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Abstract 

 

Proteome-Wide Association Analysis of Alzheimer's Disease Using Cerebrospinal Fluid Protein 

Data 

By Eseza Kironde 

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with high heritability (60-

80%). While genome-wide association studies (GWAS) have identified over 75 genetic risk loci, 

determining causal genes and biological mechanisms remains challenging. This study addresses these 

limitations by adapting OTTERS, a framework originally designed for transcriptome-wide 

association studies (TWAS), to perform proteome-wide association studies (PWAS) using 

cerebrospinal fluid (CSF) protein data. 

Unlike traditional PWAS that rely on plasma samples or require individual-level reference data, our 

approach leverages summary-level CSF proteomics, which more directly reflects brain pathology in 

neurological disorders. We analyzed 741 CSF proteins using four different polygenic risk score 

(PRS) methods to account for diverse genetic architectures and combined results through an 

omnibus test. 

Our analysis identified 13 proteins significantly associated with Alzheimer's disease after Bonferroni 

correction (p < 6.75E-5). Clusterin (CLU) showed the strongest association (p = 3.30E-35), 

followed by Interleukin-34 (IL34) and Fructose-bisphosphate aldolase A (ALDOA). While ten 

proteins confirmed previous AD associations, three novel proteins (ALDOA, RNF43, and 

SIGLEC9) represent potential new biomarkers or therapeutic targets. 

This study demonstrates that CSF proteogenomics offers valuable insights into AD pathogenesis 

and that summary-level data approaches can maintain statistical power while increasing data 

accessibility. Our findings bridge the gap between genetic associations and protein-level changes, 

providing a framework for understanding the biological mechanisms underlying Alzheimer's disease. 
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CHAPTER 1: INTRODUCTION 

Alzheimer’s disease (AD) is a disorder that causes progressive neurodegeneration of cells in the 

brain, leading to a reduction in cognitive function, memory, thinking and behavior 1.  AD is 

characterized by an accumulation of amyloid plaques and a massive loss of neurons 2, 3. AD is the 

most common type of dementia and has a strong genetic component. Heritability, defined as the 

proportion of observed phenotypic variance that can be attributed to genetic factors 4, is estimated 

within families to be approximately 60-80% for AD, which indicates that genetic factors play a 

strong role in disease risk 5-7. 

To identify genetic factors involved in AD, many studies perform testing using Genome Wide 

Association studies (GWAS). A GWAS is an observational study that examines genetic variants 

(Single Nucleotide Polymorphisms or SNPs) across an organism’s entire genome, where researchers 

collect DNA samples from individuals with and without the condition, analyze the SNPs 

simultaneously and perform statistical analyses to identify variants that occur more frequently in 

affected individuals. 8, 9. Although previous AD GWAS studies have found over 75 genetic risk loci  

10-13, they cannot on their own specify which genes are causal or explain the biological mechanisms 

that these variants increase AD risk. 

Approaches that combine multi-omic data with GWAS have improved our ability to identify causal 

genes for traits and diseases. A standard -omic integration method is a transcriptome-wide 

association study (TWAS) 14, 15, which involves building predictive models of gene expression using 

reference panels with both genetic and expression data and then using these models to predict gene 

expression in GWAS samples based on genotypes. While TWAS has proven useful, the approach is 

limited because it captures primarily transcriptional effects and potentially misses post-

transcriptional and post-translational regulatory mechanisms that influence disease. This has led to 
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the advancement of Proteome-Wide Association Studies (PWAS), which studies the role of 

genetically-regulated protein abundance, which provides clearer links to biological outcomes 16. 

These studies use protein Quantitative Trait Loci (PQTLs), which are genetic variants affecting 

protein levels from reference panels, to predict protein abundance in GWAS samples. 

However, most PWAS studies narrowly focus on plasma proteins 17. This is limiting for neurological 

disease research because plasma proteogenomics shares little overlap with brain proteogenomics, 

with proteomic studies revealing only approximately 25-30% of pQTL shared between CSF and 

plasma and an even smaller overlap of about 13% between brain frontal cortex and plasma 18, 19. For 

AD research, brain specific protein changes are critical as they reflect the neurodegenerative 

processes happening in affected tissues. In contrast to plasma-based studies, cerebrospinal fluid 

(CSF) proteogenomic studies have successfully identified causal genes for several disease-associated 

GWAS loci in AD, Parkinson’s disease and other neurodegenerative disorders18, 20-23. CSF is studied 

because it is accessible from living adults through lumbar puncture, making it more practical than 

obtaining brain tissue while still providing valuable neurological biomarkers that share important 

molecular signatures with the brain. Although plasma is more easily accessible than CSF, CSF 

directly interacts with the brain, which makes it vital for studying AD-related protein changes. This 

tissue specificity emphasizes the importance of analyzing CSF rather than plasma when investigating 

neurological diseases, as CSF provides a more accurate reflection of protein regulation in the central 

nervous system that cannot be adequately captured through peripheral blood measurements. 

Traditional PWAS assumes access to individual-level reference data, which has limitations. Individual-

level data is often restricted due to privacy concerns, requires complex data usage agreements, and 

typically has smaller sample sizes compared to summary statistics. Tools that process summary-level 

reference data are preferred to individual level data because summary data is more widely shared, has 
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a larger sample size and has fewer privacy concerns. To enable TWAS using summary-level reference 

data, Dai et al. (2022) developed a statistical approach called OTTERS to train prediction models 

through multiple Polygenic Risk Score (PRS) methods 24. PRS methods are statistical approaches that 

combine the effects of many genetic variants (SNPs) that were estimated by single variant GWAS to 

estimate a set of SNP effects for predicting a single score representing a predicted phenotype from 

genetics data. The PRS methods are used by OTTERS because both quantitative molecular traits such 

as gene expression and protein abundances can be considered as quantitative phenotypes.  

To leverage the advantages of summary-level data, OTTERS uses 4 methodological approaches to 

model the genetic architecture of molecular traits: (1) P-value Thresholding with linkage 

disequilibrium clumping (P+T) 25, 26, (2) the frequentist LASSO regression-based lassosum 27, (3) 

Bayesian multivariable regression with continuous shrinkage (PRS-CS)28, and (4) nonparametric 

Bayesian Dirichlet Regression 29 method (SDPR)30. These diverse methods account for different 

possible genetic architectures underlying the origin of gene expression or protein abundances. 

OTTERS culminates in an omnibus test that combines all the p-values for improved performance 

while protecting against inflated type 1 error. OTTERS is suitable for integrating summary-level 

xQTL data of quantitative molecular traits, such as gene expression and protein abundances, with 

GWAS summary data of complex phenotypes, for the purpose of detecting risk genes with their 

genetic effects mediated through the genetically regulated molecular traits 24, 31. 

 

In this study, we've adapted OTTERS for protein data analysis (PWAS instead of TWAS), using 

CSF pQTL data from19 to identify genes that influence Alzheimer's disease risk through related 

protein abundance. This is valuable because proteins are the functional units in cells and directly 

mediate biological processes. Proteins often correlate better with disease states than gene 
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expressions, as gene expressions don’t always translate to functional protein activity. Additionally, 

identifying causal proteins may provide more actionable therapeutic targets, and the CSF proteome 

is especially relevant for neurological disorders like Alzheimer's disease. 

By extending OTTERS from gene expression to protein abundance, we bridge the gap between 

genetic associations and biological mechanisms in Alzheimer's disease research. When we find 

genetic variants that influence proteins in CSF, we can identify proteins that are strong predictors of 

AD by mapping back to the genetic variants that predict their abundances and determining if these 

variants are associated with AD status in GWAS data. This approach has the potential to reveal 

novel protein targets for further investigation and potential therapeutic development. 
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CHAPTER 2: METHODS 

Data sources 

The CSF pQTL summary statistics came from Western et al. (2024)19. This dataset comprised 3,506 

individuals including 1,243 cognitively typical controls, 1,021 patients with late-onset Alzheimer's 

disease and 1,242 individuals with other neurodegenerative disorders. 

The Alzheimer's disease GWAS summary statistics came from Bellenguez et al. (2022)13, which 

contains genome-wide significant associations from the meta-analysis of 111,326 AD cases 

(including both clinically diagnosed and proxy cases) and 677,663 controls. 

 

Protein Selection and Processing 

For our analysis, we focused on 831 CSF proteins measured in the Western et al. study. We created 

an annotation file mapping each protein to its corresponding gene and genomic coordinates through 

a multi-step process. First, we matched protein identifiers (SOMASeqID format e.g. X10000.28) to 

their respective gene symbols. For proteins present in the ROSMAP (Religious Orders Study and 

Memory and Aging Project) dataset, we used their existing gene annotation file to obtain genomic 

coordinates. For the remaining proteins, we retrieved coordinates from the hg38 human reference 

genome annotation. We then filtered out genes on sex chromosomes to focus solely on autosomal 

chromosomes and created chromosome-specific annotation files for further analysis. 

Of the 831 proteins, we successfully processed 765 through our initial data extraction pipeline. The 

remaining 66 proteins were excluded because they didn’t exist in the Western et al. dataset. During 

the OTTERS analysis, an additional 24 proteins were excluded due to insufficient cis-SNPs for 

model convergence, resulting in 741 with valid statistical results. 
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Data Extraction and Preparation 

While OTTERS was originally designed for TWAS using eQTLs, we adapted the framework to 

perform a proteome-wide association test using pQTL data. From the original pQTL summary 

statistics, we extracted data for the 765 CSF proteins. For each protein, we identified cis-SNPs 

located within ±1 Mb of the annotated gene boundaries and formatted their effect sizes and sample 

sizes to match OTTERS file structures. We also extracted the corresponding SNPs from the 

Alzheimer's disease GWAS summary statistics reported by Bellenquez et al. (2024) 13 and formatted 

the data accordingly. Additionally, we obtained European ancestry linkage disequilibrium (LD) 

reference panels. These LD panels helped us account for correlation structures between genetic 

variants, which is important when combining multiple SNPs into a predictive score. Without 

accounting for the correlations, we would risk conflating the effects of variants with high LD, 

leading to biased results. 

 

OTTERS Two-Stage Analysis 

Our PWAS framework followed OTTERS’ two-stage approach outlined in Figure 1: 

In stage 1 (Estimating pQTL weights), we applied four different polygenic risk score methods to 

estimate cis-pQTL weights using our formatted pQTL summary data from CSF and the LD 

reference panel: (P-value Thresholding with LD clumping (P+T,) Frequentist lassosum, 

Nonparametric Bayesian SDPR, Bayesian PRS-CS). Each of these methods produced a separate set 

of weights that reflect how strongly each SNP within a gene influences corresponding protein 

abundance levels within the reference CSF. 

In stage 2 (association testing with AD) we used the pQTL weights from stage 1 to perform 

association testing with AD by combining the weights with the AD GWAS summary statistics. For 
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each protein and each PRS method, stage 2 produced a PWAS Z-score and corresponding p-value 

indicating the strength of association between the genetically regulated protein levels and AD risk. 

 

 

Figure 1. Overview of PWAS analysis using OTTERS framework 24. Stage I: OTTERS uses 4 PRS models to 
estimate pQTL weights based on cis-SNPs (±1 Mb) and CSF pQTL summary statistics. Stage II: OTTERS 
conducts association testing between genetically predicted protein abundance and AD risk using GWAS 
summary statistics. The method concludes with an omnibus test that combines p-values from all 4 PRS 
methods. 

 

Omnibus Testing with ACAT-O 

Since different PRS methods make different assumptions about genetic architecture, we used the 

Aggregated Cauchy Association Test (ACAT-O) to combine p-values from all four methods. Unlike 

methods that assume independence between tests, the ACAT-O accounts for potential correlations, 

using a Cauchy distribution for inference and borrowing strength across different models to increase 

statistical power while controlling type 1 error. 

This gave us a single omnibus p-value for each protein, which represented its overall association 

with AD. The ACAT-O output included both the combined p-value and the number of PRS 

methods that contributed valid p-values to the test. A method might not contribute a valid p-value if 

there were insufficient SNPs within the gene region or if the algorithm failed to reach a stable 

solution due to issues like high correlation between genetic variants. 
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Of the 765 proteins initially processed, 741 (97%) had valid results from at least one PRS method 

and were included in the final analysis. We applied Bonferroni correction to account for multiple 

testing, using a significance threshold of p<6.75E-5 (0.05/741) to control for type 1 errors.
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CHAPTER 3: RESULTS 

Of the 831 proteins in our annotation file, we successfully analyzed 741 using the OTTERS 

framework. From this analysis, we identified 13 proteins that were significantly associated with 

Alzheimer's disease after Bonferroni correction (p<6.75E-5) (Table 1). The most striking result was 

for Clusterin (CLU) (p = 3.30E-35), which showed a strong relationship with AD risk. 

 

Table 1. Summary statistics of ACAT-O p-values in CSF PWAS of Alzheimer's Disease. 

 

Out of the 13 significant proteins identified, the number of contributing PRS methods varied, as 

shown in Table 2. The most significant protein, Clusterin (CLU) (p = 3.30 E-35), had contributions 

from only 3 of the 4 possible methods, yet still achieved an extremely significant p-value, which 

highlights the strength of its association with AD. In contrast, proteins such as Interleukin-34 

(IL34), Leukocyte immunoglobulin-like receptor subfamily B member 1 (LILRB1), Granulins 

(GRN), Cathepsin H (CTSH), and Alpha-2-antiplasmin (SERPINF2) had contributions from 4 

methods, demonstrating more consistency. Proteins with contributions from fewer methods, such as 

Fructose-bisphosphate aldolase A (ALDOA), E3 ubiquitin-protein ligase RNF43 (RNF43), and 

Glypican-2 (GPC2) (each with 2 contributing methods), could represent cases where the genetic 
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architecture was unique enough to only be captured by the training method specifically tailored to 

detect such architecture. These differences in method contribution highlight the value of the 

omnibus approach, which can detect significant associations regardless of which specific methods 

best capture the underlying genetic architecture. 

 

Table 2. Proteins significantly associated with Alzheimer’s disease after Bonferroni corrections. 13 
proteins were identified using OTTERS framework with 4 PRS methods on CSF protein data. The 
rank is based on statistical significance, with p-value indicating the strength of association. “methods 
contributing” column shows how many PRS methods detected the protein’s association with AD. 
 

The Manhattan plot (Figure 2) illustrates the distribution of protein association across all 

chromosomes. There were clusters of significant proteins on chromosomes 16 (IL34, ALDOA), 17 

(RNF43, GRN, SERPINF2), and 19 (LILRB1, SIGLEC9, CD33), which contain known AD risk 

loci 13, 32-34. The extremely strong signal from Clusterin (CLU) on chromosome 8 also stands out. 
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Figure 2. Manhattan plot of -log10 PWAS p-values across 741 CSF proteins. Each point represents the 
omnibus p-value for a protein. The red dashed line indicates the Bonferroni significance threshold (p < 
6.75E-5). Thirteen proteins exceed this threshold and are labeled with their gene names. Clusterin (CLU) on 
chromosome 8 shows the strongest association (p = 3.30E-35). 

 

Several other proteins showed significant associations, including Interleukin-34 (IL34) (p = 7.19E-

09) and Fructose-bisphosphate aldolase A (ALDOA) (p = 7.49 E-09) on chromosome 16, and 

Epidermal growth factor receptor (EGFR) (p = 2.39E-07) on chromosome 7. The presence of 

multiple significant proteins on chromosome 19, where the APOE gene (strongest genetic risk 

factor for AD) is located, is also noteworthy 35-38. 

Of the 13 significant genes we identified, 10 have been previously associated with AD in previous 

studies: CLU, IL34, EGFR, GRN, CTSH, SIRPA, CD33, LILRB1, SERPINF2, and GPC2. 13, 32-34. 

Our findings further validate these genes’ association with AD risk. Our analysis also revealed three 

genes not previously highlighted in AD research ALDOA, RNF43, and SIGLEC9. These represent 
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potential biomarkers or therapeutic targets for AD. Particularly, ALDOA (p = 7.49E-09) on 

chromosome 16 showed a strong association and may represent a new pathway involved in AD 

pathology. 

The quantile-quantile (QQ) plot (Figure 3) shows some deviation of p-values from the expected 

distribution under the null hypothesis, which could result from polygenicity of AD 39. We will 

explore the use of variance-control methods to deal with this bias in future work. 

 
 
Figure 3. QQ plot of observed vs. expected p-values for protein-Alzheimer’s Disease associations. 
Significant proteins deviate above the expected distribution line with Clusterin (CLU showing the most 
extreme significance (-log10(p) ≈ 35). This pattern confirms true biological signals rather than systematic bias. 
Genomic inflation factor (λ) = 1.53. 

 

The strength and number of associations identified through the ACAT-O shows the advantage of 

integrating multiple statistical methods to capture the diverse genetic architectures underlying 
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protein regulation. By using 4 PRS methods through OTTERS, we were able to identify strong 

associations that might have been missed by using a single approach. 

More research can be done to characterize these proteins and understand their relationships to AD 

pathways. It would be useful to determine whether these proteins represent potential biomarkers or 

therapeutic targets for AD drugs in the future. 
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CHAPTER 4: DISCUSSION 

This study demonstrates the successful adaptation of OTTERS, a framework that was originally 

designed for TWAS studies, to perform PWAS studies using summary-level data. This study shows 

that OTTERS can be used to identify disease-associated proteins. This is valuable for studying 

diseases like Alzheimer's, where protein changes may directly reflect disease processes more than 

gene expression changes. Our successful identification of 13 significant proteins associated with AD 

validates the cross-platform application of OTTERS. 

An important advantage of OTTERS is the ability to use summary level data to find these 

associations. Summary-level data is much more widely accessible compared to individual-level data, 

due to privacy concerns. OTTERS allowed us to use pQTL data from Western et al. study that had 

3506 individuals and GWAS data from the comprehensive AD GWAS by 13 (111,326 cases and 

677,663 controls). These large sample sizes increase statistical power and improve the reliability of 

our findings. Additionally, summary level methods like OTTERS are more computationally efficient 

than methods that require individual-level data, as they avoid the need to store and process sensitive 

health information, while maintaining statistical power of large studies. However, a limitation to 

consider is that individual-level data allows for more flexibility with modeling approaches and allows 

exploration of trends that might be lost in summary statistics. 

Some other limitations to consider is that the SOMAscan platform used in the Western et al. study, 

while comprehensive, was not able to interrogate all the relevant CSF proteins for our analysis. 

Secondly, because our analysis focuses on genetic components of protein regulation, it might miss 

environmentally influenced protein changes that might be relevant to AD. Lastly, the use of the 

European ancestry population as the LD reference and for the GWAS data limits the ability to 

generalize our findings to other ancestral groups. 
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Our work opens the door to continuing research on the 13 identified proteins, which can produce 

insights into AD pathology. OTTERS can be applied to other neurodegenerative diseases or extend 

to different tissue/ protein types. Future improvements could include incorporating additional PRS 

methods to capture even more diverse genetic architectures and expanding into more diverse 

ancestral populations. Longitudinal studies examining how these protein associations relate to 

disease progression could also provide valuable insights. Finally, developing drug repurposing 

strategies targeting the identified proteins is a translational direction that could accelerate therapeutic 

development for Alzheimer's disease. By bridging the gap between genetic associations and protein-

level changes, our approach provides a framework to understand the biological structure of 

Alzheimer's disease and potentially other neurological diseases. 
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