
 
 

 

Distribution Agreement 

 

In presenting this thesis or dissertation as a partial fulfillment of the requirements for an 
advanced degree from Emory University, I hereby grant to Emory University and its 
agents the non-exclusive license to archive, make accessible, and display my thesis or 
dissertation in whole or in part in all forms of media, now of hereafter known, including 
display on the work wide web.  I understand that I may select some access restrictions as 
part of the online submission of this thesis or dissertation.  I retain all ownership rights 
to the copyright of the thesis or dissertation.  I also retain the right to use in future works 
(such as articles or books) all or part of this thesis or dissertation. 

 

 

 

Signature: 

 

_______________________________________   __________________ 
Kristi Michelle Porter           Date 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

The Role of Arachidonate 5-Lipoxygenase in HIV-associated  

Pulmonary Hypertension 

 

 

 

By 

 

Kristi Michelle Porter 
B.S., Clark Atlanta University, 2004 

 
 
 
 
 
 
 

Advisor:  Roy L. Sutliff, Ph.D. 
 
 
 
 
 
 
 
 
 
 

An Abstract of  
A dissertation submitted to the Faculty of the  

James T. Laney School of Graduate Studies of Emory University  
in partial fulfillment of the requirements for the degree of 

Doctor of Philosophy 
in Biological and Biomedical Sciences, 
Molecular & Systems Pharmacology 

2012 
 
 



 
 

Abstract 

The Role of Arachidonate 5-Lipoxygenase in HIV-associated 
Pulmonary Hypertension 
By Kristi Michelle Porter 

There are approximately 39 million people infected with human immunodeficiency virus 
type-1 (HIV-1) worldwide.  Since the discovery of HIV-1, one of the hallmark 
characteristics of the disorder has been enhanced susceptibility to opportunistic 
infections, such as Pneumocystis pneumonia and Haemophilus influenzae.  The advent of highly 
active antiretroviral therapy (HAART) has greatly reduced the incidence of infectious 
disorders and improved survival.  However, HIV-infected persons now demonstrate a 
heightened risk of developing non-infectious lung disorders such as HIV-associated 
pulmonary arterial hypertension (HIV-PAH).  HIV-PAH is a disorder characterized by 
increased pulmonary vascular tone and remodeling.  PAH in HIV-1 patients occurs more 
frequently and progresses more rapidly than in uninfected individuals.  In addition, 
patients living with HIV-1 have an increased susceptibility to develop severe PAH 
irrespective of their CD4+ lymphocyte counts.  These findings suggest that the 
interaction of HIV-1 proteins with the pulmonary vascular endothelium may play a 
critical role in HIV-PAH development by altering pathways that regulate vascular tone 
and remodeling such as arachidonate 5-lipoxygenase (ALOX5).  We hypothesize that 
the presence of HIV-1 proteins and hypoxia exposure augment the development of 
pulmonary vascular dysfunction and PAH by altering ALOX5 expression and activity.   

This dissertation seeks to determine if ALOX5 contributes to HIV- and hypoxia-
induced PH.  The central hypothesis of this work is hypoxia exposure and HIV-1 
proteins concomitantly promote the development of HIV-PAH by stimulating 
endothelial cell proliferation and vascular remodeling via increased 5-lipoxygenase 
expression and activity.  In vitro results demonstrate that exposure of pulmonary artery 
endothelial cells to prolonged hypoxia, medium from HIV-infected macrophages and 
HIV-1 Tat increases ALOX5 expression.  Research also reveals that hypoxia exposure 
induces endothelial proliferation in an ALOX5-dependent manner, and that medium 
from HIV-infected macrophages potentiates hypoxia-induced cellular proliferation.  
Furthermore, our findings indicate that excessive reactive oxygen species production 
and reduced antioxidant expression mediate the hypoxia-induced increases in ALOX5 
and cell proliferation.  Additionally, in vivo results reveal that HIV-1 transgenic animals 
develop an exacerbated form of hypoxia-induced PH when compared to wild-type 
animals.  The ALOX5 pathway is implicated in the increased severity of PH in HIV-1 
transgenic animals, as they demonstrate elevated levels of ALOX5 and its metabolites.  
Collectively, these results indicate that the presence of HIV-1 proteins likely impact 
pulmonary vascular resistance and increase susceptibility to hypoxia-induced PH by 
stimulating the ALOX5 pathway.  These studies identify a novel mechanism whereby 
HIV-1 proteins contribute to HIV-PAH pathogenesis.  This improved understanding of 
the molecular mechanisms of hypoxia- and HIV-1 Tat-induced cellular proliferation may 
improve the quality-of-life of HIV-1 patients through the identification of ALOX5 as a 
biomarker for HIV-PAH and/or the use of agents that target this molecule to treat HIV-
PAH. 
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Pulmonary Arterial Hypertension:  Pulmonary arterial hypertension (PAH) is 

progressive disorder characterized by a persistent elevation of pulmonary artery pressure 

and pulmonary vascular resistance.  PAH is clinically defined as a sustained elevation of 

pulmonary arterial pressure greater than 25 mm Hg at rest or greater than 30 mm Hg 

with exercise (Gaine et al., 1999).  The pressure in normal pulmonary arteries is 8-20 mm 

Hg at rest.  Chronic PAH increases the load on the right ventricle (RV) causing RV 

hypertrophy, right heart failure, the clinical syndrome of cor pulmonale, and ultimately, 

death (Weir, 1988).  The symptoms of PAH are nonspecific and include dyspnea, 

syncope, fatigue, chest pain, irregular heartbeat, swollen ankles and legs and 

nonproductive cough.  

PAH is a relatively rare disorder.   Studies report a prevalence of idiopathic PAH 

(IPAH), the largest subcategory of PAH, of only 2-15 cases per million annually (Badesch 

et al., 2010; D'Alonzo GE, 1991; Humbert et al., 2006).  Nonetheless, in 2002, pulmonary 

hypertension led to 15,668 deaths and almost 300,000 hospital visits in the United States 

(Hyduk et al., 2005).  Additionally, the prognosis for PAH is extremely poor.  Results 

from a national registry of IPAH patients indicate that the time from onset of symptoms 

to death is an average of 2.8 years (Barst, 2008; McLaughlin et al., 2004).  Adult females 

are also much more likely to develop PAH than adult males as established by an analysis 

of the REVEAL (Registry to Evaluate Early and Long-term PAH Disease Management) 

registry where a 4.3:1 ratio was noted (Humbert et al., 2010).   

Research indicates that PAH is a complex disorder that develops as a result of 

numerous stimuli and medical conditions.  The characteristic vascular pathologies and 

histological patterns vary widely.  As a result, medical professionals and researchers 
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developed a PH classification system to organize the disease into categories based on 

common clinical parameters, potential pathogenic mechanisms, and effective therapeutic 

strategies.  There are currently five chronic PH groups (Simonneau et al., 2004; 

Simonneau et al., 2009).  Of this classification system, Group 1 is termed pulmonary 

arterial hypertension (PAH).  This group, which includes idiopathic PAH, heritable 

PAH, and acquired PAH, is composed of a group of diverse diseases with similar etiologic 

and prognostic factors.  This group includes PAH induced by drug use or toxin exposure 

as well as diagnoses attributed to HIV infection.  The major histological features of this 

group include, but are not limited to, medial hypertrophy and intimal proliferation of the 

pulmonary arteries, and the appearance of muscle in normally non-muscular arteries.  

Late phase vascular abnormalities include concentric intimal fibrosis and plexiform 

lesions.  Group 2 is defined as pulmonary hypertension related to left heart disease and/or 

dysfunction.  Pulmonary vascular pathologies such as medial hypertrophy and 

adventitial thickening as well interstitial fibrosis are associated with this group.  Group 3 

is defined as PH that is associated with hypoxia and/or lung disease, such as chronic 

obstructive pulmonary disease (COPD), interstitial lung disease, and sleep apnea.  The 

main histological features of this group are medial hypertrophy of muscular pulmonary 

arteries and muscularization of arterioles.  Group 4 PH is composed of only chronic 

thromboembolic pulmonary hypertension and is associated with eccentric intimal 

fibrosis, fresh thrombi, and recanalized organized thrombi that form bands and webs.  

Lastly, Group 5 pulmonary hypertension is a miscellaneous group and is characterized by 

unclear multi-factorial mechanisms (Rabinovitch, 2008; Stenmark et al., 2009).   
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Models of Pulmonary Hypertension:  Numerous models are used to investigate the 

mechanisms underlying pulmonary hypertension.  These models of experimental PH are 

accomplished by prolonged hypoxia exposure, monocrotaline (MCT) injection, Sugen 

5416 administration, or left pneumonectomy (surgical lung removal).  Of these models, 

monocrotaline (MCT) treatment and prolonged exposure to hypoxia are the most 

widely utilized.   

The monocrotaline model of PH was first described in 1967 and is routinely used 

to study both secondary and primary PH (Dorfmuller et al., 2003; Kay et al., 1967).  

Monocrotaline is a plant-derived toxin that is injected as a single subcutaneous or 

intraperitoneal dose to induce experimental PH.  Activation of monocrotaline by liver 

oxidases is required to produce a reactive cross-linking compound, monocrotaline 

pyrrole (MCTP), which induces vascular injury (Lame et al., 2000; Stenmark et al., 

2009).  As a result of differences in MCTP metabolism, the response to monocrotaline is 

varied among species and strains.  However, studies indicate that monocrotaline-

induced PH is most effective in rats (Chesney et al., 1974).   

It is believed that monocrotaline injection largely contributes to PH by causing 

endothelial cell injury and a mononuclear infiltration into the perivascular regions of 

arterioles and muscular arteries (Jasmin et al., 2001).  Although plexiform lesion 

formation is not typical in this model, monocrotaline-treated rats demonstrate the 

characteristic pathologies of severe PH including right ventricular hypertrophy leading 

to right ventricular failure (Buermans et al., 2005) at 2-3 weeks following administration 

(Meyrick et al., 1980).  In addition, high doses of monocrotaline are reported to induce 
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significant increases in right ventricular systolic pressures (RVSP) (Jasmin et al., 2001; 

Meyrick et al., 1980).  

Hypoxia is another well-established and commonly used model for the study of 

pulmonary hypertension.  Medical disorders that lead to alveolar hypoxia such as COPD, 

cystic fibrosis, bronchiectasis and asthma are clinical causes of chronic hypoxia and 

pulmonary hypertension.  For example, studies demonstrate that 5-20% of COPD 

patients develop severe PH without any other major contributing factors (Chaouat et al., 

2005; Kessler et al., 2001; Wright et al., 1983).  Similarly, children and young adults living 

in areas of high altitudes experience persistent elevations in PAP (Sime et al., 1963; Vogel 

et al., 1962).  In addition, histological examinations of pulmonary vessels of high-altitude 

residents who died from causes other than chronic pulmonary sickness reveal typical 

pathological patterns of pulmonary hypertension (Arias-Stella and Saldana, 1963; 

Gamboa and Marticorena, 1972).   

The second commonly used model to study pulmonary hypertension is hypoxia 

exposure.  This model is most commonly used in mice and rats.  Mice or rats are exposed 

to normobaric (10% O2) or hypobaric (320 mmHg or 426 kPA) hypoxia for 2-4 weeks to 

induce experimental PH.  Hypoxia-induced PH induces vasoconstriction and remodeling 

of the pulmonary arteries (Kato and Staub, 1966; Meyrick and Reid, 1979), causing 

marked increases in pulmonary vascular resistance.  These conditions result in a 50% 

increase in mean PA pressure (PAP) and a doubling of right ventricular weights 

(Rabinovitch et al., 1979).  Phenotypic vascular alterations following hypoxia exposure 

also includes muscularization of the small, normally non-muscular arteries in the alveolar 

walls.  These changes cause an increase in cells that express α-smooth muscle actin (α-
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SMA), which may be attributable to the differentiation of fibroblasts, the migration of 

smooth muscle cells, and/or the transdifferentiation of endothelial cells into 

mesenchymal-type cells (Jones et al., 2008; Stenmark et al., 2006).  Vasoconstriction is 

also believed to contribute to hypoxia-induced PH disease development.  Hypoxic 

pulmonary vasoconstriction, which was first described by Von Euler and Liljestrand in 

1946, is a physiological response that occurs in most mammals that ensures the 

preferential distribution of pulmonary blood flow to well ventilated areas of the lung.  

Reductions in lung NO levels precede the elevations in pulmonary pressure (Weissman 

et al., 2000) in hypoxic pulmonary vasoconstriction events.  As such, hypoxia-induced 

pulmonary vasoconstriction is thought to also mediate PA remodeling. However, studies 

suggest that the contribution of vasoconstriction is greatest at early stages of the disease 

process (Stenmark and McMurtry, 2005; Wagenvoort, 1960).   

Of the two more common models, many argue that the hypoxia model is a more 

physiological model than monocrotaline-induced PH because monocrotaline-induced 

PH does not occur in nature whereas hypoxia can lead to PH at high altitudes or as a 

consequence of hypoxic lung diseases.  However, disadvantages to the hypoxia model 

include variability in response between species (Stenmark et al., 2009) and animal age, as 

developing lungs are more susceptible to decreased oxygen levels (Stenmark et al., 2006).  

In addition, monocrotaline injection is associated with several unwanted side effects.  

For example, monocrotaline administration causes significant liver and kidney damage 

(Roth et al., 1981) produces hepatic veno-occlusive disease in rats (Chen et al., 2008) and 

promotes myocarditis of the right and left ventricle.  These additional pathologies 

severely complicate the study of RV hypertrophy and failure associated with PH 
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development (Miyauchi et al., 1993).  Furthermore, monocrotaline-induced PH is 

attenuated and/or reversed by more than 30 agents with limited clinical efficacy 

(Stenmark et al., 2009).  These data question the validity of the monocrotaline model and 

its value as a predictive tool for future PH therapies.  With this evidence in mind, our 

group utilizes the hypoxia model for the study of pulmonary hypertension pathogenesis. 

In addition to the in vivo hypoxia model, in vitro hypoxia models are also utilized 

to study PH.  While in vitro models vary considerably, most expose pulmonary vascular 

cells to normobaric hypoxia (0-10% O2) for 4-24 hours (Pak et al., 2007).  In vitro hypoxia 

exposure promotes a similar phenotype to that seen in clinical and experimental PH 

development (Pak et al., 2007).  For example, exposure to 10% or 0% O2 for 4 hours 

significantly inhibits endothelial prostacyclin synthesis (Madden et al., 1986) and 

endothelial nitric oxide synthase (eNOS) expression (McQuillan et al., 1994).  

Conversely, exposure to 2% oxygen for 24 hours stimulates significant endothelin release 

from coronary artery endothelial cells (Hieda and Gomez-Sanchez, 1990; Kourembanas 

et al., 1991).  Moreover, hypoxia increases ET-1, endothelin-converting enzyme, and 

endothelin receptor 1 and B levels in mouse lung and in HPAEC following 72 hours 

(Kang et al., 2011).  Hypoxia exposure also promotes endothelial cytokine (Karakurum et 

al., 1994; Shreeniwas et al., 1992; Yan et al., 1995) and growth factor release (Namiki et al., 

1995; Shweiki et al., 1992).  Additionally, proliferation are increased in aortic endothelial 

cells (Meininger et al., 1988) and human pulmonary artery endothelial cells (Kang et al., 

2011) following hypoxia exposure when compared to cells cultured in standard culture 

conditions.  Altogether, these data demonstrate that in vitro hypoxia exposure models are 

useful tools for the study of hypoxia-induced alterations in cellular signaling. 



8 
 

Pulmonary Hypertension Pathogenesis:  Although the underlying mechanism of PH 

remains unknown, extensive research has identified several pathways that likely mediate 

PH pathogenesis by altering pulmonary vascular tone and/or remodeling.  As a result, 

improved treatments have become available to treat PAH patients for the common 

pathologies associated with the disease.  While not a cure, these treatments including 

endothelin (ET)-1 receptor antagonists, growth factor inhibitors, and nitric oxide 

activators, prolong survival and provide clinical improvement (Humbert et al., 2004).  In 

addition, agents that interfere with the actions of 5-lipoxygenase or ROS production 

have recently been investigated for their potential in PAH treatment (Jones et al., 2004; 

Van Rheen et al., 2011; Wang et al., 2011).  The following section summarizes the 

evidence implicating each of these pathways in PAH.   

Endothelin-1 

Endothelin (ET) -1 is a potent vasoconstrictor and smooth muscle cell mitogen. 

Research indicates that ET-1 contributes to PH pathogenesis as inhibition of ET-1 release 

and/or signaling attenuates PH development.  Endothelin-1 concentrations are elevated 

in plasma and lung tissue of PH patients (Cacoub et al., 1997).  Similarly, distal arteries 

and lung parenchyma of PH patients exhibit a two-fold increase in ET receptor density 

when compared with control subjects (Davie et al., 2002).  Research employing the 

fawn-hooded rat (FHR) model of PH demonstrates a threefold increase in preproET-1 

mRNA expression and ET-1 levels when compared to Sprague Dawley rats (SDR).  These 

elevations in ET-1 may mediate PH pathogenesis in FHR and contribute to the 

exacerbated form of PH associated with this strain (Stelzner et al., 1992).  Hypoxia 
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exposure (Elton et al., 1992) and monocrotaline treatment (Frasch et al., 1999) when 

compared to controls also significantly increase ET-1 levels in lungs and serum.   

The hemodynamic effects of ET-1 are regulated by the ET receptors – ETA and 

ETB.  The ETA receptors regulate vasoconstriction and smooth muscle cell proliferation.  

Conversely, ETB receptors mediate pulmonary endothelin clearance and vasodilation via 

the production of nitric oxide and prostacyclin by endothelial cells (Benigni and 

Remuzzi, 1999).  Administration of the ETA receptor antagonist, BQ123 (Bonvallet et al., 

1994) attenuates hypoxia-induced increases in mean pulmonary arterial pressure and 

vascular remodeling.  In addition, the selective inhibition of ETB receptors for 7 days 

promotes severe increases in RV hypertrophy and muscularization of small pulmonary 

arteries (Ivy et al., 2000).  Endothelin-1 contributes to hypoxia-induced vasoconstriction 

of the pulmonary vasculature (McCulloch et al., 1998; Muramatsu et al., 1997), and ET-1 

receptor antagonism reverses this effect in newborn lambs (Coe et al., 2000).  ET-1 may 

also contribute to PH pathogenesis by decreasing endothelial NOS expression and 

activity (Wedgwood and Black, 2005).  These data imply that ET-1 plays a major 

contributing role in PH pathogenesis.  As a result, current approaches to the clinical 

management of PH include the use of ET-1 receptor antagonists such as ambrisentan and 

bosentan for the treatment of PAH. 

Growth Factor Signaling 

Platelet-derived growth factor (PDGF) is also involved in PH pathogenesis.  PDGF is a 

potent mitogen and SMC chemoattractant and is known to induce abnormal SMC 

proliferation and migration (Yu et al., 2003).  Hypoxia exposure significantly increases 

rat PDGF expression (Berg et al., 1998; Katayose et al., 1993).  PDGF receptor expression 
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is also markedly elevated in lungs of IPAH patients (Schermuly et al., 2005).  Also, 

histological analysis of pulmonary arteries from IPAH patients reveals that PDGF 

expression is localized to PA endothelial and smooth muscle cells whereas PDGF 

receptors are mainly isolated to PA SMC (Perros et al., 2008).  Recent studies indicate 

that PDGF promotes PA SMC proliferation by enhancing store-operated cytosolic 

Ca(2+) entry via Akt/mTOR activation (Ogawa et al., 2012).  PDGF receptor antagonism 

reverses hypoxia- and monocrotaline-induced PH and reduces RV hypertrophy, 

muscularization of small pulmonary arteries, and SMC proliferation (Schermuly et al., 

2005).  As such, PDGF receptor inhibitors, such as the cancer therapy, imatinib 

(Gleevec), are under clinical investigation for the treatment of children and adults with 

PAH. 

The growth factor, transforming growth factor-β (TGF-β) is also implicated in 

PAH pathogenesis.   Although the specific contribution of TGF-β to PAH has yet to be 

identified, some studies suggest that TGF-β is increased in experimental models of PH 

(Arcot et al., 1993; Perkett et al., 1990) and PAH patients (Botney et al., 1994).  

Conversely, other studies indicate that TGF-β levels remain low throughout PAH 

development (Botney et al., 1991; Botney et al., 1992).  Although estimations of TGF-β 

levels in PH remain controversial, alterations in TGF-β signaling are strongly associated 

with PH pathogenesis.  TGF-β receptor blockade attenuates monocrotaline-induced 

increases in RV systolic pressure, RV hypertrophy and vascular remodeling (Megalou et 

al., 2010).  Similar studies demonstrate that inhibition of TGF-β receptor signaling 

reduces pulmonary vascular remodeling and MCT-PH development (Zaiman et al., 

2008).  Additionally, mutations in the type II receptor for bone morphogenetic protein 
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(BMPR-II), a receptor member of the TGF-β superfamily, contribute to both familial and 

sporadic forms of PAH (Machado et al., 2005; Machado et al., 2001; Thomson et al., 

2000).  While the exact role of TGF-β in PH remains unknown, evidence that TGF-β 

promotes SMC proliferation in a manner partially dependent on Nox4 (Sturrock et al., 

2006) suggests that TGF-β contributes to PAH pathogenesis.  However, there are 

currently no PAH therapies targeting TGF-β levels and/or signaling.  Future studies may 

provide a better understanding of TGF-β in PAH and effective TGF-β targeting 

strategies. 

Nitric Oxide (NO) and NO Signaling 

NO is a potent endogenous, endothelium-derived vasodilator produced by nitric 

oxide synthases (NOS).  NOS utilizes L-arginine to produce NO and the by-product, L-

citrulline.   NO directly relaxes vascular smooth muscle by stimulating soluble guanylate 

cyclase and increasing production of intracellular cyclic guanosine monophosphate 

(cGMP) (Mehta et al., 2003).  PH is associated with reduced nitric oxide (NO) 

production as well as impaired NO-induced vasodilatation.  For example, acute and 

prolonged exposure to hypoxia causes a 50% decrease in endothelial nitric oxide 

production in rat pulmonary arteries (Shaul et al., 1993). Also, endothelial NOS 

expression is significantly decreased and arginase II, the enzyme that decreases the 

bioavailability of L-arginine for NO synthesis is increased in the pulmonary endothelium 

of PAH patients (Xu et al., 2004).  As a result of these findings and others, studies 

investigating the effectiveness of pharmacologic therapies targeting the NO and cGMP 

pathways in experimental and clinical PH have increased dramatically.   
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Research indicates that activation of guanylyl cyclase by BAY 41-2272 prevents 

hypoxia-induced RV systolic pressure and RV hypertrophy in rats (Thorsen et al., 2010).  

Studies also demonstrate the phosphodiesterase type 5 inhibition by sildenafil 

attenuates PH development by suppressing pulmonary vascular remodeling in MCT-

treated rats (Yen et al., 2010).  The intravenous administration of sildenafil during right 

heart catherization dose-dependently reduces pulmonary vascular resistance (Wilkens 

et al., 2001). Similarly, clinical studies suggest that L-arginine administration reduces 

pulmonary artery pressure and increases exercise tolerance in patients with PAH 

(Nagaya et al., 2001).  These data and others underscore the importance of appropriate 

NO levels and NO signaling in vascular health and function.  Thusly, several therapies 

targeting these pathways are approved for the treatment of PAH such sildenafil and 

tadalafil.  Furthermore, additional therapies are undergoing clinical trials for PAH 

treatment including the soluble guanylate cyclase activators, cinaciguat and riociguat. 

Reactive Oxygen Species  

Excessive ROS production and altered redox pathways are linked to PH 

pathogenesis and are currently being evaluated as potential PH therapies.  ROS, such as 

superoxide, hydrogen peroxide (H2O2), and hydroxyl radical (HO·) as well as the 

reactive nitrogen species nitric oxide (NO) and peroxynitrite (ONOO-) are biologically 

active species known to play important roles in vascular biology via redox signaling 

pathways (Giordano, 2005; Go and Jones, 2011; Kondo et al., 2009).  These oxidants are 

produced by numerous sources such as the NADPH oxidases (Noxes), xanthine oxidase, 

cytochrome P450, uncoupled endothelial nitric oxide synthase (eNOS) and as 

byproducts of the mitochondrial respiratory chain (Papaharalambus and Griendling, 
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2007).  To balance ROS levels and combat their toxic effects, cells employ several 

antioxidant enzymes including the superoxide dismutases (SOD), catalase, glutathione 

peroxidase (GPx), thioredoxins (Trx), and peroxiredoxins (Prx).  Non-enzymatic 

antioxidant mechanisms also exist, including the vitamins E and C as well as 

glutathione, which acts as a reducing substrate for glutathione peroxidase (Nordberg 

and Arnér, 2001). These antioxidant systems are localized throughout the cell and 

function either in an independent or complementary manner to scavenge ROS.  Overall, 

the balance between ROS generation and antioxidants is essential for normal cell 

function.   

Although cells utilize a variety of mechanisms to regulate ROS generation and 

inactivation, ROS are essential for normal vascular function and act as key second 

messengers in numerous signal transduction pathways (Griendling et al., 2000; Irani, 

2000; Ushio-Fukai, 2009).  Moreover, ROS levels regulate the activity of important 

transcription factors implicated in vascular function including NF-κB, activator protein-1 

(AP-1), and HIF-1α (Canty et al., 1999; Wellman et al., 2003; Wung et al., 1997).  

Therefore, the excess generation of and/or the reduced ability to remove ROS can lead to 

detrimental effects such as dysregulated apoptotic or proliferative states, vascular 

smooth muscle cell migration and endothelial dysfunction. For example, low 

concentrations of H2O2 induce cellular proliferation, whereas high concentrations 

promote apoptosis and cell cycle arrest  (Baas and Berk, 1995).  ROS also contribute to 

TNF-α-induced activation of endothelial apoptosis (Xia et al., 2006) and stimulate 

vascular smooth muscle cell migration by modulating the matrix metalloproteinases 

(MMP) -2 and -9 (Luchtefeld et al., 2005). Furthermore, superoxide can cause 
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endothelial dysfunction by combining with nitric oxide to produce the highly reactive 

radical, peroxynitrite (ONOO-) and decrease NO levels (Bauersachs et al., 1996).  

Peroxynitrite is then able to oxidize the essential eNOS cofactor, tetrahydrobiopterin 

(BH4), stimulating eNOS uncoupling and further contributing to endothelial 

dysfunction by increasing superoxide and reducing NO availability (Kuzkaya et al., 

2003).  ROS-induced endothelial dysfunction is pivotal to vascular injury and the 

inflammatory response, and endothelial dysfunction is known to be an early predictor of 

cardiovascular events in patients without (Suwaidi et al., 2000) and with known 

vascular disease (Gokce et al., 2003; Schachinger and Zeiher, 2000).  The extensive 

effects of ROS on the vessel wall support a role for ROS in the development of numerous 

vascular disorders including PH.  For example, increased superoxide production has 

been observed in experimental models of PH (Brennan et al., 2003), and biomarkers of 

oxidative stress are elevated in PH patients (Bowers R, 2004).  PH patients exhibit low 

NO levels in their exhaled breath (Kaneko et al., 1998; Machado RF, 2004), which 

suggests that NO scavenging by superoxide radicals likely results in reductions in 

bioavailable NO (Cai and Harrison, 2000).  Moreover, superoxide regulates 

characteristic PH pathologies such as modulating pulmonary vasoconstriction (Liu et al., 

2004) and stimulating pulmonary smooth muscle cell proliferation (Wedgwood and 

Black, 2003).  Superoxide and other oxygen radicals also promote other cardiovascular 

pathologies such as atherosclerosis by altering NO and activating redox-sensitive 

pathways that mediate vessel remodeling and plaque stability (Szocs et al., 2002).  In 

addition, coronary arteries from CAD patients express greater levels of the NADPH 

oxidase subunits, p22phox, p67phox, and p47phox (Guzik et al., 2006) and produce 

significantly larger amounts of superoxide (Sorescu et al., 2002).   
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Oxidative stress also enhances vessel inflammation by stimulating the release of 

endothelin-1 (ET-1) and pro-inflammatory cytokines interleukin-6 (IL-6).  Patients with 

atherosclerosis demonstrate elevations in plasma ET-1 levels (Lerman et al., 1991) and 

enhanced immunoreactive staining for ET-1 in the vasculature (Zeiher et al., 1995).  

Similarly, increases in pulmonary vascular ET-1 and IL-6 (Golembeski et al., 2005b; 

Sadaie et al., 1988; Savale et al., 2009; Steiner et al., 2009) are implicated in PH 

development.  ROS mediate the secretion of ET-1 from endothelial cells (Michael et al., 

1997; Sethi et al., 2006) and polymorphonuclear leukocytes (Syeda et al., 2008).  

Antioxidant administration, however, inhibits the IL-6 and ET-1 release in healthy 

volunteers (Böhm et al., 2007), as well as, ET-1-induced release of IL-6 from vascular 

smooth muscle cells (Browatzki et al., 2000).  Altogether, ROS and redox-sensitive 

pathways greatly contribute to vessel injury and vascular disease pathogenesis which 

further support a role for ROS in PAH development.  

Arachidonate 5-Lipoxygenase  

The correlation between PH and arachidonate 5-lipoxygenase (ALOX5) is based 

on data showing that agents that block ALOX5 attenuate the development of PH.  

ALOX5 is the enzyme that produces leukotrienes (LTs) by catalyzing the metabolism of 

arachidonic acid, released following cellular activation. Traditionally, ALOX5 expression 

was thought to be limited to cells of myeloid origin, such as monocytes, macrophages, 

eosinophils, neutrophils, and inflammatory cells.  However, studies have shown ALOX5 

is expressed in pulmonary artery endothelial cells (Zhang et al., 2002) as well as in the 

small artery endothelium of hypoxic rat lungs (Voelkel et al., 1996).   
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To produce the intermediate leukotriene LTA4 from arachidonic acid, ALOX5 

requires both calcium and the 5-lipoxygenase activating protein (FLAP) for its activation 

and translocation to the nuclear membrane.  LTA4 is highly unstable and is rapidly 

converted into two metabolites, LTB4 or LTC4.  LTB4 is a potent chemotactic agent 

formed by the action of LTA4 hydrolase on LTA4.  Alternatively, in eosinophils, 

monocytes, and mast cells, LTA4 can be conjugated with glutathione to form LTC4, D4 

and E4, which are collectively known as cysteinyl leukotrienes (Peters-Golden and 

Brock, 2000). LTC4 synthase catalyzes the production of intracellular LTC4, however, 

LTD4 and LTE4 are generated from extracellular LTC4 following its export by the 

multidrug-resistance protein 1(MRP1) (Nguyen and Gupta, 1997) (Figure 1.1). 

ALOX5 activity and leukotriene production are regulated by numerous signaling 

pathways.  5-lipoxygenase activating protein (FLAP) acts as a primary ALOX5 regulator.  

In intact cells, ALOX5 requires the presence of FLAP for leukotriene synthesis (Dixon et 

al., 1990; Miller et al., 1990) FLAP serves as a membrane anchor for ALOX5 and binds 

arachidonic acid for ALOX5 activity.  Calcium serves as an important regulator of 

ALOX5 activity, and ALOX5 exhibits minimal activity in the absence of calcium 

(Aharony and Stein, 1986; Rouzer and Samuelsson, 1985).  Conversely, the addition of 

calcium stimulates ALOX5.  Kinase-mediated phosphorylation also stimulates ALOX5.  

ALOX5 is activated by p38 kinases as stimuli-induced ALOX5 is ablated by the p38 

kinase inhibitor, SB203580 (Werz et al., 2000a).  Additionally, ALOX5 phosphorylation 

at Ser271 and Ser663 by MAP kinase-activated protein kinase 2 and by ERK1/2, 

respectively induces ALOX5 activation (Werz et al., 2000a).  
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Figure 1.1.  5-Lipoxygenase (ALOX5) activation and leukotriene biosynthesis.  5-

Lipoxygenase is expressed in macrophages, inflammatory cells, and endothelial cells.  

Upon activation, intracellular calcium concentrations rise, activating cytosolic 

phospholipase A2 which produces arachidonic acid from phospholipids found in the 

nuclear membrane.    ALOX5, along with its required co-factor, 5-lipoxygenase activating 

protein (FLAP), catalyze two consecutive reactions thereby converting arachidonic acid 

into leukotriene A4.  Leukotriene A4 is then converted into either leukotriene B4 via 

LTA4 hydrolase or leukotriene C4 by LTC4 synthase.   
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Yet, cAMP-dependent PKA-induced phosphorylation at Ser523 inhibits ALOX5 

activation and translocation (Luo et al., 2004). 

In addition, excessive ROS production is believed to affect ALOX5 activity 

(Riendeau et al., 1989; Werz et al., 2000b).  In vitro studies demonstrate that ALOX5 is 

activated in conditions that promote lipid peroxidation (Riendeau et al., 1989) 

particularly following glutathione depletion (Hatzelmann et al., 1989; Hatzelmann and 

Ullrich, 1987). Similarly, stimulation of endogenous ROS release by antimycin A causes 

an almost 4-fold increase in leukotriene formation in transformed B lymphocytes (Werz 

et al., 2000b).  These effects may in part be due to ROS-induced arachidonic acid release.  

Studies indicate that ROS enhance arachidonic acid release (Sporn et al., 1988) and 

subsequent arachidonic acid metabolism (Martinez and Moreno, 2001).  Oxidative stress 

also activates p38 MAPK, which may also stimulate ALOX5 activity by promoting 

ALOX5 phosphorylation (Werz et al., 2001).  However, nitric oxide (NO) is a potent 

inhibitor of LT synthesis (Brunn et al., 1997; Coffey et al., 2000).  Taken together, these 

studies emphasize the reactive oxygen and nitrogen species production can play 

important roles in regulating ALOX5 activity. 

Increased ALOX5 expression has been found in the lung tissue of patients with 

primary pulmonary hypertension, within infiltrating perivascular alveolar macrophages 

and in small pulmonary artery endothelial cells (Wright et al., 1998).  MK-886 and 

zileuton, inhibitors of FLAP (5-Lipoxygenase Activating Protein) and ALOX5 

respectively, have been effectively used in the prevention of PAH in experimental models 

(Jones et al., 2004).  Studies utilizing mice exposed to hypoxia and monocrotaline 

(MCT)-treated rat models have provided valuable evidence that ALOX5 contributes to 
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PH (Stenmark et al., 1985).  These experimental PH models mimic human PH cases by 

stimulating either hypoxic vasoconstriction of the pulmonary vasculature or endothelial 

dysfunction, which are directly involved in the pathogenesis of PH.  ALOX5 inhibition 

has been shown to significantly prevent and improve this aspect of PH pathophysiology.  

Furthermore, overexpression of ALOX5 in MCT-treated rats markedly increases right 

ventricular systolic pressures (RVSP) when compared to rats treated with MCT without 

ALOX5 overexpression (Jones et al., 2004).  On the other hand, daily inhibition of 

ALOX5 with either MK-886 or zileuton during a 5-week monocrotaline (MCT) study in 

rats attenuates elevations in RVSP by more than 50% (Jones et al., 2004).  These results 

suggest that ALOX5 critically contributes to MCT-induced pulmonary hypertension 

progression and that increased ALOX5 expression may exacerbate PH pathologies.      

The ALOX5 metabolites, cysteinyl leukotriene (CysLTs) are also associated with 

PH.  CysLT levels are increased in lung lavage fluid of neonates with persistent 

pulmonary hypertension (Stenmark et al., 1983), patients with chronic obstructive 

pulmonary disease (COPD) (Piperno et al., 1993) as well as animals exposed to hypoxia 

(Morganroth et al., 1984b).  Additionally, CysLTs are known to increase vascular 

permeability and vasoconstriction (Friedman et al., 1984) of pulmonary arteries.  CysLTs 

also induce a variety of proinflammatory activities in cardiovascular tissues.  For 

example, the administration of CysLT receptor antagonists attenuate increases in 

intracellular calcium concentrations and prevent vessel contraction in a dose dependent 

manner (Morganroth et al., 1984a). In addition, cysteinyl leukotrienes stimulate 

vasoconstriction in distal segments of pulmonary arteries (Friedman et al., 1984).  In vivo 

injections of cysteinyl leukotrienes increase pulmonary arterial pressures in monkeys 



20 
 

(Smedegard et al., 1982) and pigs (Ohwada et al., 1990).  Studies using isolated human 

pulmonary arteries also show that LTC4 and LTD4 induce contraction (Back et al., 

2000a; Back et al., 2000b; Schellenberg and Foster, 1984).  Therefore, due to their 

pronounced effects on the vasculature, the cysteinyl leukotrienes are implicated in recent 

studies as contributing mediators in PH development. 

Furthermore, ALOX5 expression and activity are linked to cellular proliferation 

(Fischer et al., 2010; Ishii et al., 2009; Svensson Holm et al., 2008; Walker et al., 2002).  

Inhibitors of cysteinyl leukotriene (CysLT) production attenuate the basal proliferation 

of pulmonary artery endothelial cells (Walker et al., 2002).  Also ALOX5 blockade with 

the specific inhibitors AA861 and MK886 significantly ablate the proliferation of three 

different lung tumor cell lines (Avis et al., 1996).  Moreover, zileuton treatment induced a 

54% reduction in abnormal proliferation of rat mammary tissue following challenge with 

the chemical carcinogen, DMBA (Chatterjee et al., 2011).  Altogether, these data suggest 

that ALOX5 may play a major contributing role in PH pathogenesis and progression by 

altering pulmonary vascular tone and promoting pulmonary vascular remodeling. 

PAH development is strongly associated with human immunodeficiency virus-1 

(HIV-1) infection.  Knowledge of HIV-PAH and its underlying etiology is minimal.  

However, many believe that alterations of the aforementioned pathways caused by HIV-1 

or HIV-secreted mediators greatly contribute to HIV-PAH pathogenesis.  The following 

section will summarize what is known about PAH in the context of HIV-1 and highlight 

the evidence implicating these potential factors. 

HIV-1 structure and replication cycle:  HIV-1 is a retrovirus belonging to the lentivirus 

(or slow virus) category.  The HIV-1 virion is surrounded by a glycoprotein-rich envelope 
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and contains the double-stranded RNA genome within a nucleocapsid core (Krogstad, 

2003).  The HIV-1 genome contains 9 genes:  gag, pol, env, tat, rev, vpu, vpr, vif, and nef.  

These genes encode for approximately 15 viral proteins (Turner and Summers, 1999) that 

are essential for HIV-1 structure, function, and infection. 

 HIV-1 enters target cells through high-affinity interaction between the viral 

envelope protein gp120 and the CD4 cell surface molecule, which is expressed by 

multiple cell types (Bour et al 1995, Dalgleish et al 1984, Klatzmann et al 1984, McDougal 

et al 1986). Following the attachment of the envelope complex to the CD4 protein 

receptor, the chemokine binding domains of gp120 are exposed and able to bind the 

target chemokine receptor.  Once HIV has bound to the target cell, the virus content 

including HIV RNA and the reverse transcriptase, integrase, and protease enzymes are 

released into the cell.  Upon entry into target cells, the viral genome is converted into 

double-stranded DNA by the virally encoded reverse transcriptase enzyme.  HIV 

proteins then facilitate the transport of the newly synthesized viral DNA to the host cell 

nucleus, integrase then covalently incorporates the HIV DNA into the host genome 

(Turner and Summers, 1999), forcing the host cell machinery to synthesize numerous 

viral proteins.  The resulting proteins are essential for HIV-1 replication and infection of 

target cells.  For example, the cleavage of the Env protein produces the virion envelope 

glycoproteins gp120 and gp41.  The regulatory proteins Tat and Rev, as well as the 

accessory proteins Vif, Vpu, Vpr, and Nef are also synthesized.  New HIV-1 virions are 

then assembled along with a copy of the double stranded RNA genome and released into 

the bloodstream to continue replication in other cells.   
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   Continued infection and replication of HIV-1 depletes CD4+ lymphocytes, the 

most commonly infected cells of the bloodstream.  These cells regulate immune cell 

communication via lymphokine release and cell surface signaling (Gottlieb et al., 1981).  

With significant reductions in CD4+ lymphocytes, the HIV-1-infected subjects become 

immune-compromised and are unable to fight against foreign pathogens.  HIV-1 infection 

is also associated with Kaposi’s sarcoma (Boyle et al., 1993; Mitsuyasu, 1988), dementia 

(Merrill and Chen, 1991; Price et al., 1988), non-Hodgkin’s lymphoma (Karp and Broder, 

1991), nephropathy (Bourgoignie and Pardo, 1991; Cohen and Nast, 1988), and AIDS 

wasting syndrome (Melchior, 1997).   

HIV- 1 and AIDS Statistics:  An estimated 1.2 million United States residents are 

infected with HIV-1 (Source: CDC, 2008).  According to the 2006 World Health 

Organization report, HIV-1 is the causative agent of Acquired Immune Deficiency 

Syndrome (AIDS).  Since the HIV-1/AIDS epidemic began, over 600,000 people have 

succumbed to HIV-1/AIDS in the United States and over 30,000 new cases are diagnosed 

each year (Source: CDC, 2009).  The Centers for Disease Control and Prevention 

estimates that the number of yearly HIV-1 diagnoses remained stable between 2007 and 

2010 with 48,079 adults and adolescents being newly diagnosed in 2010.  Of these new 

diagnoses, 79% were male and 21% were female.   The distribution of HIV diagnoses has 

also remained stable with the largest percentage (61%) of HIV-1 diagnoses resulting from 

male-to-male sexual contact; 28% attributed to heterosexual sexual contact, injection 

drug use (8%), and receipt of blood or blood products or perinatal exposure (3%) 

constitute the remaining HIV diagnoses.   Before the advent of highly active antiretroviral 

therapies (HAART), HIV infection was the leading cause death of among persons 25-44 
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years old.  However, with the introduction of highly active antiretroviral therapies 

(HAART) in 1996, deaths of persons with AIDS have declined substantially (See Figure 

1.2).   Nonetheless, HIV-1 is still ranked as the 5th ranking cause of death for individuals 

between 25 and 44 years of age.   

HIV/AIDS Antiretroviral Therapies (ARVs):  ARVs are divided into 5 major classes:  

the nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse 

transcriptase inhibitors (NNRTIs), protease inhibitors (PIs), integrase inhibitors, and 

entry inhibitors (Kline and Sutliff, 2008).  Although HAART fails to cure HIV-1 patients, 

these therapies reduce HIV replication, immune activation, and chronic inflammation as 

well as improve CD4+ lymphocyte counts. As a result, many HIV-infected patients 

demonstrate a considerable improvement in health.  Additionally, the morbidity and 

mortality associated with HIV disease has decreased dramatically (Source: CDC, 2008).   

 HIV-1 infection of endothelial cells:  It remains controversial as to whether 

HIV-1 can infect vascular endothelial cells in vivo.  Evidence of productive infection of 

brain microvascular endothelial cells (BMVECs) has been reported (Moses et al., 1993) 

and refuted (Ades et al., 1993; Ades et al., 1992; Poland et al., 1995).  In addition, research 

reveals that HIV binds but fails to infect non-replicating human umbilical vein 

endothelial cells (HUVECs) in vitro (Conaldi et al., 1995).  Conversely, HIV-1 may be able 

to infect replicating HUVEC.  In addition, exposure to IL-1β and tumor necrosis factor 

(TNF)-α enhanced this effect (Conaldi et al., 1995).  Though interesting, the clinical 

relevance of these studies is unclear as vascular endothelial cells are believed to be non-

replicative in vivo.  Other studies demonstrate that while HIV-1 can enter endothelial 

cells via macropinocytosis (Liu et al., 2002) or through cytoplasmic vacuoles  
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Figure 1.2.  Improved Survival of HIV-infected Patients in the United States.  Trends 

in annual age-adjusted rate of death due to HIV disease between 1987 and 2007.  The 

decrease in the rate in 1996 and 1997 is attributed to the introduction of antiretroviral 

therapy.  Prophylactic medications for opportunistic infections and the prevention of 

HIV infection may have also contributed to this decrease.   
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(Gujuluva C, 2001), no infection occurs.  Therefore, the majority of data suggest that 

HIV-1 is incapable to infecting endothelial cells under physiological conditions.  

However, additional research is needed for confirmation.  

HIV-1 and endothelial dysfunction:  Although the ability of HIV-1 to infect endothelial 

cells remains controversial, the deleterious effects of HIV-1 on endothelial cell function is 

well documented (Bussolino et al., 2001).  For example, HIV-1 patients consistently 

demonstrate marked increases in ROS production as well as significant reductions in 

antioxidant availability and activity (Buhl et al., 1989; Eck et al., 1989; Mandas et al., 

2009)  In a study with treated and untreated HIV-infected subjects, the oxidative stress 

marker, d-ROM (derivatives of reactive oxygen metabolites) was shown to be greater in 

serum of HIV-1 patients than that of healthy controls (Mandas et al., 2009).  

Malondialdehyde (MDA), an index of lipid peroxidation, was also significantly elevated 

in the serum from both symptomatic and asymptomatic HIV-1 patients (Revillard JP, 

1992; Sonnerborg A, 1988; Suresh et al., 2009).  The marked increases in ROS biomarkers, 

d-ROM and MDA in HIV-1 patients demonstrate a HIV-induced imbalance between 

oxidant generation and antioxidant activity.  These alterations are likely attributable to 

numerous mediators.   However, several studies suggest that the increased ROS 

production documented in HIV-1 patients results from diminished antioxidant 

expression and activity.  For example, a dramatic attenuation in the total antioxidant 

capacity including vitamin A and C serum concentrations has been noted in HIV-1 

seropositive patients (Lacey et al., 1996; Suresh et al., 2009; Wang and Watson, 1994).  

Glutathione (GSH), the predominant antioxidant in the lung, is also significantly altered 

in HIV-1 patients.  Studies demonstrate that total and reduced GSH in the epithelial 
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lining fluid of symptom-free HIV-seropositive individuals was 60% less than those in 

normal subjects (Buhl et al., 1989).  GSH levels are also reduced in the blood of HIV-1 

patients (Eck et al., 1989; Staal et al., 1992a; Staal et al., 1992b).  Plasma of HIV-infected 

patients displays a 30% reduction in glutathione when compared to healthy controls.  

There was no difference in glutathione levels in the untreated HIV-infected group when 

compared to subjects on ART regimens (Wanchu A, 2009).  Interestingly, however, 

HIV-1 produces a contradictory effect in the antioxidant, thioredoxin (Trx) which is 

significantly elevated in the plasma of HIV-infected healthy volunteers (Nakamura et al., 

1996).  Trx functions as an antioxidant in both the cytosol and mitochondria and 

contributes to cell growth, DNA repair and transcription factor regulation (Watson et 

al., 2004).  The HIV-induced increase in Trx may, therefore, function as a cellular 

compensatory mechanism or an attempt to normalize antioxidant capacity.   

 In vitro models of HIV-1 infection mirror clinical studies demonstrating both 

increases in ROS and declines in antioxidant activity.  HIV-1 infection of human primary 

macrophages produces a 6-fold increase in malondialdehyde (MDA) (Aquaro et al., 

2007).  This finding implicates HIV-1 infection as the principal cause for elevated 

macrophage ROS levels.  However, it remains controversial whether HIV-1 infection or 

HIV-1-induced mediators contribute to the increased ROS production and antioxidant 

depletion seen in infected patients.  Data suggest that HIV-induced mediators, 

independent of HIV-1 infection, are sufficient to increase cellular ROS levels.  In an in 

vitro model of HIV-induced oxidative stress, podocytes expressing the NL4-3 HIV-1 

construct with a deleted gag/pol region exhibit a marked increase in ROS generation over 

a 3-hour interval of HIV exposure.  The NL4-3-induced increase in podocyte ROS  
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Figure 1.3.  Effects of HIV-1 and HAART on ROS Sources and Scavengers 

1. NADPH Oxidases (Noxes), the primary producer of ROS in vascular cells, are 

dramatically up-regulated by HIV-1 (Husain et al., 2009; Salmen et al., 2010; Wu et al., 

2010) and ART (Papparella et al., 2007).  2. Uncoupled eNOS produces superoxide, 

instead of nitric oxide.  Superoxide may then couple with NO to generate the highly 

reactive radical peroxynitrite (ONOO-) (Bauersachs et al., 1996), which oxidizes 

tetrahydrobiopterin and causes lipid peroxidation (Kuzkaya et al., 2003).  HIV-1 

(Aquaro et al., 2007; Suresh et al., 2009) and ART (Manda et al., 2011) stimulate 

elevations in lipid peroxidation markers such as MDA and nitrotyrosine.  3.  HIV-1 

(Flores et al., 1993; Westendorp et al., 1995) and ART (Caron M, 2008; Gao RY, 2011; 

Kline et al., 2009; Opii et al., 2007) promote ROS release by inducing mitochondrial 

dysfunction.  4. HIV (Kline et al., 2008) and ART (Chandra et al., 2009; Prakash et al., 

1997) reduce SOD expression and activity.  5. HIV-1 negatively modulates catalase 

expression and activity.  6. GSH levels are significantly decreased in HIV-1 patients 

(Sundaram et al., 2008; Wanchu A, 2009).  In addition, HIV-1 proteins alter GSH release 

(Opalenik et al., 1998) and regulation (Fan et al., 2011; Richard et al., 2001).  ART also 

deplete cellular GSH (Kline et al., 2009; Manda et al., 2011).  7. Mitochondrial 

antioxidant, SOD2 is decreased in HIV-1 (Flores et al., 1993; Prakash et al., 1997; 

Westendorp, 1995).   
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generation was attenuated by diphenyleneiodonium (DPI) administration, implicating 

flavin-containing enzymes such as NADPH oxidase as the primary source for ROS 

increases (Husain et al., 2009).  This study suggests that virus infectivity due to gag and 

pol function is not necessary for HIV-induced ROS release. 

In vivo models studying the effect of HIV-1 proteins on oxidative stress reach 

similar conclusions.  Mice expressing the HIV-1 Tat protein (HIV-1 Tat+) exhibit a 

significant reduction in total intracellular GSH content in both the liver and 

erythrocytes.  Additionally, glutathione synthetase activity in HIV-1 Tat+ mouse liver 

was decreased to 73% of control levels (Choi et al., 2000). Similarly, studies from our 

group employing an HIV-1 transgenic rat model indicate that the expression of HIV-1 

proteins is sufficient to augment ROS production and alter antioxidant expression.  

These animals express a HIV-1 provirus that encodes for the viral genes env, tat, nef, rev, 

vif, vpu, and vpr.  However, due to the deletion of the gag and pol regions, the HIV-1 

transgene is both nonreplicative and noninfectious.  Studies using this model show that 

HIV-1 transgenic (Tg) rat aortas display significant increases in superoxide and 3-

nitrotyrosine levels compared to wild-type controls.  HIV-1 Tg rats also exhibit marked 

decreases in circulating nitric oxide (NO) and total GSH as well as reductions in aortic 

SOD1 expression and activity (Kline et al., 2008).  HIV-1 transgene expression also 

induces marked elevations in rat lung superoxide, hydrogen peroxide (H2O2), and NO 

metabolite levels as well as concomitant decreases in lung lavage fluid GSH when 

compared to wild-type rats (Jacob et al., 2006; Lassiter et al., 2009).   

Altogether, these studies highlight the ability of HIV-1 proteins to independently 

alter endothelial function and induce vascular injury in vivo.  Indeed, more details 
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regarding whether HIV-1 protein concentrations in these models are physiologically 

relevant are needed.  Nonetheless, research demonstrates marked alterations in ROS and 

antioxidant levels in HIV-1 models.  These data suggest a potential correlation between 

HIV-1 and oxidative stress, and raise the question of whether the oxidant/antioxidant 

imbalance found in HIV-1 patients contributes to the characteristic pathologies 

associated with this population.   

HIV-1 Proteins:  Considerable research indicates that HIV-1 significantly alters vascular 

cell function.  However, research utilizing HIV- and Tat-Tg animal models argues that 

virus-induced mediators such as HIV-1 proteins may serve as sufficient inducers of vessel 

injury via increased oxidative stress.  As a result, the investigation of HIV-1 proteins and 

their effects on ROS release and regulation has increased substantially.  This research 

sheds light on the imbalance between oxidants and antioxidants, and strongly suggests 

that HIV-1 proteins contribute to both increased production of ROS and diminished 

antioxidant activity. 

HIV-1 proteins are encoded by 9 genes located within the virion capsid (See 

Figure 1.4).  Three of these genes, gag, pol, and env, are found in all retroviruses and are 

vital to the structure of HIV-1.  For example, the gag and pol regions encode for the 

reverse transcriptase and integrase enzymes necessary for efficient HIV-infection and 

replication.  The env gene encodes for gp160, the precursor for the envelope proteins 

gp120 and gp41, which are necessary for virus entry into cells.  The 6 remaining 

“accessory” genes are unique to HIV-1.  Two of these, tat and rev, perform a regulatory 

function and are essential for viral replication (Sadaie et al., 1988).  However, the roles of 

HIV-1 genes, vpr, vpu, vif, and nef are less fully understood (Frankel and Young, 1998).  
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Figure 1.4.  HIV-1 genome and mature HIV-1 protein cleavage products.   The HIV-1 

genome is 9.75 kB in length and encodes for nine translation products.  Three of these 

genes, gag, pol, and env, are vital to the structure of HIV-1.  The 6 remaining genes are 

unique to HIV-1 and directly encode for viral accessory and regulatory factors.  The HIV-

1 genome is regulated by a single promoter located in the 5’-LTR.  This promoter 

contains binding sites for multiple cellular transcription factors such as Sp1 and NF-κB.  

Adapted from (Bruggeman et al., 1994) 
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The following section will focus on the role of HIV-1 proteins thought to play a 

contributing role in HIV-PH pathogenesis – Tat, Nef, and gp120.     

Tat 

Of all the HIV-1 proteins, the early viral protein, Tat is the most widely studied.  

Composed of 86-101 amino acids, Tat serves as a transcriptional transactivator of viral 

gene expression by binding to a transactivation-responsive region in the HIV long 

terminal repeat (LTR).  The expression of Tat is critical for productive HIV infection, as 

Tat-deficient viruses are non-infectious.  In HIV-1 patients, Tat can be secreted from 

infected T cells and monocytes (Ensoli et al., 1993) and following its release, circulates in 

the bloodstream.  In 1995, Westendorp et al reported plasma Tat levels between 1-3 

ng/mL in HIV-infected patients (Westendorp, 1995).  More recently, however, Tat serum 

levels in HIV-1-infected patients were estimated to fall between 2 and 40 ng/mL (Xiao et 

al., 2000).  It is also suggested that Tat concentrations are higher around HIV-infected 

perivascular cells and in the proximity of endothelial cells (András et al., 2003).  This 

effect is thought to occur because macrophages and monocytes act as viral reservoirs and 

secrete Tat as well as cytokines and oxidants near endothelial cells.   

From the circulation, Tat enters uninfected cells (Ensoli et al., 1993; Helland et al., 

1991; Marcuzzi et al., 1992; Westendorp et al., 1995).  Five distinct functional domains 

have been identified in the Tat protein.  These domains include the N-terminal, cysteine-

rich, core, basic, and C-terminal (See Figure 1.5).  The Tat C-terminal domain is thought 

to serve as the principal cell attachment and internalization moiety via the arginine-

glycine-aspartic (RGD) sequence (Brake et al., 1990).  This sequence is recognized by 
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integrin receptors and thereby enables Tat to bind to integrins α5β1 and αvβ3 with high 

affinity (Barillari et al., 1993; Urbinati et al., 2005b).   

Additionally, conditions promoting the expression of these integrin receptors 

stimulate Tat-induced effects (Albini et al., 1995).   Tat internalization may also be 

mediated by cell surface heparin sulfate proteoglycans.   Research demonstrates that 

soluble heparin and treatment with glycosaminoglycan lysases specific for heparin 

sulfate chains inhibit Tat internalization (Tyagi et al., 2001). 

Following internalization, Tat alters cellular physiology by positively or 

negatively affecting gene expression.  Tat activates transcription of numerous genes 

including tumor necrosis factor β (Buonaguro et al., 1994) and interleukin-6 (Ambrosino 

et al., 1997) by binding to the RNA stem-loop structures generated by the 5’ end of target 

transcripts, such as the HIV-1 transctivation-responsive element (TAR) (Berkhout et al., 

1989).  Studies also indicate that HIV-1 Tat stimulates the expression of the adhesion 

molecule E-selectin in endothelial cells (Cota-Gomez et al., 2002; Hofman et al., 1993).  

Similarly, Tat induces pulmonary artery endothelial cell VCAM-1 (Liu et al., 2005b) as 

well as astrocyte VCAM-1 and ICAM-1 expression in a dose- and time-dependent 

manner (Woodman et al., 1999).  Twenty fours of hour exposure to Tat decreases the 

expression of the tight junction proteins claudin-1, claudin-5, and zonula occludens 

(ZO)-2 in brain microvascular endothelial cells (Andras et al., 2003).   The Tat arginine-

rich, or basic, and cysteine rich domains are essential for NF-kB induction as 

modification of these Tat sequences completely block HIV replication and NF-κB 

activity in monocytes (Devadas et al., 2006).  The arginine- and cysteine-rich domains of  
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Figure 1.5.  HIV-1 Tat Functional Domains.  
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Tat are required for IκB-α and p65 association, respectively, and for sustaining NF-κB 

activation (Fiume et al., 2011).   

Extensive research also demonstrates that HIV-1 Tat increases ROS levels and 

decreases antioxidant levels.  For example, Tat causes a dose-dependent increase of ROS 

in cultured brain microvascular cells (Toborek M, 2003) and significantly induces ROS 

production and lipid peroxidation in rat brain endothelial cells (Price TO, 2005).  In the 

HIV indicator (HeLa-CD4-LTR-B-gal), or MAGI cells, transfection with a Tat-

expressing plasmid for 48 hours significantly increases ROS levels and reduces 

intracellular GSH levels by 50%.  This study also showed that the Tat-induced 

alterations are reversed by pretreatment with the antioxidant, N-acetylcysteine (NAC) 

(Zhang et al., 2009).  Murine fibroblasts expressing the full-length HIV-1 Tat protein 

exhibit similar reductions in cellular GSH concentrations (Opalenik et al., 1998).  

Additionally, in vivo studies demonstrate that the intravenous injection of Tat protein 

decreases mouse brain GSH levels by 85% (Banerjee et al., 2010).  Tat over-expression in 

HeLa cells results in a 3-fold reduction in the glutathione peroxidase (GPx) mRNA ratio 

as well as a 2.5 fold decrease in GPx activity (Richard et al., 2001).  Moreover, HeLa cells 

stably producing the Tat protein express 48% less SOD2 compared to control cells 

(Flores et al., 1993; Westendorp, 1995), which may be caused by Tat-induced disruption 

of Sp1 and Sp3 binding in the SOD2 basal promoter (Marecki JC, 2004). 

These studies demonstrate that Tat alters cellular ROS and antioxidant 

regulation.  Yet, the exact mechanism and source of Tat-induced oxidative stress remain 

unclear.  Recent studies, however, have demonstrated Tat-induced activation of several 

ROS-producing enzymes.  For example, Gu et al showed that Tat acutely increases 
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intracellular oxidant levels in ECV-304 cells.  This Tat-induced oxidant activity is 

decreased by pretreatment with two NADPH oxidase inhibitors, DPI and apocynin (Gu 

et al., 2001).  Co-culture of human umbilical vein endothelial cells with HeLa-Tat cells 

also significantly induces endothelial H2O2 production via Nox 4 activation (Wu et al., 

2010).  These studies implicate NADPH oxidases as potential mediators of Tat-induced 

ROS.  However, other oxidases may contribute to HIV-induced ROS release as DPI and 

apocynin are somewhat nonspecific inhibitors.   

Conversely, cellular redox state may negatively affect HIV-1 gene expression and 

transcription by altering HIV-1 Tat internalization and function.  Previous studies 

demonstrate that the oxidation state of the cysteine-rich region of Tat strongly 

influences its capacity to enter cells (Siddappa et al., 2006).  In addition, more recent 

studies indicate that the redox state of Tat alters protein uptake by macrophages and 

hinders Tat biological activity due to protein aggregation (Pierleoni et al., 2010).  

Research also indicates that Tat transactivation is regulated by cellular redox state 

(Fanales-Belasio et al., 2002).  Normally, Tat stimulates transcriptional elongation from 

the viral LTR through a specific interaction with a 59-residue stem-loop on RNA known 

as the transactivation-response element (TAR).  Yet, recent studies demonstrate that 1 

hour of NAC exposure reduces Tat-induced HIV-1 LTR transactivation in MAGI cells to 

39.3% of the Tat-alone levels (Zhang et al., 2009).  Selenium administration also inhibits 

Tat-dependent LTR activity in human MDM and 100nM selenium also significantly 

reduces Tat-dependent transcription in U937 cells when compared to untreated controls 

(Kalantari et al., 2008).   
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These studies provide remarkable evidence of the independent effects of Tat on 

ROS levels and antioxidant availability.  Recent studies examining novel anti-AIDS 

therapies have attempted to target Tat activity and binding.  However, the available data 

regarding the effectiveness of these agents is controversial.  Although further 

investigation is needed to better understand the mechanism underlying its effects, Tat 

clearly alters cellular function and likely contributes to the vascular dysfunction and 

disease associated with HIV-1 infection.   

 Nef  

Several studies implicate the HIV-1 protein Nef as a potential mediator in HIV-

induced vascular injury.  Nef, “the negative factor” is an HIV viral accessory protein with 

a molecular weight ranging between 27-34 kDa.  Although normally found within the 

cytoplasm, Nef associates with the cellular membrane upon activation via 

myristoylation.  Nef expression has been shown to down-regulate the cell-surface levels 

of both CD4 and MHC-1 molecules.  It also interferes with numerous intracellular 

pathways, leading to the dysregulation of cellular signaling and activation (Geyer M, 

2001).  In vitro studies indicate that Nef influences HIV-1 pathogenesis through its ability 

to increase viral replication and infectivity in primary lymphocytes and macrophages.  In 

addition, in vivo studies show that Nef is essential for high virus replication and disease 

progression to AIDS in HIV-infected individuals (Harris, 1999).   

Although studies demonstrate that Nef plays a significant role in HIV function, 

research investigating Nef-induced endothelial dysfunction and ROS release is limited.  

In 2002, it was shown that Nef protein expression does not independently induce 
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microglial NADPH oxidase (Villhardt F, 2002).  However, Nef significantly enhanced 

superoxide release by NADPH oxidase following challenge with the calcium ionophore, 

formyl peptide or lipopolysaccharide (LPS) (Villhardt F, 2002).  Other studies reveal 

that Nef regulates superoxide production in a biphasic manner.  Research by Olivetta et 

al demonstrates that human monoblastic cells (U937) stably transfected with a vector 

expressing a Nef-ER fusion protein produce greater ROS than controls at 1- and 4- hours 

post-transfection.  However, Nef-expressing cells exhibit a complete ablation in ROS 

production at later time points.  In more recent studies, exposure of neutrophils from 

healthy donors to Nef for one hour increased superoxide production.  DPI administration 

significantly reduced the Nef-induced superoxide production, implicating activation of a 

flavin-containing enzyme.  Also, studies performed with neutrophil cellular lysates 

demonstrate that Nef associates with p22-phox, but not any other NADPH oxidase 

subunits (Salmen et al., 2010).  Similarly, in ex vivo studies, exposure of porcine 

pulmonary arteries or pulmonary artery endothelial cells (HPAEC) to Nef markedly 

increases superoxide release by 54% and 70%, respectively.  In addition to these effects 

on ROS, Nef also concomitantly decreased eNOS expression and NO production in 

porcine arterial rings and HPAEC (Duffy et al., 2009).   

Collectively, these reports implicate Nef as a mediator of HIV-induced injury and 

vascular dysfunction.  Although in vitro data suggest a potential cell-type dependent 

effect, ex vivo studies underscore the potential physiological relevance of Nef in HIV-

related vascular disease.  Moreover, studies performed by the Flores group demonstrate 

that HIV-1 Nef contributes to HIV-associated PH by promoting vascular remodeling 

(Almodovar et al., 2011b; Marecki et al., 2006; Sehgal et al., 2009).  Altogether, HIV-1 Nef 
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may contribute to the vascular dysfunction documented in the HIV-1 population via 

increased ROS production and effects on the nitric oxide synthase pathway.   

 

gp120  

The HIV-1 protein, gp120 also induces vascular cell injury. The envelope 

glycoprotein gp120 is expressed on the surface of HIV-1 virions and facilitates the 

receptor binding and subsequent membrane fusion required for HIV-1 infection (Freed 

and Martin, 1995).  In addition, soluble gp120, estimated to exist between 12-92 ng/mL in 

the serum of HIV-1 patients (Oh SK, 1992), can be shed from virus particles or infected 

cells into the circulation.  As a result, gp120 can cause extensive cellular damage by 

stimulating inflammatory cytokine release (Gendelman et al., 1994), apoptosis (Huang et 

al., 2001; Singhal et al., 2000), tight junction injury (Annunziata et al., 1998; Kanmogne et 

al., 2005a), and oxidative stress pathways (Bagetta et al., 2004; Holguin et al., 2004).  

Several studies indicate that gp120 stimulate ROS release in numerous cell types.  For 

example, exposure to gp120 for 24 hours causes an almost 6-fold elevation in MDA levels 

in astroglial cell homogenates.  This effect was significantly antagonized by pretreatment 

with the antioxidant, NAC (Visalli et al., 2007).  gp120 exposure also induces marked 

increases in human retinal epithelial cell MDA and NO production, as well as inducible 

nitric oxide synthase expression over a 72-hour interval when compared to untreated 

controls (Yu QR, 2008).  Additionally, gp120 induces marked staining for HNE, an 

indicator of lipid peroxidation, in cells expressing the endothelial cell marker, CD31.  

These increases in ROS production were associated with elevations in MMP-9, and gene 

delivery of the antioxidant enzymes GPx and SOD1 returned MMP-9 to control levels 



40 
 

(Louboutin et al., 2010).  Research also demonstrates that low concentrations of gp120 

promote ROS release.  Recombinant gp120 at a concentration of 340 nM increases ROS 

production in human monocyte-derived macrophages (Pietraforte et al., 1994).  Also, 

gp120 concentration of 40 nM was also shown to increase intracellular H2O2 in 

lymphoid cells (Shatrov, 1996).  Picomolar concentrations of gp120 induce ROS release in 

U937 cells, whereas co-administration of catalase and SOD decreased the gp120-induced 

oxidative damage by 81% (Foga IO, 1997).  Also, in vivo studies also established that 

injecting 500 ng of gp120 significantly increases MDA levels.  

In addition to the increases in ROS, gp120 has also been shown to alter 

antioxidant regulation.  Seventy two hours of gp120 exposure significantly decreases the 

mRNA expression of the Nrf2 transcription factor in the L2 epithelial cell line (Fan et al., 

2011).  The decrease in Nrf2 mRNA expression, however, did not produce a significant 

reduction in Nrf2 protein expression.  Moreover, HIV-1 transgene expression in rat 

alveolar epithelial cells produced a 30% attenuation in Nrf2 mRNA expression (Fan et 

al., 2011).  Overall, these data suggest a role of gp120 in ROS release.  In addition, the 

effects of gp120 on Nrf2 expression may act as a possible mechanism underlying HIV-

induced antioxidant depletion.   

While it is unclear whether the concentrations of HIV-1 proteins tested in vitro 

are physiologically relevant or appropriately effective to induce these changes, it is clear 

that specific HIV-1 proteins significantly impact ROS levels.  Research indicates that 

HIV-infected monocytes and macrophages serve as reservoirs for HIV.  Whether these 

reservoirs have the ability to continuously secrete HIV-1 proteins into the bloodstream 

remains controversial and more studies are needed to determine the effect of active HIV-1 
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infection on circulating HIV-1 proteins.  Additionally, further investigation to ascertain if 

these proteins potentiate the effect of HIV-1 infection is warranted.   Nonetheless, these 

data confirm that HIV-1 proteins may contribute to HIV-vascular disorders by 

disrupting vascular cell signaling pathways and/or altering ROS generation and 

antioxidant activity.   

HIV-associated Vascular Disorders:  Human immunodeficiency virus type 1 (HIV-1) 

infection and acquired immunodeficiency syndrome (AIDS) pose one of the greatest 

challenges to global public health.  Since the development of highly active antiretroviral 

therapies (HAART), mortality and the incidence of opportunistic infections in people 

living with HIV-1 have declined substantially (Corey et al., 2007; Palella et al., 2006).  As 

HIV/AIDS patients live longer, however, serious non-AIDS events occur and are 

associated with a greater risk of death than opportunistic AIDS-related events (Neuhaus 

et al., 2010).  As such, vascular complications including coronary heart disease, 

pulmonary hypertension (PH), and atherosclerosis (Barbaro, 2002; Hsue et al., 2011; 

Hsue et al., 2004; Krishnaswamy, 2000) are some of the most widely recognized (Crum 

et al., 2006; Seaberg et al., 2010) non-AIDS diseases recorded in HIV-infected patients.  In 

addition to the increase in susceptibility, clinical data also reveal that vascular 

complications in HIV-1 patients progress much more rapidly than in non-infected 

individuals (Guaraldi et al., 2011; Hsue et al., 2004).  The exact mechanisms by which 

HIV-1 promotes the development and progression of these disorders remain unknown 

and are likely multi-factorial.  Current research has identified endothelial dysfunction 

and increased vascular injury as a contributing underlying pathways.   
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Coronary Heart Disease and Atherosclerosis:  HIV-1 positive patients have a higher 

prevalence of atherosclerotic lesions (Fontas et al., 2004; Maggi et al., 2004; Meng et al., 

2002; Spieker et al., 2005), and elevated markers of subclinical atherosclerosis including 

increased carotid artery intima-media thickness (Chironi et al., 2003; Currier et al., 2005; 

Hsue et al., 2009a; Hsue et al., 2004; Johnsen et al., 2006; MasiÃ¡ et al., 2009; McComsey 

et al., 2007; Mercié et al., 2005; van Vonderen et al., 2009b), increased arterial stiffness 

(Bonnet et al., 2004b; Sevastianova K, 2005) and endothelial dysfunction (Blanco et al., 

2006; Hsue et al., 2009b; Kristoffersen et al., 2009; Nolan et al., 2003). Clinical studies 

examining cardiovascular disease in HIV-1-positive people prior to the era of HAART are 

relatively few, yet there is evidence of serious cardiovascular anomalies in these patients.  

Seminal work by Joshi revealed coronary arteriopathy in 3 of 6 HIV-1-infected children at 

autopsy; it also described vasculitis and perivasculitis with infiltration of lymphocytes 

and mononuclear cells in vessel walls (Joshi et al., 1987).   Other post-mortem analyses 

described major atherosclerotic lesions in proximal coronary arteries in 6 out of 8 HIV-

infected patients who were 23-32 years of age (Paton et al., 1993).  The high frequency of 

abnormalities in these early studies is striking considering that cardiovascular 

pathologies are normally rare in these age groups.  Vasculitis in small blood vessels 

(Cebrian et al., 1997; Mandell and Calabrese, 1998), aneurysms in medium or large 

arteries (Maniker and Hunt, 1996), and significantly lower levels of high density 

lipoprotein cholesterol (HDLc) in the bloodstream (Grunfeld et al., 1992) of untreated 

HIV-1-positive individuals indicate that HIV-1 infection increases cardiovascular 

complications.  These findings provide initial evidence of vascular dysfunction in HIV-1 

patients, and support the premise that HIV-1 viral proteins have a role in the 

development of cardiovascular disease in this population. 
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Antiretroviral-naïve HIV-1-positive patients are found to have markers of 

endothelial activation including elevated plasma levels of von Willebrand factor, 

plasminogen activator inhibitor-1 antigen, and tissue-type plasminogen activator 

(Lafeuillade et al., 1992; Schved et al., 1992).  These elevations in markers of endothelial 

dysfunction were found to correlate with anti-p24 antibodies and disease severity 

(Schved et al., 1992).   Antiretroviral-naïve HIV-1-positive people have also been found to 

have higher levels of soluble vascular cell adhesion molecule-1 (VCAM-1) (Wolf et al., 

2002), intracellular adhesion molecule-1 (ICAM-1) (Greenwood et al., 1998), and E-

selectin (Greenwood et al., 1998; Lafeuillade et al., 1992; Seigneur et al., 1997) compared 

to healthy controls.  This up-regulation of cell adhesion markers suggests that HIV-1 

increases endothelial cell activation and dysregulation.  These derangements may 

contribute to the increased incidence of pulmonary and systemic vascular disease.   

There is also indirect clinical evidence showing that the presence of the HIV-1 

virus increases cardiovascular risk.  An ongoing retrospective analysis by the Kaiser 

Permanente Medical Care Program of Northern California has determined 

hospitalization rates for coronary heart disease and myocardial infarction in 4159 HIV-1-

positive male members (Klein et al., 2002).  The authors did not find a correlation 

between antiretroviral therapies (ARTs) and hospitalization rates in the HIV-1 positive 

group after a 4 year follow-up.  However, they demonstrated significantly higher 

hospitalization rates in the infected group when comparing them to age- and sex-

matched HIV-1-negative controls during this same timeframe.  They were unable to 

establish correlations between the increase in hospitalization rate with other known risk 

factors (i.e. smoking, hypertension, diabetes, and hyperlipidemia) in the HIV-1-positive 
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group, thus concluding that HIV-1 infection itself increases the hospitalization rate for 

coronary heart disease and myocardial infarction.  This conclusion has been supported 

by other clinical studies as well.  A 2007 study examined acute myocardial infarction in 

patients (3851 HIV-1-positive and 1,044,589 HIV-1-negative) at 2 large Massachusetts 

hospitals (Triant et al., 2007).  The authors found a significantly increased risk for heart 

attack in the HIV-1-positive population at all ages examined, even when adjusted for the 

presence of other traditional risk factors in this group.  Interestingly, the risk for 

myocardial infarction was roughly tripled in HIV-1-positive women compared to 

uninfected women, a group generally considered to be at lower risk of developing 

cardiovascular disease compared to men. However, the impact of HAART on this 

observation could not be adjusted for due to insufficient data.  Another long-term multi-

institution analysis, the Strategies for Management of Antiretroviral Therapy (SMART) 

Study Group, concluded that cessation of antiretroviral therapy (ART) in HIV-1-positive 

patients increases their short-term risk of developing cardiovascular disease (El-Sadr et 

al., 2006).  Because prolonged ART has been associated with major metabolic and 

cardiovascular disorders, the authors of the study had hoped to evaluate the effectiveness 

of episodic ART in 2,720 HIV-1-positive patients using a treatment paradigm that 

administered HAART to maintain CD4+ lymphocyte levels.  Unfortunately, interruption 

of antiretroviral therapy did not benefit this cohort and actually increased the incidence 

of major cardiovascular events. 

It is suggested that HIV-1 infection elicits endothelial dysfunction in patients, as 

measured by flow-mediated dilation (FMD) of the brachial artery.  A controlled case-

study of 4 HIV-1-positive patients suggested that viral load inversely correlated with 
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endothelium-dependent FMD without any relation to antiretroviral regimens (Blum et 

al., 2005).  Solages monitored FMD in 75 HIV-1-positive and 223 control subjects, and 

found significantly impaired endothelial function in the infected population.  This study 

also found that viral load was a significant predictor of FMD (Solages et al., 2006b).  The 

authors did not observe an association between endothelial dysfunction and the use of 

HAART, which could potentially be explained by the small sample size and 

unrepresentative demographic characteristics of this specific population.  A smaller 

study in patients from 3.5-19.5 years of age also showed that HIV-1-infected children had 

significantly reduced FMD, increased wall stiffness, and lower cross-sectional 

compliance and distensibility of the carotid artery than non-infected children (Bonnet et 

al., 2004a).  Interestingly, no differences in these parameters were observed when 

comparing HIV-1-positive children on HAART with those who were HAART-naïve, 

suggesting that the HIV-1 viral infection increased endothelial dysfunction.  Other data 

also suggest that HIV, independent of HAART, can induce vascular dysfunction (Hsue et 

al., 2009b; Oliviero et al., 2009).  However, a 2007 study published by Lorenz concluded 

that HIV-1 infection and HAART are both independent risk factors for the development 

of atherosclerosis in adults (Lorenz et al., 2007).  They found that intima media thickness 

of the carotid bifurcation, a predictor of subclinical atherosclerosis, was 24.8% higher in 

an HIV-1-positive/antiretroviral-naïve group compared to an uninfected control group.  

They also observed significantly greater IMT of the carotid bifurcation and the common 

carotid artery associated with HAART treatment in HIV-1-positive individuals.  This 

effect of HIV-1 proteins was confirmed in a 2009 study which demonstrated that HIV-1 

infection is independently associated with carotid intima media thickening, a measure of 

sub-clinical atherosclerosis (van Vonderen et al., 2009a).   
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HIV-associated Pulmonary Arterial Hypertension:  First identified in 1987 (Kim KK, 

1987), HIV-associated PAH is an acquired form of PAH (Category I) and is being 

diagnosed with increasing frequency.  Similar to IPAH, the pathogenic mechanisms that 

predispose HIV patients to develop PAH are unclear.  However, studies show that HIV-

PAH occurs in the absence of any apparent lung disease and PAH disease severity does 

not correlate with CD4+ lymphocyte count (Seoane et al., 2001; Speich et al., 1991).  In 

addition, although HIV is present in inflammatory cells in the lungs, HIV has not been 

found in endothelial cells of patients who develop PAH (Humbert et al., 1998a; Mette SA, 

1992) nor has HIV DNA, RNA, or p24 antigen been detected in the pulmonary vessels of 

HIV-PAH patients (Kanmogne et al., 2001; Klings ES, 2003; Pellicelli et al., 2004).  These 

data suggest the pathogenesis of HIV-PAH is unrelated to infection or immune 

dysfunction and may be partially attributable to the indirect actions of HIV-1 proteins on 

the vasculature (Mette SA, 1992).   

Although histologic characteristics of HIV-PAH are similar to idiopathic PAH 

(Rubin, 1997),  numerous studies report an increased occurrence of PAH in the HIV-

infected population, with a prevalence of approximately 1 case per 200 (0.5%).  More 

recent studies suggest, however, that this number is increasing and estimate that up to 

1.0% of HIV-1 patients will develop PAH (Nunes et al., 2003).  This increase in incidence 

is likely underestimated as HIV-1 positive patients are not routinely examined for PAH, 

and PAH is often misdiagnosed resulting in an inaccurate assessment of incidence among 

HIV-1 patients (Petrosillo et al., 2006).  Overall, the current data suggests that more than 

10,000 HIV-1-infected individuals in the U.S. alone will develop PH.  This incidence of 

PH in the HIV-1-infected population is extremely high compared to the 1 to 2 cases per 

million recorded in the general population (Opravil et al., 1997).  
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HIV-PAH also progresses more rapidly (Seoane et al., 2001) and is associated 

with a poorer prognosis than PAH in the general population (Opravil et al., 1997).  

Epidemiological studies demonstrate that the survival of patients with HIV-PAH is 

significantly less than other patients classified with Group I PAH (McLaughlin et al., 

2004).  In a recent Swiss HIV Cohort Study, the median survival of patients with HIV-

PAH was reported to be 3.6 years (Opravil and Sereni, 2008).  Additionally, death of 

HIV-PAH patients is causally related to PAH rather than HIV-related events (Petitpretz 

et al., 1994).  Studies also reveal that the average age range of patients with HIV-PAH is 

38-41 (Degano et al., 2010; Zuber et al., 2004).  Additionally, men are slightly more likely 

to develop HIV-PAH than women (Degano et al., 2010; Nunes et al., 2003; Zuber et al., 

2004).    

The primary symptoms of HIV-PAH are nonspecific and are often attributed to 

underlying conditions associated with HIV-1 infection.  However, the symptoms most-

commonly associated with HIV-PAH and hospital visits occur as a result of right 

ventricular dysfunction such as dyspnea (85%), pedal edema (30%) and non-productive 

cough (19%) (Nunes et al., 2003).  Right heart catherization is the most effective method 

for PAH diagnosis as well as for hemodynamic evaluation and treatment response.  This 

method of diagnosis is considerably more important for HIV-PAH patients as the false-

positive rate from other diagnosis tools such as Doppler-echocardiography are reported 

to be as high as 72% (Sitbon et al., 2008).    

Current treatments for HIV-PAH are largely based upon data from IPAH 

patients.  Studies demonstrate that intravenous prostacyclin and prostacyclin analogs 

(Nunes et al., 2003) as well as oral endothelin receptor antagonists (Sitbon et al., 2004) 

improve the exercise capability and hemodynamic parameters of HIV-PAH patients.  
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Recent studies investigating HIV-PAH suggest that HAART fails to prevent the 

development of HIV-PH or improve the hemodynamic parameters in HIV-PAH patients 

(Degano et al., 2010; Simonneau et al., 2009).  Also, although HAART regulates viral 

replication and improves survival, patients with well-controlled HIV infection still 

develop PAH (Degano et al., 2009).  Additionally, HAART may potentially contribute to 

or exacerbate HIV-PAH development by inducing endothelial dysfunction via ROS 

release, ET-1 production, and endothelial proliferation (Hebert et al., 2004; Jiang et al., 

2006).  These observations underscore the complex etiology and severity of this disorder 

and highlight the need for further investigation of this disease.  Therefore, the purpose of 

our research is to identify the mechanism by which HIV-1 promotes PAH pathogenesis.  

We hypothesize that HIV-1 promotes PAH development and progression by altering the 

expression of genes that regulate pulmonary vascular tone.  We demonstrate that HIV-1 

proteins promote endothelial cell proliferation and vascular remodeling by stimulating 

the 5-lipoxygenase pathway. 

Summary:  One of the hallmark characteristics of human immunodeficiency virus-1 

(HIV-1) is the enhanced susceptibility to opportunistic infections, such as Pneumocystis 

pneumonia, Mycobacterium tuberculosis, and Haemophilus influenzae.  Recent studies indicate 

that HIV-infected persons also have a heightened risk of developing non-infectious lung 

disorders such as, HIV-related pulmonary arterial hypertension (HIV-PAH), a disorder 

characterized by increased pulmonary vessel tone and vascular remodeling.  Patients 

living with HIV-1 have an increased susceptibility to develop severe PAH irrespective of 

their CD4+ lymphocyte counts.  Additionally, HIV has not been found in endothelial  
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Figure 1.6.  Contribution of HIV- and HAART-induced ROS to Cardiovascular 

Disease  
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cells of patients who develop PAH nor has HIV DNA, RNA, or p24 antigen been detected 

in the pulmonary vessels of HIV-PAH patients.  While the underlying cause of HIV-PAH 

remains unknown, the interaction of HIV-1 proteins with the pulmonary vascular 

endothelium may play a critical role in HIV-PAH development by altering pathways that 

regulate vascular tone and remodeling such as arachidonate 5-lipoxygenase (ALOX5).  

ALOX5 is the enzyme that catalyzes the production of leukotrienes, which stimulate 

cellular proliferation and pulmonary vasoconstriction.  Altogether, we hypothesize that 

HIV-1 proteins promote HIV-PAH development and progression by stimulating 

pulmonary endothelial ALOX5 expression and activity.   

Proposed Research:  More than 10,000 HIV-1-infected individuals in the U.S. alone will 

develop PAH.   The underlying mechanism of HIV-PAH remains unclear and effective 

treatments are limited.  The purpose of this research is to examine whether HIV-1 

protein expression contributes to HIV-PAH pathogenesis by stimulating the ALOX5 

pathway.  We also examine the independent effects of HIV-1 proteins and/or hypoxia 

exposure on vascular endothelial ALOX5 expression and activity.  In vitro and in vivo 

studies utilizing human pulmonary artery endothelial cells and an HIV-1 transgenic 

animal model, respectively were utilized to study the effects of HIV in chronic hypoxia 

conditions.  Altogether, our evidence demonstrates that HIV-1 protein expression is 

associated with an increased susceptibility to hypoxia-induced PAH and promotes 

biochemical changes that are associated with PAH pathogenesis.  These studies provide 

a better understanding of PAH pathogenesis and may yield additional therapies for the 

treatment of PAH. 
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Reagents.  Endothelin-1 and TGF-β ELISA kits were purchased from R&D Systems 

(Minneapolis, MN) and Promega, respectively.  Trypan blue, fetal bovine serum (FBS), 

dimethyl sulfoxide (DMSO), PEG-Catalase, and gelatin were obtained from Sigma-

Aldrich (St. Louis, MO).  Recombinant full-length, Tat was obtained from Immuno 

Diagnostics (Woburn, MA).  Recombinant HIV-1 Nef (11478) was obtained from the 

NIH AIDS Research and Reference Reagent Program (Germantown, MD).  Zileuton was 

obtained from Patheon Pharmaceuticals (Cincinatti, OH).  MK-886 was purchased from 

EMD Biosciences (San Diego, CA). 

 

Cell Culture:  Human pulmonary artery endothelial cells (HPAEC) were obtained from 

Lonza (Walkersville, MD).  HPAEC were maintained in 10% fetal bovine serum (FBS) 

endothelial basal medium (Clonetics) supplemented with EGM-2 SingleQuots 

(Clonetics) at 37°C in a humidified incubator with a 5% CO2 atmosphere.  For co-culture 

studies, HPAEC were grown in EGM-2 medium and maintained at 37°C with 5% CO2.  

Confluent HPAEC were incubated with 10 x 106 peripheral blood monocytes (PBMC) 

prestimulated with PMA.  HPAEC and/or PBMC were inoculated with or without HIV-1 

virus.  Following 1 hr incubation at 5% CO2, cells were spun down to remove excess 

inoculum then placed in 5 ml of FBS-free EGM-2 medium.  Twenty-four hours following 

medium replacement, cells and supernatant were separated and stored for analysis. 

 

Monocyte-derived Macrophages:  Medium from HIV-infected and control monocyte-

derived macrophages were obtained from Dr. William Tyor of the Atlanta VA Medical 
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Center.  Primary human monocyte-derived macrophages (MDM) were cultured at 37°C 

with 5% CO2  in DMEM containing 10% human serum, L-glutamine, penicillin-

streptomycin and macrophage colony stimulating factor (M-CSF) for 7 days.  MDM (5 x 

106) were infected with HIV-1ADA (clade B) at a multiplicity of infection (MOI) of 0.1 for 1 

hour.  Following infection, MDM were resuspended in medium devoid of M-CSF and 

cultured for 14 days with media changes every 3 days (Rao et al., 2008).  HIV-1 p24 levels 

were measured in media (1:10,000 dilution) by ELISA (Advanced BioScience 

Laboratories, Kensington, MD).    

 

In Vitro Hypoxia Exposure.  HPAEC, passages 3-8, were exposed to hypoxia in a 

Biospherix exposure chamber (Lacona, NY).  Confluent cultures were trypsinized at a 

ratio of 1:6, plated in 10 cm3 dishes, and allowed to adhere overnight.  Following 

incubation, cells were placed in normoxic or hypoxic conditions for 24, 48, or 72 hours.   

For normoxic conditions, HPAEC were either placed into a standard incubator 

maintained at 37°C and 5% CO2 levels.  For hypoxic conditions, HPAEC were placed in a 

hypoxia chamber maintained at 37°C, 1% oxygen, and 5% CO2 levels.  HPAEC were 

cultured under normoxic or hypoxic conditions for 24-, 48-, or 72 hours.  In studies 

assessing the role of ROS levels in hypoxia-induced HPAEC proliferation and ALOX5 

expression, PEG-Catalase was administered during the final 24 hours of the 72 hours of 

hypoxia exposure.  To determine the role of 5-Lipoxygenase in HPAEC proliferation, 

Zileuton (10-50μM) was administered either throughout the entire exposure period or 

during the final 24 hours of the 72 hour exposure.   
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Animals.    Male Fischer 344 wild-type and HIV-1 Transgenic (Tg) rats were obtained 

from Harlan (Indianapolis, Indiana) and bred in the animal facility at the Atlanta VA 

under a 12:12 light-dark cycle. All studies were completed in compliance with protocols 

approved by the Atlanta VA Animal Care and Use Committee.  The HIV-1 Tg rats for this 

study were generated from established lines of an HIV provirus.  This HIV-1 Tg rat model 

was developed at UMD using the NL4-3 gag/pol HIV-1 transgene (Reid et al., 2001). The 

HIV Tg rat line has proviral DNA with deleted gag and pol but intact env and tat, nef, rev, vif, 

vpr, and vpu accessory genes (Dickie et al., 1991; Kopp et al., 1992).  HIV-1 transgenic rats 

have dense cataracts at birth but otherwise appear healthy and develop normally.  

However, by 6 months of age, they begin to display evidence of systemic disease 

including poor weight gain and muscle atrophy that progresses over time (Reid et al., 

2001).  HIV-1 transgene expression has been detected in the intestines, and at low levels 

in kidney, lymph nodes, lung and spleen (Bruggeman et al., 1994; Reid et al., 2001).  

Hemizygous rats, ages 7-9 months, were used for this study.   

 

Isolated Perfused lung:  Rats were anesthetized with isoflourane and mechanically 

ventilated after tracheal cannulation at a rate of ~60 strokes per minute with a tidal 

volume of 2.5 mL/breath.  The heart and lungs were exposed by thoracotomy and heparin 

was administered. The pulmonary artery was cannulated with a 14G cannula connected 

to a pressure transducer (ADInstruments, Colorado Springs, CO). The pulmonary artery 

was then perfused with 37oC Hanks’ Balanced Salt Solution (Sigma Chemical, St Louis, 

MO) at a rate of 7ml/min for 5 min while the right atrium was incised to allow removal of 

the perfusate.  Pressure/volume relationships were generated using a calibrated 
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peristaltic pump at flow rates of 7, 16, 26 and 35 mls/min.  Data were collected using the 

PowerLab digital acquisition and analyzed using Chart software (ADInstruments, 

Colorado Springs, CO).   

 

In Vivo Chronic Hypoxia Model.   A chronic hypoxia model previously used by our lab 

to induce experimental PH, RVH, and pulmonary vascular remodeling was employed in 

the current study (Nisbet et al., 2010).  Rats were housed in normoxic (21% O2) or 

hypoxic (10% O2) conditions.  Hypoxic conditions were created by infusing nitrogen gas 

into an enclosed chamber until the desired oxygen tension was reached.  Rats placed in 

the hypoxia chamber remained there for four weeks to induce experimental pulmonary 

hypertension.  Food and water were provided ad libitum.  

 

Enzyme-linked Immunoassays:  Leukotriene-specific ELISA kits (Cayman Chemical) 

were employed to measure HPAEC leukotriene levels and leukotriene levels in animal 

bronchoalveolar lavage fluid (BALF).  Endothelin-1 (ET-1) ELISA kits (R&D Systems) 

were used to assess ET-1 levels in serum samples.  Serum and BALF levels of 

transforming growth factor-beta (TGF-β) were determined using the Promega TGF-β1 

Emax ImmunoAssay System (Madison, WI) ELISA kit.  HIV-1 p24 ELISA (Advanced 

BioScience Laboratories, Inc, Kensington, MD) were used to measure p24 levels in media 

from HIV-infected monocyte derived macrophages (MDM).  HIV-MDM samples were 

diluted 1:10,000 to ensure accurate concentration extrapolation.  All ELISAs were 

performed according to manufacturer’s instruction. 
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Real-time PCR Analysis:  Real-time PCR was used to measure gene expression 

alterations in rat lung homogenates and HPAEC lysates.  Total RNA was isolated from 

HPAEC and rat lungs using RNA-Bee (Tel-Test Inc., Friendswood, TX) followed by 

purification with serial chloroform, isopropanol and ethanol extractions.  The mRNA 

was reverse transcribed (Invitrogen, Carlsbad, CA) to cDNA using random nanomer 

primers and quantification of the genes of interest was accomplished using a Roche 

Lightcycler Real-Time PCR detection system.  All transcripts were detected using SYBR 

Green I (Molecular Probes, Inc, Carlsbad, CA). The genes of interest were normalized to 

the housekeeping gene β-globin to determine a gene of interest to β-globin ratio. Relative 

expression was calculated using the Delta-Delta CT method. 

 

Western Blotting:  HPAEC lysates and rat lung homogenates were homogenized and re-

suspended in ice cold cell lysis buffer. Protein concentrations were determined by the 

BioRad method, comparing samples versus a BSA standard.  30 micrograms of protein 

were loaded per lane and subjected to SDS-PAGE.  Protein samples were then 

transferred to nitrocellulose membranes using the Fast Semi-Dry Blotter according to 

manufacturer’s instruction (Thermo Scientific).  After blocking in 5% non-fat dried milk 

(NFDM), membranes were placed in antibody solutions against HIF-1alpha (Santa 

Cruz) or PCNA (Abcam).   Membranes were incubated overnight at 4°C, washed with 

TBST and placed in solutions containing fluorescent anti-goat or anti-rabbit secondary 

antibodies for 1 hour.  Immunoreactive bands were detected using the Licor system and 
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the proteins of interest were quantified by densitometry and normalized to beta-actin 

levels within the same sample.   

 

Right Ventricular Systolic Pressure:  Right ventricular systolic pressures (RVSP) were 

assessed using a 0.8 F micro-tip pressure transducer. Rats were anesthetizied with 

isoflurane.  A 0.8 F microtip pressure transducer (Millar Instruments) was inserted into 

the right jugular vein and advanced to the right ventricle. Right ventricular pressure was 

continuously monitored for a period of 10 minutes.  Data was analyzed using a Powerlab 

system (ADInstruments, Denver, CO).  

 

Right Ventricular Hypertrophy Measurements:  Right ventricular hypertrophy was 

assessed by right ventricle/left ventricle + septum gross weight ratios. Rat hearts were 

removed following sacrifice. The right ventricle was dissected from the left ventricle and 

septum, the weights for the right ventricle and left ventricle + septum were determined, 

and the ratio of these values was calculated. 

 

Histology:  The pulmonary circulation was perfused with PSS to remove red blood cells 

and followed by perfusion with calcium-free PSS. Lungs were simultaneously inflated 

with 4% paraformaldehyde via the trachea.  The perfused lung was immersed in 4% 

paraformaldehyde, embedded in paraffin and sectioned for analysis. Medial thickness of 

pulmonary arteries was quantified by measuring wall thickness, as delineated by the 

internal and external elastic lamina, and expressing it as a percentage of the vessel 
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diameter.  In addition, the percentage of smooth muscle within the media was also 

determined by staining with antibodies to smooth muscle α-actin (Sigma, St Louis, 

MO). Immunohistochemistry samples were quantitated using Scion software (Scion 

Corporation, Frederick, MD).  Photomicrographs were obtained using a Leica DM4000B 

microscope. 

 

Cell Proliferation Assays.  Human pulmonary arterial endothelial cell (HPAEC) 

proliferation was assessed using MTT Cell Proliferation Assay (ATCC).  Briefly, 

proliferating cells reduce the tetrazolium MTT (3-(4,5-dimethylthiazolyl-2)-2,5-

diphenyltetrazolium bromide) resulting in intracellular formazan.  Detergent reagent 

was added to cell to solubilize formazan.  Supernatants were then collected and 

quantified using a spectrophotometer at 562nm.  HPAEC were seeded at 10,000 

cells/well in 24-well plates.  Selected cells were cultured in an incubator under normoxic 

conditions (21% O2, 5% CO2), and others were exposed to hypoxic conditions (1% O2, 

5% CO2) in a hypoxia chamber for 72 hours.  Following exposure to normoxic or 

hypoxic conditions, cells were subjected to MTT assay according to the manufacturer’s 

protocol.  MTT results were also confirmed by Trypan Blue Dye Exclusion and Cell 

Counting.   

 

Exosome Isolation.  Exosomes were isolated from HIV-MDM medium using the ultra-

centrifugation method as previously described (Théry et al., 2001).  Briefly, medium was 

subjected to repeated centrifugations to remove dead cells and debris at 200- and 

3000rpm at 4°C, respectively.  Medium was then spun down at 100,000 rpm for 70 

minutes at 10°C using a Beckman XL-90 ultracentrifuge and Type 50.4 TI rotor.  



60 
 

Supernatants and exosome-containing preparations were carefully collected and stored 

at 4°C. 

 

Hydrogen Peroxide (H2O2) Analysis.  Hydrogen Peroxide (H2O2) release was 

quantified using the Amplex Red Assay.  Cells were incubated in a solution containing 

the Amplex Red reagent (Molecular Probes), horseradish peroxidase and a buffer 

solution for 30 minutes at 37°C.  Supernatants were then collected and fluorescence 

measured at 560nm.  H2O2 concentrations were determined through standard curve 

extrapolation.   

 

DCF Staining.  Overall reactive oxygen species (ROS) and reactive nitrogen species 

were detected using the ROS-sensitive fluorescent probe 2’, 7’-

dihydrodichlorofluorescein diacetate (DCF-DA; Invitrogen, Carlsbad, 

CA).  Confluent HAEC monolayers were loaded with 25 μg/mL DCF-DA for 1 hour 

at 37˚C in Krebs–Ringer Phosphate Buffer (KRPG; 145 mM NaCl, 5.7 mM KH2PO4, 

4.86 mM KCl, 0.54 mM CaCl2, 1.22 mM MgSO4, and 5.5 mM glucose, pH 7.35).  A laser-

scanning confocal microscope (Olympus, Center Valley, PA) and fluorimeter were used 

to detect DCF fluorescence at excitation and emission wavelengths of 488 nm and 520 

nm, respectively. For quantification, DCF fluorescence intensity was measured on a 

Victor plate reader (PerkinElmer, Waltham, MA). 
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Statistical Analysis. A student’s t-test analysis was used for comparison of two groups.  

One-way ANOVA with Tukey’s posttest was used for the comparison of multiple 

groups.  All experiments using cell cultures were repeated at least twice, and samples 

were run in duplicate or triplicate.  Statistical significance was defined as P< 0.05, and all 

graphs are expressed as mean ± SEM.  
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CHAPTER 3 

 

HIV-1 Transgene Expression Exacerbates Hypoxia-induced  

Pulmonary Hypertension Development  
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Introduction 

An estimated 1.2 million United States residents are infected with human 

immunodeficiency virus-1 (HIV-1) and nearly 600,000 people with acquired immune 

deficiency syndrome (AIDS) have died since the epidemic began (Source: CDC, 2011).  

The advent of highly active antiretroviral therapy (HAART) has greatly reduced the 

incidence of infectious pulmonary complications such as bacterial pneumonia and 

tuberculosis and improved survival.  However, noninfectious complications of HIV-1, 

such as pulmonary hypertension (PH) are now being recognized with increasing 

frequency.     

Pulmonary arterial hypertension is defined as a sustained elevation of pulmonary 

arterial pressure greater than 25 mm Hg and a pulmonary capillary wedge pressure or left 

ventricular end diastolic pressure less than 15 mmHg (McGoon et al., 2004).  Pathogenic 

vascular alterations in PH are characterized by abnormal muscularization of small 

pulmonary arteries and progressive intimal hyperplasia.  Patients with severe PAH may 

develop obstructive plexiform lesions in the distal pulmonary circulation (Rabinovitch, 

2008).  These occlusive lesions are associated with decreased lumen cross-sectional area 

and progressive increases in pulmonary vascular resistance, which leads to the 

development of right ventricular hypertrophy (RVH) and PAH.  Although the underlying 

cause of PH remains unknown, endothelial dysfunction and proliferation are implicated 

as major contributors to PAH pathogenesis and progression (Huang et al., 2010; Sakao et 

al., 2009; Tuder et al., 2001).  Significant endothelial alterations have been identified in 

the pulmonary arteries of PH patients (Rabinovitch et al., 1986).  Abnormal endothelial 

cell growth patterns have also been documented in the vascular wall and in cultured 
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pulmonary artery endothelial cells isolated from patients with idiopathic pulmonary 

arterial hypertension (IPAH) (Masri FA, 2007).   

PAH is associated with HIV-1 infection (Lederman MM, 2008).   HIV-associated 

pulmonary arterial hypertension (HIV-PAH) was first identified in 1987 (Kim KK, 1987) 

and has been increasingly diagnosed thereafter (Nunes et al., 2003; Petrosillo et al., 

2006).  According to the most updated clinical classification of PAH, HIV-PAH is 

designated as a Group I form of pulmonary arterial hypertension (PAH) (Simonneau et 

al., 2009).  The Group I classification of PAH refers to a chronic disease caused by 

increased vascular obstruction and resistance of the small pulmonary arteries as opposed 

to a general elevation of pulmonary pressures, or PH.  In 2001, the incidence of PH in 

HIV-1 patients was estimated to be 1:200, whereas PH in the general population occurred 

in approximately 1-2 patients per every million (Speich et al., 1991).  More recent studies, 

estimate that up to 1.0% of HIV-1 patients will develop PH (Nunes et al., 2003).  This 

increase is still likely to underestimate the true incidence of HIV-PAH because the 

complication is not routinely evaluated in patients and is often misdiagnosed (Petrosillo 

et al., 2006).  HIV-PAH also progresses more rapidly (Seoane et al., 2001) and is 

associated with a poorer prognosis than PH in the general population (Opravil et al., 

1997).  Furthermore, epidemiological studies demonstrate that the survival of patients 

with HIV-PAH is significantly less than other patients classified with Group I PAH, 

including IPAH-, collagen vascular disease- and congenital heart disease-associated PAH 

(McLaughlin et al., 2004).   

The pathogenic mechanisms that predispose HIV patients to develop PAH are 

unclear.  However, studies show that HIV-PAH occurs in the absence of any apparent 

lung disease and that there is no correlation between PAH disease severity and CD4+ 
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lymphocyte count (Seoane et al., 2001; Speich et al., 1991).  In addition, HIV has not been 

found in endothelial cells of patients who develop PAH (Humbert et al., 1998b; Mette SA, 

1992) nor has HIV DNA, RNA, or p24 antigen been detected in the pulmonary vessels of 

HIV-PAH patients (Kanmogne et al., 2001; Klings and Farber, 2003; Pellicelli et al., 

2004).  These data suggest that the pathogenesis of HIV-PAH is unrelated to the direct 

infection of the pulmonary vasculature or to immune dysfunction and may be partially 

attributable to the indirect actions of HIV-1 proteins on the vasculature (Mette SA, 

1992).  The endothelium is continually exposed to actively secreted viral proteins due to 

its position between the blood and the vascular wall (Chang et al., 1997) and the HIV 

proteins Tat, Nef, and gp120 are able to enter the endothelium (Gujuluva C, 2001; Liu et 

al., 2002) and alter cell function, further suggesting that HIV-1 proteins may play a role 

in the development of HIV-PAH development.  Alternatively, HIV-1 proteins may 

“prime” vascular endothelial cells by enhancing their susceptibility to a “second hit” 

necessary for PH development (Almodovar et al., 2011a; Cota-Gomez et al., 2011; Voelkel 

et al., 2008; Zietz et al., 1996)  Altogether, this evidence demonstrates that HIV-1 

infection contributes to pulmonary dysfunction through indirect mechanisms that may 

be related to secreted HIV-1 proteins and their impact on endothelial function.   

Therefore, to determine the role of HIV-1 proteins in the development of HIV-

PAH, we examined the direct effect of HIV-1 proteins on pulmonary vascular function.  

Using an HIV-1 transgenic (Tg) rat model, we show HIV-1 protein expression 

exacerbates the development of hypoxia-induced pulmonary hypertension. 
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RESULTS 

HIV-1 protein expression alters vascular resistance:  HIV-1 proteins are associated 

with significant vascular injury.  To determine whether HIV-1 protein expression affects 

pulmonary vascular reactivity, pressure-flow measurements were obtained to examine 

pulmonary vascular reactivity in wild-type and HIV-1 Tg pulmonary arteries.  In 

response to increases in pulmonary flow, lungs from HIV-1 Tg rats showed significantly 

greater elevations in pressure when compared to wild-type controls (Figure 1).  These 

data indicate that vessels from HIV-1 Tg animals are less able to regulate pressure 

responses due to alterations in blood flow (n = 4-5; p < 0.0001).  Furthermore, this data 

indirectly demonstrates that HIV-1 proteins can affect pulmonary vascular resistance.  

 

FIG 3.1.  Pulmonary arteries from HIV-1 Tg rats (dotted line) show marked elevations in 

pressure in response to increased flow when compared to pulmonary arteries from WT 

rats (solid line).   (n = 4-5).  To assess pressure-volume relationships in wild-type and 

HIV-1 Tg animals, rats were anesthetized with isoflourane and mechanically ventilated 

after tracheal cannulation at a rate of ~60 strokes per minute with a tidal volume of 2.5 

mL/breath.  The pulmonary artery was cannulated with a 14G cannula connected to a 

pressure transducer and pressure/volume relationships were generated using a calibrated 

peristaltic pump at flow rates of 7, 16, 26 and 35 mls/min. * denotes p < 0.0001 when 

compared to pulmonary arteries of wild-type controls.  
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  HIV-1 protein expression exacerbates hypoxia-induced pulmonary hypertension:    

Pulmonary arterial hypertension is defined as a sustained elevation of pulmonary arterial 

pressure (McGoon et al., 2004).  Pathogenic vascular alterations in PH are characterized 

by abnormal muscularization of small pulmonary arteries and progressive intimal 

hyperplasia.  Patients with severe PH may develop obstructive plexiform lesions in the 

distal pulmonary circulation (Rabinovitch, 2008).  These occlusive lesions are associated 

with decreased lumen cross-sectional area and progressive increases in pulmonary 

vascular resistance, which leads to the development of right ventricular hypertrophy 

(RVH).  Therefore, right ventricular systolic pressures (RVSP) and right ventricular 

hypertrophy (RVH) are indices used to confirm the presence of PH.  To determine 

whether HIV-1 protein expression exacerbates hypoxia-induced PH, we assessed RVSP 

and RVH following 4 weeks of hypoxia exposure in wild-type and HIV-1 Tg rats.  HIV-1 

Tg rats (P<0.0001) exhibit greater elevations in RVSP in response to hypoxia when 

compared to hypoxic wild-type and normoxic control rats (Figure 3.2A).  Hypoxic HIV-1 

Tg rats also exhibit marked increases in RVH when compared to hypoxic wild-type and 

normoxic control rats (Figure 3.2B).  Collectively, these results demonstrate that the 

expression of HIV-1 proteins causes exaggerated pulmonary vascular responses to 

hypoxia and structural alterations to the right ventricle.   
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FIG 3.2.   HIV-1 protein expression exacerbates hypoxia-induced right ventricular 

pressures and hypertrophy.  Hypoxic HIV-1 rats have significantly greater RVSP (A, n = 

6-11) and right ventricular hypertrophy (B, n=7-9) than normoxic controls and hypoxic 

wild-types.  Wild-type and HIV-1 Tg rats were housed in either normoxic or hypoxic 

conditions for four weeks.  Rats were then anesthetized with isoflourane then the 

microtip pressure transducer was inserted into the right jugular vein and advanced to 

the right ventricle to monitor right ventricular pressures. There is no significant 

difference between normoxic groups.  * denotes p < 0.0001 when compared to normoxic 

groups.  ** denotes a p < 0.01 when compared to hypoxic wild-types. 
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HIV-1 protein expression exacerbates hypoxia-induced vessel muscularization:  PH 

is also associated with enhanced vascular wall cell proliferation and vascular remodeling.  

These alterations progressively narrow the vascular lumen and increase pulmonary 

vascular resistance.  To determine if HIV-1 protein expression promotes vascular 

remodeling as evidenced by increased vessel wall thickness, the smooth muscle actin-

alpha (α-SMA) content was measured in rat pulmonary arteries by immunostaining.  In 

representative images showing alpha smooth muscle actin (Figure 3.3A), pulmonary 

arteries from hypoxic HIV-1 Tg rats exhibit a greater staining intensity when compared 

to normoxic HIV-1 or WT pulmonary arteries.  Figure 3.3B shows a graphical 

representation of smooth muscle alpha actin staining in pulmonary vessels.  Pulmonary 

arteries from hypoxia-exposed HIV Tg rats demonstrated significant increases in vessel 

thickness when compared to all other groups.  There was no difference in pulmonary 

artery vessel thickness between normoxic wild-type and HIV-1 Tg rats.  
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FIG 3.3.  HIV-1 protein expression exacerbates hypoxia-induced vessel muscularization.   

Hypoxic HIV-1 Tg rats show greater smooth muscle alpha actin staining when compared 

to normoxic controls and hypoxic wild-type (A, n = 3).  Rats were exposed to normoxia 

or hypoxia for 4 weeks.  Rat lungs were isolated, pressure perfused, inflated and 

immersed with 4% paraformaldehyde then embedded in paraffin for sectioning. The 

percentage of smooth muscle within the media was determined by staining with 

antibodies to smooth muscle α-actin (α-SMA).  Scale bar in each image = 50 μm.  

Hypoxia exposure increases HIV-1 Tg rat vessel thickness (B).  There is no significant 

difference between normoxic groups.  ** denotes p < 0.0001 when compared to normoxic 

groups.  * denotes p < 0.01 when compared to hypoxic controls.   
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HIV-1 protein expression does not alter endothelin-1 or TGF-β levels:  Endothelin-1 

(ET-1) and transforming growth factor-beta (TGF-β) are both implicated in pulmonary 

hypertension pathogenesis.  ET-1 is a potent vasoconstrictor involved in the regulation of 

vascular tone and cell proliferation.  TGF-β is a multifunctional cytokine known to 

contribute to the proliferation, migration, and differentiation of smooth muscle cells and 

fibroblasts in the systemic (Khan et al., 2007) and pulmonary arteries (Long et al., 2009).  

To determine whether HIV-1 transgene expression potentiates hypoxia-induced 

pulmonary hypertension by altering ET-1 or TGF-β levels, we assessed ET-1 and TGF-β 

levels in the serum and bronchoalveolar lavage fluid (BALF) of normoxic and hypoxic 

wild-type and HIV-1 transgenic animals.   
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FIG 3.4.  HIV-1 transgene expression does not alter endothelin-1 or TGF-β levels.  

Following hypoxia exposure, wild-type and HIV-1 transgenic rats were sacrificed.  

Serum was collected via cardiac puncture and BALF was obtained via tracheotomy.  ET-1 

and TGF-β ELISAs were used according to manufacturer’s instruction to measure ET-1 

and TGF-β levels, respectively. 
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HIV-1 protein expression increases PCNA expression:  The excessive proliferation of 

pulmonary endothelial and smooth muscle cells is believed to contribute to the abnormal 

vascular phenotype characteristic of PH.  To examine whether HIV-1 proteins exacerbate 

hypoxia-induced cellular proliferation in vivo, the proliferating cell nuclear antigen 

(PCNA) content in lung homogenates from HIV-1 Tg rats was assessed by western blot.  

Representative western blot images show that lungs from hypoxic HIV-1 Tg rats express 

significantly greater PCNA than normoxic WT or HIV-1 Tg animals (Figure 3.5).   

 

FIG 3.5.  HIV-1 protein exposure exacerbates pulmonary cellular proliferation.  Lung 

homogenates from HIV-1 Tg rats express significantly greater PCNA than normoxic WT 

or HIV-1 Tg animals (n = 6).  Following four weeks of normoxic or hypoxic conditions, 

rats were sacrificed and lungs removed for protein expression analysis. Lung 

homogenates (40 μg) were subjected to SDS-PAGE and transferred to nitrocellulose 

membranes.  Blots were then exposed to anti-PCNA antibodies overnight at 4°C, rinsed, 

and incubated in anti-rabbit fluorescent antibody solution.  * denotes p < 0.0001 when 

compared to normoxic controls.  ** denotes p < 0.0001 when compared to hypoxic wild-

types.   
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HIV-1 proteins potentiate hypoxia-induced endothelial proliferation:  The HIV-1 

proteins gp120 (Patke and Shearer, 2000; Singhal et al., 1999), Nef (Husain et al., 2002), 

and Tat (Bergonzini et al., 2004; Bettaccini et al., 2005; Campioni et al., 1995; Seve et al., 

1999) are linked to increased cell proliferation.  To assess whether HIV-1 proteins 

exacerbate hypoxia-induced proliferation in vitro, we exposed HPAEC to hypoxia (1% 

oxygen) for 72 hours in the presence or absence of medium of HIV-infected monocyte 

derived macrophage (HIV-MDM).  Medium was diluted to clinical concentrations of 

p24 levels observed in serum of HIV-infected patients, or 50 pg/mL (Reddy et al., 1988).  

Our data indicate that hypoxia-exposed HPAEC cultured in HIV-MDM medium exhibit 

significant increases in cell proliferation when compared to all other treatment groups 

(Figure 3.6A).   

 

FIG 3.6.  HIV-1 proteins potentiate hypoxia-induced endothelial proliferation.  Medium 

from HIV-infected Monocyte derived Macrophages (HIV-MDM) exacerbates hypoxia-

induced proliferation of human pulmonary artery endothelial cells (HPAEC).  HPAEC 

were exposed to 1% oxygen for 72 hours in the presence or absence of medium of HIV-

infected monocyte derived macrophage (HIV-MDM).  Following exposure to normoxic 

or hypoxic conditions, cells were subjected to MTT assay to assess cell proliferation (n = 

4).  * denotes p < 0.0001 when compared to treated and untreated normoxic groups.  ** 

denotes p < 0.001 when compared to untreated hypoxic groups.  Exosome-containing 

fractions of HIV-MDM (MDM+) potentiate hypoxia-induced HPAEC proliferation 

when compared to HIV-MDM devoid of exosomes (MDM-) (B, n = 4). * p < 0.0001 when 

compared to treated and untreated normoxic groups.  ** p < 0.01 when compared to 

control hypoxic and hypoxic MDM- groups. 
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HIV-1 proteins potentiate hypoxia-induced HIF-1α expression:    HIF-1α is an 

oxygen-sensing molecule (Semenza, 2007) that mediates an adaptive response to low 

oxygen conditions by activating genes associated with energy metabolism, 

erythropoiesis, vasomotor tone, and angiogenesis (Semenza, 2003).  Hypoxia stabilizes 

HIF-1α by inhibiting prolyl hydroxylation and thereby inducing the upregulation of 

genes that promote survival in low oxygen environments.  In fact, recent research 

demonstrates that inhibition of HIF-1α by the cardiac glycoside digoxin attenuates 

hypoxia-induced increases in RV pressures, RV hypertrophy, and vascular remodeling 

(Abud et al., 2012).   Due to these effects, HIF is implicated in PAH pathogenesis.  To 

determine whether HIV-1 protein expression modulates hypoxia-induced HIF-1α, HIF-

1α  expression was assessed in lung homogenates from wild-type and HIV-1 Tg rats 

following normoxic and hypoxic conditions.  Results demonstrate that hypoxia 

exposure stimulates a significant increase in lung HIF-1alpha expression in HIV-1 Tg rats 

when compared to normoxic animals and hypoxic wild-type controls (Figure 3.7).  No 

differences in lung HIF-1alpha expression were found between WT or HIV-1 Tg animals 

exposed to normoxic conditions. 
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FIG 3.7.  Hypoxia exposure increases HIF-1alpha expression.  Rat Lung homogenates 

from hypoxic HIV-1 Tg animals exhibit greater HIF-1alpha expression than all other 

groups (n = 3).  Wild-type and HIV-1 Tg rats were housed in either normoxic or hypoxic 

conditions for four weeks.  Lung homogenates were subjected to SDS-PAGE, transferred 

to nitrocellulose membranes, and exposed to anti-HIF-1alpha antibodies overnight at 

4°C, rinsed, and incubated in anti-rabbit fluorescent antibody solution.  * denotes p < 0.01 

when compared to normoxic groups.  ** denotes p < 0.05 when compared to hypoxic 

wild-types.   
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DISCUSSION 

In this study, we demonstrate that HIV-1 protein expression promotes PH 

development following prolonged hypoxia exposure.  Using an HIV-1 transgenic rat model, 

we show that HIV-1 protein expression alters pulmonary vascular resistance and exacerbates 

hypoxia-induced increases in right ventricular systolic pressures, right ventricular 

hypertrophy, and vessel muscularization.  In addition, in vivo and in vitro studies demonstrate 

that HIV-1 protein exposure exacerbates pulmonary cell proliferation following prolonged 

hypoxia exposure.   

Our experimental design employs the NL4-3∆ gag/pol HIV-1 transgenic (Tg) rat 

model. The HIV-1 transgenic model allows the study of the physiological effects of HIV-1 

proteins in vivo in a noninfectious and relevant manner.  Due to the deletion of gag and pol 

regions of the viral genome, this animal model expresses a nonreplicative HIV-1 provirus 

under the viral promoter.  The transgene encodes for the viral genes env, tat, nef, rev, vif, vpr, 

and vpu (Reid et al., 2001).  These levels of viral gene products are consistent with those 

observed in the blood and lymphoid tissue of HIV-1 patients.  Moreover, HIV-1 gp120 has 

been detected in bronchoalveolar lavage fluid (BALF) and serum of HIV-1 Tg rats at 

approximate levels of 10 ng/ml and 28 ng/ml, respectively (Joshi et al., 2008).   The transgenic 

rat is also a useful model for studying HIV-1-associated neurological and cardiac pathologies 

because it displays clinical manifestations that resemble those seen in HIV-1 patients (Reid 

et al., 2001).  Thus, the transgenic HIV-1 model is a useful and appropriate tool for examining 

the physiological consequences of HIV-1 proteins on cells of the vasculature. 

In these studies, HIV-1 Tg rats were exposed to normobaric hypoxia to examine the 

contribution of HIV-1 proteins to PH development.  These studies are clinically relevant as 

chronic hypoxia occurs as a result of pulmonary parenchymal disease, sleep disordered 



82 
 

breathing, and severe chronic obstructive pulmonary disease (COPD) (Stenmark et al., 

2009).  Additionally, pulmonary hypertension is usually of mild to moderate severity in 

COPD patients but is nonetheless associated with increased risk of exacerbations and 

decreased survival (Chaouat et al., 2008).  Consistent with clinical studies and statistics, our 

results show that the presence of HIV-1 exacerbates PH development following hypoxia 

exposure.  HIV-1 Tg rats demonstrate increased systolic pressures and right heart 

hypertrophy when compared to wild-type controls.  In addition, pulmonary arteries of 

hypoxic HIV-1 Tg rats exhibited a 65% increase in vessel muscularization and cellular 

proliferation when compared to normoxic controls.  

Interestingly, in our model, the expression of HIV-1 proteins failed to induce PH 

under normoxic conditions.  Yet, hypoxia exposure markedly exacerbates PH development 

in wild-type and HIV-1 Tg animals.  These results conflict with data recently published 

demonstrating that HIV-1 Tg animals spontaneously exhibit PH (Lund et al., 2011; Mermis et 

al., 2011).  Several potential factors may provide an explanation for these conflicting results.  

Studies published by Lund et al were performed in Albuquerque, NM, which is located at an 

elevation of 5312 feet above sea level.   This altitude could result in hypoxic challenge and is 

an altitude associated with altitude-related lung diseases such as chronic obstructive 

pulmonary disease (COPD).  Additionally, other research indicates that HIV-1 Tg animals 

display increases in pulmonary vessel wall thickness and HIF-1α expression independent of 

hypoxia exposure (Mermis et al., 2011).  However, strain differences may account for the 

varied results (Aguirre et al., 2000; Bonnet et al., 2006; Pan et al., 1993; Sato et al., 1992).  The 

animals used in the Mermis et al studies were completed in HIV Tg rats in the Sprague 

Dawley strain, whereas our studies were completed in rats on the Fischer 344 background.  

Research demonstrates that this strain is more resistant to hypoxia-induced PH.  For 

example, rats on the Wistar-Kyoto background exhibit an exacerbated PH following 
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prolonged hypoxia exposure compared to those on the Fischer 344 background (Aguirre et 

al., 2000).  Moreover, isolated perfused lung preparations from Fischer 344 rats demonstrate 

a reduced pulmonary vascular response to alveolar hypoxia when compared to lungs from 

Sprague Dawley rats (He et al., 1991).  These studies suggest that Fischer 344 rats may be 

more resistant to vascular injury and likely explain the differences in outcome. 

The underlying mechanism of HIV-related PH is unknown. However, research 

suggests that endothelial cell dysfunction and excessive proliferation may contribute to 

HIV-PH pathogenesis.  Studies show that the endothelium is continually exposed to actively 

secreted viral proteins due to its position between the blood and the vascular wall (Chang et 

al., 1997).  Clinical studies reveal that antiretroviral-naïve HIV-1 patients display markers of 

endothelial activation.  Plasma levels of von Willebrand factor, plasminogen activator 

inhibitor-1 antigen, and tissue-type plasminogen activator are significantly elevated in HIV-1 

positive patients (Lafeuillade A, 1992; Schved JF, 1992).  In addition, comparison of flow-

mediated dilation (FMD) of the brachial artery in 75 HIV-1 positive and 223 control subjects 

revealed significantly impaired endothelial function in the HIV-1-infected population 

(Solages et al., 2006a).  A smaller study also showed that both treated and HAART-naïve 

HIV-1 infected children between 3.5 to 19.5 years old have significantly reduced FMD 

compared to non-infected age- and sex- matched controls (Bonnet et al., 2004b).  These 

studies suggest that HIV-1 significantly affects endothelial cell function in the absence of 

cardiovascular risk factors and irrespective of age or duration of infection.   

In addition to the cardiovascular effects, HIV-1 also significantly impairs lung 

function (Morris et al., 2012).  Despite the availability of combination antiretroviral 

therapies, respiratory complications and chronic lung disease remain common among HIV-

infected individuals (Diaz et al., 2003; George et al., 2009; Gingo et al., 2010) and rates of 

hospitalization and deaths from pulmonary obstructive diseases are growing (Grubb et al., 
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2006; Louie et al., 2002).  Lung cancer (Sigel et al., 2012) and COPD (Crothers et al., 2006; 

Magalhaes et al., 2007) diagnoses are significantly higher in the HIV-1 population.  Recent 

studies also report that HIV-1 patients are almost three times more likely to develop asthma 

than the general population, with no correlation between the risk of asthma and viral load or 

CD4 lymphocyte count (Gingo et al., 2012).   These studies highlight the targeted effects of 

HIV-1 on the lung and the contribution of HIV-1 to pulmonary disease. 

Although we utilize a noninfectious, replication-incompetent animal model, we 

report that HIV-1, particularly HIV-1 proteins, contributes to PH pathogenesis.  These data 

also indicate that HIV-1 protein exposure potentiates hypoxia-induced endothelial 

proliferation.  Although previous studies report that hypoxia exposure fails to promote 

endothelial cell proliferation (Yu and Hales, 2011), our findings demonstrating that 72 hours 

of hypoxia promotes endothelial cell proliferation and are consistent with published data 

(Kang et al., 2011; Schaefer et al., 2006).   Furthermore, our studies suggest that exosomes 

contribute to the HIV-MDM-induced potentiation of pulmonary artery endothelial 

proliferation following hypoxia exposure.  We postulate that the increase in cellular 

proliferation is linked to the dysregulation of HIF-1α, as hypoxia significantly increases HIF-

1alpha expression in HIV-1 Tg animals.  This finding is interesting as HIF-1alpha is suggested 

to regulate the metabolic shift to glycolysis in pulmonary hypertensive endothelial cells 

associated with abnormal proliferation and apoptosis-resistance (Fijalkowska et al., 2010).    

At this time, it is unclear how HIV-1 proteins mediate the effects seen in this study.  

However, the HIV-1 proteins, tat, gp120 and/or Nef have been shown to affect endothelial 

cell function and are suggested to mediate PH pathogenesis and progression in HIV-1 

patients.  The HIV-1 protein, Tat is a transcriptional transactivator with the ability to 

upregulate viral gene expression by increasing the rates of transcription initiation and 

elongation (Rice and Mathews, 1988).  As a secreted protein from HIV-1 infected cells, Tat 
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has been shown to enter non-infected cells from the circulation and alter normal cellular 

function (Chang et al., 1997).  With this capacity, Tat is known to induce endothelial 

activation (Urbinati et al., 2005a; Urbinati C, 2005), inflammation (Toborek et al., 2003), cell 

growth (Barillari et al., 1999) and injury.  Porcine coronary arteries exhibit significant 

decreases in eNOS expression and alterations in endothelium-dependent relaxation when 

incubated in HIV-1 Tat (Paladugu et al., 2003).   Tat transgenic mice also exhibit marked 

increases oxidant levels and oxidative stress genes when compared to wild-type mice (Cota-

Gomez et al., 2011).  Additionally, HIV-1 Tat stimulate the production of proinflammatory 

cytokines, such as IL-6, which has been found in the lungs of patients with severe PAH 

(Humbert M, 1995).  

 Another potential mediator is the HIV-1 accessory protein, Nef.  Nef is found in 

HIV-infected patients at a level of 10ng/mL (Fujii et al., 1996) and may mediate PH 

development by altering pulmonary morphology.  For example, Marecki reports that simian 

HIV carrying a functional Nef protein promotes vascular remodeling (Marecki et al., 2005; 

Marecki et al., 2006) and induces PAH in macaques.  The same study also showed an 

enhanced accumulation of Nef in endothelial cells in plexiform lesions in lungs of patients 

with HIV-PAH.  In addition, Nef administration is shown to alter endothelium-dependent 

relaxation, decrease HPAEC eNOS mRNA levels and increase superoxide production in 

porcine pulmonary arteries (Duffy et al., 2009). 

The HIV-1 surface protein gp120 is also implicated in the development of pulmonary 

vascular disorders.  gp120 is actively secreted into the bloodstream and is readily detectable 

in sera of HIV-1 infected patients at concentrations ranging from 0.24 ng/mL to 92 ng/mL 

(Oh SK, 1992). In 2005, Kanmogne showed that gp120 significantly increases the secretion of 

endothelin-1 by human lung endothelial cells (Kanmogne et al., 2005b).  Similarly to Tat, 

gp120 induces monocyte adhesion and increased ICAM-1 gene expression, but not VCAM-1 
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or E-selectin in human endothelial cells (Ren Z, 2002). Furthermore, gp120-induced 

generation of reactive oxygen species (ROS) has been implicated in endothelial cell toxicity 

(Price TO, 2005). 

Exosomes released by HIV-infected cells may also contribute to vascular injury as 

evidenced by the HIV-MDM-induced potentiation of hypoxia-induced proliferation. 

Exosomes are released by most cell types and act as intercellular signaling molecules 

influencing the physiology of neighboring cells (Ludwig and Giebel, 2012).  Although the 

mechanism of action remains unclear, exosomes are thought to alter cellular function by 

binding to cell-surface receptors of nearby cells or by transferring both mRNA and 

microRNAs to recipient cells (Mathivanan et al., 2010).  Further studies are needed to 

determine the role of exosomes in HIV-associated pathologies. 

Oxidative stress may also mediate the development of pulmonary hypertension in 

our HIV-1 model.  Our group has previously shown that aortas from HIV-1 Tg demonstrate 

increases in superoxide and 3-nitrotyrosine due to a diminished antioxidant capacity 

particularly GSH and Cu/Zn superoxide dismutase activity (Kline et al., 2008).   Similarly, 

lung lavage fluid from HIV-1 Tg rats shows decreases in GSH and increased ratios of 

glutathione disulfide (GSSG) to GSH (Lassiter et al., 2009). In addition, hydrogen peroxide 

(H2O2) was increased in lung tissue from HIV-1 Tg rats (Lassiter et al., 2009).  These results 

are consistent with clinical data showing lung homogenates from severe PH patients 

demonstrate decreased total SOD activity, reduced MnSOD protein levels and increased 

nitrotyrosine expression (Bowers R, 2004). 

 Although HIV-1 transgene expression induces significant oxidative stress, HIV-1 Tg 

animals do not show signs of chronic inflammation.  Previous studies have shown no 

differences in HIV-1 Tg cytokine levels when compared to wild-type controls.  Lassiter el al 

(Lassiter et al., 2009) showed similar concentrations of interleukin-2, TNF-α, and 
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interleukin-4 in lung lavage fluids of HIV-1 Tg rats and wild-type controls.  These results are 

consistent with previous studies performed by our group showing no differences in GM-

CSF, IL-12, IL-6, IL-10, IL-4, IL-2, IL-1β or TNF-α in HIV-1 Tg mouse serum when compared 

to wild-type controls (Jacob et al., 2006). 

In summary, our results establish that expression of HIV-1 proteins impairs 

pulmonary vascular function and exacerbates hypoxia-induced PH development.  

Ultimately, these studies underscore the potential contribution of HIV-1 proteins to HIV-

PAH. 
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HIV-1 Increases Arachidonate 5-Lipoxygenase Expression and 

Activity 
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INTRODUCTION 

 Arachidonate 5-Lipoxygenase (ALOX5) catalyzes the production of leukotrienes 

(LT) from arachidonic acid (Peters-Golden, 2000). These leukotrienes include LTB4 and 

the cysteinyl leukotrienes (CysLT) LTC4, LTD4 and LTE4.  ALOX5 expression and 

activity is linked to pulmonary artery endothelial cell proliferation (Walker et al., 2002).   

CysLT also induce constriction of the pulmonary arteries.  Furthermore, overexpression 

of ALOX5 both exacerbates and accelerates the development and progression of 

pulmonary hypertension in monocrotaline (MCT)-treated rats (Jones, 2004).  These 

studies suggest that increases in ALOX5 may contribute to PH pathogenesis.  However, 

the role of ALOX5 in HIV-PAH is unknown.   

Previous research suggests that HIV-1 stimulates the 5-lipoxygenase pathway.  In 

vitro studies demonstrate that monocytes infected with HIV-1 exhibit significant 

elevations in leukotriene release.  The administration of the HIV inhibitor, Avarol 

induces a 50% reduction in virus release and leukotriene production (Schroder et al., 

1991).   Similarly, in vivo studies demonstrate that HIV-1 transgene expression augments 

ALOX5 expression and activity.  Brains from HIV-1 Tg rats exhibit significant increases 

in ALOX5 mRNA and protein expression when compared wild-type controls (Rao et al., 

2011), and HIV-1 stimulates leukotriene release in the brain of HIV-1 Tg animals (Basselin 

et al., 2011).  These data highlight a potential role for HIV-1 proteins in HIV-induced 

ALOX5 expression and activity.   Studies performed in human neuroblastoma cells 

corroborate this hypothesis as exogenous gp120 administration increases intracellular 

leukotriene concentration by stimulating ALOX5 activity and expression (Maccarrone et 

al., 1998). Altogether, these studies suggest that HIV-1 proteins alter ALOX5 expression 

and activity.  However, the effect of HIV-1 proteins on pulmonary endothelial ALOX5 
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expression and activity has not been defined.  We hypothesize that HIV-1 proteins 

stimulate pulmonary endothelial ALOX5 and leukotriene production.  In our study, we 

employ both in vitro and in vivo models to assess the effect of HIV-1 and HIV-1 proteins on 

pulmonary endothelial ALOX5.  These studies underscore the potential role of HIV-1 

protein-induced ALOX5 in pulmonary disorders such as HIV-associated pulmonary 

hypertension. 
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RESULTS 

HIV-1 alters endothelial expression of vasoactive mediators:  Although HIV-1 is 

largely believed to be incapable of infecting endothelial cells in vivo, multiple studies 

demonstrate that HIV-1 significantly impairs endothelial cell function (Price TO, 2005; 

Toborek M, 2003).  To determine whether HIV-1 induces these effects by altering 

endothelial gene expression, human pulmonary artery endothelial cells (HPAEC) 

cultured alone or in the presence of peripheral blood mononuclear cells (PBMCs) were 

inoculated with HIV-1 for 1 hour.   Following exposure, the HIV-1 inoculum was removed 

and the cells were allowed to grow for 24 hours.  To assess the effect of HIV-1 on HPAEC 

expression, we performed a gene array to assess over 90 genes associated with vascular 

biology signaling pathways such as angiogenesis, proliferation, remodeling, and vessel 

tone.   The results reveal that HIV-1 exposure increases the expression of endothelial 

matrix metalloproteinase (MMP)-2 (Figure 4.1A).   Gene array results also reveal that co-

culture groups containing HPAEC, PBMC and HIV-1 demonstrate a 5-fold increase in 

ALOX5 when compared to all other groups (Figure 4.1B).  Quantitative real time PCR 

analysis confirms that ALOX5 is increased (Figure 4.1).  These data demonstrate that 

HIV-1 increases endothelial ALOX5 expression.  These results also suggest that the 

combination of HPAEC, PBMCs and HIV is required for HIV-induced endothelial 

alterations.    
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FIG 4.1.  HIV-1 exposure increases endothelial matrix metalloproteinase (MMP)-2 and 5-

lipoxygenase (ALOX5).  HPAEC and/or peripheral blood mononuclear cells (PBMC) 

were cultured in the presence or absence of HIV-1 for one hour.  Following exposure, the 

inoculum was removed by centrifugation and cells were cultured for 24 hours (n = 2-4). 

Total RNA was isolated for gene expression analysis.  96 Human endothelial cell biology 

genes were examined using a GEArray Q Series gene array blots from SuperArray, Inc.  

Quantitative real time PCR was used to confirm the gene array results (n = 4). * p < 0.05 

when compared to all other groups. 
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Secreted mediators from HIV-infected monocyte-derived macrophages (HIV-

MDM) stimulate ALOX5 expression and activity:  Co-culture studies implicate a 

potential contribution of secreted mediators from HIV-infected PBMCs in HIV-induced 

endothelial ALOX5.  To investigate the role of secreted mediators in HIV-induced 

ALOX5, HPAEC were exposed to medium from HIV-infected monocyte derived 

macrophages (HIV-MDM) for 24 hours.  HIV-MDM medium was diluted to clinically-

relevant levels of p24 or 50 pg/ml (Reddy et al., 1988).  HPAEC exposed to medium from 

HIV-1 infected monocyte-derived macrophages (HIV-MDM) for 24 hours display 

significant increases in ALOX5 expression when compared to HPAEC controls (Figure 

4.2B).  Medium from HIV-MDM also stimulates an almost 4-fold increase in HPAEC 

CysLT release measured by ELISA (Figure 4.2C).  These data suggest that secreted 

mediators from HIV-infected monocytes/macrophages alter ALOX5 expression. 

 

 

FIG 4.2.  Exposure to HIV-MDM medium augments HPAEC ALOX5 expression and 

CysLT release.  HIV-1 p24 levels in HIV-MDM medium were measured over time using 

ELISA (Figure 4.2A).  HPAEC were exposed to medium from uninfected or HIV-infected 

monocyte derived macrophage (HIV-MDM) for 24 hours.  Following exposure, medium 

was collected and cells were harvested for gene expression analysis via quantitative real 

time PCR.  Results demonstrate that exposure to medium from HIV-MDM augments 

HPAEC ALOX5 expression (Figure 4.2B; n = 5) and stimulates CysLT release (Figure 

4.2C; n = 5).   * p < 0.05 when compared to control HPAEC groups.  ** p < 0.01 when 

compared to control HPAEC groups.  
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HIV-1 Tat exposure, but not Nef, promotes endothelial ALOX5 expression:  The 

results from our co-culture and HIV-MDM studies indicate that secreted mediators 

increase ALOX5.  We hypothesize that HIV-1 proteins such as Nef and Tat may mediate 

the HIV-induced alterations in ALOX5.  To examine whether HIV-1 proteins alter 

endothelial ALOX5 expression, we exposed HPAEC to the HIV-1 proteins Tat or Nef for 

24 hours.  Following exposure, cells were collected for gene expression analysis by 

quantitative real time PCR, H2O2 generation, and cell proliferation.  Our studies reveal 

that HIV-1 Nef significantly attenuates ALOX5 expression (Figure 4.3A) and has no 

effect on endothelial H2O2 release (Figure 4.3B) following 24 hours of exposure when 

compared to untreated controls.  Conversely, HIV-1 Tat induces a dose-dependent 

increase endothelial ALOX5 expression (Figure 4.3C) and H2O2 release (Figure 4.3D) 

following 24 hours of exposure.  These data demonstrate that HIV-1 proteins contribute 

to HIV-induced alterations in ALOX5 expression and activity.  In addition, our results 

suggest that Tat-induced ALOX5 may mediate the concomitant increases in HPAEC 

proliferation (Figure 4.3E). 
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FIG 4.3.  Exposure to HIV-1 Tat, not Nef, promotes endothelial ALOX5 expression.  

HPAEC were exposed to varying concentrations of recombinant Nef or Tat for 24 hours.  

Following exposure, cells were collected, total RNA was isolated, and mRNA was 

reverse transcribed (Invitrogen, Carlsbad, CA) to cDNA using standard protocols and 

quantification of the genes of interest using a Roche Lightcycler Real-Time PCR 

detection system.  ALOX5 was normalized to the housekeeping gene β-globin. Relative 

expression was calculated using the Delta-Delta CT method and values were expressed 

as percent of control (n = 8) * p < 0.01 when compared to untreated HPAEC. 
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HIV-1 protein expression increases pulmonary ALOX5 expression:  In vitro studies 

demonstrate that monocytes infected with HIV-1 exhibit significant elevations in 

leukotriene release (Schroder et al., 1991).   Recent studies also reveal that rat brains from 

HIV-1 Tg rats exhibit significant increases in ALOX5 mRNA and protein expression 

when compared wild-type controls (Rao et al., 2011).  Our data demonstrate that lung 

homogenates from HIV-1 Tg animals exhibit a 2-fold increase in ALOX5 expression 

when measured using quantitative real-time PCR (Figure 4.4A).    

 

FIG 4.4.  HIV-1 transgene expression increases ALOX5 expression.  Rat lungs were 

collected and total RNA was isolated using RNA-Bee (Tel-Test, Inc) followed by 

purification with serial chloroform, isopropanol and ethanol extractions.  mRNA was 

reverse transcribed (Invitrogen, Carlsbad, CA) to cDNA and the genes of interest were 

quantified using a Roche Lightcycler Real-Time PCR detection system.  ALOX5 was 

normalized to the housekeeping gene β-globin. Relative expression was calculated using 

the Delta-Delta CT method and values were expressed as percent of control.  N = 5-8.  ** 

p < 0.01 when compared to wild-type animals.   
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Hypoxia exposure augments 5-lipoxygenase and FLAP expression in HIV-1 Tg rats:  

Data examining the effect of hypoxia on ALOX5 and FLAP expression are variable and 

highly-dependent on cell type.  However, ALOX5 and FLAP are significantly increased in 

rat pulmonary arteries following 28 days of hypoxia exposure (Burke et al., 2009).  

Similarly, in vitro studies in human pulmonary vascular endothelial cells and transformed 

human brain endothelial cells demonstrate that hypoxia (1% oxygen) enhances FLAP 

mRNA and protein expression (Gonsalves and Kalra, 2010).  To determine whether HIV-

1 transgene expression exacerbates ALOX5 and its required cofactor, FLAP in our 

experimental PH model, ALOX5 and FLAP gene expression levels were measured in 

normoxia- and hypoxia-exposed wild-type and HIV-1 Tg animals.  Our data demonstrate 

that HIV-1 transgene expression significantly augments ALOX5 (Figure 4.5A).  FLAP is 

similarly, although not significantly, increased in response to combined hypoxia 

exposure and HIV-1 transgene expression (Figure 4.5B).   
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FIG 4.5.  HIV-1 transgene expression potentiates hypoxia-induced 5-lipoxygenase 

expression.  Following 4 weeks of hypoxia exposure, rats were sacrificed, lungs were 

collected and total RNA was isolated using RNA-Bee (Tel-Test, Inc) followed by 

purification with serial chloroform, isopropanol and ethanol extractions.  mRNA was 

reverse transcribed (Invitrogen, Carlsbad, CA) to cDNA using standard protocols and 

quantification of the genes of interest using a Roche Lightcycler Real-Time PCR 

detection system.  ALOX5 and FLAP were normalized to the housekeeping gene β-

globin.  Relative expression was calculated using the Delta-Delta CT method and values 

were expressed as percent of control.  N = 5-8.  ** p < 0.01 when compared to wild-type 

animals.  * p < 0.05 when compared to normoxic wild-type animals. 
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Hypoxia induces LTC4 release in HIV-1 Tg mice:  HIV-1 stimulates leukotriene release 

in the brain of HIV-1 Tg animals (Basselin et al., 2011).  However, the effect of hypoxia 

exposure on leukotriene production is controversial.  Early studies indicate that hypoxia 

exposure has no effect on LTB4 and LTC4 production in rat alveolar macrophages 

(Ohwada et al., 1990).  However, other research indicates that LTE4 levels are increased 

in the urine of obstructive sleep apnea patients (Stanke-Labesque et al., 2009).  

Additionally, an in vitro ischemic-like injury following five hours of oxygen-glucose 

deprivation stimulates a 2.5 fold increase in CysLT release from rat pheochromocytoma 

cells (PC12) (Li et al., 2009).  Therefore, to determine whether hypoxia alters leukotriene 

production/release in our HIV-1 Tg model, we measured LTB4 (Figure 4.6A) and LTC4 

(Figure 4.6B) levels in wild-type and HIV-1 Tg mouse bronchoalveolar lavage fluid 

(BALF) following normoxia or hypoxia exposure.   

 

FIG 4.6.  Hypoxia induces bronchoalveolar lavage fluid LTC4 levels in HIV-1 Tg mice.  

Leukotriene ELISAs (Cayman Chemical) were performed to assess leukotriene (LT) B4 

(n = 4) and C4 (n = 3-5) levels in mouse bronchoalveolar lavage fluid (BALF).  To obtain 

BALF, mice were euthanized via CO2 inhalation and subjected to a tracheotomy.  One 

milliliter of cold PBS was slowly released into the trachea and lungs then retrieved.  LTB4 

and LTC4 ELISA were performed according to manufacturer’s instruction.  * p < 0.05 

when compared to normoxic wild-type animals.  # p < 0.05 when compared to normoxic 

HIV-1 Tg animals. 
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Leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-1 patients:    

Our in vitro evidence suggests that HIV-1 proteins increase LT levels (Figure 4.2C).  Yet, 

in vivo studies performed in HIV-1 Tg animals yielded contradictory results.  Moreover, 

studies examining leukotriene levels in HIV-1 patients are limited.  Therefore, to 

determine whether HIV-1 infection alters lung leukotriene levels, we measured LTB4 and 

CysLT in bronchoalveolar lavage fluid from uninfected (Control) subjects, HIV-1 positive 

patients (HIV+), and HIV-1 positive patients on a HAART treatment regime 

(HIV+ART).  

 

FIG 4.7.  HIV-1 infection increases bronchoalveolar lavage fluid (BALF) leukotriene 

levels.  Leukotriene ELISAs (Cayman Chemical) were performed to assess leukotriene 

(LT) B4 (n = 3-4) and CysLT (n = 6-10) levels in bronchoalveolar lavage fluid (BALF) from 

uninfected (Control), HIV-1 positive (HIV+), and HIV-1 positive patients on a HAART 

treatment regime (HIV+ ART).  Results demonstrate that HIV-1 infection increases 

BALF LTB4 levels when compared to BALF from uninfected subjects.  Results also 

indicate that HAART reduce BALF LTB4 levels caused by HIV-1 infection.  HIV-1 

infection produced a slight, yet insignificant change in CysLT levels.   * p < 0.01 when 

compared to BALF from control, uninfected subjects.  ** p < 0.01 when compared to HIV-

1 positive subjects. 
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DISCUSSION 

 Our studies demonstrate that HIV-1 increases pulmonary artery endothelial 

ALOX5 expression and activity.  These data also suggest that HIV-induced elevation in 

ALOX5 expression and LT release may in part be mediated by HIV-1 proteins such as 

Tat.  Overall, our studies implicate a potential contributing role of HIV-induced ALOX5 

in the development and progression of HIV-PH.  

  Results from our co-culture studies reveal that HIV-1 can significantly alter 

endothelial gene expression associated with vascular signaling and reactivity.  These 

data are also consistent with clinical and experimental studies showing that HIV-

secreted mediators have significant effects on endothelial cell biology (de Larranaga et 

al., 2003; Liu et al., 2005a; Louboutin et al., 2010; Zietz et al., 1996) independent of 

cellular infection.  This belief was evident in co-culture results as the group containing 

HPAEC and HIV-1 failed to demonstrate increases in ALOX5, whereas the HPAEC, 

PBMC, and HIV group exhibited marked elevations in ALOX5.  Additionally, a 24 hour 

exposure to medium from HIV-infected monocytes significantly stimulated HPAEC 

ALOX5 expression and CysLT release when compared to cells exposed to medium from 

control, uninfected monocytes.  These data indicate that secreted effectors such as HIV-1 

proteins stimulate ALOX5 expression and activity independent of direct monocyte-

endothelial cell contact.   

Numerous studies implicate HIV-1 proteins as key effectors of and contributors 

to HIV-induced cellular injury and vascular disease development.  To determine whether 

HIV-1 proteins independently alter endothelial ALOX5, HPAEC were exposed to varying 

concentrations of recombinant HIV-1 Nef or Tat for 24 hours.  Full length (86 amino 

acids), HIV-1 Tat (Immuno Diagnostics, Woburn, MA) was administered at nanomolar 
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concentrations and within a range found in serum of HIV-1 patients, or 2-40 ng/mL 

(Westendorp, 1995; Xiao et al., 2000).  Similar to results obtained from the co-culture 

and HIV-MDM medium studies, exogenous administration of HIV-1 Tat dose-

dependently increased endothelial ALOX5 gene expression.  Our data also demonstrate 

that HIV-1 Tat exposure stimulates endothelial ROS release and cell proliferation.  These 

results are consistent with previous studies investigating the effects of Tat exposure on 

vascular endothelial cells (Wu et al., 2010; Wu RF, 2007).  Conversely, exposure to 

recombinant HIV-1 Nef for 24 hours caused a significant and dose-dependent reduction 

in endothelial ALOX5 expression.  Although we can provide no clear reason for this 

effect, we believe that Tat-induced ROS release may mediate ALOX5 expression 

alterations.  If Tat-induced ROS indeed contributes to endothelial ALOX5 expression, 

this provides a potential explanation as to why HIV-1 Nef has opposite effects on ALOX5 

expression than those seen in our co-culture, HIV-MDM medium, and exogenous Tat 

study results.  

We also examined whether HIV-1 transgene expression alters ALOX5 expression 

and activity via the NL4-3∆ gag/pol HIV-1 transgenic rat model.   These animals express a 

nonreplicative HIV-1 provirus due to the deletion of the gag and pol regions of the viral 

genome.  Yet, the transgene encodes for the viral genes env, tat, nef, rev, vif, vpr, and vpu 

(Reid et al., 2001).  Therefore, this animal model allows the study of the physiological 

effects of HIV-1 proteins in vivo in a noninfectious manner.  Interestingly, lung 

homogenates from HIV-1 Tg animals exhibit a 2-fold increase in ALOX5 gene expression 

when compared to wild-type controls.  Although further studies are needed to determine 
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a direct mechanism, our results implicate HIV-1 proteins in HIV-induced elevations of 

pulmonary ALOX5.  

Additionally, in vivo studies indicate that HIV-induced ALOX5 expression and 

LTC4 release is further increased in experimental PH.  Previous studies indicate that 

ALOX5 and the ALOX5 cofactor, FLAP are significantly increased in experimental and 

clinical PAH (Burke et al., 2009; Wright et al., 1998).  In addition, ALOX5 overexpression 

accelerates and exacerbates pulmonary hypertension development in monocrotaline-

treated rats (Jones et al., 2004).  In vivo agents that inhibit ALOX5 activation and 

leukotriene release attenuate disease development and severity (Jones et al., 2004; 

Morganroth et al., 1985; Voelkel et al., 1996).   Furthermore, ALOX5 is shown to mediate 

pulmonary artery endothelial proliferation and pulmonary vasoconstriction via LTC4.  

These data suggest that increases in ALOX5 expression and activity by HIV-1 or HIV-1 

proteins may contribute to the development and/or progression of HIV-PAH.  In 

addition, the combined effect of HIV- and hypoxia-induced elevations in ALOX5 may 

contribute to the increased severity and rapid progression associated with clinical HIV-

PAH. 

HIV-PAH occurs more frequently and progresses more rapidly than PH in the 

general population.  HIV-PAH also occurs in the absence of any apparent lung disease, 

and there is no correlation between PAH disease severity and CD4+ lymphocyte count 

(Seoane et al., 2001; Speich et al., 1991).  In addition, HIV has not been found in 

endothelial cells of patients who develop PAH (Humbert et al., 1998b; Mette SA, 1992) 

nor has HIV DNA, RNA, or p24 antigen been detected in the pulmonary vessels of HIV-

PAH patients (Kanmogne et al., 2001; Klings and Farber, 2003; Klings ES, 2003; Pellicelli 

et al., 2004).  These data suggest the pathogenesis of HIV-PAH is unrelated to direct 
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infection of the pulmonary vasculature or to immune dysfunction and may be partially 

attributable to the indirect actions of HIV-1 proteins on the vasculature (Mette SA, 

1992).  Similar to clinical HIV-PAH, HIV-1 Tg animals develop an exacerbated form of 

PH in response to hypoxia exposure (data previously shown) as evidenced by RV 

systolic pressures, RV hypertrophy, and PA muscularization.  Our data demonstrate the 

HIV-induced ALOX5 may contribute to PH development and progression by promoting 

pulmonary vasoconstriction and vascular remodeling.   

The endothelium is continually exposed to actively secreted viral proteins due to 

its position between the blood and the vascular wall (Chang et al., 1997).  Supporting 

evidence demonstrates that HIV proteins are able to enter the endothelium (Gujuluva C, 

2001; Liu et al., 2002) and alter cell function, further suggesting that HIV-1 proteins may 

play a role in the development of HIV-PAH development.   Additionally, studies 

demonstrate that vascular remodeling is increased in a simian HIV model that expresses 

functional Nef protein (Marecki et al., 2005; Marecki et al., 2006).  The same study also 

showed an enhanced accumulation of Nef in endothelial cells in plexiform lesions in 

lungs of patients with HIV-PAH.  Research also indicates that HIV-1 Tat represses bone 

morphogenic protein receptor-2 (BMPR2) promoter activity by more than 50% and 

induces a 75% reduction in BMPR2 gene expression in U937 monocytic cells (Caldwell 

et al., 2006).  HIV-1 Tat exposure also stimulates platelet-derived growth factor (PDGF) 

mRNA and protein expression in rat and human astrocytes (Bethel-Brown et al., 2011).  

These studies indicate that HIV-1 Tat alters key signaling pathways associated with PH 

pathogenesis (Perros et al., 2008; Schermuly et al., 2005). 

Indeed, HIV-1 causes the release of numerous mediators such as cytokines, 

chemokines, and ROS into the supernatant of infected cells or serum of infected patients.  
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Alveolar macrophages from AIDS patients constitutively release TNF-α, GM-CSF, and 

IL-6 (Agostini et al., 1992; Agostini et al., 1991; Trentin et al., 1992).  In addition, BALF 

from asymptomatic HIV-1 subjects exhibits elevated levels of IL-8 and IL-10 (Denis and 

Ghadirian, 1994).  In vitro studies in macrophages also indicate the HIV-1 infection 

stimulates the sustained release of IL-1 and IL-6 (Berman et al., 1994).  Additionally, the 

oxidative stress marker, d-ROM (derivatives of reactive oxygen metabolites) was shown 

to be greater in serum of HIV-1 patients than that of healthy controls (Mandas et al., 

2009).  Malondialdehyde (MDA), an index of lipid peroxidation, was also significantly 

elevated in the serum from both symptomatic and asymptomatic HIV-1 patients 

(Revillard JP, 1992; Sonnerborg A, 1988; Suresh et al., 2009).  Alternatively, it is possible 

that both HIV-1 infection and HIV-1 proteins act in concert to increase these molecules 

to alter pulmonary vascular cell signaling and function in an either independent or 

complementary manner.  Nonetheless, our studies demonstrate that HIV-1 increases 

ALOX5 expression.  In addition, hypoxia exposure further increases ALOX5 expression 

and activity.  Altogether, HIV-induced ALOX5 may contribute to PH development by 

promoting cellular proliferation and vasoconstriction.   
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Introduction 
Pulmonary Hypertension (PH) is a progressive disorder characterized by 

sustained increases in pulmonary arterial pressures and vascular remodeling.  Although 

the mechanism underlying PH remains unknown, hypoxia causes PH in experimental 

models and in humans suffering from chronic hypoxic lung diseases such as chronic 

obstructive pulmonary disease (COPD), cystic fibrosis, and asthma (Orr et al., 2012; 

Wright et al., 1983).  Hypoxic conditions are associated with significant alterations in 

endothelial cell function (Tuder et al., 1994) which may contribute to PH pathogenesis  

These alterations include abnormal endothelial cell growth which has been documented 

in lung sections and pulmonary artery endothelial cells from IPAH patients (Masri FA, 

2007; Rabinovitch et al., 1986).   

Arachidonate 5-lipoxygenase (ALOX5), the enzyme that catalyzes the 

production of vasoactive leukotrienes from arachidonic acid, is associated with 

endothelial proliferation and PH development.  Research reveals that patients with 

primary pulmonary hypertension exhibit increased ALOX5 expression in the lung tissue 

particularly within infiltrating perivascular alveolar macrophages and in small 

pulmonary artery endothelial cells.  Research also demonstrates that the inhibition of 

ALOX5 or its required cofactor, 5-lipoxygenase activating protein (FLAP) attenuate 

hypoxia- or monocrotaline (MCT)-induced PH (Morganroth et al., 1985; Stenmark et al., 

1985).  Conversely, the over-expression of ALOX5 accelerates and exacerbates PH in 

MCT-treated rats (Jones et al., 2004).  The exact role of ALOX5 in PH is not fully 

understood. However, studies demonstrate that ALOX5 metabolites, cysteinyl 

leukotrienes (CysLT) induce vasoconstriction in the distal segments of pulmonary 

arteries (Friedman et al., 1984).  Additionally, inhibitors of cysteinyl leukotriene (CysLT) 
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production attenuate proliferation of pulmonary artery endothelial cells (Walker et al., 

2002).    

Furthermore, in vitro studies demonstrate that ALOX5 is activated in conditions 

that promote lipid peroxidation (Riendeau et al., 1989) particularly following 

glutathione depletion (Hatzelmann et al., 1989; Hatzelmann and Ullrich, 1987). Similarly, 

stimulation of endogenous ROS release by antimycin A causes an almost 4-fold increase 

in leukotriene formation in transformed B lymphocytes (Werz et al., 2000b).  These 

studies suggest that ROS-mediated ALOX5 expression may mediate PH development 

and progression.  However, the effect of hypoxia on endothelial ALOX5 is unknown.  In 

this study, we investigate whether chronic hypoxia exposure alters endothelial ALOX5 

expression and the effects of hypoxia-induced ALOX5 expression on endothelial cell 

proliferation.    
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RESULTS 

Chronic hypoxia promotes HPAEC proliferation:   Hypoxia is associated with 

significant endothelial alterations which are thought to contribute to PH development 

and progression (Tuder et al., 1994).  Research reveals significant endothelial alterations 

in pulmonary arteries of PH patients (Sakao et al., 2009) and abnormal endothelial cell 

growth is evident in lung sections and pulmonary artery endothelial cells from IPAH 

patients (Masri FA, 2007; Rabinovitch et al., 1986).  To determine whether hypoxia alters 

HPAEC function, we assessed HPAEC proliferation following 24, 48, and 72 hours of 

hypoxia.  MTT assay demonstrates that 72 hours of hypoxia increases cellular 

proliferation when compared to all other groups (Figure 5.3A).  These results were 

confirmed by counting cells (Figure 5.3B).   

 

FIG 5.1.  Chronic hypoxia promotes HPAEC proliferation.  Human pulmonary artery 

endothelial cells (HPAEC) were exposed to 24-, 48-, or 72 hours of normoxic or hypoxic 

(1% O2) conditions (n=4).  Following exposure, cells were subjected MTT assay or 

Trypan Blue Dye Exclusion Assay to assess HPAEC proliferation.  Results indicate that 

while 24- or 48- hours of hypoxia has no effect of HPAEC proliferation, 72 hours of 

hypoxia exposure stimulates a 2-fold increase in cellular proliferation when compared to 

all other groups (Figure 5.1).   
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Chronic hypoxia exposure stimulates HPAEC 5-Lipoxygenase and FLAP 

expression:  In vivo studies demonstrate that both hypoxia exposure and MCT 

administration upregulate 5-Lipoxygenase (ALOX5) (Jones et al., 2004; Voelkel et al., 

1996).   To specifically investigate the effect of hypoxia on pulmonary artery endothelial 

ALOX5 and its required cofactor, FLAP, HPAEC were exposed to hypoxia (1% oxygen) 

for 24-, 48-, or 72-hours.  Quantitative RT-PCR analysis shows that 72 hours of hypoxia 

exposure significantly increases HPAEC ALOX5 mRNA expression (Figure 5.2A).   

 

FIG 5.2.  Hypoxia exposure stimulates endothelial ALOX5 and FLAP expression.  

HPAEC were exposed to 24-, 48-, or 72 hours of normoxic or hypoxic conditions.  

Following exposure, cells were collected and total RNA was isolated for gene expression 

analysis via quantitative real time PCR.  Results indicate that 72 hours of hypoxia 

increases HPAEC ALOX5 (Figure 5.2A; n = 3-8) and FLAP expression (Figure 5.2B; n = 3-

8).  ** p < 0.0001 when compared to all other groups.   
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ALOX5 inhibition prevents hypoxia-mediated endothelial proliferation:  Studies 

demonstrate that 5-lipoxygenase mediates HPAEC proliferation (Walker et al., 2002).  

To determine whether 5-lipoxygenase promotes hypoxia-induced HPAEC proliferation, 

we measured cellular proliferation in response to hypoxia in the presence or absence of 

two 5-lipoxygenase inhibitors, Zileuton and MK-886 (3-[1-(p-chlorobenzyl)-5-

(isopropyl)-3-tert-butylthio-indol-2,2-dimethylpropanoic acid).  Zileuton is an iron-

ligand inhibitor which is approved for the therapy of asthma in the U.S.  Zileuton is a 

selective and potent redox inhibitor of ALOX5.  MK-886 (Gillard et al., 1989) is a potent 

and specific inhibitor of leukotriene synthesis (Rouzer et al., 1990).  Our results indicate 

that inhibition of ALOX5 by zileuton (Figure 5.3A; n = 3-4) or MK-886 (Figure 5.3B, n = 

3-4) attenuates hypoxia-induced increases in HPAEC proliferation.   

 

FIG 5.3.  ALOX5 inhibition attenuates hypoxia-mediated cell proliferation.  HPAEC 

were exposed to 72 hours of normoxia or hypoxia.  ALOX5 inhibitors, Zileuton (10 μM) 

and MK-886 (0.5 μM) were administered during the final 24 hours of normoxia or 

hypoxia exposure.  Following exposure, cells were subjected to a MTT assay or cell 

counts via the Trypan Blue method to assess proliferation. ** p<0.0001 when compared 

to normoxic groups.  * p< 0.01 when compared to untreated hypoxic groups. 
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Hypoxia exposure stimulates endothelial ROS release:  Previous studies demonstrate 

that acute (Strasser et al., 1997), intermittent (Dopp et al., 2011; Hitomi et al., 2003; Zhou 

et al., 2012) and chronic (Hartney et al., 2011; Kolamunne et al., 2011; Resta et al., 2010) 

hypoxia exposure induces ROS generation.  To determine the effect of hypoxia exposure 

on HPAEC hydrogen peroxide (H2O2) release, cells were placed in normoxic or hypoxic 

conditions for 24, 48, or 72 hours.  72 hours of hypoxia significantly increases H2O2 over 

all other groups (Figure 5.1A).   Dichlorofluorescein (DCF) fluorescence staining (Figure 

5.4B) confirms that 72 hours of hypoxia exposure increase HPAEC ROS.  In addition to 

increased ROS production, quantitative real-time PCR reveals that hypoxia exposure 

significantly decreases Nrf2 expression (Figure 5.4B).  

FIG 5.4.  Hypoxia exposure stimulates endothelial H2O2 release.  Human pulmonary 

artery endothelial cells were exposed to normoxic or hypoxic (1% O2) conditions for 24-, 

48- or 72-hours.  Following exposure, ROS release was assessed by Amplex Red assay 

(5.2A; n = 4) or DCF staining (5.2B; n = 3) ** p < 0.01 when compared to normoxic 

controls. 
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Hydrogen Peroxide (H2O2) increases endothelial 5-Lipoxygenase expression:  To 

examine if an increases in H2O2 affects ALOX5 expression, HPAEC were exposed to 0-

200μM concentrations of hydrogen peroxide (H2O2) for 24 hours.  Results demonstrate 

that 10-200 μM concentrations of H2O2 produce no significant changes in cell toxicity or 

cell death as indicated by adenylate kinase release (Figure 5.5A).  H2O2 exposure 

produced marked increases in endothelial ALOX5 mRNA (Figure 5.5B) and protein 

(Figure 5.5C) expression.  These data suggest that reactive oxygen species (ROS) 

mediate increases in endothelial ALOX5 expression.   

 

FIG 5.5.  Hydrogen peroxide increases ALOX5 expression.  Human pulmonary artery 

endothelial cells (HPAEC) were exposed to 0, 10, 100, and 200 μM hydrogen peroxide 

(H2O2) for 24 hours.  Following exposure, supernatants were collected to assess 

adenylate kinase release.  Results demonstrate no significant changes in cell death as 

indicated by adenylate kinase release (Figure 5.5A; n = 4-6).  ALOX5 expression was 

analyzed by qRT-PCR and western blot.  Total RNA was collected, mRNA was reverse 

transcribed to cDNA, and ALOX5 was quantified using a Roche Lightcycler Real-Time 

PCR detection system.  ALOX5 was normalized to the housekeeping gene β-globin. 

Relative expression was calculated using the Delta-Delta CT method and values were 

expressed as percent of control (Figure 5.5B; n = 3-5).  * p < 0.05 when compared to 

untreated controls.  For ALOX5 protein expression analysis (Figure 5.5C; n = 3-5), 

HPAEC lysates (30 μg) were subjected to SDS-PAGE, transferred to a nitrocellulose 

membrane and incubated in antibodies against ALOX5 overnight at 4°C.  

Immunoreactive bands were detected using the Licor system and the proteins of interest 
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were quantified by densitometry and normalized to GAPDH levels within the same 

sample.  ** p<0.0001 when compared to control, untreated groups.  *p<0.001 when 

compared to control, untreated groups. 
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Catalase attenuates hypoxia-induced HPAEC 5-Lipoxygenase and cell proliferation.  

To further confirm that hypoxia-induced ROS mediate alterations in HPAEC ALOX5 

expression and cell proliferation, we assessed HPAEC proliferation and ALOX5 

expression in the presence or absence of PEG-Catalase (100 U/mL) during the final 24 

hours of the 72 hour exposure period.  Results indicate that catalase administration 

significantly reduces hypoxia-induced HPAEC ALOX5 gene expression (Figure 5.6A, * 

p<0.01 when compared to normoxic groups; ** p<0.01 when compared to hypoxic 

controls) and proliferation (Figure 5.6B, ** p < 0.001 when compared to normoxic 

groups).   

FIG 5.6.  Catalase attenuates hypoxia-induced HPAEC 5-Lipoxygenase and cell 

proliferation.  HPAEC were exposed to normoxic or hypoxia conditions for 72 hours.  

PEG-Catalase was administered during the final 24 hours of the 72 exposure period.  

Following exposure, cells were collected and total RNA was isolated for gene expression 

analysis via quantitative real time PCR.     
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DISCUSSION 

Our studies indicate that hypoxia exposure promotes pulmonary artery 

endothelial proliferation by stimulating ALOX5 and its required co-factor, FLAP.   We 

also demonstrate that hypoxia mediates these events by increasing ROS release as PEG-

catalase attenuates hypoxia- induced proliferation and ALOX5 expression.  Overall, 

these studies suggest that ALOX5 contributes to hypoxia-induced endothelial 

proliferation in a ROS-dependent manner. 

Previous research demonstrates that chronic hypoxia significantly increases 

endothelial cell proliferation.  In vivo studies indicate that endothelial cells in the main 

pulmonary artery and in the small muscular arteries are increased in chronically hypoxic 

rats (Howell et al., 2003; Meyrick and Reid, 1979).  Endothelial proliferation is also 

increased in neonatal calves following exposure to 8% oxygen for 14 days (Stiebellehner 

et al., 1998).    Additionally, excessive endothelial proliferation leads to plexiform lesion 

formation in idiopathic PAH patients (Voelkel and Tuder, 1997).  Our research, 

performed in vitro, similarly demonstrates that hypoxia promotes endothelial 

proliferation.  We also indicate that hypoxia-induced endothelial proliferation is ROS-

dependent as the administration of PEG-catalase attenuates these events.  These 

hypoxia-induced ROS are likely produced by NADPH oxidases (Noxes) as previous 

studies indicate that Nox4 expression is elevated in low oxygen environments (Nisbet et 

al., 2009).  Interestingly, previous studies also suggest that NADPH oxidase activity is 

required for endothelial cell proliferation (Abid et al., 2000).   Additionally, studies have 

implicated Nox4 in the hypoxia-induced proliferation of adipose-derived stem cells (Kim 

et al., 2012) and human pulmonary artery smooth muscle cells (Ismail et al., 2009).  
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Though it is widely-accepted that hypoxia promotes pulmonary vascular cell 

proliferation, the underlying mechanism remains unclear.  Endothelial cells contribute to 

hypoxic pulmonary remodeling by increasing the release of pro-proliferative mediators 

such as ET-1 and angiotensin II (AngII) and reducing the release of anti-proliferative 

agents such as nitric oxide (NO).  Similarly, hypoxia stimulates cell proliferation by 

increasing the production of pro-proliferative stimuli from smooth muscle cells, 

platelets, fibroblasts, and endothelial cells (Humar et al., 2002; Kourembanas et al., 1990; 

Kourembanas et al., 1991; Mukhopadhyay et al., 1995).   Our data indicate that hypoxia 

increases endothelial cell proliferation by stimulating the ALOX5 pathway as the 

administration of the two ALOX5 pathway inhibitors with distinct mechanisms of 

action, Zileuton and MK-886 significantly attenuate endothelial proliferation.  Zileuton 

inhibits ALOX5 by binding to the iron atom needed for catalytic function (Carter et al., 

1991). MK-886, however, inhibits leukotriene synthesis (Rouzer et al., 1990) by binding 

to the membrane-bound FLAP and preventing translocation of ALOX5 from the cellular 

cytoplasm to the plasma membrane for activation.  These data implicate a major 

contributing role of leukotrienes in hypoxia-induced endothelial proliferation. 

Although our evidence indicates that hypoxia increases ALOX5 in a redox-

sensitive manner, we are unable to demonstrate the mechanism underlying these events.  

However, it is likely that the transcription factor hypoxia inducible factor (HIF) 

mediates the hypoxia-induced increases in endothelial ROS release and ALOX5 

expression.  HIF-1α is an oxygen-sensing molecule (Semenza, 2007) that mediates an 

adaptive response to low oxygen conditions by activating genes associated with energy 

metabolism, erythropoiesis, vasomotor tone, and angiogenesis (Semenza, 2003).  
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Hypoxia stabilizes HIF-1α by inhibiting its prolyl hydroxylation and thereby inducing 

the HIF-1α-dependent upregulation of genes that promote survival in low oxygen 

environments.  HIF-2α also contributes to the vascular response to chronic hypoxia by 

stimulating the expression of genes involved in pulmonary vascular cell proliferation 

(Tuder et al., 1995).  Due to these effects, HIF is implicated in PH pathogenesis.  Recent 

research demonstrates that inhibition of HIF-1α by the cardiac glycoside digoxin 

attenuates hypoxia-induced increases in RV pressures, RV hypertrophy, and vascular 

remodeling (Abud et al., 2012). Moreover, hypoxia-induced increases in HIF-1α promote 

reductions in Nrf2 expression and activity in human lung endothelial cells (Loboda et al., 

2009).  These data suggest that hypoxia-induced HIF may contribute to PH 

pathogenesis via antioxidant depletion and excessive endothelial cell proliferation. 

Our research also provides additional evidence of a hypoxia-induced ROS in 

endothelial injury and proliferation.  Additionally, our results suggest that ALOX5 

mediates hypoxia-induced endothelial cell proliferation.  These studies also implicate 

ALOX5 in increased vascular remodeling documented in experimental and clinical PAH 

cases.  Overall, our evidence demonstrating that ALOX5 inhibition attenuates hypoxia-

induced proliferation suggests that ALOX5 may serve as a potential new therapeutic 

target for PAH patients.  
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 Our data indicate that HIV-1 protein expression impairs pulmonary vascular 

reactivity and exacerbates hypoxia-induced PH development with potentiated responses 

in RV systolic pressures and RV hypertrophy as well as pulmonary vessel 

muscularization and cellular proliferation.  These results indicate that our model 

accurately recapitulate features associated with clinical HIV-PAH cases.  First, PAH in 

HIV-1 patients develop a more severe form of PAH than uninfected individuals.  

Although Second, PAH development and progression is associated with indirect actions 

of HIV-1 and unrelated to immune dysfunction caused by HIV-1 infection.  Finally, HIV-1 

protein expression resulted in a more severe form of PH in response to chronic hypoxia 

exposure.  Evidence also indicates that lung homogenates from HIV-1 Tg animals express 

significantly more ALOX5 than control animals.  Additionally, exposure to chronic 

hypoxia further increases ALOX5 expression and LTC4 release.  These data implicate 

ALOX5 in our HIV-PH model.  To determine whether HIV-induced ALOX5 contributes 

to PH development, we independently assessed the effects of hypoxia exposure and HIV-

1 proteins such as Tat and Nef on ALOX5 expression and activity.  Our in vitro studies 

indicate that ALOX5 mediates pulmonary artery endothelial proliferation in response to 

chronic hypoxia exposure and ROS release.  Results also reveal that medium from HIV-

infected MDM exacerbates hypoxia-induced endothelial cell proliferation.  These studies 

highlight the potential contribution of HIV-1 proteins and ALOX5 in HIV-PAH 

pathogenesis.  In additional studies, results demonstrate that the HIV-1 protein, Tat 

stimulates pulmonary artery endothelial ROS release, ALOX5 expression, and cellular 

proliferation.  Altogether, these results suggest that Tat-induced ALOX5 exacerbates 

PAH development and progression by stimulating vascular remodeling via increased 

endothelial proliferation (Figure 6.1).   
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FIG 6.1.  Proposed Role of arachidonate 5-lipoxygenase in HIV-associated 

pulmonary arterial hypertension.   
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Our results also suggest that ALOX5 inhibition may attenuate PAH progression since 

administration of the FDA-approved Zileuton (Zyflo) attenuates hypoxia-induced 

endothelial cell proliferation.   

 Our interest in HIV-PAH is due to the disproportionate incidence of PAH 

diagnoses in HIV-infected persons.  The frequency of HIV-PAH is strikingly higher than 

PAH in the general population.  In addition, according to French registries, PAH 

associated with HIV infection is the fourth-leading cause of PAH (Humbert et al., 2006).  

The reason HIV-infected patients develop PH at this alarming rate remains unknown.  It 

has been suggested that the increased lifespan of HIV-1 patients on antiretroviral therapy 

increases the likelihood of exposure to the “multiple hits” believed to be required to 

develop PH (Yuan and Rubin, 2005).  Additionally, HIV infection is associated with 50-

60% increased odds of COPD diagnosis (Crothers et al., 2006).  These factors, in addition 

to co-morbidities more common to HIV-infected patients such as cigarette smoking, 

alcohol disorders, and drug abuse (Crothers et al., 2011) may likely contribute to the PAH 

prevalence.             

 We also chose to investigate HIV-PAH because the underlying mechanism of this 

disease is unknown and effective treatments are few.  The pathogenesis of HIV-PAH may 

rely on the indirect action of HIV-secreted mediators such as HIV-1 proteins on the 

endothelium.  Yet, only limited studies demonstrate a link between HIV-1 proteins and 

PAH  (Almodovar et al., 2011b).  Our studies indicate that exposure to hypoxia and/or 

HIV-1 Tat may contribute to PAH development by increasing endothelial cell 

proliferation. 
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The strength of our studies lies in the fact that we are able to study the 

contribution of HIV-1 proteins to PH development by employing our HIV-1 Tg animal 

model.  This advantage is important as PAH disease severity in HIV-1 patients is 

unrelated to CD4 lymphocyte levels and may predominantly rely on the action of HIV-1 

proteins on the vasculature.  Additionally, instead of studying the sole effect of one HIV-1 

protein in vitro, our HIV-1 Tg model expresses multiple HIV-1 proteins in numerous 

tissues and organs.  As a result, we are able to perform more physiologically-relevant 

studies by assessing the collective effect of HIV-1 proteins on the pulmonary vasculature. 

An additional strength of our study is that similar results were obtained with our 

transgenic model and human cell culture model.  Quantitative real time PCR analyses 

demonstrate that ALOX5 is significantly increased in lung homogenates from HIV-1 Tg 

animals as well as human pulmonary artery endothelial cells exposed to medium from 

HIV-MDM and recombinant HIV-1 Tat.  These results confirm that HIV-1 proteins 

stimulate ALOX5.  Also, both our in vivo and in vitro studies suggest increased endothelial 

cell proliferation as a potential mechanism by which ALOX5 promotes PAH 

development.  These findings are particularly interesting as the excessive proliferation of 

endothelial cells resulting from pro-proliferative/anti-apoptotic stimuli are thought to 

play a major role in PH-associated vascular remodeling (Sakao et al., 2009).  Therefore, 

the contribution of ALOX5 to HIV-PAH development and progression may possess 

clinical value and should be further explored.  We plan to determine whether ALOX5 

inhibition attenuates PH development and progression by treating normoxic and 

hypoxic wild-type and HIV-1 Tg animals with zileuton daily.  However, clinical studies 
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investigating whether the ALOX5 inhibitor, Zileuton (Zyflo) are also needed to 

determine whether ALOX5 inhibition is a viable option for PAH treatment.   

We also employ a normobaric hypoxia chamber as a method to induce 

experimental PAH in the HIV-1 Tg rat model.  This experimental PH method induces 

many of the phenotypic pathophysiological changes seen in PAH patients.  As a result, 

the true contribution of HIV-1 proteins to HIV-PAH development and progression was 

assessed.  However, a potential weakness of our model is the inability chronic hypoxia 

exposure to induce plexiform lesion formation in rats.  Plexiform lesions are a well-

characterized pathology of PAH and remain one of the most common findings of human 

HIV-PAH (Limsukon et al., 2006).  Previous studies have reported that of the available 

histopathologic findings from HIV-PAH patients, 78% showed plexigenic pulmonary 

lesions (Mehta, 2000).  Due to this disadvantage of the HIV-PAH animal model, we are 

unable to assess the role of HIV-1 proteins or HIV-induced endothelial injury in 

plexiform lesion formation.  Further studies utilizing an extended chronic hypoxia model 

or chronic hypoxia exposure and Sugen administration, a combination shown to 

promote plexiform and obliterative lesion formation, may provide more insight as to the 

role of HIV-1 proteins in PAH development. 

In vivo studies reveal that chronic hypoxia exposure increases ALOX5 mRNA and 

protein expression in lung homogenates from HIV-1 Tg animals.  These studies question 

which cell type is responsible for increased pulmonary ALOX5 mRNA and protein 

expression.  Since ALOX5 is expressed in monocytes, macrophages, and vascular smooth 

muscle cells, it is plausible that any of these cell types may be responsible for the 

increased ALOX5 expression, activity, and leukotriene production.  To determine this, 



141 
 

future studies may include co-immunolocalization staining for CD14, von Willebrand, 

and/or smooth muscle alpha-actin antigen staining to determine if mononuclear, 

endothelial, or vascular smooth muscle cells are the predominant ALOX5-expressing cell 

types. 

Our studies also demonstrate that exposure of pulmonary artery endothelial cells 

to medium of HIV-MDM markedly increases cysteinyl LT release.  Since cysteinyl LTs 

are associated with vasoconstriction of the small pulmonary arteries (Friedman et al., 

1984) and proliferation of pulmonary artery endothelial cells (Walker et al., 2002), our 

data suggest that secreted mediators from HIV-infected cells may contribute to PAH 

pathogenesis by increasing pulmonary artery vessel tone and remodeling.   Although the 

effect of HIV-1 protein-induced LT release on other vascular cell types was not examined 

in these studies, it is likely that LT release following HIV- and hypoxia-induced ALOX5 

may directly alter pulmonary smooth muscle cell function.  Recent studies provide 

evidence that LTB4 promotes vascular smooth muscle cell migration (Moraes et al., 

2010).  CysLT are also implicated in the proliferation and migration of murine vascular 

smooth muscle cells (Kaetsu et al., 2007; Porreca et al., 1996; Porreca et al., 1995). This 

LT-induced SMC proliferation effect may also mediate the increased vessel 

muscularization seen in our HIV-PH studies (Figure 3.3).  Therefore, it is possible that 

HIV-induced ALOX5 activity and LT release may promote PAH development by acting 

in a dual manner and promoting proliferation of both pulmonary endothelial and 

pulmonary vascular smooth muscle cells.   

Previous studies also implicate a role of transcellular biosynthesis of cysteinyl 

leukotrienes in inflammatory response (Fabre et al., 2002) and various disease states (Di 
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Gennaro et al., 2004).  Transcellular biosynthesis occurs when LT production occurs as a 

result of the transfer of lipid metabolite intermediates between cells via direct cell-cell 

interaction.  This process requires a donor cell to synthesize and release one component 

of the biosynthetic cascade and a second cell to take up the required intermediate to 

produce the final biologically active product.  It is unknown whether this process occurs 

between macrophages and/or vascular SMC and pulmonary artery endothelial cells.  

However, previous studies provide evidence of direct interactions between purified 

human leukocytes and myocardial endothelial cells, which resulted in increased LT 

formation via the transfer of the LTA4 (Sala et al., 1996).  In addition, research reveals 

that the biosynthesis of LTB4 is significantly enhanced when macrophages transformed 

low levels of SMC-released LTA4 into LTB4 (Zou and Anges, 1994).  This event may 

explain why the exposure of pulmonary artery endothelial cells to medium from HIV-

infected MDM produces such significant leukotriene release.   Future experiments may 

include investigating whether the direct interaction of HIV-infected MDM with 

pulmonary vascular endothelial potentiates cysteinyl leukotriene release as this event 

may facilitate pulmonary vasoconstriction and vascular remodeling. 

Future Studies  

Our current results suggest that HIV-1 increases the susceptibility to develop PH 

by altering endothelial cell signaling and proliferation.  These studies provide a possible 

explanation of why HIV-1 patients develop a more severe and accelerated form of PH 

than the general population.  As HIV-induced 5-lipoxygenase seems to mediate the 

significant increases in endothelial cell proliferation, and may worsen vasoconstriction in 

the pulmonary vasculature, future studies warrant the investigation of ALOX5 inhibition 
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in HIV-associated PH development and progression.   In addition, studies using the 

administration of the FDA-approved, Zileuton (Zyflo) would be helpful to determine if 

the ALOX5 inhibition ameliorates HIV-PAH pathologies, such as the right ventricular 

hypertrophy and elevated RVSP. 

Future studies may also include examining the mechanism by which HIV-1 Tat 

stimulates endothelial ALOX5.  HIV-1 Tat may stimulate ALOX5 expression and activity 

by increasing cellular ROS release.  Numerous studies demonstrate that Tat promotes 

ROS release in a variety of cell types (Paladugu et al., 2003; Price TO, 2006; Toborek et 

al., 2003).  Additionally, previous studies indicate that H2O2 stimulates ALOX5 activity 

in B-lymphocytes (Werz et al., 2000b). Our studies also reveal that H2O2 increases 

ALOX5 in pulmonary artery endothelial cell (Figure 4.2).  Furthermore, in vitro studies 

demonstrate that ALOX5 is activated in environments of high oxidative stress (Lee et al., 

2010) and conditions that promote lipid peroxidation (Riendeau et al., 1989) particularly 

following glutathione depletion (Hatzelmann et al., 1989; Hatzelmann and Ullrich, 1987).  

These studies strongly suggest that Tat may stimulate ALOX5 expression by inducing 

endothelial ROS release.  Future in vitro experiments may include the examination of 

ALOX5 expression following Tat exposure in the presence or absence of an antioxidant 

such as PEG-Catalase or Tempol.    It will also be important to determine if Tat 

activation of transcription factors is ROS-dependent or independent.  Previous studies 

demonstrate that Tat alters endothelial gene expression by increasing NF-κB expression.  

It is likely that Tat also increases ALOX5 in an NF-κB-dependent manner as the ALOX5 

promoter contains a NF-κB binding site.  If Tat directly binds to the ALOX5 promoter, it 

may also be useful to identify the Tat motif that facilitates this interaction.  Previous 
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research demonstrates that the arginine- and cysteine-rich domains of Tat are needed for 

NF-κB activation.  Therefore, Tat-neutralizing antibodies specific for these regions may 

inhibit Tat-induced ALOX5, and may attenuate HIV-induced vascular injury. 

HIV proteins may also induce ALOX5 in a TGF-β-mediated manner.  Although 

TGF-β is directly associated with PAH progression, it may also contribute to PAH by 

stimulating other vascular remodeling pathways.  TGF-β potently stimulates ALOX5 

transcription and expression (Sorg et al., 2006).  Studies also indicate that TGF-β mRNA 

expression and plasma TGF-β levels (Wiercinska-Drapalo et al., 2004) are increased in 

HIV-infected patients and by hypoxia exposure.  Moreover, the HIV-1 proteins, Tat and 

gp160 are linked to increases in TGF-β expression and activity (Hu et al., 1996; Lotz et 

al., 1994).  Although BALF and serum from HIV-1 Tg animals exhibit no significant 

increases in TGF-β levels in our studies, concentrations of TGF-β are increased in HIV-1 

patients.   Thus, clinical studies may be useful in determining whether TGF-β levels 

affect ALOX5 expression and metabolite release in HIV-PAH patients.   

To better understand the role of ALOX5 in HIV-PAH, clinical investigation of 

ALOX5 expression and LT release in HIV-1 patients is also needed.  Evidence from our 

study and others suggest that ALOX5 is increased in PH (Wright et al., 1998).  

Elevations in ALOX5 expression and activity are also associated with exacerbated and 

accelerated forms of PH (Jones et al., 2004).  We believe that the increased susceptibility 

of HIV-1 patients to develop PAH is linked to Tat-induced elevations in ALOX5.  In 

order to determine whether this association exists in PAH patients, studies are necessary 

to determine ALOX5 expression and LT levels of both treatment-naïve and treatment-
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experienced HAIV-1 patients.  In addition, ALOX5 expression and circulating LT levels 

may serve as a biomarker to assess one’s susceptibility to develop PH.   

Alternative/Contributing Mechanisms  

HIV-associated Pulmonary Arterial Hypertension:   HIV-PAH is a complex 

disorder characterized by vasoconstriction of the pulmonary vasculature and increased 

vascular resistance and remodeling.  Previous research demonstrates that HIV-1 and 

HIV-1 proteins significantly alter vascular function.  For example, endothelium-

dependent vasorelaxation is significantly reduced in pig coronary artery rings treated 

with Tat protein whereas arteries treated with Tat protein plus anti-Tat antibody 

relaxed similarly as control arteries.  Endothelial NOS expression in Tat-treated coronary 

artery rings is also reduced by 73% when compared to control vessels (Paladugu et al., 

2003).  Additional studies also demonstrate that mice expressing HIV-1 Tat protein 

targeted to the myocardium experience significant depressions in systolic and diastolic 

functions (Fang et al., 2009).  Therefore, it is likely that chronic exposure to HIV-1 

proteins promotes vascular dysfunction and leads to cardiovascular disease development 

over time. 

HIV-1 proteins may also contribute to PAH by stimulating endothelial cell 

activation and the release of cytokines/chemokines onto nearby vascular smooth muscle 

cells.  For example, 24 hours of exogenous Tat administration dose-dependently 

increases IL-6 release from human umbilical vein endothelial cells (Hofman et al., 1993).  

These effects may independently contribute to the HIV-PAH pathogenesis as IL-6 is 

believed to significantly contribute to PAH development (Golembeski et al., 2005a).  

Similarly, the independent or combined release of vasoactive cytokines such as ET-1, 



146 
 

TGF-β, and IL-6 may act to increase PAH susceptibility via distinct or common signaling 

pathways. 

Furthermore, it is possible that HIV-PAH develops from the combination of 

multiple vascular events such as HIV-induced endothelial dysfunction and proliferation, 

cytokine release, and/or ROS production. This “multiple hit” hypothesis provides a 

potential explanation as to why HIV-1 patients develop PAH at such an alarming rate.  In 

addition, the activation of multiple PAH-associated pathways such as ALOX5, ET-1, IL-

6, and TGF-β by HIV-1 and HIV-1 proteins may also account for the accelerated disease 

progression and decreased survival in HIV-PAH patients.  Therefore, early diagnosis 

coupled with the use of several combined therapies may be essential for the effective 

treatment of HIV-PAH patients.   

HIV-induced Arachidonate 5-Lipoxygenase:  Our studies indicate that exposure to 

medium of HIV-MDM and recombinant Tat significantly increases pulmonary artery 

endothelial ALOX5.  We believe that Tat induces this effect in a ROS-dependent 

manner.  However, additional mechanisms may contribute to ALOX5 upregulation by 

HIV-1 Tat. For example, recombinant Tat protein activates mitogen-activated protein 

kinase (MAPK) ERK (1/2) in human, murine, and bovine endothelial cells (Rusnati et al., 

2001).  The synthetic peptide Tat (41-60), but not peptides Tat (1-21) and Tat (71-86), 

also causes ERK phosphorylation (Rusnati et al., 2001).  These data suggest that HIV-1 

Tat may promote ALOX5 activity by stimulating the MAP and ERK kinases associated 

with ALOX5 regulation. 

Previous studies also indicate that HIV infection causes a 6-fold increase in 

macrophage arachidonic acid (AA) release (Nokta et al., 1995).  It is unknown whether 
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Tat increases AA release in endothelial cells.  Nonetheless, HIV-induced increases in 

available AA may result in the excessive production of cysteinyl leukotrienes and 

impaired vascular tone.  Furthermore, HIV-1 proteins such as gp120 and Tat increase NF-

κB.  For example, at HIV-1 entry, the binding of the gp120 viral envelope to CD4 induces 

NF-κB activity by activation of IKK and pro-caspase 8 (Bren et al., 2009).  Additionally, 

studies indicate that NF-κB is constituitively activated in Jurkat cells stably expressing 

the Tat gene (Scala et al., 1994).    Also Tat gene expression and protein transduction 

induces IκB kinase (IKK) activity and increases expression of inhibitors of NF-κB 

degradation, (IκB-α) (Demarchi et al., 1996).  These studies provide evidence that HIV-1 

and HIV-1 gene products may increase ALOX5 expression by stimulating NF-κB 

expression and activity.  

Potential HIV-PAH Therapies 

Nutritional Antioxidants:  HIV-1 reduces levels of plasma antioxidants (Halliwell, 

1999), such as ascorbate, or vitamin C (Stephenson CB, 2006) and these decreases in 

antioxidant concentrations persist in HIV-1 patients although their dietary intake is 

sufficient for healthy individuals (Kruzich et al., 2004).  Also, low intakes of vitamin C 

(Tang AM, 1993) and low plasma concentrations of vitamin E (Tang et al., 1997) are 

associated with a greater risk of progression to AIDS in HIV-infected US subjects.  These 

studies emphasize the importance of dietary antioxidant vitamins in HIV-1 seropositive 

individuals and suggest a potential therapeutic benefit for HIV-1 patients.  However, 

research examining the effect of dietary supplementation in HIV-1 patients provides 

conflicting results.  Multi-nutrient supplements containing vitamins C and E led to a 

lower risk of death due to HIV infection in Tanzanian women (Fawzi et al., 2004) and a 
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small increase in CD4+ T lymphocyte counts in Kenyan women (McClelland et al., 

2004).  Vitamin C and E supplements were found to reduce oxidative damage and 

attenuate disease severity in HIV-positive Canadian adults (Allard et al., 1998).  Also, α-

tocopherol, or vitamin E, (800 mg/day) administration decreased viral load in HIV-1 

patients over a 60-day period (Spada et al., 2002).  In addition, research demonstrates 

that antioxidant molecules such as GSH, glutathione ester, and NAC are able to suppress 

HIV expression in infected monocytic cells (Garaci et al., 1997; Kalebic et al., 1991) as 

well as viral replication and disease progression in murine AIDS (Magnani et al., 1997; 

Palamara et al., 1996).  These data argue that GSH administration may provide 

therapeutic benefit against HIV-1 infection and HIV-associated pulmonary arterial 

hypertension. 

Conversely, daily selenium administration has shown no significant effect on 

CD4+ cell counts or viral load in pregnant, HIV-infected women (Kupka et al., 2008). 

However, the results of a 9-month selenium supplementation study performed in 450 

HIV-1 seropositive men and women may provide an explanation for the recent 

conflicting results and highlight the importance of treatment adherence.  Study subjects 

with a selenium change less than or equal to 26.1 microgram/L, indicating poor subject 

compliance, were found to have an increase in HIV-1 viral load and a decrease in CD4+ 

lymphocyte counts after the 9-month treatment period.  Conversely, subjects with an 

increase in serum selenium levels greater than 26.1 microgram/L demonstrate no change 

in viral load and increases in CD4+ cell counts (Hurwitz et al., 2007).  The 

administration of alpha-lipoic acid, a glutathione-replenishing disulfide, three times 

daily increased total glutathione levels but failed to alter HIV RNA levels or improve 
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CD4+ lymphocyte counts after 6 months (Jariwalla et al., 2008).  These results of these 

intervention trials may not be completely attributable to the antioxidant actions of the 

supplements, but the data suggest that proper multi-nutrient and antioxidant 

supplementation may diminish the severity of HIV disease.  Still, the varying outcomes of 

these studies underscore the need for further research in this area.   

Nrf2 Activation:  NF-E2 related factor 2 (Nrf2) is a ubiquitously expressed 

transcription factor that regulates antioxidant enzyme expression by binding to the 

antioxidant response element (ARE).  Due to its function, the Nrf2 pathway is thought 

to play an essential role in cellular protection against ROS effects and oxidative stress 

(Kaspar et al., 2009).  Recent studies indicate that some vascular protective compounds 

act via the Nrf2 pathway.  For example, resveratrol dose-dependently increases Nrf2 

promoter activity and stimulates expression of Nrf2-regulated genes such as heme-

oxygenase (HO)-1 in cultured primary human coronary arterial endothelial cells.  

Resveratrol also reduces mitochondrial and cellular ROS release following high glucose 

and TNF-α exposure in an Nrf2-dependent manner (Ungvari et al., 2010).  Additionally, 

Nrf2 is linked to the anti-atherogenic effects of the Ginkgo biloba extract (GBE).  Studies 

indicate that GBE increases Nrf2 promoter activity and nuclear translocation in human 

aortic endothelial cells.  Also, Nrf2 knockdown abolishes GBE-induced suppression of 

TNF-α-induced VCAM-1 expression in human aortic endothelial cells (Chen et al., 2011).    

In addition, Nrf2 activation protects vascular cells against ROS release and 

inflammation.  For example, Nrf2 activation by sulforaphane reduces VCAM-1 signaling 

in human umbilical vein endothelial cells (Zakkar et al., 2009) and adenoviral Nrf2 

overexpression prevents injury by ROS and inhibits monocyte adhesion in endothelial 
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cells (Chen et al., 2006).  Nrf2 gene transfer via adenoviral transduction inhibits 

proliferation in human and rabbit smooth muscle cells.  AdNrf2 also reduces 

inflammation and oxidized LDL accumulation following aortic balloon injury in rabbits 

(Levonen et al., 2007).  Dh404 stimulates Nrf2 in primary cardiac myocytes and increases 

Nrf2 nuclear translocation and transcriptional activity in H9C2 cardiomyocytes.  

Although Nrf2-deficient mice display significant increases in liver MDA, Nrf2 

knockdown in ApoE-deficient mice produced a decrease in aortic stiffness and a 61% 

reduction in plaque area after 20 weeks when compared to ApoE KO controls. Moreover, 

macrophages from ApoE/Nrf2 deficient mice demonstrate a reduced uptake of AcLDL, a 

commonly used indicator for OxLDL (Sussan et al., 2008).  Additionally, the Nrf2 

activator, Dh404 inhibits basal and Angiotensin II-induced superoxide and peroxynitrite 

formation (Ichikawa et al., 2009).  Also, treatment with the Nrf2 activator, CDDO-

Imidazolide (CDDO-Im) prevents cigarette smoke-induced increases in RV pressures 

and alterations in RV diastolic and systolic functions.  Nrf2 activation by CDDO-Im also 

increases GSH levels and attenuates alveolar apoptosis and pulmonary oxidative damage 

following cigarette smoke exposure (Sussan et al., 2009).  Interestingly, numerous 

clinical trials are currently investigating the effect of Nrf2 activation and sulforaphane 

treatment in cystic fibrosis, COPD, asthma, cancer, autism, and cardiovascular disease.  

As such, Nrf2 activation may serve as an ideal therapeutic for HIV-associated PAH. 

Targeting Specific Antioxidant Pathways:  Extensive research implicates oxidative 

mechanisms in the development of vascular diseases.  However, studies employing 

antioxidants as a major disease therapy produce controversial results regarding disease 

protection and reversal (Antoniades et al., 2003; Lachmanová et al., 2005; Redout et al., 
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2010; Violi F, 2004).  These outcomes, as well as recent advances in ROS detection, have 

led researchers to redefine the concept of oxidative stress and direct more attention to 

the balance of redox signaling, particularly the major thiol/disulfide couples such as 

glutathione (GSH)/glutathione disulfide (GSSG), reduced thioredoxin [Trx-

(SH)2]/oxidized thioredoxin (Trx-SS), and cysteine (Cys)/cystine (CySS) (Jones, 2006).  

These redox couples regulate numerous biological functions within the cell and evidence 

suggests that specific redox states may work together to perform distinct functions in 

various cellular locations (Hansen et al., 2006).   

Interestingly, the cellular localization of these redox couples and the resulting 

biological events may have considerable consequences on vascular function and hence, 

the development and progression of vascular diseases.  For example, the expression and 

DNA-binding of redox-sensitive transcription factors, including NF-κB and AP-1, may be 

severely altered in response to modulations in nuclear redox states.  Moreover, 

mitochondrial redox states may regulate mitochondrial permeability transition and 

thereby, trigger cellular necrosis or apoptosis.  Differences in redox states, particularly 

those across the plasma membrane, are implicated in cell proliferation as well as 

monocyte adhesion to endothelial cells (Go and Jones, 2005).  Variations in extracellular 

Cys/CySS redox states and those found in human plasma also enhance oxidant-induced 

apoptosis and mediate decreases in cell number (Jiang et al., 2005).  Altogether, these 

data encourage researchers to obtain a better understanding of redox signaling to allow 

for more effective antioxidant treatments. 

Peroxisome Proliferator-Activated Receptors (PPAR) Agonists:  Agents that restore 

NO levels and reduce ROS generation would likely have a favorable impact on HIV-
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mediated vascular disease.  Peroxisome proliferator-activated receptors (PPARs) are 

ligand-activated transcription factors belonging to the nuclear hormone receptor 

superfamily (Isseman I, 1990).  PPARs regulate a variety of physiological processes 

ranging from lipogenesis to inflammation, and have been implicated in numerous 

disorders including diabetes and atherosclerosis.  There are 3 PPAR isotypes: PPARα, 

PPAR β/δ, and PPARγ.  These PPARs are expressed in multiple tissues including the 

heart and vasculature.  Of particular interest to vascular disorders is PPARγ, which 

regulates genes involved in characteristic vessel pathologies, such as cellular 

differentiation and growth, inflammation, ROS regulation, apoptosis, and angiogenesis.   

PPARγ agonists and PPARγ overexpression increase endothelial NO release 

(Calnek et al., 2003).  PPARγ agonists also decrease the expression of Nox-2 and -4 and 

significantly stimulate Cu/Zn SOD expression and activity in human umbilical vein 

endothelial cells (Hwang et al., 2005).  Reduced endothelial PPARγ expression 

attenuates NO production and produces significant increases in serum d-ROMs, 

derivatives of reactive oxygen metabolites (Kleinhenz et al., 2009).  Overexpression of 

PPARα and PPARγ reduces HIV-induced dysregulation of tight junction proteins in 

brain endothelial cells, effects mediated by alterations in matrix metalloproteinase 

(Huang et al., 2009).  Moreover, PPARγ activation via rosiglitazone administration in 

brain microvascular endothelial cells inhibits adhesion and transendothelial migration of 

HIV-1 infected monocytes (Ramirez et al., 2008).  The PPARγ agonist, rosiglitazone, also 

attenuates LPS-induced inflammation in vascular smooth muscle cells (Ji et al., 2011).  

Additionally, PPARs decrease endothelial-leukocyte interactions in atherosclerosis 

models (Kurebayashi et al., 2005) and PPAR agonists demonstrate antiviral activity.  
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PPAR agonists, rosiglitazone, PgJ2, ciglitazone, troglitazone and fenofibrate, inhibit HIV 

replication in HIV-1 infected peripheral blood mononuclear cells (PBMCs).  These data 

indicate that decreases in PPAR activity may mediate endothelial dysfunction, ROS 

regulation, vascular injury, and HIV-1 replication.  Although several have been 

unsuccessful due to patient safety concerns, PPAR agonists serve as an encouraging 

therapeutic for preventing HIV-associated vascular disorders.    

Conclusion 

In these studies, we demonstrate that HIV-1 protein expression exacerbates 

hypoxia-induced PAH.  In addition, these studies implicate a novel pathway that may 

explain how HIV-1 proteins and specifically Tat may contribute to HIV-PAH 

development -- activation of the ALOX5 pathway.  This pathway induces characteristic 

PAH pathologies such as pulmonary vascular tone and vascular remodeling by increasing 

endothelial cell proliferation.  Our studies also implicate ALOX5 inhibition as a potential 

PAH therapy as zileuton and MK-886 administration attenuates endothelial 

proliferation.    
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