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Abstract 

 
Analysis of Environmental Patterns and Leprosy in Minas Gerais, Brazil Using Spatial 

Statistics  
By Shaiana Oliveira 

 
 

Background: Brazil has the second highest number of new leprosy cases reported 
annually with the state of Minas Gerais (MG) having pockets of highly endemic leprosy. 
Transmission remains only partially understood, and in addition to a respiratory route, 
transmission may also be related to environmental conditions. Potentially viable 
Mycobacterium leprae has been found in water, soil, and armadillos.  
 
Objective: To investigate the role of the environment on transmission of leprosy, 
specifically, (1) elevation, (2) normalized difference vegetation index (NDVI), (3) 
temperature, and (4) precipitation. 
 
Methods: We conducted a cross-sectional study using Brazilian Notifiable Disease 
Surveillance System (SINAN) data in 853 municipalities in the state of Minas Gerais, 
Brazil from 2009 to 2013. Multivariable Poisson regression models were used to estimate 
the rate ratio (or incidence density ratio (IDR)) to compare incidence across 
municipalities. We then used spatial statistics (global autocorrelation, local indicator of 
spatial autocorrelation [LISA], Getis Ord Gi(d)* to analyze clustering of leprosy cases 
and incidence. 
 
Results: Overall incidence decreased from 8.76 per 100,000 in 2009 to 5.04/100,000 in 
2013 with the average municipality leprosy incidence at 7.11 per 100,000 annually. The 
local autocorrelation analysis identified 51 high-high clusters of leprosy incidence in the 
northeast and west of Minas Gerais. After controlling for clustering among all 
municipalities in Minas Gerais, temperature (IDR=1.76, 95% CI: 1.64, 1.89, p < 0.0001) 
and precipitation (IDR=1.06, 95% CI: 1.01, 1.12, p= 0.0201) were positively correlated 
with leprosy incidence, whereas elevation (IDR=0.53, 95% CI: 0.51, 0.55, p < 0.0001) 
was negatively correlated with leprosy incidence. NDVI (IDR= 0.98, 95% CI: 0.95, 1.00, 
p = 0.18) was negatively correlated with leprosy incidence, yet not significant. 
 
Conclusions: The associations between leprosy and environmental predictors, especially 
higher temperatures, indicate that the role of the environment and geographical 
conditions need to be considered in the context of disease transmission and viability of 
M. leprae in the environment, especially in the era of global warming and climate 
change. 
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A. Introduction 
Background 
 
 Leprosy is an ancient disease that has been around for many centuries and has 

been referenced in ancient Egyptian, Roman, and Greek writings (O'Brien & Malik, 

2017). Throughout history, leprosy was feared and misunderstood to the point that some 

believed it was a sinful and evil (Nations, Lira, & Catrib, 2009; O'Brien & Malik, 2017). 

Individuals who were diagnosed with the disease suffered from constant social stigma 

and were often excluded from society. Even though some of those outdated beliefs are no 

longer held today, patients with leprosy still suffer from social stigma.  

 A Norwegian scientist, Gerhard-Henrik Armauer Hansen, discovered that leprosy 

was caused by Mycobacterium leprae in 1873. This scientific discovery proved that the 

disease was not a sin or curse, but instead caused by bacteria. Today, leprosy is also 

known as Hansen’s disease (HD) to honor Hansen’s discovery, and to reduce social 

stigma (Gelber, 1993). The terms “leprosy” and “leper” had negative connotations and 

were associated with individuals that were excluded and shunned due to their physical 

disabilities caused by disease (Gelber, 1993; The Leprosy Mission, 2019). Lack of 

knowledge about disease treatment, diagnoses, and transmission perpetuated social 

stigma today. 

Hansen’s disease is a chronic disease that affects the skin and peripheral nerves 

which can cause permanent disability, deformities and social stigma (Barbosa et al., 

2018). Leprosy affect the nerves and mucous membrane leading to pale or red skin 

patches, dry skin, loss of sensation, numbness, muscle weakness, and facial lesions. If the 

disease is not treated immediately, the symptoms can escalate to debilitating symptoms, 
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such as paralysis, deformed limbs and blindness (Centers for Disease Control and 

Prevention, 2017, January 6). These disabilities and deformities may decrease the 

individual’s capacity to work, limit social life, and develop psychological problems 

(Ministério da Saúde do Brasil, 2016).  

Armauer Hansen’s scientific discovery was vital to understand the cause of the 

disease. Another fundamental development in leprosy control was the introduction of 

Multidrug Treatment (MDT) in 1980s, which rapidly became the standard form of 

treatment (The World Health Organization, 2019). Since the introduction of MDT, there 

have been significant improvements in health outcomes among leprosy patients and 

elimination of leprosy as a public health problem (< 1 / 10,000 population) was achieved 

in 2000 globally (The World Health Organization, 2016; White & Franco-Paredes, 2015). 

However, the use of MDT had a minimal impact on the effect of disease transmission, 

thus requiring further investigations into routes of transmission (Turankar et al., 2016). 

Efforts to eliminate leprosy are underway and the World Health Organization (WHO) 

developed a global strategy to reduce the burden of leprosy globally and locally. The 

2016-2020 Global Leprosy Strategy aims at achieving the goal by strengthening 

government ownership, to stop leprosy and its problems, especially discrimination (The 

World Health Organization, 2016).  

 Even though prevalence of leprosy has decreased since early 2000, it still remains 

a public health issue in poor and endemic in countries in the world (World Health 

Organization, 2018). The World Health Organization (WHO) reported an estimate of 

210,973 new cases of leprosy in countries around the world in 2017, where the majority 

of cases are concentrated in the Americas and Southeast Asia. Brazil, India and Indonesia 
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are responsible for 81% of the new cases (Barbosa et al., 2018), with approximately a 

total of 168,949 new cases in 2017 (World Health Organization, 2018).  

 Brazil has the second largest number of new cases of leprosy in the world, 

approximately 26,875 new cases and detection rate of 12.84/100,000 in 2017 (World 

Health Organization, 2018). The number of new cases decreased between 2005 and 2010 

from 38,410 new cases to 34,894 (World Health Organization, 2018). In response to the 

WHO’s call for leprosy control strategies, the Brazilian Ministry of Health (MoH) 

established guidelines for surveillance, assistance and the elimination of leprosy as a 

public health problem in Brazil (Ministério da Saúde do Brasil, 2016). Increasing our 

understanding on pathogen viability, transmission and the interaction between agent, host 

and environment is important in order to develop feasible control strategies. In Minas 

Gerais, Brazil leprosy is still a problem due the continuous transmission and proximity to 

hyper-endemic states (Murto et al., 2013; Sampaio, Rossi, Cerutti Junior, & Zandonade, 

2012).  

Leprosy is a neglected tropical disease (NTD) commonly found in tropical and 

subtropical regions. The pathogen, Mycobacterium leprae, is a bacillus that cannot 

develop and multiply outside the animal or human host, but it can remain viable for up to 

5 months in environment (Worobec, 2012). The bacteria is known for slow growth (about 

12-13 days) and long incubation period, ranging from 2-12 years (Rodrigues & 

Lockwood, 2011). Due to its long incubation period, it is challenging to understand its 

transmission and source of exposure to pathogen.  

 Scientists suggests that the pathogen is transmitted by (1) discharge of bacilli by 

airborne droplets from the nasal and mouth of individual harboring the bacteria 



 4 

(Turankar, Lavania, Singh, Siva Sai, & Jadhav, 2012); (2) skin-to-skin contact (Worobec, 

2012); and (3) possible contact with infected soil, water sources, and vectors (Arraes et 

al., 2017; Turankar et al., 2016; Worobec, 2012). The rate of infection by Mycobacterium 

leprae is much higher than the rate of development of symptoms, which suggests that 

there are other sources of infection besides direct contact to people diseased patient 

(Tadesse Argaw et al., 2006). Additionally, there are many studies highlighting the 

relationship of low socioeconomic status (SES) and leprosy (Cabral-Miranda, 

Chiaravalloti Neto, & Barrozo, 2014; Rodrigues & Lockwood, 2011). However, the exact 

transmission route of Mycobacterium leprae remains largely unknown.  

 Environmental factors have been hypothesized to play a role in the spread of 

leprosy. Since the main mode of transmission is still uncertain, it is hard to fully 

comprehend how the disease is spread. However, live bacilli have been found in the 

water sources, soil, and animals (Arraes et al., 2017; Turankar et al., 2016). A study 

conducted in Ceará, Brazil found viable M. leprae, as measured by RNA, in several 

natural water sources (Arraes et al., 2017). Similarly, M. leprae DNA was found in water 

sources used for bathing and washing in Indonesia (Matsuoka, Izumi, Budiawan, Nakata, 

& Saeki, 1999).   

 Furthermore, other studies highlighted that M. leprae was found in soil samples 

around homes of leprosy patients. Turankar et al. in 2016 detected dead and live M. 

leprae DNA and mRNA (which suggest live bacteria) of leprosy patients around patient’s 

home. There is possibility that the bacteria were found in soil near home of infected 

patients due to patient’s bodily excretions (Turankar et al., 2016). Thus, this suggests that 

the environment may also be involved in the transmission of disease, possible due to 
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aerosolization of the bacteria through soil of water after being contaminated by an 

infected individual.  

 Zoonotic transmission of M.leprae has also been described. In 2011, Truman et 

al. detected that armadillos and many leprosy patients in the gulf states of the United 

States share the same strain of M. leprae, leading to the discovery that armadillos are an 

important non-human reservoir for M. leprae (Truman et al., 2011). Furthermore, 

Domozych et al. (2016) continued to investigate the link between nine-banded armadillos 

and leprosy in Central Florida. Likewise, a study in Espírito Santo, Brazil confirmed the 

association of direct contact with armadillos and the incidence of leprosy, leading to the 

conclusion that direct contact with armadillos is a potential risk factor for contracting 

leprosy (Deps et al., 2008). In 2008, Lahiri et al. supported the hypothesis that free-living 

amoebae might facilitate the survival of the M. leprae in the environment (Lahiri & 

Krahenbuhl, 2008; Wheat et al., 2014). These findings support that there are 

environmental reservoirs of M. leprae.  

 Spatial analysis, conducted through the use of geospatial information systems 

(GIS), have been previously used to assess of risk factors for leprosy worldwide (Bakker, 

Scheelbeek, & Van Beers, 2009; Fischer, Pahan, Chowdhury, & Richardus, 2008; 

Queiroz et al., 2010). In the 2016-2020 Global Leprosy Strategy, the WHO recommends 

using GIS to strengthen surveillance and health information systems to assess secular 

time-trend and spatial analysis (The World Health Organization, 2016). Spatial analyses 

allow researchers to visualize patterns and trends within a certain geographic location to 

infer associations between disease and potential environmental predictors. In 2006, 

Tadesse et al. assessed the influence of environmental factors, such as NDVI, maximum 
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temperature, and climate, on prevalence of leprosy in Ethiopia (Tadesse Argaw et al., 

2006). The findings suggest that thermal-hydrologic regime of the environment is a vital 

factor in the transmission of leprosy due to the conditions that facilitates the viability of 

leprosy bacillus in the environment. However, there is a lack of literature aimed at 

understanding the role of geographical conditions that may facilitate or hinder the 

transmission of leprosy. Thus, it is important to analyze the temporal associations 

between weather patterns over time and disease incidence to investigate the effects of 

climate on these infections and inform how we understand the transmission of these 

infections. 

Purpose of Study 

 The purpose of this study was to conduct spatial analysis to examine the 

associations between environmental factors and incidence of leprosy in cases/100,000 

person-years. Specifically, we examined the role of elevation, vegetation, temperature, 

and precipitation on leprosy. The main aims of the study were to: 1) examine the 

clustering of total leprosy incidence in Minas Gerais, Brazil on a spatial scale to identify 

clusters with high incidence and hot-spots and 2) to identify environmental factors of 

leprosy incidence associated with increased incidence of leprosy.  

B. Methods 

Study Area, Population, and Design 

 The State of Minas Gerais is located in the southeastern part of the country, 

with a territorial extent of 586,520,732 km², and with a demographic density of 

33,41 habitants/km² (Instituto Brasileiro de Geografia e Estatística, 2018). Minas Gerais 

has 853 municipalities with a state population of approximately 21 million (Instituto 
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Brasileiro de Geografia e Estatística, 2018). New cases of leprosy are recorded by the 

Brazilian Notifiable Disease Surveillance System (Sistema de Informação de Agravos de 

Notificação – SINAN). The study population consisted of new incident cases of leprosy 

reported from 2009 to 2013 in inhabitants in Minas Gerais. We performed a cross-

sectional study using SINAN data, analyzing the association of new leprosy cases and 4 

environmental factors. To calculate municipality incidence, population data was obtained 

from the Brazilian Institute of Geography and Statistics (Instituto Brasileiro de Geografia 

e Estatística – IBGE) for 2009 - 2013.  

Descriptive Analysis 

 We performed descriptive analyses on leprosy count and incidence case data 

annually. We calculated HD incidence rates using estimated municipality population 

from 2009 through 2013. Population data from 2011 was not available for analysis. We 

averaged the estimated population from 2010 and 2012. We assumed municipality 

population size for 2011 was close to previous year population. Incidence was reported as 

a number of cases per 100,000 person-years. Maps representing incidence and number of 

cases over the years were created to visualize areas with high incidence and number of 

cases. Maps were created using SIRGAS 2000 UTM Zone 24S projection in ArcGIS 10.4 

(ESRI, 2011).  

Spatial Data Analysis 

 Spatial autocorrelation measures the effect of distance on the distribution of 

leprosy cases. According to Tobler’s first law of Geography, “everything is related to 

everything else, but near things are more related than distant things” (Tobler, 1970). We 

used spatial autocorrelation analysis to investigate geographic patterns of leprosy 
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distribution in the state of Minas Gerais. The distribution of leprosy is described as either 

dispersed, clustered, or random pattern within a specific area or space. Leprosy incidence 

rate and number of cases over 5 years were taken as the attribute value. In order to 

minimize the problem of small numbers that leads to statistical instability, we also 

computed a spatially empirical Bayes (SEB) incidence rate to smooth the differences 

between neighboring areas, thereby increasing the stability of the data (Waller & Gotway, 

2004). We conducted local and global spatial autocorrelations and Getis Ord G* (L. 

Anselin, 1995; D. A. Griffith, 2009; Getis & Ord, 1992). All spatial statistical analyses 

were performed using ArcGIS 10.1 by ESRI (ESRI, 2011), ClusterSeer 2.0 

(BioMedware, 2003), and GeoDa 1.12.1.161 (L. Anselin, Ibnu Syabri and Youngihn Kho 

2006).  

Global Autocorrelation  

 Spatial autocorrelation analysis measures the degree to which a location’s 

incidence is related to nearby locations. The null hypothesis states that there is complete 

randomness, therefore the leprosy rates are independent and randomly distributed among 

the municipalities in Minas Gerais. Spatial autocorrelation analysis was applied to 

analyze the patterns of leprosy distribution in all municipalities in Minas Gerais by 

calculating Moran’s I global indices using ClusterSeer 2.0 (BioMedware, 2003; D. A. 

Griffith, 2009). Global Moran’s Index assessed the spatial autocorrelation of 

municipalities locations and leprosy incidence rate over a 5-year period. Global Moran’s 

I ranges from -1 to +1, which I > 0 indicates a clustered pattern, I = 0 indicates a random 

pattern, and I < 0 indicates a dispersed pattern. The distribution pattern is determined by 

Z-value and the level of significance (p-value). Queen contiguity was used to build the 
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spatial weights, and significance was determined using at a 95% significance cutoff 

(p<0.05) with 999 repeated Monte Carlo (MC) simulations. In order to avoid the issue of 

“neighbor less areas”, we used a precision threshold of 0.0005.   

Local Spatial Autocorrelation  

 Local indicators of spatial autocorrelation (LISA) detects local spatial 

autocorrelation in group-level data (L. Anselin, 1995). Similar to the Global Moran test, 

the Local Moran’s Index is calculated for every municipality.  The Local Moran’s I 

identify local clusters and local spatial outliers. Local Moran’s I was conducted to test for 

local autocorrelation of incidence rates of leprosy using a queen contiguity to create the 

spatial weights in GeoDa 1.12.1.161 (L. Anselin, 1995; L. Anselin, Ibnu Syabri and 

Youngihn Kho 2006). Moran’s I values close to +1 indicate that a municipality and its 

neighbors have similar high or low incidence rate of leprosy, which is designated as a 

cluster. Moran’s values close to -1 indicate that municipality has neighbors with 

dissimilar incidence rates, which is considered an outlier. Significance was assessed with 

999 permutations and a p-value of 0.05 to identify clusters or outliers.  

Hot-Spot Analysis  

 Getis-Ord Gi* statistic identifies statistically significant hot-spots and cold-spots 

for each municipality (Getis & Ord, 1992). This function considers each municipality 

within the context of neighbors. Getis-Ord Gi* was performed with a queen contiguity 

weighting (and a precision threshold of 0.0005) to assess the study area for hot- and cold-

spots of leprosy incidence using GeoDa 1.12.1.161 (L. Anselin, Ibnu Syabri and 

Youngihn Kho 2006; Getis & Ord, 1992). The Getis-Ord Gi* statistic significantly 

separates hot-spots clusters from cold-spots clusters. To be a statistically significant hot-
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spot, a municipality will have a high value and be surrounded by other municipalities 

with high values.  Statistical significance was based on 999 permutations Monte Carlo 

randomizations to identify hot-spots and cold-spots.  

Environmental Predictors 

 Environmental predictors were identified from a review of relevant literature and 

were acquired from different sources (Table 1). The environmental factors selected for 

analysis were (1) elevation, (2) total precipitation, (3) maximum temperature, and (4) 

normalized difference vegetation index (NDVI) of state of Minas Gerais. These factors 

were analyzed for the association of new cases of leprosy in Minas Gerais, Brazil. We 

used zonal statistics to calculate the mean value by municipality for each predictor 

variable. All analyses were performed using the statistical software SAS 9.4 software.  

Elevation 

 The ASTER Global Digital Elevation Model (GDEM) was obtained from the 

online EarthData, courtesy of the NASA. ASTER GDEM is a product of METI and 

NASA. Ninety individual granules with 30-meter postings and 1 x 1 degree from the 

ASTER product were obtained. The digital elevation bands for each tile were extracted, 

mosaiced, and clipped to the extent of the state of Minas Gerais. The merged dem files 

were transformed into raster a file. The mean elevation for each municipality was 

extracted through zonal statistics. 

Precipitation and Temperature 

 Total precipitation and maximum temperature data were obtained from the 

National Institute of Meteorology (Instituto Nacional de Meterologia – INMET). We 

identified 36 local weather stations in the state of Minas Gerais and mapped them with 
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their corresponding latitude and longitude coordinates. The weather stations included the 

monthly precipitation in millimeter (mm) and maximum temperature in degrees Celsius 

from January 1, 2009 through December 31, 2013. We averaged the monthly 

precipitation in order to get the annual precipitation for the study period. The point 

locations of weather stations were added to ArcGIS and to be statistically analyzed.  

 We performed a kriging to interpolate unknown precipitation and temperature in 

other areas. The Kriging method uses a limited set of data points, in this case the weather 

stations, to interpolate the value of a variable over a specific spatial unit, precipitation and 

temperature in the state of Minas Gerais (Columbia University Mailman School of Public 

Health). We used the ordinary Kriging type that assumes that the data is stationary. The 

stationary assumptions states that the properties of the data are independent of the 

absolute location and direction in space (Henley, 2001). We excluded the missing values 

for weather stations that did not report precipitation for a year. We used the ordinary 

kriging type, hole effect to model the empirical semivariogram models. The interpolated 

annual precipitation and temperature were mapped for each year using ArcGIS 10.4. The 

average precipitation and temperature were extracted through zonal statistics per 

municipality. Temperature and precipitation were averaged over the 5-year period for the 

Poisson analysis.  

Normalized Difference Vegetation Index (NDVI) 

 NDVI is an indicator of density of green land within a specific region based on 

infrared wavelengths. The NDVI data was extracted from ("Climate Engine," 2019) using 

the Landsat 8 Surface Reflectance (SR). Landsat Remote Sensing 8 SR is a product of 

NASA/USGS. Fifty-eight 30-meters granules were downloaded to cover the extent of the 
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state of Minas Gerais from January 1, 2009 through December 31, 2013. The vegetation 

index granules were merged together through mosaic method to form one raster file 

clipped to the extent of the state of Minas Gerais. The mean NDVI was extracted through 

zonal statistics for each municipality.  

Poisson Regression Model 

 We assessed the relationship of leprosy incidence rates with selected 

environmental predictors by using a model selection approach. Leprosy incidence over 5 

years is the outcome of interest for Poisson regression analysis. The best model was 

selected based on the lowest Akaike information criterion (AIC) value. Multicollinearity 

among the predictors was evaluated from scatterplots and the correlation coefficient r 

values.  

 We performed a generalized estimating equations (GEE) Poisson regression 

models using SAS 9.4 software, where the logarithm of the number of new leprosy cases 

reported in each municipality was modelled as a function of leprosy incidence with the 

logarithm of each municipality population as an offset. We controlled for any differences 

among municipalities by using the random intercept to account for municipality level 

clustering. The incidence density ratio per 100,000 person-years was calculated to 

understand the correlation of leprosy incidence with independent variables in the model.  

C. Results 

Study Population 

 Minas Gerais consists of 853 municipalities with an average population estimate 

of 20 million (Figure 1).  Population size varied based on municipalities, ranging from 

807 to 2,452,617. From 2009-2013, a total of 7,794 leprosy cases were reported in Minas 
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Gerais. The number cases during the study period ranged from 0 to 141. Number of cases 

declined with each passing year. In 2009 there were 1,876 reported cases over the course 

of the year. In 2010 there were 1,629 cases, in 2011 there were 1,556 leprosy cases, 

followed by 1,481 cases in 2012, and 1,252 cases in 2013.  The mean number of new 

cases per year over 5 years was 1.82 leprosy cases, with a standard deviation (SD) of 7.54 

per municipality (Table 2).  

 From 2009-2013, the mean leprosy incidence rate was 7.11 per 100,000 

inhabitants, with a SD of 18.39. The average annual incidence rate also decreased from 

2009 to 2013, from 8.76 per 100,000 people to 5.04/100,000, respectively. The incidence 

rates across municipalities ranged from 0 to a maximum incidence of 384.04 

cases/100,000 person-year. The distribution of the data was strongly right-skewed, 

according to the histogram generated in SAS 9.4. Figure 2 portrays the incidence rate 

over 5 years, with the mean incidence and standard deviation. The leprosy incidence rate 

and the smoothed rate for each year is described in Table 2.  

Spatial Data Statistics 

Global Autocorrelation Analysis 

 The results of the global spatial autocorrelation analysis for each year are 

presented in Table 3. The Global Moran’s Index revealed a positive and statistically 

significant autocorrelation of leprosy incidence for each year. From 2009 to 2013, the 

Moran’s I value under Monte Carlo simulation was 0.447 with a p-value of 0.002, and 

thus suggested spatial dependence of leprosy in Minas Gerais.  
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Local Autocorrelation Analysis  

 Results of the Local Moran’s Index are displayed in a LISA cluster map for each 

year (Figure 3) and Table 4. Interactions are categorized as high leprosy incidence next to 

high leprosy incidence (high-high), and low incidence next to low incidence (low-low). 

Outliers are identified as high-low and low-high regions. All clusters noted in the cluster 

map are significant at p = 0.05. The number of municipalities that were categorized as 

high-high cluster cores were the highest (n=43) in 2011, followed by 2013 with 39 high-

high municipalities. Likewise, the year with the highest number of low-low cluster cores 

were also in 2011. Across the years, most of the high-high municipalities considered 

cluster cores were commonly located in the northeastern part of the state. However, in 

2011 some newly high-high significant municipalities were found on the western part of 

Minas Gerais. Most of the low-low municipalities were found in the southern part of the 

state. 

 Fifty-one municipalities were identified with a high-high clustering were 

primarily located in the Northwest and East of the state from 2009-2013 total incidence 

(Figure 4). Low-low clustering was identified in 122 municipalities scattered around 

Minas Gerais, primarily in the Southeast. We highlighted 11 low-high and 5 high-low 

outliers, where municipalities with low and high incidence occurred next to 

municipalities with high and low incidence respectively. Municipalities without 

significant clustering (n=664) were also portrayed in the map (Figure 4).  

Hot-Spot Analysis  

 We performed a hot-spot analysis with the Getis-Ord Gi* statistic for each year 

(Figure 5). The number of hot-spot municipalities for leprosy incidence were the highest 
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(n=65) in 2012 (Table 5). Similar to the local autocorrelation analysis, most of the hot-

spots clusters were located in the Northwest and East of the state over the 5-year period, 

while the cold-spot were found in the southern of Minas Gerais. Sixty-two municipalities 

were considered a hot-spots and 135 were cold-spots with a 95% (p <0.05) confidence 

over a 5-year period (Figure 6). These hot-spots suggested municipalities where higher 

incidence than expected was occurring.  

Environmental Predictors 

Elevation 

 Higher elevation is commonly located in the middle and southern parts of the 

state, while lower elevation is normally found on the eastern part of the state (Figure 7a). 

The mean elevation for the state of Minas Gerais was 759.83 meters, ranging from as low 

as 198 meters to a maximum of 1,566 meters (Table 6). The lowest elevation was at 12 

meters for the Aimorés municipality, which borders the state of Espírito Santo. The 

municipality with the highest average elevation was Alto Caparaó, with an approximate 

elevation of 2,827 meters above sea level. The mean elevation was normally distributed.  

NDVI 

 Vegetation index ranges from -1 to +1, which means that +1 represents most 

dense vegetation while -1 indicates the least dense vegetation area. More vegetation was 

located along the eastern part of the state, where the Atlantic forest is found (Figure 7b). 

The mean vegetation index for the Minas Gerais was 0.59 units, with a SD of 0.07 

ranging from 0.28 to 0.75 (Table 6).   
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Total Precipitation  

 The total annual precipitation distribution was left-skewed. The mean total 

precipitation was 114.21 millimeters, with a standard deviation of 25.07 (Table 6). 

Minimum precipitation ranged from 40.55 mm to 165.05 precipitation.  Across all years, 

most of the rainfall was in the southern part of the state, with a decrease in precipitation 

during in 2012 (Figure 8). The highest level of precipitation occurred in 2009, followed 

by 2013, 2011, 2010, and 2012, respectively. There was a total decrease of precipitation 

from 2009 to 2012 of 26% of total precipitation. 

Maximum Temperature 

 The average maximum temperature was 27.22 degrees Celsius, with a SD = 3.04 

(Table 6). The distribution of temperature was left-skewed according to histogram 

created in SAS 9.4 software. The lowest maximum temperature was 13.53 degrees 

Celsius, with the highest maximum temperature at 31.95 degrees. From 2009 to 2013, the 

lowest maximum temperature occurred in the southern part of the state (Figure 9). The 

highest temperatures occurred in 2009 and the lowest temperature being reported in 2013, 

with a decrease of 19%, respectively.  

Poisson Regression Model 

 After checking for multicollinearity and the lowest AIC value, the model with the 

lowest AIC only included NDVI and elevation. Since we are interested in the climatic 

variations of the environment, temperature and precipitation variables were kept in the 

model as the difference in the models based on the AIC was < 2. Therefore, none of the 

variables were excluded from the model. The selected model was created at the aggregate 

level for leprosy incidence as the outcome with 4 main predictors: (1) mean maximum 
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temperature in degrees Celsius, (2) mean total precipitation in millimeters (mm), (3) 

elevation (meters), and (4) vegetation index (near-infrared light). 

 After controlling for clustering among all municipalities in Minas Gerais, 

temperature (IDR=1.76, 95% CI: 1.64, 1.89, p= <0.0001) and precipitation (IDR=1.06, 

95% CI: 1.01, 1.12, p= 0.0201) were positively correlated with leprosy incidence. 

Elevation (IDR=0.53, 95% CI: 0.51, 0.55, p < 0.0001) was negatively correlated with 

leprosy incidence. NDVI (IDR= 0.98, 95% CI: 0.95, 1.00, p = 0.18) was negatively 

correlated with leprosy incidence, yet not significant. (Table 7).  

D. Discussion 

 Our findings illustrate the clustering of endemic regions in Minas Gerais located 

in the northeast and west regions from 2009 to 2013. Our study suggests that there is a 

relationship between leprosy and the environment, specifically, that higher temperatures 

and rainfall were found to be correlated with leprosy cases, while elevation and NDVI 

were found to be associated with lower disease rates. With the knowledge gaps in 

transmission routes, our study focused on the role of geographical factors that may affect 

disease transmission. Our results support the role of climate and geographic conditions in 

enabling a transmissible environmental reservoir of bacteria. 

 We found that higher temperatures were correlated with the leprosy cases. 

Evidence supports that increase or change in climatic temperatures and patterns has the 

potential of impacting many infectious diseases (Short, Caminade, & Thomas, 2017), 

especially vector-borne diseases such as zika, chikungunya, dengue, and yellow fever that 

are currently endemic in some regions in Brazil (Nava, Shimabukuro, Chmura, & Luz, 

2017). Similarly, increased temperatures may suggest optimum survival of bacteria. 
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Previous studies found that M. leprae multiplies best at temperatures ranging from 27 – 

30 degrees Celsius (Shepard, 1965). Climatic change can influence ecology of vectors 

directly, as well as urbanization and deforestation of areas that may indirectly impact the 

burden of disease. Even though leprosy transmission is poorly understood, it’s imperative 

to consider the impact of increased temperature related to climate change on the 

incidence of leprosy. 

 Likewise, higher precipitation was correlated with leprosy incidence. Previous 

studies supported that M. leprae was found in water sources, such as dams, rivers, lakes, 

wells, and streams (Arraes et al., 2017) in the northeast of Brazil. In India, M. leprae 

bacilli was found in wells and sewers in areas considered endemic (Mohanty et al., 2016).  

Furthermore, the bacteria have been found in damp and wet soils, which probably 

impacts the longevity of bacteria in the environment (Turankar et al., 2012; Turankar et 

al., 2018). During the rainy season, humidity increases and makes the soil damp and wet, 

where the bacteria can survive.   

 Higher leprosy incidence was correlated with lower elevation and vegetation 

index. Elevation determines the water drainage system. Due to drainage systems, 

concentrations of water from rain or runoffs are commonly found in lower elevations. 

Elevated lands tend to have plants and vegetation that are affected by colder temperatures 

and demands less water, thus impacting plant growth. Plants at higher elevation have 

smaller leaves that affects the density of green plants, leading to a lower vegetation index 

(Borges et al., 2016). Also, NDVI was negatively correlated with leprosy, indicating that 

the higher the vegetation index, the lower the leprosy incidence. NDVI can be considered 

a marker of people living farther apart, because uninhabited areas tend to have higher 
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NDVI. Also, vegetation index was lower in urban areas, such as in the city Belo 

Horizonte.  These findings highlight the importance to investigate the role of land use and 

deforestation on leprosy incidence. Since deforested lands have lower vegetation, it 

seems reasonable to explore it further.  

 Myriad social and economic variables have been identified as potential risk 

factors in contracting leprosy, such as poverty, education, inadequate sanitation, and 

illiteracy rates (Cabral-Miranda et al., 2014; Freitas, Duarte, & Garcia, 2014). Similarly, 

food shortage as an indicator of poverty was also associated with leprosy (Feenstra, 

Nahar, Pahan, Oskam, & Richardus, 2011). These factors likely all contribute to different 

aspects of transmission or host susceptibility, but our findings and prior studies suggest 

that the environment could be a real contributor to the spread. This is further supported 

by the published literature where evidence of M. leprae DNA and RNA has been found in 

soil, water, and free-living amoeba (Arraes et al., 2017; Turankar et al., 2016; Wheat et 

al., 2014).  

 One limitation of our study is the inconsistency in the calculated incidence rates. 

Leprosy is a rare disease with a long incubation period, thus underreporting is expected. 

Incidence rates calculated only take into consideration the detected new cases of disease 

from 2009 to 2013. Another limitation relates to the raw incidence rate in spatial analysis. 

The raw incidence rates can lead to statistical instability in showing the risk of a rare 

disease or when the population in a municipality is small. We were able to address this 

issue by spatial empirical Bayes (SEB) to smooth the incidence rate. Another important 

limitation is the difficulty in establishing temporarily on a cross-sectional study between 
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the independent and dependent variable, where sometimes the independent variable may 

be a consequence of the dependent variable.  

 In the present study social and economic factors were not included in the analysis, 

although we tried to account for any differences among municipalities by using the 

random intercept to account for municipality level clustering. Previous studies have 

suggested that poverty, education illiteracy rates are correlated with leprosy. Therefore, 

these factors, may have confounded the results. However, sometimes an ecological study 

is important to identify areas where further work specific studies can be done. Future 

studies need to consider the influence of social and environmental factors that main 

impact the incidence of leprosy. Furthermore, future studies should focus on the influence 

of increased temperature and deforestation on leprosy.  

 This study was one of the first ever, and first in Brazil, to study the associations of 

climatic, elevation and vegetation cover with leprosy incidence addressing a critical 

knowledge gap regarding the role of the environment in the manifestation of leprosy 

cases in Minas Gerais. We emphasize the importance to certain geographical and climatic 

conditions that may influence leprosy transmission. We also suggest the importance of 

considering social and economic factors in area considered endemic. Lastly, there is 

enough evidence that catastrophic environmental changes will occur due to climate 

change that has the potential of intensifying health outcomes, especially transmission of 

infectious diseases, among vulnerable populations.  
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Appendix 
 
Table 1. Data sources of environmental data used for the analysis. 
Parameter Time Scale Source 
Elevation (meters) Time invariant United States Geological Survey 

(USGS), ASTER GDEM 
Normalized Difference 
Vegetation Index 
(NDVI) 

January 1, 2009- 
December 31, 2013 

Climate Engine 

Precipitation 
(millimeters) 

Monthly and yearly 
(2009-2013) 

National Institute of Meteorology 
(INMET) 

Temperature (degrees 
Celsius) 

Monthly and yearly 
(2009-2013) 

National Institute of Meteorology 
(INMET) 

 
 
 
 
Table 2. Descriptive Characteristics of Hansen’s Disease Cases and Incidence in Minas 
Gerais, 2009-2013 (N=7,794) 
Year Cases N 

(Mean) Raw Incidence Rate Smoothed Incidence 
Rate 

2009 1,876 (2.19) 8.76 11.36 
2010 1,629 (1.90) 7.88 9.90 
2011 1,556(1.83) 7.31 9.07 
2012 1,481(1.72) 6.57 8.28 
2013 1,252 (1.46) 5.05 6.76 
Mean (SD) 1,555.2 (225.51) 7.11(18.40) 9.07(4.63) 

 
 
 
 
Table 3. Global spatial autocorrelation analysis of leprosy incidence rate in Minas 
Gerais.  
Year Global Moran’s I Z score p-value Distribution Pattern 
2009 0.221 10.959 0.002 Clustered 
2010 0.362 17.886 0.002 Clustered 
2011 0.267 13.232 0.002 Clustered 
2012 0.245 12.120 0.002 Clustered 
2013 0.297 14.687 0.002 Clustered 
2009-
2013 0.447 22.057 0.002 Clustered 
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Table 4. Number of municipalities that were cluster cores detected by local indicator of 
spatial autocorrelation (LISA) of leprosy incidence rate in Minas Gerais  
 High-High Low-Low Low-

High 
High-Low Not significant 

2009 33 29 19 6 766 
2010 37 35 18 4 759 
2011 43 39 17 12 742 
2012 39 28 26 13 747 
2013 24 17 20 8 784 
2009-2013 51 122 11 5 664 

 
 
Table 5. Number of municipalities considered hot- and cold-spot detected by Getis-Ord 
Gi*) of leprosy incidence per year 
 Hot-spot (95%) Cold-spot (95%)  Not Significant 
2009 52 112 689 
2010 56 106 691 
2011 59 127 667 
2012 65 113 675 
2013 46 150 657 
2009-2013 62 133 658 

 
 
Table 6. Characteristics of environmental predictors  
 Mean Min Max SD 
Elevation 759.84 198.81 1,566.28 240.15 
Temperature 27.22 13.53 31.95 3.04 
Precipitation 114.21 40.55 165.05 25.07 
NDVI 0.59 0.28 0.75 0.07 

 
 
Table 7. Raw Incidence Rate Poisson Regression Incidence Density Ratio (IDR) 
 Incidence Density Ratio 95% CI p-value 
Temperature 1.76 1.64, 1.89 <0.001* 
Precipitation  1.06 1.01, 1.12 0.0201* 
NDVI 0.98 0.95, 1.00 0.1763 
Elevation 0.53 0.51, 0.55 <0.001* 

*Statistically significant (p <0.05).  
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Figure 1. 853 municipalities in Minas Gerais 
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Figure 2. Total leprosy incidence over 5-years with mean and standard deviational 
ellipse values displayed to show incidence distribution 
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Figure 3. Local indicators of spatial association (LISA) of incidence of leprosy/100,000 
person-years for each year 
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Figure 4. Local indicators of spatial association (LISA) of total incidence of 
leprosy/100,000 person-years over 5 years (2009-2013) 
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Figure 5. Hot-spot and Cold-spot analysis (Getis Ord G*) of Leprosy Incidence for each 
year 
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Figure 6. Hot-spot and Cold-spot analysis (Getis Ord G*) of Leprosy Incidence over 5 
years 

 
Figure 6: Hot-spot and Cold-spot analysis of total incidence of leprosy/100,000 person-
years using the Getis-Ord Gi* statistic with queen contiguity using GeoDa 1.12.1.161. 
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Figure 7. Elevation and Normalized Difference Vegetation Index for Minas Gerais 

 
Figure 7. Elevation and NDVI in Minas Gerais.  
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Figure 8. Total Annual Precipitation (mm) over 5-year study period in Minas Gerais  

 
Figure 8. Total precipitation (mm) in Minas Gerais from 2009 to 2013.  
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Figure 9. Maximum Temperature (Celsius) over 5-year study period in Minas Gerais 

 
Figure 9. Maximum temperature (Celsius) in Minas Gerais from 2009 to 2013.  


