
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Thomas J. Przybylinski Date

New Insights Into the Similarity and Difference of Propositional Models Via Symmetry

By

Thomas J. Przybylinski
Doctor of Philosophy

Computer Science and Informatics

James Lu, Ph.D.
Advisor

Michelangelo Grigni, Ph.D.
Committee Member

Li Xiong, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the Graduate School

Date

New Insights Into the Similarity and Difference of Propositional Models Via Symmetry

By

Thomas J. Przybylinski
Ph.D., Emory University, 2015

Advisor: James Lu, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the Graduate School

of Emory University in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
in Computer Science and Informatics

2015

Abstract

New Insights Into the Similarity and Difference of Propositional Models Via Symmetry
By Thomas J. Przybylinski

Recently, there has been an increased interest in finding diverse solutions to
propositional formula. Modern SAT solvers are capable of producing a large
number of models very efficiently. However, this can result in an overwhelm-
ing number of nearly indistinguishable results. Hence, finding a general way
to discount most of these variants and leaving a semantically diverse set of
solutions is an important problem. Historically, diversity techniques con-
centrated on distance, while uniform sampling and global symmetries have
been put forward as diversity concepts.

No work in this area has closely examined diversity in general nor ex-
amined when their concepts return inferior results. In this dissertation we
closely examine different notions of diversity, and show that existing crite-
ria are lacking in different ways. We present a structure for unifying and
combining previous notions of diversity, and study their relative power to
discriminate solutions.

We then consider two new notions of diversity: local symmetry and
constructive symmetry, that we show to be more intuitively satisfying. We
analyze theoretical and computational properties, and present different al-
gorithms. A comprehensive set of experiments are presented to explore
different strategies.

New Insights Into the Similarity and Difference of Propositional Models Via Symmetry

By

Thomas J. Przybylinski
Ph.D., Emory University, 2015

Advisor: James Lu, Ph.D.

A dissertation submitted to the Faculty of the Graduate School
of Emory University in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Informatics
2015

Contents

1 Introduction 1

2 Technical Background and Related Work 3
2.1 Propositional Logic . 3

2.2 Isomorphims, Symmetry, and Automorphisms 4

2.3 Background Work . 5

2.3.1 Diversity . 5

2.3.2 Local Symmetry . 6

2.4 Diverse Models and Data Mining 7

3 Augmenting Symmetry 9
3.1 Generalizing Diversity . 9

3.1.1 Diversity Graphs . 10

3.1.2 Symmetry-Aware Distance 12

3.2 Calculating Symmetry . 14

3.2.1 JAUNTY . 14

3.2.2 Internal Representation 16

3.2.3 Refinement . 18

3.2.4 Pruning . 19

4 Local Symmetry 20
4.1 Local Symmetry Diversity . 20

4.1.1 Introduction . 20

4.1.2 Computational Properties 24

4.2 Algorithms . 30

4.2.1 Complete Offline Local Symmetries 30

4.2.2 Other Algorithms . 39

4.3 Comparing Discrimination . 53

5 Constructive Symmetry 64
5.1 Introduction . 64

5.2 Constructive Symmetry Properties 66

5.3 A General Algorithm . 69

5.4 Improving Constructive Symmetry 71

5.4.1 Restricting Choices . 71

5.4.2 Shallow Approximation 73

5.5 Results . 74

6 Discussion 80
6.1 Overview of Completed Work 80

6.2 Future Work . 83

6.2.1 Link Analysis . 83

6.2.2 Complete Symmetry . 84

6.2.3 Over-estimating Symmetry 85

6.3 Conclusion . 86

Bibliography 87

List of Figures

3.1 The solutions for 3 Coloring a 3-Path 13

3.2 Diverse Sets using Global symmetry with and without distance. . . 13

4.1 12 Asymmetric 8 Queens Solutions 21

4.2 Similarity of Asymmetric 8-Queens. L1 andR1 are globally asymmetric

but similar boards. L2 and R2 are 7x7 sub-boards of L1 and R1 that are

180 degree rotations of each other. 22

4.3 3 Locally Asymmetric 8 Queens Solutions 22

4.4 Maximal representative solutions to the 4 × 4 All-Squares prob-

lem: Set 1 is a set of global asymmetric solutions, set 2 is a set of

local asymmetric solutions. 23

4.5 Diverse set ratios for 1000 100-var random 3-SAT problems. 24

4.6 Algorithm MILE∗ . 33

4.7 Performance of MILE* and Deep Local Symmetry SCP on ran-

dom sets of models . 38

4.8 Algorithm Agree . 39

4.9 Algorithm Online. 41

4.10 Percent Symmetries For Random 3-SAT problems After Remov-

ing Redundant Information on Various Clause/Variable ratios . . . 46

4.11 Comparing breaking and no breaking to obtain up to 100 mod-

els with 1000 second timeout. All use syntax breaking and non-

deterministic phase selection, except as noted. 49

4.12 Speed in logscale milliseconds, and percentage of locally asym-

metric pairs in maximal diverse sets over problems of increasing

size. 50

4.13 A Diverse Set Created With DGS 60

4.14 A Diverse Set Created With Agreement Symmetry 61

5.1 The 4 × 4 All-Rectangles problem: Set 1 is a diverse set of so-

lutions based on local symmetry, set 2 is based on constructive

equivalence. 65

5.2 Computed diverse set for the 5 × 5 All-Filled-Squares problem

using positive choices . 72

6.1 Most unusual and characteristic ways to 3-coloring a path based

on local symmetry. All other examples are globally symmetric to

these. 84

1

Chapter 1

Introduction

Understanding similarities and differences between objects helps humans classify

information and manage complexity. Science has created numerous taxonomies

to describe the relationship between a host of entities through a number of mea-

sures. Similarity and diversity is often used for inference in qualitative logic. This

inference tells us a set of similar objects should have many properties in common,

while a set of dissimilar objects should have relatively few properties in common.

Hence, if X is similar to Y, then any given property of X is more likely to also

pertain to Y than if X and Y were dissimilar.

A set of objects that are the very diverse from each other exhibit the greatest

number of distinct properties from the fewest possible number of objects. For

example, when buying a car we would want to start by browsing a variety of cars.

If we only looked at SUVs, we may never know that a compact car could meet our

requirements. Moreover, similarity is useful when searching for good alternatives

to some object. If we found a compact car we liked, but was too expensive, it

would typically be a better use of time to look at similar cars (perhaps ones with

fewer features) than to consider SUVs again.

A set of mutually dissimilar objects is called a diverse set, while a set of mutually

similar objects is called a similar set. Similarity and dissimilarity are dual notions,

2

so it is typically easy to convert an algorithm that finds a diverse set to one that

finds a similar set.

Our focus is on the diversity of objects encoded as equal-length binary data,

equivalently solutions (or models) of propositional formula. Propositional logic is

a reasonable basis for the study of diversity because of its simplicity and univer-

sality. There is no noise or missing data to handle, and it is expressive enough to

represent all the problems in the class NP.

Solving a propositional formula is the SAT, or satisfiability problem. SAT is

NP-Complete, which means there is no known efficient algorithm to solve it in

general. However, most applications have structure that can be exploited for ef-

ficiency. One of the largest advances in the last 10-15 years is the tremendous

progress in improving SAT solvers to utilize this structure effectively. However,

most model finding programs generate an overwhelming number of nearly indis-

tinguishable results; finding a general way to discount most of these variants and

leaving a semantically diverse set of solutions is an important problem.

In this dissertation we closely examine different notions of diversity. While

no one measure is definitively better than any other, we will argue that existing

criteria are lacking and develop more substantial tools that are theoretically and

intuitively satisfying.

3

Chapter 2

Technical Background and Related
Work

2.1 Propositional Logic

Let V be the set of propositional variables (or variables). Without loss of general-

ity, we assume V to be the first n natural numbers. The set of literals, L, consists

of variables and their negations. A clause is a set of literals, and a theory (or a

formula) is a set of clauses. While most work on symmetry focuses on theories

in conjunctive normal form, where clauses represent disjunctions and theories are

conjunctions of clauses, it is straightforward to apply our discussions to the dual

representation: disjunctive normal form.

A partial interpretation (PI) I is a function in V → {0, 1,⊥}, where ⊥, 0

and 1 denote ”undefined”, ”false” and ”true”, respectively. An interpretation (or

assignment) is a PI with all variables defined. Two PI’s are consistent if they agree

on the truth values of all variables that are defined in both. We denote by I the set

of all 3n PIs.

A PI I may be equivalently represented as a set of literals: {v|I(v) = 1} ∪
{−v|I(v) = 0}. The set of all PIs I forms a join-semilattice where the join of

4

I1, I2 ∈ I is I1∩I2. The meet may not exist since the union of two PIs that contain

complementary literals is not a valid PI. PIs I1, I2 are siblings if |I1| = |I2|.
PIs are extended to clauses and theories in the usual ways. An assignment that

assigns true to a theory is a model of the theory. A theory is satisfiable if it has at

least one model, a contradiction otherwise.

2.2 Isomorphims, Symmetry, and Automorphisms

An isomorphism θ of a set of models M is a permutation on L that satisfies

θ(M) = M and θ(x) = −y ↔ θ(−x) = y. Suppose I is a PI. Then the set

of models of M that are consistent with I is denoted MI . Moreover, the local

symmetries associated with I , ΘI , is the set of all isomorphisms of MI , which

forms a permutation group. As a special case, a symmetry θ is global if θ ∈ Θ{}.

Computing the end result of two or more permutations is called composition, de-

noted θ ◦ σ, so that (θ ◦ σ)(x) = θ(σ(x)). We will also denote composition with

× so that (σ × θ)(x) = θ(σ(x)).

Other than local and global symmetry, there are other important classes of sym-

metries [15, 7]. Solution or semantic symmetry is symmetry on the full set of

models (of the underlying theory), while constraint, or syntactic symmetry is sym-

metry on the formula used to find the models. There is also a notion of literal vs

clause symmetry, which act on literals and clauses, respectively.

Finding symmetries of logical theories is polytime reducible to finding the auto-

morphisms of a graph [17]. An elegant approach is found in [2]. Although there

can be many automorphisms, one can store far fewer by using a set of generators

where every automorphism can be described as a composition of the generators.

Symmetry problems are interesting from a complexity standpoint. They are

among the few problems that are known to be in NP , but they have also not

been shown to be NP-Complete or in P. There are software packages that can find

automorphisms and their generators very quickly in practice including nauty and

5

Traces[35, 36], saucy[32, 33], and bliss [30, 31].

2.3 Background Work

2.3.1 Diversity

The first study of diversity in SAT is by Bailleux and Marquis[6] in 1999. In

dynamic or incompletely specified systems, a given solution can conflict with new

observational data. When a conflict occurs, it is desirable to find a new solution

that is as close as possible to the original solution. This problem is encoded as

a new problem, Distance-SAT, which asks if there is a model that has at most d

differences with some PI I .

In 2002, Crescenzi and Rossi[18] introduced the problem of finding two models

of a boolean formula that have maximum hamming distance. This is equivalent

to finding the most diverse set of size 2. In 2005 Angelsmark and Thapper[4]

presented an algorithm that was faster in the worst case.

Hebrard et. al.[26] studied distance-based similarity and diversity in case-based

reasoning and recommender systems. In this study they look at general well-

behaved distance functions and find algorithms and complexity of many types of

similarity and diversity problems. The important distinction between offline and

online algorithms was introduced. Offline algorithms are computed on the set

of solutions, and online algorithms computed diversity at the same time as the

solutions. In 2007 Hebrard, O’Sullivan and Walsh [27] explore this further by

creating and analyzing a distance-based algebra.

Eiter et. al studied similar problems in the related field of answer set program-

ming [19, 20], especially in regard to phylogeny reconstruction.

Since then, the intersection of SAT and diversity has been concentrated on hard-

ware applications. In particular it looks at SAT-based semi-formal hardware verifi-

cation. Here, a propositional formula represents the workings of hardware subject

6

to constraints. For example, we may want a sequence of hardware states that will

fill a queue, and so the models are all the ways the hardware could get to such a

state. Optimally, all models would be tested for bugs but doing so is intractable.

Therefore, a diverse set of models would maximize the coverage of the tests.

Up until now, diversity has measured using distance, typically hamming dis-

tance. This is the approach that Nadel[37] takes. Alternatives include uniform

sampling, such as the work by Chakraborty et. al.[14, 13]. Jackson et. al.[29]

use a symmetry-based approach that tries to enumerate the partitions formed from

global symmetry in a uniform manner to enumerate different hardware architec-

ture designs.

2.3.2 Local Symmetry

The intersection of SAT and symmetry has been primarily focused on the effi-

ciency aspects of solving propositional formula. This idea was introduced by

Krishnamurthy[34] by augmenting resolution with symmetries. The breakout pa-

per for such ideas was from Crawford[17] who showed how to find the symmetries

of first-order logical formula through a polynomial reduction to the graph auto-

morphism problem, for which reasonable algorithms already existed. Using sym-

metry, Benhamou and Sais[10] were able to show the unsatisfiability of Ramsey’s

problem on 17 vertices and three colors. The application of symmetry to reduce

computation time remained complicated until Crawford et. al[16] introduced the

idea of symmetry breaking clauses. These clauses, if fully implemented, would

remove all but the lexicographically largest model from each global symmetry

partition. Aloul, with others, improved practicality of these techniques [2, 1, 3].

Among the improvements are: showing that breaking on generators is often ef-

fective, developing a representation that use only a linear number of symmetry-

breaking clauses, and showing how to reduce the number of symmetry breaking

clauses further by removing redundant clauses.

7

Relatively little work was done on local symmetries. Arai and Urquhart [5]

showed that augmenting resolution using local symmetry can still lead to expo-

nential proofs. On the other hand, Benhamou with others [9, 8] investigates sev-

eral procedures to prune SAT branches using local symmetry.

There has also been symmetry work for CSPs in general, including work by

Benhamou[7], Gent with others [22, 23, 24], and Walsh[39, 38, 40]

2.4 Diverse Models and Data Mining

Finding diverse models has some relation to the field of Data Mining (also known

as knowledge discovery from data, or KDD) and its closely related field machine

learning (ML). The goal of data mining is to find interesting patterns in (poten-

tially large amounts of) data. With respect to KDD or ML, our work falls into

the area of unsupervised learningas we are attempting to find properties of a set

of models (diversity or similarity) without having any labeled examples of what

such models look like.

But this work deviates from KDD and ML in some important ways. The use of

proposition logic ensures full information: there is no noisy or missing data. Still,

insights can be gained by comparing our approach with approaches from KDD

and ML such as clustering.

Distance Data mining utilizes a range of similarity and dissimilarity measures

when comparing data[25]. For binary data these include a normalized hamming

distance, as well as an alternation that ignores matches where both data is false.

When comparing vectors of numeric data, the most common measures are theLp
norms, where d(x, y) = p

√
|x1 − y1|p + |x2 − y2|p + . . .+ |xk − yk|p. Famous

examples are Manhattan distance (p = 1) and Euclidian distance (p = 2). Other

measures violate the triangle inequality but are still useful, such as cosine dissim-

ilarity, where the angle between the vectors is computed. None of these measures

8

are inherently superior to any other, the correct measure to use depends on the

context. For example Euclidian distance is the most useful for determining the

distance between objects in space, but is not as good as cosine dissimilarity when

comparing documents using word frequency.

Occasionally more advanced methods are needed to correctly compare data,

such as dynamic time warping[11] from the speech recognition community for

time series data. Spellcheckers make use of specialized edit distance metrics to

suggest likely corrections. These approaches take into account structural infor-

mation to achieve better results for their particular problems. We will also be

using the structural information encoded in propositional models and formula to

implement more discerning measures of diversity.

9

Chapter 3

Augmenting Symmetry

Each measure of diversity considered in the literature has strengths and weak-

nesses, and it may be useful to consider their effects when combined. In this

chapter, we present a general model of diversity that can capture all published

concepts of diversity. This leads to a method of combining distance and sym-

metry into a diversity measure that surpasses a naive combination. We will then

investigate computational concerns related to calculating symmetries for sets of

models, and introduce the software system used to address these concerns.

3.1 Generalizing Diversity

Generic distance measures consider diversity syntactically; they are oblivious to

the meaning of the models. More specialized distance functions may model the

structure of problems more closely, but require specific analysis. Similarly, global

symmetry can take into account semantic differences, but is unable to distinguish

similarities between models that have a similar, but not identical, structure. Since

the weakness of one is the strength of another, this suggests it can be useful to

combine them to create an overall stronger notion of diversity.

To illustrate, take a simple example of coloring a path. Suppose m1, m2 are

10

two colorings that differ on the color of exactly one node. Let θ denote a permu-

tation on the set of colors that “rotates” the colors (i.e., maps color i to (i + 1)

mod p where p the number of colors). Clearly, m1,m2, θ(m1) and θ(m2) are all

structurally similar.

One common distance metric for binary data is Hamming distance, calculated

as the number of variables that disagree on their assignments. This is the distance

that all previous work on SAT diversity used. However, its relation to the actual

structural diversity of the problem can be quite limited. Event though m1 and

θ(m1) are structurally identical, the difference being the colors we chose, accord-

ing to Hamming distance these two models are the furthest possible since they

disagree on the color of every node.

Since θ is a global symmetry, m1 and θ(m1) are similar, but m1 and m2 are not.

Global symmetry is restricted to discovering structural identities, not similarities,

so even a minor change can drastically change the similarity between two mod-

els. Even worse, sometimes there is no nontrivial global symmetry at all, just the

identity.

Intuitively, any notion of similarity should consider m1,m2, θ(m1) and θ(m2)

to be mutually similar. We can combine Hamming distance and global symmetry

to do this, but it requires some post-processing.

If we just combine them naively, then the combination would determine that m1

is similar to θ(m1) and also m2, but it could not determine that m1 is similar to

θ(m2) since they are not globally symmetric, and will agree on the assignment of

at most one variable.

3.1.1 Diversity Graphs

To create a more sophisticated combination, we require a structure that allows

us to incorporate symmetry and distance together. Let M be the set of all mod-

els. Given a weighted graph G = (M,E), a function of weighted graphs to

11

unweighted graphs ρ s.t ρ(G) = H where H = (M,E ′). We call (G,H, ρ) a

diversity family. Here, G represents some numerical evaluation of pairwise diver-

sity, and ρ specifies which pairs should be considered diverse by evaluating G to

create H , which consists of two nodes are connected by and edge if and only if

they are considered diverse. Then a diverse set of this family is any independent

set of H .

This provides a very flexible but complicated framework for diversity. To sim-

plify, we observe that any (G,H, ρ) can be replaced with another diversity family

(G′, H, ρ′) where the edges of G have real weights ≥ 0, and ρ is simply a thresh-

old function. Then m1,m2 is an edge in H if and only if the the edge exists in G

and it has weight ≥ k for some k determined by our choice of ρ′. This transfor-

mation could be implemented by enforcing G′ to have the same edge structure as

H , except we set every edge to a constant weight k and set ρ′ to keep edges ≥ k.

By allowing only non-negative weights we achieve greater salience in our graph.

An edge of weight 0 represents two models that are identical. Larger weights

represent increased dissimilarity, and the lack of an edge corresponds to an edge

of infinite weight: two models that are completely dissimilar.

This allows the removal of ρ and H from our structure. What is left is G, which

we call a diversity graph. Diverse sets can then be found through direct algo-

rithms.

Definition. A set S ⊆ M of models is a k-threshold independent set if no pair in

S has an edge with weight ≤ k.

Definition. A k-threshold independent set of a diversity graph is called a k-diverse

set or simply k-diverse. If the k is implicit, unimportant, or obvious, we will call

such a set a diverse set or just diverse.

How we choose to construct this set can also have applications to diversity. At-

tempting to find candidates using uniform sampling on a graph with no edges

corresponds to the diversity suggested by Chakraborthy et. al. and Jackson et.

al.’s diversity concept is fulfilled by a diversity graph whose edges come from

12

global symmetry. So a symmetry graph can encompass all published notions of

diversity, requisite on a particular diversity graph and a particular algorithm to

find a k-threshold independent set.

We will often label our diversity graphs based on what information is used to

construct them. For example, a graph whose edges correspond to distance is called

a distance graph, while a graph where there are only edges between symmetric

models is known as a symmetry graph. Greater specificity can be used when

needed, e.g. a distance graph that uses Hamming distance is known as a Hamming

distance graph.

One interesting choice is the weight of the edges of a symmetry graph. Should

they be 0, representing identity, or should they be some small ε since even though

they have the same structure, they are not precisely equal? We take the latter

approach., which is especially important for local symmetry diversity.

This graph has numerous applications, and many existing applications are easily

understood in this context. This also suggests more sophisticated analyses, such

as link analysis and graph centrality (e.g., PageRank), to find characteristic or

unusual models.

3.1.2 Symmetry-Aware Distance

Now that we have an approach that deals with symmetry and distance equally,

we can describe how to combine distance and symmetry to create a synergistic

approach to diversity.

The naive combination is setting the edge weight to be the minimum of the

edge weight in the distance and symmetry graphs. Recall our models for the path

coloring problem. For all but the most lax thresholds, no diverse set will ever

contain more than two of {m1,m2, θ(m1), θ(m2)}.
Recall that m1 and θ(m2) have no symmetry together and have a large distance,

and so are among the most dissimilar models in our combined graph. The problem

13

Figure 3.1: The solutions for 3 Coloring a 3-Path

Without distance With Distance

Figure 3.2: Diverse Sets using Global symmetry with and without distance.

is edge weights to not directly tell us that m1 is very similar to m2, which is

structurally identical to θ(m2).

This suggests a general property for diversity: if objects a and b are very sim-

ilar, and objects b and c are very similar, than objects a and c should not be too

dissimilar. This idea applied to distance is the triangle inequality.

To be more concrete consider 3-coloring an n-path. The twelve solutions for

3-path are shown in Figure 3.1. The purple is color 1, yellow is color 2, and cyan

is color 3.

Figure 3.2 shows diverse sets created with global symmetry only, and with

global symmetry naively combined with distance. Adding distance has made the

set more diverse by giving the second model a different appearance even though

structurally they are exactly the same.

We are able to use the information already in the graph to perform a more so-

phisticated collusion. The logic to show that m1 and θ(m2) are similar is directly

encoded as a path from one to the other. The path that goes from m1 to m2 to

θ(m2) traverses a total distance of 1 + ε, representing an extremely similar con-

nection. A new diversity graph is created from the combined graph by making the

14

weight between two nodes be the shortest path distance between the nodes in the

combined graph. No diverse set generated from this graph will ever contain more

than a single model in {m1,m2, θ(m1), θ(m2)}, as desired.

Our shortest-path graph is a distance graph since it passes all the necessary prop-

erties. This new distance is symmetry-aware and uniquely computed for each set

of models. In addition, finding globally symmetric models and shortest paths

are relatively fast operations, making this procedure a good first-cut at diversity.

Indeed, the merits of combining distance and symmetry will go beyond global

symmetry.

3.2 Calculating Symmetry

An important procedure in our work is one that calculates the symmetries of

clausal formula. We implemented several software packages that can solve this

problem in the form of a graph automorphism but there are cases where this trans-

formation is detrimental to the speed of the symmetry calculations. For example,

when converting a formula to a graph there must be a node for every clause. In

some cases there could be many more models than there are literals (in the worst

case, exponentially more). This extra burden can be costly.

The size and structure of the formula will be significantly different for local

symmetry, and there will be times when it is necessary to call the symmetry find-

ing procedure over a million times within several minutes, so we need a tool that

performs well under all circumstances and with minimal overhead.

3.2.1 JAUNTY

We introduce JAUNTY, a propositional logic toolkit. It was originally written

to quickly iterate through prototype knowledge compilation techniques but has

grown into a 45,000 line general-purpose propositional logic tool. This allows us

15

to use a single API and structure to perform all the procedures necessary to run

all of our tests. It also minimizes unnecessary copying and reduces the latency

required to run symmetry calculations.

Propositional Logic Functionality JAUNTY is capable of representing arbi-

trary propositional formula, and can transform them into equivalent NNF, DNF

or CNF form. There are also simplified formula for fast CNF and DNF usage.

Extending these are specialized classes to handle important functions, such as

verifying symmetries and obtaining sub-formula when applying PIs. It is able to

solve SAT problems within its own code, but it also integrates the SAT4J solver

to iterate through models for us.

It is capable of loading and saving clausal formula in the DIMACs format, and

has an extensive library of classes that can be used to generate formula of partic-

ular types. Many of these classes can also generate graphics that represent each

solution. Graphiz is used to generate graph-based output.

Symmetry Functionality The most popular automorphism algorithm for SAT

formula is saucy [32], which was built specifically to solve the kinds of sparse

graphs that are typically created from real-word CNF formula. However, sets

of models have different structure than most CNF formula. The derived graph

is more dense since every model contains |V | literals. The ratio of models to

variables may also be larger.

When computing local symmetry, many PIs assign many variables, so relatively

small subsets of M will typically be be found. The local symmetries of less re-

strictive PIs are also related to the local symmetries of their supersets. Given

I ⊂ I ′, if θ is a local symmetry of I and θ(I ′) = I ′ — θ is a set stabilizer of I ′—

then we know that θ is also a local symmetry of I ′.

To take full advantage of these properties, JAUNTY implements a symmetry

finding algorithm heavily based off of saucy. Among the key differences is that

16

JAUNTY finds the symmetries of clausal representations (e.g. CNF or DNF)

without turning them into graphs as an intermediate step. JAUNTY can return

all permutations, or just generators, and can be told to find only permutations that

meet certain parameters or even be told to stop finding permutations once some

user-created property is achieved. JAUNTY is programmed with flexibility in

mind rather than pure speed. For example, being written in Java means that it is

the only symmetry finding program we know of that should be able to run on mul-

tiple platforms without needing recompiling. Since optimization is a secondary

concern, there are certainly cases, such as computing only global symmetry for

the largest CNF instances, where SAUCY or BLISS would be a preferable choice.

When it finds a symmetry, it uses a callback mechanism similar to the one found

in BLISS to allow the user to handle it arbitrarily. An important difference is that

the callback function returns a boolean that tells the symmetry finding algorithm

whether it should stop trying to find symmetries or not. So for example, if we

wanted to compute if if some CNF formula has a non-trivial isomorphism, the

program can stop as soon as it finds one instead of waiting for it to find all of

them.

Some necessary restrictions are hard coded, such as requiring θ(x) = −y ↔
θ(y) = −x. We also employ techniques from Butler[12] to use a set of known

symmetries to avoid searching for them. Finding a set stabilizer group is at least

as hard as finding an automorphism group, so for I ⊂ I ′, we will only input the

generators of the subgroup of symmetries of I that fix every literal of I ′.

3.2.2 Internal Representation

The most notable feature of saucy is its use of ordered partition pairs (OPPs),

which are indexed pairs of partitions that keep track of which nodes can be validly

mapped to other nodes. The search occurs by choosing an element of a ”top”

partition and force it to map to a node in the ”bottom.” JAUNTY also represents

17

intermediate permutations using using an Ordered Partitions Pair.

An ordered partition π = [W1] [W2] . . . [Wm] of V is an ordered list of non-

empty subsets that form a partition of V . The subsets Wi are called the cells of

the partition. An Ordered partition is unit if it consists of exactly one cell, and

discrete if every elements of v is in a distinct cell. An ordered partition pair Π

can be denoted

Π =

[
πT

πB

]
=

[
T1|T2| . . . |Tm
B1|B2| . . . |Bk

]
with πT and πB referring to the top and bottom, respectively. An OPP is isomor-

phic if the top and bottom have the same number of cells, and |Ti| = |Bi| for all

integers i, 1 ≤ i ≤ m, otherwise it is non-isomorphic. An OPP is discrete (resp.

unit) if its top and bottom partitions are discrete (resp. unit).

If an OPP is isomorphic, we can think of it as encoding a set of potential permu-

tations, in particular those that send each element of Ti to some unique element

of Bi for all integers i, 1 ≤ i ≤ m. Hence, a unit OPP represents Sym(V) while

a discrete OPP represents a single permutation. Non-isomorphic OPPs represent

the empty set, because it is not possible to find a permutation in such an OPP.

For a more in-depth survey of how OPPs are used, see Katebi et. al.[32]. A

search tree is created by taking a single top element eT of some cell Ti, and then

for each element eB of corresponding cell Bi, create a new branch with the new

OPP being created by removing eT and eB and from their cells and placing them

in new corresponding unit cells. So for example, if Π =

[
0, 1, 2

0, 1, 2

]
, then if

eT = 0 and eb = 1, our resulting OPP is Π =

[
0|1, 2
1|0, 2

]
, and the permutations

it represents is {(0, 1), (0, 1, 2)}. The meaning of this is “element 0 is mapped to

element 1.” This step is performed recursively until it results in a unit OPP. The

only change between this and what JAUNTY does is that when we map literal x

to literal y we also map ¬x to ¬y at the same time.

18

3.2.3 Refinement

An important technique that speeds up the search is called refinement. The formal

idea for the graph automorphism problem is that for each pair of elements in a

single cell of ordered partition π, they must be neighbors to the same number of

elements in every cell of π. Otherwise, they need to be split into different cells,

since there is no way they can map to the same set of nodes. Refinement can be

done on the top and bottom separately and if the resulting OPP is non-isomorphic,

we can stop the recursive search. A related complication is that the adjacency

frequencies should be isomorphic for every pair of top and bottom cells. As such,

it is often useful to refine the top and bottom simultaneously[33].

Refinement is essential for efficient algorithms, but it is a time-consuming pro-

cess and is typically the bottleneck of automorphism algorithms. Models can

vastly outnumber literals, which means much unnecessary time can be spent on

performing refinement on the clausal nodes. Since representing clausal symme-

tries is unnecessary, given that they are side-effects of the variable symmetries,

we choose to compute symmetries using the variable representation without trans-

forming it first into a graph.

A key difference between JAUNTY and saucy is when comparing the frequen-

cies of literals x and y, the frequencies of the literals ¬x and ¬y also have to be

equal. Two literals as considered ”neighbors” if they exist in the same clause. If

they coexist in more than one clause, this frequency is used during refinement.

The information can be easily stored in a 2|V | × 2|V | matrix, so the only time we

need to work with the formula is when verifying that a generated permutation is

indeed a symmetry – an infrequent occurrence.

Since we will also need to find symmetries on typical CNF instances with many

variables, that matrix can be much too large. So there is also a sparse version of

refinement that works more nicely on typical CNF instances. Through effective

use of data structures we are able to compute refinements on very large problems

very quickly.

19

3.2.4 Pruning

Using OPPs, SAUCY incorporates a number of pruning techniques: coset prun-

ing, Orbit pruning, Matching OPP pruning, and Non-isomorphic OPP pruning.

We have already discussed non-isomorphic OPP pruning since it is so closely

tied to refinement. Coset and Orbit pruning is important for finding generators,

and JAUNTY uses a form of Orbit pruning. Coset and Orbit pruning are group-

theoretic techniques, a full discussion is beyond the scope of this dissertation.

However, they are important because they allow us to find a set of irreducible

generators, so the space the output takes up is logarithmic to the to the total num-

ber of symmetries. Matching OPP pruning is a pruning technique where certain

OPPs allow the identification of an automorphism without checking the rest of the

sub-tree.

In our sparse version, these are augmented with some additional pruning. Given

some clause C, it is finished if every literal in C belongs to a cell of size 1 in

the current OPP. Every time a new unit cell is created, the formula is checked for

finished clauses. If there are duplicate clauses we count the number of each type.

If a finished clause, when permuted using our current partial permutation, does

not exist in the original formula or does not exist with the proper frequency, then

this branch of the search tree will never give us a valid permutation and can be

pruned prune. We keep track of which clauses are finished using a watched literal

strategy, but since all literals need to be permuted for a clause to be finished only

a single watched literal per clause is required. So such a mechanism to be highly

scalable. This procedure also guarantees that once we come to a unit OPP in our

search, it is a valid symmetry.

With JAUNTY’s flexibility and low latency, we are able to perform tens of thou-

sands of symmetry calculations efficiently on formula with millions of clauses and

tens of thousands of variables.

20

Chapter 4

Local Symmetry

4.1 Local Symmetry Diversity

4.1.1 Introduction

We present a novel notion of diversity based on local symmetry, which is able to

discover deeper structural properties than global symmetry. Consider, for exam-

ple, the 8-queens problem: place 8 queens on an 8x8 chess board in such a way

that no two queens are positioned in the same row, column, or diagonal. The 92

distinct solutions to the 8-Queens problem can be represented by 12 asymmetric

solutions. Every one of the 92 solutions maps to one of the 12 representatives

through rotation or reflection. Twelve “representatives”, one from each set, are

shown in figure 4.1.

But a closer inspection of the 12 solutions reveals that, despite their asymmetry,

there are still pairs that share very similar patterns. Consider Figure 4.2. It shows

two globally asymmetric solutions of the 8-Queens problem in L1 and R1, their

structures are very similar. They share a common queen in the lower-left corner

(LLC). In its absence, the two 7x7 sub-boards, L2 and R2, formed by removing

the row and column that contain the LLC are simply 180 degree rotations of each

21

Figure 4.1: 12 Asymmetric 8 Queens Solutions

22

L1 R1 L2 R2

Figure 4.2: Similarity of Asymmetric 8-Queens. L1 and R1 are globally asymmetric but

similar boards. L2 and R2 are 7x7 sub-boards of L1 and R1 that are 180 degree rotations

of each other.

Figure 4.3: 3 Locally Asymmetric 8 Queens Solutions

other. There are two other globally symmetric solutions with a queen in the LLC:

by a diagonal flip of L1 and R1. These four boards, which are the only solutions

where there is a queen in the LLC, illustrate conditional/local symmetry: Once

we fix a queen in the LLC, all other solutions are “essentially” the same.

This difference goes beyond global symmetry into local symmetry. By consider-

ing local symmetry, a diverse set of solutions of the 8-Queens problem is shown in

4.3. As we would hope, there appears to be little in common among these boards.

A simple problem we call N×N All-Squares is especially useful for presenting

the strengths of local symmetry. Given an N ×N grid of monochrome pixels on

a plane: the color of each pixel is associated with a propositional variable being

false (white) or true (black). Models are grids where the black pixels form the

outline of a single square. Global symmetry only considers rotation and reflec-

tion. Squares of the same size but positioned differently on the plane are thus

23

(set 1) (set 2)

Figure 4.4: Maximal representative solutions to the 4 × 4 All-Squares problem:

Set 1 is a set of global asymmetric solutions, set 2 is a set of local asymmetric

solutions.

asymmetric. Under conditions that require certain pixels to be of a given color,

same-sized squares would be locally symmetric. In other words, local symmetry

can ”discover” translational symmetry in this case. Figure 4.4 illustrates maximal

representative sets of asymmetric solutions for the 4x4 All-Squares problem. It is

hard to see how generic distance measures such as hamming distance could differ-

entiate these cases in a similar way. Uniform random sampling is also not helpful

since the number of squares of different sizes can be drastically different. There

are N2 1× 1 squares, while there is only a single N ×N square.

Although symmetry diversity aims to address diversity by accounting for the

semantics of the problem, local symmetry diversity appears to capture diversity

even for problems with no inherent semantics, such as random 3-SAT at the phase

transition. For such unstructured problems, a natural way of modeling diversity is

through clustering — we call r-diversity.

Given a set of models S and r > 0 (the radius), let Clust(S, r) be a partitioning

of S where two models are in the same partition if their Hamming distance is less

than or equal to r.1 This forms a partition of similar models much in the same way

global symmetry partitions a given set of models. Then, if a subset of S consists

1This is a simplification of clustering algorithm DBScan [21].

24

1 5 9 13 17 21 25 29 33 37 41 45

0

0.2

0.4

0.6

0.8

1

1.2
Symmetry Random

Radius

M
ea

n
R

at
io

Figure 4.5: Diverse set ratios for 1000 100-var random 3-SAT problems.

of a random sample of models, one from each cluster, then it is r-diverse.

Local symmetry diversity mimics r-diversity for random 3-SAT well. The solid

line of Figure 4.5 shows the percentage of local symmetry diverse sets (as com-

puted through the online, approximate algorithm described in this paper) that con-

tain a subset that is r-diverse. Randomly selecting the same number of points

gives far less resemblance, as shown in the dashed line. The clusters in random

3-SAT have disparate sizes, making it unlikely that uniform sampling will find a

representative of a small cluster. These results show the ability of local symmetry

to discover structure in any set of models, even for random problems.

4.1.2 Computational Properties

The first step is to compute the local symmetry graph for a set of models M .

This involves finding all pairs of models that are locally symmetric. The deci-

sion variant of the problem, we call locally symmetric models (LSM) is, given

m1,m2 ∈ M , whether there is a local symmetry that maps m1 to m2. Whether a

local symmetry θ maps m1 to m2 is polynomial-time verifiable and hence LSM is

in NP. It is at least as hard as the Graph Isomorphism problem (GI).

25

If we restrict the PIs of LSM by disallowing those that contain certain literals,

then LSM is NP-Complete. We call this problem LSM with Restrictions or LSM-

R, and show a reduction from the subgraph isomorphism problem: Given graphs

G and H , return whether a subgraph of G is isomorphic to H .

A variable represents a node of a graph, and there is an additional variable g

that we use to denote membership of edges in graph G. Our restriction allows

only PIs that contains no literals belonging to H . For compactness, we will not

portray the models’ negative literals. For every edge e = {n1, n2}, we add a

model {n1, n2, g} if the edge is in G and {n1, n2} if it is in H . Lastly, we add

m1 = {g} m2 = {}. For nontrivial graphs, this requires g to map to ¬g, which

forces edges of G to edges of H . Since our restriction only allows us to remove

nodes of G (by having a PI with literal ¬n), there is a local symmetry if and only

if some induced subgraph of G is isomorphic to H . We thus derive the following.

Lemma 4.1. LSM-R is NP-Complete.

Agreement and Graph Structure

The agreement of two modelsm1,m2 ism1∩m2, denoted α(m1,m2). The models

consistent with α(m1,m2), Mα(m1,m2), is called the agreement set of m1,m2. An

agreement symmetry (with respect to m1 and m2) is a symmetry of Mα(m1,m2).

The diversity graph of agreement symmetry is called an agreement graph. In

all, there are O(|M |2) agreements over M , which is exponentially smaller than

the size of I. Suppose m1,m2 ∈ M . If there is no other model m3 for which

α(m1,m2) ⊆ α(m1,m3), then m1 is said to have maximal agreement with m2 in

M .

Lemma 4.2. Given M , if m1 has maximal agreement with m2, then Mα(m1,m2) =

{m1,m2}.

If there were more than 2 distinct models, then there is a literal that is contained

26

in two models but is not contained in at least one other model. Hence, the agree-

ment of those two models is a superset of α(m1,m2).

Theorem 4.3. For any nontrivial set of models M , the agreement graph is con-

nected.

For any pair of models m1,m2, they either have maximal agreement and are triv-

ially symmetric by mapping like literals to like literals, or we can find a model

m3 ∈Mα(m1,m2) where m2 and m3 have maximal agreement and reduce the prob-

lem to showing m1 and m3 are connected.

As the agreement graph is connected there are at least |M | − 1 edges. Hence

each model is similar to at least one other model. Since agreement symmetries

form a subset of local symmetries, these results hold for them as well.

Corollary 4.4. The diversity graph of full local symmetry is connected.

We can actually make several stronger statements about the connectivity of an

agreement symmetry graph. For example, not just the graph, but also every sub-

graph induced by a partial interpretation is connected.

Theorem 4.5. A model m1, of a set of models M , |M | ≥ 3 can have a single

neighbor only if it has an assignment of variable v that is unique

Proof. Let m2 be a neightbor of m1 Let D = m1 − m2 If there exists some

D′ ⊆ D that is non-empty, and there exists a distinct model m3 that is consistent

with D′, there must be a path from m1 to m3 of models consistent with D′. Since

m2 disagrees with every literal of D, m2 cannot be part of that path. So the only

way for m1 to not have a different neighbor is if every other model disagrees with

every individual literal of D, hence at least one assignment of some variable must

be unique.

A naive reading of this would imply that there are at most |V | models with

a single neighbor, when we give every model a single variable with a unique

27

variable assignment. However, such construction actually has much symmetry,

since every pair will agree on the assignment on all but two variables (let us call

them a, b), we can then map the assignments from one model to the other either

through a phase shift ((a − a)(b − b)), or through simple swaps ((a b)), which

has the same effect.

This graph can be modified to obtain the minimum number of edges. First we

will break the symmetry of a single pair, and then generalize it to the entire set.

WLOG, say that every variable of every model is assigned false except for their

single uniquely-valued variable, so m1 assigns a true and m2 assigns b true. If

we add a model m3 that assigns all variables to negative, then it is part of the

Mα(m1,m2) as well. Therefore, we cannot permute m1 to m2 via phase shift sym-

metries since that would force m3 to assign a and b true, an assignment that is not

a model. Next, we split b into two equivalent variables, b1 and b2. Both of these

variables have a unique assignment on m2, and it also keeps us from permuting

a and b through a swap. So m1 and m2 are not symmetric in this partial inter-

pretations, and there is no other agreement set that contains both of them. How-

ever, they are both connected to m3. The introduction of m3 will eliminate all

agreement phase shift symmetries between the previously existing models, while

splitting every variable into a unique number of equivalent variables will remove

all existing swaps. So the only model that any (indeed every) model is symmetric

to is m3. This is a tree, so there are exactly |M | − 1 edges, proving our bound

is tight. However, there are only
√
|V | models of degree one: the tightest bound

which we are aware of.

This construction relies on the existence of equivalent variables. If we remove

equivalent variables, the agreement graph will provably more dense. Equivalent

variables can be easily found and removed when we have the set of models. This

simplification can also be performed on a CNF formula, but this requires O(|V |2)

NP-Complete operations.

Theorem 4.6. On graphs with 3 or more nodes, when no literal is equivalent to

28

any other literal there can only be a single vertex of degree 1

Proof. . Assume m1, m2 both have degree 1. We know they are not adjacent

because the graph is connected. WLOG there are variables v1 and v2 that are

positive in m1 and m2, respectively and negative everywhere else. Let m3 be the

model adjacent to m1, we know that m1 − m3, is simply v1, since an additional

variable would either be equivalent to v1 or require m1 to have degree > 1 due to

Theorem 4.5. This is also true for m2 and m3. This means that m2 and m3 must

disagree on ONLY v1 and v2. Then we know that Mα(m1,m2) = {m1,m2,m3}
and there is a local symmetry from m1 to m2 by mapping v1 to v2 and vice versa,

making each have degree 2, contrary to our assumption.

Hence, when there are no equivalent literals we would expect to find a much

denser agreement graph.

Pruning Properties

We identify several properties useful for reducing the number of partial interpre-

tations for which symmetry needs to be computed.

Canonical Partial Interpretations. Given a PI I , the fixed literals of I , σ(I), are

literals, not in I , that appear in every model of MI . The fixed extension of I , I∗,

is the union I ∪ σ(I). We say that I is canonical if I = I∗.

Example 4.7. Suppose

M = {{1, 2, 3}, {1,−2, 3}, {−1, 2, 3}, {−1,−2,−3}}

Given I2 and I9 of Example 4.12, MI2 = {{1, 2, 3}, {1,−2, 3}} = MI9 , σ(I2) =

{3} and I∗2 = {1, 3} = I∗9 . In other words, I9 is canonical, I2 is not, and I9 is the

fixed extension of I2. 2

The following is immediate.

Lemma 4.8. MI = MI∗ for any I ∈ I.

29

It follows that ΘI = ΘI∗; to compute the diversity graph, it suffices to compute

only symmetries of canonical PIs.

Cardinality. A PI I has the non-unit property if |MI | > 1. Any PI without the

non-unit property does not contribute to the diversity graph since no interesting

symmetry exists for unit (or the empty) sets. Hence, we may omit from consider-

ation all such PIs. Note that all agreements are canonical and non-unit.

The Symmetry Composition Property. We may compute the symmetries of a

PI J through a symmetry φ of a weaker condition (i.e., a subset of J). If the

symmetries Θφ(J) of the permuted PI φ(J) have already been computed, then we

may compose them with φ to determine the symmetries ΘJ .

Example 4.9. Consider 8-Queens and the problem of finding symmetries under

the condition J where the URC (upper-right corner) holds a queen. Among the

symmetries of the weaker condition I = {}, there is a symmetry φ that maps

the URC to the LLC. Applying this symmetry to J produces a PI φ(J) that is

consistent with boards L1 and R1 of Figure 4.3. Since L1 and R1 are locally

symmetric in φ(J), we know that φ−1(L1) and φ−1(R1), their URC counterparts,

are also symmetric. 2

In general, we simply need to permute each of these symmetries through the

inverse of the above mapping to obtain the symmetries of the condition J . We

formalize this property next.

Theorem 4.10. Given a PI J and I ⊂ J . If φ is a symmetry of MI and θ is a

symmetry of Mφ(J), then φ−1 ◦ θ ◦ φ is a symmetry of MJ .

The proof follows from noting that applying the permutation φ−1 ◦ θ ◦ φ to any

model in J gives us another model in J , thus it is a local symmetry of J .

Corollary 4.11. If e = (m1,m2) is an edge of the diversity graph created from

the local symmetries of φ(J), then φ−1(e) = (φ−1(m1), φ−1(m2)) is an edge in

J . In addition, if E is the set of all edges generated by Θφ(J), then φ−1(E) =

{φ−1(e)|e ∈ E} is the set of all edges generated by the local symmetries of J .

30

We call a pair (J, J ′) of PIs correspondent if J ′ = φ(J) for some symmetry φ

of a subset I of J . The symmetry φ is called the link.

4.2 Algorithms

We present three algorithms of increasing efficiency. The baseline is an offline,

complete algorithm that computes the diversity graph for full local symmetry.

4.2.1 Complete Offline Local Symmetries

Recall that our goal is to compute the local symmetry graph. This involves finding

all pairs of models that are locally symmetric in M . We abbreviate such pairs of

models as LSPs. To compute, we traverse the semilattice I and find the semantic

symmetry group (specifically a generator set) associated with each PI. This sym-

metry group will encode both clause (model) symmetry and variable symmetry.

The simplest approach employs a depth-first traversal of I. Each element of I
is a subset of L, and different algorithms for subset enumeration exist. Siblings

are ordered relative to some lexicographic ordering, and repeats are discarded.

Specifically,we employ a depth-first traversal called MILE that starts with the

empty PI. Sibling PIs are ordered in inverse lexicographic ordering, and repeats

are discarded.2

Example 4.12. Suppose V = {1, 2, 3}. Then MILE enumerates I in the order

shown below to the right (represented once as sets and once as strings). We num-

ber the PIs for easy reference later. 2

A quick inspection of the progression in the MILE sequence shows that, given

a PI I where v is the largest absolute value of the literals in I , all combinations of

2MILE stands for the Mutilated Inverse Lexicographic Enumeration since the inverse lexico-

graphic order is observed only on siblings.

31

literals from {v+ 1, ..., n} are enumerated before the sibling immediately follow-

ing I is visited. While this of course is just the definition of depth-first search, we

especially name the value v as the anchor for two reasons. First, a naive depth-

first traversal of the semilattice I visits many PIs multiple times, and the anchor

provides a simple check for preventing such repeated visits. Second, as we will

see shortly, the anchor helps as a bookkeeping device that enables us to implement

more complex pruning.

More generally, we associate the nodes of the MILE traversal with a pair (I, η),

where I ∈ I, and 0 ≤ η ≤ n is the anchor. Note that the anchor is associated with

the position of the node of the traversed tree, not the PI in that node. In the case

of MILE, the anchor coincides with the largest absolute value of the literals in the

PI, but that association does not hold in general.

I1 : {} ⊥ ⊥ ⊥ I15 : {-1,-2} ⊥ 0 0

I2 : {1} ⊥ ⊥ 1 I16 : {-1,-2,3} 1 0 0

I3 : {1,2} ⊥ 1 1 I17 : {-1,-2,-3} 0 0 0

I4 : {1,2,3} 1 1 1 I18 : {-1,3} 1 ⊥ 0

I5 : {1,2,-3} 0 1 1 I19 : {-1,-3} 0 ⊥ 0

I6 : {1,-2} ⊥ 0 1 I20 : {2} ⊥ 1 ⊥
I7 : {1,-2,3} 1 0 1 I21 : {2,3} 1 1 ⊥
I8 : {1,-2,-3} 0 0 1 I22 : {2,-3} 0 1 ⊥
I9 : {1,3} 1 ⊥ 1 I23 : {-2} ⊥ 0 ⊥
I10 : {1,-3} 0 ⊥ 1 I24 : {-2,3} 1 0 ⊥
I11 : {-1} ⊥ ⊥ 0 I25 : {-2,-3} 0 0 ⊥
I12 : {-1,2} ⊥ 1 0 I26 : {3} 1 ⊥ ⊥
I13 : {-1,2,3} 1 1 0 I27 : {-3} 0 ⊥ ⊥
I14 : {-1,2,-3} 0 1 0

By default, MILE computes the symmetries of every PI in I, and applying the

pruning properties requires careful work. The non-unit property is checked ex-

plicitly.

The Fixed Literal Propagation From lemma 4.8, MI = MI∗ for any PI I ,

hence ΘI = ΘI∗ . It follows that to compute the LSPs, it suffices to compute

only symmetries of canonical PIs. Given the set of models M of Example 4.7,

32

from I1, we may skip over PIs I2, I3, I5, I6, I8 and I10 of Example 4.12. Indeed,

together with the cardinality check, only the symmetries of PIs I1, I9, I11, I21,

I23, and I26 need to be computed. In general, fixed literal pruning can save us

from calculating symmetry for an exponential number of PIs on the number of

fixed literals. If we fix m literals, then 2m − 1 supersets may be eliminated from

symmetry computation.

To incorporate fixed literal pruning into MILE, for each non-canonical PI I that

MILE reaches, I is replaced by its fixed extension I∗. Call this the context switch

from I to I∗. There are two ways in which I∗ may relate to I: either the variable

value of some literal in σ(I) is smaller than or equal to the anchor of I , or all

literals of σ(I) have variable values greater than the anchor. In the first case, I∗

has already been visited, or it is inconsistent (contains complementary literals).

Hence we may prune the current branch of the depth-first traversal. For example,

{−2} is the set of fixed literals of PI I19 = {−1,−3} in Example 4.12. As its fixed

extension I17 = {−1,−2,−3} appears earlier in the enumeration, all symmetries

associated with I19 have already been computed when it is reached in the traversal.

In the second case, the context switch is what allows us to skip over segments of

PIs in the MILE enumeration (as in the switch from I2 to I9 above). To continue

the traversal at I∗, it is important that all non-fixed literals of I are still considered.

Such literals are bookmarked by the anchor of I . Take again the context switch

from I2 to I9. While we correctly prune PIs I2, I3, I5, I6 and I8, in the process,

we also skip PIs I4 and I7 whose symmetries should be computed. Through the

anchor of I1, we may “recover” I4 and I7 from I9 by adding 2 and−2, respectively.

The overall sequence traversed is shown to the below. These are all the canonical

PIs. Again, only the symmetries of I1, I9, I11, I21, I23 and I26 are computed after

the cardinality check.

I1 : {} I7 : {1,-2,3} I17 : {-1,-2,-3} I26 : {3}
I9 : {1,3} I11 : {-1} I21 : {2,3}
I4 : {1,2,3} I13 : {-1,2,3} I23 : {-2}

The above discussion derives Algorithm MILE∗ of figure 4.6 (for MILE with

33

Input: A set of models M

Output: The LSPs of M

1: S ← empty stack

2: Res← {}
3: S.push(({}∗, 0))

4: while not S.empty() do
5: (I, η)← S.pop()

6: if |MI | > 1 then
7: Res← Res ∪ Sym(I)

8: for i← η + 1 to n do
9: J ← I ∪ {i}; J ′ ← I ∪ {−i}

10: if ∀ l ∈ σ(J ′), |l| > η then
11: S.push((J ′∗, i))

12: if ∀ l ∈ σ(J), |l| > η then
13: S.push((J∗, i))

14: end for
15: end while
16: Return Res

Figure 4.6: Algorithm MILE∗

fixed literal pruning). Each node of the traversal is a pair of a PI and its anchor.

The expression Sym(I) in line 7 denotes a function that computes the LSPs from

ΘI .

MILE* dramatically reduces the number of PIs for which symmetries are com-

puted. For the simple case of coloring a path with 6 nodes and 3 colors, there

are 96 models. The number of PIs for which symmetries are computed decreases

from 235,297 to 180,559 with just the cardinality size, and to 9,307 with the ad-

dition of the fixed literal pruning. This is largely because picking a positive literal

34

for a node will force several literals to be negative.

The Symmetry Composition Property Theorem 4.10 and its corollary tell us

that we can use correspondences to find isomorphisms from one local symmetry

group to another. This is generally faster than computing the symmetries of the

node from scratch, through Sym(). Symmetry Composition Pruning (SCP) may

thus be stated as follows. Given a sequence S = I1, ..., Im of PIs, suppose (Ii, Ij)

is a correspondent with link φ. Then either i < j or i > j.

1. i > j: Since ΘIj has already been computed, we may compute the LSPs

associated with ΘIi by φ−1 ◦ΘIj ◦ φ.

2. i < j: Compute the LSPs associated with ΘIi , then propagate them to Ij by

φ ◦ΘIj ◦ φ−1.

We will qualify each correspondent as a case 1 or case 2.

Remarks:

• Unlike fixed literal pruning, the sequence of PIs is not perturbed, and no

interpretations are removed. SCP, in this basic form, simply replaces many

calls to Sym() with symmetry composition.

• In general, Ii is the origin of multiple destinations with different links. If

(Ii, Ij) is a case 1 correspondent, it suffices to find one link φ such that

Ij = φ(Ii). The search for φ is thus a key to the success of SCP. We return

to this shortly.

We may improve the effects of SCP by combining it with other strategies to re-

move nodes from the traversal. But care must be taken to ensure that if a node is

pruned and its PI is the destination of a correspondent, that the symmetries asso-

ciated with the PI are available for composition. We discuss two such strategies

in the context of MILE.

35

First, observe that SCP is compatible with Fixed Literal Pruning. Given cor-

respondent (J, J ′), either J and J ′ are both canonical or they are not. Thus we

may remove all non-canonical PIs from MILE (or any other enumeration), and the

application of symmetry composition pruning remains valid.

A more involved enhancement employs memoization. For each PI I that the

traversal visits, store the LSPs created from I and all of its descendants in memory

denoted Pairs[I]. Now consider a case 1 correspondent (Ii, Ij) with link φ.

Instead of computing the LSPs generated from φ−1 ◦ΘIj ◦φ, we calculate φ(e) =

{φ(m1), φ(m2)} for all e = {m1,m2} ∈ Pairs[Ij]. This effectively computes

the LSPs for all descendants of Ii at once, without having to explicitly visit each

one. Consequently, the node of Ii and all of its descendants in the traversal may

be pruned.

For a case 2 correspondent where the destination follows the origin in MILE,

memoization is less effective since the destination Ij may be pruned later in the

traversal. Any composition calculation associated with Ij would be for naught.

Moreover, for each base that links Ii to a different destination, the composition

would need to be performed. This incurs a prohibitive space requirement on the

implementation with a comparatively small time benefit. One exception is when

the base of the correspondent is the empty set (i.e., the link is a global symmetry).

As global symmetries are invariant to PIs: (Ii, Ij) is a correspondent iff (Ij, Ii)

is a correspondent, it is not even necessary to store Pairs[Ij]. We simply add

LSPs when the traversal reaches Ii, and prune Ij when it is reached knowing that

its LSPs have already been computed.

As mentioned, a key to the success of the SCP (and the above enhancement) is in

finding a good link. In the experiments, we will obtain links via several different

strategies. Fast: The link is a symmetry of the parent node of Ii. Global: The link

is a global symmetry. We also experiment with combinations of fast and global.

Deep: From the parent of Ii, we compose in order symmetries of each of Ii’s

ancestors to find a list of correspondents {(Ii, I1), (I1, I2), . . . , (In−1, In)} which

36

can be used to iteratively find Pairs[Ii].

The Deep strategy is a novel approach to pruning. Local symmetry is typically

used to prune in isolation, ignoring the relationships between related partial inter-

pretations. This may due in part to the fact that the local symmetries of related

PIs do not form an obvious group. However, we have had success with a sim-

ple exhaustive-search method. This requires exponential space in the worst case.

But such a case indicates the existence of a large number of symmetries with the

potential for much pruning. Hence another strategy such as Fast would be an

adequate substitute.

A related completeness complication occurs when a case 1 correspondent (Ii, Ij)

is found, but Ij has been pruned previously. Thus Pairs[Ij] does not exist. The

straightforward solution is to default to compute Sym() for Ii and its descendants.

A more involved but worthwhile approach that we have adopted is to find the first

unpruned ancestor Ij′ of Ij , and generate a link that could be used to find a second

case 1 correspondent (Ij, Ik). LSPs of Pairs[Ii] may then be computed by

calculating Pairs[Ij] via Pairs[Ik]. The process may be repeated if Ik has

also been pruned.

Experiments And Results

When choosing problems for experiments, we could not consider the usual SAT

benchmarks since they are designed to be computationally challenging to model

finding programs. We need the set of all models of the theory to study our algo-

rithms. It follows that the problems discussed here are easy instances by normal

SAT standards. They have, however, non-trivial numbers of symmetries.

The next table shows a selection of problem classes and their characteristics.

Experimental results of these problems are representative of the wider set (of 20+

classes) of problems that we have studied. Problems 4x4 Sqs and 5x5 Sqs are

instances of All-Squares. The 3-coloring problems are on paths of 7, 8 and 9

nodes (i.e., P7, P8 and P9). Rand is representative of a 4096 models sampled

37

without replacement from all assignments with 13 variables. This was included

as an adversary for our pruning strategies since there are few fixed literals and a

small number of symmetries. 4x4 Recs (rectangles) are similar to All-Squares,

but has very different traversal characteristics.

For each problem, the set V is the variable set from which models are formed,

and the size n of V gives us the size of the space, I, on which the traversal

algorithms operate. The set I ranges in size from 1.59x106 to 2.39x1023. Loc Pairs

shows the number of symmetric pairs of models (out of a possible
(
M
2

)
number of

pairs). For reference, Gl. Sym Pairs shows the number of pairs of models that are

globally symmetric.

Problem MILE Characteristics

Sym Calls Time Models |V | Loc Pairs Gl. Pairs

7-Path 1124053 >1000 192 21 8298 912

8-Path 721066 >1000 384 24 28314 1968

9-Path 472008 >1000 768 27 98910 3936

4x4Sqs 95919 31.5 30 16 286 58

5x5Sqs 1804172 >1000 55 25 858 110

4x4Recs 360174 70 100 16 1233 241

Rand 1473837 533 4096 13 261173 0

Problem MILE∗

Sym Calls % Prune Time Speedup

7-Path 40489 >96.4% 33.6 >29.8x

8-Path 175705 >75.6% 224 >4.46x

9-Path 514786 - >1000 -

4x4 Sqs 66009 31.1% 22.2 1.42x

5x5 Sqs 1612904 - >1000 -

4x4 Recs 72142 80.0% 11.7 6.00x

Rand 1375306 6.68% 494 1.08x

Global SCP

7-Path 3557 99.4% 4.43 >226x

8-Path 14983 >97.9% 24.2 >41.2x

9-Path 64329 >86.4% 151.6 >6.60x

4x4 Sqs 8625 >91.0% 4.73 6.65x

5x5 Sqs 1138458 - >1000 -

4x4 Recs 9453 97.4% 3.22 21.7x

Rand 1375306 6.68% 546 0.975x

Fast SCP

7-Path 6278 >99.4% 4.26 >235x

8-Path 26296 >96.4% 28.33 >35.3x

9-Path 108485 >77.0% 229.3 >4.36x

4x4 Sqs 865 99.1% 1.01 31.2x

5x5 Sqs 174336 >90.3% 176.8 >5.66x

4x4 Recs 26388 92.7% 6.13 11.4x

Rand 1210131 17.8% 602.3 0.885x

38

16
112

208
304

400
496

592
688

784
880

1024

0

5000

10000

15000

20000

25000

MILE* Deep

Num.)Models

T
im

e)
(m

il
li

se
c)

16
112

208
304

400
496

592
688

784
880

1024

0

10000

20000

30000

40000

50000

60000

70000

MILE* Deep

Num.CModels

S
ym

()
CC

al
ls

Figure 4.7: Performance of MILE* and Deep Local Symmetry SCP on random

sets of models

Fast + Global SCP

7-Path 2879 >99.7% 3.67 >272x

8-Path 11521 >98.4% 20.4 >49.0x

9-Path 47181 >90.0% 163.5 >6.11x

4x4 Sqs 499 99.5% 1.08 29.1x

5x5 Sqs 69886 >96.1% 80.8 >12.4x

4x4 Recs 7187 98.0% 3.41 20.5x

Rand 1210131 17.8% 631.2 0.844x

Deep SCP

7-Path 2879 >99.7% 2.89 >346x

8-Path 11520 >98.4% 15.2 >65.7x

9-Path 47173 >90.0% 117.9 >8.48x

4x4 Sqs 342 99.6% 0.85 37.0x

5x5 Sqs 38984 >97.8% 47.3 >21.2x

4x4 Recs 6564 98.2% 2.5 28.0x

Rand 1207462 18.1% 596.3 0.894x

We compare the number of calls to Sym() and the time that it takes for the

algorithms to complete. MILE with cardinality check is the baseline against which

various heuristics are tested. Results are shown in table above. Time-out is set to

1000 seconds. Global SCP employs case 2 correspondents exclusively, while for

other SCP based methods, only case 1 correspondents are used.

MILE∗ is slower than all other complete methods that employ some form of SCP

except on Rand problems, which have a small number of symmetries. Inspecting

the performance of various SCP strategies, Deep is the fastest overall, only slower

than MILE∗ on Rand. Of note is that Global performs particularly badly on the

All-Squares problem.

Figure 4.7 shows how MILE∗ and Deep Local Symmetry SCP behave for ran-

dom sets of models of different size. We ignore global symmetry since it acts

similarly but slower than MILE∗ except at the very highest densities where there

39

Input: A set of models M

Output: An approximate diversity graph of M

1: S ← {}
2: Res← {}
3: for each pair m1,m2 ∈M , m1 6= m2 do
4: if α(m1,m2) 6∈ S then
5: S ← S ∪ {α(m1,m2)}
6: Res← Res ∪ Sym(Mα(m1,m2))

7: end for
8: Return Res

Figure 4.8: Algorithm Agree

are many global symmetries available for pruning. Fast Local Symmetry SCP

follows Deep closely. For most of the experiments, the time increases linearly

w.r.t the number of models. This shows that our literal-centric symmetry-finding

approach effectively reduces the overhead of more models on an invariant set of

variables. When the number of models increases enough, the local symmetry

groups contain many more elements, allowing deep local symmetry to prune sig-

nificantly earlier in the search, but it harms MILE∗ since it takes longer to find all

of the generators.

4.2.2 Other Algorithms

Offline, Approximate.

Theorem 4.3 shows that an agreement graph has at least |M | − 1 edges. This is

a linear approximation of the diversity graph for full local symmetry that has the

potential for encoding a significant number of edges in the full graph. Algorithm

Agree in Figure 4.8 presents an approximate algorithm. The algorithm requires

O(|M |2) symmetry calculations, which is substantially better than the exponential

40

number of symmetry calculations for the complete algorithm. A linear filter to

compute agreement sets will only requireO(|V ||M |3) literal comparisons in total.

Hence we would expect the runtime to increase much more slowly compared to

the complete algorithms.

An example of symmetries that aren’t agreement symmetries is the 3-Coloring

of a graph with no nontrivial automorphism. Then the only global symmetries

are permutations of the colors. Let θ be a global symmetry that permutes all

of the colors. Since every node has exactly one color, it only stabilizes PIs that

have no solution consistent with them. Therefore, θ is only expressed as a global

symmetry. Indeed, augmenting agreement symmetry with global symmetry can

increase the accuracy of our approximation with a relatively low cost to time.

Online, Approximate.

A diversity graph represents all possible diverse sets, but finding a single diverse

set may suffice and can be significantly easier to compute. Moreover, an offline

algorithm assumes possession of all models, which may involve an unacceptably

long wait for the solver.

Figure 4.9 gives an online, anytime algorithm that takes a theory F and directly

builds an approximate diverse set Div without constructing the diversity graph.

The set Div is found incrementally by repeated calls to a black-box solver. A

solution m produced by the solver is added to Div if it is diverse with respect to

models already inDiv. Conversely, mmodifies F by conjoining F with the nega-

tion ¬m to eliminatem from the set of possible solutions in subsequent iterations.

To check thatm is diverse with respect to every modelmi ∈ Div involves an ex-

ponential number of symmetry calculations. To make the process tractable, we ap-

proximate by only considering the symmetries of α(m,mi). As we don’t have the

full set of models a priori, an alternate representation is needed to calculate sym-

metries. This is captured in the procedure getRep() where several representation

choices exist. The straightforward approach is to use the formula F ∧ α(m,mi)

41

Input: Theory F

Output: An approximate distinctive set Div

1: Div ← {}
2: while F is satisfiable do
3: m← solve(F) // from a black-box solver

4: F ← F ∧ ¬m
5: add← true

6: for mi ∈ Div do
7: F ′ ← getRep(α(m,mi))

8: Θ = Sym(F ′)

9: F ← F ∧ brkCl(Θ)

10: if ∃θ ∈ Θ s.t. θ(m) = mi then
11: add = false;

12: break;

13: end for
14: if add then
15: Div ← Div ∪ {m}
16: end while
17: Return Div

Figure 4.9: Algorithm Online.

(simplified through rules such as subsumption checking and unit propagation).

We call this the syntax-only representation. It is simple and fast, but it may not

represent all symmetries. Alternatively, it is sometimes feasible to find all models

of the simplified formula F ∧α(m,mi) even if it isn’t feasible to find them for the

original formula. This guarantees finding all semantic symmetries with respect

to α(m,m1). This is the strategy that we employ, which we call the semantic-

symmetry-first representation. But if a timeout occurs, getRep() defaults to using

the formula itself.

This algorithm performs at most O(|M ||Div|) automorphism calculations, gen-

42

erally faster than Algorithm 4.8 since |Div| � |M |. And as it is an anytime al-

gorithm, it could be halted to return a smaller diverse set at any time. To improve

the accuracy of the output diverse set, we check global symmetries as well. To

improve its efficiency, we may constrain F by adding symmetry breaking clauses

using the procedure brkCl(). This can improve solver speed and reduces the num-

ber of models for the formula. The latter decreases the number of times through

the while loop.

The simplest symmetry breaking clauses are for global symmetries, but they

may be easily adapted for local symmetries as well. If C is a symmetry breaking

clause for a symmetry on PI I , then the clause (I → C) = (¬I ∨ C) is the local

symmetry breaking clause for I . While the use of symmetry breaking clauses can

introduce a bias (e.g., preferring lex-leaders), in practice they increase the quality

of the diverse sets since any model must pass more stringent constraints before it

is added to Div.

Alternate Representations The choice of representation is very important for

the online algorithm. A more thorough analysis of what makes certain represen-

tations better or worse could lead to great improvements to online algorithm’s

performance.

The most naive representation is a DNF where each model is fully represented

by a single clause. The symmetries of this representation are obviously the seman-

tic symmetries of the underlying theory. Similarly we could use prime implicants.

A prime implicant is a minimal conjunctive representation of some set of models.

If a prime implicant M ′ is implied by model M , we say that M ′ covers M . The

set of prime implicants could be much smaller than the full set of models and so

may be a better representation in some cases.

Theorem 4.13. Let θ be a semantic symmetry, and M,N models where θ(M) =

N . LetM ′ ⊆M a be prime implicant, then there exists a prime implicantN ′ ⊆ N

such that θ(M ′) = N ′.

43

Proof. Since M ′ is a prime implicant, it covers the models M,M0,M1, . . . ,Mn,

so θ(M ′) covers models θ(M) = N, θ(M0), . . . , θ(Mn). So θ(M ′) = N ′ is an

implicant. Assume it is not prime. Then there exists N ′′ ⊂ N ′ that is prime, so

θ−1(N ′′) ⊂M ′ and is an implicant, and smaller than M ′, contrary to the assertion

that M ′ is prime.

If we wish to find a CNF representation, the set of prime implicates can also be

used.

Theorem 4.14. Given a CNF formula F , if there exists a semantic symmetry θ

then for every clause C ∈ F at least one of the following must be true:

1. θ(C) ∈ F

2. F =⇒ θ(C)

Proof. If θ is a syntactic symmetry, then (1) is always true for all clauses. Oth-

erwise, there is some clause where (1) is not true. However, since θ is a seman-

tic symmetry, that means that θ(F) ≡ F . Since F is a CNF formula, it means

that θ(C) ∧ F ≡ F , which means that θ(C) is never false when F is true, so

F =⇒ θ(C).

In particular that means that θ(C) is either a resolvent of F or is subsumed by a

resolvent of F . So we can find all of the resolvents of F , remove all subsumed

clauses and let that resulting formula be our new representation.

The memory requirements of the output is fixed-parameter tractable if the only

output clauses are of size less than or equal to the size of the largest clause in

F . This is because for any clause C, we only need to add every θ(C) /∈ F .

Given that the size of the largest clause is some constant n, and the number of

variables is v our representation will be no larger than

(
v

n

)
, which is bounded

above by the number of permutations vn. This is not a tight bound because the

44

only time there would be all combinations of clauses of a certain size is when

the CNF is a tautology or a contradiction which can both be represented in linear

or constant space (depending if you want to record which variables were used

in the original formula or not). The downside is we may have an exponential

intermediate representation.

This does not imply a cubic bound on the number of variables by converting a

CNF to 3-SAT because the 3-SAT conversion process does not preserve symme-

tries. For example, the formula {{a, b, c, d}} would be converted to the 3-CNF

{{a, b, e}, {¬e, c, d}} which would exclude such symmetries as (a, d) which is

valid on the former but not the latter.

This does lead to an approximate intermediate representation that is no worse,

and sometimes better than the original representation at representing semantic

symmetries. In particular, instead of finding all prime implicates, we find a set

prime implicates whose conjunction is equivalent to the original formula. We find

this cover by removing redundant literals from clauses.

Definition 4.15. For CNF formula F , a clause C has redundant information if for

some l ∈ C, F � (C − {l}). Otherwise, a clause C where F ` C is irredundant,

or contains no redundant information.

This property basically means that v can be removed from the clause without

effecting equivalence. This is tested by seeing if F
∧

u∈C,u6=v

¬u is a contradiction.

This means the speed of modern SAT solvers can be leveraged to help us find a

formula that contains no redundant information. We can iteratively test the vari-

able property until there is no more redundant information there. Since F implies

no clauses that are subsets of the current clauses, they are all prime implicates. If

two or more clauses are equal, we keep one, and remove the rest.

Since a clause can have several redundant variables but removing each single

redundant variable can create an redundant clause, one clause may turn into many

clauses. This potentially means the intermediate form is exponential, but it is

45

never larger than the full implicate form and is usually smaller. Hence, it is still

fixed-parameter tractable.

A simple example of when this intermediate representation helps find new sym-

metries is {{a, c}, {a,¬c}, {b}}. Here, (a b) is a semantic symmetry, but not a

syntax symmetry since {a, c}, {a,¬c} � {a}. So c and ¬c are redundant in their

respective clauses. So our new representation is {{a}, {b}}, which contains (a b)

as a syntax symmetry.

It is possible that this new representation misses some semantic symmetries.

For example {{a, b}, {a, k}, {¬k,¬c}, {¬a, j}, {¬j, c}} does not have any syn-

tactic symmetry and cannot be simplified any further. However, this representa-

tion does help in cases where a formula has many more clauses that necessary,

as we can see from the following figure, when random 3-Sat problems become

over-constrained, removing redundant information helps us find additional sym-

metries that would have have not been found otherwise. In our tests, we generated

random 3-Sat problems with 100 variables, and we only tested symmetries on sat-

isfiable instances, since all unsatisfiable instances have a symmetry. It is also a

good intermediate representation because it can reduce the number of intermedi-

ate resolution steps we have to take to get the full prime implicate form.

To prove this intermediate representation preserves symmetries, we first prove

the following lemma:

Lemma 4.16. If clause C ∈ F contains redundant information, and C ′ ⊂ C con-

tains no redundant information then given semantic symmetry θ, θ(C) contains

redundant information and θ(C ′) contains no redundant information.

Proof. We know θ(C ′) is irredundant w.r.t θ(F). Since θ is a semantic symmetry,

θ(F) ≡ F , and F � θ(C ′). So θ(C) contains redundant information and θ(C ′)

contains no redundant information.

Theorem 4.17. If F is a non-tautologous CNF formula with syntactic symmetry

θ, and F ′ is F where all redundant clauses of F are replaced by their irredundant

46

Figure 4.10: Percent Symmetries For Random 3-SAT problems After Removing

Redundant Information on Various Clause/Variable ratios

subsets, then θ is also a syntactic symmetry on F ′.

Proof. If F is a contradiction, F ′ derives the empty set, which obviously contains

all syntactic symmetries.

So F is satisfiable, but not a tautology. This means that every clause of F is

a non-empty clause in F ′. Let C ′ be some clause in F ′, we want to prove that

θ(C ′) ∈ F ′.
C ′ is either a clause in F , or is a subset of a clause of F , C. If C ′ is a clause

of F , then θ(C ′) is a clause of F , since θ is a syntax symmetry. Otherwise, C

contained redundant information, and have replaced it with at least C ′. From 4.16

we know that we have replaced θ(C) with at least θ(C ′) as well. Since θ(C ′) ∈ F ,

θ is a valid syntax symmetry for C ′ in F ′. Since this is true for all C ′ ∈ F ′, we

know θ is a valid syntax symmetry on F .

A potential improvement that was not used in the original algorithm because it’s

47

possible to eliminate syntactic symmetries is removing redundant clauses, where

F −{C} � C. This means that the information contained in C is redundant, so C

can be removed. This is tested by checking if ((F−{C})
∧
u∈C

¬u is a contradiction.

Applying this to the formula {{a, b}, {a, k}, {¬k, c}, {a, j}, {¬j, b}} can open up

new symmetries.

The only known intermediate form that preserves existing syntactic symmetries

but also does not increase the number of clauses can be computed as follows:

if there exists two clauses whose resolvent subsumes both clauses, then we can

replace those clauses with their resolvent. However, it turns out this requires two

clauses that are the same size and differ on a single literal, where one is the positive

literal of a variable and the other is the negative literal. This is not expected to be

a frequent case.

Experimental Results

We performed experiments on over 40 problems taken from hardware verification

[37][13] 3, SATLIB [28], and other problems such as N-Queens (with the most

typical representation). Note that challenging SAT problems do not necessarily

equate to challenging LSD problems. Indeed, they are usually at odds: a diffi-

cult SAT instance with very few solutions would likely be be an easy diversity

problem, while easy SAT instances with large number of models challenge our

algorithms. Most of the problems that we tested on have model counts of 106

to 10300 and above. Our goal was to find diverse sets of size 50. We report a

representative subset of the experiments.

The tests are on the Oracle Java 7 server JVM using the SAT4J solver, modified

to select a random phase for each variable that it chooses. Each time we compare

a candidate to an existing member of a diverse set, we attempt to calculate a se-

mantic representation by solving the constrained formula within 750 ms. If there

3www.cs.rice.edu/CS/Verification/Projects/UniGen/Benchmarks

48

Semantic-Symmetry-First Representation Syntax-Only Representation

Name # Cl |V | Time Cand. Time |Div| # Cands Sem. Timeout Time |Div| # Cands

25 Queens 24850 625 1000 425 2 7188 0 5 50 50

50 Queens 203450 2500 1000 978 1 337 0 133 50 50

15x15 AFS 138251 225 1000 <1 14 160 0.14 1000 37 101

mo prop 9 12912 2 8367 3665 937 3 50 50 1 5 50 50

squaring7 5837 1628 1000 6 37 2677 0.01 4 50 50

squaring8 3642 1101 522 2 50 1317 0.01 2 50 51

squaring10 3632 1099 823 3 50 2098 0.01 2 50 50

enqueueSeqSK 58515 16466 599 18 50 52 0.23 18 50 50

karatsuba 82417 19594 1000 991 5 93 0 154 50 50

LoginService2 41411 11511 1000 <1 50 50 0.91 10 50 50

s953a 3 2 1297 515 20 <1 50 192 0 1 50 81

s1196a 7 4 1881 708 107 <1 50 84 0 1 50 52

scenarios llreverse 257657 63797 1000 958 12 55 0 726 50 62

sort 49611 12125 1000 109 45 78 0.1 20 50 50

tutorial3 4 31 2598178 486193 1000 511 25 26 0.64 791 50 50

uf250-01 1065 250 93 45 50 50 0 29 50 54

uf250-02 1065 250 1000 38 23 2092 0 1000 26 142997

flat200-1 2237 600 1000 1 46 88 0.3 2 50 53

flat200-2 2237 600 1000 10 35 134 0.23 3 50 142

logistics.a 6718 828 1000 1 47 54 0.9 1 50 52

logistics.b 7301 843 937 1 50 50 1 1 50 50

logistics.c 10719 1141 937 1 50 50 1 2 50 50

logistics.d 21991 4713 941 1 50 50 0.96 4 50 50

bw large.d 131973 6325 159 154 1 106 0 12 43 106

cl schedule 3556393 18656 1000 <1 35 57 1 192 50 50

bmc-ibm-1 55870 9685 943 13 50 50 1 9 50 50

bmc-ibm-2 11683 2810 828 <1 50 51 0.17 2 50 50

bmc-ibm-3 72106 14930 1000 1 35 86 1 17 50 123

bmc-ibm-4 139716 28161 946 1 50 50 1 23 50 50

bmc-galileo-8 294821 58074 ≈1000 4 50 52 1 67 50 57

bmc-galileo-9 326999 63624 100 7 49 51 1 54 50 52

Table 4.1: Results of running online algorithm with no symmetry breaking us-

ing semantic-symmetry-first representation for getRep(), compared with relative

success using syntactic-only representation. All times are in seconds.

49

Name UF250 (100 instances) 15x15 AFS (Semantic)

Cands. 0
100

200
300

500
600

700
800

900
1000

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000
Breaking No Breaking

Time (ms)

C
an

di
d

at
es

0
100

200
300

400
600

700
800

900
1000

0

20

40

60

80

100

120

140

160

180
Breaking No Breaking

Time (ms)

C
an

di
d

at
es

Median Time without breaking 285s 1000s

|Div| without breaking 71.2 14

Median Time with breaking 158s 211s

|Div| with breaking 71.1 13.6

Breaking Clauses 202589 5991

Name Flat200 (100 instances) logistics.a (Deterministic)

Cands. 0
100

200
300

400
500

600
700

800
900

1000
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000
Breaking No Breaking

Time (ms)

C
an

di
d

at
es

0
100

200
300

500
600

700
800

900
1000

0

50000

100000

150000

200000

250000

300000

350000
Breaking No Breaking

Time (ms)

C
an

di
d

at
es

Median Time without breaking 10s 1000s

|Div| without breaking 91.8 13

Median Time with breaking 533s 4s

|Div| with breaking 66.4 100

Breaking Clauses 581994 18167

Figure 4.11: Comparing breaking and no breaking to obtain up to 100 models

with 1000 second timeout. All use syntax breaking and non-deterministic phase

selection, except as noted.

is a timeout rate of 90% or above, then syntactic symmetry is used. The overall

timeout time is 1000 seconds.

For most problems, we begin with a theory. But since the offline algorithms as-

sume that all models are available a priori, to compare offline to online algorithms,

we need instances that are easy to solve by normal SAT standards, but that have

non-trivial numbers of symmetries nevertheless.

Offline algorithms work with a models representation, while online algorithms

work on a CNF representation. So when comparing offline and online algorithms

50

DFS Agree
Global Online

All-Squares

Graph Coloring

Figure 4.12: Speed in logscale milliseconds, and percentage of locally asymmetric

pairs in maximal diverse sets over problems of increasing size.

in Experiment 1, we use a slightly modified version of the online algorithm that

works on models instead of a CNF formula.

Offline Algorithm Comparisons. We have conducted an extensive set of experi-

ments on the speed of various algorithms, the effectiveness of pruning strategies,

and on the accuracy for determining diversity by approximation algorithms. Fig-

ure 4.12 shows two representative results of the offline, agreement based approxi-

mation (Agree) and the online, symmetry breaking based approximation (Online).

We also include the results of global symmetry diversity for reference (Global),

and DFS is the full local symmetry computation, serving as the baseline.

Besides pruning by the non-unit property and fixed extensions shown in Fig-

ure 4.6, we also employ the symmetry composition property in the experiments.

For Algorithm Online, the time reported includes the time spent in the solver.

Symmetry breaking clauses are used, but as fully breaking symmetry can require

an exponential number of clauses, we only break the generators. To fill in the gaps,

we also break any symmetry we find to reject models that have been determined

51

not diverse relative to Div.

The top two graphs compare AFS data for grid sizes 2×2 to 11×11. The bottom

two graphs are for Path-Coloring between 2-11 nodes. For each pair, the left graph

shows speed in logscale milliseconds, and the right graph shows accuracy, defined

as the percentage of distinct pairs of models in a maximal diverse set that also

diverse under full local symmetry.

Differences in efficiency greatly depend on the structure of the problem. The

time to compute agreement symmetry diversity grows much slower than comput-

ing full local symmetry diversity for AFS, but they are similar for coloring paths.

In path coloring, much stronger symmetries exist with smaller PIs, thereby al-

lowing for significant pruning. The online algorithm is an order of magnitude

or more faster than either DFS or Agree. Global symmetry is the fastest of all

the algorithms since it requires a single automorphism calculation, but it achieves

poor accuracy. Indeed, the accuracy of global symmetry is not much better than

picking models randomly. On the other hand, the online algorithm gives diverse

sets that are nearly identical to local symmetry diverse sets. Agreement symme-

try is accurate for AFS, but drops off for some smaller Path-Coloring problems

due in part to the absence of global symmetry. Combining agreement and global

symmetry yields results similar to the online algorithm.

All in all, the full local symmetry algorithm (Algorithm 4.6) can solve 5x5 AFS

within the timeout, but not any of the tested problems. Algorithm 4.8 performs

significantly better, and can solve upto 12x12 AFS as well as bw large.d with 106

models.

Online Algorithm Comparisons. Table 4.1 records results of computing di-

verse sets of the online algorithm using the semantic-symmetry-first representa-

tion strategy that we discussed, as well as some comparisons using syntax-only

representation. All times are in seconds, the candidate time is the time the solver

takes to find candidate diverse models, and the semantic timeout is the percentage

of times we had to resort to syntax symmetries only.

52

As one would expect, results vary depending on the structure of the problem.

Different elements are at play in the overall efficiency: the speed of the SAT

solver for finding candidates and computing representations, and calculating the

symmetries on those representations. Since there can be many models, and each

model as a DNF clause is much larger than average clause in the original formula,

symmetries using semantic representations is often much slower than calculating

symmetries on the syntax.

Even though computing semantic symmetries may be time consuming, there

is a striking increase in selectivity (the number of candidate models accepted as

a member of the diverse set). For 25 Queens, every candidate is accepted with

syntax symmetry (50 out of 50), but less than .1% of the candidates when using

semantic symmetry (2 out of 7188). This suggests an important topic of future

work, namely to find syntax of formulas that more closely reflect its underlying

semantics.

The results of Table 4.1 shows cases where the number of candidates tested far

outstrips the number of diverse models found. Thus a large amount of computing

is performed on finding and testing candidates that can be easily dismissed. Fig-

ure 4.11 shows that symmetry breaking clauses can help. It reduces the time that it

takes to find 100 diverse models while testing far fewer candidates. Employing a

deterministic phase selection for logistics.a causes the solver to find many similar

models without symmetry breaking clauses, but with symmetry breaking clauses

the solver is much more likely to return candidates that are diverse. This implies

that symmetry breaking clauses can help to expand the range of solver strategies

practical for LSD.

But symmetry-breaking clauses are not without issues. Their size can dominate

the size of the original formula, increasing memory usage and possibly slowing

down the SAT solver. Occasionally, they make it harder to find diverse models,

for example the Flat200 graph coloring problems. Since the clauses force candi-

dates into certain configurations, candidates can end up being more similar than

53

if we did not add symmetry-breaking clauses. In some sense it forces a notion of

similarity that is stronger than local symmetry.

4.3 Comparing Discrimination

We can now asses how combinations of diversity discriminate by evaluating which

methods are better or worse at mimicking the structure of the other methods.

The first evaluation uses two diversity methods: a creation method and rejec-

tion method. The rejection percentage is defined as the percentage of diverse sets

created by the creation method that are also diverse sets of the rejection method.

We create random diverse sets by uniformly sampling valid diverse models and

adding them to the diverse set until no such model exists. Our experiments create

10,000 different diverse sets for this measure.

Rejection percentage is biased towards diversity measures that lead to small

diverse sets since they reject larger sets. While this is fine for pure discrimination,

it’s also helpful to see how hard it is to create such a set. For example, a method

that always selects a single model will reject most diverse sets, but we could get

the same effect by just removing models from larger diverse sets.

To account for this bias, we will also compute the rejection ratio or rr. To

calculate rr, we take modify the original rejection percentage with a new rejection

percentage. The rejection methods remain the same, but there is a new creation

method creates a new diverse set that is the same size as the one the original

method created. The models to add are chosen by uniformly sampling from the

set of models. We apply Laplacian Correction to ensure that a sensible ratio is

obtained. Thus, a method with a rr < 1 does better than random at creating sets

that are accepted by the second method, while a method with rr > 1 does worse

than random. The rejection ratio is similar to a correlation measure used in data

mining and pattern analysis known as the lift.

Since diversity is highly context-sensitive, a high rejection percentage or rejec-

54

D DG DGS A DGA DGSA

Mean Size: 7.71 6.87 4.93 1.61 1.35 1.35

Table 4.2: 8-Queens Set Size

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.92 1.00 1.00 1.00 1.00

DG 0.00 - < 1.00 1.00 1.00 1.00

DGS 0.93 0.93 - 1.00 1.00 1.00

A 0.067 0.067 0.10 - 0.33 0.37

DGA 0.00 0.00 0.18 0.00 - 0.35

DGSA 0.12 0.12 0.00 0.00 0.35 -

Table 4.3: 8-Queens Rejection Percentage

tion ratio does not mean a method is worse than another method, but that the

structure of its diverse sets is significantly different.

The tested methods are: distance only (D), distance and global symmetry (DG),

distance and global symmetry with shortest-path correction (DGS), agreement

symmetry (A), distance and global and agreement symmetry (DGA), and finally

distance,global symmetry, and agreement symmetry with shortest-path correction

(DGSA). For the final method, we apply shortest-path correction before adding

agreement symmetry information. If we apply it after adding all the information,

our method will almost always return a trivial diverse set.

8-Queens

The pure distance method is soundly rejected by all the other methods tested,

while it rejects methods that use shortest-path correction. DGSA does worse than

random in this regard. The distance plus global symmetry method rejects the

55

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.92 1.00 1.00 1.00 1.00

DG 0.00 - 1.00 1.00 1.00 1.00

DGS 0.95 0.94 - 1.00 1.00 1.00

A 0.34 0.29 0.43 - 0.53 0.61

DGA 0.00 0.00 1.26 0.00 - 1.01

DGSA 1.09 0.96 0.00 0.00 1.00 -

Table 4.4: 8-Queens Rejection Ratio

other methods in a very similar manner to the distance method, but since the

global symmetry increases discriminativeness, the rejection ratios are somewhat

lower even though the rejection percentages are about the same. This shows that

agreement symmetry covers global symmetry in this case.

One pattern we will see throughout the tests is that distance plus global sym-

metry with shortest-path correction rejects almost all regular distance plus global

symmetry methods. We also see this behavior in the interplay between DGA and

DGSA. DGA does very well against all methods except those that use shortest

path correction, where it does worse than random. On the other hand, DGSA
does poorly against all methods that do not use shortest path correction. From this

we can conclude that shortest-path correction significantly changes the structure

of the dissimilarity graph.

Lastly, we point out that agreement symmetry works significantly better than

random against all other methods, even when we adjust for the small size of its

sets.

56

D DG DGS A DGA DGSA

Mean Size: 3.22 3.23 3.87 4.46 3.00 3.32

Table 4.5: Path Coloring Set Size

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.26 0.89 0.60 0.67 0.94

DG 0.00 - 0.87 0.56 0.56 0.93

DGS 0.98 0.98 - 0.92 0.98 0.92

A 0.96 0.97 0.98 - 0.97 0.98

DGA 0.00 0.00 0.85 0.00 - 0.85

DGSA 0.91 0.91 0 0 0.91 -

Table 4.6: Path Coloring Rejection Percentage

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.27 0.95 0.66 0.68 0.96

DG 0.00 - 0.93 0.61 0.56 0.94

DGS 1.01 1.01 - 0.97 1.07 0.94

A 0.96 0.97 0.99 - 0.97 0.98

DGA 0.00 0.00 0.93 0.00 - 0.86

DGSA 0.97 0.96 0.00 0.00 0.94 -

Table 4.7: Path Coloring Rejection Ratio

57

D DG DGS A DGA DGSA

Mean Size: 7.57 7.34 5.46 14.67 4.65 4.47

Table 4.8: Space Touching Cycles Set Size

Path Coloring

A unique aspect of the path coloring problem is the relative similarity of the sizes

of the sets created by each method. Unlike 8-Queens, pure distance works well

against methods that don’t use shortest-path correction while agreement symmetry

does uniformly poorly unless it is augmented by distance. We also note that unlike

8-Queens, agreement symmetry also obtains larger sets than the distance-based

methods.

Space Touching Cycles

Space Touching Cycles is a problem that works on an n×n grid. Each grid cell is

either off or on, which corresponds to a single propositional variable being false or

true, respectively. If a grid cell is on, exactly two of its horizantal or vertical (not

diagonal) neighbors must be on, and if a grid cell is off at least one of its horizantal

or vertical neighbors must be on. The first rule means that the “on” portions must

represent cycles, while the second rule means that a cycle must touch every space

in the grid. It was created as a problem that was easy to visualize, but whose full

structure is difficult to determine. We tested it on an 8 × 8 grid. Unlike many

problems, where agreement symmetry seems to subsume global symmetry, on

this problem there are problems that are globally symmetric but not agreement

symmetric.

Again, we point out that agreement symmetry creates sets that are significantly

larger than distance-based methods. Every method does very badly against every

other method that is not its subset. Of all of them, DGSA performs the best overall.

58

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.45 <1.00 <1.00 1.00 1.00

DG 0.00 - 1.00 <1.00 1.00 1.00

DGS 0.96 0.96 - 0.98 <1.00 0.98

A 1.00 1.00 1.00 - 1.00 1.00

DGA 0.00 0.00 0.96 0.00 - 0.96

DGSA 0.86 0.86 0.00 0.00 0.96 -

Table 4.9: Space Touching Cycles Rejection Percentage

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.00 0.45 1.00 1.00 1.00

DG 0.00 - 1.00 1.00 1.00 1.00

DGS 0.96 0.96 - 1.02 1.00 0.98

A 1.00 1.00 1.00 - 1.00 1.00

DGA 0.00 0.00 0.97 0.00 - 0.96

DGSA 0.88 0.88 0.00 0.00 0.96 -

Table 4.10: Space Touching Cycles Rejection Ratio

59

D DG DGS A DGA DGSA

Mean Size: 4.97 4.73 6.11 3.61 2.65 2.25

Table 4.11: Cycle Matching Set Size

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.54 0.96 <1.00 1.00 1.00

DG 0.00 - 0.96 <1.00 1.00 1.00

DGS <1.00 <1.00 - 1.00 1.00 1.00

A 0.80 0.81 0.74 - 0.97 0.97

DGA 0.00 0.00 0.32 0.00 - 0.90

DGSA 0.20 0.20 0 0 0.80 -

Table 4.12: Cycle Matching Rejection Percentage

Cycle Matching

A graph matching is a set of edges such that no two edges share a vertex. Each

edge has a propositional variable that is true if it is in the set, and false otherwise.

This test does matching on a cycle of size 11.

The DGSA method does much better here than for all the other problems we’ve

seen so far.

All Squares

By inspection, the diverse sets created by non-agreement methods, such as DGS,

are worse than those created by agreement methods. A subset of an diverse set

created by DGS can be seen at Figure 4.13 on page 60. Not only do the squares

have the same size, they are all in the same part of the grid, and also overlap with

each other. On the other hand, if we look at Figure 4.14 on page 61, we see a

variety of square sizes in a variety of places with almost no overlap. These are

60

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.54 0.99 1.00 1.00 1.00

DG 0.00 - 0.97 1.00 1.00 1.00

DGS 1.00 1.00 - 1.00 1.00 1.00

A 0.84 0.85 0.84 - 0.98 0.98

DGA 0.00 0.00 0.46 0.00 - 0.93

DGSA 0.32 0.30 0.00 0.00 0.89 -

Table 4.13: Cycle Matching Rejection Ratio

Figure 4.13: A Diverse Set Created With DGS

both good representatives of the diverse sets returned as a whole.

It may be that DGS could be improved if we used a different distance measure,

since two models that have many “off” spaces in common would be close when

calculated with Hamming distance. For consistency we did not do this, and would

also make the observation that agreement symmetry was able to find very diverse

models without any additional human intervention.

Agreement symmetry certainly encodes a different pattern of diverse sets than

non-agreement measures. Agreement symmetry on its own does worse than ran-

dom compared to most other methods. Of particular note is how well DGSA
performs compared to all other methods. It typically performs rather poorly on

the methods it is not a superset of, especially DGA.

61

Figure 4.14: A Diverse Set Created With Agreement Symmetry

D DG DGS A DGA DGSA

Mean Size: 28.43 10.73 9.72 4.03 3.03 2.92

Table 4.14: All Squares Set Size

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 1.00 1.00 1.00 1.00 1.00

DG 0.00 - 0.54 1.00 1.00 1.00

DGS 0.46 0.46 - 1.00 1.00 1.00

A <1.00 <1.00 <1.00 - <1.00 <1.00

DGA 0.00 0.00 0.40 0.00 - 0.40

DGSA 0.05 0.05 0 0 0.05 -

Table 4.15: All Squares Rejection Percentage

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 1.00 1.00 1.00 1.00 1.00

DG 0.00 - 0.54 1.00 1.00 1.00

DGS 0.46 0.46 - 1.00 1.00 1.00

A 1.05 1.04 1.03 - 1.00 1.00

DGA 0.00 0.00 0.46 0.00 - 0.41

DGSA 0.06 0.06 0.00 0.00 0.05 -

Table 4.16: All Squares Rejection Ratio

62

D DG DGS A DGA DGSA

Mean Size: 4.85 4.00 3.00 1.00 1.00 1.00

Table 4.17: Reduced Latin Squares Set Size

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.98 1.00 1.00 1.00 1.00

DG 0.95 - 1.00 1.00 1.00 1.00

DGS 0.89 0.71 - 1.00 1.00 1.00

A 0.00 0.00 0.00 - 0.00 0.00

DGA 0.00 0.00 0.00 0.00 - 0.00

DGSA 0.00 0.00 0.00 0.00 0.00 -

Table 4.18: Reduced Latin Squares Rejection Percentage

Reduced Latin Squares

In the Latin Squares problem is creating an n×n grid, where each cell can be given

a number 1 through n and that number occurs only once for every row and column

In the reduced version, the first row and column are set. The most important

takeaway from this problem is that this is a case where agreement symmetry is a

bit too powerful.

Here, we see that sometimes agreement symmetry can be too powerful and only

give us trivial diverse sets.

Conclusions

It is clear that there is no single method that is more discriminatory than the others

over all problems, though the DGA and DGSA methods do the best overall. This is

not surprising since they use the most information. We also see that using shortest-

path correction creates dissimilarity graphs that tend to create diverse sets that are

63

Rejection Methods

C
re

at
io

n
M

et
ho

ds

D DG DGS A DGA DGSA
D - 0.98 1.00 1.00 1.00 1.00

DG 0.96 - 1.00 1.00 1.00 1.00

DGS 1.01 0.76 - 0.00 1.00 1.00

A 1.00 1.00 1.00 - 1.00 1.00

DGA 1.00 1.00 1.00 1.00 - 1.00

DGSA 1.00 1.00 1.00 1.00 1.00 -

Table 4.19: Reduced Latin Squares Rejection Ratio

significantly different than those created without this correction.

No method uniformly creates larger diverse sets than the other methods, though

methods that take into account more information tend to create smaller sets.

64

Chapter 5

Constructive Symmetry

5.1 Introduction

Even though local symmetry can discover similarities that other diversity mea-

sures cannot and we can find approximations that can be efficiently computed,

there is a weakness to local symmetry that makes it less appealing from a theoret-

ical perspective.

Recall the 8-Queens problem and the two globally asymmetric solutions as

shown in Figure 4.2. Once we fix a queen in the LLC, all other solutions are

“essentially” the same. However, if we rotated R1 180 degrees then we have not

changed the solution in a meaningful way, but we could not longer tell they are

equivalent by fixing the LLC, even though they are both putting a queen on some

corner.

To illustrate further, consider the N × N All-Rectangles problem. One set of

mutually locally asymmetric models for the 4 All- Rectangles problem can be

seen in Figure 5.1. While no two rectangles of the same size are present, there are

two rectangles of size 3 × 1 and 1 × 3. Intuitively, these are similar rectangles

because we can do a rotation and translation to transform one to the other.

In general, the similarity between m1 and m2 should not be modified if we ap-

65

(Set 1)

(Set 2)

Figure 5.1: The 4 × 4 All-Rectangles problem: Set 1 is a diverse set of solutions

based on local symmetry, set 2 is based on constructive equivalence.

ply a symmetry θ ∈ Sym(I), I ⊆ α(m1,m2) to one of them. Our approach is to

reconcile the two models using compositions of local symmetry. For example, we

had two 8-Queens models with a queen on different corners, we would take ad-

vantage of global symmetry to rotate one of the boards so that the queens align and

the proceed to use local symmetry to show their similarity. For the All-Rectangles

problem, we would use global symmetry to rotate one of the rectangles so that

they have the same orientation, and then use local symmetry to show that they are

equivalent through translation.

We call this form of symmetry Constructive Symmetry. Each literal represents

a ”choice” and if two models can be built using equivalent choices, then they are

considered similar to each other. Whether the choices are equivalent depends on

local symmetry. This notion is the same as the deep pruning strategy for complete

local symmetry; it attempts to find constructively equivalent PIs.

This new notion of similarity can be much stronger than local symmetry. In

some cases it will be advantageous to weaken it by restricting which literals rep-

resent actual ”choices” and which only represent side-effects.

66

5.2 Constructive Symmetry Properties

Constructive symmetry finds equivalences between ordered lists of literals we call

constructions. Mc is the set of all such lists for a model M . For construction x

we denote each element with index i as xi. The indices are 0-based, and our last

index will be n as a shorthand for |V | − 1.

Formally, two models mx, my are constructively equivalent if there exists con-

structions cx ∈ mxc, cy ∈ myc where for every index i, cxi is equivalent to cyi.

Literal equivalence is defined recursively. At index 0, cx0 and cy0 are equivalent if

there is a global symmetry θ0 such that θ0(cx0) = cy0. At index i, cxi and cyi are

equivalent if there exists a local symmetry σi of partial interpretation {cyk|k < i}
so that θi = θi−1 × σi and θi(cxi) = cyi. Thus, the index represents the size of

the PI we compute local symmetries on. Since all the next symmetries are local

symmetries on a larger partial interpretation, the index also tells us which literal

is being stabilized.

A problem that immediately presents itself is that the number of constructions

of a single model is the factorial of the number of variables. We will show that we

do not need to explicitly create every possible construction, removing the factorial

runtime.

At each index the combined symmetries transform mx into an intermediate

model that is consistent with my’s next partial interpretation. We can represent a

constructive symmetry as a valid descending symmetry sequence, a composition

θ0 × θ1 × . . . × θn from PIs I0 ⊂ I1 . . . ⊂ In = my. We call this a descend-

ing sequence when the meaning is obvious. For convenience, we will consider

any subsequence of a valid descending sequence to be valid as well, under the

presumption that the skipped local symmetries were identity permutations.

Each sequence will be denoted using an upper-case letter, each intermediate

sequence will be denoted using the same upper-case letter and indexed by the size

of the partial interpretation the last symmetry works on, and each symmetry will

67

be the denoted using the same letter but lower-case and indexed similarly. So for

example Θ = Θn = Θn−1 × θn = θ0 × θ1 × . . .× θn.

Constructive symmetry can be pruned using SCP.

Theorem 5.1. Given descending sequence Θ that maps construction cx to cy, if

φ is a local symmetry on some {cy0, cy1 . . . cyi}, then Θφ = θ0 × θ1 × . . .× θi ×
(θi+1×φ)×(φ−1×θi+2◦φ)× . . .×(φ−1×θn×φ) is a valid descending sequence.

Proof. Apply Θi+1 to cx to get intermediate construction

(cy0, cy1, . . . , cyi, cyi+1,Θi+1(cxi+2) . . .Θi+1(cxn))

Applying φ gives us:

(cy0 . . . , cyi, φ(cyi+1), (Θi+1 × φ)(cxi+2) . . . (Θi+1 × φ)(cxn))

Using SCP, φ−1×θi+2◦φ, is a local symmetry, so we have (Θi+1×φ◦φ−1×θi+2×
φ)(cxj) for all j > i + 1, which is (Θi+1 × θi+2 × φ)(cxj) = (Θi+2 × φ)(cxj).

So in particular Θφ
i+1(cxi+2) = φ(cyi+2). Each new application of each new local

symmetry in Θφ applies similarly.

We can interpret this theorem as sending cx to some new construction, or in a

way that is more in line with our previous pruning theorem where we found a way

to map

(cx0, . . . , cxi, φ(cxi+1), φ(cxi+2, . . . φ(cxn))

to

(cy0, . . . , cyi, φ(cyi+1), φ(cyi+2, . . . φ(cyn))

Constructive symmetry is a true equivalence relation on the set of constructions.

If two constructions, cx and cy are constructively symmetric, we will denote it

cx4cy as a relation. If cx and cy are related via some descending sequence Θ, we

can also denote it cx4Θcy. The relation is obviously reflexive.

68

Theorem 5.2. If cx4Θcy and cy4Λcz, then there is a descending sequence Φ

where cx4Φcz.

Proof. We will build Φ inductively. So φ0 = θ0 × λ0. We will make φk =

Λ−1
k−1 × θk × Λk. What remains is to show that φk is a local symmetry.

There are two parts to being a local symmetry. The first is that it maps models

to models within the partial interpretation, and the other is that it it is the identity

map for each literal in the partial interpretation.

Our next construction will be (Λ−1
k−1 × θk × Λk)(Φk−1(cx)) = (Θk × Λk)(cx).

Now Θk(cx) = (cy0, cy1, . . . , cyk,Θk(cxk+1), . . . ,Θk(cxn)), which is a construc-

tion of some model that will work at every step of Λk, so (Θk × Λk)(cx) is a

construction of a model as desired. Indeed, the first k elements are identical to

Φk−1(cx), meaning that φk is the identity map for each of those.

We can also prove this as a corollary to Theorem 5.1 by taking (θ0 × θ1 × . . .×
θn) × (λ0 × λ1 × . . . × λn) and applying SCP repeatedly. The first iteration will

give us ((θ0×λ0)×(λ−1
0 ×θ1×λ0)× . . .×(λ−1

0 ×θn×λ0))×(id×λ1× . . .×λn).

Distributing out λ1 to λn in a similar manner gives us the same Φ.

In the end Φ = Θ×Λ. This implies that composition of compatible descending

sequences does not require storing every local symmetry in the sequence.

There are some cases where the transitive nature of the descending sequences

is a more flexible. For example, if we had a descending sequence where every

symmetry after index k is the identity, then the order of the construction after k

doesn’t matter since the identity exists in all partial interpretations and commutes

with everything. In that case Θ, could map cx to some cy1 and then Λ could map

some compatible cy2 to cz and the transitive property would still hold.

Theorem 5.3. If cx4Θcy, then there is a descending sequence Φ so that cy4Φcx.

Proof. The idea behind the proof is similar to that of Theorem 5.2. We let φ0 =

θ−1
0 and φk = Φ−1

k−1 × Θ−1
k . Our base case obviously holds. Inductively, we

69

know Φk−1 is a valid descending sequence so far, so we have model Φk−1(cy),

so φk(Φk−1(cy)) = Θ−1
k (cy) = (θ−1

k × θ
−1
k−1 . . . × θ

−1
0)(cy). Since each θ−1

j only

changes the values of literals with indecies between j and n, and each inverse

is a valid local symmetry at each point it is applied, we end up with a model

(cx0, cx1, . . . , cxk,Φk(cyk+1), . . . ,Φk(cyn)). Since it preserves the partial inter-

pretation {cx0, cx1, . . . , cxk−1}, φk is indeed a local symmetry.

Even though 4 is an equivalence relation on constructions, it is not the case

when we project the relation into the space of models. Since there are |M ||V |!
different constructions, we need to have an algorithm that works on models to

have a chance of having an efficient algorithm on even mild examples.

This also gives us an alternate way of expressing constructions. If we have

descending sequence Θ, then we know that Θ−1 = φ0×φ1×. . .×φn so Θ = φ−1
n ×

φ−1
n−1× . . .×φ−1

0 : An ascending sequence that works on partial interpretations that

are decreasing in size at each step. In fact, ascending and descending sequences

are equivalent and are in 1-1 correspondence. While descending sequences are

more intuitive, ascending sequences will allow us to find constructively symmetric

models more easily.

5.3 A General Algorithm

With these properties, we can show that computing complete constructive sym-

metry is not much harder than computing complete local symmetry in general

since they can be generated from the same search tree MILE and its variants use

to generate local symmetries.

The key is the memiozation approach we used for SCP. Recall that for local

symmetry the algorithm stores every edge generated by every visited PI I and

its children, denoted Pairs[I]. So Pairs[I] = Sym(I) ∪ (
⋃
l∈L Pairs[I ∪

{l}]). For constructive symmetry, Pairs[I] should be all the constructive sym-

70

metric pairs. This is where ascending sequences become important; since they

are built up from the most restrictive PIs first, we want to implicitly compose⋃
l∈L Pairs[I ∪{l}] with every symmetry of I , φ. Composition applied to edges

is simply applying φ to an individual vertex.

If the edges are directed, then we can only apply a symmetry to the endpoint

vertex. Since constructive symmetry can move from on PI to another, we cannot

say a priori that the edges of Pairs[I] are undirected. If there is an ascending

sequence Θ that goes through partial interpretation I , and all symmetries after I

are the identity, then there is an ascending sequence equivalent to Θ−1 that also

goes through I and uses only identity symmetries after I . Hence, at every node

in our propagation we can consider each edge as an undirected edge. This means

that the algorithm doesn’t in general take up more space to compute constructive

symmetry compared to local symmetry using case 1 correspondents. In practice,

more storage is required since constructive symmetry generates more edges, but

we don’t increase the theoretical maximum number of edges we generate at each

node.

The only difference to MILE* is how Pairs[I] is generated hence, all of the

weaknesses of the local symmetry algorithm are weaknesses for this algorithm as

well. Even worse is that we cannot do any time/space trade offs by pruning using

global symmetry alone.

There is an agreement symmetry version of constructive symmetry, but it can

require far more time and space than the local symmetry version. We store the

symmetries of every agreement and then organize them into a lattice. Using this

lattice, we compute the constructively symmetric pairs in the same manner as

the complete algorithm. While this is still sometimes fast, other times it is slower

than even the complete algorithm. If we require a faster approximation, agreement

local symmetry is still anO(n) approximation of complete constructive symmetry

because the number of edges has an upper bound but is often a poor substitute in

practice.

71

5.4 Improving Constructive Symmetry

So constructive symmetry is more theoretically satisfying, but it is more difficult

to approximate quickly. Another weakness is that it can often be too powerful,

finding so many similarities that most diverse sets are trivial. However, this power

gives room to investigate other approximations that can help with both weak-

nesses.

We investigated two incomplete offline methods that are better able to take ad-

vantage of the unique methodology that constructive symmetry uses. In the first,

we restrict which literals represent a valid choice, as opposed to a side-effect of a

choice. In the other, we only perform a shallow search on the PIs. Both of these

methods can decrease the the number of similarities found in a principled way,

and as a side effect can vastly decrease the runtime.

5.4.1 Restricting Choices

We defined every literal to represent a distinct ”choice” for constructive symmetry,

but there are other reasonable definitions that may depend on the problem. For

example, the intuition behind building up solutions to the N-Queens problem is

adding queens to the board (adding positive literals), not by planning ensuring that

some space will never contain a queen (adding negative literals). In this case it

makes sense to restrict our definition of a choice to only correspond to positive

literals.

In general, we wish to only build PIs using a restricted set of choices. This set

could be computed, or be chosen by a human. As long as each model is uniquely

determined by a distinct set of the remaining literals, we will be able to modify

our complete offline algorithm to compute constructive symmetries with these

restrictions.

We test two general restrictions. The first assumes that positive literals repre-

sent constructive actions, while negative literals represent the lack of some action.

72

Figure 5.2: Computed diverse set for the 5× 5 All-Filled-Squares problem using

positive choices

This sort of interpretation is common in applications like planning. The main ad-

vantages of this restriction is that it is intuitive and simple. The set of positive

literals of a model clearly represents that model. However, there are cases where

negative literals are important for finding adequate similarity.

For the next restriction, we will only accept a literal l if ∀l′∈L((l′ =⇒ l) =⇒
(l =⇒ l′ ∧ l ≤ l′)) ∨ (∀m∈M(l′ /∈ m)), where literals are compared using

MILE ordering. Essentially, we wish to remove all literals implied by other literals

under the interpretation that these literals represent only side-effects of choices.

In regards to N-Queens, this leads to a more refined intuition as to why negative

literals are nonconstructive: they are simply side-effects of our positive literals.

This restriction also correctly allows both positive and negative literals for the

N × N All-Squares problems. This flexibility has a cost; we are not guaranteed

that every model will have a unique representation, thought this can easily be

checked.

Curtailing choices can lead to problems applying pruning, since we may not

73

traverse our tree in MILE order. A naive implementation may prune branches

that need to be traversed, but this can be easily fixed. Since two models are only

equivalent if we make equivalent choices, we can simply replace each model with

its set of valid choices without losing any meaningful symmetry. Then every

canonical interpretation will consist only of choices and every symmetry will only

map between those choices. With this change, we can curtail choices and leave

the complete offline algorithm almost unaltered.

5.4.2 Shallow Approximation

The second method is restricting the depth of the search tree. There are some

similarities that may not be immediately intuitive even for local symmetry. For

example in theN×N All-Filled-Squares problem squares of sizeN andN−1 are

considered similar, while we are able to find nonsymmetric examples of all other

sizes. We have observed that most unintuitive similarities exist in the larger PIs.

Therefore, restricting the number of choices we make can increase the efficiency,

decrease the power to a more acceptable level, and perhaps increase the salience.

We made the search tree shallow using two approaches. First, we may restrict

the minimum number of models that are consistent with any PI. Since we already

remove PIs with fewer than 2 models, this change can be made to the complete

offline algorithm by increasing that number and making no additional changes

to the algorithm. The potential efficiency problem is if some set of literals are

disproportionately represented in the models, then some branches may be much

longer than others.

The other restriction is by restricting the total number of choices that are make.

This is not a restriction on the size of the canonical PI, so some nodes that are

pruned in the general case could not be pruned here, since we aren’t guaranteed

to have visited that particular interpretations. However, the runtime is more pre-

dictable. For example, if we are only allowed to make O(log(v)) choices, then we

74

are guaranteed to only examine a polynomial number of PIs.

5.5 Results

We used the same tests we ran for complete local symmetry and added a test that

use 8-Queens, which complete algorithms cannot finish. The complete construc-

tive symmetry algorithm used deep SCP pruning and we compared it to its local

symmetry counterpart.

8-Queens
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 4187 7.94 125.94 4186

Constr 504007 -1 0.00 0

Pos Lits 112 0.43 2325.58 2810

NoImpl 112 0.45 2222.22 2810

Depth 2 4368 5.61 178.25 2394

Depth 3 162934 169.42 5.90 3930

32 Mods 983757 -1 0.00 0

16 Mods 863439 -1 0.00 0

LocalSym 528264 -1 0.00 0

75

7-Path
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 12559 9.95 0.42 18084

Constr 2879 3.35 1.23 18336

Pos 95 0.46 8.98 18336

NoImpl 95 0.49 8.43 18336

Depth 2 104 0.52 7.94 13260

Depth 3 1205 1.42 2.91 17868

32 Mods 511 1.04 3.97 15132

16 Mods 1538 2.02 2.04 17724

LocalSym 2879 4.13 1.00 8298

8-Path
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 45742 70.37 0.22 72492

Constr 11520 19.27 0.81 73536

Pos 201 0.82 18.99 73536

NoImpl 201 0.86 18.10 73536

Depth 2 129 0.75 20.76 42900

Depth 3 1870 2.79 5.58 70188

32 Mods 4022 6.56 2.37 68784

16 Mods 8186 12.53 1.24 72744

LocalSym 11520 15.57 1.00 28314

76

9-Path
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 166108 -1 0.00 97458

Constr 47173 156.13 0.76 294528

Pos 437 2.21 53.47 294528

NoImpl 437 2.27 52.05 294528

Depth 2 172 1.36 86.88 123492

Depth 3 2855 7.94 14.88 268464

32 Mods 25329 71.52 1.65 287436

16 Mods 39444 120.59 0.98 293340

LocalSym 47173 118.16 1.00 98910

4×4 All-Squares
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 436 0.74 1.26 430

Constr 342 1.01 0.92 430

Pos 13 0.17 5.47 58

NoImpl 342 1.04 0.89 430

Depth 2 98 0.4 2.33 242

Depth 3 870 0.92 1.01 414

32 Mods 1 0.13 7.15 58

16 Mods 87 0.46 2.02 162

LocalSym 342 0.93 1.00 286

77

5×5 All-Squares
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 1486 1.43 26.87 1467

Constr 38984 55.03 0.70 1467

Pos 36 0.33 116.45 130

NoImpl 38984 72.25 0.53 1467

Depth 2 314 0.87 44.17 522

Depth 3 5630 3.92 9.80 994

32 Mods 905 1.28 30.02 450

16 Mods 36775 44.87 0.86 462

LocalSym 38984 38.43 1.00 858

4×4 All-Rectangles
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 4402 2.5 1.34 3549

Constr 6564 3.28 1.02 3549

Pos 36 0.25 13.36 241

NoImpl 6564 4.01 0.83 3549

Depth 2 115 0.41 8.15 479

Depth 3 1427 1.06 3.15 1647

32 Mods 611 0.69 4.84 673

16 Mods 3875 1.75 1.91 673

LocalSym 6564 3.34 1.00 1233

78

Random Models
Algorithms #Sym Time %Sym Speedup #Edges

ConstrAgree 546497 -1 0.00 120681

Constr 1207462 881.4 0.81 732717

Pos 8009 6.67 106.52 285

NoImpl 1187002 -1 0.00 0

Depth 2 339 1.97 360.66 0

Depth 3 2627 6.64 107.00 0

32 Mods 286467 156.41 4.54 339

16 Mods 573239 272.63 2.61 48910

LocalSym 1207462 710.5 1.00 261173

Constructive symmetry is slower but within the same order of magnitude as local

symmetry. The slowdown is attributed to the cost of propagating many more edges

using SCP. We also find that the agreement version of constructive symmetry can

be much slower than the complete algorithm in some cases. For graph coloring,

this is because it computes the local symmetries of many more PIs. These local

symmetries tend to be on much smaller formula, which is why local symmetry

agreement is still fast in most cases. However, since we have to compute a lattice

and propagate through it, adding more PIs extracts an additional computational

cost. There are still cases where an agreement algorithm is still faster than a

complete algorithm, and it still computes close to the complete set of edges so it

is still a useful tool.

All the graph coloring problems have complete constructive symmetry graphs,

and the All-Squares problems have around 99% of the edges of a complete graph.

This number of edges makes finding nontrivial diverse sets difficult, which limits

its usefulness. By utilizing restrictions, we are not only able to compute diversity

graphs more quickly, but we are also able to reduce the number of edges to a

more reasonable degree. However, it is clear that the restrictions need to be tuned

to the problem. For 8-Queens, restricting the minimum number of models in a

79

PI still leads to timeouts since adding negative literals remove very few models.

For graph coloring, restricting choices doesn’t decrease the number of edges at all.

There are many cases where no literal is implied by any other literal, which makes

the NoImpl strategy useless. Lastly, for random models most of the symmetries

only exists in the very smallest PIs. So restricting based on choices and depth give

useless diversity graphs.

Overall, constructive symmetry is a more theoretically satisfying, but there are

more computational challenges to address.

80

Chapter 6

Discussion

6.1 Overview of Completed Work

Results of the previous chapters reaffirms the context sensitivity of diversity. Our

work deepens the understanding of the tradeoffs between diversity measures, and

we have added new notions of diversity.

There are numerous generic distance variations that are fast to compute, have

clear interpretations, and can work well even in the presences of incomplete data

and noise. Utilizing shortest-path correction we can generalize any pairwise no-

tion of diversity D into a D-aware distance measure, so all of our work is com-

patible with distance measures.

Generic distance measures such as Hamming distance are widely applicable, but

are not the most precise. Large distances do not necessarily correspond to objects

that have very dissimilar structure but there it seems that small distances will

often correspond to similar objects. Even for local symmetry, a small Hamming

distance between two objects implies their agreement set is small, which is more

likely to contain symmetries that map one object to the other.

Uniform sampling’s advantages are that it is unbiased and unpredictable. Ev-

ery object has an equal chance of being sampled and it is relatively likely that

81

if we build two diverse sets they will contain different models. But there are

no guarantees that a set picked by uniform sampling is actually diverse. This is

especially clear in cases where a large percentage of the objects are structurally

similar with each other, the chosen set will likely contain many such objects. Uni-

form sampling should not be seen as a diversity measure itself, but rather as part

of a strategy for choosing a diverse set given a diversity graph.

Global symmetry represents objects that are structurally identical. It is fast to

compute in practice and partitions objects, which can be useful in some contexts.

Unfortunately, it is not fit as a general-purpose notion of diversity. Most sets of

objects will have no global symmetry at all. Even when there is global symmetry,

there are other structural similarities that will often be missed.

Local symmetry is at least as powerful as global symmetry in all cases, and is

fit to be a general notion of diversity. The difficulty is the computational cost.

To apply to large application-driven problems, local symmetry must be approxi-

mated and even then there are tradeoffs between speed and accuracy which can

drastically effect the quality of the results.

Still, it is an important diversity concept since it can find similarities that no

other measure can easily encompass. Early on in our work, it wasn’t clear that

local symmetry could be approximated in an efficient manner on even problems

with |V | in the teens and the idea of approximating it for problems with over

100,000 variables and |M | orders of magnitude beyond a billion was unthinkable.

This dissertation has progressed not only the idea of using local symmetry for

diversity, but its applicability as well.

While less applicable, constructive symmetry is able to fix some theoretical

problems of local symmetry. While local symmetry is a known concept that has

not yet been applied to this specific problem, constructive symmetry is a com-

pletely novel notion. Its advantages go beyond diversity, as it is actually the idea

behind deep symmetry pruning, the most effective of all our pruning algorithms.

We are confident that there are search problems that could benefit from this prun-

82

ing technique.

Choosing Diversity Given the wide variety of diversity techniques available, it

may be confusing to determine which to use for a given problem. This is a hard

problem in general but there are some heuristics that can be used to accelerate the

process.

Much depends on whether an offline algorithm is feasible or not. If it is not,

then the first concept attempted should be online semantic local symmetry. If the

performance is unacceptable, then syntax local symmetry should be attempted.

The precise application of symmetry breaking clauses will likely have to be tuned

to the problem. It may be the case that online local symmetry accepts the vast

majority of candidates, which would suggest it isn’t so useful for that problem.

One may choose to either augment or completely replace local symmetry with

some distance concept using techniques from other’s work. Choosing to sam-

ple deterministically, by random phase selection, random sampling or some other

technique depends on individual needs.

If offline algorithms are feasible, there are many more options to choose from.

We suggest starting by applying diversity measures that don’t require any parame-

ter tuning. This means the complete and agreement versions of local/constructive

symmetry and global symmetry. Constructive symmetry is recommended if it is

fast enough and gives good results. Otherwise, local symmetry should be used.

If even agreement local symmetry is too slow, then our suggestion is global sym-

metry plus distance using shortest path correction. In the rare cases that global

symmetry is too powerful, then distance is the best we can do.

If local or constructive symmetry is not discriminating enough, then distance

and shortest path correction can apply more leverage. When combining them, the

weight given to symmetric models needs to be tuned. Unlike global symmetry, lo-

cal symmetry graphs often have very small diameter, so using small edge weights

would completely overshadow the distance information. We recommend a weight

83

close to the smallest measured distance; we find .9 when using Hamming distance

tends to work well.

6.2 Future Work

6.2.1 Link Analysis

The diversity graph is a powerful representation of commonality between models

whose applications go beyond diverse models. One we believe may be particularly

interesting is link analysis.

Link analysis uses the edge of structure of the graph to find relationships be-

tween nodes. One such relationship is graph centrality which is often used to find

the most ”important” or ”influential” nodes in a graph. Our interpretation of cen-

trality on diversity graphs is that highly central nodes are ”characteristic” models

that exhibit a typical structure, while nodes that have low centrality describe more

unusual models that have few similarities with the other models.

For even simple link analysis, where the most characteristic model is the one

with the most incident edges, local symmetry can yield interesting results. Con-

sider 3-coloring a path of 6 nodes. With global symmetry, there is a 72-way tie for

the most characteristic solution, while the remaining 24 solutions are tied for the

least characteristic (or the most unusual). The two sets are split based on whether

the sequence of colors forms a palindrome (i.e., the coloring is symmetric about

the middle node(s) of the graph). But this is not at all descriptive of the overall

problem structure.

Local symmetry judges the unusual models as the six that are 2-colored, since

they are models that are different from all other ways to 3-color the path. The

characteristic models consist of 12 models that contain every color with equal

frequency in some irregular way. This reflects the high likelihood that such a

model shares some substructure with every other model. So again local symmetry

84

Characteristic: 21 3 1 3 2

Unusual: 21 1 2 1 2

Figure 6.1: Most unusual and characteristic ways to 3-coloring a path based on

local symmetry. All other examples are globally symmetric to these.

analysis can discover more fine-grained similarities than global symmetry.

6.2.2 Complete Symmetry

The biggest problem with the fastest complete algorithms is that they require a

large amount of space to efficiently prune. A memory-sensitive cache could re-

duce memory overhead. If a PI that could have been used to prune was removed

from memory, the subtree simply needs to be re-computed. We do not currently

know if this would be effective, as this would require certain PIs being used far

more than others. If it is, there is also a question of what strategy we should use.

One potentially powerful heuristic would be to remove that largest PIs first, since

a cache miss would require recreating smaller subtrees.

We also did not investigate modifying the order in which we add literals to PIs.

For some search problems this can have large effect on the runtime. Doing a

global reordering of the variables would not effect the algorithm, but a dynamic

reordering depending on the current sub-formula may present an insurmountable

obstacle to most of the benefits of fixed-literals and SCP pruning. It is not clear

if there is an effective heuristic for variable ordering since performing an exhaus-

tive search and pruning is based on properties of sub-formula that are currently

unpredictable.

Instead of a depth-first approach, we could instead use a breadth-first strategy.

The appeal of this strategy is that it allows for even greater pruning. Since we

have all of the subsets of a given PI, we can use the symmetries of every one of

its subsets to try and prune it. In our early experiments, the cost of testing all the

85

symmetries was not worthwhile. This was before deep pruning was developed, so

it’s possible that strategy could work better in this case. The use of breadth-first

search may still be helpful in some particular areas.

A future approach could instead solve a number of LSM decision problems for

a more focused search. Since any PI that maps m1 to m2 is a subset of their

agreement, the search space for this problem is at most O(2|α(m1,m2)|), which will

will be much smaller than an O(3|V |) for an exhaustive search

As a basic optimization would be to add all the edges we find while attempting

to find if there is an edge from m1 to m2. A unique optimization is that this

method can tell us if two models are definitely not symmetric, so the lack of and

edge could be propagated using SCP.

This approach could lead to drastically better performance, since many of the

symmetries we compute in exhaustive search are redundant. To fully realize this

performance, we believe that there needs to be a sound heuristic that can identify

situations where two models are definitely not locally symmetric on any PI. Oth-

erwise, a complete search could have significant overlap. Another possibility is

some way to mark PIs has previously visited in a space-efficient manner. Even

without a way to ensure there is not overlap, this algorithm could still have some

applications to the online algorithm since we only compare a small subset of the

total number of models.

6.2.3 Over-estimating Symmetry

In this paper we concentrated on approximation methods that underestimate the

amount of symmetry, but there are reasons why overestimation may be appropri-

ate. For instance, the typical application of the online algorithm is to find diverse

sets that are much smaller than the typical size of a maximal diverse set. Since it

will ignore many models that are diverse, it makes sense to strengthen our notion

of diversity to ensure our small set is as diverse as possible.

86

Overestimation allows for local symmetry pruning without the memory over-

head that is typically required. Edges are immediately set in the diversity graph

as soon as they are found. When finding a case 1 correspondent (I, I ′) with link φ

we calculate the edges of the subtree I ′ by taking the diversity subgraph induced

by models consistent with I and propagating the edges of that graph using φ. This

eliminates the need to store individual edges for each PI. It may end up propagat-

ing edges that were not found in the subtree rooted at I , but in our preliminary

tests on this method the amount of overestimation was typically very small.

To over-estimate symmetry for the online algorithm, we may replace local-

symmetry breaking clauses with global symmetry breaking clauses. This causes

far more pruning to occur at a far lower memory cost. In preliminary tests this

seemed to produce a reasonable number of highly diverse models.

6.3 Conclusion

This dissertation should be a valuable resource to those working on propositional

diversity problems to bring insight into their choice of diversity concepts. It is im-

portant to consider what each diversity measure is gauging to ensure finding ob-

jects that are truly structural different instead of being only superficially distinct.

The symmetry-based approaches we have presented here represent the state-of-

the-art for finding these true differences that work for a wide variety of problems.

87

Bibliography

[1] Fadi A. Aloul, Igor L. Markov, and Karem A. Sakallah. Shatter: efficient

symmetry-breaking for boolean satisfiability. In Proceedings of DAC’03,

pages 836–839. ACM, 2003.

[2] Fadi A. Aloul, Arathi Ramani, Igor L. Markov, and Karem A. Sakallah.

Solving difficult sat instances in the presence of symmetry. In Proceedings

of DAC’02, pages 731–736. ACM, 2002.

[3] Fadi A. Aloul, Karem A. Sakallah, and Igor L. Markov. Efficient symmetry

breaking for boolean satisfiability. IEEE Trans. Comput., 55(5):549–558,

May 2006.

[4] Ola Angelsmark and Johan Thapper. Algorithms for the maximum ham-

ming distance problem. In BoiV. Faltings, Adrian Petcu, Franois Fages, and

Francesca Rossi, editors, Recent Advances in Constraints, volume 3419 of

Lecture Notes in Computer Science, pages 128–141. Springer Berlin Heidel-

berg, 2005.

[5] Noriko H. Arai and Alasdair Urquhart. Local symmetries in propositional

logic. In Proceedings of TABLEAUX’00, pages 40–51. Springer-Verlag,

2000.

88

[6] Olivier Bailleux and Pierre Marquis. Distance-sat: Complexity and algo-

rithms. In Proceedings of the 16th AAAI and the 11th IAAI, pages 642–647.

AAAI, 1999.

[7] Belaid Benhamou. Study of symmetry in constraint satisfaction problems.

In Proceedings of CP’94, pages 246–254, 1994.

[8] Belaıd Benhamou, Tarek Nabhani, Richard Ostrowski, and Mohamed Réda

Saıdi. Dynamic symmetry breaking in the satisfiability problem. In Pro-

ceedings of LPAR’10, 2010.

[9] Belaıd Benhamou and Mohamed Réda Saıdi. Dynamic detection and elimi-

nation of local symmetry in csps.

[10] Belaid Benhamou and Lakhdar Sais. Tractability through symmetries in

propositional calculus. Journal of Automated Reasoning, 12(1):89–102,

1994.

[11] Donald J Berndt and James Clifford. Using dynamic time warping to find

patterns in time series. In KDD workshop, volume 10, pages 359–370. Seat-

tle, WA, 1994.

[12] Gregory Butler. Fundamental Algorithms for Permutation Groups, volume

559 of LNCS. Springer-Verlag, 1991.

[13] Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Balancing

scalability and uniformity in sat witness generator. DAC ’14, pages 60:1–

60:6, New York, NY, USA, 2014. ACM.

[14] Supratik Chakraborty, KuldeepS. Meel, and MosheY. Vardi. A scalable and

nearly uniform generator of sat witnesses. In Computer Aided Verification,

volume 8044 of LNCS, pages 608–623. Springer Berlin Heidelberg, 2013.

89

[15] David Cohen, Peter Jeavons, Christopher Jefferson, Karen E Petrie, and Bar-

bara M Smith. Symmetry definitions for constraint satisfaction problems. In

Proceedings of CP’05, pages 17–31. Springer, 2005.

[16] James Crawford, Matthew Ginsberg, Eugene Luks, and Amitabha Roy.

Symmetry-breaking predicates for search problems. In Proceedings of

KR’96,, volume 96, pages 148–159. Morgan Kaufmann, 1996.

[17] James M. Crawford. A theoretical analysis of reasoning by symmetry in first-

order logic (extended abstract). In AAAI Workshop on Tractable Reasoning,

pages 17–22, 1992.

[18] P. Crescenzi and G. Rossi. On the hamming distance of constraint satis-

faction problems. Theoretical Computer Science, 288(1):85 – 100, 2002.

Complexity and Logic.

[19] Thomas Eiter, Esra Erdem, Halit Erdogan, and Michael Fink. Finding simi-

lar or diverse solutions in answer set programming. In Logic Programming,

volume 5649 of LNCS, pages 342–356. Springer Berlin Heidelberg, 2009.

[20] Thomas Eiter, Esra Erdem, Halit Erdogan, and Michael Fink. Finding sim-

ilar/diverse solutions in answer set programming. Theory and Practice of

Logic Programming, 13:303–359, 5 2013.

[21] Martin Ester, Hans P. Kriegel, Jorg Sander, and Xiaowei Xu. A Density-

Based algorithm for discovering clusters in large spatial databases with

noise. In 2nd KDD, pages 226–231. AAAI Press, 1996.

[22] Ian P Gent, Iain McDonald, Ian Miguel, and Barbara M Smith. Approaches

to conditional symmetry breaking. In Proceedings of the satellite workshop

of CP., 2004.

[23] Ian P Gent, Iain McDonald, and Barbara M Smith. Conditional symmetry in

the all-interval series problem. In Proc. SymCon. Vol. 3., 2003.

90

[24] IanP. Gent, Tom Kelsey, SteveA. Linton, Iain McDonald, Ian Miguel, and

BarbaraM. Smith. Conditional symmetry breaking. In Peter Beek, editor,

CP’05, volume 3709 of Lecture Notes in Computer Science, pages 256–270.

Springer Berlin Heidelberg, 2005.

[25] Jiawei Han, Micheline Kamber, and Jian Pei. Data Mining Concepts and

Techniques. Morgan Kaufmann, 3rd edition, 2012.

[26] Emmanuel Hebrard, Brahim Hnich, Barry O’Sullivan, and Toby Walsh.

Finding diverse and similar solutions in constraint programming. In Pro-

ceedings of the 20th National Conference on AI - Vol 1, AAAI’05, pages

372–377. AAAI Press, 2005.

[27] Emmanuel Hebrard, Barry O’Sullivan, and Toby Walsh. Distance constraints

in constraint satisfaction. In Proceedings of the 20th IJCAI, pages 106–111.

Morgan Kaufmann Publishers Inc., 2007.

[28] Holger H. Hoos and Thomas Stützle. Satlib: An online resource for research

on sat. In T.Walsh I.P.Gent, H.v.Maaren, editor, SAT 2000, pages 283–292.

IOS Press, 2000. SATLIB is available online at www.satlib.org.

[29] Ethan K. Jackson, Gabor Simko, and Janos Sztipanovits. Diversely enumer-

ating system-level architectures. In Proceedings of the 11th ACM EMSOFT,

pages 11:1–11:10. IEEE Press, 2013.

[30] Tommi Junttila and Petteri Kaski. Engineering an efficient canonical labeling

tool for large and sparse graphs. In Proceedings of ALENEX’07. SIAM,

2007.

[31] Tommi Junttila and Petteri Kaski. Conflict propagation and component

recursion for canonical labeling. In Theory and Practice of Algorithms

in (Computer) Systems, volume 6595 of LNCS, pages 151–162. Springer-

Verlag, 2011.

91

[32] Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Symmetry and sat-

isfiability: an update. In Proceedings of SAT’10, pages 113–127. Springer-

Verlag, 2010.

[33] Hadi Katebi, Karem A. Sakallah, and Igor L. Markov. Conflict anticipation

in the search for graph automorphisms. In Proceedings of LPAR’12, pages

243–257. Springer-Verlag, 2012.

[34] Balakrishnan Krishnamurthy. Short proofs for tricky formulas. Acta Infor-

matica, 22(3):253–275, 1985.

[35] Brendan D. McKay. Practical graph isomorphism. Congressus Numeran-

tium, 30:45–87, 1981.

[36] Brendan D. McKay and Adolfo Piperno. Practical graph isomorphism, {II}.
Journal of Symbolic Computation, 60(0):94 – 112, 2014.

[37] Alexander Nadel. Generating diverse solutions in sat. In KaremA. Sakallah

and Laurent Simon, editors, SAT 2011, volume 6695 of LNCS, pages 287–

301. Springer Berlin Heidelberg, 2011.

[38] Toby Walsh. General symmetry breaking constraints. In Frdric Benhamou,

editor, Principles and Practice of Constraint Programming - CP 2006, vol-

ume 4204 of Lecture Notes in Computer Science, pages 650–664. Springer

Berlin Heidelberg, 2006.

[39] Toby Walsh. Breaking value symmetry. In Christian Bessire, editor, Prin-

ciples and Practice of Constraint Programming CP 2007, volume 4741 of

Lecture Notes in Computer Science, pages 880–887. Springer Berlin Heidel-

berg, 2007.

[40] Toby Walsh. Symmetry breaking constraints: Recent results, 2012.

	preamble
	Thesis

