but 

lose approximately 18% of their population. Taking this into consideration, policy and 

emergency response plans may need to be adjusted to meet the future burden. 

Finally, we estimated a substantial burden from contemporary average ED costs using the 

future visits. In this analysis, we looked at the average ED costs from 2017 which were estimated 

to be $1,059. We then applied this mean cost to future wildfire season respiratory ED events due 

to smoke PM2.5 exposure. The costs varied from county to county, with some experiencing larger 

hardships. This is important to incorporate in any future response planning—especially since this 

estimation likely underestimates the future cost due to our use of contemporary inflation. 
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Therefore, this estimation does not take into consideration any sort of inflation or overall 

increase cost of provided services. 

6.4 Summary & future directions 

 This body of work aimed to investigate methods used to understand the effect that 

climate change can have on air quality and human health. We approached this issue in a variety 

of ways and on a multiple spatial scales, including a national assessment, a regional assessment 

and a statewide assessment. Building upon each aim, we improved our methods of separating 

exposures from natural ambient conditions. This culminated in our estimation of the future “base 

case” health effects due to increased wildfire smoke PM2.5 exposure. Moving forward, this 

analysis can be expanded to include multiple permutations of future and present results. 

Additionally, we plan to increase the accuracy of our cost projections by accounting for changes 

in inflation and cost of healthcare. Finally, we plan to incorporate the pieces necessary to 

contribute to a policy paper outlining the potential threat of future wildfire activity and 

considerations for revising current warning and response strategies. 
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7. APPENDICES 

i. Chapter 3 Supplemental 

 

Supplemental Figure 3- 1 

Differences between 2000s and 2050s in (A) temperature, (B) planetary boundary layer, (C) 

precipitation, (D) relative humidity, (E) surface pressure, and (F and G) meridional and zonal 

wind speeds. Top row reflects RCP4.5 and bottom row reflects RCP8.5. 
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 Parameter Normal 
Distribution Correlation Test Average 

Correlation Coefficient 

Temperature Y Pearson 0.963 

Pressure N Spearman 0.990 

Planetary 
Boundary Layer 
Height 

Y Pearson 0.412 

Relative Humidity N Spearman 0.924 

Precipitation N Spearman 0.559 

Wind Speeds  
at 10 hPa Y Pearson 0.800 

Wind Speeds  
at 500 hPa N Spearman 0.947 

V Wind Vector N Spearman 0.862 

U Wind Vector Y Pearson 0.770 

 

Supplemental Table 3-1. 

Correlation of NARR climate parameters to WRF modeled climate parameters for use in statistical 

modeling. 
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RCP8.5 CLIMATE CHANGE EMISSIONS COMBINED CLIMATE AND 
EMISSIONS 

REGION ICLUS 
A2  

ICLU
S A1  

ICLU
S B2  

ICLU
S B1 

ICLUS 
A2  

ICLUS 
A1  

ICLUS 
B2  

ICLUS 
B1  

ICLUS 
A2  

ICLUS 
A1  

ICLUS 
B2  

ICLUS 
B1  

National 47 48 63 80 2167 1940 1853 1897 2217 2012 1992 2029 
(SE=525) (SE=433) (SE=505) (SE=458) (SE=1386) (SE=1139) (SE=1319) (SE=1233) (SE=900) (SE=802) (SE=876) (SE=874) 

Northeast 
330 310 305 318 365 365 338 373 678 653 623 671 
(SE=17) (SE=22) (SE=19) (SE=27) (SE=43) (SE=57) (SE=48) (SE=68) (SE=59) (SE=79) (SE=66) (SE=95) 

Southeast 
-100 -99 -88 -89 405 403 312 344 298 283 236 253 
(SE=17) (SE=19) (SE=16) (SE=20) (SE=35) (SE=39) (SE=34) (SE=42) (SE=19) (SE=20) (SE=17) (SE=21) 

East North 
Central  

-35 -31 -34 -33 161 137 152 145 126 106 118 112 
(SE=1) (SE=1) (SE=1) (SE=1) (SE=3) (SE=2) (SE=3) (SE=2) (SE=3) (SE=2) (SE=3) (SE=2) 

Central 
87 71 98 93 161 132 141 130 239 205 239 224 
(SE=4) (SE=3) (SE=4) (SE=4) (SE=12) (SE=10) (SE=12) (SE=12) (SE=15) (SE=12) (SE=17) (SE=15) 

West North 
Central 

5 4 6 5 9 7 10 9 13 11 15 14 
(SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) 

South 
-13 -13 -16 -15 169 149 146 144 152 135 131 130 
(SE=3) (SE=3) (SE=2) (SE=2) (SE=6) (SE=5) (SE=5) (SE=5) (SE=6) (SE=5) (SE=6) (SE=5) 

Southwest 
18 18 13 13 98 83 83 82 114 102 99 94 
(SE=7) (SE=6) (SE=5) (SE=4) (SE=15) (SE=13) (SE=13) (SE=12) (SE=13) (SE=11) (SE=10) (SE=9) 

Northwest 
-5 -3 -4 -1 122 114 115 116 112 107 108 115 
(SE=2) (SE=2) (SE=2) (SE=3) (SE=8) (SE=9) (SE=8) (SE=9) (SE=9) (SE=10) (SE=8) (SE=10) 

West 
-170 -144 -130 -138 678 551 557 553 475 404 417 409 
(SE=182) (SE=143) (SE=169) (SE=153) (SE=468) (SE=367) (SE=440) (SE=395) (SE=287) (SE=228) (SE=273) (SE=242) 

Supplemental Table 3-2.
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Supplemental Table 3.2-3.3.  Projected excess deaths using ICLUS population A1, A2, B1 and B2 scenarios attributable to climate 
change only, anthropogenic emissions only, and combined effects of both climate change and emissions for 2050s from baseline 2000s 
by US climatic region. Supplemental Table 2 shows results for RCP8.5 and Supplemental Table 3 shows results for RCP4.5. (SE: 
standard error) 

RCP4.5 CLIMATE CHANGE EMISSIONS COMBINED CLIMATE AND 
EMISSIONS 

REGION ICLUS 
A2  

ICLU
S A1  

ICLU
S B2  

ICLUS 
B1  

ICLUS 
A2  

ICLUS 
A1  

ICLUS 
B2  

ICLUS 
B1  

ICLUS 
A2  

ICLU
S A1  

ICLUS 
B2  

ICLUS 
B1  

National 72 120 105 110 -41 -20 -70 31 50 68 27 84 
(SE=456) (SE=369) (SE=431) (SE=400) (SE=1037) (SE=839) (SE=967) (SE=882) (SE=615) (SE=526) (SE=586) (SE=591) 

Northeast 
204 195 186 193 -2 30 -1 37 208 220 183 232 
(SE=12) (SE=15) (SE=13) (SE=19) (SE=28) (SE=37) (SE=31) (SE=45) (SE=40) (SE=52) (SE=44) (SE=63) 

Southeast 
-47 -50 -41 -48 -186 -145 -149 -139 -237 -199 -198 -181 
(SE=10) (SE=11) (SE=9) (SE=11) (SE=14) (SE=16) (SE=14) (SE=16) (SE=5) (SE=5) (SE=4) (SE=5) 

East North 
Central 

-18 -15 -16 -16 22 19 10 11 4 4 -7 -6 
(SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) 

Central 
76 65 85 80 -42 -37 -77 -72 30 27 9 15 
(SE=4) (SE=3) (SE=4) (SE=4) (SE=7) (SE=6) (SE=8) (SE=7) (SE=11) (SE=9) (SE=12) (SE=11) 

West North 
Central 

5 4 5 5 -20 -16 -24 -22 -15 -12 -19 -17 
(SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) (SE=1) 

South 
-11 -13 -13 -15 -80 -66 -83 -78 -91 -78 -98 -92 
(SE=3) (SE=2) (SE=3) (SE=3) (SE=3) (SE=3) (SE=3) (SE=3) (SE=4) (SE=3) (SE=4) (SE=3) 

Southwest 
20 18 13 13 -71 -59 -54 -48 -52 -40 -40 -35 
(SE=7) (SE=6) (SE=5) (SE=4) (SE=7) (SE=6) (SE=6) (SE=5) (SE=3) (SE=2) (SE=2) (SE=2) 

Northwest 
-12 -11 -11 -10 46 44 37 42 34 34 27 33 
(SE=2) (SE=1) (SE=2) (SE=1) (SE=6) (SE=6) (SE=6) (SE=7) (SE=5) (SE=6) (SE=5) (SE=6) 

West 
-143 -73 -103 -91 292 209 270 299 165 119 156 137 
(SE=154) (SE=121) (SE=145) (SE=131) (SE=355) (SE=281) (SE=328) (SE=294) (SE=199) (SE=155) (SE=183) (SE=167) 
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 Representative Concentration Pathway 
Source Population RCP4.5 RCP8.5 

Combined Climate 
Change and 
Emissions 

A2 230 486 
(SE=31.54) (SE=44.13) 

A1 160 398 
(SE=23.97) (SE=35.24) 

B2 201 428 
(SE=28.11) (SE=41.50) 

B1 147 406 
(SE=25.95) (SE=37.51) 

Climate Change 
Only 

A2 110 180 
(SE=21.63) (SE=23.92) 

A1 89 122 
(SE=17.06) (SE=18.56) 

B2 115 161 
(SE=20.34) (SE=22.36) 

B1 99 136 
(SE=18.40) (SE=19.86) 

Emissions Only 

A2 86 314 
(SE=8.98) (SE=21.21) 

A1 66 252 
(SE=7.12) (SE=16.37) 

B2 79 292 
(SE=7.33) (SE=19.89) 

B1 70 262 
 (SE=7.47) (SE=17.45) 

 

Supplemental Table 3-3. 

Projected excess deaths using ICLUS population A1, A2, B1 and B2 scenarios attributable to 

climate change only, anthropogenic emissions only, and combined effects of both climate change 

and emissions for 2050s from baseline 2000s for California.  
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ii. Chapter 4 Supplemental 

 

Supplemental Figure 4- 1 

Comparing 2012 PM2.5 annual average concentrations for A) coarse grid scale (0.50x0.67 degrees) 

and B) 4km study grid. As shown, the coarse resolution CTM results could not resolve the PM2.5 

concentration gradients related to the rapid terrain change. 

B) 

A) 
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PM2.5 Exposure Modeling 

The PM2.5 estimates used in this study are based on our previous work (Geng et al., 2018), 

with the incorporation of some additional measurements. The input dataset, which includes ground 

PM2.5 observations, MAIAC AOD, smoke mask, meteorological fields, land-use variables and 

CMAQ simulations, are adopted directly from Geng et al. (2018). More details about the data can 

be found in Geng et al. (2018). To better reflect the PM2.5 enhancements during fire events, we 

also utilize PM2.5 measurements during May-June, 2012 from the National Park Service made at 

the Atmospheric Science Department of Colorado State University, which is near the edge of the 

2012 High Park Fire (Val Martin et al., 2013; Benedict et al., 2017).  

Two models are involved to provide a full spatial and temporal coverage of PM2.5 estimates. The 

first is a random forest model that incorporates MAIAC AOD, smoke mask, meteorological fields, 

and as land-use variables (i.e. the AOD model). The second is a statistical downscaler that 

calibrates the CMAQ PM2.5 simulations, as described in Geng et al. (2018). For grid cells that have 

missing values in the AOD downscaler due to the missing of MAIAC AOD, we use the estimated 

values from the CMAQ downscaler to fill in the gaps. 

The out-of-bag R-squared of the AOD model is 0.92, and the 10-fold cross-validated (CV) R-

squared of the CMAQ downscaler is 0.52. Overall, the CV R-squared is 0.81. The estimated PM2.5 

data capture the elevated PM2.5 concentrations during fire events, as shown in an example in 

Supplemental Figure 4-2. 
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Supplemental Figure 4- 2 

Time series of PM2.5 observations and our estimates during High Park Fire in a near monitor 

References: 

Benedict, K.B., Prenni, A.J., Carrico, C.M., Sullivan, A.P., Schichtel, B.A., Collett, J.L., 2017. 

Enhanced concentrations of reactive nitrogen species in wildfire smoke. Atmospheric 

Environment 148, 8-15 

Geng, G., Murray, N.L., Tong, D., Fu, J.S., Hu, X., Lee, P., et al., 2018. Satellite-Based Daily 

PM2.5 Estimates During Fire Seasons in Colorado. Journal of Geophysical Research: Atmospheres 

123 (15), 8159-8171 

Val Martin, M., Heald, C.L., Ford, B., Prenni, A.J., Wiedinmyer, C., 2013. A decadal satellite 

analysis of the origins and impacts of smoke in Colorado. Atmos Chem Phys 13 (15), 7429-7439 

  



120 

 

 

 

Supplemental Figure 4- 3 

OR Respiratory Results for Lag 0 Exposures. 

 



121 

 

 

 

OR Cardiovascular Results for Lag 0 Exposures. 

 

 

Supplemental Figure 4- 4 
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Supplemental Figure 4- 5 

 OR Respiratory Results for Lag 0-1 Exposures. 
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Supplemental Table 4- 1 

Overall Odd Ratios for Respiratory Outcomes due to 3-day average 
Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

3-day average 

OR (95% CI) 

Respiratory   

Asthma 21,918 1.081(1.058, 1.105)* 

   

Upper respiratory infection 70,714 1.008(0.995, 1.022) 

   

Bronchitis 9,398 1.018(0.984, 1.052) 

   

Chronic obstructive pulmonary  9,999 1.020(0.991, 1.049) 

   

Respiratory disease 135,363 1.021(1.012, 1.031)* 
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Overall Odd Ratios for Cardiovascular Outcomes due to 2-day average 
Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

2-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358 1.011(0.982, 1.041) 
Acute Myocardial Infarction 6,862 1.006(0.972, 1.042) 
Dysrhythmia 14,946 1.005(0.982, 1.028) 
Congestive Heart Failure 8,450 0.986(0.955, 1.018) 
Peripheral/Cerebrovascular Disease 16,471 0.971(0.946, 0.996) 
Cardiovascular Disease 50,225 0.998(0.984, 1.011) 
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Overall Odd Ratios for Respiratory Outcomes due to 3-day average Total 
PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

3-day average 

OR (95% CI) 

Respiratory   

Asthma 21,918 0.998(0.996, 1.001) 

   

Upper respiratory infection 70,714 0.998(0.996, 0.999) 

   

Bronchitis 9,398 1.003(0.998, 1.007) 

   

Chronic obstructive pulmonary  9,999 0.998(0.994, 1.002) 

   

Respiratory disease 135,363 0.999(0.998, 1.000) 
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Overall Odd Ratios for Cardiovascular Outcomes due to 2-day average Total PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

2-day average 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358 0.998(0.995, 1.002) 

   

Acute Myocardial Infarction 6,862 1.002(0.998, 1.007) 

   

Dysrhythmia 14,946 0.997(0.994, 1.000) 

   

Congestive Heart Failure 8,450 0.994(0.990, 0.998) 

   

Peripheral/Cerebrovascular Disease 16,471 0.995(0.992, 0.997) 

   

Cardiovascular Disease 189,632 0.994(0.993, 0.996) 
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Overall Odd Ratios for Respiratory Outcomes due to 7-day average 
Smoke PM2.5. 
 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

7-day average 

OR (95% CI) 

Respiratory   

Asthma 21,918 1.081 (1.051,1.112)* 

   

Upper respiratory infection 70,714 0.987 (0.970,1.004) 

   

Bronchitis 9,398 1.029 (0.986,1.074) 

   

Chronic obstructive pulmonary  9,999 1.022 (0.987,1.059) 

   

Respiratory disease 135,363 1.007 (0.995,1.019) 
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Overall Odd Ratios for Respiratory Outcomes due to 7-day average Total 
PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

7-day average 

OR (95% CI) 

Respiratory   

Asthma 21,918 1.001 (0.997,1.004) 

   

Upper respiratory infection 70,714 0.998 (0.996,1.000) 

   

Bronchitis 9,398 1.004 (0.998,1.009) 

   

Chronic obstructive pulmonary  9,999 0.996 (0.991,1.001) 

   

Respiratory disease 135,363 0.999 (0.998,1.000) 
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  Overall Odd Ratios for Cardiovascular Outcomes due to 3-day average 
Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

3-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358 1.011 (0.980,1.043) 

   

Acute Myocardial Infarction 6,862 1.000 (0.963,1.038) 

   

Dysrhythmia 14,946 0.995 (0.970,1.021) 

   

Congestive Heart Failure 8,450 0.979 (0.944,1.015) 

   

Peripheral/Cerebrovascular Disease 16,471 0.963 (0.937,0.991) 

   

Cardiovascular Disease 50,225 0.991 (0.976,1.005) 
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Overall Odd Ratios for Cardiovascular Outcomes due to 3-day average Total PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

3-day average 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358 0.998 (0.994,1.001) 

   

Acute Myocardial Infarction 6,862 1.001 (0.996,1.006) 

   

Dysrhythmia 14,946 0.996 (0.993,1.000) 

   

Congestive Heart Failure 8,450 0.995 (0.990,1.000) 

   

Peripheral/Cerebrovascular Disease 16,471 0.994 (0.991,0.997) 

   

Cardiovascular Disease 189,632 0.993 (0.992,0.995) 
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Sex Stratified Odd Ratios for Respiratory Outcomes due to 3-day average Total 
PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

3-day average 

OR (95% CI) 

Respiratory   

Asthma   

     Male 10,647 0.998 (0.994,1.002) 

     Female 11,271 0.999 (0.995, 1.002) 

   

Upper respiratory infection 70,714  

     Male 32,013 0.998 (0.995,1.000) 

     Female 38,701 0.998 (0.996,1.000) 

   

Bronchitis 9,398  

     Male 3,675 0.997 (0.990,1.005) 

     Female 5,723 1.007 (1.001,1.013)* 

   

Chronic obstructive pulmonary  9,999  

     Male 4,699 0.997 (0.991,1.003) 

     Female 5,300 0.999 (0.994,1.005) 

   

Respiratory disease 135,363  

     Male 62,889 0.998 (0.997,1.000) 

     Female 72,474 0.999 (0.998,1.001) 
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Sex Stratified Odd Ratios for Cardiovascular Outcomes due to 2-day 
average Total PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM (1µg/m3) 

2-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358  

     Male 6,893 0.998 (0.994,1.003) 

     Female 3,465 0.998 (0.992,1.004) 

   

Acute Myocardial Infarction 6,862  

     Male 4,592 1.002 (0.997,1.008) 

     Female 2,270 1.002 (0.995,1.010) 

   

Dysrhythmia 14,946  

     Male 7,615 0.997 (0.993,1.001) 

     Female 7,331 0.997 (0.992,1.001) 

   

Congestive Heart Failure 8,450  

     Male 4,262 0.996 (0.991,1.002) 

     Female 4,188 0.992 (0.986,0.998) 

   

Peripheral/Cerebrovascular Disease 16,471  

     Male 7,816 0.994 (0.990,0.998) 

     Female 8,655 0.995 (0.991,0.999) 

   

Cardiovascular Disease 50,225  

     Male 26,586 0.995 (0.993,0.997) 

     Female 23,639 0.994 (0.991,0.996) 
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Sex Stratified Odd Ratios for Cardiovascular Outcomes due to 2-day 
Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

2-day 

OR (95% CI) 
Cardiovascular   

Ischemic Heart Disease 10,358  

     Male 6,893 0.997 (0.961,1.033) 

     Female 3,465 1.038 (0.989,1.090) 

   

Acute Myocardial Infarction 6,862  

     Male 4,592 1.004 (0.963,1.048) 

     Female 2,270 1.010 (0.952,1.072) 

   

Dysrhythmia 14,946  

     Male 7,615 1.011 (0.981,1.043) 

     Female 7,331 0.997 (0.964,1.032) 

   

Congestive Heart Failure 8,450  

     Male 4,262 0.991 (0.946,1.039) 

     Female 4,188 0.982 (0.939,1.026) 

   

Peripheral/Cerebrovascular Disease 16,471  

     Male 7,816 0.958 (0.922,0.996) 

     Female 8,655 0.981 (0.948,1.016) 

   

Cardiovascular Disease 50,225  

     Male 26,586 0.997 (0.979,1.016) 

     Female 23,639 0.997 (0.978,1.017) 

Supplemental Table 4- 11 
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Sex Stratified Odd Ratios for Respiratory Outcomes due to 3-day average 
Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM2.5 (3µg/m3) 

3-day average 

OR (95% CI) 
Respiratory   

Asthma   

     Male 10,647 1.063 (1.029,1.098)* 

     Female 11,271 1.096 (1.064,1.128)* 

   

Upper respiratory infection   

     Male 32,013 1.000 (0.980,1.021) 

     Female 38,701 1.015 (0.997,1.034) 

   

Bronchitis   

     Male 3,675 0.970 (0.920,1.023) 

     Female 5,723 1.054 (1.010,1.101)* 

   

Chronic obstructive pulmonary    

     Male 4,699 1.019 (0.978,1.061) 

     Female 5,300 1.020 (0.981,1.061) 

   

Respiratory disease   

     Male 62,889 1.014 (1.000,1.028) 

     Female 72,474 1.027 (1.015,1.040)* 
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Age Stratified Odd Ratios for Respiratory Outcomes due to 3-day 
average Total PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

3-day average 

OR (95% CI) 

Respiratory   

Asthma   

     Children (0-18) 10,184 0.998 (0.994,1.002) 

     Adults (19-64) 10,448 0.999 (0.995, 1.003) 

     Older Adult (65+) 1,286 1.000 (0.988, 1.012) 

   

Upper respiratory infection   

     Children (0-18) 41,710 0.999 (0.997,1.001) 

     Adults (19-64) 26,718 0.995 (0.993,0.999) 

     Older Adult (65+) 2,286 0.998 (0.990,1.007) 

   

Bronchitis   

     Children (0-18) 1,403 1.008 (0.996,1.020) 

     Adults (19-64) 6,772 1.003 (0.997,1.008) 

     Older Adult (65+) 1,223 0.999 (0.986,1.011) 

   

Chronic obstructive pulmonary    

     Children (0-18) 22 -- 

     Adults (19-64) 4,491 1.000 (0.994,1.006) 

     Older Adult (65+) 5,486 0.997 (0.991,1.002) 

   

Respiratory disease   

     Children (0-18) 61,713 1.001 (0.999,1.002) 

     Adults (19-64) 56,529 0.998 (0.996,1.000) 

     Older Adult (65+) 17,121 0.996 (0.993,0.999) 
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  Age Stratified Odd Ratios for Respiratory Outcomes due to 3-day 
average Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

3-day average 

OR (95% CI) 
Respiratory   

Asthma   

     Children (0-18) 10,184 1.075 (1.035,1.116)* 

     Adults (19-64) 10,448 1.091 (1.060, 1.122)* 

     Older Adult (65+) 1,286 1.009 (0.920, 1.106) 

   

Upper respiratory infection   

     Children (0-18) 41,710 1.010 (0.991,1.029) 

     Adults (19-64) 26,718 1.005 (0.984,1.026) 

     Older Adult (65+) 2,286 1.004 (0.940,1.072) 

   

Bronchitis   

     Children (0-18) 1,403 0.971 (0.890,1.060) 

     Adults (19-64) 6,772 1.044 (1.005,1.085)* 

     Older Adult (65+) 1,223 0.908 (0.805,1.024) 

   

Chronic obstructive pulmonary    

     Children (0-18) 22 -- 

     Adults (19-64) 4,491 1.056 (1.015,1.100)* 

     Older Adult (65+) 5,486 0.989 (0.951,1.030) 

   

Respiratory disease   

     Children (0-18) 61,713 1.016 (1.000,1.032) 

     Adults (19-64) 56,529 1.030 (1.017,1.044)* 

     Older Adult (65+) 17,121 1.000 (0.976,1.024) 
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Supplemental Table 4- 15 

Age Stratified Odd Ratios for Cardiovascular Outcomes due to 2-day average Total 
PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

2-day average 

OR (95% CI) 
Cardiovascular   

Ischemic Heart Disease   

     Adults (19-64) 4,762 1.000 (0.995,1.005) 

     Elderly (65+) 5,592 0.997 (0.992,1.002) 

   

Acute Myocardial Infarction   

     Adults (19-64) 3,228 1.005 (0.999,1.011) 

     Elderly (65+) 3,633 1.000 (0.994,1.006) 

   

Dysrhythmia   

     Adults (19-64) 5,799 0.999 (0.994,1.004) 

     Elderly (65+) 8,877 0.996 (0.992,1.000) 

   

Congestive Heart Failure   

     Adults (19-64) 2,335 0.991 (0.983,0.999) 

     Elderly (65+) 6,087 0.996 (0.991,1.000) 

   

Peripheral/Cerebrovascular Disease   

     Adults (19-64) 7,638 0.994 (0.990,0.998) 

     Elderly (65+) 8,713 0.995 (0.991,0.999) 

   

Cardiovascular Disease   

     Adults (19-64) 71,690 0.995 (0.992,0.998) 

     Elderly (65+) 115,842 0.994 (0.992,0.996) 
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Age Stratified Odd Ratios for Cardiovascular Outcomes due to 2-day 
average Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

2-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease   

     Adults (19-64) 4,762 0.999 (0.957, 1.043) 

     Elderly (65+) 5,592 1.022 (0.982, 1.063) 

   

Acute Myocardial Infarction   

     Adults (19-64) 3,228 1.011 (0.963,1.062) 

     Elderly (65+) 3,633 1.002 (0.954,1.052) 

   

Dysrhythmia   

     Adults (19-64) 5,799 0.993(0.956,1.030) 

     Elderly (65+) 8,877 1.010 (0.980,1.040) 

   

Congestive Heart Failure   

     Adults (19-64) 2,335 0.962 (0.896,1.032) 

     Elderly (65+) 6,087 0.993 (0.957,1.029) 

   

Peripheral/Cerebrovascular Disease   

     Adults (19-64) 7,638 0.964 (0.928,1.002) 

     Elderly (65+) 8,713 0.978 (0.945,1.013) 

   

Cardiovascular Disease   

     Adults (19-64) 20,534 0.986 (0.965,1.008) 

     Elderly (65+) 29,269 1.004 (0.987,1.021) 
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Age Stratified Odd Ratios for Respiratory Outcomes due to 7-day 
average Smoke PM2.5. 
  

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

7-day average 

OR (95% CI) 
Respiratory   

Asthma   

     Children (0-18) 10,184 1.053 (1.001,1.108)* 

     Adults (19-64) 10,448 1.097 (1.059, 1.138)* 

     Older Adult (65+) 1,286 1.023 (0.912, 1.148) 

   

Upper respiratory infection   

     Children (0-18) 41,710 0.980 (0.957,1.005) 

     Adults (19-64) 26,718 0.995 (0.970,1.021) 

     Older Adult (65+) 2,286 0.961 (0.879,1.049) 

   

Bronchitis   

     Children (0-18) 1,403 1.017 (0.922,1.122) 

     Adults (19-64) 6,772 1.046 (0.994,1.101) 

     Older Adult (65+) 1,223 0.935 (0.809,1.080) 

   

Chronic obstructive pulmonary    

     Children (0-18) 22 -- 

     Adults (19-64) 4,491 1.059 (1.005,1.115)* 

     Older Adult (65+) 5,486 0.994 (0.946,1.045) 

   

Respiratory disease   

     Children (0-18) 61,713 0.990 (0.970,1.010) 

     Adults (19-64) 56,529 1.019 (1.002,1.036)* 

     Older Adult (65+) 17,121 0.999 (0.970,1.029) 
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Age Stratified Odd Ratios for Respiratory Outcomes due to 7-day 
average Total PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

7-day average 

OR (95% CI) 

Respiratory   

Asthma   

     Children (0-18) 10,184 1.000 (0.994,1.005) 

     Adults (19-64) 10,448 1.002 (0.997, 1.007) 

     Older Adult (65+) 1,286 0.997 (0.983, 1.012) 

   

Upper respiratory infection 70,714  

     Children (0-18) 41,710 0.999 (0.996,1.001) 

     Adults (19-64) 26,718 0.997 (0.994,1.000) 

     Older Adult (65+) 2,286 1.003 (0.993,1.014) 

   

Bronchitis 9,398  

     Children (0-18) 1,403 1.006 (0.991,1.022) 

     Adults (19-64) 6,772 1.003 (0.996,1.010) 

     Older Adult (65+) 1,223 1.004 (0.989,1.020) 

   

Chronic obstructive pulmonary  9,999  

     Children (0-18) 22 -- 

     Adults (19-64) 4,491 0.998 (0.991,1.006) 

     Older Adult (65+) 5,486 0.994 (0.988,1.001) 

   

Respiratory disease 135,363  

     Children (0-18) 61,713 1.000 (0.998,1.002) 

     Adults (19-64) 56,529 0.999 (0.997,1.001) 

    Older Adult (65+) 17,121 0.995 (0.991,1.000) 
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Sex Stratified Odd Ratios for Respiratory Outcomes. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM2.5 (3µg/m3) 

7-day average 

OR (95% CI) 

Respiratory   

Asthma   

     Male 10,647 1.071 (1.027,1.117)* 

     Female 11,271 1.089 (1.048,1.131)* 

   

Upper respiratory infection 70,714  

     Male 32,013 0.973 (0.948,0.999) 

     Female 38,701 0.998 (0.975,1.021) 

   

Bronchitis 9,398  

     Male 3,675 0.994 (0.930,1.063) 

     Female 5,723 1.055 (0.998,1.116) 

   

Chronic obstructive pulmonary  9,999  

     Male 4,699 1.018 (0.967,1.071) 

     Female 5,300 1.026 (0.977,1.078) 

   

Respiratory disease 135,363  

     Male 62,889 1.004 (0.987,1.022) 

     Female 72,474 1.010 (0.994,1.026) 
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Supplemental Table 4- 20 

Sex Stratified Odd Ratios for Respiratory Outcomes . 

Health Endpoint                                                       

Case Count 

Total PM2.5 (3µg/m3) 

7-day average 

OR (95% CI) 

Respiratory   

Asthma   

     Male 10,647 1.000 (0.995,1.005) 

     Female 11,271 1.001 (0.997,1.006) 

   

Upper respiratory infection   

     Male 32,013 0.999 (0.996,1.001) 

     Female 38,701 0.998 (0.995,1.000) 

   

Bronchitis   

     Male 3,675 1.000 (0.991,1.009) 

     Female 5,723 1.006 (0.999,1.014) 

   

Chronic obstructive pulmonary    

     Male 4,699 0.994 (0.987,1.001) 

     Female 5,300 0.998 (0.991,1.004) 

   

Respiratory disease   

     Male 62,889 0.999 (0.997,1.001) 

     Female 72,474 0.999 (0.997,1.001) 
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Age Stratified Odd Ratios for Cardiovascular Outcomes due to 3-day 
average Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

3-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358  

     Adults (19-64) 4,762 1.011 (0.966, 1.059) 

     Elderly (65+) 5,592 1.010 (0.968, 1.055) 

   

Acute Myocardial Infarction 6,862  

     Adults (19-64) 3,228   1.016 (0.964,1.071) 

     Elderly (65+) 3,633 0.985 (0.935,1.037) 

   

Dysrhythmia 14,946  

     Adults (19-64) 5,799 0.986(0.946,1.027) 

     Elderly (65+) 8,877 0.997 (0.965,1.031) 

   

Congestive Heart Failure 8,450  

     Adults (19-64) 2,335 0.974 (0.906,1.048) 

     Elderly (65+) 6,087 0.980 (0.940,1.022) 

   

Peripheral/Cerebrovascular Disease 16,471  

     Adults (19-64) 7,638 0.952 (0.912,0.993) 

     Elderly (65+) 8,713 0.973 (0.937,1.011) 

   

Cardiovascular Disease 50,225  

     Adults (19-64) 20,534 0.984 (0.961,1.007) 

     Elderly (65+) 29,269 0.994 (0.975,1.013) 
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Supplemental Table 4- 22 

Age Stratified Odd Ratios for Cardiovascular Outcomes due to 3-day average Total 
PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM2.5 (3µg/m3) 

3-day average 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358  

     Adults (19-64) 4,762 1.000 (0.995, 1.006) 

     Elderly (65+) 5,592 0.995 (0.990, 1.000) 

   

Acute Myocardial Infarction 6,862  

     Adults (19-64) 3,228 1.005 (0.998,1.012) 

     Elderly (65+) 3,633 0.998 (0.991,1.005) 

   

Dysrhythmia 14,946  

     Adults (19-64) 5,799 0.997 (0.992,1.003) 

     Elderly (65+) 8,877 0.995 (0.991,0.999) 

   

Congestive Heart Failure 8,450  

     Adults (19-64) 2,335 0.993 (0.985,1.002) 

     Elderly (65+) 6,087 0.995 (0.990,1.001) 

   

Peripheral/Cerebrovascular Disease 16,471  

     Adults (19-64) 7,638 0.992 (0.988,0.997) 

     Elderly (65+) 8,713 0.995 (0.991,0.999) 

   

Cardiovascular Disease 189,632  

     Adults (19-64) 71,690 0.994 (0.991,0.997) 

     Elderly (65+) 115,842 0.993 (0.991,0.995) 
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Supplemental Table 4- 23 

Sex Stratified Odd Ratios for Cardiovascular Outcomes due to 3-day 
average Smoke PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Smoke PM (1µg/m3) 

3-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358  

     Male 6,893 0.999 (0.960,1.038) 

     Female 3,465 1.034 (0.981,1.090) 

   

Acute Myocardial Infarction 6,862  

     Male 4,592 0.998 (0.953,1.044) 

     Female 2,270 1.003 (0.941,1.069) 

   

Dysrhythmia 14,946  

     Male 7,615 1.002 (0.968,1.038) 

     Female 7,331 0.987 (0.951,1.025) 

   

Congestive Heart Failure 8,450  

     Male 4,262 1.000 (0.950,1.054) 

     Female 4,188 0.961 (0.913,1.011) 

   

Peripheral/Cerebrovascular Disease 16,471  

     Male 7,816 0.956 (0.917,0.966) 

     Female 8,655 0.970 (0.933,1.008) 

   

Cardiovascular Disease 50,225  

     Male 26,586 0.995 (0.975,1.015) 

     Female 23,639 0.986 (0.965,1.007) 
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Supplemental Table 4- 24 

Sex Stratified Odd Ratios for Cardiovascular Outcomes due to 3-day 
average Total PM2.5. 

 

Health Endpoint                                                      

 

Case Count 

Total PM (1µg/m3) 

3-day 

OR (95% CI) 

Cardiovascular   

Ischemic Heart Disease 10,358  

     Male 6,893 0.998 (0.994,1.003) 

     Female 3,465 0.996 (0.989,1.003) 

   

Acute Myocardial Infarction 6,862  

     Male 4,592 1.002 (0.996,1.008) 

     Female 2,270 1.000 (0.991,1.008) 

   

Dysrhythmia 14,946  

     Male 7,615 0.996 (0.992,1.001) 

     Female 7,331 0.995 (0.991,1.000) 

   

Congestive Heart Failure 8,450  

     Male 4,262 0.996 (0.990,1.002) 

     Female 4,188 0.994 (0.987,1.000) 

   

Peripheral/Cerebrovascular Disease 16,471  

     Male 7,816 0.993 (0.989,0.998) 

     Female 8,655 0.994 (0.990,0.999) 

   

Cardiovascular Disease 50,225  

     Male 26,586 0.994 (0.992,0.996) 

     Female 23,639 0.993 (0.990,0.995) 
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