
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the require-
ments for an advanced degree from Emory University, I hereby grant to Emory
University and its agents the non-exclusive license to archive, make accessible,
and display my thesis or dissertation in whole or in part in all forms of media,
now or hereafter known, including display on the world wide web. I understand
that I may select some access restrictions as part of the online submission of
this thesis or dissertation. I retain all ownership rights to the copyright of the
thesis or dissertation. I also retain the right to use in future works (such as
articles or books) all or part of this thesis or dissertation.

Signature:

SIYUAN Date

Analysis of Detour Gap Numbers

By

Siyuan Lou
Master of Science

Computer Science

Michelangelo Grigni
Advisor

James Lu
Committee Member

Li Xiong
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Analysis of Detour Gap Numbers

By

Siyuan Lou
B.S., Tsinghua University, 2010

Advisor: Michelangelo Grigni, Ph.D.

An abstract of
A thesis submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

2012

Abstract

Analysis of Detour Gap Numbers
By Siyuan Lou

Spanner graphs appear in approximation schemes for problems such as the Trav-

eling Salesman Problem, where an edge weighted graph defines a metric on its

vertex set. In such schemes, a spanner is a subgraph of the input graph, which

still represents nearly the same metric. We bound its total edge weight using

the “detour gap number”, which is defined by a linear program. In this thesis,

we simplify this linear program, and state the complementary slackness condi-

tions relating it and its dual. We also give a way to prune a graph based on

those properties and a counter example showing the detour gap number is not

monotone under edge deletion. The thesis also introduced a software package

to facilitate the calculation of detour gap numbers.

Analysis of Detour Gap Numbers

By

Siyuan Lou
B.S., Tsinghua University, 2010

Advisor: Michelangelo Grigni, Ph.D.

A thesis submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Master of Science

in Computer Science
2012

Contents

1 Introduction 1

2 The Primal Problem 7

2.1 Simplification . 7

2.2 Running Example . 11

3 Dual Problem 13

3.1 Charging Scheme . 13

3.2 Running Example . 17

4 Combined Primal and Dual 20

4.1 Complementary Slackness . 20

4.2 Running Example . 23

5 Graph Modification 26

5.1 Tree Edge Contraction . 26

5.2 Parallel Edge Deletion . 27

6 Nonmonotonicity in Edge Deletion 30

7 Software 32

List of Figures

2.1 Primal Problem . 12

3.1 Charging Scheme . 17

4.1 gap0(G,T) . 24

6.1 Nonmonotonicity of gap0 . 31

7.1 Primal Problem . 35

Chapter 1

Introduction

Suppose G = (V,E) is a connected graph where each edge e ∈ E has a weight

w(e) ≥ 0. The weight of each edge can also be interpreted as its length. We

denote the length of the shortest path between two vertices u, v ∈ V as dG(u, v).

If (u, v) = e ∈ E, we can also write dG(u, v) as dG(e). It is easy to see that dG

is a metric for G: it is symmetric, and for any three vertices u, v, w ∈ V , we

have dG(u, v) ≤ dG(u,w) + dG(w, v).1

Given a metric on n vertices, the metric Traveling Salesman Problem is

to find a cyclic ordering of vertices such that the total length of the tour is

the smallest according to its metric. In our case, it is to find a shortest tour,

according to dG, visiting all vertices in V and returning back to its starting

point. The exact metric TSP was proved to be NP-hard by Karp in 1972

[2]. From then on, much effort has been devoted in seeking a polynomial time

approximate algorithm to solve the Traveling Salesman Problem. Gutin’s book

[1] covers many important research areas of study on TSP including variations of

1Technically dG is a “pre-metric” since we allow dG(u, v) = 0 when u 6= v.

2

approximation schemes. In particular, the articles [3, 4, 5, 6] find approximate

schemes in planar graphs. A polynomial time approximation scheme (PTAS)

can be described as: given a metric and ε > 0, find a tour with cost at most

1 + ε times optimal, in time polynomial in |V |. Such schemes were found for

metrics defined by certain families of graphs, e.g. planar graphs [3, 4]. A key

step in these schemes is to find a light subgraph G′ of G where we can compute

the approximate shortest tour in polynomial time. This leads to the notion of

a spanner of G.

A spanning subgraph of G is G′ = (V,E′), where E′ ⊂ E and G′ inherits its

edge weighting from G. Similarly, G′ defines its own metric dG′ on V . Obviously,

dG′(u, v) ≥ dG(u, v) for all vertices pair (u, v), u, v ∈ V , since we remove some

edges from G to get G′. For some r ≥ 1, if dG′(u, v) ≤ r · dG(u, v) for all

u, v ∈ V , then G′ is a r-spanner of G. In approximate schemes for TSP, we are

interested in finding a (1 + ε)-spanner of G where ε is small. Given r ≥ 1, we

Algorithm 1 ([7]) Span(G = (V,E), r)

G′ = (V,E′), where initially E′ ← ∅

for all e ∈ E in non-decreasing w order do

if r · w(e) < dG′(e) then

add e to E′

end if

end for

return G′

can compute an r-spanner G′ in G by the greedy algorithm (Algorithm 1) of

Althöfer et al. [7]. In [8], it was also mentioned that if G′ = Span(G, r), then

G′ = Span(G′, r) and G′ contains a minimum spanning tree of G. Generally,

3

if some connected graph G satisfies G = Span(G, r), or we say it is a greedy

r-spanner graph. We are interested in putting an upper bound on the relative

total edge weight of such graphs, see Theorem 1. The ratio of the total edge

weight of G and that of its minimum spanning tree T appears in the exponent

of the time complexity of a PTAS.

Given a graph G = (V,E) with a real weighting w, suppose T is a minimum

spanning tree of G. For each edge e /∈ T , we define the detour gap number of

an edge (sometimes we say detour gap or simply gap for short) as in [8]:

g(e)
def
= dG−e(e)− w(e), (1.1)

where dG−e is the distance metric for the graph G removing e. Since e /∈ T ,

we know dG−e(e) is finite. The detour gap measures the cost of removing an

existing edge from graph G. In [8], the authors give the following theorem

(Theorem 1) to bound the total weight of such a greedy spanner graph by the

sum of the detour gaps of all its non-tree edges. We denote the total gaps of all

non-tree edges as

g(G− T)
def
=

∑
e∈G−T

g(e),

where G− T is G removing all edges in T . If we rescale the edge weights in G

so that w(T) = 1, the theorem states:

Theorem 1. ([8]) If G = Span(G, 1 + ε) and w(T (G)) = 1, then

w(G) ≤ 1 + (1/ε) · g(G− T).

Now if we fix G, T and ε, we can see that w(G) is bounded by g(G− T). In

[9] the ε-detour gap number of graph G is introduced as:

gapε(G,T)
def
= max g(G− T).

4

where the maximum is taken over all weighting w of G such that w(T) = 1 and

G = Span(G, 1 + ε), and T is an MST. We can see that if gapε(G,T) exists, it

is an upper bound for the total weight of a greedy spanner graph.

To calculate gapε(G,T), we first define some auxiliary variables or notations.

For some e ∈ G−T , Te denotes the path in T that connects the two end points

of e. We say some tree edge s crosses e, or s / e, if s ∈ Te. In G, we say Pe

is a detour path of e if Pe and e form a simple cycle. All such detour pairs

form a set P = {(e, Pe)|Pe is a detour path of e, e ∈ G − T}. For some e, we

put all its detour paths (if exist) in sequence and give each one a subscript as

Pe,i, i = 1, 2, 3, Then gapε(G,T) can be calculated by the following linear

program [9]:

gapε(G,T) = max
w,g

g(G− T)

w(e) ≥ 0 ∀ e ∈ G (1.2a)

w(T) ≤ 1 (1.2b)

w(s) ≤ w(e) ∀ e ∈ G− T, ∀s / e (1.2c)

g(e) ≤ w(Pe,i)− w(e) ∀ (Pe,i, e) ∈ P (1.2d)

g(e) ≥ ε · w(e) ∀ e ∈ G (1.2e)

.

By observing the constraints, it is easy to see that at some optimal point

(w, g), we always have

w(T) = 1

and

g(e) = min
i
w(Pe,i)− w(e),∀ e ∈ G− T.

5

That is, at optimal points, we always have the total weight of the minimum

spanning tree (MST) scaled to 1 and g is determined by w as in equation (1.1).

This linear program is rather difficult to work with, so we introduce two

simplified upper bounds that we obtain by removing constraints. By setting

ε = 0 in the linear program, we get a simpler linear program:

gap0(G,T) = max
w,g

g(G− T)

w(e) ≥ 0 ∀ e ∈ G

w(T) ≤ 1

w(s) ≤ w(e) ∀ e ∈ G− T, ∀s / e

g(e) ≤ w(Pe,i)− w(e) ∀ (Pe,i, e) ∈ P

g(e) ≥ 0 ∀ e ∈ G

. (1.3)

By comparing these two linear programs, we can see that

gapε(G,T) ≤ gap0(G,T)

since the latter is less constrained. Therefore, gap0(G,T) would be an upper

bound for w(G) in Theorem 1, and it may be easier to compute.

By omitting the MST constraints, we get an even simpler linear program:

gap′0(G,T) = max
w,g

g(G− T)

w(e) ≥ 0 ∀ e ∈ G

w(T) ≤ 1

g(e) ≤ w(Pe,i)− w(e) ∀ (Pe,i, e) ∈ P

g(e) ≥ 0 ∀ e ∈ G

(1.4)

Note that

gap0(G,T) ≤ gap′0(G,T),

6

so gap′0(G,T) is also an upper bound for the total edge weight of a greedy

spanner graph. Besides, gap′0(G,T) shows some capability in bounding the

spanner weight of some graph family [9]. For example, gap′0(G,T) is at most 2

for a planar graph.

This thesis simplifies the linear programs (1.3) and (1.4), and then analyzes

the corresponding dual problem of each, the charging scheme, showing the com-

plementary slackness conditions that relate an optimal primal solution and an

optimal dual solution. After that, it introduces ways to prune a graph to show

its basic structure determining its detour gap number. Finally, the thesis also

introduces a software package to facilitate the computation of such primal and

dual solutions.

Chapter 2

The Primal Problem

2.1 Simplification

For (1.3) and (1.4), we want to prove that the constraints

g(e) ≥ 0, ∀ e ∈ G

are not necessary. In other words, we want to show that they are equivalent to

the following two linear programs:

rgap0(G,T) = max
w,g

g(G− T)

w(e) ≥ 0 ∀ e ∈ G

w(T) ≤ 1

w(s) ≤ w(e) ∀ e ∈ G− T, ∀s / e

g(e) ≤ w(Pe,i)− w(e) ∀ (Pe,i, e) ∈ P

(2.1)

8

and

rgap′0(G,T) = max
w,g

g(G− T)

w(e) ≥ 0 ∀ e ∈ G

w(T) ≤ 1

g(e) ≤ w(Pe,i)− w(e) ∀ (Pe,i, e) ∈ P

(2.2)

First we prove the equivalence of (1.3) and (2.1); that is,

rgap0(G,T) = gap0(G,T).

A similar argument applies to the other two as well. In order to prove our claim,

we first introduce the definition of criticality.

Definition 1. In some weighting w of G, an edge f /∈ T is critical to another

edge e /∈ T (e 6= f) if when we increase the weight of f , i.e. w(f), keeping the

weights of other edges unchanged, the gap of e, i.e. g(e) or equivalently, dG−e(e)

also increases.

Apparently, any feasible solution for (1.3) is also feasible for (2.1) since (1.3)

contains all constraints of (2.1). Thus,

gap0(G,T) ≤ rgap0(G,T). (2.3)

To show equivalence, we only need to prove that there exists at least one optimal

solution (w, g) for (2.1) such that

∀ e ∈ G− T, g(e) ≥ 0.

Note that according to our previous argument, we can see that in an optimal

solution, w completely determines g as in equation (1.1). Among all the optimal

solutions for (2.1), we pick one (w0, g0) maximizing w(G−T), the total weight of

9

non-tree edges. In any optimal solution, for e ∈ G− T , we claim w(e) ≤ w(Te),

because otherwise we could reduce w(e) to w(Te) while remaining others in w

unchanged to get a larger detour gap number g(G− T). Thus,

w(G− T) ≤
∑

e∈G−T
w(Te) ≤

∑
e∈G−T

w(T) ≤ |E|.

Therefore, w(G− T) is bounded, and the point (w0, g0) exists.

Lemma 1. In (w0, g0), there does not exist any non-tree edge which is critical

to another non-tree edge.

Otherwise, suppose we have two non-tree edges e and f , and f is critical to

e. Then we can increase w0(f) by δ (δ > 0, δ can be arbitrarily small) while

keeping other weights unchanged to get a new weighting w′0 of the graph G.

Since f /∈ T , increasing its weight cannot violate a tree constraint. Now we

argue that g′0(G− T) ≥ g0(G− T).

Compare the two weightings w′0 and w0. For small enough δ > 0, we have

both

g0(f)− g′0(f) = δ and

g0(e)− g′0(e) = −δ,

while other gaps stay unchanged or increase. Thus, g0(G − T) ≤ g′0(G − T).

Therefore,

w0(G− T) < w′0(G− T)

g0(G− T) ≤ g′0(G− T).

This contradicts our choice of w0 maximizing w(G− T).

Lemma 2. In (w0, g0), ∀ e ∈ G− T , if g0(e) < 0, then e is not in any shortest

detour path of another non-tree edge f .

10

Suppose, for some e ∈ G − T , g0(e) < 0. Since f is not critical to e ac-

cording to Lemma 1, there must exist a shortest detour path Pe of e which

does not contain f . Here we have w0(Pe) < w0(e) because g0(e) < 0. Thus, a

shortest detour path of f should not contain e. Otherwise, we would improve

it by replacing e with Pe and shortcutting it to a simple path if needed. (By

“shortcutting”, we mean eliminating all cycles in a path to get a simple path

connecting the same end points.)

Lemma 3. In an optimal solution (w, g) of (2.1), if g(e) < 0, then w(s) < w(e)

where s is a tree edge such that s / e.

i) If s is on a shortest detour path of e, then w(s) ≤ w(Pe) < w(e).

ii) If s is not on any shortest detour path of e, then s crosses at least one

non-tree edge f on some shortest detour path Pe of e. Otherwise, e cannot

be crossed by s. Thus, w(s) ≤ w(f). However, w(f) ≤ w(Pe) < w(e) due to

g(e) < 0, so w(s) < w(e).

Theorem 2. In (w0, g0), there does not exist e ∈ G− T with g0(e) < 0.

Proof. Assume that there exists some e ∈ G − T such that g0(e) < 0. Let’s

consider a new weighting w′0 of G, in which

w′0(f) = w0(f), ∀f 6= e

w′0(e) = w0(e)− δ.

We can pick some small enough δ > 0 such that

g′0(e) > g0(e) (2.4)

g′0(f) = g0(f), ∀ f ∈ G− T, f 6= e∗. (2.5)

11

(2.4) is obvious since the weight of e is reduced while all the weights of its

detours remain unchanged. According to Lemma 2, ∀ f ∈ G−T and f 6= e, e is

not in any of its shortest detour paths. So we can certainly pick some δ small

enough to still keep e out of the shortest detour flows of all other non-tree edges

satisfying (2.5) (A shortest detour flow is the set of all the shortest detour paths

of a non-tree edge). Besides, according to Lemma 3, a small enough δ can also

keep tree constraints unviolated. Thus, according to (2.4) and (2.5), we have

g′0(G− T) > g0(G− T),

which contradicts with our choice of (w0, g0) maximizing g(G− T).

Therefore, the theorem stands.

Theorem 2 tells us that at least one optimal solution (w0, g0) for (2.1) is

feasible for (1.3), so

gap0(G,T) ≥ rgap0(G− T).

Comparing (2.3), we know

gap0(G,T) = rgap0(G− T),

so linear programs (1.3) and (2.1) are equivalent. A similar proof holds for the

equivalence of (1.4) and (2.2) as well. In this case, our argument is simpler

because we do not need to worry about preserving the tree constraints.

2.2 Running Example

Now we show an example of the primal problem. Suppose we have a graph G

as in Figure 2.1a, where si, i = 1, 2, 3, ..., 6, form the MST T and e, f are two

non-tree edges.

12

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

e

f

s1

s2

s3 s4

s5

s6

(a)

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

0.2

0.2

0.2

0.2

0 0.2

0.2

0.2

(b) gap0 = 0.8

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

0

0

1

0

0 0

0

0

(c) gap′0 = 1

Figure 2.1: Primal Problem

Figure 2.1b gives an optimal solution for linear program (1.3) or (2.1). In

Figure 2.1b, for edge e,

dG−e(e) = w(s1) + w(f) + w(s6) = 0.6,

so

g(e) = dG−e(e)− w(e) = 0.4.

Similarly, we know g(f) = 0.4 as well, so for given G and T ,

gap0(G,T) = g(G− T) = g(e) + g(f) = 0.8.

Moreover, Figure 2.1b also shows gapε(G,T) = 0.8 for ε ≤ 2 since it survives

the greedy 3-spanner algorithm.

Figure 2.1c gives an optimal solution for linear program (1.4) or (2.2). In

Figure 2.1c, for edge e,

dG−e(e) = w(s1) + w(f) + w(s6) = 1,

so

g(e) = dG−e(e)− w(e) = 1.

Similarly, g(f) = 0, so

gap′0(G,T) = g(G− T) = g(e) + g(f) = 1.

Chapter 3

Dual Problem

3.1 Charging Scheme

Based on the simplification in Chapter 2, we can use (2.1) to calculate gap0(G,T).

By constructing the dual linear program of (2.1), we can have another interest-

ing view of the problem. We rewrite it in a way to help us construct the dual

problem:

gap0(G,T) = max
w,g

∑
e∈G−T

g(e)

w(e) ≥ 0 ∀ e ∈ G

k :
∑
e∈T

w(e) ≤ 1

ts,e : w(s)− w(e) ≤ 0 ∀ e ∈ G− T, ∀ s / e

ce,i : g(e)− w(Pe,i) + w(e) ≤ 0 ∀ (Pe,i, e) ∈ P

(3.1)

Note that each constraint of (3.1) now has a label; these labels will be the

variables in our dual program.

14

From (3.1), we construct the dual linear program as follows:

gap0(G,T) = min
k,t,c

k

g(e) :
∑
i

ce,i = 1

w(s), s ∈ T : k +
∑

e∈G−T,s/e
ts,e −

∑
f∈G−T

∑
i

δ(Pf,i, s)cf,i ≥ 0

w(e), e /∈ T :
∑
i

ce,i −
∑

s∈T,s/e
ts,e −

∑
f∈G−T

∑
i

δ(Pf,i, e)cf,i ≥ 0

k ≥ 0, ts,e ≥ 0, ce,i ≥ 0

(3.2)

where for e ∈ G and f ∈ G− T ,

δ(Pf,i, e) =


1 e ∈ Pf,i

0 e /∈ Pf,i

.

Note that in the dual program, each constraint is labeled by a primal variable.

That is

gap0(G,T) = min
k,t,c

k

∑
i

ce,i = 1

∑
f∈G−T

∑
i

δ(Pf,i, s)cf,i −
∑

e∈G−T,e/s
ts,e ≤ k s ∈ T

∑
f∈G−T

∑
i

δ(Pf,i, e)cf,i +
∑

s∈T,s/e
ts,e ≤ 1 e /∈ T

k, ts,e, ce,i ≥ 0

(3.3)

We can think a feasible solution (k, t, c) of (3.3) as describing a charging

scheme. We fix G, T and consider t and c as units of charge traded between

the edges of G. ts,e units of charge is sent by a tree edge s and received by a

non-tree edge e where s / e; or we can say ts,e units of charge is charged from s

to e. ce,i units of charge is charged from a non-tree edge e to all edges on its ith

15

detour path Pe,i. Each edge receives the same amount of charge as its source

sends, respectively. That implies the net “charge” on the whole graph is not

conserved. In such a charging scheme, we define two types of charging moves.

Definition 2. A charging move is the action of sending some units of charge

from one edge to another edge or to every edge on one of its detour path. There

are two types of valid charging moves in the context.

Type I Charging Move is the action of sending some units of charge from a

tree edge to a non-tree edge it crosses.

Type II Charging Move is the action of sending some units of charge from

a non-tree edge to all edges on one of its detour paths.

(Notice that the net “charge” on the graph is not conserved.)

Then a feasible dual solution (k, t, c) can be considered as a series of valid

charging moves of the two types.

For all e ∈ G − T , the total charge it sends out is the total charge it sends

to its detour paths; that is

out(e) =
∑
i

ce,i.

The total charge it receives is sent by another non-tree edge or a tree edge; that

is

in(e) =
∑

f∈G−T

∑
i

δ(Pf,i, e)cf,i +
∑

s∈T,s/e
ts,e

For all s ∈ T , the total charge it sends out can only be received by non-tree

edges it crosses; that is

out(s) =
∑

e∈G−T, s/e
ts,e

16

The charge it receives can only be sent by some non-tree edge whose detour

path contains s; that is

in(s) =
∑

e∈G−T

∑
i

δ(Pe,i, s)ce,i

From the perspective of sending and receiving charge, the dual linear pro-

gram (3.3) lays the following constraints on a charging scheme:

gap0(G,T) = min
k,t,c

k

out(e) = 1 ∀ e ∈ G− T

in(e) ≤ 1 ∀e ∈ G− T

in(s)− out(s) ≤ k ∀ s ∈ T

(3.4)

where in(s) − out(s) can also be written as net(s). This is slightly different

from what we may find from [8] because we have out(e) = 1, ∀ e ∈ G − T

in our construction, while [8] has it as out(e) ≥ 1, ∀ e ∈ G − T . This is the

result from simplifying the primal problem by removing the primal constraint

g(e) ≥ 0, ∀ e ∈ G− T .

Simply speaking, the dual problem turns the calculation of gap0 to the prob-

lem of finding a charging scheme minimizing k, in which each non-tree edge sends

out exactly one unit of charge and receives no more than one unit of charge while

each tree edge receives no more than k units of net charge.

As for linear problem (2.2), its dual charging scheme forbids tree edges from

sending out charge since we don’t have t constraints in the primal. Its dual is

17

simply as follows:

gap′0(G,T) = min
k,t,c

k

out(e) = 1 ∀ e ∈ G− T

in(e) ≤ 1 ∀e ∈ G− T

in(s) ≤ k ∀ s ∈ T

There are no Type I charging moves in this charging scheme, so out(s) = 0 for

all s ∈ T .

3.2 Running Example

Figure 3.1 is again the example we gave in Chapter 2 (Figure 2.1). Given G as

shown in the figure, T = {s1, s2, s3, s4, s5, s6} is a spanning tree of G, and e, f

are two non-tree edges. Then

si / e, i = 1, 2, 3, 4, 5, 6,

and

sj / f, j = 2, 3, 4, 5.

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

e

f

s1

s2

s3 s4

s5

s6

Figure 3.1: Charging Scheme

So the charging scheme on this example is: each si charges tsi,e units of

charge to e, and each sj charges tsj ,f units of charge to f . Besides, e has two

detour paths s1fs6 and s1s2s3s4s5s6 while f has two, s2s3s4s5 and s1es6, as

18

well. Therefore, e charges ce,1 units of charge to every edge on the path of s1fs6,

and charges ce,2 to s1s2s3s4s5s6. Likewise, f charges cf,1 to s2s3s4s5 and cf,2

to s1es6. Then the linear program (3.4) sets the following constraints for the

charging scheme:

gap0(G,T) = min
k,t,c

k

ce,1 + ce,2 = 1

cf,1 + cf,2 = 1

6∑
i=1

tsi,e + cf,2 ≤ 1

5∑
j=2

tsj ,f + ce,1 ≤ 1

ce,1 + ce,2 + cf,2 − tsm,e ≤ k m = 1, 6

ce,2 + cf,1 − tsn,e − tsn,f ≤ k n = 2, 3, 4, 5

(3.5)

An optimal solution for (3.5) is

gap0 = k = 0.8

ts1,e = ts6,e = 0.4

ce,1 = 1

cf,1 = 0.8

cf,2 = 0.2

other t’s and c’s = 0

(3.6)

It gives exactly the value of gap0 the primal problem (1.3) gave us before.

If we forbids tree edges from sending out charge, the linear program (3.5) is

19

now:

gap′0(G,T) = min
k,t,c

k

ce,1 + ce,2 = 1

cf,1 + cf,2 = 1

cf,2 ≤ 1

ce,1 ≤ 1

ce,1 + ce,2 + cf,2 ≤ k m = 1, 6

ce,2 + cf,1 ≤ k n = 2, 3, 4, 5

(3.7)

An optimal solution for (3.7) is

gap′0 = k = 1

ce,1 = 1

cf,1 = 1

other c’s = 0

(3.8)

It gives exactly the value of gap′0 as the primal problem (1.4).

Chapter 4

Combined Primal and Dual

4.1 Complementary Slackness

If we put the primal and dual problems together, we can derive some “com-

plementary slackness” properties of optimal solutions. Now let’s consider the

charging scheme on a connected simple weighted graph G, in which both weights

and charge are what we are interested in.

We fix G and its MST T . Suppose (w, g) is a feasible solution for the primal

linear program (3.1) or (2.1) and (k, t, c) is a feasible solution for the dual (3.3)

or (3.4).

Each Type I move sends ts,e (units of) charge from a tree edge s to a non-tree

edge e. Multiplying the charge with edge weight, we have

w(e)ts,e − w(s)ts,e = (w(e)− w(s))ts,e ≥ 0. (4.1)

Each Type II move sends ce,i charge from a non-tree edge e to its detour

21

path Pe,i. Again, multiplying the charge with edge weight, we have

w(Pe,i)ce,i − w(e)ce,i ≥ g(e)ce,i. (4.2)

In equations (4.1) and (4.2), the first term of the left hand side is always

“charge received times weight”, the second term is “charge sent times weight”.

Since the whole charging scheme is made up of those two types of moves, if

we sum up all such equations in (4.1) over all crossing pairs and (4.2) over all

(e, Pe,i) ∈ P, we get

∑
e∈G

w(e)net(e) ≥ 0 +
∑

e∈G−T

∑
i

g(e)ce,i =
∑

e∈G−T
g(e)

∑
i

ce,i =
∑

e∈G−T
g(e),

(4.3)

where net(e) = in(e)− out(e).

On the other hand, since (k, t, c) is feasible for the dual problem (3.3), or

(3.4), we know

net(e) ≤ 0 ∀ e ∈ G− T,

net(s) ≤ k ∀ s ∈ T.

So

w(e)net(e) ≤ 0 ∀ e ∈ G− T, (4.4)

w(s)net(s) ≤ k · w(s) ∀ s ∈ T. (4.5)

Besides, since (w, g) is feasible for (3.1), we have

w(T) ≤ 1.

22

Therefore, (4.3) can be bounded as:

k ≥ k ·
∑
s∈T

w(s) + 0

≥
∑
s∈T

w(s)net(s) +
∑

e∈G−T
w(e)net(e)

=
∑
e∈G

w(e)net(e)

≥
∑

e∈G−T
g(e)

= g(G− T). (4.6)

According to strong duality, we know

gap0(G− T) = min
k,t,c

k = max
w,g

g(G− T);

that is, (4.6) is equation when (w, g) is optimal for the primal problem and

(k, t, c) optimal for the dual. To achieve equality, we must have equality for all

(4.1), (4.2), (4.4) and (4.5). Thus, we have

w(s) = w(e) or ts,e = 0 ∀ s / e (4.7)

w(Pe,i)− w(e) = g(e) or ce,i = 0 ∀ (e, Pe,i) ∈ P (4.8)

w(e) = 0 or net(e) = 0 ∀ e ∈ G− T (4.9)

w(s) = 0 or net(s) = k ∀ s ∈ T (4.10)

(4.7) - (4.10) tells us the complementary slackness property of an optimal

primal solution (w, g) with an optimal dual solution (k, t, c). For such a biopti-

mal situation, we conclude:

1. A tree edge can only send charge to a non-tree edge of the same weight;

2. A non-tree edge can only send charge to a shortest detour path;

3. The net charge on a non-tree edge with positive weight is 0;

23

4. The net charge on a tree edge with positive weight is exactly k = gap0.

As for linear program (2.2), the complementary slackness properties (4.7) -

(4.10) are as follows, because leaving out t constraints makes tree edges unable

to send charge:

w(Pe,i)− w(e) = g(e) or ce,i = 0 ∀ (e, Pe,i) ∈ P

w(e) = 0 or net(e) = 0 ∀ e ∈ G− T

w(s) = 0 or net(s) = k ∀ s ∈ T

In summary:

1. A non-tree edge can only send charge to a shortest detour path;

2. The net charge on a non-tree edge with positive weight is 0;

3. The net charge on a tree edge with positive weight is exactly k = gap′0.

The constraints above make the charging scheme even simpler, and also

without Type I charging moves to reallocate charge, there may be more 0-weight

edges in an optimal charging solution, which makes the graph modification we

are going to discuss in the next chapter more significant and intuitive.

4.2 Running Example

Let’s take another look at the example we gave previously. In the following

graph, given G and T = {s1, s2, s3, s4, s5, s6}, the primal solution is shown in

Figure 4.1b and 4.1c:

24

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

e

f

s1

s2

s3 s4

s5

s6

(a)

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

0.2

0.2

0.2

0.2

0 0.2

0.2

0.2

(b) gap0 = 0.8

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

0

0

1

0

0 0

0

0

(c) gap′0 = 1

Figure 4.1: gap0(G,T)

and the dual solution is given as in (3.6) and (3.8):

gap0 = k = 0.8

ts1,e = ts6,e = 0.4

ce,1 = 1

cf,1 = 0.8

cf,2 = 0.2

other t’s and c’s = 0

and

gap′0 = k = 1

ce,1 = 1

cf,1 = 1

other c’s = 0

25

where

Pe,1 = s1fs6

Pe,2 = s1s2s3s4s5s6

Pf,1 = s2s3s4s5

Pf,2 = s1es6

We can verify our conclusion one by one, for Figure 4.1b:

1. s1 sends 0.4 charge to e since they have the weight of 0.2. The same with

s6 and e.

2. e only charges to its shortest detour path Pe,1. f charges to Pf,1 and Pf,2

since they are both shortest.

3. e and f both have 0 net charge.

4. s1, s2, s4, s5, s6 all have 0.8 net charge.

And for Figure 4.1c:

1. e only charges to its shortest detour path Pe,1. f charges to its shorts,

Pf,1.

2. f has 0 net charge but e does not. However, this doesn’t violate our

conclusion since w(e) = 0.

2. w(s1) 6= 0 and s1 has 1 net charge.

Chapter 5

Graph Modification

Due to strong duality, in optimal (w, g) and (k, c, t) for (G,T), we see that if

the weight of an edge is not equal to 0, then we know the net charge of the edge,

either k or 0, according to whether it is a tree edge or not. Now we want to

do some modifications to the graph to remove all edges with 0 weight by edge

contraction or edge deletion. If we can get a graph minor H of G where there

is no 0-weight edges, then we know how the net charge distribution in H looks

like in a charging scheme. At the same time, such non-0 minor H has the same

gap0 as the original graph G. A non-0 minor is what we would call the basic

structure of a graph.

5.1 Tree Edge Contraction

First we contract all tree edges with 0 weight in (G,T) to get a simpler graph

(G′, T ′).

If a non-tree edge e disappears due to this operation, then the two end points

27

of e must be connected by a path containing only tree edges with 0 weight, so

e is not on any shortest detour path of other non-tree edges. Thus

w(e) = 0

Otherwise, we may increase g(e) and g(G − T) by reducing w(e) to 0, which

contradicts with the optimality of (w, g). Therefore, g(e) = w(Pe) − w(e) =

0− 0 = 0. Its disappearance won’t hurt the total gap of the graph.

If a non-tree edge e remains existence in G′, then

g(e) = g′(e)

where g′(e) is the gap of e in (G′, T ′). This is because the length of the shortest

detour path of e does not change, since only 0 weight edges are contracted.

Accordingly, after tree edge contraction, the total gap of the graph doesn’t

change. Tree edge contraction applies to both cases with and without tree (t)

constraints.

5.2 Parallel Edge Deletion

After tree edge contraction, there is no edge with 0 weight in the graph. How-

ever, there may exist parallel edges connecting two end points. Now we intro-

duce a way to delete parallel edges for the special case of (w0, g0). Obviously,

two tree edges won’t be parallel to each other. Otherwise, tree edges must form

a cycle before contraction. Here we consider the following two cases.

i) A tree edge s is parallel to a non-tree edge e.

In this case, w0(s) ≤ w0(e) due to tree constraints. On the other hand,

w0(s) − w0(e) ≥ g0(e) ≥ 0, so w0(s) = w0(e) and g0(e) = 0. Thus, removing e

makes no difference to the total gap of the graph.

28

ii) A non-tree edge e is parallel to another non-tree edge f while no tree edge

is parallel to them.

Similar to the argument above, we can prove w0(e) = w0(f). Now we

introduce the definition of an edge group.

Definition 3. An edge group is the set of all (≥ 2) parallel non-tree edges

connecting the same two end points.

When we say “increasing” or “decreasing” the weight of an edge group, we

mean “increasing” or “decreasing” the weight of every edge in that edge group by

the same amount, since we don’t want to violate the non-negative gap property

of (w0, g0).

Then we can restate Lemma 1 for an edge group.

Lemma 4. In (w0, g0), there does not exist any edge group which is critical to a

non-tree edge. By ”critical”, we mean the gap of the non-tree edge will increase

when we increase the weight of the edge group.

Proof. It is easy to know that every edge in an edge group has a gap of 0.

Suppose we have an edge group M and a non-tree edge e /∈M , and M is critical

to e. Then we can increase the weight of M by δ (δ > 0, δ can be any small)

while keeping other weights in the graph unchanged to get a new weighting w′0.

Since M 6⊂ T , increasing its weight cannot violate a tree constraint. Now we

argue that g′0(G− T) ≥ g0(G− T).

Compare the two weightings w′0 and w0. Since δ can be any small, we can

always find such a δ that

g0(e)− g′0(e) = δ

g0(M) = g′0(M) = 0

29

while other gaps stay unchanged or increase. Thus, g0(G − T) < g′0(G − T).

Therefore,

w0(G− T) < w′0(G− T)

g0(G− T) < g′0(G− T)

This contradicts with our choice of (w0, g0) maximizing w(G− T).

Therefore, we can always remove an edge group from the graph without

changing the total gap. Note that parallel edge deletion only applies to the case

with tree constraints.

After tree edge contraction and parallel edge deletion, we get a non-0 minor

H of graph G where there is no 0-weight edges and no parallel edges. H is the

basic structure determining the gap of the graph. Such non-0 minor would be

worth further research.

Chapter 6

Nonmonotonicity in Edge

Deletion

Definition 4. A charging scheme is acyclic if there is some total ordering of

the edges such that whenever e charges f , e precedes f in the ordering.

It is easy to see that if a charging scheme is acyclic, then we can delete an

edge and get another acyclic scheme of the same gap value or smaller. If a graph

has an acyclic optimal charging scheme, then its gap is monotone under edge

deletion. Then it raises such a question: is detour gap monotone under edge

deletion for all graphs? This question is the same as: can we always find an

acyclic optimal charging scheme for a given graph?

However, we have a counterexample to show gap0 is not monotone. It is still

the same example we used through this thesis:

Figure 6.1b is the problem we have seen previously. Its gap is

gap0b = 0.8.

31

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

e

f

s1

s2

s3 s4

s5

s6

(a)

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

0.2

0.2

0.2

0.2

0 0.2

0.2

0.2

(b) gap0b = 0.8

sSSS
S

s���
�
s�

�
��s A

A
AA

s��� sPPPs

1/6

1/6

1/6

1/6 1/6

1/6

1/6

(c) gap0c = 0.833

Figure 6.1: Nonmonotonicity of gap0

After deleting the edge of f , the calculation result as shown in Figure 6.1c is

that

gap0c = 5/6 = 0.833 > gap0b.

Thus, gap0 increases after edge deletion. That means no acyclic optimal charg-

ing scheme exists for this graph and gap0 is not monotone under edge deletion.

Moreover, the same example also shows that gapε is not monotone under edge

deletion for ε ≤ 2.

However, as for the case leaving out tree constraints, our example does not

violate the monotonicity under edge deletion. That leaves an open question:

can we always find an acyclic optimal charging scheme under the constraints of

gap′0, where only Type II moves are valid in a charging scheme?

Chapter 7

Software

To facilitate the analysis of detour gap numbers, we developed a software to

calculate gap0(G,T) and gap′0(G,T) for a given graph G and its spanning tree T .

The software is developed in Java using a linear program solver library lp solve

to solve the following two linear programs to get gap0(G,T) and gap′0(G,T):

33

gap0(G,T) = max
w,g,dG−e

g(G− T)

w(e) ≥ 0 ∀ e ∈ G

g(e) ≥ 0 ∀ e ∈ G

dG−e(u, x) ≥ 0 ∀ e = (u, v) ∈ G, x ∈ V

w(T) ≤ 1

w(s) ≤ w(e) ∀ e ∈ G− T, ∀ s / e

g(e) ≤ dG−e(e)− w(e) ∀ e ∈ G− T

dG−e(u, u) ≤ 0 ∀u ∈ V

dG−e(u, y) ≤ dG−e(u, x) + w(x, y) ∀ e = (u, v) ∈ G− T,

∀ (x, y) ∈ G− e

(7.1)

gap′0(G,T) = max
w,g,dG−e

g(G− T)

w(e) ≥ 0 ∀ e ∈ G

g(e) ≥ 0 ∀ e ∈ G

dG−e(u, x) ≥ 0 ∀ e = (u, v) ∈ G, x ∈ V

w(T) ≤ 1

g(e) ≤ dG−e(e)− w(e) ∀ e ∈ G− T

dG−e(u, u) ≤ 0 ∀u ∈ V

dG−e(u, y) ≤ dG−e(u, x) + w(x, y) ∀ e = (u, v) ∈ G− T,

∀ (x, y) ∈ G− e

(7.2)

Comparing (1.3) and (7.1), we introduced the metric variable dG−e to reduce

34

the exponentially many constraints:

g(e) ≤ w(Pe,i)− w(e) ∀ (Pe,i, e) ∈ P

to a polynomial number. Note that for each edge e = (u, v) ∈ G − T , the

optimal value of dG−e(u, x) is the length of a shortest path from u to x in G−e.

In Václav Chvátal’s book [10], there are more detailed explanations on this

typical type of linear program in finding the shortest paths in a given graph.

dG−e can be considered as the cost of reaching out from the source point, which

increments after each step further toward the target. It is similar with (1.4) and

(7.2).

The software has an interactive user interface for inputing a graph and its

spanning tree by drawing each point and edge, or users may input a graph and

a tree by an input file. The software uses a graph library jgrapht to deal with

the simple weighted graph. According to the graph specified and the linear

program introduced above, the software generates an LP object for the primal

problem, either for (7.1) or for (7.2). By solving it, the software outputs an

optimal solution along with its dual value for each constraint. Based on the

solution, it is also easy to query the shortest detour flow of a chosen non-tree

edge. By selecting a non-tree edge, the software can highlight its detour flow in

bright color with different line width proportional to the charge on each edge.

The source code is available on the URL:

http://www.mathcs.emory.edu/∼slou3/Gap/.

Here are screen shots of the software:

35

(a) Graph and MST

(b) Detour Path (Flow)

Figure 7.1: Primal Problem

Bibliography

[1] G. Gutin, A.P. Punnen. The Traveling Salesman Problem and Its Vari-

ations. Volume 12 of Combinatorial Optimization. Springer, 2002. ISBN

1402006640, 9781402006647.

[2] Richard M. Karp. Reducibility Among Combinatorial Problems. In R. E.

Miller and J. W. Thatcher (editors). Complexity of Computer Computa-

tions, pages 85-103. New York: Plenum, 1972.

[3] S. Arora, M. Grigni, D. Karger, P. Klein, and A. Woloszyn. A polynomial-

time approximation scheme for weighted planar graph TSP. In Proceedings

of the 9th Annual ACM-SIAM Symposium on Discrete Algorithms, pages

33-41, 1998.

[4] M. Grigni, E. Koutsoupias, and C. Papadimitriou. An approximation

scheme for planar graph TSP. In 28th Annual Symposium on Foundations

of Computer Science, pages 640-646. IEEE, Oct. 1995.

[5] Brenda S. Baker. Approximation algorithms for NP-complete problems

on planar graphs. Journal of the Association for Computing Machinery,

41(1):153-180, 1994.

37

[6] André Berger, Artur Czumaj, Michelangelo Grigni, and Hairong Zhao.

Approximation schemes for minimum 2-connected spanning subgraphs in

weighted planar graphs. In Proceedings of the 13th Annual European Sym-

posium on Algorithms, volume 3669 of Lecture Notes in Computer Science,

pages 472-483. Palma de Mallorca, Spain, October 2005.

[7] I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse

spanners of weighted graphs. Discrete Comput. Geom., 9(1):81-100, 1993.

[8] Michelangelo Grigni and Papa Amar Sissokho. Light spanners and approx-

imate TSP in weighted graphs with forbidden minors. In Proceedings of the

Thirteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

852-857, 2002.

[9] M. Grigni. Approximate TSP in graphs with forbidden minors. In Au-

tomata, Languages and Programming: 27th International Colloquium, vol-

ume 510 of Lecture Notes in Computer Science, pages 869-877. Springer-

Verlag, July 2000.

[10] Václav Chvátal. Linear Programming, pages 291-320. W.H. Freeman. ISBN

0-7167-1195-8, 1983.

