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Abstract 

 

Three Essays in Financial Economics 

 

By Joonki Noh 

 

This dissertation covers the information dissemination in financial markets and the risk-

return relationship in the cross-section of stocks. The first essay (Industry Networks and 

the Speed of Information Flow) explores the information diffusion to equity markets in 

the framework of networks. I investigate whether the number of connections that an 

industry has in the network of inter-industry trade affects the speed of information flow to 

the industry. I find that the information flows substantially more slowly to central 

industries (which have more connections to other industries) from their related 

(=customer and supplier) industries than to peripheral industries from their related 

industries. The strong return predictability to central industries from related industries 

leads to highly profitable trading strategies whose risk-adjusted returns are 7.0% to 7.9% 

per annum. To explain this finding, I argue that investors who invest in central industries 

need to process more complicated information about related industries, slowing down the 

information flow to central industries. I find evidence that the sell-side analysts of central 

industries also face more complicated information about related industries, slowing down 

their processing new information about related industries. The network framework helps 

to identify an unknown and unique anomaly inherent in the industry network and to better 

understand potential sources of anomalies in financial markets. The second essay 

(Empirical Tests of Asset Pricing Models with Individual Stocks), co-authored with 

Narasimhan Jegadeesh, develops an instrumental variables methodology to test asset 

pricing models using individual stocks as test assets. We obtain consistent estimates of 

risk premiums, and simulation evidence indicates that the associated tests are well 

specified even in small samples. When testing three asset pricing models known to be 

successful in the literature when they were tested with characteristics-sorted portfolios as 

test assets, we find weak evidence that their factor risks are reliably priced in the cross-

section of individual stock returns. The third essay (Information in CEOs’ Facial 

Expressions: A First Look), co-authored with Narasimhan Jegadeesh and Jingran Zhao, 

investigates whether the visual cues such as facial expressions in CEOs’ televised 

interviews can convey value-relevant information about firms to investors in financial 

markets and whether investors understand and react to it. We find evidence that negative 

facial expressions are correlated with cumulative abnormal returns and turnover over the 

next one to two days after air dates. We also find that negative facial expressions are 



associated with firms’ one-quarter-ahead earnings. Taken together, this essay presents the 

first evidence in financial economics that CEOs’ facial expressions in their televised 

interviews can be a channel through which value-relevant information is disseminated.  
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Industry Networks and the Speed
of Information Flow

Joonki Noh†

Abstract

I investigate whether an industry’s position in the network of inter-industry
trade affects the speed of information flow. I find that return predictability
to central industries from their related (=customer and supplier) industries is
substantially stronger than that to peripheral industries from their related in-
dustries. Long-short portfolios of central industries yield risk-adjusted returns
of 7.0% to 7.9% per annum, which are 3.6% to 5.3% higher than those of pe-
ripheral industries. To explain this finding, I argue that investors who invest in
central industries need to process more complicated information about related
industries, making the prices of central industries slower to incorporate all the
information. I find that sell-side analysts of central industries also face more
complicated information about related industries, as their earnings forecast re-
visions of related industries predict their future revisions of central industries
more strongly and for a longer period. In addition, I present evidence that our
finding is not explained by existing anomalies.

†Joonki Noh is a doctoral student at the Goizueta Business School, Emory University, Atlanta,
GA 30322, USA. Email: Joonki.Noh@emory.edu. I am grateful to Narasimhan Jegadeesh, Tarun
Chordia, Jay Shanken, Clifton Green, Jeffrey Busse, Francisco Barillas, and Oliver Randall for their
encouragement and insightful comments. I am also thankful for valuable suggestions from and discus-
sions with Yakov Amihud, Kent Daniel, Juhani Linnainmaa, Byoung-Hyoun Hwang, Russell Jame,
Quan Wen, Dexin Zhou, and seminar participants at Emory University, Texas Christian University,
Syracuse University, Case Western Reserve University, Purdue University, Tulane University, State
University of New York at Buffalo, and Virginia Tech.



2

1. Introduction

Financial economists have long recognized the importance of understanding how

value-relevant information disseminates to stock markets and how market participants

incorporate this information into stock prices. Classical asset pricing theories posit

that value-relevant information diffuses immediately in a complete and frictionless

market. However, considerable empirical evidence has been accumulated indicat-

ing that information can disseminate with sizable delay to financial markets.1 The

gradual information dissemination can be caused by many different sources, e.g., in-

cluding asymmetric information, investors’ limited cognitive resources, trading costs,

institutional constraints, and other types of market frictions.

My paper explores this fundamental research topic, i.e., information flow to stock

markets, in the framework of networks.2 I question whether a node’s (industry or

firm) position in the network affects the complexity of value-relevant information that

investors need to process and thus influences the speed of information flow through the

network. For example, the wholesale and fishery industries are central and peripheral,

respectively, and the former is related (or connected) to more industries than the latter

by definition. Suppose that the wholesale industry buys a non-negligible amount of

canned fish from the fishery industry and a hurricane hits southern coastal fisheries

and damages them. The stock price of the fishery industry would reflect this negative

shock immediately. How would the stock price of the wholesale industry react to this

shock and the price drop of the fishery industry? To price the wholesale industry,

investors need to understand not only shocks to other related industries and their price

1E.g., among others, Lo and MacKinlay (1990), Brennan et al. (1993), Badrinath et al. (1995),
Chordia and Swaminathan (2000), Cohen and Frazzini (2008), Menzly and Ozbas (2010), and Cohen
and Lou (2012).

2An emerging literature in finance and economics emphasizes the importance of direct and indirect
connections through networks and investigates their economic and financial implications in different
contexts, e.g., Acemoglu et al. (2012); Buraschi and Porchia (2012); Ahern (2013); Kelly et al.
(2013); Ahern and Harford (2014); Aobdia et al. (2014); Anjos and Fracassi (2014); and Wu and
Birge (2014).
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movements but also how important canned fish is in the total revenue of the wholesale

industry. Processing more complicated information (about related industries) can

slow down the information flow to the wholesale industry.

I utilize the network of inter-industry trade to answer our question. Extant stud-

ies have documented that the market is segmented along the boundaries of industries

(e.g., Menzly and Ozbas (2010)). Furthermore, the industry-level supply chain pro-

vides clear economic links through which shocks and relevant information can prop-

agate (Menzly and Ozbas (2010) and Chen et al. (2014)). I thus gauge the speed

of information flow to different positions in the industry network by measuring the

strength of lead-lag relations of returns and that of earnings forecast revisions (by

sell-side analysts) among economically related (=customer and supplier) industries.

The specific research question that I want to answer is as follows: does the value-

relevant information flow to central industries from their related industries more

slowly than to peripheral industries from their related industries? The answer to

this question is not obvious ex-ante since (at least) two conflicting economic factors

can affect the speed of information flow to central industries.3 The first economic fac-

tor can slow down the information flow to central industries. Since central industries,

by definition, are connected to more related industries than peripheral industries,4

investors (with bounded rationality5) are required to process more complicated in-

formation about related industries (Recall the example of the wholesale and fisher

industries above).6 Thus it takes them longer to incorporate all the information into

the prices of central industries, producing more gradual information dissemination.7

3Examples of central industries are the finance (real estate and banking), automobile, construc-
tion, and wholesale trade industries.

4In our empirical analyses, I use eigenvector centralities. For more details, see Section 3.1.
5See, e.g., Simon (1955) and Jensen and Meckling (1992).
6This can be interpreted to mean that investors who invest in central industries have higher

information collection or processing costs than those in peripheral industries.
7When new information arrives, investors with limited cognitive resources do not perform the

rational expectations inference to recover the information from observed prices and thus they do not
adjust their demand fully as in Grossman and Stiglitz (1980). Similarly to our logic, Cohen and Lou
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I call this the information complexity effect.8 The slower information flow to central

industries from their related industries implies that the return predictability and the

predictability of earnings forecast revisions to central industries from their related

industries are stronger than those to peripheral industries from their related indus-

tries. Figure 1 demonstrates the directions of information flow, return predictability,

and the predictability of earnings forecast revisions when the industry in question is

located at two different locations: the center (left) and the periphery (right) of the

network. Note that related industries can be located in any positions in the network.

The second economic factor can accelerate the information flow to central indus-

tries. If investors understand the importance of central industries in shock propa-

gation as shown in recent studies,9 they may pay more attention or allocate more

cognitive resources to central industries than to peripheral industries, making the

information dissemination to central industries less gradual.10 The faster information

flow to central industries from their related industries implies that the return pre-

dictability and the predictability of earnings forecast revisions to central industries

are weaker than those to peripheral industries. I call this the investors’ attention

effect.

In empirical analyses, I find that the information complexity effect substantially

dominates the investors’ attention effect in the center of industry network. More

(2012) find that the prices of conglomerates are slower to reflect the same piece of information than
those of standalone firms.

8My information complexity effect is related to the literature of limited-information models and
empirical tests of their predictions. A long line of extant work belongs to this literature. Examples
of recent studies include Hong and Stein (1999), Hong et al. (2007a), Hong et al. (2007b), Cohen
and Frazzini (2008), Menzly and Ozbas (2010), and Cohen and Lou (2012).

9Acemoglu et al. (2012) show that sectoral shocks from central industries, e.g., banking, auto-
mobile, and wholesale trade industries, are more likely to become macro-level fluctuations. Buraschi
and Porchia (2012) and Ahern (2013) argue that central firms and industries are riskier due to their
higher exposure to systematic risks.

10Among early theoretical studies, Holden and Subrahmanyam (1992) and Foster and Viswanathan
(1993) show that the price reflects new information more rapidly as the number of informed investors
increases. Among early empirical papers, using various proxies for investors’ attention, Lo and
MacKinlay (1990), Brennan et al. (1993), and Badrinath et al. (1995) document that the returns
of stocks with high investors’ attention lead those with low investors’ attention.
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specifically, I first document robust evidence that returns of related industries can

predict future returns of central industries significantly more strongly than those of

peripheral industries. I then quantify the economic magnitude of stronger return

predictability to central industries from their related industries. For each month, I

form quintile portfolios of central industries sorted on one-month lagged returns of

their related industries, go long the quintile portfolio with the highest past return

of related industries, and go short the quintile portfolio with the lowest past return

of related industries. This self-financing trading strategy is rebalanced every month

and involves the buying and selling of central industries. The self-financing trading

strategies that trade central industries provide significant and economically large risk-

adjusted returns, ranging from 7.0% (VW) to 7.9% (EW) per annum, after controlling

for the exposure to five known factors. In contrast, the same self-financing trading

strategies that trade peripheral industries produce risk-adjusted returns of 1.7% (VW)

to 4.3% (EW) per annum.11

In the next set of tests, I conduct an in-depth investigation to better understand

potential underlying economic mechanisms that drive the stronger return predictabil-

ity to central industries from their related industries. My hypothesis is that investors

who invest in central industries need to process more complicated information about

related industries. If these investors have limited information processing capabilities,

it would take them longer to process all the information about related industries and

to incorporate it into the prices of central industries fully. I utilize the earnings fore-

cast revisions of sell-side analysts to examine whether the speed of their responses to

new information about related industries differs substantially in the center and pe-

riphery of the industry network. I uncover strong evidence that the sell-side analysts

of central industries also need to process more complicated information about related

industries, as their earnings forecast revisions of related industries predict their one-

111.7% (VW) is statistically insignificant at any conventional levels.
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month-ahead and two-month-ahead revisions of central industries substantially more

strongly than those of peripheral industries.12 In contrast, the earnings forecast revi-

sions of related industries fail to predict the future revisions of peripheral industries.

This evidence is consistent with our information complexity effect.

My information complexity effect is distinct from the conglomerate effect docu-

mented by Cohen and Lou (2012). They find that the prices of conglomerates are

slower to reflect the same piece of information than the prices of standalone firms that

operate in the same industry. The conglomerate effect explains return predictability

within an industry, while our information complexity effect explains the information

flow across industries.13 Investors who invest in standalone firms that belong to cen-

tral industries can face more complicated information about related industries without

having the conglomerate effect. In contrast, investors who invest in conglomerates

that belong to peripheral industries can have less complicated information about

related industries but experience the conglomerate effect. In empirical analyses, I

present evidence that information flows still significantly more slowly to standalone

firms in central industries from their related industries, and the magnitude of return

predictability to these standalone firms and that to all firms in central industries are

similar, implying that our findings are not explained by the conglomerate effect.

In addition, I test whether other anomalies that previous studies have documented

can explain our findings. I examine four representative anomalies: (1) the limits to

arbitrage effect captured by idiosyncratic volatility, (2) the institutional ownership

effect by Badrinath et al. (1995) and Menzly and Ozbas (2010),14 (3) the trading

12I find that, when new informative signals about related industries arrive in a given month, the
sell-side analysts of central industries process 51%, 30%, and 19% of the new information in the
same month, in the next month, and two months later, respectively. For more details, see Section
4.3.

13Another major difference is that in the conglomerate effect, the returns of standalone firms
always lead those of conglomerates, while in our information complexity effect, the directions of
information flow can change depending on which industries are the information sources.

14In these studies, institutional ownership is used as a proxy for investors’ attention.
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volume effect by Chordia and Swaminathan (2000), and (4) the illiquidity effect by

Bali et al. (2014).15 To control for each of these anomalies, I partition the stock

universe into three sub-groups sorted on each of corresponding characteristics, e.g.,

idiosyncratic volatility. I uncover evidence that value-relevant information flows to

central industries substantially more slowly within sub-groups, which indicates that

our findings are not explained by these existing anomalies.

The remainder of this paper is organized as follow. Section 2 situates this paper in

the extant literature. Section 3 presents the methodology to construct the US industry

network and preliminary analyses. Section 4 tests whether the speed of information

flow differs at different positions in the industry network. Section 4 also investigates

potential underlying economic mechanisms that drive the difference in the speed of

information flow across network positions. Section 5 concludes the paper. Throughout

this paper, return cross-predictability signifies that the returns of customer and

supplier industries predict the future returns of the industry in question.

2. Related Literatures

My paper is related to a large and well-established literature in finance on how

value-relevant information diffuses to stock markets and what frictions induce return

predictability. One strand of this literature investigates the lead-lag relations of re-

turns among stocks. For example, Lo and MacKinlay (1990), Brennan et al. (1993),

Badrinath et al. (1995), Chordia and Swaminathan (2000), Hou (2007), and Cohen

and Lou (2012) document evidence that one group of stocks always react to com-

mon information faster than another group of stocks. More recent empirical studies

present evidence that return predictability along the supply chain is a pervasive phe-

15I do not argue that I can disentangle our information complexity effect completely from under-
lying economic mechanisms that those existing studies argue. I aim to present evidence that our
findings are not explained by the effects captured by the variables that those studies employed.
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nomenon caused by investors’ inattention and resulting market segmentation. Cohen

and Frazzini (2008) provide evidence of return predictability along the firm-level sup-

ply chain. Menzly and Ozbas (2010) and Chen et al. (2014) show that the return

predictability along the supply chain exists even at industry-level and in different

asset classes: stocks and corporate bonds, respectively. My paper contributes to this

literature by exploring the information flow to stock markets in the framework of

networks and by identifying an unknown and unique friction inherent in the industry

network, through which strong return predictability arises.

An emerging literature in finance and economics emphasizes the importance of the

positions of industries in the US industry network in understanding the mechanisms

of shock propagation and innovation transfer across industries. The seminal paper

by Acemoglu et al. (2012) proposes a model in which idiosyncratic shocks from the

central sectors of the economy can produce macro-economic fluctuations in outputs.

Ahern (2013) investigates the relationship between industries’ positions in the net-

work and the cross-section of stock returns. He argues that companies in the center

of the economy have higher market risk and thus their expected returns are higher as

compensation for the risk. Aobdia et al. (2014) find evidence that the financial and

accounting performance of central industries can be explained by systematic compo-

nents to a larger extent than that of peripheral industries.16 My paper contributes

to this burgeoning literature by presenting evidence that an industry’s position in

the network affects the complexity of information that investors process and thus the

speed of information dissemination through the network. I believe that this is an im-

portant advance in understanding the asset pricing implications of complex networks

16Aobdia et al. (2014) also find evidence that the changes in ROA of central industries can
predict those of related industries more strongly. However, they fail to find evidence that the
returns of central industries can predict those of related industries more strongly. This might seem
contradictory to our findings. I emphasize that the opposite directions of lead-lag relations and
information flow in these two papers lead to completely different economic effects and thus test
outcomes.
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and potential sources of anomalies in financial markets.

3. Methodology, Data, and Preliminary Analyses

3.1. Methodology for the Industry Network

Constructing the Industry Network: To construct an industry network, I

exploit the Detailed Input-Output (IO) Tables produced by the Bureau of Economic

Analysis (BEA).17 As of February 2014, twelve BEA reports are available. Among

these BEA reports, eliminating the earliest four reports that span from January 1947

through December 1971,18 I use eight BEA reports for our empirical analyses. My

entire sample period is January 1972 through December 2012. The BEA reports

are published roughly every five years and they contain two tables: the MAKE and

USE tables. The MAKE table records the dollar values of commodities that each

industry produces and the USE table presents the dollar values of commodities that

are consumed by each industry as inputs or by final user. In the BEA reports,

a commodity means any good or service produced or provided by industries. The

detailed BEA reports provide the MAKE and USE tables that record this information

for roughly 400 to 500 industries and commodities,19 whose exact numbers change

across different BEA reports.

I interpret the MAKE and USE tables as matrices and perform several matrix

algebraic operations.20 If the (i, j) entry is negative, I move it and add its absolute

17These IO-tables are available at http : //www.bea.gov/industry/index.htm#benchmark io.
18The earliest four BEA reports do not have accounts for the “compensation for employees” or

“(total) value added” that reflects the labor costs in their USE tables. Thus the use of these BEA
reports might distort industry networks by overestimating the labor-intensive industries compared
to the capital-intensive industries.

19In our sample period, the BEA employs its own six-digit industry codes (IO-codes), which
roughly correspond to six-digit SIC codes. The exact definitions of the IO-codes are provided in the
BEA reports.

20The (i, j) entry of the MAKE table is the dollar value of commodity j produced by industry i
and the (i, j) entry of the USE table corresponds to the dollar value of commodity i consumed by
industry j.
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value to the (j, i) entry, facilitating the interpretations of the MAKE and USE tables.

Following Becker and Thomas (2010) and Ahern and Harford (2014), I construct a

matrix that records industry-to-industry trades, which I call REVSHARE, by combin-

ing the MAKE and USE tables.21 Normalizing REVSHARE along each row produces

a matrix, which I call CUST, recording the fraction of industry i’s sales consumed by

industry j. Therefore the (i, j) entry in CUST shows how important industry j is as

a customer to industry i. Normalizing REVSHARE along each column produces a

matrix, which I call SUPP, recording the fraction of industry j’s purchases produced

by industry i. Thus the (i, j) entry in SUPP shows how important industry i is as a

supplier to industry j.

After creating these SUPP and CUST, I exclude the rows and columns that cor-

respond to miscellaneous industry accounts, e.g., households, governments, special

industries, and final users (including imports and exports), since the economic activi-

ties in these industries do not seem relevant to the theme of our paper. I then combine

SUPP and CUST by averaging them into one square matrix, which I call COMB, and

symmetrize the COMB by taking the maximum of (i, j) and (j, i) entries.22 I relegate

more detailed discussions on the construction of the industry network into Appendix

6.1.

Determining an Industry’s Position in the Network: Interpreting the

COMB as an adjacency matrix that defines the strength of links among nodes in

21I first normalize the MAKE table along each column and multiply it by the USE table, producing
the REVSHARE. As in Ahern (2013), to properly account for the labor costs in combining the
MAKE and USE tables, I generate an artificial industry in the MAKE table, i.e., the account for the
compensation for employees. In the same spirit, I generate sets of artificial industries, which vary
across different BEA reports. For example, the artificial industries for the 1997 BEA report include
the accounts for the compensation for employees, non-comparable imports, used and secondhand
goods, rest of world adjustment to final users, indirect business tax and non-tax liability, and other
value added. For other BEA reports, sets of artificial industries are similarly determined based on
the accounts for adjustments in the USE tables.

22This symmetrization has two purposes. First, it facilitates the economic interpretation of COMB
as its (i, j) entry defines the strength of connection between industries i and j. However, I can
not determine the directions of connections (either customers or suppliers) in COMB. Second, the
symmetrization also prevents the eigenvector centralities from being complex-valued.
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a network,23 I can determine the positions of all industries in the US industry net-

work. For each BEA report, the eigenvector centrality is defined as follows: Setting

Ai,i = 0 for all is,

ci =
1

λ

∑
j

Ai,jcj, (1.1)

where Ai,j denotes the (i, j) entry of the adjacency matrix A and λ is a scaling con-

stant (see Bonacich (1972)). Equation (1) is intuitively appealing because, to be more

central in the network, an industry needs to be connected to more industries and/or

connected strongly to other more central industries. Thus the eigenvector centrality

captures not only the number of connections but also their strength in the industry

network. In a matrix form, equation (1.1) is λc = Ac, meaning that the principal

eigenvector of A with the highest eigenvalue defines the eigenvector centralities of the

industry network. Ahern (2013) argues that the eigenvector centrality is the most

appropriate centrality measure for the network of inter-industry trade.

When assigning the eigenvector centralities to individual stocks, I use two different

types of concordance tables provided by the BEA and US Census Bureau to map the

BEA IO-codes into the standard SIC/NAICS codes.24 Each BEA concordance table

enables us to map the BEA IO-codes (unique in the corresponding BEA report) to the

most recent SIC/NAICS codes available at its release date. The concordance tables

by the Census Bureau enable us to convert SIC/NAICS codes in one BEA report to

those in another BEA report.25

Dynamic versus Static Industry Networks: Assuming that the US industrial

structure does not change over time substantially, Ahern and Harford (2014) and

23As in Ahern and Harford (2014), it is also possible to interpret SUPP and CUST as adjacency
matrices of supplier and customer networks, respectively. However, in this case, the economic
interpretations of network centralities may not be clear after symmetrizing the adjacency matrices.

24The concordance tables provided by the US Census Bureau are available at http :
//www.census.gov/eos /www/naics/concordances/concordances.html.

25I convert the 1997- and 2002-versions of NAICS codes to 1997-version of SIC codes since the
NAICS codes in CRSP and COMPUSTAT are not well populated until 2004.
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Aobdia et al. (2014) employ the 1997 BEA IO-tables located in the middle of their

sample periods to construct the industry networks. Ahern and Harford (2014) present

evidence that their findings in merger waves are robust to choosing a different BEA

report. However, assuming that the industry network is static over time might not

be valid for longer sample periods and/or in different applications.26 For example,

Carvalho and Gabaix (2013) provide evidence that the relative importance of US

industries has changed substantially over their sample period: 1960 to 2008. They

document that the US economy had experienced a decreasing share of manufacturing

industries between 1975 and 1985 and the importance of financial industries has

increased in recent years. They also argue that this change in the US industrial

structure can explain the swings in the macroeconomic volatility such as the Great

Moderation and its undoing.

Unlike the extant studies in which static networks are analyzed, I allow the indus-

try network to change across different BEA reports. My main tests of return cross-

predictability involve Fama-MacBeth (FM) cross-sectional regressions both in firm-

and industry-levels, and thus they do not suffer from the time-inconsistency of the

definitions of IO-codes across different BEA reports.27 When testing the predictabil-

ity of earnings forecast revisions among economically related industries, I perform

firm-level pooled regressions. Industry-level pooled regressions can be unreliable due

to the time-inconsistency in the definitions of IO-codes.

3.2. Other Data Sources and Variables

Other Data Sources: Empirical analyses in this paper are based on the in-

tersection of the BEA IO-tables and two standard databases: daily and monthly

26The sample period of our paper is from January 1972 through December 2012, thus over 40
years.

27To reflect the changes in the US industrial structure properly, the BEA defines IO-codes for
each BEA report and their definitions vary across different BEA reports.
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financial data from the Center for Research in Security Prices (CRSP) and quar-

terly and annual accounting data available on the COMPUSTAT. The entire stock

universe from NYSE/AMEX and NASDAQ is employed for the subsequent analy-

ses after the following individual stock screenings. Since the trading characteristics

of common stocks (with the CRSP share code of 10 or 11) might be different from

those of other asset classes listed in exchanges, as in Chordia et al. (2000), I expunge

assets that belong to the following categories from the sample universe: certificates,

American depository receipts (ADRs), shares of beneficial interest, units, companies

incorporated outside the US, Americus Trust components, close-end funds, preferred

stocks, and real estate investment trusts (REITs). Similar to Acharya and Pedersen

(2005) and Korajczyk and Sadka (2008), stocks are required to have prices above

$1.28 Stocks are also required to have either historical SIC or NAICS codes since this

information is utilized to combine the BEA IO-tables and the intersection of CRSP

and COMPUSTAT.29 After these screenings, I merge the stock universe with the BEA

reports. My sample universe has the average cross-sectional size of 1608 stocks per

month. The institutional ownership data are obtained from Thomson Financial’s 13F

Holdings database, which are combined with CRSP through historical CUSIP codes.

The analysts coverage and earnings forecast data come from the I/B/E/S database.

Variables: I here explain the variables frequently used in the subsequent analyses.

Following Fama and French (1992) and Davis et al. (2000), I compute the book-

to-market (BM) ratios at the end of every calendar year. I then merge them with

monthly financial items, allowing a six-month delay to ensure that market participants

are fully aware of firms’ accounting information released to markets. BM ratios are

cross-sectionally winsorized at the 0.5% and 99.5% levels each month. The size (SIZE)

28Choosing different cutoffs, e.g., $3 and $5, does not affect our main results.
29When merging the BEA IO-tables and the intersection of CRSP and COMPUSTAT, I use

the primary SIC/NAICS codes available in COMPUSTAT. When this information is missing in
COMPUSTAT, I use SIC/NAICS codes available in CRSP.
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of a firm is defined as the natural logarithm of its market capitalization (=number

of shares outstanding × price). The return on asset (ROA) is defined as the ratio

of the income before extraordinary items (IBQ in quarterly COMPUSTAT) to total

assets (ATQ in quarterly COMPUSTAT). To avoid the survivorship bias in returns

that might be induced by delisting, I adjust the daily and monthly CRSP returns for

delistings as suggested by Shumway (1997). The one-month treasury-bill rate from

Ibbotson Associates is used as a proxy for the risk-free rate.

The following firm characteristics are included in monthly FM cross-sectional re-

gressions: lagged SIZE and BM ratio by one month, momentum (MOM) over the past

eleven months defined as a summation of monthly returns from month t−2 to t−12,

and short-term return-reversal (REV) defined as a one-month lagged return. To con-

trol for the exposure to known risk factors in computing the risk-adjusted returns of

self-financing trading strategies, I include the Fama-French three factors (downloaded

from Ken French’s homepage30), i.e., the market return in excess of the risk-free rate

(MKTRF), small-minus-big (SMB), and high-minus-low (HML); the momentum fac-

tor, i.e., up-minus-down (UMD); and the Pastor and Stambaugh tradable liquidity

(PS-LIQ) factor.

3.3. Preliminary Analyses

Before starting our main empirical analyses, I here perform some preliminary anal-

yses. Panel A of Table 1 provides the summary statistics for eigenvector centralities

obtained from the 1992 Detailed BEA IO-tables.31 It shows that the distribution

of eigenvector centralities is positively skewed. Based on the network centralities,

Panel B of Table 1 presents the twenty most and least central industries in 1992.

Examples of the most central industries include the wholesale trade, construction,

30http : //mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
31I choose a BEA report located in the middle of our sample period.
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finance, utility, and auto industries, while those of the least central industries contain

the tobacco, hosiery, leather goods, and jewelery industries. These lists are largely

consistent with our prior notion about which industries are likely to be central and

with previous studies such as Ahern (2013) and Ahern and Harford (2014).32

Table 2 provides various average characteristics of centrality-sorted quintile port-

folios: the market capitalization (MKTCAP) in billion dollars, BM ratio, return

volatility (VOL), idiosyncratic return volatility (IVOL), share turnover (TURN),33

the number of analysts following on a given month (ANALFOLL), and the percent-

age of institutional holdings (IHP). For each month, VOL is defined as the standard

deviation of daily returns. To compute IVOL each month, I run a time-series re-

gression of monthly firm returns on the Fama-French three factors over the past 24

months, and I define the standard deviation of monthly residuals as IVOL. TURN

is defined as the ratio of share trading volume to the number of shares outstanding

for a given month. These characteristics are based on the constituent stocks of each

quintile portfolio. The two rightmost columns in Table 2 are based on the following

industry-level characteristics: the Herfindahl-Hirschman indices (HHIs) of customer

and supplier industries for the industry in question. I call them the customer-HHI and

supplier-HHI, respectively. The customer-HHI for industry i is defined as, excluding

sii,

Customer-HHIi =
∑
j 6=i

s2ij, (1.2)

where sij is the fraction of industry i’s sales that industry j consumes and
∑

j sij = 1.

32The industry network that I constructed in this paper is different from the social accounting
matrix (SAM) in Ahern (2013) in that mine models the US industries and their inter-connections
as a network, while the SAM models the entire US economy as a network, thus including not only
industries, but also government and household sectors.

33TURN is based on the NYSE/AMEX stock universe.
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The supplier-HHI for industry j is defined in a similar way as, excluding pjj,

Supplier-HHIj =
∑
i 6=j

p2ij, (1.3)

where pij is the fraction of industry j’s purchases that industry i produces and∑
i pij = 1. All portfolio characteristics are averaged over the sample period in

which they are available. Table 2 indicates that the more central industries are, the

higher BM ratios they have, the less volatile their idiosyncratic returns are, the more

frequently traded they are, and the more analysts follow them. For MKTCAP, it is

hard to find a clear monotonic pattern across centralities although the most central

industries have the largest firms on average. For ANALFOLL, the highest quin-

tile portfolio entertains about 0.5 more analysts following than the lowest quintile

portfolio. This spread in the number of analysts following might seem small eco-

nomically. For Customer-HHIs, the most and least central industries tend to have

more concentrated customer industries and the values of Customer-HHIs are generally

considered by the Antitrust Division of the US Department of Justice as being mod-

erately concentrated.34 In contrast, for Supplier-HHIs, although a similar pattern

exists, their magnitudes and the spread across quintile portfolios are substantially

smaller than those of Customer-HHIs. The values of Supplier-HHIs in Table 2 are

generally considered by the Antitrust Division of the US Department of Justice as

being unconcentrated.

4. Empirical Results

In this section, I conduct various tests to investigate the effect of an industry’s

position in the network on the speed of information flow. I first examine whether the

returns of related industries can predict the future returns of central industries more

34http : //www.justice.gov/atr/public/guidelines/hhi.html.
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strongly than those of peripheral industries. By constructing self-financing trading

strategies, I next quantify the economic magnitude of the difference in return cross-

predictability between central and peripheral industries. I then perform an in-depth

investigation to better understand potential underlying economic mechanisms that

drive our findings.

4.1. Return Cross-predictability

I here test whether the returns of related industries can predict the future returns

of central industries more strongly than those of peripheral industries. I consider

various special cases of the following predictive FM cross-sectional regression: for

firm (or industry) i in month t,35

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t Di,l,t−1r
related
i,t−1 + εi,t, (1.4)

where rei,t is the excess return of firm i, Zi,t contains the characteristics of interest,

e.g., SIZE, BM, MOM, and REV, and the industry location subscript l is chosen

from (C,M,P ) = (Center,Middle, Periphery) which correspond to centrality-sorted

tercile portfolios. Di,l,t−1 is an indicator variable defining the location of firm i in the

industry network. For example, if the industry which firm i belongs to is located

in the center of the industry network, Di,C,t−1 is 1 in month t − 1. Otherwise, it

is 0. rrelatedi,t−1 denotes the one-month lagged aggregate return of related (=customer

and supplier) industries. To compute rrelatedi,t , I employ the following three steps.

For each industry, I first compute the industry-level return by averaging the returns

of its constituent stocks. For each industry, I next calculate rcustomer
i,t (rsupplieri,t ) by

weighting the industry-level returns of its customer (supplier) industries with the

35My tests for return cross-predictability are conducted both in firm- and industry-levels.
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relative importance as a customer (supplier).36 Then I average rcustomer
i,t and rsupplieri,t

to obtain rrelatedi,t . After running FM cross-sectional regressions, I take the time-

series averages of slope coefficients. To make statistical inferences, I employ the

heteroskedasticity and autocorrelation consistent (HAC) covariance matrix estimator

proposed by Newey and West (1987), in which the number of lags is determined as

suggested by Newey and West (1994).37

Panels A and B in Table 3 provide the slope coefficient estimates from regres-

sion (1.4) in firm- and industry-levels, respectively. In Column (1), I assign separate

dummy variables to the center, middle, and periphery of the industry network. In

Column (2), I assign dummy variables only to the center and middle of the industry

network to formally test whether γrelatedC,t and γrelatedM,t are reliably different from γrelatedP,t .

Column (1) in Panel A indicates that when the lagged return of related industries is

used as the information source, γ̂relatedl s are monotonically aligned in network central-

ities, i.e., the highest (γ̂relatedC =0.182 with t-statistic=5.56) is in the center and the

lowest (γ̂relatedP =0.095 with t-statistic=3.94) is in the periphery. Column (2) in Panel

A confirms the finding by showing that the difference between γ̂relatedC and γ̂relatedP is

0.088 and statistically significant at the 5% level (t-statistic=2.36). In unreported

tests, I find that controlling for industry-level momentum as in Moskowitz and Grin-

blatt (1999) and Amihud illiquidity level as in Amihud (2002) do not alter these

results.

In Panel B, when running FM regressions in industry-level, I obtain similar results

with the smaller magnitudes of γ̂relatedl s for all ls. For example, the industry-level

and firm-level FM regressions produce the γ̂relatedC of 0.140 and 0.182, respectively.

However, the differences between γ̂relatedC and γ̂relatedP stay similar in industry- and firm-

36For industry k, the relative importance of industry j as a customer is skj in equation (1.2) and
the relative importance of industry j as a supplier is pjk in equation (1.3).

37The number of lags is determined as b4(T/100)
2
9 c, where T is the number of time-series obser-

vations and the operator bxc extracts the integer portion of a real number x.
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levels (0.076 and 0.088, respectively) and they are reliably different from zero at the

5% level. In summary, both firm- and industry-level FM regressions provide strong

evidence that value-relevant information flows substantially more slowly to central

industries from their customer and supplier industries than to peripheral industries.

4.2. Quantifying the Economic Magnitudes

Once finding that the returns of central industries are more predictable by their

related industries, one may ask how much more attractive the trading strategy that

invests exclusively in central industries can be to investors than the trading strategy

that invests exclusively in peripheral industries. If central industries have higher ex-

posure to systematic risk factors as documented by Ahern (2013) and Aobdia et al.

(2014) and the higher profit of trading strategy that invests exclusively in central

industries is mainly driven by this higher exposure, the difference in risk-adjusted

returns between those two types of trading strategies might be economically negli-

gible (after removing the portion explained by systematic risks). For self-financing

trading strategies that invest in central (peripheral) industries, at the beginning of

each month, I form quintile portfolios of central (peripheral) industries sorted on the

average return of customer and supplier industries in the previous month. I then

go long the quintile portfolio with the highest past return of related industries and

go short the one with the lowest past return of related industries. These trading

strategies are rebalanced every month and involve the buying and selling of central

(peripheral) industries.

To determine central and peripheral industries, as before, I use centrality-sorted

tercile portfolios. To compute risk-adjusted returns, I control for the exposure to the

following five factors: the Fama-French three (MKTRF, SMB, HML), the momentum

(UMD), and the Pastor-Stambaugh tradable liquidity (PS-LIQ) factors.38 To avoid

38The original liquidity factor proposed by Pastor and Stambaugh (2003) is non-tradable. PS-LIQ
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any potential forward-looking biases, I delay each BEA report until the end of the year

in which it becomes publicly available. The different BEA reports became publicly

available in 2013, 2007, 2002, 1997, 1994, 1991, 1984, and 1979, respectively.39

Excess and Risk-adjusted Returns: Panels A1 and B1 in Table 4 yield the

annualized excess returns of value- and equal-weighted self-financing trading strate-

gies, respectively. The rows labeled as “Central industries” (“Peripheral industries”)

correspond to the trading strategies that invest exclusively in central (peripheral)

industries. For quintile portfolios that invest in central industries, in Panel A1, an-

nualized excess returns and Sharpe ratios tend to decrease monotonically from the

highest (in High (1)) to the lowest (in Low (5)) quintile portfolios. Excess returns

range from 5.6% to 12.7% per annum and Sharpe ratios range from 0.299 to 0.686.

Their annualized standard deviations are fairly stable across quintile portfolios. The

long-short hedging portfolio (in High-Low) provides an annualized return of 7.1% with

a Sharpe ratio of 0.544. For quintile portfolios that invest in peripheral industries,

the long-short hedging portfolio produces an annualized return of 2.7% and a Sharpe

ratio of 0.156, respectively, which are significantly lower than their counterparts that

invest in central industries.

Controlling for the exposure to known risk factors, in Panel A2, the risk-adjusted

return of the trading strategy that invests in central industries is 7.0% per annum

and remains statistically significant at the 1% level (t-statistic=3.55). However, the

risk-adjusted return of the trading strategy that invests in peripheral industries is

1.7% per annum and not reliably different from zero (t-statistic=0.53). The trading

strategy that invests in peripheral industries has significant loadings on UMD and

PS-LIQ. The difference in risk-adjusted returns between the trading strategies that

invest in central industries and peripheral industries is 5.3% per annum. Thus, as

can be constructed based on factor-mimicking portfolios.
39When analyzing self-financing trading strategies, I do not use the 2007 BEA report since it was

released at the end of 2013.
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an investment strategy, the trading strategy that invests in central industries seems

more attractive than the other trading strategy (before transaction costs).

I repeat the same analyses with equal-weighted quintile portfolios and report the

results in Panels B1 and B2. For the trading strategy that invests in central in-

dustries, its annualized excess return is 8.1% with a Sharpe ratio of 0.877. Its risk-

adjusted return is 7.9% per annum and remains statistically significant at the 1%

level (t-statistc=4.64). The risk-adjusted return of the trading strategy that invests

in peripheral industries is 4.3% per annum and becomes significant at the 5% level

(t-statistic=2.15). The difference in risk-adjusted returns between the trading strate-

gies that invest in central industries and peripheral industries is 3.6% per annum and

significant at the 5% level.40

In summary, I find evidence that self-financing trading strategies that exclusively

invest in central industries produce significant and economically large risk-adjusted re-

turns, ranging from 7.0% to 7.9% per annum. In contrast, the risk-adjusted returns of

self-financing trading strategies that exclusively invest in peripheral industries range

from 1.7% to 4.3% per annum. This evidence indicates that the economic magnitude

of the slower information flow to central industries than to peripheral industries is

large.

4.3. Potential Economic Mechanism

In this section, I conduct an in-depth investigation to better understand what

potential economic mechanisms drive the stronger return predictability to central

industries from their related industries. My hypothesis is stated as follows. By

definition, central industries are connected to more related industries than peripheral

industries. Investors with limited information processing capabilities who invest in

40I run seemingly unrelated regressions (SURs) of monthly returns of these two trading strategies
on five risk factors and test whether their intercepts are statistically different.
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central industries thus need to process more complicated information about their

related industries. It can take these investors longer to incorporate all the information

about related industries into the prices of central industries, inducing the slower

information flow to central industries from related industries. I call it the information

complexity effect.

To examine whether the information complexity effect drives our findings, as in

equation (1.4), I consider the following predictive FM cross-sectional regressions for

multi-periods: for firm i in month t,

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t,k Di,l,t−kr
related
i,t−k + εi,t,k, (1.5)

where rrelatedi,t−k is the k-month lagged aggregate return of related industries and all vari-

ables are standardized cross-sectionally. Table 5 presents the results of FM regressions

(1.5) and evidence that the returns of related industries predict the future returns of

central industries substantially more strongly and for a longer time period, up to two

months. In Columns (5) and (6), when the predictability of two-month-ahead returns

is tested (i.e., when k = 2), γ̂relatedC,2 is 0.013 and statistically significant at the 5% level

(t-statistic=2.43), while γ̂relatedP,2 is 0.004 and insignificant at any conventional levels

(t-statistic=0.87). Examining the comovement of returns of the industry in question

and its related industries in Columns (1) and (2), I find that the returns of related

industries comove with the returns of central industries more strongly than those of

peripheral industries. The difference between γ̂relatedC,0 and γ̂relatedP,0 is 0.025 and is highly

significant (t-statistic=3.94). For k = 0, 1, 2, although γ̂relatedC,k s and γ̂relatedM,k s support

the information complexity effect, γ̂relatedP,k can suggest alternative explanations for

our findings. In particular, the stronger economic ties of central industries with their

related industries might drive the stronger return predictability to central industries

from their related industries than to peripheral industries.
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I here attempt to disentangle the information complexity effect from the alter-

native explanation based on economic ties. I utilize the earnings forecast revisions

of sell-side analysts to test whether the speed of their responses to new information

about related industries differs substantially in the center and periphery of the indus-

try network. If the sell-side analysts of central industries also face more complicated

information about related industries as investors, then (1) their earnings forecast re-

visions of related industries would predict their future revisions of central industries

more strongly than those of peripheral industries and (2) this stronger predictability

of earnings forecast revisions to central industries would stay significant for a longer

time period than that to peripheral industries.

For firm i in month t, as in Cohen and Frazzini (2008), I define monthly ana-

lysts’ earnings forecast revision as AREVi,t = (UPi,t−DOWNi,t)/NUMESTi,t, where

NUMESTi,t is the number of available earnings forecast revisions for the current fis-

cal quarter end, and UPi,t (DOWNi,t) is the number of upward (downward) earnings

forecast revisions.41 I emphasize that AREVi,t picks up the signs (instead of the

levels) of earnings forecast revisions by sell-side analysts and thus AREVi,t is not

affected by the strength of economic ties of the industry in question with its related

industries. I consider the following pooled regressions for k-month lag (k = 0, 1, 2):

AREVi,t = αi + βt + γTZZi,t +
∑

l∈(C,M,P )

ψrelated
l,k Di,l,t−kAREVrelated

i,t−k + εi,t,k, (1.6)

where αi and βt denote firm- and time-fixed effects, respectively, and Zi,t contains con-

trol variables: lagged AREV, the aggregate return of related industries of firm i lagged

by one month, i.e., rrelatedi,t−1 , and the industry-level analysts’ revision (AREVIND)

lagged by one month.42 Note that all control variables are lagged by one month even

41Using analysts’ earnings forecast revisions for the current fiscal year end produces similar results.
42Running monthly Fama-MacBeth regressions as in Cohen and Frazzini (2008) yields similar

results to those in Table 6.
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for k = 2. AREVrelated
i,t−k is the aggregate analysts’ revision of related industries of firm

i lagged by k months and it is computed in the same way as rrelatedi,t−1 . The location

dummy variable Di,l,t−k in month t − k is defined in the same way as before. To

report t-statistics, I compute robust standard errors by double-clustering by firm and

year-month. To facilitate the economic interpretation of slope coefficient estimates,

I standardize all variables by subtracting the means and dividing by the standard

deviations of all observations.

Table 6 presents the results of panel regression (1.6) and evidence that the sell-side

analysts of central industries also face more complicated information about related in-

dustries, which slows down their processing new information about related industries.

From Columns (3) and (4), I find that analysts’ earnings forecast revisions of related

industries predict their one-month-ahead revisions of central industries substantially

more strongly than those of peripheral industries. In Column (3), ψ̂related
C,1 is 0.049 and

highly significant at the 1% level (t-statistic=6.06), while ψ̂related
P,1 is 0.009 and insignifi-

cant at any conventional level (t-statistic=1.34). When testing whether the difference

between ψ̂related
C,1 and ψ̂related

P,1 differs from zero reliably, in Column (4), I find that the

difference is 0.040, more than four-times larger than ψ̂related
P,1 , and highly significant at

the 1% level (t-statistic=4.34). From Columns (5) and (6), I find that analysts’ earn-

ings forecast revisions of related industries can also predict two-month-ahead revisions

of central industries substantially more strongly than those of peripheral industries

although the strength of predictability is reduced.43 In contrast, I discover evidence

that analysts’ earnings forecast revisions of related industries fail to predict their fu-

ture revisions of peripheral industries, i.e., ψ̂related
P,1 and ψ̂related

P,2 are insignificant at any

conventional level. Columns (1) and (2) show that the comovement of AREVi,t and

AREVrelated
i,t does not significantly differ in the center and periphery of the industry

43These results of two-month-ahead revision predictability survive controlling for AREVrelated
i,t−1

additionally.
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network, indicating that our findings in Columns (3) to (6) are not driven by the

staleness in analysts’ earnings forecast revisions.

Table 6 indicates that the sell-side analysts of central industries indeed respond

to new information about related industries substantially more slowly than those

of peripheral industries, while the sell-side analysts of peripheral industries process

new information about related industries immediately (i.e., in the same month). By

interpreting the slope coefficients, i.e., ψ̂related
C,k , across columns in Table 6, I can have

a better understanding of information processing by the sell-side analysts of central

industries. When new value-relevant information about related industries becomes

available in a given month, the sell-side analysts of central industries process 51%,

30%, and 19% of this new information in the same month, in the next month, and

two months later, respectively.44 In contrast, when new informative signals about

related industries arrive in a given month, the sell-side analysts of peripheral industries

process almost 100% of this new information about related industries in the same

month. This evidence supports our information complexity effect strongly.

4.4. Distinction from Existing Anomalies

I here examine whether our findings can be explained by anomalies that previous

studies have documented. I do not attempt to disentangle our information complex-

ity effect completely from underlying economic mechanisms that those anomalies are

potentially based on. I aim to present evidence that our findings are not entirely ex-

plained by effects captured by particular variables used in previous studies. I consider

the following five anomalies: (1) the conglomerate effect by Cohen and Lou (2012),

(2) the limits to arbitrage effect captured by idiosyncratic volatility, (3) the institu-

tional ownership effect by Badrinath et al. (1995) and Menzly and Ozbas (2010), (4)

44I have 51% = 0.085/(0.085 + 0.049 + 0.032) × 100 in the same month, 30% = 0.049/(0.085 +
0.049 + 0.032)× 100 in the next month, and 19% = 0.032/(0.085 + 0.049 + 0.032)× 100 two months
later.
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the trading volume effect by Chordia and Swaminathan (2000), and (5) the illiquidity

effect by Bali et al. (2014).

Conglomerate Effect: Cohen and Lou (2012) find that conglomerates are slower

to incorporate the same piece of information into their prices than standalone firms

that operate in the same industry. If central industries have significantly more con-

glomerates than peripheral industries, ceteris paribus, the conglomerate effect might

drive our findings. To disentangle our information complexity effect from the con-

glomerate effect, I choose standalone firms from the entire stock universe and then

test whether value-relevant information still flows more slowly to standalone firms in

central industries from their related industries. For each firm, I determine industry

segments based on two-digit SIC codes and compute the HHI of segment sales. As

in Cohen and Lou (2012), I define standalone firms as those that have HHIs greater

than 0.64.45

Table 7 reports the testing results with standalone firms only. As in Table 3, Col-

umn (1) shows that the slope coefficients, i.e., γ̂relatedl s, of interaction terms between

the lagged returns of related industries and location dummies are nicely aligned in

network centralities. Column (2) confirms that the difference between γ̂relatedC and

γ̂relatedP is 0.085 and significantly different from zero at the 5% level (t-statistic=2.13).

With standalone firms which are free from the conglomerate effect by definition, I

find that the magnitudes of γ̂relatedC and γ̂relatedP are slightly smaller than those with

all firms (Table 3), implying that our findings are not explained by the conglomerate

effect by Cohen and Lou (2012).

Limits to Arbitrage Effect: To test whether our findings can be explained

by the limits to arbitrage captured by idiosyncratic volatility, I partition the entire

stock universe into three sub-groups sorted on IVOL and then run FM cross-sectional

45Cohen and Lou (2012) define standalone firms as those that operate in one industry and whose
segment sales account for more than 80% of the total sales. Altering the cutoff for standalone firms
and using one-digit SIC codes to determine industry segments do not change the results in Table 7.
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regressions in equation (1.4) within each sub-group. Table 8 presents the results

of FM cross-sectional regressions for three sub-groups. Within sub-groups that have

high and medium levels of IVOL, the slope coefficients, i.e., γ̂relatedl s, are nicely aligned

in network centralities. For these sub-groups, the differences between γ̂relatedC and

γ̂relatedP differ from zero significantly at the 5% level, indicating that information still

flows significantly more slowly to central industries from related industries even after

controlling for IVOL levels. When analyzing the sub-group that has low IVOL level,

I find that the difference between γ̂relatedC and γ̂relatedP is not reliably different from

zero, although γ̂relatedl still increases monotonically in network centralities. Across

three sub-groups, regardless of network positions, return cross-predictability becomes

stronger monotonically as the level of IVOL increases, implying that the more binding

limits to arbitrage are, the slower the information flow is.

Institutional Ownership Effect: Theories in the limited-information models

predict that the higher level of investors’ inattention makes information dissemination

more gradual (see, e.g., Merton (1987); Hong and Stein (1999); Hirshleifer and Teoh

(2003); Hong et al. (2007b)). Among empirical studies, e.g., Badrinath et al. (1995)

and Menzly and Ozbas (2010) employ institutional ownership as a proxy for investors’

inattention. To disentangle our information complexity effect from the institutional

ownership effect, I partition the entire stock universe into three sub-groups sorted

on the percentage ownership of institutional investors, i.e., IHP. I then test whether

information still flows significantly more slowly to central industries from related

industries within each sub-group.

Panel A in Table 9 reports the results of FM cross-sectional regressions when I

control for the institutional ownership effect. Within all sub-groups, γ̂relatedl s increase

monotonically in network centralities and the differences between γ̂relatedC and γ̂relatedP

are significantly different from zero at the 5% level. Within the sub-groups of high
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and medium IHP levels, γ̂relatedP s are insignificant at the 5% level (t-statistics are

0.83 and 1.85, respectively). This implies that the weakest return cross-predictability

to peripheral industries disappears first as IHP level increases from Column (6) to

Column (1). Overall, these results strongly suggest that our information complexity

effect is not explained by the institutional ownership effect.

Turnover Effect: Chordia and Swaminathan (2000) document that the returns

of firms with high trading volume lead those with low trading volume. To test whether

our findings can be explained by this turnover effect to a certain extent, I partition

the NYSE/AMEX stock universe into three sub-groups sorted on share turnover,

i.e., TURN. Panel B in Table 9 reports the results of FM cross-sectional regressions.

Within sub-groups that have medium and low TURN levels, the differences between

γ̂relatedC and γ̂relatedP stay significant at the 5% level (t-statistics are 2.11 and 2.09,

respectively). For the sub-group that has high TURN level, this difference becomes

insignificant although γ̂relatedl s are increasingly monotonic in network centralities.

Illiquidity Effect: Bali et al. (2014) document evidence that illiquidity con-

tributes to the short-term stock market under-reaction (up to six months) and thus

price discovery can be delayed following liquidity shocks. To test whether our find-

ings can be explained by this illiquidity effect, I partition the NYSE/AMEX stock

universe into three sub-groups sorted on Amihud illiquidity (ILLIQ). Panel C in Ta-

ble 9 reports the results of FM cross-sectional regressions. Within sub-groups that

have high and medium levels of ILLIQ, the differences between γ̂relatedC and γ̂relatedP

stay significant at the 5% level (t-statistics are 2.07 and 2.14, respectively). For the

sub-group that has low ILLIQ level, this difference is marginally significant at the

10% level (t-statistic=1.68). Overall, the evidence suggests that our findings are not

explained by the illiquidity effect by Bali et al. (2014).

In summary, all the evidence in this section supports that our findings are distinct
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from existing anomalies that previous studies have documented in the literature and

makes our information complexity effect more compelling as a potential explanation

for our findings.

4.5. Change in Institutional Co-ownership

Institutional investors are likely to be more efficient in processing value-relevant

information obtained from related industries or to have lower information collection

costs than retail investors. In addition, self-financing trading strategies that invest

in central industries might be fairly attractive to institutional investors in several re-

spects. For example, Table 4 shows that the risk-adjusted returns of trading strategies

with top centrality are significantly higher than those of the other two trading strate-

gies. It is thus possible that institutional investors might exploit the stronger return

cross-predictability from related industries to central industries for their investment.

I here test whether institutional investors increase (decrease) their positions more

in central industries when they increase (decrease) the positions in related industries.

I consider the following panel regression: for firm i in quarter q,

∆IHPi,q = αi + βq +
∑

l∈(C,M,P )

θrelatedl Di,l,q∆IHPrelated
i,q + εi,q, (1.7)

where ∆IHPi,q denotes the change in the percentage ownership of institutional in-

vestors in firm i from quarter q − 1 to quarter q and ∆IHPrelated
i,q is the aggregate

change in the percentage ownership of institutional investors in related industries of

firm i from quarter q − 1 to quarter q.46 I compute ∆IHPrelated
i,q in the same way

as ROArelated
i,q and ∆ROArelated

i,q . To control for any potential biases that might be

induced by unobserved heterogeneity across firms and for systematic fund inflows

46I winsorize the percentage ownership of each firm by institutional investors into 100% when it
is over 100%. Winsorizing or eliminating these observations produces similar results.
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and outflows of institutional investors, firm (αi) and year-quarter (βq) fixed effects

are included in regression (1.7), respectively. To report t-statistics, robust standard

errors are computed by double-clustering by firm and year-quarter.

Table 10 presents the results of panel regression (1.7) and shows that all θ̂relatedl s

have similar values to each other (in Column (1)) and their differences are not sig-

nificant (in Column (2)). For example, θ̂relatedC is not reliably different from θ̂relatedP

with a low t-statistic of 0.19. The finding that θ̂relatedl s are all significant with high

t-statistics indicates that institutional investors exploit the value-relevant information

disseminated from customer and supplier industries when they rebalance their port-

folio positions. However, the insignificant differences among θ̂relatedl s do not support

that institutional investors invest (disinvest) more in central industries than in periph-

eral industries when they invest (disinvest) in related industries. This implies that

even sophisticated and potentially more informed institutional investors as a whole

do not exploit the difference in return cross-predictability across network positions.

Overall, the finding in this section is consistent with the small spread (=0.5 ana-

lysts) in the number of analysts following across centrality-sorted quintile portfolios

presented in Table 2. These two findings imply that investors as a whole do not pay

significantly more attention nor allocate by far more cognitive resources to central

industries although they need to process more complicated information about related

industries.

5. Conclusions

I interpret the US industries and their inter-industry trades as a network over

40 years and identify an unknown and unique anomaly inherent in the US indus-

try network. I find robust and strong evidence that value-relevant information flows

substantially more slowly to central industries from their economically related (=cus-
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tomer and supplier) industries than to peripheral industries. Accordingly, I uncover

evidence that the returns of related industries predict the future returns of central

industries substantially more strongly. Long-short portfolios of central industries

formed on the past returns of their related industries yield significant and economi-

cally large risk-adjusted returns of 7.0% to 7.9% per annum.

To better understand a potential economic mechanism that drives our findings,

I conduct an in-depth investigation into the differential information complexity that

investors at different positions in the industry network face. The information com-

plexity effect is that investors who invest in central industries need to process more

complicated information about economically related industries, and thus it take them

longer to process all the information and to incorporate it into the prices of central

industries fully. To support the information complexity argument, I document strong

evidence that the sell-side analysts of central industries respond to new information

about related industries substantially more slowly than those of peripheral indus-

tries. I also present evidence that our information complexity effect is not explained

by various anomalies that previous studies have documented.
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6. Technical Appendix

This section covers the detailed materials not provided in the main text of this

paper: the construction of the industry network from the BEA reports.

6.1. Details on Constructing the Industry Network

For each pair of the MAKE and USE tables, I aggregate the IO-codes with the

same SIC/NAICS codes since they will be assigned to the same stocks when I merge

the BEA report and the standard databases: CRSP and COMPUSTAT. The lists of

aggregated IO-codes are different across different BEA reports. I also expunge the

IO-codes that do not have SIC/NAICS codes in the BEA concordance tables.

Following Ahern (2013), I generate sets of artificial industries to take the ad-

justment accounts in the USE table into consideration. After adding the rows and

columns for these artificial industries to the MAKE table, I combine the MAKE and

USE tables, producing the REVSHARE matrix. The list of artificial industries is

as follows: (1) non-comparable imports, (2) used and second-hand goods, (3) rest

of the world adjustment to final users, (4) compensation for employees, (5) taxes on

production and imports less subsidies, (6) gross operating surplus, (7) indirect busi-

ness tax and non-tax liability, (8) other or total value added, (9) commodity credit

corporation, and (10) profit-type income. Subsets of these accounts show up in dif-

ferent BEA reports and these artificial industries are not included when I compute

the eigenvector centralities of the industry network.
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1. Introduction 

 

One of the fundamental concepts of financial economics is that capital market 

investors are compensated for higher systemic risks through higher returns. While this 

basic concept is well accepted, there is very little agreement on the specific risk factors 

that indeed command risk premiums. The Sharpe-Lintner CAPM laid the theoretical 

foundation for this concept but the empirical support for CAPM is weak at best. A 

number of recent papers propose a variety of other risk factors that in theory should 

explain the cross-sectional differences in expected returns. Some of these factors are the 

Fama and French size and book-to-market factors, human capital risk (Jagannathan and 

Wang, 1996), productivity and capital investment risk (Cochrane, 1996; Chen, Novy-

Marx and Zhang, 2011), different components of consumption risk (Lettau and 

Ludvigson, 2001;  Ait-Sahalia, Parker, and Yogo, 2004; Li, Vassalou, and Xing, 2006), 

cash flow risk and discount rate risk (Campbell and Vuolteenaho, 2004) and illiquidity 

risk (Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005).   

These studies also typically report empirical evidence supporting the hypotheses 

that the loadings on the risk factors that they propose have ability to explain the cross-

sectional differences in expected returns. Their empirical tests use selected portfolios as 

test assets, and in many instances these portfolios are sorted by size and book-to-market 

ratios to obtain the cross-sectional variation in average returns. The ability of so many 

different factor loadings to explain the cross-sectional differences in expected returns 

have generated some skepticism in the literature. Lewellen, Nagel, and Shanken (2010) 

show that the strong factor structure inherent in the test portfolios can enable any factors 

that are even weakly correlated with the characteristics used to sort the test portfolios to 

explain the differences in average returns across them regardless of the economic merits 

of the underlying theory. Daniel and Titman (2012) find that the factors proposed in 

various papers exhibit low time-series correlation with one another and argue that it is 

unlikely that the loadings of all these factors can simultaneously explain the cross-section 

of expected returns.  



35 
 

There are many other papers that propose a variety of other risk factors. Harvey, 

Liu and Zhu (2013) survey this literature and report that hundreds of factors have been 

proposed. Some of them are derived from theoretical models and others are based on 

empirical observations. To understand the economic importance of these factors, we 

should examine whether the associated risks are priced in the market, but portfolio based 

tests are not well suited to address this issue because of the low dimensionality problems. 

Cochrane’s (2011) AFA presidential address notes this problem and states that “we must 

address the factor zoo, and I do not see how to do it by a high-dimensional portfolio 

sort.” (p. 1063) 

We develop a procedure to test asset pricing models using individual stocks as 

tests assets, and this procedure is not exposed to the low dimensionality problems 

inherent in tests using portfolios. The main reason why the literature typically uses 

portfolios as test assets is that the errors-in-variables (EIV) problem is less severe with 

portfolios than with individual stocks. Our approach uses the instrumental variables 

technique to address the EIV problem. We refer to the estimator that we propose as the 

IV estimator.
1
 

The EIV problem arises because the standard approach estimates factor 

sensitivities in the first stage and uses these estimates as independent variables in the 

second stage cross-sectional regressions. The estimation error in factor sensitivities biases 

the factor risk premium estimates when the standard Fama-MacBeth approach (the “FM” 

estimator) is used. We propose an instrumental variables approach to estimate the second 

stage regression. Specifically, we use factor sensitivities estimated in even months as 

independent variables and the corresponding sensitivities estimated in odd months as 

their instruments or vice versa.  

The IV estimator is N-consistent in the number of stocks (N) in the cross-section 

for a finite T under the mild technical assumptions that have been used in the literature, 

                                                           
1
 After circulating earlier drafts of this paper, we came across Pukthuanthong and Roll (2014) that also 

proposes an IV approach, which it suggests could be used to identify common factors. That paper does not 

address the consistency or the rate of convergence properties of the IV estimator. There are also a number 

of other differences between our paper and theirs in the issues we address and the details of the 

implementation of the IV approach.   
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unlike the FM estimator. For a sufficiently large N, the IV estimator is also T-consistent 

as the length T of the sample period used in the first stage regression to estimate factor 

sensitivity tends to infinity.  For a sufficiently large N, we show that the rate of 

convergence “in probability” for the IV estimator is exponential in T, while the rate of 

convergence “in probability” for the standard FM estimator is linear in T.    

While large sample properties can provide some guidance, it is important to 

examine the small sample performance of various estimators for practical applications. 

To do so, we conduct a number of simulation experiments. We choose simulation 

parameters to be similar to those in the actual data. Simulations with a single factor 

model find that the FM estimator is significantly biased in finite T due to the EIV 

problem. The risk premium estimates are biased even when factor sensitivities are 

estimated with about 2640 daily observations. In contrast, the IV estimator yields nearly 

unbiased estimates even when only about 264 daily observations are used to estimate 

factor sensitivities. We also find that the conventional t-tests are well specified in small 

samples with the IV estimator. We find similar results with multifactor models as well. 

We apply the IV approach to estimate the risk premiums for several factors proposed 

in the literature. The models that we test with individual stocks are the CAPM, the Fama-

French three-factor model, a production-based asset pricing model by Chen, Novy-Marx 

and Zhang (2011), and the liquidity-adjusted CAPM by Acharya and Pedersen (2005). 

The rest of the paper is organized as follows: Section 2 presents our methodology. 

Section 3 examines the finite sample properties using simulation experiments. Section 4 

presents the empirical tests of existing asset pricing models, and Section 5 concludes the 

paper. Appendices provide the details of simulation experiments and mathematical 

proofs. 

 

2. Methodology 

 

A number of asset pricing models predict that expected returns on risky assets are 

linearly related to their covariance with certain risk factors. A general specification of a 

K-factor asset pricing model can be written as:  
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𝐸(𝑟𝑖) = 𝛾𝑜 + ∑ 𝛽𝑖,𝑘 × 𝛾𝑘
𝐾
𝑘=1                                     (2.1) 

where 𝐸(𝑟𝑖) is the expected excess return on stock i, 𝛽𝑖,𝑘 is the sensitivity of stock i to 

factor k, and 𝛾𝑘 is the risk premium on factor k. 𝛾𝑜  is the excess return on the zero-beta 

asset. If riskless borrowing and lending are allowed, then the zero-beta asset earns the 

risk-free rate and its excess return is zero, i.e. 𝛾𝑜 = 0. The CAPM predicts that only the 

market risk will be priced in the cross-section. Several multifactor models identify 

additional risk factors based on empirical findings or based on variations of models such 

as the ICAPM by Merton (1973). 

Empirical tests of asset pricing models typically use the Fama-MacBeth two-stage 

regression procedure to estimate factor risk premiums. The first stage estimates factor 

sensitivities using the following time-series regressions with T periods of data: 

𝑟𝑖,𝑡 = 𝑎𝑖 + ∑ 𝛽𝑖,𝑘 × 𝑓𝑘,𝑡 + 𝑢𝑖,𝑡
𝐾
𝑘=1 ,                       (2.2) 

where 𝑓𝑘,𝑡 is the realization of factor k in time t. The time series estimates of factor 

sensitivities, say �̂�𝑖,𝑘,  are the independent variables in the following second stage cross-

sectional regressions used to estimate factor risk premiums:  

 

𝑟𝑖,𝑡 = 𝛾𝑜,𝑡 + ∑ �̂�𝑖,𝑘 × 𝛾𝑘,𝑡 + 𝜑𝑖,𝑡
𝐾
𝑘=1 ,                       (2.3) 

 

where realized excess return 𝑟𝑖,𝑡 is the dependent variable. The standard FM approach fits 

OLS regression to estimate the parameters of cross-sectional regression (2.3). These OLS 

estimates are biased due to the EIV problem since �̂�𝑖,𝑘s are estimated with errors. To 

mitigate such bias, the literature typically uses selected portfolios as test assets rather than 

individual stocks since portfolio betas can be estimated more precisely than individual 

stock betas.  

The use of test portfolios, however, presents a different set of problems. The test 

portfolios are typically sorted on a few characteristics such as size and book-to-market. 

Sorting on characteristics that are known to predict returns helps generate a reasonable 

variation in average returns across test assets. However, Lewellen, Nagel, and Shanken 

(2010) point out sorting on characteristics also imparts a strong factor structure across the 

test portfolios. Lewellen et al. (2010) show that as a result even factors that are weakly 
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correlated with the sorting characteristics would explain the differences in average 

returns across test portfolios regardless of the economic merits of the theories that 

underlie the factors.  

Moreover, the statistical significance and economic magnitudes of risk premiums 

estimated using regression (2.3) could critically depend on the choice of test portfolios. 

For example, the Fama-French SMB and HML risk factors are significantly priced when 

test portfolios are sorted based on size and book-to-market, but they do not command 

significant risk premiums if test portfolios are sorted only based on momentum. 

This paper proposes a methodology that uses individual stocks as test assets which 

addresses these problems. The use of individual assets preserves the dimensionality of the 

variation in expected returns that we observe in the stock market. Also, since our tests use 

all listed stocks individually, the asset pricing test results are not dependent on subjective 

choices made to construct the test portfolios. 

We propose an instrumental variables regression to estimate the risk premiums in 

regression (2.3). To describe our IV estimator, rewrite regression (2.3) in a matrix form 

as: 

𝑅𝑡 = Β ̂Γ𝑡 + Φ𝑡 

where 𝑅𝑡  is the 𝑁 × 1 vector of realized excess returns in month t, Β ̂ is the 𝑁 × (𝐾+1) 

matrix containing the intercept and K factor loadings, and  Γ𝑡 is the (𝐾 + 1) × 1 vector 

that includes 𝐾 factor risk premiums if N stocks are used. For each month 𝑡, we propose 

the following instrumental variables estimator:  

�̂�𝐼𝑉,𝑡 = (Β̂𝑜𝑑𝑑
′  Β̂𝑒𝑣𝑒𝑛)

−1
�̂�′𝑅𝑡,         (2.4) 

where: 

Β̂𝑜𝑑𝑑 is the matrix of factor sensitivities estimated using data in odd months (“odd-month 

betas” or “odd-month factor sensitivities”), 

Β̂𝑒𝑣𝑒𝑛 is the matrix of factor sensitivities estimated using data in even months (“even-

month betas” or “even-month factor sensitivities”), and 

�̂� is Β̂𝑜𝑑𝑑 if month t is even and Β̂𝑒𝑣𝑒𝑛 otherwise. 

We use odd-month beta estimates as instruments when month t is even and the even-

month beta estimates otherwise. In our empirical applications (see section III), we 
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estimate factor sensitivities with daily data available over the past three years before 

month t for regression (2.4). We then slide forward the three-year rolling window by one 

month and repeat the estimations of factor sensitivities and risk premiums. In this section, 

for simplicity, we omit the subscript t of factor sensitivities. The IV estimator is 

consistent under the conditions in the proposition below:  

 

Proposition 1: Suppose stock returns follow an approximate factor structure. If the 

number of stocks in the cross-section is sufficiently large then under mild regularity 

conditions, the IV estimator given by equation (2.4) is consistent in the number of 

observations used to estimate factor sensitivities (T-consistent).2 

Proof: See Appendix 1. 

Corollary: The IV estimator is N-consistent for any finite T.  

 

As Proposition 1 shows, for sufficiently large N, the IV estimator is T-consistent as T 

grows without bound. For a fixed T, the IV estimator is N-consistent as we allow the 

number of stocks in the cross-section to increase indefinitely. In contrast, the FM 

estimator is biased under this assumption. The proposition below shows that the IV 

estimator converges faster in probability than the FM estimator.
3
  

 

Proposition 2: Suppose stock returns follow an approximate factor structure. If the 

number of stocks in the cross-section is sufficiently large, under mild regularity 

conditions, then: 

                                                           
2
 Shanken (1992) defines a risk-premium estimator as N-consistent if for a finite T the estimator converges 

to the realized risk premium in the sample as  N, the number of stocks in the cross-section, increases 

indefinitely. An estimator is T-consistent if the estimator converges to the population risk premium as T 

increases indefinitely.  
3
 Note that the convergence in probability is not about the IV estimator itself. Throughout the paper, the 

rate of convergence in probability denotes the rate of convergence of the probability bound, i.e., 𝑓(𝑇), in 

the right-hand side of the following inequality: For any 𝜀 > 0, when 𝑥1, 𝑥2, … , 𝑥𝑇 are samples, 

 

Pr(|�̅�𝑇 − 𝜇|> 𝜀) < 𝑓(𝑇), 

 

where �̅�𝑇 is the sample mean, 𝜇 is the population mean, and 𝑓(𝑇) is a function of 𝑇 whose value is 

positive. 
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a. The rate of convergence in probability of the IV estimator given by equation 

(2.4) is exponential in T; and  

b. The rate of convergence in probability of the FM estimator by regression (2.3) 

is linear in T.  

Proof: See Appendix 1. 

 

To see the intuition behind this proposition, consider the sources of T-inconsistencies 

for the IV and the FM estimators when T is finite.  In the case of the FM estimator, the 

EIV problem arises because of a term related to the variance of the measurement error in 

beta estimates, which decreases linearly in T. Since variance is always positive, T should 

be sufficiently large to make the positive number converge to zero. This implies that the 

probability bound of the FM estimator decays linearly in T. On the other hand, the T-

inconsistency of the IV estimator arises due to a term related to average factor surprise 

and its expected value is zero.
4
 So for the IV estimator to be T-consistent, T should be 

large enough so that the sample mean converges to its population mean, whose 

probability bound decays at an exponential rate in T (See Bahadur and Rao, 1960).    

The literature also offers an alternative approach to address the EIV problems in the 

second stage regressions. Since the measurement error in factor loadings is the source of 

the EIV bias in the second stage regression (2.3), one could in principle undo the EIV 

bias using a factor that is the appropriate function of the measurement error. Litzenberger 

and Ramaswamy (1979) propose such a correction to estimate the CAPM risk premium 

with individual stocks. In the case of the CAPM or any single factor model, the 

measurement error in betas bias the slope coefficient estimate in regression (2.3) by a 

factor equal to the variance of true betas divided by the variance of estimated betas 

(which equals the variance of the true betas plus the variance of measurement errors). So 

if one can obtain a consistent estimate of the variance of measurement errors in beta 

estimates, then one could analytically correct for the EIV bias and obtain the N-consistent 

estimates of risk premiums in regression (2.3). The Litzenberger and Ramaswamy 

                                                           
4
 In addition to the EIV term, the FM estimator also has a term related to average factor surprise, whose 

probability bound decays exponentially in T. However, the rate of convergence in probability of the FM 

estimator is determined by the EIV term, whose probability bound decays linearly in T. For detailed 

discussion, see Appendix 1. 
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correction assumes that residual returns from the market model regressions are 

asymptotically weakly correlated across stocks. Shanken (1992) generalizes this EIV 

correction to multifactor asset pricing models. Brennan et al. (1998) propose another 

alternative method to avoid the EIV bias by employing risk-adjusted returns as the 

dependent variable in the second stage regressions. However, their methodology is not 

allowed to estimate the risk premiums of factors. 

 

 Adjustment for Finite Sample Moments: As the number of assets (N) grows 

infinitely for fixed T, it is trivial to show that the IV estimator is asymptotically normally 

distributed. However, since Β̂𝑜𝑑𝑑
′  Β̂𝑒𝑣𝑒𝑛 in equation (2.4) might not be positive definite for 

large but finite N, there is small but still positive probability that the IV estimtator in 

equation (2.4) has an extremely large value due to Β̂𝑜𝑑𝑑
′  Β̂𝑒𝑣𝑒𝑛 being near-singularity, 

which can make the finite sample moments of the IV estimator not exist. To avoid this 

ill-behaved finite sample property, we truncate the IV estimator based on the sample 

means and standard deivations of realizations of risk factors. Shanken and Zhou (2007) 

employ a similar approach for maximum-likelihood estimator based on portfolios. 

Specially, suppose that 𝛾𝑘,𝑡 is the risk premium estimate of factor 𝑘 in month t. We treat 

𝛾𝑘,𝑡 as a missing value if the deviation of 𝛾𝑘,𝑡 from the sample mean of factor 𝑘 

realizations is greater than six times of their sample standard deviation. Excluding the 

extreme values of 𝛾𝑘,𝑡 ensures that all finite sample moments of the IV estimator exist. In 

our simulations (see section 3), we find that the chance of thruncation binding is 

negligeable, less than 0.1% on average, for all choices of N and T and all risk factors, and 

find that this chance decreases as either N and T increases. In our real data analyses (see 

section 4), the chance of truncation binding becomes higher but is below 3% for all asset 

pricing tests. For example, when testing the CAPM and Fama-French three-factor model, 

the chance of 𝛾𝐻𝑀𝐿,𝑡 truncation binding tends to be the highest among the three Fama-

French factors and it is close to 3% over the entire sample period (January 1956 through 

December 2012) having 684 months in total. In the case of HML, this 3% corresponds to 

about 20 months and most of the truncation binding occur in early years when the 

numbers of individual stocks range from 300 to 400, which are substantially smaller than 

the average size of cross-sections (=1934 stocks) over the entire sample period. 
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3. Small Sample Properties 

 

The results so far indicate that the rate of convergence in probability of the IV 

estimator is faster than that of the standard FM estimator as the number of observation 

used to estimate factor sensitivities grows without bound. While our analytical results 

based on large sample properties could point us in the right direction, the small sample 

performance of an estimator would critically influence its adoption. This section 

examines the small sample properties of the following two-stage approaches to 

estimating the factor risk premiums under the CAPM and the Fama-French three-factor 

model: 

(i) FM: The standard Fama-MacBeth methodology that estimates the risk 

premiums in the second stage regression using OLS methodology  

(ii) IV:   The instrumental variables methodology that we propose. 

We employ individual stocks as tests assets in the simulation experiments. 

 

3.1. Return Generating Processes 

We consider a general setting where K common factors are priced. Under this 

model, we can specify realized daily stock returns as:  

𝑟𝑖,𝜏 = 𝛼𝑖 + ∑ 𝛽𝑖,𝑘 × 𝑓𝑘,𝜏
𝐾
𝑘=1 + 𝜀𝑖,𝜏,                                                  (2.5) 

where :
5
 

𝑟𝑖,𝜏 ≡ Day τ excess return of stock i;  

𝛼𝑖 ≡ Expected excess return of stock i 

𝛽𝑖,𝑘 ≡ Sensitivity of stock i to the priced factor k; 

𝑓𝑘,𝜏 ≡ Day τ realization of the priced factor k; 𝐸(𝑓𝑘,𝜏 ) = 0; and 

𝜀𝑖,𝜏 ≡ Day τ residual return of stock i. 

                                                           
5
 For clarity, we use τ to denote data for a particular day and t to denote data for a particular month.  
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 Under the K-factor model, the expected excess returns are given by: 

𝐸(𝑟𝑖) = 𝛾0 + ∑ 𝛽𝑖,𝑘 × 𝛾𝑘
𝐾
𝑘=1                                                         (2.6) 

where 𝛾𝑘 is the risk premium on the priced factor k. The K-factor asset pricing model 

imposes no restriction on the covariance structure of residual returns across assets.  In 

general not all factors would be priced and hence residual returns can be correlated across 

assets.  

 

3.2. Simulation Experiments: Parameters and Methodology 

We choose the simulation parameters based on the corresponding statistics in the 

actual data over the sample period January 1956 through December 2012. For the single 

factor model, we match the simulation parameters to the average market risk premium, 

the risk free rate, the distribution of betas, and volatility of firm-specific returns from the 

actual data.  

We use the CRSP value-weighted index as the market index and the short-term T-bill 

rate as the risk free rate to estimate these parameters. We run the market model regression 

for each stock to compute betas and residual returns. We then conduct the simulation 

with a sample of N stocks. We randomly generate daily returns using the following 

procedure:  

1) Randomly generate beta and 𝜎𝜀,𝑖 for each stock from normal distributions 

with means and standard deviations equal to the corresponding sample means and 

standard deviations from the actual data. For 𝜎𝜀,𝑖, we take the absolute values of 

the random draws to make it positive. Thus 𝜎𝜀,𝑖 follows a folded normal 

distribution.  

2) Generate market excess return for each day as a random draw from a 

normal distribution with mean and standard deviation equal to the sample mean 

and standard deviation from the data.  

3) Generate 𝜀𝑖,𝜏 for each stock from independent normal distributions with 

mean zero and standard deviation corresponding to the value generated in step 1).  
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For each stock i, we compute excess return in day 𝜏 as: 

𝑟𝑖,𝜏 = 𝛽𝑖 × 𝑟𝑚,𝜏 + 𝜀𝑖,𝜏.      (2.7) 

We repeat the simulation 1,000 times each for N = 1000 and 2000, and T=264, 

528, 792, 1320, and 2640 days. Each “month” in the simulation is 22 days long and we 

denote month with the subscript t. Therefore, the sample periods we use in the 

simulations range from 12 to 120 months. 

For the first stage regression in the simulations, we fit the following market model 

regression with daily excess returns data for each stock to estimate beta: 

𝑟𝑖,𝜏 = 𝛼𝑖 + 𝛽𝑖 × 𝑟𝑚,𝜏 + 𝑒𝑖,𝜏.      (2.8) 

We use returns at a daily frequency rather than at a monthly frequency to get more 

precise beta estimates (see Merton, 1972).  For the standard Fama-MacBeth approach, we 

fit the time-series regression over all T days. For the IV approach, we fit the time-series 

regressions separately with daily returns data from odd and even months.  

We fit the second stage regression with monthly return data since this is the 

common practice in the literature. We could have fit the second stage regression with 

daily data as well, but there is no practical difference between fitting the regressions with 

monthly and daily returns. To see this intuitively, compare fitting one cross-sectional 

regression for month t with fitting 22 separate daily regressions for the month and 

averaging the daily regression estimates over the month. With the same set of firms in 

both regressions and same betas for the month, the slope coefficient of the monthly 

regression would be exactly 22 times the average slope coefficient of the daily 

regressions and the standard error of the monthly regression would also be 22 times the 

standard error of average daily regression coefficient. As a result, both specifications 

would yield exactly the same t-statistic for the slope coefficient. There would be some 

differences between the two specifications if daily returns are compounded to compute 

monthly returns but such differences are likely small.  
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We compute stock and factor returns for month t by aggregating the 

corresponding daily returns within the month. We then fit the following cross-sectional 

regression with monthly data 

𝑟𝑖,𝑡 = 𝛾0,𝑡 + �̂�𝑖 × 𝛾1,𝑡 + 𝑒𝑖,𝑡.      (2.9) 

where �̂�𝑖 is the estimate from regression (2.8). For the Fama-MacBeth approach, we 

estimate the OLS parameters of 𝛾0,𝑡 and 𝛾1,𝑡 each month. For the IV approach, we use 

equation (2.4) to estimate the parameters of 𝛾0,𝑡 and 𝛾1,𝑡 each month. We compute Fama-

MacBeth standard errors for both approaches.  

We carry out the three-factor model simulation experiments analogously, but in 

addition to market returns and market betas, we also generate risk factors and their 

sensitivities corresponding to the Fama-French SMB and HML factors. We match means 

and standard deviations for these parameters in the simulations to what we observe in the 

actual data. We then carry out the two-stage procedure to estimate 𝛾0, 𝛾𝑚, 𝛾𝑠𝑚𝑏 , and 𝛾ℎ𝑚𝑙. 

Appendix 2 presents the simulation parameters and the simulation experiment design in 

more detail. 

 

3.3. EIV Bias  

We run the simulation experiments with N = 1000 and 2000, and T=264, 528, 

792, 1320, and 2640 days. For each simulation, we compare the true factor risk premiums 

used to generate data and the corresponding sample estimates. The average of this 

difference over the 1000 replications is the EIV-induced ex-ante bias. We also report the 

corresponding ex-ante root-mean-squared error (RMSE). In addition to the ex-ante bias 

and RMSE, we also investigate the ex-post bias and RMSE, which compare the sample 

means of simulated risk factors and the corresponding sample estimates.  
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Panel A of Table 11 presents the EIV-induced biases and RMSEs for the single 

factor model under the IV approach.
6
 We report ex-ante and ex-post biases and RMSEs 

as percentages of the true parameter. For a given T, the odd and even month betas are 

estimated separately using T/2 observations. For both N=1000 and N=2000, ex-ante and 

ex-post biases are less than 1% for all Ts and ex-ante and ex-post RMSEs are less than 

10% for all Ts greater than or equal to 792 days.  

To get a perspective on the EIV difficulty, Figure 2 presents the ex-ante and ex-

post biases (Panel A) and RMSEs (Panel B) under the FM and IV estimators against the 

number of daily observations in the sample period with 2000 stocks. The vertical axis 

reports the biases and RMSEs as percentages of the true risk premium used in the 

simulations. In Panel A, the downward biases under the FM procedure are greater than 

5% even for 2640 daily observations. The biases are less that 1% for the IV approach 

even with 264 daily observations, which is about 12 months of data. In Panel B, both ex-

ante and ex-post RMSEs induced by EIV problem in the FM approach is substantially 

larger than those in the IV approach across all Ts, especially, the ex-post RMSEs. For 

example, the ex-post RMSE is less than 10% for the IV approach even with 264 daily 

observations and it is less than 2% with 2640 daily observations. In contrast, the ex-post 

RMSE is about 7% for the FM approach with 2640 daily observations. The faster rate of 

convergence for the IV approach is consistent with the analytical results in Proposition 2.   

Panel B of Table 11 presents the results for the three-factor model. The EIV problem 

always biases the slope coefficient estimates towards zero in univariate regressions, but 

the direction of the bias is in general indeterminate in multivariate regressions. As the 

table shows, the multivariate (three-factor) IV estimator bias is small for all sample sizes, 

and the ex-ante and ex-post biases are insignificant for all risk premiums estimated with 

at least 528 daily observations.  The maximum bias is about 4% with 264 daily 

observations (when N=1000), which is approximately the number of trading days in a 

single year. 

 

                                                           
6
 The slope coefficient estimates using the FM procedure (unreported) are biased towards zero for all values 

of N and T due to the EIV problem. 
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3.4. Small Sample Distribution of the Test Statistic 

We are primarily interested in using the IV estimator to test whether risk premiums 

associated with various factors are significantly different from zero. We propose to use 

the conventional t-statistic to test this hypothesis. We compute the t-statistic as follows: 

𝑡𝛾 =
�̂�

�̂�𝛾
                            (2.10) 

where 𝛾 is the time-series average of monthly estimates of risk premiums and �̂�𝛾 is the 

corresponding Fama-MacBeth standard error.  

This subsection examines the small sample distribution of the t-statistics in equation 

(2.10). We follow the same steps as in the last section to generate simulated data, but we 

set all true risk premiums equal to zero according to the null hypothesis. We then 

examine the percentage of simulations when the t-statistics are significant at the various 

levels (two-sided) using critical values based on the asymptotic normal distribution of the 

t-test statistic.  

Table 12 presents the test sizes for the CAPM and the Fama-French three-factor 

model. We present the results for T=792 days, since we use a three-year rolling window 

for the first stage regression in our empirical applications. The results indicate that the 

tests are well specified. For example, in both single factor model and multifactor model, 

the test sizes for all factor risk premiums at the 5% level of significance are between 

4.7% and 5.6% and those for 10% level of significance are between 9.6% and 10.4%, 

respectively. We found that the tests are well specified even when T=264 days, which 

corresponds to one year of daily data.  Therefore, conventional t-test statistics based on 

the IV approach can be used to draw reliable inferences about the significance of risk 

premium estimates in finite samples. 

 

4. Empirical Tests 

 

4.1. Data 
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We obtain stock return and market capitalization data from the CRSP files and 

balance sheet data from COMPUSTAT during the sample period from January 1956 

through December 2012. We exclude American depository receipts (ADRs), shares of 

beneficial interest, Americus Trust components, close-end funds, preferred stocks, and 

real estate investment trusts (REITs). We include only common stocks in our sample 

(CRSP share codes of 10 or 11). We also exclude stocks with prices below $1 and market 

capitalization less than $500,000 at the end of each month from the sample for the 

following month. We include all stocks that meet these criteria for which returns and 

book values are available. Since we employ daily returns data to estimate betas, we 

restrict the sample to stocks with at least 200 daily returns per year during the estimation 

period, i.e., the past three years.7  

Table 13 presents the summary statistics of the stocks in the sample. There are a total 

of 7508 distinct stocks which enter the sample at different points in time. There are 1934 

stocks per month in the sample on average.  

 

4.2. CAPM and Fama-French Three-Factor Model 

This section tests the CAPM and the Fama-French three-factor model. We first test 

whether the estimated factor risk premiums under the CAPM and the Fama-French three-

factor models are different from zero using individual stocks as test assets. We also 

examine whether the risk premiums after controlling for stock characteristics are priced.  

Early empirical tests of the CAPM by Fama and MacBeth (1973) and others find 

strong support for the CAPM. However several subsequent papers show that market betas 

are not priced after controlling for other factors. For instance, Jegadeesh (1992) and Fama 

and French (1993) find that after controlling for the size effect, the market risk premium 

is not significantly different from zero.  

                                                           
7
 We repeat the asset pricing tests with different thresholds for the number of daily observations per year, 

i.e., 100 and 150 daily observations per year, and find that our conclusions on the asset pricing tests do not 

change. 
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The inability of the CAPM to account for any of the cross-sectional differences in 

expected returns reinvigorated the search for alternative asset pricing models. The Fama-

French three-factor model is perhaps the most widely used alternative. This  model 

proposes size (i.e., SMB) and book-to-market (i.e., HML) factors as additional risk 

factors along with the market factor.  

The empirical support for the Fama-French three-factor model is mixed. Fama and 

French (1992) estimate factor risk premiums using the portfolios sorted on size and book-

to-market and show that both premiums are significantly positive. But the loadings on 

these risk factors are highly correlated with the size and book-to-market characteristics of 

the test portfolios. Therefore, as Lewellen et al. (2010) show, it is hard to reliably 

conclude that these risk premiums are indeed compensation for systematic risks rather 

than for portfolio characteristics because of the low dimensionality problems when 

portfolios are used as test assets.   

The conflicting results of the empirical tests in Daniel and Titman (1997) and Davis, 

Fama, and French (2000) further illustrate the difficulty in making reliable inferences 

with portfolios as test assets. Daniel and Titman argue that the differences of average 

returns in size and book-to-market sorted portfolio returns are due to their characteristics. 

However, Davis, Fama, and French (2000) extend the sample period back to 1925 and 

find that in this extended sample period, the SMB and HML factor risks are priced and 

they argue that the differences in average returns across the test portfolios are due to 

factor risks and not due to their characteristics.  

This subsection uses individual stocks in the tests and avoids the low dimensionality 

problems inherent in the tests that employ characteristics-sorted portfolios as test assets. 

We use rolling windows from month t-36 to month t-1 to estimate betas for month t. In 

untabulated tests, we found similar asset pricing test results when we used betas 

estimated within 60-, 24-, and 12-month rolling windows as well. 

We use daily returns data to estimate betas and use one day lead and lag of the 

independent variables to adjust for non-synchronous trading effects (Dimson, 1979). 
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Specifically, we use the following regressions to estimate factor sensitivities under the 

CAPM:  

𝑟𝑖,𝜏 = 𝑎𝑖 + ∑ 𝛽𝑖,𝑚,𝜅 × 𝑟𝑚,𝜏−𝜅 +1
𝜅=−1 𝑢𝑖,𝜏,                      (2.11) 

�̂�𝑖,𝑚 = �̂�𝑖,𝑚,−1 + �̂�𝑖,𝑚,0 + �̂�𝑖,𝑚,1.                                            

 

We estimate odd- and even-month betas separately using returns on days belonging to 

odd and even months, respectively. Because we adjust for possible non-synchronous 

trading effects in regression (2.11), we exclude the first and the last days of each month 

to avoid any overlap.
8
 We estimate betas for each month using returns data over the 

previous 36 months. We use an analogous multivariate regression to estimate the three 

factor sensitivities for the Fama-French three-factor model.  

To get the characteristics for each stock for each month, we compute Size as the 

natural logarithm of market capitalization at the end of the previous month. BM is the 

book-to-market ratio, or the ratio of book value to market value. We compute book value 

as the sum of book value of equity plus deferred taxes and credits minus book value of 

preferred stock. We compute correlations between each pair of firm-specific variables 

each month and Table 14 presents the average cross-sectional correlations among factor 

sensitivities and characteristics. The CAPM beta estimated using the market model is 

negatively correlated with both Size and BM. In the Fama-French model, the correlation 

between market betas and the betas on the other two factors are positive. The correlation 

between Size and SMB factor sensitivities is negative, and the correlation between HML 

factor and BM is positive, which reflect the fact that the SMB and HML factors are 

constructed using these characteristics.  

For direct comparison, Table 14 also presents the average cross-sectional correlations 

between each pair of portfolio-specific variables for 25 Fama-French size and book-to-

market sorted portfolios. For each portfolio, we compute Size and BM each month as the 

                                                           
8
 We found almost identical results when we included the first and last days of each month. Also, the 

results were qualitatively similar to those we report when we set �̂�𝑖,𝑚 = �̂�𝑖,𝑚,0. 
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value-weighted averages across all stocks in the portfolios. The correlation between SMB 

risk and Size is -.97 and that between HML risk and BM is .88 for these portfolios.  

We estimate factor risk premiums using the IV methodology next. Table 15 presents 

the factor risk premium estimates for a number of different specifications of the second 

stage regressions. We first test the CAPM using betas estimated with the univariate 

regression (2.11). In column (1), the market risk premium estimate is −.189%, which is 

not reliably different from zero. Therefore, we do not find any support for the CAPM 

with individual returns.  

We consider the Fama-French three-factor model next. We now estimate market betas 

and the other factor sensitivities using multivariate time-series regressions with all three 

factors. As a preliminary step, we estimate SMB and HML risk premiums in univariate 

specifications.
9
  The SMB risk premium is .227% and not reliably different from zero at 

any conventional significance level, while the HML risk premium is .483% and is 

significant at the 1% level. Table 15 also reports factor risk premium estimates when we 

include all three factor sensitivities in the cross-sectional regressions. In column (4), the 

market risk premium estimate is now -.315% and the SMB and HML risk premiums are 

.311% and .504%,  respectively. The SMB and HML risk premiums are now significant 

at the 5% level.  

The statistical significance of the SMB and HML risk premiums in some of the above 

regressions may suggest that these risks are priced, but it is also possible that these 

estimates are merely a result of the correlation between factors sensitivities and the 

underlying characteristics. To examine this issue, our next set of tests includes Size and 

BM as additional independent variables in the second stage regressions. In column (5), 

the Size and BM coefficients in the regression which also includes market betas are -

.152% and .163%, which are both statistically significant at the 1% level. The market risk 

premium estimate is .010%, which is not different from zero. In the regression that 

includes both SMB factor sensitivity and Size as independent variables (i.e., column (6)), 

SMB risk premium is -.025%, which is not statistically significant. In the regression that 

                                                           
9
 In untabulated results, we found that the market risk premium using market beta estimates from the Fama-

French three-factor model specification was similar to the CAPM result in column (1) of Table 15.   
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includes HML factor sensitivity and book-to-market as independent variables (i.e., 

column (7)), the HML risk premium is .289%, which is still significant at the 5% level 

although its magnitude is substantially reduced compared to those in columns (3) and (4).  

The final regression includes all factor sensitivities and characteristics as independent 

variables. In this regression (i.e., column (8)), the market risk premium is .113%, SMB 

risk premium is -.077%, and HML risk premium is .259%. All these estimates are not 

significantly different from zero at the 5% level. The point estimate of HML risk 

premium is the largest in this specification and it is marginally significant at the 10% 

level. The slope coefficients on Size and BM are highly significant at any conventional 

levels.  

Table 15 also presents the results for two roughly equal subperiods. The factor risk 

premiums are not significant in most of the regressions that include characteristics in 

these subperiods as well. The only exception is column (7) of Panel B showing that the 

premium for HML risk in the first subperiod is .352% and marginally significant at the 

5% level. However, this significance disappears when the other two factor sensitivities 

and Size are included in column (8). In contrast, the slope coefficients on Size and BM 

are generally significant in both subperiods.  

Overall, the results indicate that factor risk premium estimates are significant in some 

specifications that have only factor sensitivities as independent variables, but become 

insignificant when the corresponding characteristics are also included in the regressions. 

Therefore, the variation in risk premium estimates across regression specifications seems 

to be driven by the statistical correlations across included and omitted variables rather 

than by economic phenomenon.   

 

4.3. Production-based Asset Pricing Model 

Several recent asset pricing models build on Merton’s (1973) ICAPM to identify risk 

factors that are grounded in theory. Merton shows that when investment opportunity set 

varies over time, risks related to changing opportunity set will also be priced in addition 
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to the market risk under the CAPM. Cochrane (1991) and Liu, Whited and Zhang (2009) 

present production-based asset pricing models in which productivity shocks are tied to 

the changes in the investment opportunity set.  Since shocks to productivity are difficult 

to accurately measure, Chen, Novy-Marx and Zhang (2011) propose an investment factor 

and an ROE factor to capture productivity shocks. In this production-based asset pricing 

model, expected returns in excess of the risk-free rate (𝑟𝑖,𝑡) are given by: 

𝐸[𝑟𝑖,𝑡] = 𝛽𝑀,𝑖 × 𝛾𝑀 + 𝛽𝐼,𝑖 × 𝛾𝐼 + 𝛽𝑅𝑂𝐸,𝑖 × 𝛾𝑅𝑂𝐸                        (2.12) 

where 𝛽𝑀,𝑖, 𝛽𝐼,𝑖,  and 𝛽𝑅𝑂𝐸,𝑖 are the betas with respect to market, investment and ROE 

factors, and 𝛾𝑀,  𝛾𝐼 and  𝛾𝑅𝑂𝐸 are the corresponding risk premiums, respectively.  

The investment factor captures the level of investments and the ROE factor 

captures the return on investments, i.e., profitability. The investment factor is constructed 

as the return difference between firms with low levels of investment and firms with high 

levels of investment and the ROE factor is constructed as the return difference between 

firms with high return on investment and firms with low return on investment. Intuitively, 

the levels of investments and rates of return on investments are likely to reflect the 

sensitivity to productivity shocks, and these factors are constructed to capture the price 

impact of the shocks. Chen, Novy-Marx and Zhang (2011) report that these factors better 

explain the cross-sectional return differences across portfolios constructed based on  

book-to-market, size, momentum, SUE, and net stock issues than the Fama-French three-

factor model.  

The Chen, Novy-Marx and Zhang (2011) model is appealing because it identifies 

risk factors based on an underlying theory rather than based on empirical anomalies. 

Also, their empirical tests use a variety of different portfolios and these test portfolios and 

the common factors are constructed using different characteristics. For instance, the test 

for the size and book-to-market effects uses 25 Fama-French size and book-to-market 

sorted portfolios, the test of the momentum effect uses 25 portfolios formed based on size 

and momentum, and the test for the SUE effect uses 10 SUE portfolios. However, these 

tests are still exposed to the low dimensionality problem because each test uses portfolios 

constructed using one or two anomalies.  
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This subsection tests the production-based asset pricing model using individual 

stocks as test assets. We use the same procedure as in Chen, Novy-Marx and Zhang 

(2011) to construct daily investment and ROE factors. We independently sort firms based 

on firm sizes, investments to total assets and ROEs. We classify stocks into three 

categories based on each of these variables, where we assign the top 30% and bottom 

30% of the stocks to the high and low categories and the middle 40% to the medium 

category. We form 27 value-weighted portfolios with stocks in the intersections of these 

categories. The investment factor is long the equally weighted portfolio of the nine low 

investments to total assets portfolios and short the nine high investments to total assets 

portfolios. We construct the ROE factor as the difference between the high ROE and low 

ROE portfolios.  We use the last announced quarterly balance sheet data to compute the 

level of investments and ROE each month.
10

 Since earnings announcement dates are 

available on COMPUSTAT only after 1972, the sample period for the tests in this 

subsection is from 1972 to 2012.   

Table 16 reports the average cross-sectional correlations among factor 

sensitivities and firm characteristics. The sensitivities to investment and ROE factors are 

positively correlated across stocks.  Investment factor sensitivity is negatively correlated 

with Size and positively correlated with BM, and the ROE factor sensitivity is positively 

correlated with Size and negatively correlated with BM. The correlations between these 

factor sensitivities and the characteristics are smaller than those for the SMB and HML 

factors in Table 14. Table 16 also presents these correlations for the 25 Fama-French size 

and book-to-market sorted portfolios. For these portfolios, the correlation between 

investment factor sensitivity and BM is .88 and the correlation between ROE factor 

sensitivity and Size is .74. These high correlations suggest that the low dimensionality 

issues discussed in Lewellen et al. (2010) could affect the results of the tests that use the 

25 Fama-French portfolios.  

                                                           
10

 Following Chen, Novy-Marx and Zhang (2011), the investment to total assets is defined as the annual 

change in gross property, plant, and equipment plus the annual change in inventories divided by the book 

value of assets lagged by one quarter. ROE is defined as income before extraordinary items divided by 

book equity lagged by one quarter. 
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Table 17 presents the results of the asset pricing tests with individual stocks. 

When we consider each of the factor sensitivities individually, we find that the result for 

market risk premium is similar to what we found in Table 15. In column (2), investment 

risk premium is .375% and marginally significant at the 5% level. In column (3), ROE 

risk premium is negative and insignificant at any conventional level. When we include all 

three factor sensitivities simultaneously in the second stage regression (i.e., column (4)), 

none of the factor risks have significant slope coefficients. In comparison, the mean of 

the ROE factor during our sample period is .7% per month, which is significantly 

positive. So if the ROE factor reflected risk, the risk premium on this factor should be 

positive as well. Table 17 also reports the regression estimates when we include Size and 

BM in the regressions (columns (5) to (7)). Once again, we find that none of the 

investment and ROE risk factors are priced when characteristics are included. Table 17 

also presents the results for the two subperiods and these factors are priced in neither of 

them when Size and BM are included in regressions.  

 

4.4.  Liquidity-adjusted CAPM 

This subsection tests the liquidity-adjusted capital asset pricing model (LCAPM) 

proposed by Acharya and Pedersen (2005).  In contrast to the models such as Chen, 

Novy-Marx and Zhang (2011), Campbell and Vuolteenaho (2004), and others that 

identify risk factors based on specialized variations of the ICAPM, the LCAPM models 

the effect of illiquidity-based trading frictions on asset pricing. According to the LCAPM, 

the level of illiquidity and the covariances of return and illiquidity innovation with the 

market return and illiquidity innovation vary across assets. The unconditional expected 

return in excess of the risk-free rate (𝑟𝑖,𝑡) under the LCAPM is:  

 

𝐸[𝑟𝑖,𝑡] = 𝐸[𝑐𝑖,𝑡] + 𝜆(𝛽1,𝑖 + 𝛽2,𝑖 − 𝛽3,𝑖 − 𝛽4,𝑖) ,     (2.13) 

 

where 𝑐𝑖,𝑡 is the illiquidity cost, the risk premium is the market excess return minus 

aggregate illiquidity cost (i.e. 𝜆 = 𝐸[𝑟𝑚,𝑡 − 𝑐𝑚,𝑡]), and the betas are  
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𝛽1,𝑖 =
𝐶𝑜𝑣(𝑟𝑖,𝑡,   𝑟𝑚,𝑡−𝐸𝑡−1(𝑟𝑚,𝑡))

𝑉𝑎𝑟(𝑟𝑚,𝑡−𝐸𝑡−1(𝑟𝑚,𝑡)−[𝑐𝑚,𝑡−𝐸𝑡−1(𝑐𝑚,𝑡)])
,      (2.14) 

𝛽2,𝑖 =
𝐶𝑜𝑣(𝑐𝑖,𝑡−𝐸𝑡−1(𝑐𝑖,𝑡), 𝑐𝑚,𝑡−𝐸𝑡−1(𝑐𝑚,𝑡))

𝑉𝑎𝑟(𝑟𝑚,𝑡−𝐸𝑡−1(𝑟𝑚,𝑡)−[𝑐𝑚,𝑡−𝐸𝑡−1(𝑐𝑚,𝑡)])
,     

𝛽3,𝑖 =
𝐶𝑜𝑣(𝑟𝑖,𝑡, 𝑐𝑚,𝑡−𝐸𝑡−1(𝑐𝑚,𝑡))

𝑉𝑎𝑟(𝑟𝑚,𝑡−𝐸𝑡−1(𝑟𝑚,𝑡)−[𝑐𝑚,𝑡−𝐸𝑡−1(𝑐𝑚,𝑡)])
,    

𝛽4,𝑖 =
𝐶𝑜𝑣(𝑐𝑖,𝑡−𝐸𝑡−1(𝑐𝑖,𝑡),   𝑟𝑚,𝑡−𝐸𝑡−1(𝑟𝑚,𝑡))

𝑉𝑎𝑟(𝑟𝑚,𝑡−𝐸𝑡−1(𝑟𝑚,𝑡)−[𝑐𝑚,𝑡−𝐸𝑡−1(𝑐𝑚,𝑡)])
.     

 

The term 𝐸[𝑐𝑖,𝑡] is the reward for firm-specific illiquidity level, which is the 

compensation for holding an illiquid asset as in Amihud and Mendelson (1986). Acharya 

and Pederson define illiquidity-adjusted net beta as:  

𝛽𝐿𝑀𝐾𝑇,𝑖 = 𝛽1,𝑖 + 𝛽2,𝑖 − 𝛽3,𝑖 − 𝛽4,𝑖 .              (2.15) 

The LCAPM implies that the linear relation between risk and return applies for 

liquidity-adjusted beta but not for the standard CAPM beta. The LCAPM also implies 

that the linearity between risk and return applies to excess return net of firm-specific 

illiquidity cost.  

Acharya and Pedersen (2005) test the LCAPM using two sets of test portfolios 

formed based on illiquidity and standard deviation of illiquidity. They sort stocks based 

on Amihud (2002) illiquidity measures during each year and form 25 value-weighted 

illiquidity test portfolios for the subsequent year. They also form 25 𝜎(illiquidity) 

portfolios similarly by sorting based on the standard deviation of illiquidity.  

We examined the correlations between 𝛽𝐿𝑀𝐾𝑇 and the value-weighted average of Size 

and BM for these portfolios. We found that correlations of 𝛽𝐿𝑀𝐾𝑇 with Size for illiquidity 

and 𝜎(illiquidity) portfolios are -.96 and -.97, and those with BM are .71 and .74, 

respectively. These particularly high correlations between liquidity-adjusted betas and 

Size suggest that it would be hard to empirically differentiate whether differences in 

returns across test portfolios are due to Size or illiquidity-adjusted betas.  This situation 

parallels that in Chan and Chen (1988) who use 20 size-sorted portfolios as test assets 

and find strong support for the CAPM. The correlations between betas and Size for Chan 

and Chen’s test portfolios range from -.988 to -.909 over different periods, and the 

corresponding correlations in the case of illiquidity and 𝜎(illiquidity) portfolios are 

within this range. Jegadeesh (1992) shows that when test portfolios are constructed so 
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that size and beta have low correlations, the market risk is not priced and that the 

significant market risk premium found using size-sorted portfolios is due to the high 

correlation between size and beta.  

We investigate whether the LCAPM beta is priced using the IV estimator with 

individual stocks. To facilitate comparability, we follow the same approach as in Acharya 

and Pederson (2005) in all other respects. Because of the differences in the market 

structures of the NYSE/AMEX and NASDAQ, the trading volumes reported in these 

markets are not comparable and hence we exclude NASDAQ stocks for this subsection. 

Also, we exclude any stock that does not trade for at least 200 days over the previous 

three years.  

 Acharya and Pederson define illiquidity cost as follows:
11

  

𝐼𝐿𝐿𝐼𝑄𝑖,𝜏 =
|𝑟𝑖,𝜏|

𝑣𝑖,𝜏
,          (2.16) 

𝑐𝑖,𝜏 = min(0.25 + 0.3 𝐼𝐿𝐿𝐼𝑄𝑖,𝜏 𝑃𝑚,𝜏−1, 30),                    (2.17) 

 

where 𝑟𝑖,𝜏 is the return on day 𝜏, 𝑣𝑖,𝜏 is the dollar volume (in millions) and 𝑃𝑚,𝜏−1 is the 

day 𝜏 − 1 value of $1 invested in the market portfolio as of the end of July 1962. 

Equation (2.16) is based on Amihud’s (2002) illiquidity measure. Acharya and Pederson 

use equation (2.17) as a measure of illiquidity costs where 𝑃𝑚,𝜏−1is used to adjust for 

inflation and the illiquidity cost is capped at 30%. Market illiquidity cost 𝑐𝑚,𝜏 is the 

value-weighted average of the illiquidity costs of the individual stocks. 

 As in Acharya and Pederson (2005), we estimate innovations in illiquidity using 

an AR model and we then estimate each individual component of betas in equation (2.14) 

using a time-series GMM approach.
12

 We then fit the following cross-sectional regression 

each month: 

𝑟𝑖,𝑡 = 𝛼𝑡 + 𝛾𝐼𝐿𝐿𝐼𝑄,𝑡 × 𝑐𝑖,𝑡 + 𝛾𝐿𝑀𝐾𝑇,𝑡 × �̂�𝐿𝑀𝐾𝑇,𝑖 + 𝜖𝑖,𝑡.              (2.18) 

where 𝑐𝑖,𝑡 is the average illiquidity for stock i in month t.  

The IV estimator for month t is:  

                                                           
11

 Acharya and Pederson (2005) use illiquidity costs at monthly frequency but we use them at daily 

frequency.  
12

 Appendix 3 presents the AR model we use to estimate expected and unexpected components of 

illiquidity. 
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�̂�𝑒𝑣𝑒𝑛,𝑡 = (Ψ̂𝑜𝑑𝑑,𝑡
′  Ψ̂𝑒𝑣𝑒𝑛,𝑡)

−1
Ψ̂𝑜𝑑𝑑,𝑡

′ 𝑅𝑒𝑣𝑒𝑛,𝑡,          

�̂�𝑜𝑑𝑑,𝑡 = (Ψ̂𝑒𝑣𝑒𝑛,𝑡
′  Ψ̂𝑜𝑑𝑑,𝑡)

−1
Ψ̂𝑒𝑣𝑒𝑛,𝑡

′ 𝑅𝑜𝑑𝑑,𝑡,          

 where: 

Ψ̂𝑒𝑣𝑒𝑛,𝑡 ≡ Nx3 matrix of independent variables with unit vector as the first 

column, 𝑐𝑖,𝑡, and estimated even-month LMKT betas for N individual 

stocks as the second and third columns, respectively. We estimate the 

even-month LMKT betas using daily data in even months in the period of 

month t-36 to month t-1.  

Ψ̂𝑜𝑑𝑑,𝑡 ≡ Analogous to Ψ̂𝑒𝑣𝑒𝑛,𝑡, estimated using all daily data in odd months  

We use the Fama-MacBeth approach to compute the point estimates and standards errors 

of risk premium estimates.  

Table 18 presents the regression estimates with individual stocks. The slope 

coefficient on Amihud illiquidity measure is .184%, which is significantly positive at the 

1% level. However, the liquidity-adjusted market risk premium estimates (the slope 

coefficients on 𝛽𝐿𝑀𝐾𝑇) are .140% and .075%, which are not reliably different from zero. 

These results indicate that firm-specific illiquidity level, which is a firm characteristic, is 

positively related to returns, but a stock’s liquidity-adjusted market beta, which is 

systematic risk, does not earn a risk premium. We also find that this risk is not priced in 

either of the subperiods.   

In comparison, Acharya and Pederson (2005) report liquidity-adjusted market risk 

premium estimates of about 2.5% per month using the value-weighted index (see Panel B 

of Table 5 in Acharya and Pedersen), which is about 30% per year.
13

 The equity risk 

premium puzzle literature argues that even an annual risk premium of about 6% observed 

in the data is hard to justify with realistic levels of risk aversion, and larger risk premiums 

would be harder to justify. The large estimates obtained using portfolios as test assets 

seem likely to be a result of the correlation between 𝛽𝐿𝑀𝐾𝑇 and portfolios characteristics 

rather than a true depiction of rewards to risk. 

                                                           
13

 The liquidity-adjusted market risk premium equals market risk premium minus expected illiquidity costs 

and hence it is smaller than the unadjusted market risk premium. 
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Our findings further illustrate the problems that arise when portfolios are used as test 

assets. In the earlier size versus beta debate, portfolios were formed based on size ranks 

and hence it would be fairly natural to check the correlation between size and beta and 

discover the problem. In the case of illiquidity-sorted portfolios, size was not explicitly 

used as a sorting variable and hence it is not readily apparent that one should check the 

correlation with this variable, but such correlations could lead to mistaken inferences. 

Our tests with individual stocks avoid such confounding issues.  

 

4.5. Strength of instruments  

An important issue to consider in instrumental variable regressions is the correlation 

between the instrumental variables and the corresponding independent variables.  The 

cross-product of the vector of instrumental variables and independent variables could be 

close to singularity if the correlation is low. Nelson and Startz (1990) show that if the 

instruments are sufficiently weak then the expected value of the IV estimator may not 

exist. The intuition behind this result can be seen in a univariate regression with weak 

instruments. If the covariance between the independent variable and the instrument is 

close to zero then the sample covariance could be small and be either negative or 

positive, resulting in large variations in both the sign and magnitude of the slope 

coefficient estimates in finite samples. However, if the covariance and the sample size are 

sufficiently large, then the likelihood that the sample estimate of the covariance is close 

to zero becomes negligibly small, and the IV estimator is well behaved.  

Nelson and Stratz show that weak instruments would be a concern if   

1

�̂�𝑥𝑧
2

≫ 𝑁,                                    (2.19) 

where �̂�𝑥𝑧 is the correlation between the independent variable and the corresponding 

instrument (which in our context  is the correlation between odd- and even-month betas) 

and N is the number of observations in the cross-sectional regression. There are 1934 

stocks per month in our sample, and the minimum number of stocks is 305. The critical 

value from equation (2.19) based on the minimum (average) number of stocks is 0.057 

(0.023) in absolute value. 
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 Table 19 presents the average correlation between the odd and even month factor 

sensitivity estimates. The correlation for market beta under the CAPM is .67. The market 

beta of Fama-French three-factor model is less precisely estimated and the correlation is 

smaller at .52. The market beta in the production-based asset pricing model and the 

LCAPM betas also exhibit similar levels of correlation as the three-factor market betas. 

The average correlations for SMB, HML, INV, and ROE betas range from .26 to .44. 

Although these correlations are smaller than those for market betas, they are all 

comfortably above the Nelson and Startz (1990) critical value.  

Nelson and Startz (1990) and Staiger and Stock (1997) also show that the 

conventional IV standard error estimator based on asymptotic theory will not be reliable 

in small samples if the instruments are weak. However, this concern is not relevant in our 

application because we use the Fama-MacBeth approach to estimate standard errors and 

we do not use the analytic estimator derived using asymptotic theory. Nevertheless, we 

further examined the strength of the instruments using tests proposed by Staiger and 

Stock (1997) as well and in untabulated results we found that the tests statistics were all 

well above the critical values.
14

  

To provide further insights into the strength of the instruments, we also estimate the 

correlation between the instruments that we use and the corresponding true but 

unobservable factor sensitivities. Although the true factor sensitivity is unobservable, we 

can estimate this correlation based on the correlation between the odd- and even-month 

betas as we show in the proposition below:  

Proposition 3: Let 𝛽𝑖,𝑘 be stock i’s true unobservable sensitivity to factor k and let 

�̂�𝑖,𝑘
𝑜𝑑𝑑 and �̂�𝑖,𝑘

𝑒𝑣𝑒𝑛 be the odd and even month estimates of the corresponding factor 

sensitivities, respectively. Then: 

                                                           
14

 Staiger and Stock (1997) regress the independent variable against the instrumental variables and develop 

a test based on the goodness of fit of this regression. In untabulated results, we found that the test statistics 

in our applications were well above the critical values for all instruments for all months.  
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𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝛽𝑖,𝑘, �̂�𝑖,𝑘
𝑒𝑣𝑒𝑛) = 𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝛽𝑖,𝑘, �̂�𝑖,𝑘

𝑜𝑑𝑑 )

= √𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(�̂�𝑖,𝑘
𝑜𝑑𝑑 , �̂�𝑖,𝑘

𝑒𝑣𝑒𝑛)                                 (2.20) 

 

Proof: See Appendix 4. 

 

Table 19 presents the mean correlation between estimated factor sensitivities and true 

factor sensitivities.
15

 The average correlation between even- and odd-month market betas 

is .67 and the average correlation between estimated market beta and the unobserved true 

market beta is .82. We find smaller correlations for SMB and HML betas, but even for 

HML the average correlation between estimated beta and unobservable true beta is .54. 

The correlations for the investment and ROE factor sensitivities are about the same as 

that for the HML factor sensitivity and the correlations are bigger for other factors 

sensitivities.  All these estimates are significantly above the cutoff prescribed by Nelson 

and Startz (1990). 

 

5. Conclusion 

 

Empirical tests of asset pricing models typically use portfolios rather than 

individual stocks as test assets to mitigate the errors-in-variables problems. This problem 

arises because the sensitivities to risk factors specified by the asset pricing models are 

estimated from the data and they contain sampling errors. Since factor sensitivities for 

portfolios are estimated more precisely than for individual stocks, the factor risk premium 

estimates in the second stage regressions will be less biased due to the errors-in-variables 

problems if one were to use portfolios as test assets rather than individual stocks. 

However, a problem with using test portfolios is that they limit the number of dimensions 

                                                           
15

 To compute the mean correlation between estimated factor sensitivities and true factor sensitivities, we 

first compute the square root of the correlation between odd- and even-month factor sensitivities each 

month and then compute the average across months.  Because the variability of correlation between odd- 

and even-month factor sensitivities is relatively small, the square root of average correlation is about the 

same as the mean of the square root of the correlation. 
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along which expected returns vary. As a result even factors that are not important from an 

economic perspective may mistakenly appear to command a risk premium simply 

because of their correlations with the variables used to construct the test portfolios.  

This paper develops an instrumental variables methodology to obtain consistent 

estimates of risk premiums using individual stocks as test assets. This approach 

overcomes the low dimensionality problem associated with using portfolios as test assets 

and it also removes the subjectivity associated with the choice of test portfolios. Our 

simulation evidence indicates that this methodology yields nearly unbiased estimates in 

finite samples and that the associated tests are well specified even in small samples.  

We empirically test several asset pricing models with individual stocks using the 

instrumental variables methodology. The models that we test are the CAPM, the Fama-

French three-factor model, a production-based asset pricing model proposed by Chen, 

Novy-Marx and Zhang (2011), and the liquidity-adjusted CAPM proposed by Acharya 

and Pedersen (2005). Earlier empirical tests in the literature using portfolios as tests 

assets find support for these models, but as Lewellen, Nagel and Shanken (2010) caution, 

these results could be misleading because of the low dimensionality problems. Contrary 

to these supportive results, we find that none of the factor risks in these models command 

a risk premium.  
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Technical Appendix 1: Proofs of Propositions

In this appendix, we provide the detailed mathematical proofs for Propositions 1 and

2 presented in the main body of the paper. The following data generating process for

individual stock return ri,t is assumed: for stock i in month t,

ri,t = γ0 + β
′

i (ft − E[ft] + γ1) + εi,t, (A.1)

where γ0 and γ1 are the risk-free rate and factor risk premium, respectively. ft is a

K×1 vector containing risk factors, βi (K×1 column vector) consists of the associated

factor loadings, and E[εi,t] = 0. We assume the balanced panel defined by the number

of stocks N and the time-series length T , where T is assumed an even number. For

simplicity, we posit that T = 2Te = 2To, where Te (To) is the total number of even

(odd) months. To investigate the rate of convergence of the IV estimator, we first let

N go to ∞ and then let T go to ∞.

List of Technical Assumptions:

TA.1. Laws of Large Number for Cross-section

As N increases without bound, we assume the following probability limits:

1

N

∑
i

βi → µβ,
1

N

∑
i

εi,t → 0 for all t, (A.2)

1

N

∑
i

βiβ
′

i → µβµ
′

β + Σβ,
1

N

∑
i

εi,tβi → 0K for all t, (A.3)

1

N

∑
i

εi,tεi,s → 0 for all (t, s) with t 6= s, (A.4)

where the cross-sectional summations are taken over i = 1, . . . , N . 0K is a K×1 zero

vector.

TA.2. Laws of Large Number for Time
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As T increases without bound, we assume the following probability limits:

Even months:
1

Te

∑
te

(fte − f̄Te)(fte − f̄Te)
′ → Σf , (A.5)

1

Te

∑
te

fte = f̄Te → E[ft], (A.6)

Odd months:
1

To

∑
to

(fto − f̄To)(fto − f̄To)
′ → Σf , (A.7)

1

To

∑
to

fto = f̄To → E[ft], (A.8)

where te and to denote the indices for even and odd months, respectively. f̄Te (f̄To)

are the sample mean of ft taken over even (odd) months, respectively.

Beta Estimates from Even- and Odd-months (Time-series Regressions):

We run time-series regressions to estimate even- and odd-month betas separately.

The betas estimated from even months for stocks i are given by

β̂i,Te = βi + Σ̂−1
f,Te

[
1

Te

∑
te

(εi,te − ε̄i,Te)
(
fte − f̄Te

)]
︸ ︷︷ ︸

=ξi,Te

, (A.9)

Σ̂f,Te =
1

Te

∑
te

(
fte − f̄Te

) (
fte − f̄Te

)′
,

where the subscript Te denotes that the associated variable is computed based on

even months. The measurement errors are written as

ξi,Te = Σ̂−1
f,Te

Σ̂i
fε,Te . (A.10)

In the same way, the betas estimated from odd months and their measurement errors

for stocks i are given by
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β̂i,To = βi + Σ̂−1
f,To

[
1

To

∑
to

(εi,to − ε̄i,To)
(
fto − f̄To

)]
︸ ︷︷ ︸

=ξi,To

, (A.11)

Σ̂f,To =
1

To

∑
to

(
fto − f̄To

) (
fto − f̄To

)′
,

ξi,To = Σ̂−1
f,To

Σ̂i
fε,To .

These expressions for beta estimates from even and odd months will be important

building blocks for the subsequent analyses. Thus we here collect them as follows:

β̂i,Te = βi + Σ̂−1
f,Te

Σ̂i
fε,Te , β̂i,To = βi + Σ̂−1

f,To
Σ̂i
fε,To . (A.12)

Cross-sectional Regressions: the IV Estimator

CSR.1. Probability Limit of Bottom Term of the IV Estimator

We define the following N × (1 +K) matrices:

X̂Te =

[
1N B̂Te

]
, X̂To =

[
1N B̂To

]
, (A.13)

where, e.g. B̂Te is composed of stacked β̂
′
i,Te

over all stocks. For odd months, in which

even-month betas are employed as the instruments for odd-month betas, the bottom

term of the IV Estimator is defined as follows:

1

N
X̂

′

TeX̂To =


1 1

N

∑
i β̂

′
i,To

1
N

∑
i β̂i,Te

1
N

∑
i β̂i,Te β̂

′
i,To

 , (A.14)

We deal with each sub-block matrix one by one.
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1

N

∑
i

β̂i,Te =
1

N

[∑
i

βi + Σ̂−1
f,Te

∑
i

Σ̂i
fε,Te

]
(A.15)

→ µβ as N goes to ∞,

due to the technical assumptions. In the same way, it is straightforward to show that

1

N

∑
i

β̂
′

i,To → µ
′

β as N goes to ∞. (A.16)

Now we investigate the sub-block matrix in the right and bottom corner, i.e. 1
N

∑
i β̂i,Te β̂

′
i,To

.

1

N

∑
i

β̂i,Te β̂
′

i,To =
1

N

[∑
i

βiβ
′

i + Σ̂−1
f,Te

Σ̂i
fε,Teβ

′

i + βiΣ̂
i′

fε,ToΣ̂
−1
f,To

+ Σ̂−1
f,Te

Σ̂i
fε,TeΣ̂

i′

fε,ToΣ̂
−1
f,To

]

=
1

N

∑
i

βiβ
′

i + Σ̂−1
f,Te

(
1

N

∑
i

Σ̂i
fε,Teβ

′

i

)
+

(
1

N

∑
i

βiΣ̂
i′

fε,To

)
Σ̂−1
f,To

+ Σ̂−1
f,Te

(
1

N

∑
i

Σ̂i
fε,TeΣ̂

i′

fε,To

)
Σ̂−1
f,To

(A.17)

→ µβµ
′

β + Σβ as N goes to ∞, (A.18)

due to the technical assumptions.

Now combining all intermediate results for the bottom term of the IV estimator shown

above, we have the following probability limit:

(
X̂

′
Te
X̂To

N

)−1

→



1 µ
′

β

µβ µβµ
′

β + Σβ



−1

(A.19)
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as N goes to ∞.

For even months, in which odd-month betas are employed as the instruments for

even-month betas, the bottom term of the IV estimator is defined as 1
N
X̂

′
To
X̂Te . By

following the same procedure as above, we can show that as N goes to ∞,

(
X̂

′
To
X̂Te

N

)−1

→



1 µ
′

β

µβ µβµ
′

β + Σβ



−1

(A.20)

CSR.2. Probability Limit of Top Term of the IV Estimator

We now consider the top term of the IV estimator, which is defined as follows: For odd

months, in which even-month betas are employed as the instruments for odd-month

betas,

1

N
X̂

′

TeR̄To =


1
N

∑
i r̄i,To

1
N

∑
i β̂i,Te r̄i,To

 , (A.21)

where r̄i,To is the sample mean of ri,t taken over odd months for stock i. From

equations (A.1), we have the following expression for average return:

r̄i,To = γ0 + β
′

i

(
f̄To − E[ft] + γ1

)
+ ε̄i,To , (A.22)

implying that due to the technical assumptions,

1

N

∑
i

r̄i,To → γ0 + µ
′

β

(
f̄To − E[ft] + γ1

)
(A.23)
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as N goes to ∞.

We now consider the term in the bottom of equation (A.21), i.e. 1
N

∑
i β̂i,Te r̄i,To .

1

N

∑
i

β̂i,Te r̄i,To = γ0

(
1

N

∑
i

βi

)
+

(
1

N

∑
i

βiβ
′

i

)(
f̄To − E[ft] + γ1

)
+ . . . , (A.24)

→ γ0µβ +
(
µβµ

′

β + Σβ

) (
f̄To − E[ft] + γ1

)
,

as N goes to ∞, where the extra terms vanish as N goes to ∞ due to the technical

assumptions.

Collecting all these probability limits produces the following probability limit:

1

N
X̂

′

TeR̄To →


γ0 + µ

′

β

(
f̄To − E[ft] + γ1

)

γ0µβ +
(
µβµ

′

β + Σβ

) (
f̄To − E[ft] + γ1

)
 (A.25)

as N increases without bound.

For even months, in which odd-month betas are employed as the instruments for

even-month betas, by following the same procedure as above, it is straightforward to

show that

1

N
X̂

′

ToR̄Te →


γ0 + µ

′

β

(
f̄Te − E[ft] + γ1

)

γ0µβ +
(
µβµ

′

β + Σβ

) (
f̄Te − E[ft] + γ1

)
 (A.26)

as N increases without bound.

CSR.3. Combining the Probability Limits of Top and Bottom Terms of

the IV Estimator:
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For odd months, we have

(
X̂

′

TeX̂To

)−1

X̂
′

TeR̄To →

1 µ
′

β

µβ µβµ
′

β + Σβ



−1 
γ0 + µ

′

β

(
f̄To − E[ft] + γ1

)

γ0µβ +
(
µβµ

′

β + Σβ

) (
f̄To − E[ft] + γ1

)
 (A.27)

as N goes to ∞. For even months, we have

(
X̂

′

ToX̂Te

)−1

X̂
′

ToR̄Te →

1 µ
′

β

µβ µβµ
′

β + Σβ



−1 
γ0 + µ

′

β

(
f̄Te − E[ft] + γ1

)

γ0µβ +
(
µβµ

′

β + Σβ

) (
f̄Te − E[ft] + γ1

)
 (A.28)

as N goes to ∞. The IV estimate of risk premiums is then defined as

Γ̂IV =
1

2

((
X̂

′

TeX̂To

)−1

X̂
′

TeR̄To +
(
X̂

′

ToX̂Te

)−1

X̂
′

ToR̄Te

)
. (A.29)

N-Consistency of the IV Estimator (Corollary of Proposition 1): For a fixed

T , as N goes to ∞,
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Γ̂IV →

 1 µ
′

β

µβ µβµ
′

β + Σβ


−1  γ0 + µ

′

β

(
f̄T − E[ft] + γ1

)
γ0µβ +

(
µβµ

′

β + Σβ

) (
f̄T − E[ft] + γ1

)
 (A.30)

=

 1 + µ
′

βΣ−1
β µβ −µ

′

βΣ−1
β

−Σ−1
β µβ Σ−1

β


 γ0 + µ

′

β

(
f̄T − E[ft] + γ1

)
γ0µβ +

(
µβµ

′

β + Σβ

) (
f̄T − E[ft] + γ1

)


=

 γ0

f̄T − E[ft] + γ1

 = Γ̃,

where Γ̃ is the ex-post risk premium and the first equality is obtained by the matrix

inversion lemma.

T -Consistency of the IV Estimator (Proposition 1):

Finally, by Slutsky’s theorem, we have the following probability limit of the IV esti-

mator:

Γ̂IV →

 1 µ
′

β

µβ µβµ
′

β + Σβ


−1  γ0 + µ

′

βγ1

γ0µβ +
(
µβµ

′

β + Σβ

)
γ1

 (A.31)

=

 1 + µ
′

βΣ−1
β µβ −µ

′

βΣ−1
β

−Σ−1
β µβ Σ−1

β


 γ0 + µ

′

βγ1

γ0µβ +
(
µβµ

′

β + Σβ

)
γ1

 =

 γ0

γ1

 = Γ

as N first goes to ∞ and then T goes to ∞, proving the T -consistency of the IV

estimator.

The Rates of Convergence in Probability for the IV and FM Estimators

(Proposition 2):

The above consistency proof of the IV estimator is silent about its rate of convergence,

i.e. how fast Γ̂IV converges to its true value as T increases. Our discussion on the rate
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of convergence in probability addresses this issue. Under mild regularity conditions,

Bahadur and Rao (1960) showed that the probability that sample means deviate from

their corresponding population means for a pre-specified amount decays exponentially

in T . In more technical terms, they showed that the probability bound f(T ) in the

following inequality decays exponentially in T : for any ε > 0, when x1, . . . , xT are

samples,

Pr (|x̄T − µ| > ε) < f(T ),

where x̄T denotes the sample mean and µ is the population mean.a Therefore the

rates of convergence in probability of all sample means in equations (A.27) and (A.28),

i.e., f̄To and f̄Te , are exponential in T . Since all terms in equations (A.27) and

(A.28) consist of continuous mappings of sample means, for sufficiently large N ,

the probability that Γ̂IV deviates from the true value of Γ for a given amount also

decays exponentially in T by the Contraction Principle (see Theorem 1.3.2 in Dupuis

and Ellis (1997)). This means that the rate of convergence in probability of Γ̂IV is

exponential in T .

In contrast, the FM estimator provides a different rate of convergence in proba-

bility due to the EIV problem. Following the same procedure as in the IV estimator,

we can show that the FM estimator has the following probability limit as N goes to

aBrillinger (1962) provided weaker conditions which imply that the rate of convergence of f(T )
is a power in T .
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∞:

Γ̂FM =
(
X̂

′

T X̂T

)−1

X̂
′

T R̄T →

1 µ
′

β

µβ µβµ
′

β + Σβ +
σ̄2

T
Σ̂−1
f,T︸ ︷︷ ︸

=EIV term



−1 
γ0 + µ

′

β

(
f̄T − E[ft] + γ1

)

γ0µβ +
(
µβµ

′

β + Σβ

) (
f̄T − E[ft] + γ1

)
 ,

(A.32)

where, e.g., X̂T is defined similarly to X̂Te (or X̂To) but for the entire sample period

regardless of even and odd months. The cross-sectional mean of idiosyncratic vari-

ances, say σ̄2, is defined as the probability limit of 1
N

∑
i σ

2
i as N goes to ∞, where

σ2
i = Var(εi,t).

b Note that the rates of convergence in probability of all sample means

in equation (A.32) are still exponential in T . However, the EIV term (= σ̄2

T
Σ̂−1
f,T ) in

equation (A.32) determines the overall rate of convergence in probability of Γ̂FM .

Due to this EIV term, which did not arise in the IV estimator (see equations (A.27)

and (A.28)), the rate of convergence in probability of the FM estimator is now linear

in T (also by the Contraction Principle). In other words, for sufficiently large N , the

probability that Γ̂FM deviates from the true value of Γ for a given amount decays

linearly in T .

bFor the derivation of equation (A.32), additional technical assumptions for εi,t are needed. As
in Jagannathan et al. (2009), defining vi,t = ε2i,t−σ2

i , we assume the following laws of large numbers
for cross-section:

1

N

∑
i

vi,t → 0 for all t,

1

N

∑
i

σ2
i → σ̄2

as N goes to ∞.
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Technical Appendix 2: Simulation Parameters  

This appendix describes how we choose simulation parameters based on the 

corresponding statistics in the data. We first determine the mean risk premiums and the 

covariance structure of the common factors based on the realizations of the three Fama-

French factors over the 1956 to 2012 sample period. Table A.1 presents the summary 

statistics from the data, which we use in the simulations. The simulation uses a risk-free rate 

of 0.9996% per annum. 

 

TABLE A.1: Simulation Parameters 

Panel A: Time-series Means and Standard Deviations of Common Factors 

  
  CAPM 

Fama-French Three-factor 

Model 

 

 
Mean (%) 

StdDev 

(%) 
Mean (%) StdDev (%) 

Factors MKT 5.8008 15.2929 5.8008 15.2929 

(per annum) SMB 

  

2.6388 10.3331 

 

HML 

  

4.3620 9.6153 

            

      Panel B: Cross-sectional Means and Standard Deviations of factor sensitivities 

  
  CAPM 

Fama-French Three-factor 

Model 

 
 

Mean StdDev Mean StdDev 

Factor Loadings MKT 1.17 0.35 1.04 0.36 

 
SMB 

  
1.05 0.68 

 
HML 

  
0.59 0.55 

Idiosyncratic Volatility 

(per annum)   
0.125 0.053 0.129 0.053 
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Technical Appendix 3: Innovations in Illiquidity Costs 

We follow Acharya and Pedersen (2005) and fit the following time-series regression to 

estimate expected and unexpected components of market-wide illiquidity cost ( �̃�𝑚,𝜏 =  𝑐𝑚,𝜏 −

𝐸𝜏−1[𝑐𝑚,𝜏]): 

0.25 + 0.3 𝐼𝐿𝐿𝐼�̃�𝑚,𝜏 𝑃𝑚,𝜏−1

= 𝑎0 + ∑ 𝑎𝑙 × (0.25 + 0.3 𝐼𝐿𝐿𝐼�̃�𝑚,𝜏−𝑙  𝑃𝑚,𝜏−1) +  �̃�𝑚,𝜏,
𝐿

𝑙=1
     (𝐴. 33) 

 

where 𝐼𝐿𝐿𝐼�̃�𝑚,𝜏 is a value-weighted average of min (𝐼𝐿𝐿𝐼𝑄𝑖,𝜏,
30−0.25

0.30𝑃𝑚,𝜏−1
), which Acharya and 

Pederson define as un-normalized illiquidity, truncated for outliers. We could not reject the 

hypothesis that the residuals were white noise based on the Durbin-Watson tests for L=2. The 

results we report uses the AR(2) model to estimate expected and unexpected components of 

illiquidity for the market as well as for individual stocks. We repeated the tests with L ranging 

from 2 to 6 and we found that the results were not sensitive to the choice of L. 
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Technical Appendix 4: Proof of Proposition 3 

This appendix presents the proof of proposition 3. For expositional convenience, we 

assume that the even-month beta is the independent variable and odd-month beta is its instrument. 

We need to show that the correlation of true beta (𝑥) and estimated beta (𝑥∗) from even months is 

the square root of the correlation of estimated beta (𝑥∗) and its instruments (𝑧 ), i.e., 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑥∗) = √𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥∗, 𝑧 )                (𝐴. 34) 

where 

𝑥∗ = 𝑥 + 𝑢𝑒𝑣𝑒𝑛 

𝑧 = 𝑥 + 𝑢𝑜𝑑𝑑 

and 𝑥, 𝑢𝑒𝑣𝑒𝑛, and 𝑢𝑜𝑑𝑑 are mutually independent and 𝜎𝑢
2 = 𝜎𝑢𝑒𝑣𝑒𝑛

2 = 𝜎𝑢𝑜𝑑𝑑
2 .  

By the definition of correlation, we then have 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥∗, 𝑧 ) =
𝐶𝑜𝑣(𝑥∗, 𝑧 )

√𝑣𝑎𝑟(𝑥∗)𝑣𝑎𝑟(𝑧 )
=

𝜎𝑥
2

𝜎𝑥
2 + 𝜎𝑢

2           (𝐴. 35) 

𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥, 𝑥∗) =
𝐶𝑜𝑣(𝑥, 𝑥∗)

√𝑣𝑎𝑟(𝑥 )𝑣𝑎𝑟(𝑥∗)

=
𝜎𝑥

2

√𝜎𝑥
2 (𝜎𝑥

2 + 𝜎𝑢
2)

= √𝐶𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛(𝑥∗, 𝑧 )       (𝐴. 36) 

completing the proof of proposition 3. 

                                                           
 



76 
 

 

Information in CEOs’ Facial Expressions: A First Look 

 

Narasimhan Jegadeesh, Joonki Noh, and Jingran Zhao
☆

 

 

Abstract 

We investigate whether CEOs’ facial expressions during their CNBC and 

Bloomberg interviews convey value-relevant information to financial markets. We 

employ a commercial software to quantify CEOs’ basic emotions revealed through their 

facial expressions. We find that negative emotions are strongly correlated with 

cumulative abnormal stock returns and share turnover over the next one to two days after 

air dates. We also find that negative emotions are strongly associated with firms’ one-

quarter-ahead earnings. Taken together, our evidence supports that CEOs’ basic emotions 

captured by their facial expressions in televised interviews with national TVs can convey 

value-relevant information about their firms to financial markets, and investors 

understand and react to it.  
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1. Introduction 

Investors’ ability to obtain and process information affects their portfolio 

performance critically. The source of the best information about any company is 

corporate insiders, but average investors do not have direct access to their inside 

information. Therefore, investors attempt to gauge the nature of insiders’ information 

through a variety of channels including corporate visits, investor conferences, CEO 

interviews, and conference calls.   

During televised interviews and personal interactions, investors observe managers’ 

facial expressions. It is well established in the psychology literature that facial 

expressions can convey underlying basic emotions (e.g., Ekman, 1970).  Since good news 

evokes positive emotions and bad news evokes negative emotions, an observer can 

potentially infer the nature of the subjects’ private information by observing their facial 

expressions. This paper takes a first look at whether managers’ facial expressions in their 

televised interviews can convey value-relevant information to financial markets and 

whether investors in markets react to it. 

We analyze CEOs’ facial expressions in a sample of 1,079 CEO interviews on 

CNBC and Bloomberg. We use FaceReader, a commercial software, to quantify the 

nature and intensity of CEOs’ facial expressions during these interviews. FaceReader 

measures the intensities of the six basic and universal emotions that Ekman (1970) 

identifies: happy, sad, angry, surprised, scared, and disgusted. These six emotions are 

widely accepted as being basic and universal in the psychology literature (e.g., Ekman, 

1993 and Busso, 2004).
1
 ‘Happy’ is the only positive emotion and the other five are 

negative emotions. The emotional valence is defined as the difference between the 

intensity of positive emotion and that of the negative emotion that has the highest value. 

We investigate the relation between CEOs’ emotions captured by their facial 

expressions and stock market reactions in two dimensions, i.e., cumulative abnormal 

returns and cumulative abnormal turnover over one to two days after interviews are aired. 

                                                           
1
 Ekman (1993) defines basic emotions as ones that (1) differ from one another in important ways and 

(2) evolution played an important role in shaping their unique and the common features. 
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First, we find that the emotional valence is positively related to cumulative abnormal 

returns over the next one day after interviews are aired, which is mainly driven by 

negative emotions. Second, we find that cumulative abnormal turnover over the next one 

to two days after air date is related to the emotional valence. This relation is driven by 

both positive and negative emotions, but it is stronger for negative emotions. This 

asymmetric effect of CEOs’ positive and negative facial expressions on cumulative 

abnormal returns and turnovers over the next one to two days might be due to the 

inconsistency with investors’ expectations about CEOs’ interviews. Investors might 

expect these CEOs to have at least neutral (if not happy) emotions when they are 

interviewed on national TVs.
2
 If CEOs express negative emotions, this information might 

be inconsistent with investors’ (implicit) expectation and therefore, become salient to 

investors. This might make investors react more strongly to CEOs’ negative facial 

expressions.  

An alternative explanation for the asymmetric effect of CEOs’ positive and 

negative facial expressions might be that only the negative facial expression contains 

value-relevant information about firms’ fundamentals, while its positive counterpart does 

not. Accordingly, in an additional empirical test, we investigate the relation between 

CEOs’ emotions revealed through their facial expressions and one-quarter-ahead earnings 

after interviews are aired. We find evidence that CEOs’ negative facial expression is 

strongly associated with one-quarter-ahead earnings, while CEOs’ positive facial 

expression is not. This finding suggests that CEOs express negative emotions during their 

televised interviews when they expect that their firms would not perform well in the near 

future. The negative firm performance shows up in earnings one quarter later. This 

evidence of future earnings supports the alternative explanation for the asymmetric 

reactions by financial markets to CEOs’ positive and negative facial expressions during 

interviews. 

Taken together, our results suggest that CEOs’ facial expressions contain value-

relevant information about their firms. We expect that investors would be able to glean 

                                                           
2
 The descriptive statistics in Panel A of Table 20 are consistent with this argument. The mean and median 

of the ‘Face’ variable, which captures the emotional valence, are close to zero.  
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more information by personally observing facial expressions of corporate managers 

during investor conferences and corporate visits than what they can gain by observing 

televised interviews on national TVs. Although statutory restrictions such as Reg-FD 

prohibit managers from disclosing value-relevant information selectively to certain 

investors, our evidence suggests that those who are able to interact with managers 

personally would likely have an informational edge.    

 

2. Quantifying Emotions based on Facial Expressions 

Facial expressions can convey individuals’ underlying emotions. Charles Darwin 

first theorizes that emotions are biologically determined and universal to human culture 

(Darwin, Ekman, and Phillip 1998).  Ekman (1972) and others (e.g., Ekman and Dacher, 

1970; Ekman and Friesen, 1975 & 1978; Ekman, 1992) systematically document 

evidence that shows the facial expressions associated with basic emotions are universal. 

Ekman (1972) defines facial expressions of emotions as being discrete, innate, and 

culturally independent.  

Ekman and Friesen (1997) develop a coding system to classify the basic facial 

expressions into seven categories (i.e., happy, sad, angry, disgusted, scared, surprised, 

and neutral). They classify the expressions of emotions with semi-universal sequences of 

facial muscle contractions. For example, raising cheeks and lip corners are classified as 

being happy; raising inner brows, lowering brows, and depressing lip corners are 

classified as being sad (Ekman and Friesen, 1978). This coding system is referred to as 

the Facial Action Coding System (i.e., FACS). It is widely used in scientific research to 

describe visible movements of facial muscles. As technology advances, machines can 

learn to automatically recognize these emotions using digital images or video clips. In 

Appendix 3, we provide screenshots of CEOs who have the strongest facial expressions 

for each of the classified emotions other than neutral (i.e., facial expressions with the 

highest intensities). We also provide video clips in our sample that have the highest 

intensity for positive and negative emotions. The URL links to these video clips are 

provided in Appendix 2. 
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We measure CEOs’ facial expressions with a software called FaceReader. 

FaceReader (version 5.0) is a commercial software developed by Noldus Information 

Technology, a Dutch company. Broadly speaking, FaceReader operates in the following 

three steps. First, FaceReader uses the Viola-Jones algorithm to detect the presence of a 

face in a video or in an image (Viola and Jones, 2001). Second, FaceReader models the 

face using an algorithm based on the Active Appearance Method proposed by Cootes and 

Taylor (2000). FaceReader identifies over 500 points on a face and analyzes the facial 

texture. These points on the face enable FaceReader to recognize the frame and 

components of the face, e.g., lip, eyebrows, nose, and eyes. The texture of the face 

includes the presence of wrinkles and the shape of eye brows. These are important cues 

for classifying facial expressions. Lastly, FaceReader classifies facial expressions into the 

seven pre-determined basic emotions using one of widely used machine learning 

algorithms, a neural network (for more details, see Bishop, 1995).
3
  

FaceReader generates a numeric score for each emotion in every frame of a given 

video. The frame rate is three per second, which means FaceReader samples each frame 

to analyze every 0.33 second. Each emotion has a value between 0 and 1, indicating its 

intensity. ‘0’ means that the emotion is absent in the frame, and ‘1’ means that the 

emotion is fully present in the frame. For each video, we compute the intensity of each 

emotion using the median score for that emotion across all frames in a given video.  

The Psychology literature defines emotional valence as the difference between the 

intensities of positive and negative emotions (e.g., see Bradley and Lang 2000). Happy is 

the only positive emotion in our study and hence we use the score on happy as the 

intensity of positive emotion. Negative emotions include ‘sad’, ‘angry’, ‘scared’, and 

‘disgusted’. Since ‘surprise’ can be either positive or negative, it is excluded from the 

calculation of the emotional valence, which we call ‘Face’. We define the Face as the 

emotion captured by facial expressions. It is calculated as the intensity of ‘happy’ minus 

the intensity of the negative emotion with the highest intensity. For example, if the 

                                                           
3
 Over 10,000 manually annotated images were used to train the neural network algorithm. The Karolinska 

Directed Emotional Faces (KDEF) data were used for the original version of  FaceReader, but additional 

training data were used in subsequent versions. KDEF data contain 4,900 pictures of 70 individuals, each 

displaying seven different emotions and each emotion is photographed twice from five different angles. 

These images have been annotated by human experts. 
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intensity of ‘happy’ is 0.7 and the intensities of  ‘sad’, ‘angry’, ‘scared’, and ‘disgusted’ 

are 0.1, 0.5, 0.6, and 0.2, respectively, then Face is 0.1. It is calculated as 0.7 from ‘happy’ 

minus 0.6 from ‘scared’.  

Several studies test the reliability of FaceReader classifications (e.g., Bijlstra and 

Dotsch 2011; Benta et al. 2009; Terzis et al 2010). Bijlstra and Dotsch (2011) employ 

images of the Radbound Faces Database (i.e., RaFD) in their reliability test. RaFD is a 

standardized database that contains a set of pictures with eight intended emotional 

expressions. The test persons in the RaFD pictures are trained to pose the intended 

emotions, and the images have been labeled by researchers accordingly. Bijlstra and 

Dotsch (2011) feed the RaFD images to FaceReader and compare the results with the 

“true” classifications in the RaFD database. Figure 3 reproduces the results of the validity 

test. FaceReader is the best at identifying ‘happy’ emotion with the 95.9% accuracy. The 

overall accuracy of identifying emotions is about 90%. 

 

3. Video Sample Selection 

We construct our sample universe by collecting CEO interviews that were aired 

on Bloomberg from 2010 to April 2014 (We stopped the data collection at the end of 

April 2014.), and that were aired on CNBC from 2012 to April 2014 (When we started to 

collect the CNBC videos, we could only retrieve videos back to 2012 from CNBC’s 

website.
4
). CNBC and Bloomberg are the only sources where we could find sufficient 

numbers of CEO interviews. From the Bloomberg terminal, we collect the videos of 

firms with different sizes. We use Fama-French market equity (ME) breakpoints
5
  to 

categorize firms into small, medium, and big categories. We select 100 firms in each of 

these three size categories. We are able to obtain 291 videos from the Bloomberg 

terminal that were aired during trading hours. FaceReader processes 241 of these videos, 

and we obtain transcripts for 204 videos out of them. We also collect Bloomberg CEO 

                                                           
4
 Source: http://www.cnbc.com/id/100004032 

5
 Source: http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 
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interviews from the internet.
6
 We obtain all available CEO interviews from the CNBC 

website.  

A full video include frames that have faces of only the CEO, only the interviewer, 

and both the CEO and the interviewer. Since our focus is the CEOs’ facial expressions, 

we manually edit these CEO interview videos to keep the frames in which only the CEOs 

are on the screen. The length of edited videos ranges from one (=150 frames) to five 

minutes (=900 frames). We use FaceReader to generate numeric scores for the basic 

emotions of a CEO during his/her interview. We also examine the informational content 

of words that the CEO uses in these segments using the bag of words approach used by 

Jegadeesh and Wu (2014). To get the transcripts of edited videos, we upload the edited 

videos to YouTube and manually download the automated transcripts to local drives to 

process for empirical analyses. In total, we have 1,645 videos that could be processed by 

FaceReader and had transcripts. 

We obtain stock market data from CRSP and accounting data from 

COMPUSTAT. We obtain the analyst expectations of earnings data from I/B/E/S. After 

combing the videos with these databases, we have the final sample that is comprised of 

1,079 videos for the subsequent analyses. All variables are winsorized at the 1% and 99% 

levels to avoid that outliers drive our empirical results. 

 

4. Empirical Results 

4.1. Preliminary Results 

Various descriptive statistics are presented in Table 20. The definitions of all 

variables used in our empirical analyses are provided in Appendix 1. Panel A of Table 20 

summarizes the characteristics of CEO interview videos that belong to the sample 

universe. The mean (median) of the valence of facial expressions (i.e., Face) is -3.85% (-

1.40%), which means that CEOs’ emotions captured by their facial expressions stay 

neutral during CNBC and Bloomberg interviews. To a certain extent, this is not 

                                                           
6
 Source: http://www.bloomberg.com/video/ 
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surprising since CEOs might not want to express too much emotion during their 

interviews. Similarly, we find that on average ‘neutral’ has the highest intensity 

(mean=59.50% and median=65.53%). The results in Panel C indicate that CEOs whose 

firms had positive earnings surprises in the most recent fiscal quarter before interviews 

are substantially more likely to have interviews with CNBC and Bloomberg (71% versus 

29%). Therefore, it seems less likely that CEOs would show negative facial expressions 

during CNBC and Bloomberg interviews.  

Panel B of Table 20 summarizes the characteristics of firms whose CEOs are 

interviewed with national TVs. On average, the firms being interviewed have market 

value of equity of $26.30 billion. The median market value of equity in the sample is 

$7.48 billion, which is more than three times larger than the size of the median firm 

($2.10 billion) in the Fama-French market equity breakpoint as of January 2012. This 

indicates that the firms being interviewed by CNBC and Bloomberg tend to be large 

firms. The sample firms have an average (median) book-to-market ratio of 0.84 (0.49). 

Panel C of Table 20 presents the performance of firms whose CEOs are 

interviewed before the interviews are conducted. In the sample universe, 71% (29%) of 

the firms have standardized unexpected earnings (SUE) equal or larger (less) than zero 

before interviews. In unreported table, we also find similar patterns with CARs and raw 

returns over the past three months before the air dates, i.e., substantially more firms 

experience positive CARs and raw returns. These findings seem to make sense since 

CEOs whose firms experience superior performances, e.g., compared to earnings 

expectations, are more likely to have incentive to show up in televised interviews with 

national TVs. This is consistent with that CEOs speak more positive words than negative 

words in interviews as shown in Panel A. 

Panel C of Table 20 also indicates that CEO interviews largely focus on their 

firms. We manually group all interviews into four categories based on the contents of 

videos: earnings-related, firm-related,
7
 industry-related, and economy-related interviews. 

We find that 70% of videos have interviews about either earnings-related or firm-related 

                                                           
7
 Firm-related videos mean that interviews are about other aspects of firms rather than earnings. 
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topics, while 30% of videos have interviews about either industries that firms belong to 

or the economy. The remaining 3% of videos do not belong to these four categories and 

remain unclassified. 

In Figure 5, we investigate the timing of CEOs’ interviews relative to the earnings 

announcements of their firms. According to Panel C of Table 20, about 45% of 

interviews (=491 videos) are conducted within 20 trading days after earnings 

announcements, while the remaining 55% of interviews (=610 videos) are conducted 

outside the 20 trading days window. We find that substantially more earnings-related 

interviews are aired on the days of earnings announcements. Specifically, we find that 54% 

of earnings-related interviews (=103 videos) are conducted on the days of earnings 

announcements and that 28% of them (=53 videos) are aired on the next trading days. For 

other categories of interviews, the histograms are spread out over different dates.  

Table 21 presents the Pearson and Spearman pair-wise correlations of facial 

expression variables, transcript tones, and other firm characteristics. Several observations 

are worth noting. First, transcript tones are not strongly correlated with facial expression 

variables. For example, the emotional valence, i.e., Face, has correlations of about 0.06 

with both positive and negative transcript tones, i.e., PosWords and NegWords. This 

implies that transcript and facial expression variables can capture different information, 

and that facial expressions in CEOs’ interviews can convey additional information to the 

viewers. Second, from the correlations between Ne and the four other negative facial 

expression variables, we find that Sad, Angry, and Disgusted contribute the most to Ne 

and Face. The correlations between Ne and Sad and Angry are the strongest. The Pearson 

(Spearman) correlation between Ne and Sad is 0.64 (0.60) and the Pearson (Spearman) 

correlation between Ne and Angry is 0.51 (0.47). The correlation between Ne and Scared 

is the lowest. The Pearson (Spearman) correlation between Ne and Scared is 0.24 (0.18). 

Third, we find that positive and negative emotions are correlated with each other. Pearson 

(Spearman) correlation between Po and Ne is -0.11 (-0.14). This result do not seem 

surprising because CEOs who stay positive during their interviews show less negative 

facial expressions. This negative relationship exists not only for Ne, but also for other 

negative emotions, e.g., Sad, Angry, and Disgusted. Lastly, many of emotional variables 
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are correlated with each other. This makes sense in that facial expressions can be often a 

mixture of different emotions. Two or more facial expressions can occur simultaneously 

with high intensities. 

In Figure 4, we provide preliminary evidence showing that the financial market 

reacts to the information contained in CEO interviews and facial expressions can convey 

value-relevant information to the market. We identify clear peaks in returns around the 

air dates of interviews when 60 trading days are examined around the air dates. We sort 

all videos into tercile portfolios based on Po (Ne) scores and the top tercile portfolio is 

denoted as Po (Ne) High, middle tercile portfolio is as Po (Ne) Med, and the bottom 

tercile portfolio is as Po (Ne) Low. In the top panel, we find that the return is the highest 

for firms that have the highest Po values on the interview air dates. This evidence 

suggests that the stock market reacts positively to positive facial expressions during 

CEOs’ interviews. In the bottom panel, we find that the return is the lowest (highest) for 

firms that have the highest (lowest) Ne values on the interview air dates. This evidence 

suggests that the stock market reacts negatively to negative facial expressions during 

CEOs’ interviews. In the bottom panel, it is worthwhile to emphasize that, for the tercile 

portfolio with the highest Ne value (blue graph), the peak remains almost intact one day 

after interview air dates, indicating that the impact of Ne on stock markets stays longer 

than its Po counterpart, i.e., the tercile portfolio with the highest Po value (green graph in 

the top panel). 

 

4.2. Facial Expressions and Cumulative Abnormal Returns 

  In this section, we investigate whether stock market participants understand CEOs’ 

facial expressions revealed during their televised interviews and react to them through 

cumulative abnormal returns (CARs). We first test the relationship between facial 

expression variables and variables that are related to CEOs’ interviews. We consider the 

following panel regression. In day d (=0, .., 180), 

𝐶𝐴𝑅𝑑 = 𝛼 + 𝛽𝐹𝑎𝑐𝑒𝐹𝑎𝑐𝑒 + 𝛽𝑃𝑜𝑃𝑜 + 𝛽𝑁𝑒𝑁𝑒 + 𝑇𝑟𝑎𝑛𝑠𝑐𝑟𝑖𝑝𝑡𝑇𝑜𝑛𝑒 + 𝜀,   (3.1) 
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where TranscriptTone contains PosWords and NegWords. PosWords (NegWords) is the 

number of positive (negative) words in interview transcripts. The list of negative words 

comes from Jegadeesh and Wu (2014). To capture CEOs’ face fixed effects in regression 

(3.1), we sort all videos into three sub-groups based on the facial expression scores of the 

first 30 frames in the edited videos and we then assign three dummy variables to 

constituent videos within sub-groups. Note that CARd denotes the cumulative abnormal 

return from day 1 to day d and CAR0 is the abnormal return on day 0, i.e., the interview 

air date. To facilitate the interpretation of slope coefficients, we standardize them by 

subtracting the mean and dividing by the standard deviation of the corresponding 

variables. For t-statistics, to account for cross-sectional correlation across firms, we 

compute the robust standard errors by clustering by year-quarter. 

Table 22 presents the results of panel regression (3.1). In the columns labeled as 

CARd, we report the regression results when CARd is employed as dependent variable. 

For CAR0, we find insignificant slope coefficients for facial expression variables. In 

terms of transcript tones, the slope coefficient of PosWords is 0.180% and significant at 

the 10% level and that of NegWords is -0.244% and significant at the 5% level. This 

evidence indicates that the stock market reacts to the number of negative words that 

CEOs spoke in their interviews, which is consistent with the findings in previous studies 

such as Tetlock (2007) and Tetlock et al. (2008). 

For CAR1, we find evidence that the stock market participants strongly react to 

facial expression variables, especially Ne. The slope coefficient of Face is 0.175% and 

statistically significant at the 5% level. The slope coefficients of Ne range from -0.168% 

to -0.158% and are significant at the 5% level even when transcript tones are included in 

regression (3.1). The slope coefficient of Ne is not affected by controlling for positive 

and negative transcript tones in terms of its magnitude and statistical significance. These 

results imply that investors understand CEOs’ emotions revealed through their facial 

expressions in CNBC and Bloomberg interviews and react to them through CAR1. In 

contrast, the slope coefficients of Po are not reliably different from zero at any 

conventional levels, which indicates that the significant slope coefficient of Face is 

mainly driven by Ne, not Po. The one-day delayed response to facial expression variables 
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in CAR1 regressions could be due to the fact that the information contained in facial 

expressions is softer than that in transcript tones and that it thus take longer investors to 

digest it than its spoken counterpart, i.e., transcript tones. In CAR1, we find that the slope 

coefficient of NegWords is -0.191% and its statistical significance is weakened compared 

to CAR0.  

  To control for other known variables that potentially explains CARd, we now run 

panel regressions with standard control variables. We consider the following pooled 

regressions. In day d (=0, .., 180), 

𝐶𝐴𝑅𝑑 = 𝛼 + 𝛽𝐹𝑎𝑐𝑒𝐹𝑎𝑐𝑒 + 𝛽𝑃𝑜𝑃𝑜 + 𝛽𝑁𝑒𝑁𝑒 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜀,   (3.2) 

where Control contains the firm characteristics and transcript tones: PosWords, 

NegWords, Size, LogB2M, Momem, PEAD. and SUE. CEOs’ face fixed effects are also 

included in regression (3.2). Size is the natural logarithm of market value of equity at one 

month before air date. LogB2M is the natural logarithm of book-to-market ratios. The 

book-to-market ratio is calculated as the book value of shareholders equity scaled by the 

market value of equity at the end of the previous year. Momem is the cumulative daily 

return over the past 100 days trading window, i.e., [–125, one day prior to the most recent 

earnings announcement before air date]. PEAD is the cumulative daily return over the 

trading window from the most recent earnings announcement date to one day before air 

date. We employ PEAD to control for the information contained in the earnings 

announcement released before the air date. SUE is the difference between actual earnings 

per share and the consensus (median) earnings forecast for the quarter prior to the video 

air date scaled by the price at 2 days before the most recent earnings announcement date. 

All other specifications are the same as in regression (3.1). 

Table 23 provides the results of pooled regression (3.2). For CAR0, as in Table 22, 

we find insignificant slope coefficients for facial expression variables. In terms of 

transcript tones, the slope coefficient of PosWords is 0.224% and becomes significant at 

the 5% level, while that of NegWords loses its significance.  

For CAR1, we find evidence that the stock market participants strongly react to 

facial expression variables, especially Ne, as in Table 22. The slope coefficient of Face is 
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0.19% and statistically significant at the 5% level. The slope coefficients of Ne range 

from -0.172% to -0.162% and are significant at the 5% level even when all control 

variables are included in regression (3.2). The significant slope coefficient of Ne is not 

affected by controlling for positive and negative transcript tones. None of control 

variables have consistently strong relationship with CARs across different specifications, 

which indicates that Ne has a unique explanatory power for CARs in regression (3.2). 

Overall, the regression results are similar to those in equation (3.1). 

Different from Table 22, we find weak evidence that Po is positively associated 

with a longer-term CAR (i.e., CAR180). We find that the slope coefficient of Po is 0.866% 

and significant at the 10% level without controlling for Ne or transcript tones, which is 

not affected by controlling for positive and negative tones.  

 

4.3. Facial Expressions and Cumulative Abnormal Turnover 

In this section, we investigate whether investors understand CEOs’ facial 

expressions revealed during their interviews with national TVs and react to them through 

trading activity, i.e., cumulative abnormal turnover (CAT). The abnormal turnover is the 

share turnover measured on day d minus the average share turnover over the past three 

months, i.e., (-90 days, -5 days). Share turnover is measured as number of shares traded 

divided by number of shares outstanding. Note that CATd denotes the cumulative 

abnormal turnover from day 1 to day d and CAT0 is accordingly defined as the abnormal 

turnover on day 0, i.e., the interview air date. We consider the following pooled 

regressions. In day d (=0, 1,2), 

𝐶𝐴𝑇𝑑 = 𝛼 + 𝛽𝐹𝑎𝑐𝑒𝐹𝑎𝑐𝑒 + 𝛽𝑃𝑜𝑃𝑜 + 𝛽𝑁𝑒𝑁𝑒 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜖,  (3.3) 

where Control contains the characteristics of interest: PosWords, NegWords, Size, 

LogB2M, SUE, LogAna, and LogAnaStd. LogAna is 1 plus the natural logarithm of 

number of analysts’ forecasts issued for the current fiscal quarter end before the air date. 

LogAnaStd is the natural logarithm of the standard deviation of analysts’ forecasts. All 

other control variables are defined as in regression (3.2). CEOs’ face fixed effects and 
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year fixed effects are also included in regression (3.3). To facilitate the interpretation of 

slope coefficients, we standardize them with the mean and the standard deviation of all 

available observations. For t-statistics, to account for cross-sectional correlation across 

firms and autocorrelation over time, we compute the robust standard errors by clustering 

by firm and year-quarter. 

Table 24 provides the results of the pooled regression (3.3). In the columns 

labeled as CATd, we report the regression results when CATd is employed as dependent 

variable. For CAT0, we find no evidence that the stock market reacts to facial expression 

variables through trading activity. For CAT1, we find evidence that facial expression 

variables are strongly correlated with abnormal turnover over the next day after air dates. 

The slope coefficient of Face is 0.14% and is highly significant at the 1% level. When 

decomposing Face into Po and Ne, we find almost equally strong responses to positive 

and negative facial expressions in terms of their economic magnitudes. The slope 

coefficients of Po and Ne are 0.105% (significant at the 1% level) and -0.0985% 

(significant at the 10% level), respectively, without controlling for transcript tones. These 

slope coefficients stay almost intact when both Po and Ne are included or when transcript 

tones are controlled in regressions.  

For CAT2, we again find strong evidence that investors respond to facial 

expression variables through CATs. The slope coefficient of Face is 0.207% and 

statistically significant at the 1% level. When decomposing Face into Po and Ne, we 

uncover evidence that the cumulative responses to Ne are stronger than those to Po 

regardless of specifications. For example, the slope coefficients of Po and Ne are 0.126% 

and -0.165%, respectively, and they are significant at the 5% level when transcript tones 

are excluded from regressions. Their magnitudes and statistical significance stay intact 

even when we include transcript tones as controls in regression (3.3). This evidence is 

consistent with the stronger price reactions to Ne in Table 23. In unreported table, we 

find that only Ne has significant slope coefficients at the 1% level and their values range 

from -0.071% to -0.066% when abnormal turnover on day 2 is employed as dependent 

variable, while the slope coefficients of Po do not differ from zero reliably and their 

magnitudes are substantially smaller than those of Ne. 
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In contrast, we find that the tones of interview transcripts do not have significant 

slope coefficients in any specifications, which indicates that investors do not react to the 

contents of spoken transcripts during CEOs’ interviews through trading activity. Among 

other control variables, Size is the only variable that consistently has strong relationship 

with CATs across different specifications. It has negative relation with CATs, indicating 

that investors trade small stocks more when their CEOs’ have interviews with national 

TVs.  

 

4.4. Facial Expressions and Future Earnings 

In this section, we examine whether CEOs’ facial expressions contain information 

about the fundamentals of their firms, especially, earnings. Following prior literature (e.g., 

Li 2010), we consider the following pooled regressions:  

𝐸𝑎𝑟𝑛1 = 𝛼 + 𝛽𝐹𝑎𝑐𝑒𝐹𝑎𝑐𝑒 + 𝛽𝑃𝑜𝑃𝑜 + 𝛽𝑁𝑒𝑁𝑒 + 𝐶𝑜𝑛𝑡𝑟𝑜𝑙 + 𝜖,  (3.4) 

where Earn1 is one-quarter-ahead earnings after air date and Control contains the 

characteristics of interest: PosWords, NegWords, Earn_1, Size, LogB2M, and Momem. 

Earn_1 is the most recent quarterly earnings before air date and it is computed as 

earnings before the extraordinary item (IBQ in COMPUSTAT) scaled by the book value. 

For example, when an interview is conducted in quarter t, Earn_1 is the earnings in 

quarter t-1 and Earn1 is the earnings in quarter t+1. All other control variables are 

constructed in the same way as in CAR regressions (3.1) and (3.2). To facilitate the 

interpretation of slope coefficients, we standardize each variable with the mean and the 

standard deviation of all available observations. To control for unobserved heterogeneity 

across CEO faces and over time, we also include CEO face fixed effects and Year-quarter 

fixed effects. For t-statistics, to account for the time-series correlation over time, we 

compute the robust standard errors by clustering by industry. 

 Table 25 provides the results of the future earnings regressions in (3.4). We find 

that the slope coefficients of Ne range from -0.018% to -0.017% and they are significant 

at the 5% level. Their magnitudes and statistical significance stay unaffected by adding 
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transcript tones into the regressions. In contrast, the slope coefficients of Po are 

insignificant at any conventional level. The slope coefficients of Earn_1 are about 0.1% 

and significant at the 5% level across different specifications, which is consistent with the 

fact that earnings are persistent over time. None of other control variables have 

consistently strong relationships with future earnings across different specifications. The 

slope coefficient of NegWords is -0.008% and marginally significant at the 10% level. 

Taken together, the results in Table 25 suggest that the CEOs’ facial expressions, 

especially negative ones, are strongly associated with one-quarter-ahead earnings of their 

firms. 

 

4.5. Discussions 

 Overall, the evidence in Tables 22 to 25 indicates that investors in financial 

markets understand and react to the economic implications of CEOs’ facial expressions 

during their televised interviews with national TVs. Combining these regression results, 

we can obtain better understanding of the reactions by investors to relatively more “soft” 

information contained in CEOs’ facial expressions than the “hard” information contained 

in other traditional channels such as earnings announcements. First, the CAR regressions 

in Tables 22 and 23 present strong evidence that CAR1 can be predicted by CEOs’ 

negative facial expressions. Second, the CAT regressions in Table 24 provide evidence 

that abnormal turnover can be predicated by both positive and negative facial expressions, 

but the CAT predictability by negative facial expression is stronger than that by positive 

facial expression. Combining CAR and CAT predictability regressions indicates that 

investors’ reactions to CEOs’ facial expressions are asymmetric to positive and negative 

facial expressions. However, these regressions are silent about why investors’ reactions 

are asymmetric to Po and Ne. The future earnings regressions in Table 25 can provide us 

an (at least partial) answer for why investors in financial markets react to Ne substantially 

more strongly than to Po. The evidence in Table 25 indicates that Ne has strong 

association with one-quarter-ahead earnings and thus it contains value-relevant 

information about firm’s fundamentals, while we find fairly weak evidence that Po also 

has such association with one-quarter-ahead earnings. To the extent that the stock 
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markets are efficient, investors would quickly reflect the new value-relevant information 

contained in Ne to stock prices and thus Ne predicts the future abnormal return on the 

next day after air date. Since Po does not contain the information about firms’ 

fundamentals, Po does not have such predictability of future abnormal returns. 

 

5. Conclusion  

For the first time in finance and economics, we empirically test whether CEOs’ 

facial expressions revealed through CNBC and Bloomberg interviews convey value-

relevant information to financial markets and how market participants react to it. To 

quantify the intensities of CEOs’ facial expressions, we employ a commercial software 

that maps CEOs’ facial expressions in their televised interviews into seven basic 

emotions. We uncover evidence that negative facial expressions are correlated with 

cumulative abnormal stock returns and cumulative abnormal turnover over the next one 

to two days after air dates. We also find that negative facial expressions are strongly 

associated with firms’ one-quarter-ahead earnings. Taken together, our evidence suggests 

that CEOs’ emotions captured by their facial expressions in their interviews with CNBC 

and Bloomberg convey value-relevant information about their firms to investors in 

financial markets, and investors understand and react to it.  
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Technical Appendix 1: Variable Definition  
 

Variable Definitions 

Angry 
Angry emotion measured as the median of angry emotion scores during an 

interview  

B2M 
Book-to-market ratio, calculated as the book value of shareholders equity 

scaled by the market value of equity at the end of the year before air date 

CAR0 Abnormal returns measured on air date 

CAR30  

(CAR180) 

30-day (180-day) cumulative abnormal returns measured after air date (start 

from the next trading day of the interview) 

CAT0 (CAT1, 

CAT2) 

Cumulative abnormal turnover on the air date minus the average turnover 

measured over (-5 days, -90 days). Turnover is measured as number of shares 

traded divided by number of shares outstanding. 

Disgusted 
Disgusted emotion measured as the median of disgusted emotion scores 

during an interview 

Earn_1 

Most recent quarterly earnings before air date and it is computed as earnings 

before the extraordinary item (IBQ in COMPUSTAT) scaled by the book 

value 

Earn1 One quarter-ahead earnings after air date 

Face Facial expression score defined as Po-Ne 

Po 
Positive emotion measured as the median of happy emotion scores during an 

interview  

LagRec Level of analyst recommendations prior to air date 

LogAna 
The natural logarithm of number of analysts following in the year of air date 

plus 1. 

LogB2M Natural logarithm of book-to-market ratio 

MktCap 
Market capitalization defined as stock price times number of shares 

outstanding at the end of prior month to air date 

Momem 
Cumulative daily returns over a past 100 trading days window [–125, one day 

prior to the most recent earnings announcement before air date] 

Ne 
Score of the most salient negative emotion during an interview. Negative 

emotions identified by FaceReader include angry, disgusted, sad, and scared. 

NegWords 
Number of negative words spoken by a CEO during his/her interview. The 

list of negative words is from Jegadeesh and Wu (2014). 

Nu 
Neutral emotion measured as the median of neutral emotion scores during an 

interview 

PosWords 
Number of positive words spoken by a CEO during his/her interview. The list 

of positive words is from Jegadeesh and Wu (2014). 

PEAD 
Cumulative daily returns over the trading window from the most recent 

earnings announcement till one day before air date 

Recommendation 

Revision 

Difference between the average consensus recommendation immediately 

after and before video air date 

Sad 
Sad emotion measured as the median of sad emotion scores during an 

interview  

Scared 
Scared emotion measured as the median of scared emotion scores during an 

interview  
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Technical Appendix 1 (continued) 

 

Surprised 
Surprised emotion measured as the median of surprised emotion scores during 

an interview  

Size 
Natural logarithm of market value of equity at the end of prior month to air 

date 

SUE 

Difference between actual earnings per share and the summary consensus 

median earnings forecast for the fiscal quarter end prior to video air date 

scaled by the price at 2 days before the earnings announcement date 

Volat 
The standard deviation of daily stock returns over the past 125 trading days 

before air date 
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Technical Appendix 2: Links to Sample Videos 

Highest Face Videos: 

https://www.youtube.com/watch?v=oEewdFapSII&list=PLhs3gTH3HCXU9RZaVScAEoLgsK1

KF8YpL 

Lowest Face Videos: 

https://www.youtube.com/watch?v=xjC7SU64zhY&list=PLhs3gTH3HCXXa_vOdbStRbHy5Lxl

DWALw 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://www.youtube.com/watch?v=oEewdFapSII&list=PLhs3gTH3HCXU9RZaVScAEoLgsK1KF8YpL
https://www.youtube.com/watch?v=oEewdFapSII&list=PLhs3gTH3HCXU9RZaVScAEoLgsK1KF8YpL
https://www.youtube.com/watch?v=xjC7SU64zhY&list=PLhs3gTH3HCXXa_vOdbStRbHy5LxlDWALw
https://www.youtube.com/watch?v=xjC7SU64zhY&list=PLhs3gTH3HCXXa_vOdbStRbHy5LxlDWALw
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Technical Appendix 3: Screenshots from the Videos with the Most Extreme Facial 

Expression Scores 
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Technical Appendix 3 (continued) 

 

Sad 

 

 

 

 

 

Angry 
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Technical Appendix 3 (continued) 

 

 

 

Surprise 

 

 

 

 

 

Happy 



99

Appendices
Table 1.
Summary Statistics for the Industry Network Centrality (in 1992)

This table provides the summary statistics for the industry network centralities (Panel A) and
the lists of the twenty most and twenty least central industries (Panel B) in the 1992 BEA report.
465 disaggregate industries are analyzed in the 1992 Detailed Input-Output Tables from the Bureau
of Economic Analysis (BEA). The reported centralities are the eigenvector centralities based on their
inter-industry trades.

Panel A: Summary Statistics for Centralities

Statistics Eigenvector centrality
& percentiles of the industry network

Mean 0.038
Standard deviation 0.027
Minimum 0.010
5th percentile 0.018
10th percentile 0.021
25th percentile 0.025
Median 0.033
75th percentile 0.040
90th percentile 0.056
95 percentile 0.068
Maximum 0.347
Number of observations 465

Panel B: Lists of the Twenty Most and Twenty Least Central Industries

Twenty most central industries Twenty least central industries

Wholesale trade Petroleum, natural gas, solid mineral exploration

Eating and drinking places Racing, including track operation
Construction industries Cigars
Real estate agents, managers, and operators Boot and shoe cut stock and findings
Commercial construction industries Women’s hosiery, except socks
Trucking and courier services, except air Hosiery
Blast furnaces and steel mills Tobacco stemming and redrying
Electric services (utilities) Manufactured ice
Miscellaneous plastics products Chewing and smoking tobacco and snuff
Motor vehicles and passenger car bodies Schiffli machine embroideries
Banking Professional sports clubs and promoters
Petroleum refining Women’s handbags and purses
Retail trade, except eating and drinking Burial caskets
Industrial inorganic and organic chemicals Leather gloves and mittens
Paper and paperboard mills Personal leather goods
Paperboard containers and boxes Special product sawmills
Motor vehicle parts and accessories Jewelers’ materials and lapidary work
Telephone, telgraph communications, X-ray apparatus and tubes
and communications
Hospitals Leather goods
Bread, cake, and related products Costume jewelry
Automotive repair shops and services Nonferrous metal ores, except copper
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Table 2.
Characteristics of Centrality-sorted Quintile Portfolios

This table provides the averages of various characteristics of centrality-sorted quintile portfolios
over January 1972 through December 2012. Eight detailed Input-Output tables from the Bureau
of Economic Analysis (BEA) are merged with CRSP and COMPUSTAT data through SIC/NAICS
codes. For each BEA report, eigenvector centralities are computed and assigned to individual stocks
based on their industry memberships. Within each quintile portfolio, the following characteristics
are computed by equal-weighting constituent stocks: the market capitalization (MKTCAP) in billion
dollars, book-to-market (BM) ratio, return volatility (VOL), idiosyncratic return volatility (IVOL),
share turnover (TURN) based on the NYSE/AMEX stock universe, the number of analysts following
on a given month (ANALFOLL), and the percentage of institutional holdings (IHP). Customer-HHI
and Supplier-HHI (two rightmost columns) are the Herfindahl-Hirschman indices (HHIs) for sales
and purchases per industry, respectively, which are aggregated across industries. Characteristics of
quintile portfolios are averaged over the sample period.

Panel: Average Characteristics of Centrality-sorted Quintile Portfolios

Centrality MKTCAP BM VOL IVOL TURN∗ ANAL- IHP Customer- Supplier-
rank (Bill$) ratio FOLL (%) HHI HHI

High (1) 2.563 1.094 0.026 0.085 0.085 3.10 42.1 0.292 0.117

(2) 1.986 0.934 0.026 0.087 0.083 2.88 44.5 0.157 0.099

(3) 1.979 0.938 0.026 0.089 0.082 2.93 45.1 0.170 0.092

(4) 2.104 0.866 0.028 0.094 0.080 2.74 44.0 0.203 0.102

Low (5) 2.070 0.895 0.028 0.096 0.079 2.58 43.2 0.259 0.127

∗based on the NYSE/AMEX stock universe
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Table 3.
Return Cross-predictability and Network Positions

I consider special cases of the following FM cross-sectional regression: for firm i in month t,

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t Di,l,t−1r
related
i,t−1 + εi,t,

where rei,t is the excess return of firm i which belongs to the industry in question, Zi,t con-
tains characteristics of interest: SIZE, BM, MOM, and REV, and l is chosen from (C,M,P ) =
(Center,Middle, Periphery). Di,l,t−1 is an indicator variable defining the location of firm i in the
industry network in month t − 1. For example, if the industry which firm i belongs to is central,
Di,C,t−1 is 1 otherwise 0. rrelatedi,t−1 is the lagged aggregate return of customer and supplier industries
of firm i by one month. Panels A and B conduct the firm-level and industry-level FM cross-sectional
regressions, respectively. To report t-statistics in parentheses (bold if significant at the 5% level),
the Newey-West HAC covariance matrix estimators are employed.

Panel A: Firm-level

(1) (2)
RET(t) RET(t)

SIZE -0.001 -0.001

(-1.43) (-1.43)
BM 0.002 0.002

(2.99) (2.99)
MOM 0.006 0.006

(3.06) (3.06)
REV -0.050 -0.050

(-10.45) (-10.45)
RET(Related,t− 1) × Dummy(Center) 0.182

(5.56)
RET(Related,t− 1) × Dummy(Middle) 0.156

(5.73)
RET(Related,t− 1) × Dummy(Periphery) 0.095

(3.94)
RET(Related,t− 1) × Dummy(Center) 0.088

(2.36)
RET(Related,t− 1) × Dummy(Middle) 0.062

(1.84)
RET(Related,t− 1) 0.095

(3.94)
Dummy(Center) 0.020 0.020

(2.39) (2.39)
Dummy(Middle) 0.020 0.020

(2.33) (2.33)
Dummy(Periphery) 0.019 0.019

(2.31) (2.31)
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Table 3.
Return Cross-Predictability and Network Positions (Continued)

Panel B: Industry-level

(1) (2)
RET(t) RET(t)

SIZE 0.000 0.000

(-0.71) (-0.71)
BM 0.002 0.002

(2.18) (2.18)
MOM 0.008 0.008

(3.27) (3.27)
REV -0.035 -0.035

(-5.39) (-5.39)
RET(Related,t− 1) × Dummy(Center) 0.140

(4.75)
RET(Related,t− 1) × Dummy(Middle) 0.115

(4.50)
RET(Related,t− 1) × Dummy(Periphery) 0.064

(2.58)
RET(Related,t− 1) × Dummy(Center) 0.076

(2.09)
RET(Related,t− 1) × Dummy(Middle) 0.051

(1.44)
RET (Related,t− 1) 0.064

(2.58)
Dummy(Center) 0.012 0.012

(1.27) (1.27)
Dummy(Middle) 0.014 0.014

(1.51) (1.51)
Dummy(Periphery) 0.014 0.014

(1.52) (1.52)
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Table 4.
Self-financing Trading Strategies based on Central and Peripheral Industries

Panels A1 (B1) and A2 (B2) provide the value-weighted (equal-weighted) excess and risk-
adjusted returns of self-financing trading strategies that invest exclusively in central or peripheral
industries, respectively. For example, to implement a trading strategy that invests exclusively in
central industries, quintile portfolios are formed based on the average one-month lagged return
of customer and supplier industries and a long-short hedging portfolio (labeled as “High-Low”) is
constructed by going long the highest quintile (labeled as “High (1)”) and going short the lowest
quintile (labeled as “Low (5)”) portfolios. Quintile portfolios are rebalanced every month. Returns
and their standard deviations are annualized in Panels A1 and B1. Monthly risk-adjusted returns
(alphas) are obtained after controlling for the exposure to Fama-French three (MKTRF, SMB, HML),
momentum (UMD), and Pastor and Stambaugh tradable liquidity (PS-LIQ) factors. In Panels A2
and B2, t-statistics are presented in parentheses (bold if significant at the 5% level).

Panel A1: Excess Returns (Value-weighted)

High (1) (2) (3) (4) Low (5) High-Low

Central Mean excess return 0.127 0.091 0.073 0.078 0.056 0.071
industries Standard deviation 0.185 0.186 0.187 0.182 0.189 0.131

Sharpe ratio 0.686 0.489 0.391 0.426 0.299 0.544

Peripheral Mean excess return 0.122 0.110 0.077 0.081 0.095 0.027
industries Standard deviation 0.195 0.200 0.178 0.207 0.214 0.173

Sharpe ratio 0.627 0.549 0.432 0.390 0.447 0.156

Panel A2: Risk-adjusted Returns (Value-weighted)

Trading Strategy based on Alpha MKTRF SMB HML UMD PS-LIQ Adj-R2

Central 0.006 0.007 -0.040 -0.022 0.043 0.008 -0.007
industries (3.55) (0.17) (-0.76) (-0.40) (1.27) (0.30)

Peripheral 0.001 -0.081 -0.153 0.034 0.162 0.103 0.037
industries (0.53) (-1.30) (-1.77) (0.38) (2.93) (2.32)

Panel B1: Excess Returns (Equal-weighted)

High (1) (2) (3) (4) Low (5) High-Low

Central Mean excess return 0.141 0.110 0.093 0.079 0.060 0.081
industries Standard deviation 0.184 0.184 0.183 0.181 0.186 0.092

Sharpe ratio 0.770 0.596 0.510 0.435 0.325 0.877

Peripheral Mean excess return 0.131 0.104 0.090 0.089 0.086 0.045
industries Standard deviation 0.180 0.184 0.177 0.185 0.207 0.117

Sharpe ratio 0.727 0.567 0.508 0.481 0.414 0.384

Panel B2: Risk-adjusted Returns (Equal-weighted)

Trading Strategy based on Alpha MKTRF SMB HML UMD PS-LIQ Adj-R2

Central 0.007 0.031 -0.034 0.013 0.012 -0.024 -0.008
industries (4.64) (0.92) (-0.72) (0.26) (0.40) (-0.99)

Peripheral 0.004 -0.113 -0.087 0.039 0.088 0.013 0.045
industries (2.15) (-2.70) (-1.50) (0.63) (2.36) (0.44)
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Table 5.
Return Cross-predictability and Network Positions for Multi-periods

I consider special cases of the following FM cross-sectional regression: for firm i in month t,

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t,k Di,l,t−kr
related
i,t−k + εi,t,k,

where rei,t is the excess return of firm i which belongs to the industry in question, Zi,t con-
tains characteristics of interest: SIZE, BM, MOM, and REV, and l is chosen from (C,M,P ) =
(Center,Middle, Periphery). Di,l,t−k is an indicator variable defining the location of firm i in the
industry network in month t − k. For example, if the industry which firm i belongs to is central,
Di,C,t−k is 1 otherwise 0. rrelatedi,t−k is the lagged aggregate return of customer and supplier industries
of firm i by k months. For each month, all variables are standardized cross-sectionally. To report
t-statistics in parentheses (bold if significant at the 5% level), the Newey-West HAC covariance
matrix estimators are employed.

Panel: Firm-level

(1) (2) (3) (4) (5) (6)
RET(t) RET(t) RET(t) RET(t) RET(t) RET(t)
k = 0 k = 0 k = 1 k = 1 k = 2 k = 2

SIZE -0.005 -0.005 -0.005 -0.005 -0.004 -0.004
(-0.93) (-0.93) (-0.85) (-0.85) (-0.68) (-0.68)

BM 0.014 0.014 0.014 0.014 0.013 0.013
(3.66) (3.66) (3.67) (3.67) (3.48) (3.48)

MOM 0.019 0.019 0.020 0.020 0.019 0.019
(3.78) (3.78) (3.77) (3.77) (3.60) (3.60)

REV -0.049 -0.049 -0.049 -0.049 -0.048 -0.048
(-11.07) (-11.07) (-11.02) (-11.02) (-10.67) (-10.67)

RET(Related,k)×Dummy(C) 0.110 0.031 0.013
(24.57) (6.53) (2.43)

RET(Related,k)×Dummy(M) 0.109 0.025 0.008
(18.71) (5.39) (1.64)

RET(Related,k)×Dummy(P) 0.085 0.020 0.004
(14.58) (4.51) (0.87)

RET(Related,k)×Dummy(C) 0.025 0.011 0.009
(3.94) (2.12) (1.86)

RET(Related,k)×Dummy(M) 0.024 0.005 0.004
(3.68) (0.87) (0.61)

RET(Related,k) 0.085 0.020 0.004
(14.58) (4.51) (0.87)

Dummy(Center) -0.003 -0.003 -0.002 -0.002 -0.002 -0.002
(-1.45) (-1.45) (-0.9) (-0.9) (-1.14) (-1.14)

Dummy(Middle) 0.004 0.004 0.005 0.005 0.005 0.005
(1.60) (1.60) (1.50) (1.50) (1.76) (1.76)

Dummy(Periphery) 0.006 0.006 0.006 0.006 0.005 0.005
(1.87) (1.87) (1.72) (1.72) (1.21) (1.21)
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Table 6.
Cross-predictability of Analysts’ Earnings Forecast Revisions and Network Positions

I consider the following pooled regression: for firm i in month t and k-month lag (k = 0, 1, 2),

AREVi,t = αi + βt + γTZZi,t +
∑

l∈(C,M,P )

ψrelated
l,k Di,l,t−kAREVrelated

i,t−k + εi,t,k,

where AREVi,t is the analysts’ revision of earnings forecast of firm i in month t. I define the analysts’ revision as AREVi,t = (UPi,t −
DOWNi,t)/NUMESTi,t, where NUMESTi,t is the number of estimates of firm i’s earnings for the current fiscal quarter end, and UPi,t (DOWNi,t)
is the number of upward (downward) earnings forecast revisions. Zi,t contains control variables: lagged AREV, the aggregate return of re-
lated industries of firm i lagged by one month, and the industry-level analysts’ revision (AREVIND) lagged by one month. l is chosen from
(C,M,P ) = (Center,Middle, Periphery). Di,l,t−k is an indicator variable defining the location of firm i in month t− k. For example, if the industry

which firm i belongs to is central, Di,C,t−k is 1 otherwise 0. AREVrelated
i,t−k is the aggregate analysts’ revision of the related industries of firm i in month

t− k. To report t-statistics in parentheses (bold if significant at the 5% level), robust standard errors are computed by double-clustering by firm and
year-month. All variables are standardized.
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Table 6.
Cross-predictability of Analysts’ Earnings Forecast Revisions and Network Positions (Continued)

Panel: Revisions of Analysts’ Earnings Forecast

(1) (2) (3) (4) (5) (6)
AREV(t) AREV(t) AREV(t) AREV(t) AREV(t) AREV(t)
k = 0 k = 0 k = 1 k = 1 k = 2 k = 2

AREV(t− 1) 0.063 0.063 0.063 0.063
(12.67) (12.67) (12.88) (12.88)

RET(Related,t− 1) 0.044 0.044 0.048 0.048
(3.84) (3.84) (3.99) (3.99)

AREVIND(t− 1) 0.042 0.042 0.044 0.044
(10.51) (10.51) (10.83) (10.83)

AREV(Related,t− k) × Dummy(Center) 0.085 0.049 0.032
(8.70) (6.06) (4.83)

AREV(Related,t− k) × Dummy(Middle) 0.092 0.033 0.020
(9.54) (5.17) (3.40)

AREV(Related,t− k) × Dummy(Periphery) 0.079 0.009 0.006
(8.70) (1.34) (0.77)

AREV(Related,t− k) × Dummy(Center) 0.005 0.040 0.026
(0.45) (4.34) (2.80)

AREV(Related,t− k) × Dummy(Middle) 0.012 0.024 0.014
(1.18) (3.24) (1.69)

AREV(Related,t− k) 0.079 0.009 0.006
(4.42) (1.34) (0.77)

Dummy(Center) -0.014 -0.014 -0.002 -0.002 -0.003 -0.003
(-0.98) (-0.98) (-0.12) (-0.12) (-0.18) (-0.18)

Dummy(Middle) -0.006 -0.006 -0.003 -0.003 -0.003 -0.003
(-0.48) (-0.48) (-0.19) (-0.19) (-0.21) (-0.21)

Constant 0.064 0.064 0.092 0.092 -0.043 -0.043
(4.42) (4.42) (3.94) (3.94) (-1.46) (-1.46)

Firm/Time-fixed Effects Yes Yes Yes Yes Yes Yes
Clustered S.E. Firm/ Firm/ Firm/ Firm/ Firm/ Firm/

Year-Month Year-Month Year-Month Year-Month Year-Month Year-Month
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Table 7.
Testing Existing Anomalies: the Conglomerate Effect

Using standalone firms, I consider special cases of the following FM cross-sectional regression:
for firm i in month t,

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t Di,l,t−1r
related
i,t−1 + εi,t,

where rei,t is the excess return of firm i which belongs to the industry in question, Zi,t con-
tains characteristics of interest: SIZE, BM, MOM, and REV, and l is chosen from (C,M,P ) =
(Center,Middle, Periphery). Di,l,t−1 is an indicator variable defining the location of firm i in the
industry network in month t − 1. For example, if the industry which firm i belongs to is central,
Di,C,t−1 is 1 otherwise 0. rrelatedi,t−1 is the lagged aggregate return of customer and supplier industries
of firm i by one month. To report t-statistics in parentheses (bold if significant at the 5% level), the
Newey-West HAC covariance matrix estimators are employed.

Panel: Standalone Firms

(1) (2)
RET(t) RET(t)

SIZE -0.001 -0.001
(-2.43) (-2.43)

BM 0.002 0.002
(2.75) (2.75)

MOM 0.005 0.005
(2.57) (2.57)

REV -0.043 -0.043
(-10.53) (-10.53)

RET(Related,t− 1) × Dummy(Center) 0.162
(4.05)

RET(Related,t− 1) × Dummy(Middle) 0.104
(2.78)

RET(Related,t− 1) × Dummy(Periphery) 0.078
(2.43)

RET(Related,t− 1) × Dummy(Center) 0.085
(2.13)

RET(Related,t− 1) × Dummy(Middle) 0.026
(0.58)

RET(Related,t− 1) 0.078
(2.43)

Dummy(Center) 0.033 0.033
(3.28) (3.28)

Dummy(Middle) 0.034 0.034
(3.35) (3.35)

Dummy(Periphery) 0.034 0.034
(3.47) (3.47)
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Table 8.
Testing Existing Anomalies: Limits to Arbitrage

I partition the entire stock universe into three sub-groups sorted on firm-level idiosyncratic
volatility. For example, columns titled H-IVOL mean that the sub-group with high level of idiosyn-
cratic volatility are analyzed. Within each sub-group, I consider special cases of the following FM
cross-sectional regression: for firm i in month t,

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t Di,l,t−1r
related
i,t−1 + εi,t,

where rei,t is the excess return of firm i which belongs to the industry in question, Zi,t con-
tains characteristics of interest: SIZE, BM, MOM, and REV, and l is chosen from (C,M,P ) =
(Center,Middle, Periphery). Di,l,t−1 is an indicator variable defining the location of firm i in the
industry network in month t − 1. For example, if the industry which firm i belongs to is central,
Di,C,t−1 is 1 otherwise 0. rrelatedi,t−1 is the lagged aggregate return of customer and supplier industries
of firm i by one month. To report t-statistics in parentheses (bold if significant at the 5% level), the
Newey-West HAC covariance matrix estimators are employed.

Panel: Subsets sorted on Idiosyncratic Volatility

(1) (2) (3) (4) (5) (6)
RET(t) RET(t) RET(t) RET(t) RET(t) RET(t)
H-IVOL H-IVOL M-IVOL M-IVOL L-IVOL L-IVOL

SIZE -0.001 -0.001 -0.001 -0.001 -0.001 -0.001
(-3.09) (-3.09) (-2.36) (-2.36) (-2.32) (-2.32)

BM 0.002 0.002 0.001 0.001 0.001 0.001
(3.22) (3.22) (2.02) (2.02) (1.73) (1.73)

MOM 0.005 0.005 0.010 0.010 0.008 0.008
(2.78) (2.78) (4.28) (4.28) (3.07) (3.07)

REV -0.050 -0.050 -0.054 -0.054 -0.058 -0.058
(-8.61) (-8.61) (-10.49) (-10.49) (-11.65) (-11.65)

RET(Related,1)×Dummy(C) 0.301 0.170 0.125
(4.70) (5.37) (4.14)

RET(Related,1)×Dummy(M) 0.161 0.162 0.122
(3.15) (4.25) (4.64)

RET(Related,1)×Dummy(P) 0.151 0.055 0.079
(3.25) (1.87) (3.28)

RET(Related,1)×Dummy(C) 0.149 0.115 0.046
(2.00) (2.87) (1.35)

RET(Related,1)×Dummy(M) 0.009 0.107 0.043
(0.14) (2.55) (1.29)

RET(Related,1) 0.151 0.055 0.079
(3.25) (1.87) (3.28)

Dummy(Center) 0.035 0.035 0.024 0.024 0.020 0.020
(4.08) (4.08) (3.07) (3.07) (3.41) (3.41)

Dummy(Middle) 0.034 0.034 0.025 0.025 0.022 0.022
(3.55) (3.55) (3.31) (3.31) (3.47) (3.47)

Dummy(Periphery) 0.029 0.029 0.026 0.026 0.025 0.025
(3.43) (3.43) (3.37) (3.37) (4.06) (4.06)



109

Table 9.
Testing Existing Anomalies: the Institutional Ownership, Turnover, and Illiquidity Effects

I partition the entire stock universe into three sub-groups sorted on the percentage ownership of
institutional investors (IHP), share turnover (TURN), or Amihud illiquidity (ILLIQ). For example,
in Panel A (Panel B), columns titled H-IHP (H-TURN) mean that the sub-group with high level
of IHP (TURN) are analyzed. Within each sub-group, I consider special cases of the following FM
cross-sectional regression: for firm i in month t,

rei,t = αt + γTZ,tZi,t +
∑

l∈(C,M,P )

γrelatedl,t Di,l,t−1r
related
i,t−1 + εi,t,

where rei,t is the excess return of firm i which belongs to the industry in question, Zi,t con-
tains characteristics of interest: SIZE, BM, MOM, and REV, and l is chosen from (C,M,P ) =
(Center,Middle, Periphery). Di,l,t−1 is an indicator variable defining the location of firm i in the
industry network in month t − 1. For example, if the industry which firm i belongs to is central,
Di,C,t−1 is 1 otherwise 0. rrelatedi,t−1 is the lagged aggregate return of customer and supplier industries
of firm i by one month. To report t-statistics in parentheses (bold if significant at the 5% level), the
Newey-West HAC covariance matrix estimators are employed.

Panel A: Subsets sorted on IHP

(1) (2) (3) (4) (5) (6)
RET(t) RET(t) RET(t) RET(t) RET(t) RET(t)
H-IHP H-IHP M-IHP M-IHP L-IHP L-IHP

SIZE 0.001 0.001 0.000 0.000 -0.001 -0.001
(2.68) (2.68) (-0.66) (-0.66) (-3.08) (-3.08)

BM 0.000 0.000 0.002 0.002 0.002 0.002
(0.39) (0.39) (2.94) (2.94) (3.35) (3.35)

MOM 0.005 0.005 0.003 0.003 0.006 0.006
(1.98) (1.98) (1.08) (1.08) (2.95) (2.95)

REV -0.037 -0.037 -0.046 -0.046 -0.038 -0.038
(-7.37) (-7.37) (-10.30) (-10.30) (-7.17) (-7.17)

RET(Related,1)×Dummy(C) 0.152 0.219 0.223
(3.17) (4.85) (4.78)

RET(Related,1)×Dummy(M) 0.118 0.164 0.161
(2.87) (3.40) (3.50)

RET(Related,1)×Dummy(P) 0.029 0.069 0.136
(0.83) (1.85) (3.34)

RET(Related,1)×Dummy(C) 0.123 0.149 0.088
(2.24) (3.16) (2.29)

RET(Related,1)×Dummy(M) 0.088 0.095 0.025
(1.64) (1.80) (0.42)

RET(Related,1) 0.029 0.069 0.136
(0.83) (1.85) (3.34)

Dummy(Center) -0.018 -0.018 0.017 0.017 0.032 0.032
(-1.75) (-1.75) (1.70) (1.70) (3.62) (3.62)

Dummy(Middle) -0.020 -0.020 0.019 0.019 0.035 0.035
(-2.08) (-2.08) (1.73) (1.73) (4.02) (4.02)

Dummy(Periphery) -0.019 -0.019 0.017 0.017 0.034 0.034
(-1.86) (-1.86) (1.72) (1.72) (3.84) (3.84)
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Table 9.
Testing Existing Anomalies: the Institutional Ownership, Turnover, and Illiquidity Effects
(Continued)

Panel B: Subsets sorted on TURN (NYSE/AMEX)

(1) (2) (3) (4) (5) (6)
RET(t) RET(t) RET(t) RET(t) RET(t) RET(t)

H-TURN H-TURN M-TURN M-TURN L-TURN L-TURN

SIZE -0.001 -0.001 -0.001 -0.001 0.000 0.000
(-2.82) (-2.82) (-1.99) (-1.99) (-0.49) (-0.49)

BM 0.002 0.002 0.002 0.002 0.002 0.002
(1.65) (1.65) (2.58) (2.58) (3.54) (3.54)

MOM 0.005 0.005 0.006 0.006 0.009 0.009
(2.26) (2.26) (2.94) (2.94) (4.57) (4.57)

REV -0.029 -0.029 -0.067 -0.067 -0.084 -0.084
(-5.76) (-5.76) (-10.96) (-10.96) (-14.48) (-14.48)

RET(Related,1)×Dummy(C) 0.156 0.198 0.211
(3.06) (5.37) (6.29)

RET(Related,1)×Dummy(M) 0.140 0.163 0.181
(3.11) (4.89) (5.11)

RET(Related,1)×Dummy(P) 0.078 0.098 0.111
(2.04) (3.44) (3.23)

RET(Related,1)×Dummy(C) 0.078 0.101 0.100
(1.43) (2.11) (2.09)

RET(Related,1)×Dummy(M) 0.062 0.066 0.069
(1.20) (1.50) (1.52)

RET(Related,1) 0.078 0.098 0.111
(2.04) (3.44) (3.23)

Dummy(Center) 0.036 0.036 0.028 0.028 0.011 0.011
(3.15) (3.15) (2.77) (2.77) (1.25) (1.25)

Dummy(Middle) 0.032 0.032 0.027 0.027 0.016 0.016
(2.89) (2.89) (2.62) (2.62) (1.65) (1.65)

Dummy(Periphery) 0.035 0.035 0.027 0.027 0.012 0.012
(3.07) (3.07) (2.74) (2.74) (1.35) (1.35)
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Table 9.
Testing Existing Anomalies: the Institutional Ownership, Turnover, and Illiquidity Effects
(Continued)

Panel C: Subsets sorted on Amihud Illiquidity (NYSE/AMEX)

(1) (2) (3) (4) (5) (6)
RET(t) RET(t) RET(t) RET(t) RET(t) RET(t)
H-ILLIQ H-ILLIQ M-ILLIQ M-ILLIQ L-ILLIQ L-ILLIQ

SIZE -0.001 -0.001 -0.002 -0.002 -0.001 -0.001
(-1.95) (-1.95) (-2.58) (-2.58) (-1.22) (-1.22)

BM 0.002 0.002 0.001 0.001 0.002 0.002
(3.74) (3.74) (1.11) (1.11) (2.24) (2.24)

MOM 0.005 0.005 0.008 0.008 0.004 0.004
(2.37) (2.37) (3.50) (3.50) (1.59) (1.59)

REV -0.065 -0.065 -0.031 -0.031 -0.027 -0.027
(-8.93) (-8.93) (-5.01) (-5.01) (-4.56) (-4.56)

RET(Related,1)×Dummy(C) 0.220 0.172 0.107
(5.73) (4.08) (2.86)

RET(Related,1)×Dummy(M) 0.133 0.127 0.100
(3.41) (3.73) (2.86)

RET(Related,1)×Dummy(P) 0.114 0.060 0.029
(3.06) (1.63) (0.98)

RET(Related,1)×Dummy(C) 0.105 0.112 0.078
(2.07) (2.14) (1.68)

RET(Related,1)×Dummy(M) 0.018 0.067 0.072
(0.33) (1.46) (1.64)

RET(Related,1) 0.114 0.060 0.029
(3.06) (1.63) (0.98)

Dummy(Center) 0.029 0.029 0.044 0.044 0.021 0.021
(2.69) (2.69) (3.04) (3.04) (1.77) (1.77)

Dummy(Middle) 0.026 0.026 0.042 0.042 0.020 0.020
(2.39) (2.39) (2.81) (2.81) (1.71) (1.71)

Dummy(Periphery) 0.025 0.025 0.043 0.043 0.022 0.022
(2.35) (2.35) (2.93) (2.93) (1.86) (1.86)
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Table 10.
Changes in Institutional Co-ownership

I consider special cases of the following pooled regression: for firm i in quarter q,

∆IHPi,q = αi + βq +
∑

l∈(C,M,P )

θrelatedl Di,l,q∆IHPrelated
i,q + εi,q,

where ∆IHPi,q is the change in the percentage ownership of institutional investors in firm i from
quarter q − 1 to quarter q. l is chosen from (C,M,P ) = (Center,Middle, Periphery). Di,l,q is an
indicator variable defining the location of firm i in quarter q. For example, if the industry which
firm i belongs to is central, Di,C,q is 1 otherwise 0. ∆IHPrelated

i,q denotes the aggregate change in
the percentage ownership of institutional investors in the customer and supplier industries of firm i
from quarter q − 1 to quarter q. To report t-statistics in parentheses (bold if significant at the 5%
level), robust standard errors are computed by double-clustering by firm and year-quarter.

Panel: Changes in Institutional Co-ownership

(1) (2)
∆IHP(q) ∆IHP(q)

∆IHP(Related,q) × Dummy(Center) 0.203

(6.18)
∆IHP(Related,q) × Dummy(Middle) 0.195

(6.06)
∆IHP(Related,q) × Dummy(Periphery) 0.200

(5.66)
∆IHP(Related,q) × Dummy(Center) 0.004

(0.19)
∆IHP(Related,q) × Dummy(Middle) -0.004

(-0.21)
∆IHP(Related,q) 0.205

(6.02)
Dummy(Center) 0.056 0.068

(1.29) (1.58)
Dummy(Middle) 0.055 0.064

(1.43) (1.68)
Constant -0.073 -0.075

(-0.83) (-0.86)

Firm/Time-fixed Effects Yes Yes

Clustered S.E. Firm/Year-Quarter Firm/Year-Quarter
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Table 11.  

Small Sample Properties of Risk Premium Estimates: Simulation Evidence 

 
This table presents the small sample properties of risk premium estimates based on the  

Instrumental Variable (IV) estimator.  Panel A presents the results for the CAPM and Panel B 

presents the results for the Fama-French three-factor model. Appendix 3 describes the details of 

the simulation. T is the number of observations in days and T/2 observations each are used to 

estimate the independent variable and the instrumental variable for the IV estimator. N is the 

number of stocks in the cross-section. The results are based on 1,000 replications for each N and 

T. Ex-ante bias is the difference between the mean estimate and the corresponding true parameter. 

Ex-ante root-mean-squared error (RMSE) is also reported. Ex-post bias is the difference between 

the mean estimate and the sample mean of the corresponding simulated risk factor. Ex-post 

RMSE is also reported. All biases and RMSEs are expressed as percentages of the true 

parameters. 

Panel A: CAPM 

Number of  

Stocks (N) 

Risk  

Premium 
  

Sample Length (T in days) 

264 528 792 1320 2640 

      Percentage Biases  

1000 

Market 

Ex-ante 0.95 0.73 -0.04 -0.16 0.11 

Ex-post 0.12 0.50 0.29 -0.05 0.02 

2000 
Ex-ante -0.52 0.34 0.15 0.00 -0.03 

Ex-post 0.15 -0.04 0.11 -0.18 0.00 

      Percentage RMSEs 

1000 

Market 

Ex-ante 17.71 11.03 8.56 6.43 4.43 

Ex-post 12.77 7.03 5.01 3.44 2.13 

2000 
Ex-ante 15.06 9.88 7.97 5.87 4.12 

Ex-post 8.57 4.65 3.55 2.51 1.53 

 

Panel B: Fama-French Three-factor Model 

Number of  

Stocks (N) 

Risk  

Premium 
  

Sample Length (T in days) 

264 528 792 1320 2640 

      Percentage Biases 

1000 

Market 

Ex-ante 3.84 0.17 0.10 0.47 0.11 

Ex-post 3.48 0.22 0.11 0.18 0.25 

2000 
Ex-ante 1.45 0.53 0.25 0.11 -0.02 

Ex-post 1.38 0.07 0.29 0.10 0.08 

1000 
SMB 

Ex-ante -2.31 0.47 1.22 0.48 0.57 

Ex-post -1.84 -0.02 1.04 0.47 0.46 

2000 Ex-ante -0.20 0.59 -0.35 -0.26 -0.14 
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Ex-post 0.05 0.75 -0.07 0.00 -0.14 

1000 

HML 

Ex-ante -1.53 0.54 1.56 -0.19 0.49 

Ex-post -1.36 0.58 1.43 0.02 0.37 

2000 
Ex-ante 0.55 0.68 0.30 0.21 0.15 

Ex-post 0.62 0.82 0.25 0.20 0.12 

      Percentage RMSEs 

1000 

Market 

Ex-ante 31.72 14.84 10.95 8.52 5.38 

Ex-post 29.68 12.34 8.40 6.02 3.68 

2000 
Ex-ante 19.78 11.64 9.71 6.91 4.60 

Ex-post 15.55 7.87 6.22 4.00 2.57 

1000 

SMB 

Ex-ante 45.52 29.52 20.28 14.24 8.79 

Ex-post 42.86 27.48 18.68 12.57 7.56 

2000 
Ex-ante 38.29 20.93 15.37 10.46 6.80 

Ex-post 35.51 17.86 13.56 8.57 5.07 

1000 

HML 

Ex-ante 28.37 18.51 13.61 9.11 5.72 

Ex-post 26.98 17.45 12.83 8.25 5.22 

2000 
Ex-ante 24.20 14.23 10.35 7.06 4.26 

Ex-post 23.20 13.08 9.26 6.15 3.44 
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Table 12. 

Small Sample Distribution of the Test Statistic using the IV Estimator  

 
This table presents the size of the test of the null hypothesis that the risk premiums equal zero 

using the t-statistic of the corresponding slope coefficients. We estimate the slope coefficients 

using IV estimator and compute t-statistics using Fama-MacBeth standard errors. Panel A 

presents the results for the CAPM and Panel B presents the results for the Fama-French three-

factor model. Appendix 3 describes the details of the simulation experiments. N is the number of 

stocks in the cross-section. The results are based on 1,000 replications for each N. The 

simulations are based on 792 time-series observations (T in days) for each stock. 

Panel A: CAPM 
      

Number  of Risk Theoretical Percentiles 

Stocks (N) Premium 1% 2.5% 5% 7.5% 10% 

1000 
Market 

0.009 0.025 0.049 0.075 0.104 

2000 0.009 0.024 0.048 0.074 0.097 

       Panel B: Fama-French Three-factor Model 

    Number  of Risk Theoretical Percentiles 

Stocks (N) Premium 1% 2.5% 5% 7.5% 10% 

1000 
Market  

0.010 0.026 0.054 0.072 0.102 

2000 0.011 0.024 0.050 0.077 0.099 

1000 
SMB 

0.010 0.026 0.050 0.076 0.097 

2000 0.010 0.024 0.054 0.073 0.098 

1000 
HML  

0.012 0.027 0.056 0.072 0.103 

2000 0.011 0.024 0.047 0.076 0.096 
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Table 13. 

Summary Statistics 

 
This table presents sample summary statistics (mean, median, standard deviation, first and third 

quartiles). N is the number of stocks per month, T is the life span of firm in months. For the first 

row, the time-series statistics of the number of stocks per month are shown. For the second row, 

the cross-sectional statistics of the length of firm time-series are presented. For all other rows, the 

time-series averages of cross-sectional statistics are provided. Market capitalization is defined as 

price multiplied by the number of shares outstanding. Book-to-market is defined following Davis 

et al. (2000). Excess return is the return in the excess of risk-free rate. Return volatility is defined 

as the standard deviation of daily returns. The sample period is from January 1956 through 

December 2012. 

  Mean Median 
Standard 

Deviation 
Q1 Q3 

Number of Stocks (N) 1934 1980 900 1368 2697 

Time-series Length (T) 176 136 134 76 231 

Market Capitalization 

($ billion) 
1.498 0.191 6.509 0.052 0.751 

Book-to-market Ratio 0.904 0.750 0.674 0.463 1.151 

Excess Return (%) 0.888 0.044 11.202 -5.391 5.996 

Return Volatility (%) 2.711 2.336 1.652 1.628 3.351 

 

 

 

 

 

 

 

 

 

 

 



117 
 

Table 14. 

Correlations among Factor Sensitivities and Size and Book-to-market Ratios: CAPM and 

Fama-French Three-Factor Model 

 
This table presents the average cross-sectional correlations among factor sensitivities and size and 

book-to-market (BM) ratios. Factor sensitivities are estimated for each month using daily returns 

data from the prior 36 months. Size is the natural logarithm of market capitalization and BM is 

the book-to-market ratio. Panel A reports the result for the CAPM and Panels B and C report the 

results for the Fama-French three-factor model. The sample period is from January 1956 to 

December 2012.  

 

Panel A: CAPM  

  
 

Size BM 

Individual Stocks MKT -0.18 -0.20 

25 Fama-French Size and 

BM sorted Portfolios 
MKT -0.56 -0.44 

 

 

Panel B: Fama-French Three-factor Model: Individual Stocks 
 

  MKT SMB HML Size BM 

MKT 1     

SMB 0.35 1    

HML 0.14 0.13 1   

Size 0.15 -0.44 -0.15 1  

BM -0.12 0.06 0.28 -0.35 1 

 

Panel C: Fama-French Three-factor Model: 25 Size and BM sorted Portfolios 

  MKT SMB HML Size BM 

MKT 1     

SMB -0.08 1    

HML -0.08 -0.15 1   

Size 0.19 -0.97 -0.01 1  

BM 0.07 -0.03 0.88 -0.08 1 
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Table 15. 

Risk Premium Estimates with Individual Stocks: CAPM and Fama-French Three-factor 

Model  

 
This table presents factor risk premium estimates using individual stocks as test assets. The units 

for the slope coefficients are percentages per month. The table reports t-statistics in parentheses 

(bold if significant at the 5% level). The rows titled MKT, SMB and HML are factor risk 

premium estimates for market, SMB and HML risks, respectively. Size is the natural logarithm of 

market capitalization and BM is the book-to-market ratio at the end of the previous month. Factor 

sensitivities for each month are estimated using daily returns data over the previous 36 months. 

Panels A, B and C report the results using the IV estimator for the second-stage regression for the 

entire sample period and two subperiods, respectively. The entire sample period is from January 

1956 through December 2012. The row titled Avg N presents the average number of stocks per 

month. 

Panel A: IV Estimates: 1956 to 2012 

 
 

     (1) (2) (3) (4) (5) (6) (7) (8) 

Const 0.011 0.006 0.007 0.008 0.036 0.044 0.005 0.036 

 
(7.80) (4.28) (3.15) (5.66) (5.07) (6.91) (2.00) (5.77) 

MKT -0.189 
  

-0.315 0.010 
  

0.113 

 
(-1.00) 

  
(-1.65) (0.05) 

  
(0.62) 

SMB 
 

0.227 
 

0.311 
 

-0.025 
 

-0.077 

  
(1.52) 

 
(2.09) 

 
(-0.18) 

 
(-0.71) 

HML 
  

0.483 0.504 
  

0.289 0.259 

   
(3.24) (3.22) 

  
(2.11) (1.77) 

Size 
    

-0.152 -0.188 
 

-0.161 

     
(-4.31) (-6.03) 

 
(-5.19) 

BM 
    

0.163 
 

0.330 0.134 

      
(3.50) 

 
(5.62) (3.13) 

Avg N 1936 
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Panel B: IV Estimates: 1956 to 1985 

  (1) (2) (3) (4) (5) (6) (7) (8) 

Const 0.012 0.005 0.006 0.008 0.034 0.045 0.003 0.037 

 
(6.39) (2.60) (2.02) (4.25) (3.41) (4.65) (1.06) (3.94) 

MKT -0.386 
  

-0.394 -0.163 
  

0.061 

 
(-1.67) 

  
(-1.55) (-0.70) 

  
(0.24) 

SMB 
 

0.254 
 

0.358 
 

-0.042 
 

-0.082 

  
(1.39) 

 
(1.75) 

 
(-0.28) 

 
(-0.60) 

HML 
  

0.625 0.594 
  

0.352 0.317 

   
(3.13) (2.64) 

  
(1.97) (1.56) 

Size 
    

-0.144 -0.196 
 

-0.167 

     
(-2.80) (-4.16) 

 
(-3.52) 

BM 
    

0.204 
 

0.423 0.171 

      
(3.00) 

 
(4.68) (2.65) 

Avg N 1239 

 

 

Panel C: IV Estimates: 1986 to 2012 

        (1) (2) (3) (4) (5) (6) (7) (8) 

Const 0.009 0.008 0.008 0.008 0.037 0.044 0.006 0.035 

 
(4.57) (3.62) (2.46) (3.96) (3.77) (5.20) (1.77) (4.24) 

MKT 0.030 
  

-0.254 0.201 
  

0.301 

 
(0.10) 

  
(-0.85) (0.62) 

  
(1.07) 

SMB 
 

0.205 
 

0.322 
 

-0.005 
 

-0.155 

  
(0.84) 

 
(1.37) 

 
(-0.02) 

 
(-0.84) 

HML 
  

0.377 0.321 
  

0.277 0.248 

   
(1.65) (1.47) 

  
(1.28) (1.19) 

Size 
    

-0.160 -0.177 
 

-0.157 

     
(-3.32) (-4.43) 

 
(-3.91) 

BM 
    

0.116 
 

0.224 0.092 

      
(1.84) 

 
(3.08) (1.67) 

Avg N 2710 
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Table 16. 

Correlations among Factor Sensitivities and Size and Book-to-market Ratios: Production-

based Asset Pricing Model  

 
This table presents the average cross-sectional correlations among investment and ROE factor 

sensitivities and size and book-to-market (BM) ratios. Factor sensitivities are estimated for each 

month using daily returns data from the previous 36 months. Size is the natural logarithm of 

market capitalization. Panel A reports the results for individual stocks and Panel B reports the 

results for 25 Fama-French Size and BM sorted portfolios. The sample period is from January 

1972 to December 2012.  

Panel A: Individual Stocks 
 

  MKT INV ROE Size BM 

MKT 1     

INV 0.04 1    

ROE -0.03 0.33 1   

Size 0.24 -0.05 0.12 1  

BM -0.17 0.09 -0.07 -0.32 1 

 

Panel B: 25 Fama-French Size and BM sorted portfolios 

  MKT INV ROE Size BM 

MKT 1     

INV -0.70 1    

ROE -0.69 0.52 1   

Size -0.44 0.04 0.74 1  

BM -0.48 0.88 0.29 -0.08 1 
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Table 17. 

Risk Premium Estimates with Individual Stocks: Production-Based Asset Pricing Model  

 
This table presents factor risk premium estimates for market, investment and ROE risk factors 

proposed by production-Based asset pricing model using individual stocks as test assets. The 

slope coefficients are reported in percentages per month. The table reports t-statistics in 

parentheses (bold if significant at the 5% level). The rows titled MKT, INV and ROE are risk 

premium estimates for market, investment and ROE factors, respectively. Size is the natural 

logarithm of market capitalization and BM is the book-to-market ratio at the end of the previous 

month. Factor sensitivities for each month are estimated using daily returns data over the previous 

36 months. The sample period is from January 1972 through December 2012. The row titled Avg 

N presents the average number of stocks per month. 

Panel A: 1972 to 2012 

  
(1) (2) (3) (4) (5) (6) (7) 

Const 0.011 0.009 0.007 0.008 0.007 0.044 0.038 

 

(6.36) (3.62) (2.91) (4.18) (2.43) (5.47) (4.71) 

MKT -0.168 
  

-0.356 

 
 

0.372 

 

(-0.63) 
  

(-1.44) 

 
 

(1.53) 

INV 
 

0.375 
 

0.297 0.247 
 

0.342 

 
 

(1.99) 
 

(1.62) (1.33) 
 

(1.92) 

ROE 
  

-0.113 -0.217 
 

-0.030 -0.125 

 
  

(-0.49) (-0.96) 
 

(-0.13) (-0.63) 

Size 
     

-0.189 -0.183 

 
     

(-5.05) (-4.53) 

BM 
    

0.297 
 

0.112 

 
    

(4.48) 
 

(2.35) 

Avg N 

   

2431 
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Panel B: 1972 to 1992 

  
(1) (2) (3) (4) (5) (6) (7) 

Const 0.011 0.008 0.005 0.006 0.005 0.037 0.028 

 

(4.01) (2.19) (1.45) (2.13) (1.29) (2.92) (2.37) 

MKT -0.105 
  

-0.250 

 
 

0.129 

 

(-0.33) 
  

(-0.76) 

 
 

(0.37) 

INV 
 

0.650 
 

0.351 0.452 
 

0.233 

 
 

(2.46) 
 

(1.22) (1.77) 
 

(0.86) 

ROE 
  

-0.167 -0.043 
 

-0.032 -0.027 

 
  

(-0.55) (-0.14) 
 

(-0.12) (-0.10) 

Size 
     

-0.166 -0.137 

 
     

(-2.76) (-2.27) 

BM 
    

0.271 
 

0.109 

 
    

(2.79) 
 

(1.70) 

Avg N 

   

2082 

   

 

              

 

Panel C: 1993 to 2012 

  
(1) (2) (3) (4) (5) (6) (7) 

Const 0.012 0.010 0.007 0.011 0.007 0.048 0.045 

 

(5.03) (2.77) (2.62) (4.04) (1.85) (4.90) (4.14) 

MKT -0.229 
  

-0.490 

 
 

0.363 

 

(-0.54) 
  

(-1.34) 

 
 

(1.08) 

INV 
 

0.072 
 

0.442 0.034 
 

0.259 

 
 

(0.26) 
 

(1.83) (0.13) 
 

(1.12) 

ROE 
  

-0.280 -0.569 
 

-0.110 -0.163 

 
  

(-0.80) (-1.62) 
 

(-0.32) (-0.53) 

Size 
     

-0.204 -0.201 

 
     

(-4.46) (-3.90) 

BM 
    

0.307 
 

0.101 

 
    

(3.51) 
 

(1.47) 

Avg N 

   

2768 
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Table 18. 

Risk Premium Estimates with Individual Stocks: Liquidity-adjusted CAPM 
 

This table presents the results of asset pricing tests of the liquidity-adjusted CAPM (LCAPM) by 

Acharya and Pedersen (2005) using individual stocks. The regression coefficients are estimated 

using the instrumental variables approach. The slope coefficients on Amihud illiquidity measure 

and LMKT beta are expressed in percentages. The table reports t-statistics in parentheses (bold if 

significant at the 5% level). The row titled Avg N presents the average number of stocks per 

month. 

 

 

Sample Period 

1956-2012 1956-1985 1986-2012 

Constant 0.006 0.006 0.008 0.007 0.004 0.004 

 
(4.64) (4.07) (4.38) (3.84) (1.83) (1.92) 

LMKT 

Beta 

0.140 0.075 -0.086 -0.136 0.462 0.300 

(0.63) (0.34) (-0.27) (-0.44) (1.47) (0.97) 

Amihud 

Illiquidity 
 

0.184  0.310  0.040 

 
(3.89)  (3.53)  (1.91) 

Avg N 1265 1192 1344 
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Table 19. 

Instrument Strength  

 
This table presents the average correlations between odd- and even-month estimates of factor 

loadings under various models. Panel A reports correlation for the CAPM, and MKT denotes 

market beta. Panel B reports correlations for the Fama-French three-factor model. MKT, SMB 

and HML denote sensitivities to the market, SMB and HML factors, respectively. Panel C reports 

the correlations for the production-based asset pricing model and MKT, INV and ROE denote 

sensitivities to the market, investment and ROE factors, respectively. Panel D reports the 

correlation for liquidity-adjusted market beta under the LCAPM. The correlation critical value for 

the weak instruments tests proposed by Nelson and Startz (1990) is .06, based on the smallest 

number of stocks in the sample in any month. The square root of the odd- and even-month 

correlation is the correlation between the unobservable “true” factor sensitivities and the 

corresponding factor sensitivity estimates.  

Panel A: CAPM 

Sample period  
Odd- and even-  

month correlation  

Correlation between “true” and  

estimated factor sensitivities  

 
MKT MKT 

1956-2012  0.67 0.82 

 

Panel B: Fama-French Three-factor Model 

Sample period   
Odd- and even-  

month correlation 

Correlation between “true” and 

estimated factor sensitivities 

 
MKT SMB HML MKT SMB HML 

1956-2012 0.52 0.44 0.30 0.71 0.66 0.54 

 

Panel C: Production-based Asset Pricing Model 

Sample period    
Odd- and even-  

month correlation 

Correlation between “true” and 

estimated factor sensitivities 

 
MKT INV ROE MKT INV ROE 

1972-2012 0.52 0.29 0.26 0.73 0.53 0.51 

 

Panel D: Liquidity-adjusted CAPM  

Sample period  
Odd- and even-  

month correlation  

Correlation between “true” and  

estimated factor sensitivities  

 
LMKT LMKT 
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1956-2012  0.58 0.76 
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Table 20.  

Descriptive Statistics  

Panel A: Videos Characteristics             

Variable N Mean Std Dev Min p25 p50 p75 Max 

Face      1,101  -3.85% 13.09% -56.59% -6.97% -1.40% 0.86% 38.14% 

Negative      1,101  7.23% 10.40% 0.00% 1.33% 3.27% 8.41% 56.59% 

Happy      1,101  3.35% 6.73% 0.00% 0.22% 0.92% 3.13% 41.00% 

Neutral      1,101  59.50% 28.48% 0.00% 40.55% 65.53% 83.50% 99.52% 

Sad      1,101  4.16% 8.01% 0.00% 0.29% 1.34% 4.53% 84.09% 

Angry      1,101  2.70% 6.14% 0.00% 0.26% 0.79% 2.10% 62.63% 

Surprised      1,101  5.03% 11.44% 0.00% 0.29% 0.99% 3.44% 93.45% 

Scared      1,101  0.60% 3.19% 0.00% 0.01% 0.05% 0.21% 71.62% 

Disgusted      1,101  1.96% 7.39% 0.00% 0.01% 0.07% 0.42% 89.97% 

PosWords      1,101  6.01 5.84 0.00 2.00 4.00 8.00 28.00 

NegWords      1,101  3.50 4.23 0.00 1.00 2.00 5.00 22.00 

 

 

Panel B: Firm Characteristics 

Variable N Mean Std Dev Min p25 p50 p75 Max 

MkCap 1101 26,300 45,900 47 2,520 7,480 30,700 500,000 

B2M 1101 0.84 1.35 0.05 0.27 0.49 0.86 9.86 

SUE 1096 0.00 0.00 -0.02 0.00 0.00 0.00 0.02 

Momem 1101 0.00 0.00 0.00 0.00 0.00 0.00 0.01 

PEAD 1101 0.00 0.01 -0.04 0.00 0.00 0.00 0.05 

LogAna 1101 2.75 0.58 1.10 2.48 2.83 3.18 3.91 

CAR0 1088 0.006 0.033 -0.097 -0.008 0.002 0.015 0.142 

CAR1 1075 0.001 0.020 -0.061 -0.009 -0.001 0.008 0.083 

CAR180 1101 0.003 0.193 -0.567 -0.102 0.000 0.110 0.565 

AbnTurn0 1101 0.011 0.031 -0.012 -0.001 0.002 0.010 0.211 

AbnTurn1 1075 0.004 0.013 -0.016 -0.002 0.001 0.005 0.075 

AbnTurn2 1055 0.002 0.011 -0.016 -0.002 0.000 0.003 0.064 

Earn1(Earn_1) 978 0.040 0.198 -1.470 0.014 0.031 0.052 2.481 

Mk-Breakpoint 

as of 1/2012         

687 

 

2,098 

 

5,920 

 

401,383 
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Panel C: Video Classifications 
  

Video Classification # of Videos Percentage 

Interview about earnings 191 17% 

Interview about the firm 586 53% 

Interview about the industry 169 15% 

Interview about the economy 133 12% 

SUE before the air date >= 0 784 71% 

SUE before the air date < 0 317 29% 

Interview that has Earn Ann within 20 trading days  

before the air date 

491 

 

45% 

 

Interview that has Earn Ann outside 20 trading days  

before the air date 

610 

 

55% 

 

 

This table presents various descriptive statistics: video characteristics (Panel A), firm 

characteristics (Panel B), and video classification (Panel C). 
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Table 21. 

Pair-wise Correlations  

      

 
 

This table presents Pearson correlations on the left bottom corner and Spearman correlations on the right top corner.  

* indicates significance level equal or smaller than 0.05. 
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Table 22. 

Return Regressions with Interview Variables 

 
      CAR0         CAR1         CAR180     

Face -0.111 

   

                0.175** 

   

                 0.069 

    

 
(-0.96) 

   

                (2.26) 

   

                 (0.10) 

    

                Ha 
 

-0.011 

 

-0.005 0.004 

 

0.076 

 

0.069 0.069 

 

0.82 

 

0.847 0.887 

  

(-0.11) 

 

(-0.05) (0.03) 

 

(1.37) 

 

(1.25) (1.25) 

 

(1.58) 

 

(1.62) (1.69) 

                Ne 
  

0.128 0.127 0.13 

  

-0.161** -0.158** -0.168**  

  

0.47 0.516 0.607 

   

(1.19) (1.19) (1.14) 

  

(-2.26) (-2.22) (-2.46)    

  

(0.73) (0.81) (0.92) 

                PosWords 
    

0.180*   

    

-0.02 

    

1.173* 

     

(1.78) 

    

(-0.25)    

    

(2.06) 

                NegWords 
    

-0.244**  

    

-0.191*   

    

0.21 

     

(-2.28)    

    

(-1.92)    

    

(0.26) 

                Intercept 0.006*** 0.006*** 0.006*** 0.006*** 0.006*** 0.001 0.001 0.001 0.001 0.001 0.003 0.003 0.003 0.003 0.003 

 

(5.74) (5.79) (5.67) (5.66) (5.76) (1.51) (1.60) (1.53) (1.51) (1.67) (0.39) (0.40) (0.39) (0.40) (0.41) 

                
N 1088 1088 1088 1088 1088 1075 1075 1075 1075 1075 1101 1101 1101 1101 1101 

Adj R2 -0.002 -0.003 -0.001 -0.002 0.000 0.003 -0.001 0.003 0.003 0.011 0.007 0.009 0.008 0.009 0.011 

This table presents the results of CAR regressions with interview variables and CEO face fixed effects. All regressions are clustered by year-

quarter. The slope coefficients are expressed in percentages. T-stats are presented in parentheses. ∗∗∗, ∗∗, ∗: significant at 0.01, 0.05, and 0.10 

level, respectively. 
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Table 23. 

Return Regressions with Control Variables 

 
   

CAR0 
    

CAR1 
    

CAR180 
  

Face -0.086 
   

                0.190** 
   

                 0.052 
    

 
(-0.74) 

   
                (2.35) 

   
                 (0.08) 

    
Ha 

 
0.017 

 
0.023 0.032 

 
0.095 

 
0.088 0.086 

 
0.866* 

 
0.893* 0.937* 

  
(0.17) 

 
(0.23) (0.32) 

 
(1.54) 

 
(1.43) (1.43) 

 
(1.85) 

 
(1.90) (1.97) 

Ne 
  

0.115 0.116 0.123 

  

-0.166** -0.162** -0.172**  

  

0.522 0.566 0.654 

   
(1.08) (1.09) (1.09) 

  
(-2.27) (-2.22) (-2.46)    

  
(0.82) (0.90) (1.01) 

PosWords 
    

0.224**  
    

-0.02 
    

1.095* 

     
(2.18) 

    
(-0.23)    

    
(1.80) 

NegWords 
    

-0.206 
    

-0.172*   
    

0.298 

     
(-1.62)    

    
(-1.76)    

    
(0.38) 

Size -0.277*** -0.281*** -0.277*** -0.277*** -0.289*** -0.074 -0.069 -0.073 -0.075 -0.041 0.251 0.236 0.269 0.252 -0.034 

 
(-3.07) (-3.11) (-3.01) (-3.05) (-3.58)    (-1.13) (-1.06) (-1.10) (-1.13) (-0.51)    (0.39) (0.37) (0.41) (0.39) (-0.05) 

LogB2M -0.126 -0.127 -0.129 -0.131 -0.117 -0.115 -0.119 -0.11 -0.114 -0.093 -0.286 -0.326 -0.3 -0.343 -0.435 

 
(-1.43) (-1.44) (-1.49) (-1.47) (-1.43)    (-1.51) (-1.53) (-1.43) (-1.46) (-1.34)    (-0.34) (-0.38) (-0.36) (-0.40) (-0.51) 

Momem 0.072 0.067 0.072 0.071 0.072 -0.024 -0.017 -0.02 -0.024 -0.023 0.857 0.826 0.879 0.845 0.845 

 
(0.58) (0.54) (0.58) (0.57) (0.58) (-0.31) (-0.22) (-0.26) (-0.31) (-0.30)    (1.51) (1.48) (1.60) (1.53) (1.46) 

Pead 0.05 0.055 0.049 0.05 0.041 0.067 0.06 0.065 0.067 0.068 0.092 0.107 0.071 0.087 0.036 

 
(0.42) (0.45) (0.41) (0.42) (0.35) (0.83) (0.72) (0.82) (0.84) (0.86) (0.09) (0.11) (0.07) (0.09) (0.04) 

SUE 0.031 0.036 0.031 0.032 0.039 -0.019 -0.024 -0.023 -0.019 -0.003 0.897** 0.932** 0.876* 0.913** 0.821* 

 
(0.20) (0.24) (0.21) (0.21) (0.24) (-0.18) (-0.24) (-0.22) (-0.19) (-0.03)    (2.14) (2.24) (2.08) (2.16) (1.95) 

Intercept 0.006*** 0.006*** 0.006*** 0.006*** 0.006*** 0.001 0.001 0.001 0.001 0.001*   0.003 0.003 0.003 0.003 0.003 

 
(5.69) (5.69) (5.64) (5.60) (5.70) (1.60) (1.71) (1.62) (1.60) (1.75) (0.44) (0.45) (0.44) (0.45) (0.46) 

                
N 1083 1083 1083 1083 1083 1070 1070 1070 1070 1070 1096 1096 1096 1096 1096 

Adj R2
 0.003 0.003 0.004 0.003 0.005 0.005 0.000 0.004 0.004 0.010 0.008 0.010 0.009 0.010 0.012 

This table presents the results of CAR regressions with control variables and CEO face fixed effects. All regressions are clustered by year-quarter. 

The slope coefficients are expressed in percentages. T-stats are presented in parentheses. ∗∗∗, ∗∗, ∗: significant at 0.01, 0.05, and 0.10 level, 

respectively. 
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Table 24. 

Turnover Regressions 

    CAT0 CAT1 
 

CAT2   

Face 0.146 

   

                0.140*** 

   

                0.207*** 

   

                

 
(1.08) 

   

                (2.89) 

   

                (2.64) 

   

                

Ha 
 

0.165 

 

0.162 0.169 

 

0.105*** 

 

0.101*** 0.104*** 

 

0.126** 

 

0.120** 0.127**  

  

(1.45) 

 

(1.45) (1.49) 

 

(2.81) 

 

(2.75) (2.89) 

 

(2.08) 

 

(2.02) (2.21) 

Ne 
  

-0.067 -0.058 -0.051 

  

-0.098* -0.094* -0.090*   

  

-0.165** -0.159** -0.149**  

   

(-0.56) (-0.51) (-0.45) 

  

(-1.95) (-1.91) (-1.90)    

  

(-2.37) (-2.36) (-2.38)    

PosWords 
    

0.001 

    

0.001 

    

0.001 

     

(0.87) 

    

(1.23) 

    

(1.33) 

NegWords 
    

0.000 

    

0.000 

    

0.001 

     

(0.14) 

    

(-0.02)    

    

(0.46) 

Size -0.797*** -0.789*** -0.792*** -0.794*** -0.824*** -0.265*** -0.256*** -0.262*** -0.264*** -0.276*** -0.349*** -0.337*** -0.345*** -0.348*** -0.383*** 

 
(-4.38) (-4.51) (-4.33) (-4.38) (-4.46)    (-3.99) (-4.00) (-3.88) (-3.95) (-3.74)    (-3.33) (-3.35) (-3.24) (-3.32) (-3.42)    

LogB2M -0.157 -0.165 -0.156 -0.163 -0.172 -0.044 -0.049 -0.042 -0.046 -0.049 -0.029 -0.033 -0.024 -0.03 -0.041 

 
(-1.33) (-1.38) (-1.31) (-1.37) (-1.47)    (-0.81) (-0.88) (-0.77) (-0.83) (-0.90)    (-0.33) (-0.38) (-0.27) (-0.34) (-0.47)    

SUE 0.016 0.016 0.011 0.017 0.008 -0.042 -0.043 -0.045 -0.041 -0.044 -0.032 -0.034 -0.034 -0.032 -0.042 

 
(0.08) (0.08) (0.05) (0.08) (0.04) (-0.42) (-0.45) (-0.46) (-0.42) (-0.45)    (-0.22) (-0.24) (-0.23) (-0.22) (-0.29)    

LogAna 0.296** 0.288** 0.292** 0.292** 0.281**  0.076* 0.07 0.075 0.076* 0.07 0.085 0.073 0.083 0.084 0.077 

 
(2.34) (2.39) (2.29) (2.38) (2.32) (1.65) (1.52) (1.56) (1.65) (1.51) (1.24) (1.09) (1.16) (1.24) (1.13) 

LogAnaStd 0.006 0.000 0.007 0.002 -0.007 -0.016 -0.021 -0.014 -0.017 -0.02 0.021 0.016 0.024 0.02 0.008 

 
(0.12) (-0.01) (0.13) (0.03) (-0.10)    (-0.70) (-0.89) (-0.64) (-0.76) (-0.77)    (0.48) (0.37) (0.53) (0.47) (0.16) 

Intercept -0.003 -0.003 -0.003 -0.003 -0.003 -0.003*** -0.003*** -0.003*** -0.003*** -0.004*** -0.004** -0.004* -0.004** -0.004** -0.005**  

 
(-1.22) (-1.07) (-1.23) (-1.10) (-1.28) (-3.00) (-2.76) (-3.11) (-2.89) (-2.74)    (-2.04) (-1.86) (-2.18) (-2.01) (-2.11)    

N 1096 1096 1096 1096 1096 1070 1070 1070 1070 1070 1024 1024 1024 1024 1024 

Adj R2 0.061 0.062 0.060 0.061 0.062 0.053 0.050 0.049 0.053 0.054 0.041 0.036 0.038 0.040 0.044 

This table presents the results of cumulative abnormal turnover regressions with CEO face fixed effects and year fixed effects. The standard errors are clustered 

by firm and year-quarter. The slope coefficients are expressed in percentages. T-stats are presented in parentheses. ∗∗∗, ∗∗, ∗: significant at 0.01, 0.05, and 

0.10 level, respectively. 
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Table 25. 

Earnings Regressions 

 

   
Earn1 

 
Face 0.092 

    
 (1.21) 

    
 

     
Ha 

 
-0.002 

 
-0.003 -0.003 

 
 

(-0.21) 
 

(-0.31) (-0.32) 

 
     

Ne 
  

-0.017** -0.017** -0.018** 

 
  

(-2.06) (-2.11) (-2.13) 

 
     

PosWords 
    

0.000 

 
    

(-0.88) 

 
     

NegWords 
    

-0.008* 

 
    

(-1.69) 

 
     

Earn_1 0.108** 0.108** 0.109** 0.109** 0.109** 

 (2.30) (2.26) (2.33) (2.32) (2.32) 

 
     

Size 0.005 0.006 0.005 0.005 0.008 

 (0.80) (0.88) (0.78) (0.77) (1.12) 

 
     

LogB2M -0.015 -0.015 -0.015 -0.015 -0.014 

 (-1.52) (-1.50) (-1.51) (-1.49) (-1.42) 

 
     

Momem -0.003 -0.002 -0.003 -0.003 -0.003 

 (-0.29) (-0.25) (-0.31) (-0.31) (-0.31) 

 
     

Intercept 0.043*** 0.033*** 0.042*** 0.041*** 0.041*** 

 (3.43) (4.26) (5.14) (4.35) (4.33) 

 
     

N 978.00 978.00 978.00 978.00 978.00 

Adj R2 0.329 0.326 0.332 0.331 0.332 

This table presents the results of future earnings regressions. Earnt1 is one-quarter-ahead earnings and it is 

computed as earnings before the extraordinary item (IBQ in COMPUSTAT) scaled by the book value. The 

regressions include CEO face fixed effects and year-quarter fixed effects with robust standard errors 

clustered by industry. The slope coefficients are expressed in percentages. T-stats are presented in 

parentheses. ∗∗∗, ∗∗, ∗: significant at 0.01, 0.05, and 0.10 level, respectively. 
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Figure 1. Directions of Information Flow, Return Predictability, and the Predictability
of Earnings Forecast Revisions when the Industry in Question is Located at Different
Locations. In the left (right) diagram, the industry in question is located in the center (periph-
ery) of the industry network and related industries can be located anywhere in the network. In
both diagrams, arrows indicate the directions of information flow, return predictability, and the
predictability of earnings forecast revisions to the industry in question from its related industries.
When the industry in question is located in the center (periphery), it is connected to more (less)
related industries.
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Figure 2: Percentage Bias and RMSE versus Time-series Length T 

This figure presents the ex-ante and ex-post biases (Panel A) and RMSEs (Panel B) in the market 

risk premium estimates as percentages of true market risk premium in simulations when risk 

premiums are estimated using Fama-MacBeth (FM) and the Instrumental Variable (IV) 

estimators. The simulation uses a risk-free rate of 0.9996%, a market risk premium of 5.8008% 

per annum, and 2000 individual stocks. Appendix 3 describes the details of the simulation 

experiments. T, the number of time-series observations in days, is allowed to vary across 

simulations and is plotted on the horizontal axis. The results are based on 1,000 replications for 

each simulated model and each T.  

 

 Panel A: Ex-ante and Ex-post Percentage Biases
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Panel B: Ex-ante and Ex-post Percentage RMSEs 
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Figure 3: Reliability of FaceReader Software

 

Source: Langner et al. (2010) 

This figure presents the proportion of agreement between the facial expressions scored manually 

by the annotators of the Radbound Faces Database (horizontally) and the facial expressions 

scored by FaceReader (vertically). 

 

 

 

 



137 
 

Figure 4: Returns of Tercile Portfolios sorted on Po and Ne 

 

 

This figure presents the returns of tercile portfolios sorted on positive (top panel) and negative 

(bottom panel) facial expression scores, i.e., Po and Ne, respectively. 
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Figure 5: Percentages of Videos that have Earnings Announcements d trading days 

before CEOs’ Interviews 

 

 

 

This figure presents the percentages of videos that have earnings announcements d (=1,…20) 

trading days before CEOs’ interviews. The top plot is based on all available videos in the sample 

universe and the subsequent three plots are based on three categories of interview topics: 

earnings-related, firm-related (non-earnings-related), and industry/ economy-related interviews. 
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Figure 5 (continued) 
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