
Distribution Agreement

In presenting this thesis or dissertation as a partial fulfillment of the re-
quirements for an advanced degree from Emory University, I hereby grant
to Emory University and its agents the non-exclusive license to archive,
make accessible, and display my thesis or dissertation in whole or in part in
all forms of media, now or hereafter known, including display on the world
wide web. I understand that I may select some access restrictions as part
of the online submission of this thesis or dissertation. I retain all ownership
rights to the copyright of the thesis or dissertation. I also retain the right
to use in future works (such as articles or books) all or part of this thesis or
dissertation.

Signature:

Ying Wai Fan Date

Practical Image Deblurring
with Synthetic Boundary Conditions, with GPUs, and with Multiple Frames

By

Ying Wai Fan
Doctor of Philosophy

Mathematics

James Nagy, Ph.D.
Advisor

Michele Benzi, Ph.D.
Committee Member

Vaidy Sunderam, Ph.D.
Committee Member

Accepted:

Lisa A. Tedesco, Ph.D.
Dean of the James T. Laney School of Graduate Studies

Date

Practical Image Deblurring
with Synthetic Boundary Conditions, with GPUs, and with Multiple Frames

By

Ying Wai Fan
M.S., Wake Forest University, 2005
M.A., Wake Forest University, 2005

B.Sc., The Chinese University of Hong Kong, 2003

Advisor: James Nagy, Ph.D.

An abstract of
A dissertation submitted to the Faculty of the

James T. Laney School of Graduate Studies of Emory University
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy
in Mathematics

2010

Abstract

Practical Image Deblurring
with Synthetic Boundary Conditions, with GPUs, and with Multiple Frames

By Ying Wai Fan

Researchers usually use several assumptions when they tackle the image
deblurring problem. In particular, it is usually assumed that the blur is
known exactly, and that the true image scene outside the field of view is
approximated well by periodic boundary conditions. These assumptions are
certainly not true in most realistic situations.

In this thesis we develop a new method to derive adaptive synthetic
boundary conditions directly from the blurred images. Compared with clas-
sical boundary conditions, our approach gives better deblurring results, es-
pecially for motion blurred images. To speed up the deblurring algorithms,
we also develop a new regularized DCT preconditioner.

We have written two new software packages to facilitate research in image
deblurring. The first one PYRET is a serial CPU implementation in Python.
With the object-oriented paradigm, we implement numerical algorithms for
the general linear problem, and then specialize them for deblurring problems
with a new matrix class. A web user interface for PYRET is also provided.

The second software package PARRET is a parallel implementation on
NVIDIA CUDA GPU architecture. GPUs provide an economical way to
obtain parallel processing power. On a consumer laptop equipped with a
GPU, we can attain order of magnitude speedup with PARRET.

Finally, we consider a blind deconvolution problem in which the involved
atmospheric blurs are not known in advance. We first reduce the number
of variables using a variable projection technique, then solve the reduced
problem by the Gauss-Newton algorithm. With careful mathematical ma-
nipulation, the Jacobian matrix is decomposed into a series of diagonal and
Fourier matrices for inexpensive multiplication. To further improve the de-
blurring quality, we use more than one blurred image from the same object.
We use a new decoupling approach for the sparsity of the Jacobian matrix in
this multi-frame case. Experiments show that the deblurring result improves
when more images are used.

Practical Image Deblurring
with Synthetic Boundary Conditions, with GPUs, and with Multiple Frames

By

Ying Wai Fan
M.S., Wake Forest University, 2005
M.A., Wake Forest University, 2005

B.Sc., The Chinese University of Hong Kong, 2003

Advisor: James Nagy, Ph.D.

A dissertation submitted to the Faculty of the
James T. Laney School of Graduate Studies of Emory University

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Mathematics
2010

Acknowledgments

I thank God for giving me my life, health and intelligence. He was with
me in all the struggles I faced in these five years of PhD studies. I am really
thankful for what He has done for me, especially for revealing Himself to
me, which touched and encouraged me to become a Christian and to get
baptized this year. Thank you Lord.

This dissertation would not be possible without the guidance of my ad-
viser, Prof James Nagy. I treasure the freedom he has given me in working
on many different topics. He kept connected with me even with his busy
schedule and even when we were on opposite side of the globe. We had meet-
ings through Skype in the months when I was back home in Hong Kong.
He is also kind enough to pardon my less than perfect English. He has cor-
rected many English mistakes in my papers and in this dissertation. I am
also grateful for his support in attending conferences and workshops, which
have broadened my horizons and are essential to my career. And of course,
he is a good teacher. I am proud to be a student of this expert in image
processing.

My gratitude goes to Dr Esmond Ng from Lawrence Berkeley National
Laboratory. He has been like a mentor to me. He was my supervisor for
an internship years ago and I have met him in almost every conference I
have been to. Besides my adviser, he is the other one who has seen me grow
academically, and maybe even physically. I first met him when I was still a
young undergraduate student.

I would like to thank all the teachers who have taught me in my every
level of education. Their student is finally leaving school and is ready to
join the workforce and face greater challenges in the world.

I am also thankful for the staff of the department, and of the whole
university in general. They have provided me with a very good learning
environment. I also want to thank all the friends I made here in Atlanta,
especially those from my fellowship. I thank them for their support in my
writing of this dissertation and my job search.

I am forever in debt to my family. I know it was hard for them to let
me go abroad to study. I am sorry to keep them worried about me. They
should be proud that their little boy has now grown into a mature young
man. I thank my brother and sisters for taking care of my parents and
grandparents when I am away. I am sorry that I could not be with them

when my grandparents passed away.
There are many people I still want to thank. Let me just say thanks to

all those who have contributed to my well-being and made my finishing of
this degree possible. Thank you very much.

I dedicate this dissertation to the memory of my grandfather,
who passed away during my PhD studies in the US.

Contents

1 Introduction 1

1.1 Convolution Model of Image Formation 1

1.2 Literature Survey . 2

1.3 Overview of this Dissertation 3

1.4 New Contributions . 4

2 Synthetic Boundary Conditions 6

2.1 Introduction . 6

2.2 Image Deblurring and Boundary Conditions 9

2.2.1 One Dimensional Problems 9

2.2.2 Two Dimensional Problems 14

2.2.3 Synthetic Boundary Conditions 17

2.3 Preconditioners for Synthetic Boundary Conditions 22

2.4 Numerical Experiments . 25

2.4.1 Gaussian Blur . 27

2.4.2 Diagonal Motion Blur 30

2.4.3 Gaussian Blur with Additive Gaussian Noise 31

2.4.4 Diagonal Motion Blur with Additive Gaussian Noise . 36

2.4.5 Preconditioning . 39

2.4.6 Other Images and Additional Experiments 40

2.5 Conclusions for this Chapter 44

3 Python and GPU Implementation of Deblurring Algorithms 45

3.1 Efficient Algorithms for Convolution Matrix Operations 46

3.2 Deblurring Algorithms . 50

3.2.1 Direct Methods . 50

3.2.2 Iterative Methods . 51

3.3 PYRET: The Implementation in Python 53

3.3.1 Why Python? . 53

3.3.2 Implementation Details of PYRET 54

3.3.3 Web GUI Interface . 56

3.4 PARRET: Parallel Implementation on GPUs 58

3.4.1 Parallelizability of Vector and Matrix Operations in

Deblurring Algorithms 58

3.4.2 Why GPUs? . 58

3.4.3 Compute Unified Device Architecture (CUDA) 59

3.4.4 Python Wrapper of CUDA (PyCUDA) 61

3.4.5 Interfacing CUBLAS and CUFFT with PyCUDA . . . 63

3.4.6 Complex Branch of PyCUDA 65

3.4.7 Features of PARRET 66

3.4.8 Speedup of PARRET 67

3.5 Conclusions for this Chapter 74

4 Multi-frame Pupil Phase Blind Deconvolution Problem 76

4.1 Overview of Blind Deconvolution 76

4.2 Variable Projection Method 77

4.3 Applying Variable Projection Method to Blind Deconvolution

Problems . 78

4.4 Deblurring Using More than One Image 87

4.5 Pupil Phase Parametrization of Atmospheric Blurs in Astro-

nomical Imaging . 98

4.5.1 Efficient Computations with ∇diag pΛq 99

4.6 Experimental Results . 102

4.6.1 Removing Mild Blurs 102

4.6.2 Removing Severe Blurs 108

4.7 Conclusions for this Chapter 113

5 Conclusions 115

Appendix 120

6.1 Proof of Lemma 4.2 in Section 4.4 120

6.2 Proof of Lemma 4.3 in Section 4.4 120

6.3 Derivation of (4.20) in Section 4.3 121

6.4 Derivation of (4.74) in Section 4.4 123

Bibliography 124

List of Figures

2.1 Illustration of how the synthetic boundary condition is deter-

mined. 20

2.2 Padded results with different boundary conditions 21

2.3 “Barbara” image . 26

2.4 Gaussian blurred “Barbara” image 27

2.5 Relative error vs iteration for deblurring Gaussian blurred

“Barbara” . 28

2.6 Deblurring results on Gaussian blurred “Barbara” with differ-

ent boundary conditions . 29

2.7 Motion blurred “Barbara” image 30

2.8 Plot of the deblurring errors vs iteration. 31

2.9 Deblurring results on motion blurred “Barbara” with different

boundary conditions . 32

2.10 Noisy Gaussian blurred “Barbara” image 33

2.11 Deblurring results on noisy Gaussian blurred “Barbara” with

different boundary conditions 34

2.12 Plot of the deblurring errors vs iteration on noisy Gaussian

blurred image. 35

2.13 Deblurring result of Gaussian blurred “Barbara” with the syn-

thetic boundary conditions obtained from the blurred and

noisy counterpart. Its PSNR to the original image is 28.5dB. 35

2.14 Noisy motion blurred “Barbara” image 36

2.15 Plot of the deblurring errors vs iteration on noisy motion

blurred “Barbara”. 37

2.16 Deblurring results on noisy motion blurred “Barbara” with

different boundary conditions 38

2.17 Deblurring results on Gaussian blurred “Barbara” with syn-

thetic boundary conditions. The first row is obtained without

preconditioning at the 500th iteration; the second row is ob-

tained with preconditioning at the 20th iteration. 39

2.18 Plot of the deblurring errors with and without preconditioning. 40

2.19 Deblurring results on noisy Gaussian blurred “Goldhill” with

anti-reflective and synthetic boundary conditions. 42

3.1 The pad and unpad operations. 48

3.2 The crop and uncrop operations. 49

3.3 Usage example of the psfMatrix class. 56

3.4 Web GUI interface for PYRET. 57

3.5 CUDA API layout. 60

3.6 Workflow of a CUDA application. 61

3.7 Threads on a GPU are organized into thread blocks, which are

in turn organized into a grid. 62

3.8 Computation time of fast Fourier transforms with CPU and

GPU implementations. 68

3.9 Computation time of vector addition and dot product with

CPU and GPU implementations. 72

3.10 Computation time of 100 CGLS iterations in image deblurring

with CPU and GPU implementations. 72

4.1 A pupil phase function and its corresponding point spread

function. 99

4.2 The original unblurred satellite image. 103

4.3 The pupil phase functions and their corresponding point spread

functions giving mild blurs. 104

4.4 Left: Images obtained by blurring with the three point spread

functions in Figure 4.3. Right: The deblurring results using

the initial guess of the pupil phase functions. 105

4.5 Deblurring result using only one image. Relative error=0.4760 106

4.6 Deblurring result using two images. Relative error=0.2190 . . 106

4.7 Deblurring result using three images. Relative error=0.1162 . 107

4.8 Plot of relative errors at each iteration using one, two and

three frames for the blind deconvolution problem of the mild

blur case. 107

4.9 The pupil phase functions and their corresponding point spread

functions giving severe blurs. 109

4.10 Left: Images obtained by blurring with the three point spread

functions in Figure 4.9. Right: The deblurring results using

the initial guess of the pupil phase functions. 110

4.11 Deblurring result using only one image. Relative error=0.4645 111

4.12 Deblurring result using two images. Relative error=0.3104 . . 111

4.13 Deblurring result using three images. Relative error=0.1222 . 112

4.14 Plot of relative errors at each iteration using one, two and three

frames for blind deconvolution problem of the severe blur case. 112

7

List of Tables

2.1 PSNRs of deblurring results on Gaussian blurred “Barbara”. 30

2.2 PSNRs of deblurring results on motion blurred “Barbara”. . . 31

2.3 PSNRs of deblurring results on noisy Gaussian blurred “Bar-

bara” . 33

2.4 PSNRs (excluding outermost 5 pixels) of deblurring results on

noisy Gaussian blurred “Barbara”. 36

2.5 PSNRs of deblurring results on noisy motion blurred “Barbara” 37

2.6 PSNRs of deblurring results with and without preconditioning. 39

2.7 PSNRs of the blurred images (Blurred), deblurred images with

reflective (Ref), anti-reflective (Antiref) and synthetic (Syn)

boundary conditions. 41

2.8 PSNRs of the noisy (1%) blurred images (Blurred), deblurred

images with reflective (Ref), anti-reflective (Antiref) and syn-

thetic (Syn) boundary conditions. 41

2.9 PSNRs of the slightly noisy (0.1%) blurred images (Blurred),

deblurred images with reflective (Ref), anti-reflective (Antiref)

and synthetic (Syn) boundary conditions. 43

2.10 PSNRs of the slightly blurred (PSF size: 5�5) images (Blurred),

deblurred images with reflective (Ref), anti-reflective (Antiref)

and synthetic (Syn) boundary conditions. 43

3.1 Examples of equivalent operations for row-major and column-

major order systems. 65

3.2 Specifications of the CPU and GPU used in the benchmarking. 68

3.3 Computation time of 1D fast Fourier transform on CPU vs

GPU. 69

3.4 Computation time of 2D fast Fourier transform on CPU vs

GPU. 69

3.5 Computation time of 2D real-to-complex fast Fourier trans-

form on CPU vs GPU. 70

3.6 Computation time of 2D complex-to-real fast Fourier trans-

form on CPU vs GPU. 70

3.7 Computation time of vector addition on CPU vs GPU. 73

3.8 Computation time of dot product on CPU vs GPU. 74

3.9 Computation time of CGLS on CPU vs GPU. 75

List of Algorithms

2.1 Obtaining synthetic boundary conditions. 19

3.1 Conjugate Gradient Least Squares (CGLS) 52

4.1 Alternating minimization to minimize fpφ,xq 77

4.2 Solving the blind deconvolution problem by Gauss-Newton al-

gorithm with conjugate gradient as the inner solver 81

4.3 Solving the blind deconvolution problem by Gauss-Newton al-

gorithm with conjugate gradient as the inner solver using the

simplified formula . 84

4.4 Solving the multi-frame blind deconvolution problem by Gauss-

Newton algorithm with conjugate gradient as the inner solver 91

4.5 Computing the matrix-vector product with the multi-frame

Jacobian matrix. 93

4.6 Computing the matrix-vector product with the transpose of

the multi-frame Jacobian matrix. 95

4.7 Computing the matrix-vector product with conjugate trans-

pose of the multi-frame Jacobian matrix. 97

List of Notations

H point spread function (PSF) 6

X original image . 7

Y blurred image . 7

x original image (vectorized) 7

y blurred image (vectorized) 7

A convolution matrix . 7

T Toeplitz matrix . 7

B the augmenting matrix corresponding to the boundary con-

ditions . 7

D the image domain over which the blurred image is defined . 18

B the border region over which the boundary conditions are

defined . 18

C the discrete cosine transform matrix 24

Λ the eigenvalue matrix of A 24

F the Fourier matrix . 46

fft pXq 2D Fourier transform of the matrixX. (WhenX is a vector,

we unvectorize it before and vectorize it after the Fourier

transform.) . 46

vecpXq vectorized X, i.e. the vector formed by stacking columns of

X . 46

Diag pvq the diagonal matrix with v on the diagonal 46

x. � y elementwise multiplication of x and y. 46

φ parameter (vectorized) of the PSF 76

A: (regularized) pseudoinverse of matrix A 79

p search direction in iterative methods 81

r residual in iterative methods 81

J Jacobian matrix of the residual r with respect to the param-

eter φ . 81

Re pXq real part of X . 81

v̂ Fourier transform of v . 82

K Jacobian matrix of the deblurred image x with respect to

the parameter φ . 90

diag pDq the diagonal of D. (When D is a 3-D tensor, diag pDq
replaces the first two dimensions of D by the diagonal in

these two dimensions.) . 90

ifft pXq 2D inverse Fourier transform of the matrix X. (When X is

a vector, we unvectorize it before and vectorize it after the

Fourier transform.) . 93

h vectorized PSF . 100

Im pXq imaginary part of X . 101

Remarks

1. We use boldface uppercase for matrices (e.g. A), boldface lowercase for

vectors (e.g. x), and lightface with subscripts for their entries (e.g. Ai,j

and xk). This makes it easy to distinguish scalars from vectors and

matrices in formulae.

2. We use the same notation for both the 1D and 2D problems. For

example F the Fourier matrix may represent the 1D or 2D Fourier

matrix. The dimension should be clear from the context.

3. In the multi-image case, we use subscript k to denote the variables for

the k-th image. For example, yk is the k-th blurred image.

1

Chapter 1

Introduction

The use of advanced imaging technologies is an integral part of scientific

research, especially in fields such as biology, medicine and astronomy. Imag-

ing is also an important component of modern security systems (e.g., video

surveillance and biometric scanning), and is used to inspect machine parts

(e.g, jet engine turbine blades) for possible small, but critical, defects.

Although physical limitations of imaging devices, as well as environmen-

tal effects, impede the ability to obtain perfect images, the resolution can

often be improved through computational postprocessing techniques. In this

dissertation we consider the particular, and commonly used, postprocessing

technique of image deblurring with a spatially invariant blurring operator

(i.e., deconvolution).

1.1 Convolution Model of Image Formation

Each pixel in a blurred image can be represented as a weighted average of

pixels in the true image scene. The point spread function (PSF) defines

these weights. The PSF can sometimes be obtained by calibration of the

optical instrument, or expressed by a mathematical formula. If the PSF is

assumed to be spatially invariant (as is often the case), then mathematically

2

this image formation process is known as convolution, and can be written as

Yk,` �
¸
i,j

Hi,jXk�i,`�j �Nk,` , (1.1)

where Yk,` is a pixel of the observed image at the pk, `q position, Hi,j is the

pi, jq entry of the PSF, Xk�i,`�j is a pixel of the exact original image at

the pk � i, ` � jq position, and Nk,` is additive noise. The additive noise

may come from a combination of background noise, electronic sensor noise,

modeling errors, measurement errors, etc. Since the focus of this disserta-

tion is deblurring rather than denoising, without loss of generality, we can

usually assume Nk,l is zero when describing much of the mathematical and

computational approaches proposed in this thesis. However, as we discuss

later in this thesis, regularization must be incorporated into the algorithms

to provide stability in the presence of noise.

Estimating the original image from the blurred image is called the de-

blurring problem. We can further classify deblurring problems into two sub-

classes: when the PSF is known, the deblurring problem is called decon-

volution, and when the PSF is unknown, it is called blind deconvolution.

We consider the deconvolution problem in Chapters 2 and 3, and the blind

deconvolution problem in Chapter 4.

1.2 Literature Survey

A vast amount of work has been done on understanding and solving image

deblurring problems. In particular, the classic book by Andrews and Hunt

[1], published in 1977, provided the first comprehensive linear algebraic de-

scription of image deblurring. Since then, the problem is a standard topic

in general books on image processing, such as the popular and often cited

Gonzalez and Woods [32]. More recently, the book by Chan and Shen [10]

provides a mathematical framework based on variational methods, and the

3

book by Hansen, Nagy and O’Leary [37] focuses on regularization, spectral

analysis and implementations.

Many different techniques have been developed for the deblurring prob-

lem. For example, we have the classical Wiener filtering [38], Bayesian based

approaches [7, 43, 58], sparse representation methods [26], wavelet deblurring

[8, 21], variational methods [59, 69], as well as general optimization [4] and

linear algebra based [35, 48] approaches.

In terms of image processing software, there are both commercial and

open-source options. The most popular would probably be the Image Pro-

cessing Toolbox in Matlab [66]. Recently, Mathematica also included func-

tions for image processing and analysis [72]. For open-source options, there

are the multi-dimensional image processing subpackage of SciPy [65], Re-

storeTools for Matlab [45] and the deconvolution plugin for ImageJ [71].

1.3 Overview of this Dissertation

Researchers usually use several assumptions when they tackle the image de-

blurring problem. In particular, it is usually assumed that the blur (that

is, the PSF) is known exactly, and that the true image scene outside the

field of view is approximated well by periodic boundary conditions. These

assumptions are certainly not true in most realistic situations.

In this thesis we develop a new method to derive boundary conditions

directly from the blurred images. Compared with classical boundary con-

ditions, our approach gives better deblurring results, especially for motion

blurred images. To speed up the deblurring algorithms, we develop a new

regularized preconditioning technique.

In deblurring, we often need to solve systems of linear equations. The

matrices involved are usually huge, but with structure. Using object-oriented

programming, these matrices do not need to be formed explicitly and efficient

4

algorithms can be used for matrix operations with them. Object-oriented

programming also facilitates the development of a web user interface to the

deblurring algorithms. In this thesis we describe an object oriented imple-

mentation we developed using Python.

Recently, the use of graphical processing units (GPUs) in high perfor-

mance computing has become popular. GPUs provide an economical way

to attain supercomputing power. We describe an implementation that we

developed, which extends the capabilities of our Python image deblurring

software to effectively exploit modern GPU hardware.

In many situations, we do not know the PSFs in advance of deblurring.

This kind of deblurring problem is called blind deconvolution. Using some

auxiliary information, like a parametrized formula of the blurs and/or mul-

tiple images of the same object, and using numerical optimization methods,

we are able to get back clear deblurred images. For this part, we focus on

removing atmospheric blurs, which are common in astronomical imaging.

1.4 New Contributions

This thesis makes contributions on several aspects of the image deblurring

problem, including modeling, algorithms, and software.

New synthetic boundary conditions are devised, including development

of an efficient implementation. In addition, a new regularized DCT pre-

conditioner is used for iterative deblurring algorithms when using synthetic

boundary conditions. Extensive experiments presented in this thesis illus-

trate the effectiveness of synthetic boundary conditions and the regularized

DCT preconditioner.

To facilitate research in image deblurring, two software packages, PYRET

and PARRET, were developed. PYRET (Python RestoreTools), which uses

object oriented programming in Python, is a serial implementation on CPUs;

5

PARRET (Parallel RestoreTools), which makes use of the computing power

of GPUs, is a parallel implementation. A Web user interface has also been

developed for PYRET. In the course of writing software for these packages,

it was necessary to contribute a new complex branch to the open-source soft-

ware PyCUDA, and to create Python wrappers so that CUBLAS and CUFFT

libraries will work with PyCUDA. Benchmark results presented in this thesis

show a significant speedup of the GPU implementation (PARRET) over the

CPU implementation (PYRET).

For blind deconvolution, the variable projection technique is used to

simplify the problem. The formulas involved are carefully derived using the

spectral decomposition and two lemmas on conjugate symmetric vectors.

Specific details are provided when tackling pupil phase blurs, especially on

how to decompose the Jacobian matrix for fast multiplications. In addition,

a new approach is proposed to provide a mathematical decoupling of the

optimization problem when multiple frames from the same object are used.

This approach leads to a block structure of the Jacobian matrix, which allows

efficient multiplications. Numerical experiments show the benefits gained by

using more than one frame.

6

Chapter 2

Synthetic Boundary Conditions

In this chapter we introduce a new boundary condition that can be used

when reconstructing an image from observed blurred and noisy data. We

provide an efficient algorithm for implementing the new boundary condition

— synthetic boundary conditions, and provide a linear algebraic framework

for the approach that puts it in the context of more classical and well known

image boundary conditions.

Extensive numerical experiments show that our new synthetic boundary

conditions provide a more accurate approximation of the true image scene

outside the image boundary, and thus allow for better reconstructions of the

unknown, true image scene.

2.1 Introduction

The image formation process is modeled as a convolution. Suppose that Y

is an n � n image that is obtained by convolving the m � m point spread

function (PSF) H with (an unknown, true) image X, where n ¥ 2m � 1.

Then the convolution model implies that for each k, ` � 0, 1, . . . , n � 1,

Yk,` �
m̧

i��m

m̧

j��m

Hi,jXk�i,`�j . (2.1)

7

We vectorize X and Y by stacking their columns together to obtain vec-

tors x and y respectively. Equation (2.1) can then be posed as a linear

inverse problem,

y � Ax. (2.2)

In general there is additive noise, but since the focus in this chapter is

on boundary conditions, without loss of generality, we assume the noise is

zero. Algorithms to solve (2.2) exploit the structure of A, which depends

on the PSF H and on the imposed boundary conditions. The convolution

matrix A is often severely ill-conditioned, with singular values decaying to

zero, without a significant gap to indicate numerical rank. The deblurring

problem is, given A and y, compute an approximation of x.

In general,

A � T �B (2.3)

where T has a Toeplitz structure and B, which is defined by the boundary

conditions, is often structured, sparse, and low rank.

In the discrete setting, the matrix X contains pixel values of the true

(unknown) image scene on a bounded domain. Boundary conditions make

assumptions about how the image behaves outside the field of view, and they

are often chosen for algebraic and computational convenience.

For example, periodic boundary conditions result in a matrix A that has

a circulant structure, which is diagonalized by the unitary discrete Fourier

transform matrix [16]. It is well known that computations with such matrices

can be done very efficiently by using fast Fourier transforms (FFT) [15, 67].

Note that periodic boundary conditions assume that the true infinite scene

can be represented as a mosaic of a single finite dimensional image, repeated

periodically in all directions. Thus, although computationally convenient,

for most images it is difficult to provide a physical justification for the use

of periodic boundary conditions.

8

Other boundary conditions can have better physical justification. For

example, if the image is assumed to have a black background (such as in the

case of astronomical images), then zero boundary conditions may provide a

good physical representation for the image scene outside the viewable region.

In this case B is zero, and thus A has a Toeplitz structure. Although direct

filtering type methods cannot be implemented as efficiently as in the case of

circulant structures, it is possible to effectively use iterative methods [42,

44]. However, if there are significant features near the image boundary,

then zero boundary conditions may not provide a physically accurate model

of the infinite scene.

If there are significant features that overlap the edge of the viewable re-

gion, then it may make sense to use reflective boundary conditions, where it

is assumed that the scene outside the viewable region is a mirror reflection

of the scene inside the viewable region [48]. In this case the matrix A has

a Toeplitz-plus-Hankel structure. Iterative methods for such matrices can

be implemented efficiently, and, moreover, if the PSF satisfies a strong sym-

metry condition, A can be diagonalized by the orthogonal discrete cosine

transformation matrix, and spectral filtering methods can be implemented

very efficiently [37]. With reflective boundary conditions, continuity of the

graylevel values of the image is maintained.

More recently, anti-reflective boundary conditions have been proposed,

which extend the pixel values across the boundary in such a way that continu-

ity of the image and of the normal derivative are preserved at the boundary

[18, 19, 63]. In this case the structure of A is Toeplitz-plus-Hankel, plus

an additional structured low rank matrix. As with reflective boundary con-

ditions, iterative methods for such matrices can be implemented efficiently,

and, moreover, if the PSF satisfies a strong symmetry condition, spectral

filtering methods can be implemented very efficiently (though the details are

a bit more complicated); see [2] for more details.

9

In this chapter we propose a new approach, which we call synthetic

boundary conditions. Our goal is to not necessarily continue graylevels at the

boundary, but instead to develop a scheme that can continue edge directions

and textures of the image inside the viewable region to outside the image

boundary. We remark that, although our discussion is for the specific problem

of image deblurring (deconvolution), the approach we propose in this chapter

can be used in other imaging applications as well.

2.2 Image Deblurring and Boundary Condi-

tions

In this section we review some classical boundary conditions that are com-

monly used in imaging deblurring. We illustrate that in each case the matrix

A in equation (2.2) can be put in the form given by equation (2.3).

To simplify the discussion, we begin by describing matrix structures for

one dimensional problems. We then extend the discussion to two dimensional

problems. Finally we propose a new approach that uses information from

the observed image to enforce continuity of image features such as edges and

texture across the boundary.

2.2.1 One Dimensional Problems

We begin with the one dimensional problem because the matrix descriptions

are easier to follow. The two dimensional problem is discussed in the next

subsection. We use notation similar to that in [48]. Suppose y is a one

dimensional image (i.e., a signal) that is obtained by convolving the PSF h

10

with (an unknown, true) signal x true, where

y �

�������
y0

y1
...

yn�1

������� and h �

���������������

h�m
...

h�1

h0

h1
...

hm

���������������
and n ¥ 2m � 1. Then the convolution model implies that for each k �
0, 1, . . . , n � 1,

yk �
m̧

i��m

hixk�i ,

which can be written in matrix-vector form as

�
������

y0

y1
...

yn�1

�
������ �

�
���������������

hm � � � h0 � � � h�m

. . .
...

. . .
...

. . .

hm h0 h�m

. . .
...

. . .
...

. . .

hm h0 h�m

. . .
...

. . .
...

. . .

hm � � � h0 � � � h�m

�
���������������

�
�������������������������

x�m

...

x�1

—–

x0
...

xn�1

—–

xn
...

xn�1�m

�
�������������������������

(2.4)

where we use horizontal lines in x true to denote the boundaries of the field

of view in the true image scene, which correspond to those of the observed

signal y. Although m is generally small compared to n, the problem is

underdetermined since values of y near the boundary (such as y0 and yn�1)

depend on values of x true outside the field of view.

11

It will be convenient to rewrite equation (2.4) as

y �
�
T�1 T T 1

�
���������

x�1

x

x1

���������
where T�1, T and T 1 are the following Toeplitz matrices

T�1hkkkkkkkkikkkkkkkkj�
���������������������

hm � � � h1
. . .

...

hm

Thkkkkkkkkkkkkkkkkkkkkkkkkkkkkkkikkkkkkkkkkkkkkkkkkkkkkkkkkkkkkj����������������������������

h0 � � � � � � h�m

...
. . .

...
. . .

...
. . .

... h�m

hm h0
...

. . .

. . .
...

. . .
...

. . .

. . .
... h0 h�m

hm
...

. . .
...

. . .
...

. . .
...

hm � � � � � � h0

����������������������������

T1hkkkkkkkkkkikkkkkkkkkkj

h�m

...
. . .

h�1 � � � h�m

�
���������������������

(2.5)

and

x�1 �

����
x�m
...

x�1

���� , x �

����
x0
...

xn�1

���� , x1 �

����
xn
...

xn�1�m

���� .

Since x�1 and x1 are outside the field of view, and are therefore not

measurable, boundary conditions replace these with values that can be either

set a priori or obtained from information within the field of view. Specifically,

x�1 and x1 are replaced with

x̂�1 � S�1x and x̂1 � S1x ,

12

where S�1 and S1 are matrices defined by the boundary conditions (specific

examples are given below). With this notation, equation (2.4) is approx-

imated by

y � Ax , (2.6)

where A � T � B and B � T�1S�1 � T 1S1. Some well-known exam-

ples include:

• For zero boundary conditions it is assumed that the signal is always

zero outside the field of view; that is, x̂�1 � x̂1 � 0. In this case,

S�1 � S1 � O, where O is a matrix of all zeros. Thus B � O, and

A � T .

• For periodic boundary conditions we use

x̂�1 �

�������
xn�m

xn�m�1

...

xn�1

������� and x̂1 �

�������
x0

x1
...

xm�1

������� .

Thus, S�1 �
�
O I

�
and S1 �

�
I O

�
, where O is a matrix

of all zeros, and I is an m � m identity matrix. In this case, B ��
O T�1

�
�
�
T 1 O

�
, and it is not difficult to show thatA � T�B

is a circulant matrix. Note that rankpBq � 2m, which is (often much)

less than n.

• For reflective boundary conditions we use

x̂�1 �

�������
xm�1

...

x1

x0

������� and x̂1 �

�������
xn�1

...

xn�m�1

xn�m

������� .

13

Thus, S�1 �
�
O I

�
J and S1 �

�
I O

�
J , where J is the “re-

versal” permutation matrix,

J �

����
1

. .
.

1

���� .

In this case, B �
�
O T�1

�
J �

�
T 1 O

�
J is a Hankel matrix,

and so A � T �B is a Toeplitz-plus-Hankel matrix. Again we see that

the rankpBq � 2m.

• For anti-reflective boundary conditions, originally proposed by Serra-

Capizzano [63], we use

x̂�1 �

�������
2x0 � xm

...

2x0 � x2

2x0 � x1

������� and x̂1 �

�������
2xn�1 � xn�2

...

2xn�1 � xn�m

2xn�1 � xn�m�1

������� .

Thus, S�1 �
�
O �I 2 e

�
J and S1 �

�
2 e �I O

�
J , where

e is a vector of ones. In this case B �
�
O �T�1 2T�1e

�
J ��

2T 1e �T 1 O
�
J is the sum of a Hankel matrix and a matrix

with rank equal to two. The matrix A � T �B is then Toeplitz-plus-

Hankel, plus an additional rank-2 matrix. Note that in this case the

rankpBq � 2m� 2.

Observe that in all of the above examples, the one dimensional deblurring

problem can be represented as

y � Ax , A � T �B
where T is a Toeplitz matrix, and B is a matrix defined by the boundary

condition, which is structured, and if m ! n, also sparse and low rank. This

linear algebra formulation can be extended to higher dimensions.

14

2.2.2 Two Dimensional Problems

Extending this linear algebraic formulation to two dimensional imaging prob-

lems is not so difficult, but the notation can be a bit cumbersome. To fa-

cilitate readability, we assume all images are square (e.g., n � n) arrays of

pixel values, and that the PSF is separable.

Suppose that Y is an n � n image that is obtained by convolving the

m � m PSF H with (an unknown, true) image X true, where n ¥ 2m � 1.

Then the convolution model implies that for each k, ` � 0, 1, . . . , n � 1,

Yk,` �
m̧

i��m

m̧

j��m

Hi,jXk�i,`�j . (2.7)

If the PSF is separable (i.e., the vertical blurring operation is independent

of the horizontal blurring operation), then there are vectors

hc �

�������������

h
pcq
�m
...

h
pcq
�1

h
pcq
0

h
pcq
1
...

h
pcq
m

�������������
and hr �

�������������

h
prq
�m
...

h
prq
�1

h
prq
0

h
prq
1
...

h
prq
m

�������������
such that

H � hchTr ô Hi,j � h
pcq
i h

prq
j ,

where hc and hr represent, respectively, the vertical and horizontal compo-

15

nents of the PSF [37]. In this case, the convolution equation (2.7) becomes

Yk,` �
m̧

i��m

m̧

j��m

Hi,jXk�i,`�j

�
m̧

i��m

m̧

j��m

h
pcq
i h

prq
j Xk�i,`�j

�
m̧

i��m

�
h
pcq
i

m̧

j��m

�
Xk�i,`�jh

prq
j

	�
,

which can be written in matrix-vector form as

Y �
�
T c,�1 T c T c,1

�����
X�1,�1 X�1,0 X�1,1

X0,�1 X X0,1

X1,�1 X1,0 X1,1

����
����
T T
r,�1

T T
r

T T
r,1

���� , (2.8)

where
�
T c,�1 T c T c,1

�
and

�
T r,�1 T r T r,1

�
are identical in structure

to the matrices given in equation (2.5), X is the n � n portion of the true

image scene within the field of view (defined by Y), and X i,j represent

sections of the scene that are outside the field of view.

As in the one dimensional model, since X i,j are outside the field of view,

we use boundary conditions to replace these with values that are either set

a priori (e.g., to zero), or with values that can be obtained from information

within the field of view. That is, the array representing the true image scene

X true �

����
X�1,�1 X�1,0 X�1,1

X0,�1 X X0,1

X1,�1 X1,0 X1,1

����

16

is replaced with����
xX�1,�1

xX�1,0
xX�1,1xX0,�1 X xX0,1xX1,�1

xX1,0
xX1,1

���� �

����
Sc,�1XS

T
r,�1 Sc,�1X Sc,�1XS

T
r,1

XSTr,�1 X XSTr,1

Sc,1XS
T
r,�1 Sc,1X Sc,1XS

T
r,1

����

�

����
Sc,�1

I

Sc,1

����X �
STr,�1 I STr,1

�

where Sc,�1 and Sc,1 define the vertical boundary conditions (i.e., those im-

posed at the top and bottom of the image), and Sr,�1 and Sr,1 define the

horizontal boundary conditions (i.e., those imposed at the left and right

of the image).

We remark that our approach to defining boundary conditions does not

require a separable PSF. However, if the blur is separable, then equation

(2.8) can be approximated with

Y �
�
T c,�1 T c T c,1

�����
Sc,�1

I

Sc,1

����X �
STr,�1 I STr,1

�����
T T
r,�1

T T
r

T T
r,1

����
� pT c,�1Sc,�1 � T c � T c,1Sc,1qX

�
STr,�1T

T
r,�1 � T T

r � STr,1T T
r,1

�
,

or, equivalently, we can write this in matrix-vector form as

y �
�
pT r,�1Sr,�1 � T r � T r,1Sr,1q b pT c,�1Sc,�1 � T c � T c,1Sc,1q

	
x

�
�
T r b T c �

�
T r b pT c,�1Sc,�1 � T c,1Sc,1q

�pT r,�1Sr,�1 � T r,1Sr,1q b pT c,�1Sc,�1 � T c � T c,1Sc,1q
�	
x

where b denotes Kronecker product, and y � vecpY q and x � vecpXq.
Again we see that the image deblurring problem with spatially invariant,

17

separable blur, can be represented as

y � Ax , A � T �B

where T � T rbT c is a block Toeplitz matrix with Toeplitz blocks (BTTB),

andB � T rbpT c,�1Sc,�1�T c,1Sc,1q�pT r,�1Sr,�1�T r,1Sr,1qbpT c,�1Sc,�1�
T c � T c,1Sc,1q is defined by the boundary conditions. Note that if the blur

is not separable, then we do not get neat Kronecker product decompositions

of T and B, but we still get the basic form where T is BTTB and B is a

structured (and typically sparse) matrix.

All of the boundary conditions discussed in the previous subsection for

one dimensional problems extend naturally to the two dimensional problem.

For example, in the case of periodic boundary conditions, we use

Sc,�1 � Sr,�1 �
�
O I

�
and Sc,1 � Sr,1 �

�
I O

�
,

resulting in a block circulant matrix with circulant blocks (BCCB).

In the next subsection we propose a new boundary condition that is more

effective at continuing edges and texture of the image across the boundary

than zero, periodic, reflective, and anti-reflective approaches.

2.2.3 Synthetic Boundary Conditions

As mentioned in Section 2.1, it is unlikely that a true image scene would be

modeled well by periodic boundary conditions, and zero boundary conditions

only make sense for scenes with a black background. There may be some rare

cases when reflective and anti-reflective boundary conditions provide a good

model of the true image scene outside the field of view. In this subsection we

develop an approach that provides a more realistic extension of pixels across

the boundary. For example, texture and edges should be extended sensibly.

The motivation for our approach comes from observing that the problem of

18

defining appropriate boundary conditions is similar to the image recovery

problem, in which part of the image is damaged and the aim is to recover

missing pixels. In our case, the region we wish to recover corresponds to those

pixels outside the boundary. Two common approaches for the image recovery

problem are image inpainting [5] and texture synthesis [24]. Image inpainting

tries to extend the geometric structure of the image, while texture synthesis

extends the texture pattern into the unknown region. In this chapter we use

the texture synthesis approach.

With the image recovery idea in mind, we wish to determine a relation-

ship between (unknown) pixel values outside the boundary to those pixel

values inside the boundary. Using a basic texture synthesis approach, we

can try to find a pixel in the viewable region whose neighborhood (e.g., a

rectangular region) is most similar to the corresponding neighborhood of the

boundary pixel we wish to fill in. If this idea is applied to a blurred image, it

can extend edges across the boundary well, but there is little hope that it can

also extend the texture, as texture information is lost in blurring. Hence, in-

stead of copying single pixels, we propose to copy small patches that contain

the required texture information. This idea is similar to the generalization

of texture synthesis to image quilting [23].

To describe more precisely our approach for synthetic boundary condi-

tions, we need a bit of notation. Let

D � r0, n� 1s � r0, n� 1s (domain)

B � pr�m,n�m� 1s � r�m,n�m� 1sq zD (border)
(2.9)

The algorithm to obtain the synthetic boundary conditions for pixels in B
is given in Algorithm 2.1. This patch-based texture synthesis idea is also

illustrated in Figure 2.1. Larger patches can be used, but we have found

that 2 � 2 patches work well.

An example of padding with synthetic boundary conditions compared to

the padding used in other boundary conditions is shown in Figure 2.2 (the

19

Algorithm 2.1 Obtaining synthetic boundary conditions.

for all ri, i� 1s � rj, j � 1s patch P B do

• Find

pkmin, `minq � arg min
k,`

SSDpnbhdpi, jq, nbhdpk, `qq

where nbhdpi, jq is a pixel neighborhood at pi, jq, SSD is the

sum of squared differences between pixels in the two specified

neighborhoods and the search is over a region near pi, jq in

D Y tpixels already processedu.

• Set the boundary pixels in the 2 � 2 patch to be

Xi,j � Xkmin,`min

Xi�1,j � Xkmin�1,`min

Xi,j�1 � Xkmin,`min�1

Xi�1,j�1 � Xkmin�1,`min�1

end for

left column shows the full image with padded boundaries, the center column

shows a zoom in on the upper left corner, and the right column shows a zoom

in on the upper right corner of the image). This figure clearly illustrates that

zero and periodic boundary conditions do not preserve continuity of pixel

values. Reflective boundary conditions result in continuity of the pixel values

across the boundary, but the derivatives of the gray level perpendicular to

the image boundary are fixed to be zero. Anti-reflective boundary conditions

allow for continuity of the pixel values as well as the derivatives across the

boundary. Synthetic boundary conditions do not strive (at least not directly)

to maintain continuity, but instead the aim is to match neighborhoods of pixel

20

fi,j

fkmin,lmin

nbhd(i, j)D

B

nbhd(kmin, lmin)

Figure 2.1: Illustration of how the synthetic boundary condition is deter-

mined. Specifically, pkmin, lminq � arg mink,l SSDpnbhd pi, jq , nbhd pk, lqq.

values. Figure 2.2 clearly shows that synthetic boundary conditions are much

better at extending edges (e.g. of the books in the zoom of the upper left

corner) and texture (e.g., of the chair in the zoom of the upper right corner).

The matrix A for synthetic boundary conditions is similar to the peri-

odic and reflective cases because the pixels in B are simply copies of pixels in

D. Thus, they can be obtained by permutation. To see this, consider again

the situation when the blur is separable. Then we can write the matrix-

vector model as

y �
��
T r,�1 T r T r,1

�
b
�
T c,�1 T c T c,1

�	
Px

where

P �

����
Sr,�1

I

Sr,1

����b

����
Sc,�1

I

Sc,1

���� .

Thus, in the case of periodic and reflective boundary conditions, P is simply

a highly structured permutation matrix, which only allows to grab entries

21

padded image upper left corner upper right corner
Z

er
o

B
C

P
er

io
d

ic
B

C
R

efl
ec

ti
ve

B
C

A
n
ti

-r
efl

ec
ti

ve
B

C
S

y
n
th

et
ic

B
C

Figure 2.2: Padded results with different boundary conditions

22

from restricted regions of the viewable region. With the use of synthetic

boundary conditions we relax the structure of P , and allow the permutation

matrix to grab entries more flexibly in the viewable region. The result, as

illustrated in Figure 2.2 is a much better representation of the edges and

texture of the image across the boundary.

We emphasize that synthetic boundary conditions are image dependent,

and are therefore more capable of extending image features. However, an

additional step is needed to estimate the boundary conditions. For efficient

implementation, the search for pkmin, lminq can be done only over nearby pix-

els of pi, jq, rather than over the whole image. This makes sense since pixels

with similar image features (e.g. edge directions, texture) are usually close to

each other. For a fixed size for nbhdpi, jq and nbhdpk, lq and a fixed size for

the search pool, the cost of enforcing synthetic boundary conditions is pro-

portional to the number of pixels to be filled in the border area, i.e. Opmnq
for an image with m�n pixels. Further computational savings in the imple-

mentation, similar to that in [23], can be obtained by reusing intermediate

values of SSDpnbhdpi, jq, nbhdpk, lqq. We remark that the cost of obtaining

the boundary conditions is negligible compared with that of the subsequent

iterative methods to deblur the image.

2.3 Preconditioners for Synthetic Boundary

Conditions

For synthetic boundary conditions, the matrix A does not have the kind of

structure that allows efficient implementation of direct filtering type methods.

This is similar to the situation when zero boundary conditions are used, or

when reflective and anti-reflective boundary conditions are used with a non-

symmetric PSF. In these situations it is necessary to use iterative methods,

23

such as a conjugate gradient type approach (e.g., CG, MINRES, or LSQR).

We remark that for conjugate gradient type methods, the matrix A need not

be formed explicitly, all that is needed is an efficient approach to compute

matrix-vector multiplications with A. This can be done by exploiting the

structure of A � T �B; FFTs can be used to multiply T by accessing only

the PSF, and B is a sparse matrix. Or, alternatively, FFTs can be used on

appropriately padded image arrays. The latter is used in our implementation.

The next issue, then, is to consider preconditioning. Note that for the

various boundary conditions considered in this chapter, we have:

Zero BC: AZ � T �BZ

Periodic BC: AP � T �BP

Reflective BC: AR � T �BR

Anti-reflective BC: AA � T �BA

Synthetic BC: AS � T �BS

That is, the matrix structures are very similar, and thus we could consider

using, for example, AP , or a symmetrized version of AR as a preconditioner

for AS. The important property we need is that it is possible to efficiently

compute the spectral decomposition of the preconditioner. Note that AP

is the standard, and well studied, choice for preconditioning AZ ; see, for

example, [9, 44, 47].

For synthetic boundary conditions, if the PSF is symmetric, or close to

being symmetric, then (the symmetrized)AR is likely to be the most effective

preconditioner. If the PSF is far from being symmetric, then AP may be the

best choice. Note that if we use AR as the preconditioner for AS, then

AS �AR � BS �BR ñ ASA
�1
R � I � pBS �BRqA�1

R .

If the reflective BC is a good approximation of the synthetic BC, then we

expect BS � BR to have small rank and small norm. Thus AR would be

a good preconditioner for AS.

24

Since the image deblurring problem is extremely ill-conditioned, some

care needs to be taken when incorporating preconditioning so that noise in

the observed data is not magnified when we solve systems with the pre-

conditioner,

ARx � AT
Rx � y (2.10)

(the first equality is due to the symmetry of AR for a symmetrized PSF).

This equation can be solved efficiently using the discrete cosine transform

(DCT) [48]. However, since AR is usually ill-conditioned, we cannot use it

directly as a preconditioner without including regularization [17, 35].

In this chapter we use Tikhonov regularization [25, 33, 36, 68]. Specif-

ically, the spectral decomposition of AR is

AR � CTΛC,

where C is (for n � n images) the n2 � n2 orthogonal DCT matrix and

Λ � diag pλ1, λ2, . . . , λn2q .

Under Tikhonov regularization with regularization parameter α, AR is ap-

proximated by rAR:

rAR � CT rΛC,
where rΛ � diag

�
λ̃1, λ̃2, . . . , λ̃n2

	
with λ̃i � λ2i � α2

λi
.

The solution to (2.10) is then computed as

rA�1

R y � C�1prΛ�1 � Cpyqq, (2.11)

where C and C�1 denotes the DCT and inverse DCT respectively. Using

fast DCT algorithms, the cost of computing (2.11) is only Opn2 log nq. The

25

regularization parameter α can be chosen using a variety of schemes, includ-

ing discrepancy principle, L-curve, and generalized cross-validation (GCV)

[29, 36]. In our work, we use GCV.

The GCV parameter choice method is based on the principle that if a

data point is missing, then the remaining data points should predict the

missing point well. The regularization parameter α is chosen to be the min-

imizer of the GCV function. In our case of Tikhonov regularization on AR,

the GCV function takes the form of

Gpαq �

n2¸
i�1

�
ŷi

λ2i � α2

2

n2¸
i�1

�
1

λ2i � α2

2
, where ŷ � Cy. (2.12)

The parameter α can be obtained by any optimization algorithm on the

above function. Details of the implementation of the GCV parameter choice

method for image deblurring can be found in [37].

2.4 Numerical Experiments

It is well known that the image deblurring problem requires regularization

to stabilize the inversion process when there is noise in y and/or in A. Note

that even if the data y has no noise (which is highly unlikely in any real

problem), because we use only an approximation of the true boundary ele-

ments (e.g, with AZ , AP , AR, AA, or AS), there is effectively noise in A.

For the numerical results reported in this section we use standard Tikhonov

regularization [25, 33, 36, 68],

min
x

 }y �AXx}22 � α}x}22
(
,

26

whereAX is one ofAZ , AP , AR, AA, orAS. Our implementation can be ob-

tained from RestoreTools1 patched with synthetic boundary conditions mod-

ification2 , or Python RestoreTools (PYRET)3. The following experiments

are done with the function HyBR (hybrid bidiagonalization regularization)

[13, 14], which implements a modified version of LSQR [56], in Restore-

Tools. If the true image is known (as we do in our simulations) HyBR can

easily compute Tikhonov solutions with optimal regularization parameters.

RestoreTools also facilitates the implementation by providing functions to

efficiently implement matrix-vector multiplications.

viewable region zoom: table zoom: face

Figure 2.3: “Barbara” image

In our first set of experiments, we use the “Barbara” image (Figure 2.3)

as the main test image. The following 4 cases are considered:

• Gaussian blur (Section 2.4.1)

• diagonal motion blur (Section 2.4.2)

• Gaussian blur with additive Gaussian noise (Section 2.4.3)

• diagonal motion blur with additive Gaussian noise (Section 2.4.4)

1http://www.mathcs.emory.edu/~{}nagy/RestoreTools
2http://www.mathcs.emory.edu/~{}yfan/SyntheticBC/SyntheticBcPatch.tgz
3http://www.mathcs.emory.edu/~{}yfan/PYRET

http://www.mathcs.emory.edu/~{}nagy/RestoreTools
http://www.mathcs.emory.edu/~{}yfan/SyntheticBC/SyntheticBcPatch.tgz
http://www.mathcs.emory.edu/~{}yfan/PYRET

27

• DCT based preconditioning with AR (Section 2.4.5)

Results on other images and additional experimental results are also shown

in Section 2.4.6. Note that for display purposes only, pixel values in all

of the following figures are clipped to the range [0,255]. We measure the

quality of a deblurred image in terms of its peak-signal-to-noise ratio (PSNR),

which is defined as

PSNRpX,X trueq � 20 log10

255

RMSpX,X trueq (2.13)

� 10 log10

MN2552°
i,jrpXqi,j � pX trueqi,js2 . (2.14)

2.4.1 Gaussian Blur

blurred image zoom: table zoom: face

Figure 2.4: Gaussian blurred “Barbara” image

We start with the “Barbara” image, blur it with a Gaussian blur of size

11 with a standard deviation 3 and crop out the central viewable part (Figure

2.4). The formula for this Gaussian blur is given by

Hi,j � 1

Z
e�

pi�6q2�pj�6q2

18 , i, j � 1, 2, . . . , 11, (2.15)

where Z is a constant to ensure that the Hi,j’s sum up to one.

28

(a) All boundary conditions (b) Reflective, anti-reflective and syn-

thetic boundary conditions

Figure 2.5: Relative error vs iteration for deblurring Gaussian blurred “Bar-

bara”

To deblur the image, we use the HyBR function with different boundary

conditions. The true image is supplied to HyBR to choose the optimal regu-

larization parameters. We run 100 iterations and select the iterates that yield

minimum errors. Since the relative errors for reflective, anti-reflective, and

synthetic boundary conditions are still decreasing at the 100th iteration, we

continue the iterations for these boundary conditions until 500th iteration.

The plot of relative errors against iteration is shown in Figure 2.5. Ideally

(when there is no additive noise) with the true boundary conditions, the rel-

ative error decreases as the iteration progresses. As can be seen in Figure

2.5, synthetic and anti-reflective boundary conditions are most faithful to

the true boundary conditions, with synthetic performing slightly better than

anti-reflective. The corresponding peak signal-to-noise ratios (PSNR) of the

computed reconstructed images are shown in Table 2.1.

The reconstructed images for the different boundary conditions are shown

in Figure 2.6. From the figure, it is obvious that reconstructions with syn-

29

deblurred image zoom: table zoom: face

Z
er

o
B

C
P

er
io

d
ic

B
C

R
efl

ec
ti

ve
B

C
A

n
ti

-r
efl

ec
ti

ve
B

C
S

y
n
th

et
ic

B
C

Figure 2.6: Deblurring results on Gaussian blurred “Barbara” with different
boundary conditions

30

Table 2.1: PSNRs of deblurring results on Gaussian blurred “Barbara”.

Blurred image Zero Periodic Reflective Anti-ref Synthetic

PSNR 24.5646 23.8368 25.4884 27.4083 28.4664 28.7532

iteration - 2 5 167 255 500

thetic boundary conditions contain the least amount of ringing (oscillation)

artifacts. The absence of the oscillation is easily seen at the table cloth on

the left and the chair behind the woman. Synthetic boundary conditions

also give better facial features.

2.4.2 Diagonal Motion Blur

blurred image zoom: table zoom: face

Figure 2.7: Motion blurred “Barbara” image

We repeat the experiment with a diagonal motion blur of size 11; the PSF

is given by

Hi,i �
$&% 1

11
, i � j

0, i � j
. (2.16)

The blurred image is shown in Figure 2.7. A plot of the relative errors is

shown in Figure 2.8, which clearly illustrates the effectiveness of synthetic

boundary conditions compared to other boundary conditions.

31

Figure 2.8: Plot of the deblurring errors vs iteration.

Table 2.2: PSNRs of deblurring results on motion blurred “Barbara”.

Blurred image Zero Periodic Reflective Anti-ref Synthetic

PSNR 22.7484 22.5552 24.0441 27.0792 24.9434 29.1441

iteration - 2 3 11 8 77

Figure 2.9 shows the computed reconstructions at the point where the

iterations reached their smallest error, and the corresponding PSNRs are

shown in Table 2.2. Note that with synthetic boundary conditions we are able

to recover the texture of the table cloth and the chair very well, while other

boundary conditions either return a blur or texture with severe ringing arti-

facts. Facial features are also well preserved under synthetic boundary condi-

tions. In terms of PSNRs, synthetic boundary conditions give a significantly

higher PSNR than other boundary conditions. Thus, for this particular blur-

ring, our synthetic scheme is most faithful to the true boundary conditions.

2.4.3 Gaussian Blur with Additive Gaussian Noise

Next, we add 1% Gaussian noise to the Gaussian blurred image and deblur

it with different boundary conditions. The noisy blurred image is shown

32

deblurred image zoom: table zoom: face

Z
er

o
B

C
P

er
io

d
ic

B
C

R
efl

ec
ti

ve
B

C
A

n
ti

-r
efl

ec
ti

ve
B

C
S

y
n
th

et
ic

B
C

Figure 2.9: Deblurring results on motion blurred “Barbara” with different
boundary conditions

33

blurred image zoom: table zoom: face

Figure 2.10: Noisy Gaussian blurred “Barbara” image

Table 2.3: PSNRs of deblurring results on noisy Gaussian blurred “Barbara”

Blurred image Zero Periodic Reflective Anti-ref Synthetic

PSNR 24.5383 23.8341 25.4795 26.9879 27.0608 26.3866

iteration - 2 5 23 18 29

in Figure 2.10 and the deblurring results are shown in Figure 2.11. The

corresponding PSNRs are shown in Table 2.3, and the relative error plot

against iteration is shown in Figure 2.12(a).

In this case, anti-reflective boundary conditions give the best result, re-

flective boundary conditions the second best, and synthetic boundary condi-

tions a close third. One may suggest that in the process of obtaining synthetic

boundary conditions from the noisy image, noise is taken as image feature

and incorrect boundary conditions are obtained. However, we believe this is

not true; we applied the synthetic boundary conditions, obtained from the

noisy blurred image, to deblur the corresponding noise-free blurred image,

and obtained the very good results shown in Figure 2.13, with a PSNR of

28.5262dB. This illustrates that good synthetic boundary conditions can still

be obtained from noisy images.

In fact, except for some pixels near the boundary, it is difficult to de-

34

deblurred image zoom: table zoom: face

Z
er

o
B

C
P

er
io

d
ic

B
C

R
efl

ec
ti

ve
B

C
A

n
ti

-r
efl

ec
ti

ve
B

C
S

y
n
th

et
ic

B
C

Figure 2.11: Deblurring results on noisy Gaussian blurred “Barbara” with
different boundary conditions

35

(a) whole image (b) outermost 5 pixels excluded

Figure 2.12: Plot of the deblurring errors vs iteration on noisy Gaussian

blurred image.

deblurred image zoom: table zoom: face

Figure 2.13: Deblurring result of Gaussian blurred “Barbara” with the syn-

thetic boundary conditions obtained from the blurred and noisy counterpart.

Its PSNR to the original image is 28.5dB.

36

termine visually if synthetic boundary conditions really perform worse than

reflective and anti-reflective boundary conditions. Note that if we exclude

the outermost 5 pixels in the calculation of relative errors and PSNRs, anti-

reflective and synthetic boundary conditions give very similar results (cf. Fig-

ure 2.12(b) and Table 2.4), with slightly better results being obtained with

synthetic boundary conditions.

Table 2.4: PSNRs (excluding outermost 5 pixels) of deblurring results on

noisy Gaussian blurred “Barbara”.

Blurred image Zero Periodic Reflective Anti-ref Synthetic

PSNR 24.5383 24.7184 26.0702 27.1973 27.2696 27.3012

iteration - 2 6 22 18 25

2.4.4 Diagonal Motion Blur with Additive Gaussian
Noise

blurred image zoom: table zoom: face

Figure 2.14: Noisy motion blurred “Barbara” image

Next, we add 1% Gaussian noise to the motion blurred image and deblur

it with different boundary conditions. The noisy blurred image is shown

in Figure 2.14 and the deblurring results are shown in Figure 2.16. The

37

corresponding PSNRs and a plot of the errors at each iteration are shown

in Table 2.5 and Figure 2.15 respectively.

Table 2.5: PSNRs of deblurring results on noisy motion blurred “Barbara”

Blurred image Zero Periodic Reflective Anti-ref Synthetic

PSNR 22.7309 22.5497 24.0219 26.4248 24.8341 26.5961

iteration - 2 3 9 7 20

Figure 2.15: Plot of the deblurring errors vs iteration on noisy motion blurred

“Barbara”.

We observe similar results as in the noise-free case. With synthetic

boundary conditions, the texture of the table cloth and chair are restored

quite successfully. The facial features are also restored very well. Overall,

there are significantly fewer artifacts in the synthetic boundary conditions

results compared to the others. In terms of PSNR, synthetic boundary con-

ditions still give the highest PSNR, but its difference from the next best

boundary conditions (reflective) is smaller than in the noise-free case.

38

deblurred image zoom: table zoom: face

Z
er

o
B

C
P

er
io

d
ic

B
C

R
efl

ec
ti

ve
B

C
A

n
ti

-r
efl

ec
ti

ve
B

C
S

y
n
th

et
ic

B
C

Figure 2.16: Deblurring results on noisy motion blurred “Barbara” with
different boundary conditions

39

2.4.5 Preconditioning

Now we illustrate that preconditioning can significantly accelerate conver-

gence of the iterative method. We only show results for the Gaussian blurred

image with synthetic boundary conditions; similar results can be obtained

with motion blur.

deblurred image zoom: table zoom: face

S
y
n
th

et
ic

B
C

S
y
n
th

et
ic

B
C

w
it

h
p

re
co

n
d

it
io

n
in

g

Figure 2.17: Deblurring results on Gaussian blurred “Barbara” with syn-
thetic boundary conditions. The first row is obtained without precondition-
ing at the 500th iteration; the second row is obtained with preconditioning
at the 20th iteration.

Table 2.6: PSNRs of deblurring results with and without preconditioning.

Blurred image Synthetic Synthetic with preconditioning

PSNR 24.5681 28.7532 29.6790

iteration - 500 20

40

Figure 2.18: Plot of the deblurring errors with and without preconditioning.

The deblurring results with and without preconditioning are shown in

Figure 2.17, the corresponding PSNRs are shown in Table 2.6, and the er-

ror plots are shown in Figure 2.18. Recall that without preconditioning, the

minimum error is not yet attained even at 500th iteration. With precondi-

tioning, the relative error drops very quickly, attaining its minimum at 20th

iteration before increasing a little, and then levels off. In addition, we obtain

a higher PSNR and recover more details, e.g. the texture of the chair.

2.4.6 Other Images and Additional Experiments

We repeated all of the experiments on several other standard test images

(see, e.g., the MATLAB Image Processing Toolbox) with reflective, anti-

reflective and synthetic boundary conditions respectively. The results are

shown in Tables 2.7 and 2.8. Synthetic boundary conditions almost always

give the highest PSNRs. Occasionally, synthetic boundary conditions give

slightly lower PSNRs than anti-reflective boundary conditions, such as in

the case of deblurring the Gaussian blurred “Goldhill” image. But in these

41

Table 2.7: PSNRs of the blurred images (Blurred), deblurred images with

reflective (Ref), anti-reflective (Antiref) and synthetic (Syn) boundary con-

ditions.

Gaussian blur Motion blur

Blurred Ref Antiref Syn Blurred Ref Antiref Syn

Barbara 24.5681 27.4083 28.4664 28.7532 22.7484 27.0792 24.9434 29.1441

Baboon 22.4401 24.3756 25.0833 25.3089 22.0289 26.0322 23.4704 27.8405

Peppers 23.5396 26.5654 27.7779 28.0495 21.4316 25.4560 23.4078 27.5207

Goldhill 24.7255 27.6440 30.3091 29.7711 23.2916 27.9265 25.7929 29.9787

Camera-
man

21.2167 26.8596 27.8042 27.8703 20.2303 26.5291 23.8506 29.7191

Table 2.8: PSNRs of the noisy (1%) blurred images (Blurred), deblurred

images with reflective (Ref), anti-reflective (Antiref) and synthetic (Syn)

boundary conditions.

Gaussian blur + 1% Gaussian noise Motion blur + 1% Gaussian noise

Blurred Ref Antiref Syn Blurred Ref Antiref Syn

Barbara 24.5383 26.9879 27.0608 26.3866 22.7309 26.4248 24.8341 26.5961

Baboon 22.4176 23.5400 23.5663 23.1965 22.0081 25.0278 23.3752 25.2264

Peppers 23.5193 26.3752 26.7754 26.1722 21.4183 25.1881 23.3622 25.7139

Goldhill 24.6953 26.9863 27.2287 26.1062 23.2693 26.8872 25.5519 26.5859

Camera-
man

21.2021 23.3848 23.3603 22.8304 20.2189 24.9255 23.3693 24.9763

42

cases synthetic boundary conditions still produce fewer ringing artifacts than

anti-reflective boundary conditions; see, for example, Figure 2.19.

viewable region zoom 1 zoom 2

O
ri

gi
n

a
l

im
ag

e
N

oi
sy

b
lu

rr
ed

im
ag

e
A

n
ti

-r
efl

ec
ti

ve
B

C
S

y
n
th

et
ic

B
C

Figure 2.19: Deblurring results on noisy Gaussian blurred “Goldhill” with
anti-reflective and synthetic boundary conditions.

In Table 2.9, we show the results when the noise level is only 0.1%.

The results are similar to the noise-free case. Synthetic boundary conditions

43

Table 2.9: PSNRs of the slightly noisy (0.1%) blurred images (Blurred),

deblurred images with reflective (Ref), anti-reflective (Antiref) and synthetic

(Syn) boundary conditions.

Gaussian blur + 0.1% Gaussian noise Motion blur + 0.1% Gaussian noise

Blurred Ref Antiref Syn Blurred Ref Antiref Syn

Barbara 24.5644 27.3972 28.3176 28.3448 22.7321 26.4194 24.8416 26.5773

Baboon 22.0290 26.0191 23.4691 27.7776 22.0291 26.0151 23.4695 27.7875

Peppers 23.5395 26.5659 27.7148 27.8312 21.4312 25.4549 23.4084 27.4904

Goldhill 24.7251 27.6196 29.6363 28.9025 23.2913 27.9057 25.7940 29.8515

Camera-
man

21.2165 25.7648 25.9675 25.6989 20.2301 26.5009 28.8533 29.5292

give the highest PSNR in all cases except on the noisy Gaussian blurred

Goldhill image.

Table 2.10: PSNRs of the slightly blurred (PSF size: 5�5) images (Blurred),

deblurred images with reflective (Ref), anti-reflective (Antiref) and synthetic

(Syn) boundary conditions.

Gaussian blur Motion blur

Blurred Ref Antiref Syn Blurred Ref Antiref Syn

Barbara 28.3808 32.6027 33.5761 32.1339 26.5846 32.9626 30.4176 34.1026

Baboon 24.4705 28.2983 29.3215 28.4046 23.9554 29.0244 26.3301 30.3743

Peppers 28.6461 33.5144 34.8624 32.2711 26.3432 31.9760 30.1423 32.1449

Goldhill 28.5885 34.8708 36.7407 34.4301 27.0294 33.7078 30.8930 35.1045

Camera-
man

24.3743 32.0713 32.5470 31.6834 23.0170 30.2952 27.4850 33.3327

We show in Table 2.10 the results when the PSF size is only 5 � 5.

With a smaller PSF, the border region B in Figure 2.1 is narrower and thus

the effect of synthetic boundary conditions in continuing edge direction and

44

texture is less significant. This is clearly illustrated for the Gaussian blurred

images, where we see that although the reflective and anti-reflective boundary

conditions give slightly better results than synthetic boundary conditions,

the difference in all cases is small. For motion blurred images, synthetic

boundary conditions result in highest PSNRs even with a narrow border.

This again demonstrates the strength of synthetic boundary conditions in

deblurring motion blurred images.

2.5 Conclusions for this Chapter

We have introduced a new approach to choosing boundary conditions for

imaging applications. We described the approach, which we call synthetic

boundary conditions, in the context of image deblurring, and compared its

linear algebraic structure, as well as its effectiveness to previously proposed

boundary conditions. All four previously proposed boundary conditions

(zero, periodic, reflective and anti-reflective) fail to continue important im-

age structures like edge directions and texture outside the viewable region.

On the other hand, our synthetic approach can continue these image struc-

tures. Extensive numerical experiments illustrated that synthetic boundary

conditions typically allow for (sometimes significantly) better image recon-

structions than other boundary conditions. In the (rare) situations when

other boundary conditions performed better than our synthetic approach,

the difference was minimal, and visually one could argue that the recon-

structions with synthetic boundary conditions had fewer artifacts. The lin-

ear algebraic structure of the new boundary condition allows for efficient

implementation of iterative image deblurring algorithms, and construction

of effective preconditioners.

45

Chapter 3

Python and GPU

Implementation of Deblurring

Algorithms

To facilitate deblurring with different boundary conditions, we imple-

mented the deblurring algorithms in the object-oriented programming lan-

guage Python. We create a matrix class psfMatrix to imitate the convolution

matrix. With operator overloading, convolution can be done through object

multiplication. To use a different boundary condition, we only need to pass

a different argument to the class constructor. We collect this Python imple-

mentation into a package PYRET1, which stands for Python RestoreTools.

Using the extensibility of Python, we have created a web interface of PYRET.

Several aspects of the deblurring process can be parallelized, including

the initialization step for synthetic boundary conditions. This motivated us

to develop a parallel implementation. One parallel architecture that is readily

available on the market is graphical processing units (GPUs). We choose

GPUs as our implementation platform and we call the final software package

PARRET, which stands for Parallel RestoreTools. Experiments show an

order of magnitude speedup in our GPU implementation.

1 PYRET is pronounced as “pirate”. It can be downloaded at http://www.mathcs.

emory.edu/~yfan/PYRET/doc/. Its documentation is available at the same website.

http://www.mathcs.emory.edu/~yfan/PYRET/doc/
http://www.mathcs.emory.edu/~yfan/PYRET/doc/

46

3.1 Efficient Algorithms for Convolution Ma-

trix Operations

Recall from (2.1), convolution is defined as

Yk,` �
¸¸

Hi,jXk�i,`�j . (3.1)

and its vectorized version is given by

y � Ax. (3.2)

When we convolve with periodic boundary conditions, the matrix A has

block circulant with circulant blocks (BCCB) structure. Matrices with this

structure can be diagonalized by the Fourier matrix F ,

A � FHΛF . (3.3)

Thus, (2.2) can be rewritten as

y � FHΛFx. (3.4)

The eigenvalue matrix Λ can be obtained as

Λ � Diag pvecpfft pHqqq , (3.5)

where fft stands for fast Fourier transform, vec stands for vectorization and

Diag forms a diagonal matrix with diagonal entries given by the vector argu-

ment. With the fast Fourier transform, convolution can be implemented as

Y � ifft pfft pHq . � fft pXqq . (3.6)

We use “.�” to denote elementwise multiplication. This implementation

decreases the operation cost from n4 to n2 log n for images with n�n pixels.

For boundary conditions other than periodic boundary conditions, we

can use a pad and crop approach. We first pad the image to a larger image

47

according to the boundary conditions, then convolve the larger image with

periodic boundary conditions, and finally crop out the central part of the

convolution:

y � Ax ô Y � croppconvppadpXqqq, (3.7)

pad: pad with the boundary conditions

conv: convolve with H under periodic boundary conditions

crop: crop out the central part

In many deblurring algorithms, besides multiplication by the convolution

matrix A, we usually also need to multiply by AT . With periodic boundary

conditions, multiplication by AT is equivalent to a correlation operation,

which in turn is equivalent to convolution with the PSF H rotated 180

degrees. With the spectral decomposition (3.3) of A,

AT � AH � �
FHΛF

�H � FHΛF . (3.8)

Hence, we can use almost the same implementation for the multiplication by

AT , the only change is the conjugate of the eigenvalue matrix:

Y � ifft
�

fft pHq. � fft pXq
	
. (3.9)

It is a bit complicated for the cases of other boundary conditions. In

(3.7), all three operations: pad, conv, crop are linear operations, so each

of them can be represented by a matrix. Let us denote these matrices by

Mpad, M conv and M crop respectively, then we have

A �M cropM convMpad ñ AT �MT
padM

T
convM

T
crop (3.10)

The process of multiplication by AT should be equivalent to the transpose of

these linear operations applied in reverse order. We have already discussed

that the transpose of the convolution matrix M conv with periodic boundary

48

conditions is the correlation matrix with periodic boundary conditions. We

denote this matrix by M corr. Next we describe the forms of MT
pad and MT

crop

During the pad operation, some pixel values in the image domain D
are copied to the border B (Figure 3.1a). Each pixel in D corresponds to a

column in Mpad. If a pixel does not get copied to B, there is only a single

nonzero entry with value 1 in the corresponding column; otherwise, there

are multiple nonzero entries, each with value 1, for each position to which

the pixel gets copied.

D

B

copy

(a) pad operation

D

B

add

(b) unpad operation

Figure 3.1: The pad and unpad operations. We only show the operation
related to a single pixel in the image domain D as an example. (a): In the
pad operation, some pixel values in the image domain D are copied to pixels
on the border B. (b): In the unpad operation, pixel values on the border B
are added back to the source pixel.

Each column in Mpad becomes a row in MT
pad during transpose. Thus

each row inMpad contains one or more entries with value 1 and the remaining

entries are 0’s. Hence in multiplication byMT
pad, source pixels during the pad

operation are increased by values of those pixels to which it was copied; other

pixels remain unchanged (Figure 3.1b). We call this the unpad operation and

the corresponding matrix is denoted by Munpad.

For the crop operation (Figure 3.2a), M crop is almost like the identity

49

matrix, but with extra zero columns corresponding to those pixels on the

border. Thus, MT
crop is almost like the identity matrix with extra zero rows

corresponding to those border pixels. Therefore multiplication by MT
crop

is equivalent to padding with zero (Figure 3.2b). We call this the uncrop

operation and the corresponding matrix is denoted by Muncrop.

D

B

delete

(a) crop operation

D

B

pad with zeros

0 0 0 0

0 0 0 0

0

0

0

0

0

0

0

0

(b) uncrop operation

Figure 3.2: The crop and uncrop operations. (a): In the crop operation,
pixels on the border B are deleted. (b): In the uncrop operation, the image
is padded with a zero border.

Putting the above together, we have

AT �MunpadM corrMuncrop. (3.11)

That is multiplication by AT is equivalent to an uncrop operation, then a

correlation, followed by an unpad operation. The most expensive step is the

correlation step. Just like convolution, correlation can be done using the fast

Fourier transform and elementwise array multiplication. So the complexity

of multiplication by AT is also Opn2 log nq.

50

3.2 Deblurring Algorithms

In our Python software package PYRET, we have implemented several de-

blurring algorithms. We provide a few direct methods, when a spectral de-

composition of the convolution matrix can be obtained efficiently. We use

iterative methods when an efficient spectral decomposition is not available.

3.2.1 Direct Methods

Consider a decomposition of the convolution matrix A

A � UΣV H , (3.12)

where

U �
�
u1 u2 � � � uN

�
and V �

�
v1 v2 � � � vN

�
(3.13)

are unitary matrices (N is the number of pixels in the image) and

Σ � Diag pσ1, σ2, . . . , σNq . (3.14)

The classical spectral decomposition and singular value decomposition (SVD)

are special cases of (3.12). Note that (3.12) is not necessarily a singular

value decomposition, since we allow Σ to have negative diagonal entries. In

general, we assume that Σ has nonzero entries on its diagonal. The solution

to (3.2) is then given by

x � V Σ�1UHy �
Ņ

k�1

uHk y

σk
vk. (3.15)

When U and V correspond to fast transforms, the solution given by (3.15)

can be computed efficiently. For example, with periodic boundary conditions,

from (3.3), we have U � V � FH . Thus multiplication by UH and V can

be done with fast Fourier transforms, which has computational complexity

51

Opn2 log nq, when x and y are vectorized versions of images of size n � n.

When reflective boundary conditions are used, U � V � CT , where C is

the discrete cosine transform matrix. Multiplication with C and CT can also

be done in Opn2 log nq. In PYRET, we implemented direct methods of the

form (3.15) using Fourier and cosine transforms.

When Σ contains some diagonal entries that are small in magnitude,

equation (3.15) may lead to magnification of noise in y. In this situation,

we need to use regularization. We have implemented the two most common

regularization methods: truncated SVD (TSVD) and Tikhonov regulariza-

tion. In TSVD regularization, we discard components corresponds to σk’s

that are smaller than a threshold τ ,

xTSVD �
¸

|σk|¥τ

uHk y

σk
vk. (3.16)

In Tikhonov regularization, we solve (3.2) by the minimization problem

xTikhonov � arg min
x

�
1

2
‖y �Ax‖22 �

α

2
‖x‖22

, (3.17)

which translates to

xTikhonov �
�
ATA� αI

��1
ATy �

n2¸
k�1

σku
H
k y

|σk|2 � α
vk. (3.18)

There are many methods for choosing the regularization parameters τ or α,

like the discrete Picard condition, L-curve, and generalized cross-validation

(GCV). We refer the readers to [36] and references therein for more details.

In PYRET, we have implemented the GCV method.

3.2.2 Iterative Methods

When an efficient decomposition of the convolution matrix is not available,

for example when zero boundary conditions are used, we have to resort to

52

iterative methods. We have implemented the following iterative methods in

PYRET: CGLS, LSQR, MR2, MRNSD and their preconditioned versions.

Conjugate gradient least squares (CGLS) [6] treats (3.2) as a least squares

problem, and is mathematically equivalent to applying the conjugate gradi-

ent method to the normal equations. LSQR is another popular method for

solving least squares problems. Its use of Lanczos bidiagonalization makes

it more stable for ill-conditioned matrices. For details of LSQR, see [56].

MR2 [34] is a modification of the the classical minimum residual method of

Paige and Saunders [55] that is more appropriate for ill-posed inverse prob-

lems when the matrix is symmetric, and possibly indefinite. MRNSD [46] is a

modification of the standard residual norm steepest descent method [61] that

enforces a nonnegativity constraint on the solution. Some good references

for iterative methods are [12, 20, 61].

Algorithm 3.1 Conjugate Gradient Least Squares (CGLS)

x0 is an initial guess

s0 � y �Ax0; r0 � ATs0; p0 � r0; ρ0 � rT0 r0; p�1 � 0; β�1 � 0

for i � 0, 1, 2, . . . do

pi � ri � βi�1pi�1

qi � Api
αi � ρi

qTi qi

xi�1 � xi � αipi

si�1 � si � αiqi

ri�1 � ATsi�1

if xi�1 is accurate enough then exit

ρi�1 � rTi�1ri�1

βi � ρi�1

ρi

end for

To illustrate the basic computational costs of these iterative methods,

53

consider the CGLS algorithm shown in Algorithm 3.1. One can see that

this algorithm involves three vector additions, one inner product and two

matrix-vector multiplications in each iteration. Matrix-vector multiplication

is the most expensive operation in the algorithm. Fortunately, as discussed

in Section 3.1, there exist efficient methods for these multiplications when

the matrix A is a convolution matrix. The computational costs of other

iterative methods implemented in PYRET are similar to CGLS.

3.3 PYRET: The Implementation in Python

In this section, we describe how we implement the above mentioned deblur-

ring algorithms in Python.

3.3.1 Why Python?

We pick Python as our implementation language for many reasons.

• Python is a “higher-level language”. Programs written in Python are

very close to pseudocode.

• Python is object-oriented, which facilitates the abstraction of convolu-

tion matrices.

• Python uses namespaces, and functions and classes are organized into

modules and packages. This encourages good structure of the whole

software package.

• Python functions and class methods support default arguments and

keyword arguments, making specialization and generalization of func-

tions and classes very robust without breaking other parts of the soft-

ware.

54

• Python is dynamically typed. So implementation for one datatype can

work with other datatypes as well.

• Python standard library ctypes and many other third party packages

allow the direct call of functions in C libraries.

• Python comes with a shell and there are some third party shells, such

as IPython [57] and Sage [64]. They provide an interactive environment

akin to mathematical software like Matlab and Mathematica.

• Python documentation written in the format RestructuredText can be

easily converted to HTML and PDF. There are tools to scan Python

packages and build documentation websites.

• Mature scientific Python projects are available. These include NumPy

and SciPy. There are also many success stories of using Python in the

scientific community, such as PyACTS [22] and PyTrilinos [62].

These features of Python make it easier to use than traditional scientific

programming languages like Fortran and C, and also easier to use external

and legacy libraries than more modern languages like Matlab.

3.3.2 Implementation Details of PYRET

Numerical Python (NumPy) is a Python package that provides an array class

for matrices and vectors. We build PYRET on top of NumPy. We implement

the direct methods and iterative methods described in Section 3.2 in NumPy.

These constitute the subpackages directMethods and iterativeMethods of

PYRET. These implementations work with not just image deblurring, but

with linear systems in general.

As discussed in Section 3.1, it is very inefficient to form and use the con-

volution matrix explicitly. Therefore, we create a psfMatrix class to imitate

55

the NumPy array class and to provide the functionalities of a matrix required

in deblurring algorithms. In Algorithm 3.1, and in other deblurring algo-

rithms implemented in PYRET, the only operations that involve the convo-

lution matrix are multiplication of this matrix, and its transpose, to a vector.

As mentioned in Section 3.1, the specific implementation for the multipli-

cation depends on the enforced boundary conditions and whether the matrix

is transposed. Thus, we design the psfMatrix constructor to take a PSF

matrix and a string specifying the boundary conditions as arguments. A psf-

Matrix object also has a flag to indicate whether the matrix is transposed or

not. We overload the multiplication operator (*) by implementing a special

method __mul__ in the psfMatrix class. Since an image can be represented

as a 2-D array or vectorized to a 1-D vector, we make the multiplication

operator polymorphic to work with either representation. We implement an-

other special method, transpose, to toggle the transpose flag of a psfMatrix

object. A usage example of the psfMatrix class is shown in Figure 3.3.

In PYRET, we also have a preconditioner module to provide three pre-

conditioner matrix classes: fftPrec (for FFT preconditioning), dctPrec (for

DCT preconditioning) and identityPrec (a placeholder when no precondi-

tioning is used). Their implementation details are similar to that of the psf-

Matrix class. Objects from these preconditioner classes have an isinverse

flag to indicate whether the preconditioner is approximating the matrix or

its inverse, and an inverse method to modify the internal data to represent

the inverse matrix.

There are several other modules and subpackages in PYRET to provide

utility functions helpful in deblurring experiments. For more information on

them and other parts of PYRET, please consult the online documentation

at http://www.mathcs.emory.edu/~yfan/PYRET/doc/.

http://www.mathcs.emory.edu/~yfan/PYRET/doc/

56

>>> # Suppose we have the f o l l o w i n g v a r i a b l e s

>>> # x : o r i g i n a l image

>>> # h : PSF

>>> # y : b l u r r e d image (to be computed from x and h)

>>>

>>> # Blur the image us ing o b j e c t m u l t i p l i c a t i o n

>>> from pyret . ps fMatr ix import psfMatr ix

>>> A = psfMatr ix (h , boundary=’ p e r i o d i c ’)

>>> y = A ∗ x

>>>

>>> # Deblur the b l u r r e d image us ing CGLS

>>> from pyret . i t e ra t iveMethods import c g l s

>>> d e b l u r r e s u l t = c g l s (A, y)

Figure 3.3: Usage example of the psfMatrix class.

3.3.3 Web GUI Interface

With the great extensibility of Python, we have developed a web interface

for users of PYRET. A demo of that interface is available at

http://h9762.mathcs.emory.edu/iterativeMethods/. Python is one of

the top languages for writing web applications nowadays. Many large web-

sites (e.g. YouTube.com2 3) are powered by Python. There are a myriad of

Python web frameworks, and the framework we choose is Pylons [28].

Pylons is very lightweight and it comes with everything needed for web

application development: a web server, a template engine and a Web Server

Gateway Interface (WSGI) controller. Pylons allows the use of the Model-

2http://www.python.org/about/quotes/#youtube-com
3http://mail.python.org/pipermail/python-dev/2006-December/070323.html

http://h9762.mathcs.emory.edu/iterativeMethods/
http://www.python.org/about/quotes/#youtube-com
http://mail.python.org/pipermail/python-dev/2006-December/070323.html

57

View-Controller (MVC) design pattern of web applications. It also follows

extensively the WSGI standard, thus web applications developed in Pylons

can be used with any web server with WSGI capability.

Figure 3.4: Web GUI interface for PYRET.

To keep our web interface simple and compatible to most browsers, we

only use basic HTML technology: HTML frames and forms. The processing

of inputs are done through WSGI. We divide the webpage into three frames

(Figure 3.4). In the first frame, an unblurred image is shown and the user can

pick the type and parameters for the blur to apply to the image. The user can

also switch to another image from a list of standard test images. After clicking

the blur button, the blurred image is shown in the second frame. The user can

then choose in the second frame the iterative method, boundary conditions,

preconditioner and regularization for deblurring. When the deblur button is

clicked, the final deblurring result is shown in the final frame.

58

3.4 PARRET: Parallel Implementation on

GPUs

3.4.1 Parallelizability of Vector and Matrix Operations

in Deblurring Algorithms

To achieve faster deblurring, we consider parallelizing certain computations

implemented in PYRET. We note that in iterative methods, such as CGLS

(Algorithm 3.1), the operations involved are vector additions/subtractions,

inner products and matrix-vector multiplications. All of these operations

are parallelizable. When the matrix A, in for example Algorithm 3.1, is a

convolution matrix, we know from Section 3.1 that the matrix-vector mul-

tiplication can be done efficiently with the fast Fourier transform, which is

parallelizable. In addition, if synthetic boundary conditions are used, the

initial step to find the boundary conditions can be done in parallel.

3.4.2 Why GPUs?

There are many parallel architectures, from big clusters to many-core CPUs.

We consider approaches that can exploit the architecture of graphical pro-

cessing units (GPUs). GPUs are massively parallel processors, whose origi-

nal purpose is for processing 2D or 3D graphics, but they are also good for

stream processing. They allow complex floating point operations of large

amounts of data. GPUs are readily available from the consumer market

and are already installed in many commodity desktop and laptop comput-

ers. General-purpose computing on graphics processing units (GPGPU) is

an affordable way to attain vast parallel computing power. GPUs have also

entered the arena of high performance computing. In June 2010 a super-

59

computer built with GPUs won second place on the Top500 list4 and fourth

place on the Green500 list5.

GPU vendors have released application programming interfaces (API)

for general purpose programming. Among them, the most mature API is

NVIDIA’s C for CUDA (Compute Unified Device Architecture). Recently,

many companies have joined forces to create a standard called OpenCL

(Open Computing Language) for programming heterogeneous platforms (e.g.

CPUs, GPUs), but it is still yet to be adopted by many users.

There are many success stories with NVIDIA CUDA architectures in

the scientific community. One examples is the SETI@home projects6. Many

other examples can be found on the CUDA Showcase website7. Because of

these success stories, we choose NVIDIA GPUs as our parallel programming

platform. The vast availability of NVIDIA GPUs on the market provides a

large potential audience for our parallel software package.

3.4.3 Compute Unified Device Architecture (CUDA)

Compute Unified Device Architecture (CUDA) is a parallel architecture avail-

able on NVIDIA GeForce 8 series and later models. NVIDIA has released a

C language extension for programming on CUDA (C for CUDA), sometimes

abbreviated to just CUDA by some developers.

There are two levels of API (Figure 3.5). The lower level driver API

comes with NVIDIA GPU drivers, while the higher level runtime API requires

installation of the CUDA Toolkit. This toolkit also includes two CUDA li-

braries: CUBLAS (CUDA Basic Linear Algebra Subprograms) and CUFFT

(CUDA Fast Fourier Transform). The runtime API is easier to program, as

4http://top500.org/lists/2010/06
5http://www.green500.org/lists/2010/06/top/list.php
6http://setiathome.berkeley.edu/cuda.php
7http://www.nvidia.com/object/cuda_showcase_stage.html

http://top500.org/lists/2010/06
http://www.green500.org/lists/2010/06/top/list.php
http://setiathome.berkeley.edu/cuda.php
http://www.nvidia.com/object/cuda_showcase_stage.html

60

Figure 3.5: CUDA API layout. Image source: NVIDIA CUDA Programming

Guide Version 1.1

the user does not need to perform the initialization, packing of kernel argu-

ments and a few other low level operations explicitly. For CUDA version 2.x

series, developers are recommended to use just one level of API. Starting from

CUDA 3.0, the interoperability of the two levels of API has greatly improved.

For both APIs, a typical workflow of a CUDA application includes the

following four steps (Figure 3.6).

1. Data are copied from the main memory to the memory on the GPU.

2. Codes written in C for CUDA are compiled into kernels.

3. Each of the kernels is then executed on the GPU in parallel.

4. After the kernels are run, the results are then copied back to the main

memory.

The CUDA programming model is stream processing, which is closely

related to the SIMD (single instruction, multiple data) parallel architecture

model. CUDA kernels run on GPUs in threads. The threads are grouped

61

Figure 3.6: Workflow of a CUDA application.
Diagram by Tosaka on Wikimedia Commons and licensed under a Creative
Commons Attribution 3.0 Unported license. See http://en.wikipedia.

org/wiki/File:CUDA_processing_flow_(En).PNG

into thread blocks in a 1D, 2D or 3D organization. The thread blocks are

in turn organized into a 1D or 2D grid. Each thread has its own registers

and local memory mainly for storage of kernel arguments. Threads within

the same thread block can communicate with each other through the shared

memory and synchronization. The thread blocks are supposed to be run

independently of each other, as their running order cannot be defined by the

programmer. The organization of threads and memory on an NVIDIA GPU

are illustrated in Figure 3.7.

For more details on programming in C for CUDA and how to attain

good performance, we refer the readers to [49–51].

3.4.4 Python Wrapper of CUDA (PyCUDA)

PyCUDA [40, 41] is a thin wrapper for the CUDA driver API. It exposes all

functionalities of the CUDA driver API in Python. PyCUDA uses a tech-

http://en.wikipedia.org/wiki/File:CUDA_processing_flow_(En).PNG
http://en.wikipedia.org/wiki/File:CUDA_processing_flow_(En).PNG

62

Figure 3.7: Threads on a GPU are organized into thread blocks, which are

in turn organized into a grid. Image source: NVIDIA CUDA Programming

Guide Version 1.1

nique called runtime code generation (RTCG). It generates CUDA codes at

runtime, the codes are then compiled into CUDA binary format and uploaded

to the GPUs. Because of the runtime generation, the codes can be catered

for different situations, like different data types and sizes and different GPU

specifications. In practice, the best configuration (loop slicing, thread block

size, grid size, etc) is not obvious and requires extensive experiments to op-

timize. With the convenience of Python, codes written in PyCUDA can be

easily modified to test different configurations.

Another advantage of wrapping in Python is that it allows interactive

use of CUDA in the Python shell (either the standard shell, IPython shell,

or Sage). The low level configuration and compilation of CUDA codes, and

memory allocation and deallocation on the GPUs are hidden from the users.

63

PyCUDA also implements a gpuarray class to imitate a NumPy array, very

much like the psfMatrix class in PYRET. A gpuarray object works like

NumPy arrays, but the array data are stored on the GPUs. With opera-

tor overloading, matrix and vector operations involving a gpuarray object

are done on the GPU in CUDA.

3.4.5 Interfacing CUBLAS and CUFFT with PyCUDA

Although PyCUDA has provided a high level interface to C for CUDA, it still

lacks interfaces to two widely used CUDA libraries: CUBLAS and CUFFT.

CUBLAS provides basic linear operations like vector additions, while CUFFT

provides fast Fourier transforms. We make use of the ctypes package from

the Python Standard Library to wrap CUBLAS and CUFFT in Python. For

usage convenience, we provide another level of wrapping to the functions

exported by ctypes. For example, some CUBLAS functions take lengths of

the vectors as arguments, but these are actually redundant as the lengths

can be derived from the vector arguments. We remove these redundancies

with our wrappings. Many functions from CUFFT take an FFT plan as an

argument. After our wrapping, the plan is automatically created when not

given. Besides these, we also add in a few error checking functions.

The above steps only expose CUBLAS and CUFFT in Python. Some

extra work needs to be done for the wrapped functions to work seamlessly

with PyCUDA gpuarray objects. First the wrapped CUBLAS and CUFFT

functions expect a pointer for the vector arguments. We provide a pointer

function to extract from a gpuarray object the pointer to its data on the GPU.

The pointer function is automatically called when a pointer argument is

expected by functions wrapped in ctypes.

Another subtle but very important issue is the adjustment for the row

and column major orders. The PyCUDA gpuarray class is modeled after the

64

NumPy [52] array class, which is written in C. Thus, the gpuarray class uses

row-major order. Similarly, CUFFT models after the FFTW library [27],

which is written in C, so CUFFT follows row-major order too. However,

CUBLAS models after the BLAS library, which is written in Fortran, causing

CUBLAS to use column-major order.

Two-dimensional complex-to-complex Fourier transform of a matrix is

equivalent to two one-dimensional complex-to-complex Fourier transforms

along its row and column directions respectively. Thus row-major or column-

major order does not matter for these transforms. Nevertheless, in two-

dimensional real-to-complex and complex-to-real Fourier transforms, only the

non-redundant entries in the last dimension are involved, i.e. the row and

column dimensions are treated differently. Therefore row-major or column-

major order matters for these kinds of transforms. Fortunately, PyCUDA

and CUFFT both assume row-major order, thus gpuarray objects can be

used with wrapped CUFFT functions directly.

This is not the case for CUBLAS functions. Switching from row-major

order to column-major order has no effect on scalar and vector arguments,

but for matrix arguments it is equivalent to a transpose. The influence of

switching to column-major order on different levels of BLAS operations is

illustrated in Table 3.1. There is no change for level 1 BLAS operations,

as they only involve scalars and vectors. For level 2 BLAS operations, the

matrix argument needs to be transposed back. For level 3 BLAS operations

that involve the product of two matrices, it is necessary to transpose and to

switch the order of the matrices. Our wrapping on CUBLAS performs these

transposes and order switching for the user.

65

BLAS Level row-major order column-major order equivalence

1 y � αx� y y � αx� y
2 y � Ax� βy y � ATx� βy

3 C � αAB � βC CT � αBTAT � βCT

Table 3.1: Examples of equivalent operations for row-major and column-

major order systems.

3.4.6 Complex Branch of PyCUDA

When we perform the fast Fourier transform based convolution matrix mul-

tiplication (3.9), “ fft pHq” and “ fft pXq” are, in general, complex, and it is

therefore necessary to perform computations with complex numbers. At the

time of our implementation, CUBLAS was at version 2.3 and PyCUDA was

at version 0.93. Both do not support arithmetic with complex numbers. It

was therefore necessary to provide this implementation.

Our first attempt used function closure, which does not directly modify

PyCUDA. After importing the PyCUDA package into the Python workspace,

each imported function that takes complex arguments is substituted by our

helper function. A drawback of this approach is that the codes are clut-

tered with helper functions, and sometimes it is not clear which version of

the function is called.

After corresponding about this difficulty with Andreas Klöckner, the au-

thor of PyCUDA, we decided to create a new complex branch of PyCUDA

to better integrate complex arithmetic. We note that in the C99 standard

of the C language, a new complex type has been introduced, but the li-

brary implementing this is supposed to run only on CPUs, and thus cannot

be linked to CUDA binary codes. There are complex number classes in

the C++ Standard Template Library (STL). The GNU Compiler Collection

(GCC) implements STL in a library libstdc++.so, which again only runs

66

on CPUs. Thus we decided to discard the idea of linking external libraries,

and implemented complex arithmetic directly in source code.

We pick C++ instead of C as our implementation language, since C++

templates allow the same codes to work for both float complex type and

double complex type. Our prototype was based on STLPort, whose source

codes are much simpler than that of GCC. We use the “extern "C++"” trick

to make the C++ implementation work with the NVIDIA nvcc compiler.

We store the real and imaginary parts of complex arrays on GPUs in

an interlacing manner, matching the storage scheme of NumPy complex ar-

rays. Using function and operator overloading, the new float and double

complex type acts like other C/C++ native data types. This makes the nec-

essary modification in PyCUDA minimal. Basically, the modification is on

those functions that map Python/NumPy datatypes to and from C/C++

datatypes.

The approach of injecting complex arithmetic at the C/C++ level rather

than at the Python level as in our fist approach, makes maintenance and

subsequent development of PyCUDA more robust. We may use the same

approach to add to PyCUDA other datatypes that CUDA may support in

the future. In the latest release candidate of PyCUDA version 0.94, the

complex branch has been merged to the main branch.

3.4.7 Features of PARRET

Our implementation of deblurring algorithms on CUDA is called PARRET,

which stands for Parallel RestoreTools and is pronounced as “parrot”. It

includes our wrappers of CUBLAS and CUFFT for use with gpuarray objects.

Just like in PYRET, we have a psfMatrix class to represent the convolution

matrix. The difference here is that the matrix data are stored in the GPU

memory, and objects of this class act on gpuarray objects rather than NumPy

67

arrays. Using the psfMatrix class, we create the GPU counterparts of the

convolve2d and correlate2d functions. We also include code for obtaining

the synthetic boundary conditions (see Section 2.2.3) in parallel using GPUs.

Several linear solvers are provided in PARRET. We follow the design

of the sparse linear algebra subpackage of SciPy (scipy.sparse.linalg) to

use a LinearOperator class for the matrices in linear equations. We do this

for easy future porting of sparse linear solvers from SciPy into PARRET. In

PARRET we implement the CG (conjugate gradient), CGLS (conjugate gra-

dient least squares), and CGNR (conjugate gradient normal residual) solvers

with a CPU version and a GPU version. From them, we create specialized

versions, by wrapping, for the case when the linear operator is given by a

matrix or a PSF. This design gives us the flexibility to include other types

of linear operators in the future. For more information on PARRET, please

consult its online documentation at

http://www.mathcs.emory.edu/~yfan/PARRET/doc/index.html.

3.4.8 Speedup of PARRET

Next, we show some benchmarking of the CPU and GPU implementations.

The testbed is a HP Pavilion dv3022tx Entertainment Notebook PC equipped

with Intel Core 2 Duo T5550 CPU and NVIDIA GeForce 8400M GS GPU.

The specifications of the CPU and GPU are shown in Table 3.2. As shown in

the table, the GPU has more cores and memory than the CPU, and thus the

GPU should be better at handling parallel computation. Our benchmarking

results agree with this expectation.

In Figure 3.8, we show the CPU and GPU times for four different types of

fast Fourier transforms on data of different sizes. The four types of transforms

are 1D FFT, 2D FFT, 2D real-to-complex FFT8, and 2D complex-to-real

8 Fourier transform of real data is conjugate symmetric. A real-to-complex FFT only

http://www.mathcs.emory.edu/~yfan/PARRET/doc/index.html

68

CPU GPU

Model Intel Core 2 Duo CPU T5550 NVIDIA GeForce 8400M GS

Clock Rate 1.83GHz 0.8GHz

Memory 2MB (L2 cache) 256MB

No. of Cores 2 16

Table 3.2: Specifications of the CPU and GPU used in the benchmarking.
Data sources: http://ark.intel.com/Product.aspx?id=37255
and http://www.nvidia.com/object/geforce_8400M.html.

(a) 1D FFT (b) 2D FFT

(c) 2D real-to-complex FFT (d) 2D complex-to-real FFT

Figure 3.8: Computation time of fast Fourier transforms with CPU and GPU
implementations.

http://ark.intel.com/Product.aspx?id=37255
http://www.nvidia.com/object/geforce_8400M.html

69

log2pSize) Size CPU Time GPU Time Speedup

1 2 9.8292e-06 3.6342e-05 0.2705
2 4 9.8678e-06 3.9292e-05 0.2511
3 8 1.5825e-05 3.6555e-05 0.4329
4 16 2.7404e-05 3.6520e-05 0.7504
5 32 6.8549e-05 3.6483e-05 1.8789
6 64 1.6025e-04 3.2893e-05 4.8718
7 128 3.8541e-04 3.2541e-05 11.8438
8 256 8.9296e-04 3.6775e-05 24.2818
9 512 2.0721e-03 3.2685e-05 63.3974

10 1024 4.6704e-03 4.1923e-05 111.4044
11 2048 1.0511e-02 3.6759e-05 285.9552
12 4096 2.2953e-02 7.0362e-05 326.2083
13 8192 5.0333e-02 1.7722e-04 284.0205
14 16384 1.1100e-01 2.5508e-04 435.1616
15 32768 2.6045e-01 5.1627e-04 504.4888
16 65536 6.5235e-01 9.9759e-04 653.9286

Table 3.3: Computation time of 1D fast Fourier transform on CPU vs GPU.

log 2pSizeq Size CPU Time GPU Time Speedup

1 2 8.1623e-05 5.8891e-05 1.3860
2 4 8.2869e-05 4.9318e-05 1.6803
3 8 9.5595e-05 4.9008e-05 1.9506
4 16 9.7627e-05 7.2129e-05 1.3535
5 32 1.5366e-04 9.7412e-05 1.5774
6 64 3.9668e-04 1.0316e-04 3.8452
7 128 1.3328e-03 2.3928e-04 5.5698
8 256 8.6852e-03 9.1548e-04 9.4871
9 512 4.8673e-02 3.1805e-03 15.3035

10 1024 2.1038e-01 1.4876e-02 14.1426
11 2048 1.0108e+00 6.4937e-02 15.5658

Table 3.4: Computation time of 2D fast Fourier transform on CPU vs GPU.

70

log 2pSizeq Size CPU Time GPU Time Speedup

1 2 9.1242e-05 4.3251e-05 2.1096
2 4 9.2973e-05 5.0182e-05 1.8527
3 8 1.0116e-04 4.3444e-05 2.3285
4 16 1.1425e-04 5.6569e-05 2.0197
5 32 1.9137e-04 5.1307e-05 3.7300
6 64 3.7088e-04 1.1903e-04 3.1159
7 128 1.6324e-03 4.0469e-04 4.0337
8 256 6.3456e-03 1.3623e-03 4.6582
9 512 2.8563e-02 7.5162e-03 3.8002

10 1024 1.1391e-01 2.8350e-02 4.0179
11 2048 6.2770e-01 2.4214e-01 2.5923

Table 3.5: Computation time of 2D real-to-complex fast Fourier transform
on CPU vs GPU.

log 2pSizeq Size CPU Time GPU Time Speedup

1 2 1.2220e-04 4.4764e-05 2.7299
2 4 1.4426e-04 4.4870e-05 3.2151
3 8 1.4919e-04 4.4843e-05 3.3268
4 16 2.6912e-04 4.4649e-05 6.0276
5 32 4.5526e-04 8.8517e-05 5.1432
6 64 4.7522e-04 1.3205e-04 3.5988
7 128 1.0721e-02 4.3613e-04 24.5832
8 256 1.5637e-02 1.3713e-03 11.4038
9 512 4.7771e-02 7.2078e-03 6.6276

10 1024 1.9013e-01 2.9989e-02 6.3400
11 2048 8.6536e-01 2.4508e-01 3.5310

Table 3.6: Computation time of 2D complex-to-real fast Fourier transform
on CPU vs GPU.

71

FFT9. The data sizes used are the powers of two. The measured times are

plotted on a log-log scale, with the base-two logarithm of the size as the

horizontal axis, and the base-ten logarithm of the time as the vertical axis.

The timings are also shown in Tables 3.3, 3.4, 3.5 and 3.6. The speedup

displayed in this table is computed as CPU time divided by GPU time.

For 1D fast Fourier transform, the running time on the GPU is faster

than the time running on the CPU in most cases. The speedup increases

rapidly as we use longer vectors. When the vector size is 1024, the GPU

FFT is more than 100 times faster than the CPU FFT. The speedup exceeds

600 when the vector size is 65536. For 2D fast Fourier transforms, the GPU

implementation is faster than the CPU implementation in all cases. When

the data size is more than or equal to 512, we get more than ten times

speedup. We speculate that the speedups for 2D FFTs are smaller than

those of 1D FFTs because more data movement is needed for 2D FFTs,

thus diminishing the performance gained in parallelism. In the cases of 2D

real-to-complex and complex-to-real Fourier transforms, the GPU times are

a few times faster than the CPU times.

Next, we compare the speeds of CPU and GPU implementations for

computing vector additions and dot products. Again, we use vector sizes

that are powers of two, and the log-log scale is used for the plots. The

computation times for the two operations are shown in Tables 3.7 and 3.8,

and plotted in Figures 3.9a and 3.9b. For vectors of sizes smaller or equal

to 256, the CPU computations are faster than those on the GPU. However

for larger vectors, the GPU outperforms the CPU and the speedup quickly

increases to over 50 for vectors of length 65536.

Finally, we measure time of using CGLS to solve the image deblurring

returns the non-redundant entries.
9 The input of complex-to-real FFT only includes the non-redundant entries, the rest

of the data are deduced through conjugate symmetry.

72

(a) vector addition (b) vector addition

Figure 3.9: Computation time of vector addition and dot product with CPU

and GPU implementations.

Figure 3.10: Computation time of 100 CGLS iterations in image deblurring
with CPU and GPU implementations.

73

log 2pSizeq Size CPU Time GPU Time Speedup

1 2 3.5498e-06 3.4664e-05 0.1024

2 4 3.9965e-06 3.4725e-05 0.1151

3 8 4.9097e-06 3.4826e-05 0.1410

4 16 5.5590e-06 3.5440e-05 0.1569

5 32 6.9150e-06 3.5381e-05 0.1954

6 64 1.0794e-05 3.4601e-05 0.3120

7 128 1.6362e-05 3.4780e-05 0.4704

8 256 2.5730e-05 3.5355e-05 0.7278

9 512 5.3905e-05 3.5606e-05 1.5139

10 1024 1.3408e-04 3.4856e-05 3.8466

11 2048 1.5189e-04 3.4948e-05 4.3460

12 4096 2.1932e-04 3.5809e-05 6.1247

13 8192 4.2075e-04 3.4970e-05 12.0318

14 16384 1.6597e-03 5.6664e-05 29.2909

15 32768 5.5902e-03 1.0256e-04 54.5096

16 65536 1.2549e-02 1.9783e-04 63.4318

Table 3.7: Computation time of vector addition on CPU vs GPU.

problem. An image of a particular size is first blurred by a Gaussian PSF of

size 11 � 11, then we run 100 iterations of CGLS to remove the blur. The

timing is listed in Table 3.9. It is also plotted in Figure 3.10. The horizontal

axis shows the length of one side of the image, while the vertical axis shows

the computation time in seconds. As the size of the image increases, the

CPU computation time increases quadratically, but the GPU computation

time remains almost constant with two small jumps when the size increases

from 200 to 300 and from 500 to 600. We speculate that these jumps are due

to the saturation of communication and computation on the GPUs. From

74

log 2pSizeq Size CPU Time GPU Time Speedup

1 2 2.3637e-06 8.8247e-05 0.0268

2 4 3.1647e-06 8.8618e-05 0.0357

3 8 4.2835e-06 9.2052e-05 0.0465

4 16 6.3518e-06 9.1285e-05 0.0696

5 32 1.1022e-05 9.1363e-05 0.1206

6 64 1.9264e-05 1.2547e-04 0.1535

7 128 3.7726e-05 8.9039e-05 0.4237

8 256 7.0906e-05 9.1228e-05 0.7772

9 512 1.4012e-04 8.7117e-05 1.6084

10 1024 2.7859e-04 8.7849e-05 3.1713

11 2048 5.5765e-04 8.9324e-05 6.2431

12 4096 1.1106e-03 9.4431e-05 11.7614

13 8192 2.1565e-03 1.0507e-04 20.5240

14 16384 4.3082e-03 1.4318e-04 30.0900

15 32768 6.6053e-03 2.3167e-04 28.5113

16 65536 1.3192e-02 2.5576e-04 51.5784

Table 3.8: Computation time of dot product on CPU vs GPU.

the timing, we see about an order of magnitude speedup in most cases. The

greatest speedup of 20 is achieved when the image is 1000 � 1000.

3.5 Conclusions for this Chapter

In this chapter, we discussed the implementation details of deblurring algo-

rithms. We began with a theoretical overview of convolution matrix opera-

tions, and direct and iterative deblurring methods. Then we explained our

choice of using Python for our CPU implementation PYRET. We use an

75

Image Size CPU Time GPU Time Speedup

100 � 100 1.4245e+00 2.6947e-01 5.2862

200 � 200 7.0978e+00 7.6932e-01 9.2260

300 � 300 1.6612e+01 3.7942e+00 4.3782

400 � 400 3.7870e+01 3.6744e+00 10.3065

500 � 500 6.6984e+01 3.6351e+00 18.4269

600 � 600 1.2101e+02 1.4832e+01 8.1589

700 � 700 1.2459e+02 1.4829e+01 8.4017

800 � 800 2.4485e+02 1.4407e+01 16.9951

900 � 900 2.5476e+02 1.4471e+01 17.6051

1000 � 1000 2.9747e+02 1.4202e+01 20.9454

Table 3.9: Computation time of CGLS on CPU vs GPU.

object-oriented approach to represent the convolution matrix and precondi-

tioner matrix. This saves a lot of storage and time, and allows the reuse

of codes written for other classes. We also supply a web GUI interface to

PYRET using the web framework Pylons.

The rest of the chapter discussed another package, PARRET, which is

a parallel implementation on NVIDIA Compute Unified Device Architecture

(CUDA). We provided motivation for parallelizing deblurring algorithms and

using GPUs as the programming platform. After an introduction of CUDA

and its Python wrapper PyCUDA, we presented our work in extending Py-

CUDA to support CUBLAS and CUFFT libraries and complex arithmetic.

In PARRET, we include wrappers for CUBLAS and CUFFT, a psfMatrix

class for the convolution matrix, codes to obtain synthetic boundary con-

ditions and several linear solvers to run on CPUs or GPUs. Finally, our

experimental results showed an order of magnitude speedup of GPU compu-

tation over CPU computation on a consumer-grade laptop.

76

Chapter 4

Multi-frame Pupil Phase Blind

Deconvolution Problem

4.1 Overview of Blind Deconvolution

In many situations the PSF is not known, and it is necessary to use de-

blurring algorithms that can jointly estimate the PSF and the unknown

true image scene. This is referred to as blind deconvolution. If we know

a parametrized formula of the PSF, we can formulate the blind deconvolu-

tion problem as follows:

y � Apφqx, (4.1)

or equivalently,

Y �Hpφq
X, (4.2)

where φ is a vector of some unknown parameters. For example, if we know

the PSF is represented by a Gaussian function, with unknown mean pµ1, µ2q
and standard deviation σ, we can take φ � pµ1, µ2, σq and

Hpφqi,j � Hpµ1, µ2, σqi,j � 1

2πσ2
e�

pi�µ1q
2�pj�µ2q

2

2σ2 . (4.3)

77

Usually, there are far fewer parameters than values in the PSF, thus para-

metrization helps reduce the number of unknowns of the problem. However,

sometimes, as we discuss in this chapter, there are almost as many parameters

as values in the PSF, and although parametrization may not substantially

reduce the number of unknowns, it still serves as a strong constraint on the

structure of the PSF.

To solve the blind deconvolution problem, one can repose (4.1) as a

minimization problem:

min
φ,x

�
fpφ,xq :� ‖y �Apφqx‖22

	
. (4.4)

One way to solve the resulting minimization problem is the alternating min-

imization algorithm [11].

Algorithm 4.1 Alternating minimization to minimize fpφ,xq
while not converged do

φð arg min
φ

fpφ,xq
xð arg min

x
fpφ,xq

end while

This alternating minimization method can sometimes take many itera-

tions without making much progress. For solving blind deconvolution prob-

lems, we use an alternative approach called the variable projection method.

4.2 Variable Projection Method

In a minimization problem, when the objective function depends on two

variables, and the subproblem of minimizing with respect to just one of

the two variables has an easy solution, we can use the variable projection

method to reduce the number of variables.

78

Consider the objective function fpφ,xq for each fixed φ, and define

f̃pφq � min
x
fpφ,xq, (4.5)

and thus

min
φ,x

fpφ,xq � min
φ

min
x
fpφ,xq � min

φ
f̃pφq. (4.6)

Thus, minimizing fpφ,xq is equivalent to minimizing f̃pφq. Note that x in

fpφ,xq is eliminated in (4.5) and the projected function f̃pφq only depends

on φ. If there is an efficient algorithm or even closed form formula for the

projection, working on the projected function can be much cheaper than

the original function.

The variable projection method is used in many nonlinear optimization

problems with separable variables [30, 31, 39, 53, 54, 60]. However there is

a big difference between problems in these references and our applications of

interest. Problems in these references have only a few (usually less than five)

parameters left after the projection, while we are interested in applications

where tens of thousands of parameters may still remain. For example, in

an astronomical imaging test problem described in Section 4.5, we still have

over 60,000 parameters left after the projection. Thus we still have a very

difficult minimization problem even after the projection.

4.3 Applying Variable Projection Method to

Blind Deconvolution Problems

In the blind deconvolution problem, the matrix A is a convolution matrix.

For simplicity, we assume periodic boundary conditions. This assumption

makes sense for our application of interest, which deals with astronomical

images.

79

The function we minimize is given by

fpφ,xq � ‖y �Apφqx‖22 . (4.7)

One can note that f depends on φ nonlinearly and on x linearly. We ap-

ply the variable projection method to eliminate the linear variable x. The

resulting projected function f̃pφq is obtained by the following subproblem.

f̃pφq � min
x
fpφ,xq � min

x
‖y �Apφqx‖22 . (4.8)

The subproblem in (4.8) is a linear least squares problem. By simple nu-

merical linear algebra, we know that the minimum of the subproblem is

attained at

x̂ � Apφq:y, (4.9)

where Apφq: is the pseudoinverse of Apφq. Thus

f̃pφq � ∥∥y �ApφqApφq:y∥∥2

2
� ∥∥pI �ApφqApφq:qy∥∥2

2
. (4.10)

Next, we derive a spectral decomposition of f̃pφq. With the assump-

tion of periodic boundary conditions, the convolution matrix Apφq has the

following spectral decomposition:

Apφq � FHΛpφqF , (4.11)

where F is the Fourier matrix and Λpφq is a diagonal matrix. If Hpφq of

size n � n is the PSF corresponding to Apφq, then

Λpφq � Diag pvecpnfft pHpφqqqq . (4.12)

The matrix Apφq is usually ill-conditioned, thus instead of taking Apφq:
as the Moore-Penrose pseudoinverse, we use a regularized pseudoinverse:

Apφq: � pApφqHApφq � α2q�1ApφqH � FH Λpφq
|Λpφq|2 � α2

F , (4.13)

80

where α is a regularization parameter. Here we use the shorthand notation

α2 in place of α2I, and arithmetic operations between diagonal matrices to

mean elementwise operations on the diagonal entries.

For notational convenience, we drop “pφq” in equations henceforth. We

also use the following notation:

P � AA: � FH |Λ|2
|Λ|2 � α2

F (4.14)

and

P K � I � P � I �AA: � FH α2

|Λ|2 � α2
F . (4.15)

With this notation and (4.10), the minimization problem can be reposed as

min
φ

�
f̃pφq :� ∥∥P Kpφqy∥∥2

2

	
. (4.16)

Equation (4.16) is a nonlinear least squares problem. We use the Gauss-

Newton algorithm with conjugate gradient for the inner iterations (Algorithm

4.2), to solve this problem.

81

Algorithm 4.2 Solving the blind deconvolution problem by Gauss-Newton
algorithm with conjugate gradient as the inner solver

while not converged do

Solve the normal equations

JpφqHJpφqp � �JpφqHr, (4.17)

where

r � y �Apφqx � P Kpφqy, (4.18)

J � ∇pP Kpφqyq � ∇P Kpφqy, (4.19)

for the search direction p by conjugate gradient method.

Set φ ð φ � αp, where α is chosen using a line search on minimizing

‖r‖2.
end while

Set xð Apφq:y.

The ∇ in (4.19) denotes differentiation with respect to φ. Thus ∇P K is

a three-dimensional tensor. Care must be taken when computing the mul-

tiplication of ∇P Ky: the inner product is done along the second dimen-

sion of ∇P K.

In general, multiplication of a three-dimensional tensor to a vector takes

OpN3q operations, where N � n2 is the number of pixels in the image.

Using the spectral decomposition of ∇P K and the special property of our

test problem (to be discussed in Section 4.5), we can reduce the complexity

down to just OpN logNq. We prove in Appendix 6.3 that

∇
�

1

|Λ|2 � α2

� �2

Re
�
Λ∇Λ

�
p|Λ|2 � α2q2 , (4.20)

where Re p�q returns the real part of a complex matrix or tensor. Then

82

from (4.15),

∇P K � α2FH∇
�

1

|Λ|2 � α2

F � �2α2FH Re

�
Λ∇Λ

�
p|Λ|2 � α2q2F . (4.21)

Therefore, the Jacobian matrix J has the spectral decomposition:

J � ∇P Ky (4.22)

� �2α2FH Re
�
Λ∇Λ

�
p|Λ|2 � α2q2Fy (4.23)

� �2α2FH Re
�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ. (4.24)

Here we use ŷ to denote the Fourier transform of y. Again, the tensor-

vector products in (4.23) are (4.24) are done along the second dimension of

the tensor Re
�
Λ∇Λ

�
. Since Λ is diagonal, the tensor Re

�
Λ∇Λ

�
essentially

has only two dimensions.

We note that (4.24) only involves the Fourier matrix F , a diagonal matrix

Λ and a “diagonal” tensor ∇Λ. Multiplication by F , Λ and ∇Λ can be done

respectively in OpN logNq (by fast Fourier transform [15, 67]), OpNq, and

OpN logNq (to be shown in Subsection 4.5.1).

The left hand side of equation (4.17) is thus given by

JHJp �
�
�2α2FH Re

�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ

�H �
�2α2FH Re

�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ

�
p (4.25)

� 4α4

��ŷH Re
�
p∇ΛqT Λ

	
p|Λ|2 � α2q2 FFH Re

�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ

��p (4.26)

� 4α4

��ŷH Re
�
p∇ΛqT Λ

	
Re

�
Λ∇Λ

�
p|Λ|2 � α2q4 ŷ

��p, (4.27)

83

while the right hand side of equation (4.17) is given by

�JHr � �JHP Ky (4.28)

� �
�
�2α2FH Re

�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ

�H
FH α2

|Λ|2 � α2
Fy (4.29)

� 2α4ŷH
Re

�
p∇ΛqT Λ

	
p|Λ|2 � α2q2 FFH 1

|Λ|2 � α2
ŷ (4.30)

� 2α4ŷH
Re

�
p∇ΛqT Λ

	
p|Λ|2 � α2q3 ŷ. (4.31)

Hence equation (4.17) is reduced to

4α4

�
�ŷH

Re
�
p∇Λq

T
Λ
	

Re
�
Λ∇Λ

�
p|Λ|

2
� α2q4

ŷ

�
�p � 2α4ŷH

Re
�
p∇Λq

T
Λ
	

p|Λ|
2
� α2q3

ŷ (4.32)

2

�
�ŷH

Re
�
p∇Λq

T
Λ
	

Re
�
Λ∇Λ

�
p|Λ|

2
� α2q4

ŷ

�
�p � ŷH

Re
�
p∇Λq

T
Λ
	

p|Λ|
2
� α2q3

ŷ. (4.33)

To make this equation clearer, we use ∇kΛ to denote dΛ
dφk

and pj to

denote the j-th component of p.1 The i-th components of both sides of

(4.33) are then given by

¸
j

�
2ŷH

Re
�
∇iΛTΛ

�
Re
�
Λ∇jΛ

�
p|Λ|2 � α2q4

ŷ

�
pj � ŷ

H Re
�
∇iΛΛ

�
p|Λ|2 � α2q3

ŷ (4.34)

2ŷH
Re
�
∇iΛTΛ

�
p|Λ|2 � α2q2

¸
j

�
Re
�
Λ∇jΛ

�
p|Λ|2 � α2q2

ŷ

�
pj � ŷ

H Re
�
∇iΛΛ

�
p|Λ|2 � α2q3

ŷ. (4.35)

If we use the notation

ỹi �
Re

�
Λ∇iΛ

�
p|Λ|2 � α2q2 ŷ (4.36)

y̌ � 1

|Λ|2 � α2
ŷ, (4.37)

1We use lightface for scalars (even when they are vector or matrix components), bold-

face lowercase for vectors, and boldface uppercase for matrices.

84

equation (4.34) can be further reduced to

2ỹHi
¸
j

ỹjpj � ỹHi y̌. (4.38)

The Gauss-Newton algorithm with the simplified formula is shown in Al-

gorithm 4.3.

Algorithm 4.3 Solving the blind deconvolution problem by Gauss-Newton

algorithm with conjugate gradient as the inner solver using the simplified

formula

while not converged do

Solve the normal equations

2ỹHi
¸
j

ỹjpj � ỹHi y̌. (4.39)

where

ỹi �
Re

�
Λpφq∇iΛpφq

	
p|Λpφq|2 � α2q2 ŷ (4.40)

y̌ � 1

|Λpφq|2 � α2
ŷ, (4.41)

(4.42)

by conjugate gradient method for the search direction p.

Set φ ð φ � αp, where α is chosen using a line search on minimizing

‖r‖2.
end while

Set xð Apφq:y.

When solving the normal equations in (4.39) by the conjugate gradient

method, we need to do the multiplications
°
j ỹjpj and rỹHi y̌sni�1. There are

85

efficient algorithms for these multiplications. These algorithms make use of

the following definition and its two associated lemmas.

Definition 4.1. A vector u of length n is called conjugate symmetric if$&%u1 is real

uk � un�k�2 for k � 2, . . . n
(4.43)

It is a well-known fact that Fourier transforms of real vectors are conju-

gate symmetric, which is the case for many vectors in this chapter. We have

two lemmas on conjugate symmetric vectors.

Lemma 4.2. If u and v are two conjugate symmetric vectors, then

uTv � uTv. (4.44)

Lemma 4.3. If u and v are two conjugate symmetric vectors, then

Re puqT v � uT Re pvq . (4.45)

We only need Lemma 4.3 for this section, but Lemma 4.2 will be needed

in subsequent sections. Proofs of these two Lemma are given in the Appendix.

In the following, we use the assumptions that p is a real vector and y̌ is

a conjugate symmetric vector, which are true in our algorithm.

First, we note that¸
j

ỹjpj �
¸
j

Re
�
Λ∇iΛ

�
p|Λ|2 � α2q2 ŷpj (4.46)

�
�

Re
�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ

�
p (4.47)

� Diag pŷq
p|Λ|2 � α2q2 Re

�
Λ∇diag pΛq�p (4.48)

� Diag pŷq
p|Λ|2 � α2q2 Re

�
Λ∇diag pΛqp� (4.49)

86

Equation (4.49) is due to the assumption that p is real. Computing
°
j ỹjpj

as in (4.49) has the advantage that operations can be done from right to left:

first compute ∇diag pΛqp, then Λ∇diag pΛqp and so on. Each intermediate

step returns a vector of the same size, thus the need for extra temporary

memory is minimized. Also the matrices involved are diagonal matrices ex-

cept ∇diag pΛq, so each step can be done very cheaply, except possibly the

step with ∇diag pΛq, which is application dependent.

Then for rỹHi psni�1, we consider

rỹHi y̌sni�1 �
��� Re

�
Λ∇iΛ

�
p|Λ|2 � α2q2 ŷ

�H

y̌

��n

i�1

(4.50)

�
�

Re
�
Λ∇Λ

�
p|Λ|2 � α2q2 ŷ

�H

y̌ (4.51)

�
�

Diag pŷq
p|Λ|2 � α2q2 Re

�
Λ∇diag pΛq�
H

y̌ (4.52)

� Re
�
∇diag pΛqΛ

� Diag
�
ŷ
�

p|Λ|2 � α2q2 y̌ (4.53)

� ∇diag pΛqΛ Re

�
Diag

�
ŷ
�

p|Λ|2 � α2q2 y̌
�

(4.54)

Equation (4.54) is due to the assumption that y̌ is conjugate symmetric and

Lemma 4.3. Again, computing rỹHi y̌sni�1 as in (4.54) has the advantage that

operations can be done from right to left, and the matrices involved are

diagonal matrices except ∇diag pΛq.
In Subsection 4.5.1, we discuss how to compute multiplications with

∇diag pΛq and its transpose efficiently for our our application of interest.

87

4.4 Deblurring Using More than One Image

We can improve the deblurring result by using more than one blurred image

from the same original image. This new problem is called multi-frame blind

deconvolution. We are given m blurred images, in which the i-th blurred

image yi comes from the original image x with the i-th convolution matrix

Apφiq. Mathematically we can write this as$'''''''&'''''''%

Apφ1qx � y1

Apφ2qx � y2

...

Apφmqx � ym

, (4.55)

or equivalently �������
Apφ1q
Apφ2q
...

Apφmq

�������x �
�������
y1

y2

...

ym

������� . (4.56)

One way to solve this multi-frame blind deconvolution problem is the

following minimization problem:

min
φ,x

∥∥∥∥∥∥∥∥∥∥∥

�������
y1

y2

...

ym

��������

�������
Apφ1q
Apφ2q
...

Apφmq

�������x
∥∥∥∥∥∥∥∥∥∥∥

2

2

. (4.57)

Using variable projection, we eliminate x by substituting

x �

�������
Apφ1q
Apφ2q
...

Apφmq

�������
:�������
y1

y2

...

ym

������� (4.58)

88

to obtain

min
φ

∥∥∥∥∥∥∥∥∥∥∥∥

��������I �
�������
Apφ1q
Apφ2q
...

Apφmq

�������

�������
Apφ1q
Apφ2q
...

Apφmq

�������
:
�������

�������
y1

y2

...

ym

�������

∥∥∥∥∥∥∥∥∥∥∥∥

2

2

. (4.59)

We can then proceed as in Section 4.3 with the Gauss-Newton algorithm.

This, however, has several drawbacks. The formula for the pseudoinverse in

(4.59) is complicated. Because of the coupling of Apφiq’s in the pseudoin-

verse, the Jacobian matrix has an even more complicated formula and it

is dense.

To get a simpler formula and for more efficient implementation, we refor-

mulate the minimization problem (4.55) through decoupling. In particular,

we solve each of the individual blind deconvolution problems, allowing re-

construction of different objects xi. However, since each xi should actually

be identical, we include additional constraints that minimize the difference

between xi and xi�1. Specifically, we solve the minimization problem

min ‖y1 � Apφ1qx1‖22 � ‖y2 � Apφ2qx2‖22 � � � � � ‖ym � Apφmqxm‖22
� ‖x1 � x2‖22 � ‖x2 � x3‖22 � � � � � ‖xm�1 � xm‖22 � ‖xm � x1‖22 , (4.60)

where

xi � Apφiq:yi. (4.61)

Equation (4.60) can be rewritten as

min ‖r‖22 , (4.62)

89

where

r �

���������������������

y1 �Apφ1qx1

y2 �Apφ2qx2

...

ym �Apφmqxm
x1 � x2

x2 � x3

...

xm�1 � xm
xm � x1

���������������������

. (4.63)

This decoupling idea is similar to an approach used in [70] to solve the

deblurring and denoising problem with total variation regularization.

We use the following notations.

J i � ∇φi
�
yi �Apφiqxi

	
(4.64)

� ∇φi
�
P Kpφiqyi

	
(4.65)

� �2α2FH Re
�
Λi∇Λi

�
p|Λi|2 � α2q2 ŷi (4.66)

� �2α2FH Diag pŷiq
p|Λi|2 � α2q2 Re

�
Λi∇diag pΛiq

�
, (4.67)

90

and

Ki � ∇φixi (4.68)

� ∇φi
�
Apφiq:yi

	
(4.69)

� ∇φi
�
FH Λi

|Λi|2 � α2
Fyi

(4.70)

� FH∇φi
�

Λi

|Λi|2 � α2

Fyi (4.71)

� FH α
2∇Λi �Λi

2∇Λi

p|Λi|2 � α2q2 ŷi (4.72)

� FH Diag pŷiq
p|Λi|2 � α2q2 pα

2∇diag pΛiq �Λi
2∇diag pΛiqq, (4.73)

where Apφiq � FHΛiF , diag pDq extracts the diagonal of matrix D as a

column vector, and Diag pvq forms a diagonal matrix with diagonal v. In

(4.72), we use the identity

∇
�

Λ

|Λ|2 � α2

� α2∇Λ�Λ

2∇Λ

p|Λ|2 � α2q2 , (4.74)

which is proved in the Appendix 6.4.

The Jacobian matrix of (4.62) has the form of

J �

�
������������������������

J1

J2

. . .

. . .

Jm

K1 �K2

K2 �K3

. . .
. . .

Km�1 �Km

�K1 Km

�
������������������������

. (4.75)

91

With the decoupling formulation, the multi-frame blind deconvolution prob-

lem can be solved by the Gauss-Newton algorithm (Algorithm 4.4).

Algorithm 4.4 Solving the multi-frame blind deconvolution problem by

Gauss-Newton algorithm with conjugate gradient as the inner solver

while not converged do

Solve the normal equations

JHJp � �JHr, (4.76)

where r is given by (4.63) and J is given by (4.67), (4.73) and (4.75),

for the search direction p by conjugate gradient method.

Set

�������
φ1

φ2

...

φm

������� ð

�������
φ1

φ2

...

φm

������� � αp, where α is chosen using a line search on

minimizing ‖r‖2.
end while

Set x �

�������
Apφ1q
Apφ2q
...

Apφmq

�������
:�������
y1

y2

...

ym

�������.

When solving the normal equations (4.76) in Algorithm 4.4 with the

conjugate gradient method, we need to multiply J and JH to vectors. From

(4.75), we see that J has a block diagonal structure, and these operations

can be done very efficiently. We describe these algorithms in the rest of

this section.

92

For the matrix J ,

Jp � J

�������
p1

p2
...

pm

������� �

���������������������

J1p1

J2p2
...

Jmpm

K1p1 �K2p2

K2p2 �K3p3
...

Km�1pm�1 �Kmpm

Kmpm �K1p1

���������������������

(4.77)

To save operations, J ipi and Kipi can be computed together. Assuming

pi’s to be real vectors, we note that

J ipi � �2α2FH Diag pŷiq
p|Λi|2 � α2q2 Re

�
Λi∇diag pΛiq

�
pi (4.78)

� �2α2FH Diag pŷiq
p|Λi|2 � α2q2 Re

�
Λi∇diag pΛiqpi

�
(4.79)

Kipi � FH Diag pŷiq
p|Λi|2 � α2q2 pα

2∇diag pΛiq �Λi
2∇diag pΛiqqpi (4.80)

� FH Diag pŷiq
p|Λi|2 � α2q2 pα

2∇diag pΛiqpi �Λi
2∇diag pΛiqpiq. (4.81)

The algorithm to compute Jp as in (4.77) is shown in Algorithm 4.5.

93

Algorithm 4.5 Computing the matrix-vector product with the multi-frame

Jacobian matrix.

for i � 1, 2, . . . , n do

p̃i � ∇diag pΛiqpi (4.82)

Di � Diag pŷiq
p|Λi|2 � α2q2 . (4.83)

J ipi � �2α2 ifft
�
Di Re

�
Λip̃i

��
(4.84)

Kipi � ifft
�
Dipα2 � p̃i �Λi

2
p̃iq

	
(4.85)

end for

return

Jp � J

�������
p1

p2
...

pm

������� �

���������������������

J1p1

J2p2
...

Jmpm

K1p1 �K2p2

K2p2 �K3p3
...

Km�1pm�1 �Kmpm

Kmpm �K1p1

���������������������

(4.86)

94

Now we consider computing JTr,

JTr � JT

�
�����������������

r1

r2
...

rm

s1

s2
...

sm

�
�����������������

�

�������
JT1 r1 �KT

1 ps1 � smq
JT2 r2 �KT

2 ps2 � s1q
...

JTmrm �KT
mpsm � sm�1q

������� . (4.87)

Now for each i,

JTi ri

� �2α2 Re
�
∇diag pΛiqT Λi

	 Diag pŷiq
p|Λi|2 � α2q2F

Hri (4.88)

� �2α2∇diag pΛiqT Λi Re

�
Diag pŷiq

p|Λi|2 � α2q2F
Hri

, (4.89)

Equation (4.89) is due to Lemma 4.3. We prefer (4.89) over (4.88) because

operations in (4.89) can be done from right to left: first compute FHri, then
Diagpŷiq

p|Λi|
2�α2q2

FHri and so on, while for (4.88) we need an intermediate prod-

uct for Re
�
∇diag pΛiqT Λi

	
. In Subsection 4.5.1, we will describe efficient

methods for multiplication with ∇diag pΛiq and ∇diag pΛiqT .

Now consider, for each i,

KT
i si

� pα2∇diag pΛiq
T
�∇diag pΛiq

T
Λi

2
q

Diag pŷiq

p|Λi|
2
� α2q2

FHsi (4.90)

� α2∇diag pΛiq
T Diag pŷiq

p|Λi|
2
� α2q2

FHsi �∇diag pΛiq
T

Λi
2 Diag pŷiq

p|Λi|
2
� α2q2

FHsi (4.91)

� α2∇diag pΛiq
T Diag pŷiq

p|Λi|
2
� α2q2

FHsi �∇diag pΛiq
T

Λi
2 Diag pŷiq

p|Λi|
2
� α2q2

FHsi (4.92)

� ∇diag pΛiq
T

�
α2 Diag pŷiq

p|Λi|
2
� α2q2

FHsi � Λi
2 Diag pŷiq

p|Λi|
2
� α2q2

FHsi

�
. (4.93)

95

Equation (4.92) is due to Lemma 4.2.

Adding JTi ri and KT
i si together, we have

JTi ri �KT
i si

� ∇diag pΛiqT
�
�2α2Λi Re

�
Diag pŷiq

p|Λi|2 � α2q2F
Hri

� α2 Diag pŷiq

p|Λi|2 � α2q2F
Hsi �Λi

2 Diag pŷiq
p|Λi|2 � α2q2F

Hsi

�
. (4.94)

The algorithm to compute JTr is shown in Algorithm 4.6.

Algorithm 4.6 Computing the matrix-vector product with the transpose of

the multi-frame Jacobian matrix.

for i � 1, 2, . . . , n do

Di � Diag pŷiq
p|Λi|2 � α2q2 (4.95)

r̃i �Di ifft priq (4.96)

s̃i �Di ifft psi � si�1q (4.97)

ti � �2α2Λi Re pr̃iq � α2s̃i �Λi
2
s̃i (4.98)

JTi ri �KT
i psi � si�1q � ∇diag pΛiqT ti. (4.99)

end for

return

JTr � JT

�
������������

r1
...

rm

s1
...

sm

�
������������

�

�������
JT1 r1 �KT

1 ps1 � smq
JT2 r2 �KT

2 ps2 � s1q
...

JTmrm �KT
mpsm � sm�1q

������� (4.100)

Finally we consider computations with the complex conjugate transpose,

96

JH . Since J is real, JH � JT , but the implementation is slightly different

and we can save some operations in computing JHJp. First notice that

JHr � JH

�
�����������������

r1

r2
...

rm

s1

s2
...

sm

�
�����������������

�

�������
JH1 r1 �KH

1 ps1 � smq
JH2 r2 �KH

2 ps2 � s1q
...

JHmrm �KH
mpsm � sm�1q

������� (4.101)

Now for each i,

JHi ri

� �2α2 Re
�
∇diag pΛiqT Λi

	 Diag
�
ŷi
�

p|Λi|2 � α2q2Fri (4.102)

� �2α2∇diag pΛiqT Λi Re

�
Diag

�
ŷi
�

p|Λi|2 � α2q2Fri
�
, (4.103)

and

KH
i si

� pα2∇diag pΛiq
T �∇diag pΛiq

T
Λ2
i q

Diag
�
ŷi
�

p|Λi|
2 � α2q2

Fsi (4.104)

� α2∇diag pΛiq
T Diag

�
ŷi
�

p|Λi|
2 � α2q2

F si �∇diag pΛiq
T
Λ2
i

Diag
�
ŷi
�

p|Λi|
2 � α2q2

F si (4.105)

� α2∇diag pΛiq
T Diag

�
ŷi
�

p|Λi|
2 � α2q2

F si �∇diag pΛiq
T Λi

2 Diag
�
ŷi
�

p|Λi|
2 � α2q2

F si (4.106)

� ∇diag pΛiq
T

�
α2 Diag

�
ŷi
�

p|Λi|
2 � α2q2

F si � Λi
2 Diag

�
ŷi
�

p|Λi|
2 � α2q2

F si

�
. (4.107)

Equations (4.103) and (4.106) are due to Lemmas 4.3 and 4.2 respectively.

97

Adding JHi ri and KH
i si together, we have

JHi ri �KH
i si

� ∇diag pΛiqT
�
�2α2Λi Re

�
Diag

�
ŷi
�

p|Λi|2 � α2q2Fri
�

� α2 Diag
�
ŷi
�

p|Λi|2 � α2q2Fsi �Λi
2 Diag

�
ŷi
�

p|Λi|2 � α2q2Fsi
�
. (4.108)

The algorithm to compute JHr is shown in Algorithm 4.7.

Algorithm 4.7 Computing the matrix-vector product with conjugate trans-

pose of the multi-frame Jacobian matrix.

for i � 1, 2, . . . , n do

Di �
Diag

�
ŷi
�

p|Λi|2 � α2q2 (4.109)

r̃i �Di fft priq (4.110)

s̃i �Di fft psi � si�1q (4.111)

ti � �2α2Λi Re pr̃iq � α2s̃i �Λi
2
s̃i (4.112)

JHi ri �KH
i psi � si�1q � ∇diag pΛiqT ti. (4.113)

end for

return

JHr � JH

�
������������

r1
...

rm

s1
...

sm

�
������������

�

�������
JH1 r1 �KH

1 ps1 � smq
JH2 r2 �KH

2 ps2 � s1q
...

JHmrm �KH
mpsm � sm�1q

������� (4.114)

Some operations can be saved when we compute JHJp � JHpJpq. The

98

last step in the multiplication by J is an inverse Fourier transform, while

the first step in the multiplication by JH is a Fourier transform. These

two steps can be skipped in computing JHJp � JHpJpq as they cancel

each other’s effect.

4.5 Pupil Phase Parametrization of Atmospheric

Blurs in Astronomical Imaging

In this section, we describe our target application — removing atmospheric

blur in astronomical imaging. Given the pupil phase function Φ, which

describes the wavefront at the pupil of a telescope, the PSF is defined by

H � �� ifft
�
eıΦ

���2 . (4.115)

We use ı to denote
?�1, ifft pXq to denote the inverse 2D FFT of X and

the exponential function in (4.115) is done elementwise. An example of a

pupil phase function and its corresponding point spread function is shown

in Figure 4.1. In this and subsequent figures of PSFs, the logarithms of the

PSFs are shown instead of PSFs themselves for better contrast. Values of

the pupil phase function Φ are zero outside the pupil, hence we only need

to consider those values of Φ inside the pupil.

In the test problem used in this section, Φ is of size 256 � 256, with

a total of 65536 elements. After discarding elements outsides the pupil, we

still have 12851 elements. Recall from Section 4.4, in blind deconvolution

we are minimizing

fpΦ,xq � min
Φ,x
‖y �Apφqx‖22 . (4.116)

In our test problem, the original image x and the blurred image y each

contains 65536 elements. The joint minimization is over space of dimension

99

(a) pupil phase function (b) point spread function

Figure 4.1: A pupil phase function and its corresponding point spread func-

tion.

65536 � 12851 � 78387 using 65536 data values. Using variable projection,

we instead are minimizing

f̃pΦq � ∥∥pI �ApφqApφq:qy∥∥2

2
. (4.117)

The dimension of the search space drops to 12851, but this still is a very

large number compared to other problems in the literature that use the vari-

able projection method, in which only a few parameters (e.g., 3) remain

after projection.

4.5.1 Efficient Computations with ∇diag pΛq

From Sections 4.3 and 4.4, we know that efficient application of Gauss-

Newton algorithms depends on an efficient way to do multiplication with

∇diag pΛq. We now derive the formula for ∇diag pΛq for the specific case

when the PSF has the form given in (4.115).

100

In the following derivation, we vectorize Φ by stacking together all entries

inside the pupil. We represent this vectorized pupil phase function by φ.

Similarly, we vectorize H by stacking its columns together and denote it by

h. We use F to denote the 2D unitary FFT matrix acting on vectorized

matrices, and ek to denote the unit vector with 1 at k–th position and 0 at

other positions. We use “.�” to denote elementwise multiplication.

With these notations, the convolution matrix A corresponding to the

PSF h is given by

A � FHΛF , (4.118)

with

Λ � Diag
�?

NFh
	
, (4.119)

where N is number of elements in h.

We let

ϕ � eıφ. (4.120)

Then

dϕ

dφk
� ıϕkek. (4.121)

The formula (4.115) for h can be rewritten as

h � FHϕ. � FHϕ. (4.122)

101

Differentiating h with respect to an entry φk of φ, we have

dh

dφk
� FH dϕ

dφk
. � FHϕ� FHϕ. � FH dϕ

dφk
(4.123)

� 2 Re

�
FHϕ. � FH dϕ

dφk

(4.124)

� 2 Re
�
FHϕ. � FHıϕkek

	
(4.125)

� 2 Re
�
�ıFHϕ. � FHϕkek

	
(4.126)

� 2 Im
�
FHϕ. � FHϕkek

	
, (4.127)

where Im p�q returns the imaginary part of a complex matrix. It follows

from (4.127) that

dh

dφ
� 2 Im

�
FHϕ. � FH Diag pϕq

	
(4.128)

� 2 Im
�
FHϕ. � F Diag pϕq� . (4.129)

From (4.119) and (4.129),

∇diag pΛq � ∇p
?
NFhq (4.130)

�
?
NF

dh

dφ
(4.131)

� 2
?
NF Im

�
FHϕ. � F Diag pϕq� (4.132)

� 2
?
NF Im

�
Diag

�
FHϕ

�
F Diag pϕq� (4.133)

Now we multiply ∇diag pΛq to a real vector p.

∇diag pΛqp � 2
?
NF Im

�
Diag

�
FHϕ

�
F Diag pϕq�p (4.134)

� 2
?
NF Im

�
Diag

�
FHϕ

�
F Diag pϕqp� . (4.135)

The above multiplication (4.135) can then be done from right to left: first

compute Diag pϕqp, then F Diag pϕqp and so on. Each intermediate step

returns a vector of the same size, thus the need for extra temporary memory

102

is minimized. Also each intermediate step involves only a diagonal or Fourier

matrix, so each step can be done very cheaply.

Now we multiply p∇diag pΛqqT to a conjugate symmetric vector p.

p∇diag pΛqqTp � 2
?
N Im

�
Diag pϕqF Diag

�
FHϕ

��
Fp (4.136)

� 2
?
N Im

�
Diag pϕqF Diag

�
FHϕ

�
Fp

�
(4.137)

Equation (4.137) uses the fact that Fp is real. Again, (4.137) can be done

from right to left, with each intermediate step involving only a diagonal or

Fourier matrix, and the result is a vector of the same size.

We have now finished the algorithms behind each individual step of the

Gauss-Newton method. In the next section we show some experimental re-

sults on multi-frame blind deconvolution using algorithms described so far.

4.6 Experimental Results

We test the Gauss-Newton algorithm with variable projection on a satellite

image (Figure 4.2). First we blur the satellite image by the PSFs of three

pupil phase functions, and then deblur using different number of blurred

images. We try two sets of pupil phase functions, one set gives only mild

blurs, while the other gives more severe blurs. These test data were pro-

vided to us by Stuart Jefferies from the Institute of Astronomy, University of

Hawaii. Our experiments show that using more blurred images can improve

the deblurring result.

4.6.1 Removing Mild Blurs

In Figure 4.3, we show three pupil phase functions and their corresponding

PSFs for our first test case. We blur the satellite image with the three

PSFs to obtain three blurred images (left hand side of Figure 4.4). They

103

Figure 4.2: The original unblurred satellite image.

do not cause very severe blurs, but since we do not assume the blurs to be

known in advance, the deblurring is a hard problem. Recalling our discussion

in Section 4.5, we are minimizing over a space of dimension 12851 after

variable projection.

The convergence of Newton methods depends on the proximity of the

initial guess to the true solution. We generate the initial guess of the pupil

phase functions by adding 50 % random noise to the exact true pupil phase

functions. Methods to determine a good initial guess of the pupil phase

functions are application dependent. One approach being investigated uses

coarse gradient measurements of the phase, which can be obtained by many

modern adaptive optics telescopes [3]. The deblurred images using these

initial guesses are shown on the right side of Figure 4.4. One can see that

the images are sharper but with pixel values lying in the wrong range.

We first deblur using only the first image. Algorithm 4.3 is used for

the single image case. The result is shown in Figure 4.5. There are some

artifacts around the edges and the range of pixel intensity is not correct.

The original satellite has pixel values between 0 and 1, but the deblurred

image has pixel values between about -0.2156 and 1.5638. This explains the

104

Figure 4.3: The pupil phase functions and their corresponding point spread

functions giving mild blurs.

105

Figure 4.4: Left: Images obtained by blurring with the three point spread

functions in Figure 4.3. Right: The deblurring results using the initial guess

of the pupil phase functions.

106

Figure 4.5: Deblurring result using only one image. Relative error=0.4760

Figure 4.6: Deblurring result using two images. Relative error=0.2190

high relative error: 0.4760.

We get better result using two images. For this and the three-frame case,

we utilize Algorithm 4.4. The deblurring result with the first two images is

shown in Figure 4.6. The artifacts that appear in the single frame recon-

struction are removed and the pixel values are in the right range, from about

-0.1342 to about 1.2427. The resulting relative error is 0.2190.

With all three images, we obtain a further improved deblurred image

(Figure 4.7). There are no visible artifacts and the pixel values fall in the

107

Figure 4.7: Deblurring result using three images. Relative error=0.1162

Figure 4.8: Plot of relative errors at each iteration using one, two and three

frames for the blind deconvolution problem of the mild blur case.

correct range. The relative error, 0.1162, is smaller than those from using

just one or two images.

In Figure 4.8, we plot the relative errors at each iteration when we deblur

108

with one, two and three images. The plot clearly indicates that the relative

error converges faster and to a lower value when more images are used.

4.6.2 Removing Severe Blurs

In this subsection, we perform similar tests with more severe blurs. The three

pupil phase functions and their corresponding PSFs used in this experiment

are shown in Figure 4.9. We see that the PSFs are much flatter than those

in the previous experiment. After blurring the satellite image with the three

PSFs, we have three blurred images (left hand side of Figure 4.10). We now

try to deblur them. Our initial guess of pupil phase functions are obtained

by adding 10 % random noise to the true pupil phase functions. The right

column in Figure 4.10 shows the deblurred images using the initial guess.

The initial deblurred images are sharper than the starting blurred images,

but artifacts spread throughout the whole image and the pixel values lie

in the wrong range.

Next, we deblur the blurred images using one, two and three frames

and compare the results. With just one frame, we do not get back a clear

image (Figure 4.11), although most artifacts are gone and pixel values are

in the correct range. The relative error for this case is 0.4645. If we use

two frames, a clearer image (Figure 4.12) is obtained, but we still have some

artifacts. The relative error has improved by a little to 0.3104. Just like

the previous experiment, further improvement is observed when we use three

frames. The deblurred image (Figure 4.13) is very sharp and the relative

error is now just 0.1222.

In Figure 4.14 we plot the relative errors at each iteration when using

one, two and three frames. When only one frame is used, we start at a

high (over 2) relative error; while when two or three frames are used, we

obtain much smaller relative errors after the first iteration. The two frame

109

Figure 4.9: The pupil phase functions and their corresponding point spread

functions giving severe blurs.

110

Figure 4.10: Left: Images obtained by blurring with the three point spread

functions in Figure 4.9. Right: The deblurring results using the initial guess

of the pupil phase functions.

111

Figure 4.11: Deblurring result using only one image. Relative error=0.4645

Figure 4.12: Deblurring result using two images. Relative error=0.3104

case relative error levels off to just over 0.3 but the three frame case relative

error decreases to close to 0.1.

Our experimental results have illustrated the success of the variable pro-

jection method in reducing the number of variables, and the effectiveness of

the Gauss-Newton method in minimizing the projected objective function.

The results also show that using multiple frames can significantly improve

the blind deconvolution quality.

112

Figure 4.13: Deblurring result using three images. Relative error=0.1222

Figure 4.14: Plot of relative errors at each iteration using one, two and three

frames for blind deconvolution problem of the severe blur case.

113

4.7 Conclusions for this Chapter

In this chapter, we investigated the blind deconvolution problem for images

affected by pupil phase atmospheric blurs common in astronomical imaging.

In many blind deconvolution problems, the PSFs are parametrized to reduce

the number of variables. But unlike common blurs like Gaussian, motion and

out-of-focus blurs, the number of parameters of an atmospheric blur described

by a pupil phase function is of the order of 10000 for images of size 256�256.

Together with the linear variables (the unknown image), the total number of

variables is more than 70000. The variable projection approach eliminates

the linear terms, but the reduced cost functional still requires optimizing over

the nonlinear terms defined by the pupil phase function. Compared with

many problems in the literature solved by variable projection, our problem

has significantly more variables, even after the projection.

We posed blind deconvolution as a nonlinear minimization problem,

which we solved using the Gauss-Newton method with a conjugate gradient

inner solver. With the assumption of periodic boundary conditions, which

is valid for astronomical imaging, the convolution matrix has an efficient

spectral decomposition. Together with the formula of the pupil phase atmo-

spheric blur and two lemmas on conjugate symmetric vectors, it was shown

that multiplication with the Jacobian matrix can be done through a series

of simple diagonal and Fourier matrix multiplications. For images with N

pixels, this significantly reduces the operation cost from OpN3q (since a 3D

tensor is involved) down to OpN logNq. Therefore we use the full Jacobian

matrix, instead of its approximation as in many other problems.

The multiframe case, which uses more than one observed image of the

same object, often produces better deblurring results for blind deconvolu-

tion. This was illustrated in our numerical experiments. By decoupling the

frames into separate deblurring problems, with the constraint that the de-

114

blurred images should be close to each other, we obtained a sparse, block

structured Jacobian matrix. The block structure significantly reduces the

storage requirements, and allows for parallel implementation of the Jacobian

matrix-vector multiplications.

115

Chapter 5

Conclusions

This dissertation focused on several practical issues in image deblurring.

After a literature survey on image deblurring research, we pointed out the

drawbacks in many deblurring methods in that they make some unrealistic

assumptions on the problem. One common assumption is that the digital

image extends out of the boundary in a wrap-around fashion. This assump-

tion makes sense when the background is mostly dark like in astronomical

imaging, but for other imaging situations, this is far from reality. Another

common assumption is that precise knowledge of the blur is available. In

some cases, the blur can be measured through instrument calibration or

from images of point source objects. However for imaging environments that

are constantly changing, for example blurs due to atmospheric air movement

in astronomical imaging, it is very hard to obtain the blur exactly. Finally,

research in image deblurring typically covers only theoretical issues, mod-

els and algorithms, and rarely provides efficient and robust software. This

dissertation has addressed all of these issues.

In Chapter 2.2, we explained the importance of boundary conditions

to the deblurring problem. Expressing the deblurring problem as a linear

deconvolution problem, we compared the different structure of the convolu-

tion matrix when different boundary conditions are used. We also showed

an example to display the different kind of padding with different bound-

ary conditions. This example clearly shows that the classical zero, periodic,

116

reflective and anti-reflective boundary conditions fail to give a realistic ex-

tension of the image. They result in jumps in intensity and sharp turns of

edge directions across the image boundary. These problems do not appear

when we use our new synthetic boundary conditions.

Synthetic boundary, as its name implies, synthesize the boundary con-

ditions from the given image. Hence the boundary conditions are tailored to

the particular image we are working on, unlike the other boundary conditions

which do not adapt to the image in hand. We have given an algorithm to

obtain the synthetic boundary conditions from an image.

Except for periodic and reflective boundary conditions, the convolution

matrices for the other boundary conditions do not have a simple and efficient

spectral decomposition. Thus, direct methods cannot be used and we have

to resort to iterative methods. To speed up the convergence of the iterative

methods when synthetic boundary conditions are used, we have designed a

new preconditioner. We notice the similarity between synthetic and reflective

boundary conditions, so we base our preconditioner on the DCT precondi-

tioner. But since the convolution matrix is ill-conditioned, we incorporate

Tikhonov regularization to obtain a regularized DCT preconditioner

We gave extensive experimental results to show the effectiveness of syn-

thetic boundary conditions, especially in removing motion blurs. The ex-

periments also showed that the regularized DCT preconditioning gives a

significant improvement to the deblurring results and reduces the number

of iterations.

The next part of the dissertation is about two new software packages,

PYRET and PARRET for image deblurring. We started by introducing

the two main types of deblurring algorithms: direct methods and iterative

methods. Direct methods are used when a spectral decomposition of the

convolution matrix can be acquired with low computational cost, otherwise,

we need to use iterative methods. Since in many iterative methods the most

117

expensive steps are the matrix-vector multiplications with the convolution

matrix and its transpose, it is essential to find an efficient way to perform

these multiplications. We decompose the multiplication process into three

smaller steps, each of which can be done quickly. Combining the corre-

sponding transposes of these small steps, we get the multiplication by the

transpose of the convolution matrix.

Then we moved on to the implementation details. We have explained

the reasons for choosing Python as our implementation language. Using an

object-oriented paradigm we created a Python package PYRET. We abstract

out the convolution matrix by building a special psfMatrix class, so we can

perform matrix operations with efficient algorithms. With operator overload-

ing, psfMatrix objects can be used in functions originally implemented for

ordinary NumPy array objects. This facilitates the reuse of program codes.

Similarly, we have a matrix class for the preconditioner matrix. We also have

some other helper functions useful for deblurring experiments.

To make it easy for users to try out PYRET, we have supplied a web

interface with the popular Python web framework Pylons. This ease of exten-

sion is a strength in Python over other commercial mathematical languages.

We noticed the potential of faster deblurring if we use parallel computing,

so we decided on a parallel implementation and the end product is another

package we developed, called PARRET. In the supercomputing community,

GPU programming is getting the attention of many scientists, and it is an

economical way to obtain parallel computing power, so we pick GPUs as

our implementation platform. More specifically, we use NVIDIA CUDA ar-

chitecture, since it comes with the most mature GPU programming API.

The workflow of a CUDA program consists of the steps of moving data to

the GPU memory, processing the data in parallel by the many cores on the

GPU, and moving the results back to the main memory.

The Python wrapper PyCUDA makes all these steps much easier for

118

programmers. PyCUDA exposes the CUDA API in Python and allows inter-

active experiments in various Python shells. Since PyCUDA did not provide

all the functionalities required for deblurring algorithms, we had to make a

few improvements to it. First we provided a wrapper for the CUBLAS and

CUFFT libraries to work with PyCUDA objects. Secondly we added the

capability of complex arithmetic to PyCUDA.

Just like in PYRET, we create a psfMatrix class to represent the con-

volution matrix. And for the iterative linear solvers, we follow the design of

SciPy sparse linear algebra package for easy future extension. Benchmark-

ing results show that this GPU implementation gives orders of magnitude

speedup over CPU implementation.

The final part of this dissertation deals with the case when the blurs are

not known in advance. For this part, we work on the removal of pupil phase

atmospheric blurs common in astronomical imaging. As discussed above, for

astronomical imaging, we can assume periodic boundary conditions and thus

easy spectral decomposition of the convolution matrix is available. But since

the blurs are not known, and thus the convolution matrix is not known, we

cannot use direct methods as in the non-blind case.

We formulate the blind deconvolution problem as a nonlinear minimiza-

tion problem. The objective function depends nonlinearly on the pupil phase

function, which determines the blur, and linearly on the unknown true image.

We eliminate the linear variable of the objective function using a technique

called variable projection. The reduced function only depends on the pupil

phase functions. Unlike other problems treated by variable projection, the re-

duced function still depends on more than 10000 variables, thus every step in

the optimization process is expensive, since large matrices and tensors are in-

volved. With careful mathematical manipulation, we decompose the involved

Jacobian matrix into a series of diagonal and Fourier matrices, hence inex-

pensive multiplication with the Jacobian matrix and its transpose is possible.

119

To further improve the deblurring quality, we use more than one blurred

image from the same object. This is called multi-frame blind deconvolution.

With a decoupling approach, the large Jacobian matrix is sparse with block

structure, simplifying the implementation and with the potential for paral-

lelization. We test our decoupled multi-frame blind deconvolution approach

on a mild blur case and a severe blur case. Both cases show decreases in

relative errors when more images are used. The improvement is especially

prominent in the severe blur case.

To conclude, this dissertation has investigated many levels of practical

image deblurring. On the theoretical level, we have devised new synthetic

boundary conditions, a new regularized preconditioner and a new formula-

tion for the blind deconvolution problem. On the algorithmic level, we show

efficient algorithms for multiplication with the convolution matrices, precon-

ditioner matrices and Jacobian matrices. On the implementation level, we

discuss the choice of programming language and parallel architecture, design

of the software packages, incorporation of different libraries and the develop-

ment of a web user interface. We hope this dissertation can provide useful

resources for future research in image deblurring.

120

Appendix

6.1 Proof of Lemma 4.2 in Section 4.4

Lemma 4.2. If u and v are two conjugate symmetric vectors, then

uTv � uTv. (6.1)

Proof. Let n be the length of u and v.

uTv �
ņ

k�1

ukvk (6.2)

� u1v1 �
ņ

k�2

ukvk (6.3)

� u1v1 �
ņ

k�2

un�k�2vn�k�2 (6.4)

� u1v1 �
ņ

l�2

ulvl (letting l � n� k � 2) (6.5)

�
ņ

l�1

ulvl (6.6)

� uTv. (6.7)

6.2 Proof of Lemma 4.3 in Section 4.4

Lemma 4.3. If u and v are two conjugate symmetric vectors, then

Re puqT v � uT Re pvq . (6.8)

121

Proof. Let n be the length of u and v.

Re puqT v � 1

2
pu� uqT v (6.9)

� 1

2

�
uTv � uTv� (6.10)

� 1

2

�
uTv � uTv� (by Lemma 4.2) (6.11)

� uT
�

1

2
pv � vq

(6.12)

� uT Re pvq . (6.13)

6.3 Derivation of (4.20) in Section 4.3

First we determine a formula for ∇ |Λ|2.

∇ |Λ|2 � ∇pΛΛq (6.14)

� ∇ΛΛ�Λ∇Λ (6.15)

� ∇ΛΛ�Λ∇Λ (6.16)

� Λ∇Λ�Λ∇Λ (6.17)

� 2 Re
�
Λ∇Λ

�
. (6.18)

We also need to use the following identity on derivatives of matrix in-

verses. Assume that A is a matrix in which each entry is a function of a

scalar x. Then

dA�1

dx
� �A�1dA

dx
A�1. (6.19)

122

Taking derivatives with respect to an entry φk of φ, we get

d

dφk

�
1

|Λ|2 � α2

� � d

dφk
p|Λ|2 � α2q�1 (6.20)

� �p|Λ|2 � α2q�1 d

dφk

�|Λ|2 � α2
� p|Λ|2 � α2q�1 (6.21)

� �p|Λ|2 � α2q�2 d

dφk

�|Λ|2 � α2
�

(6.22)

� �p|Λ|2 � α2q�2 d

dφk
p|Λ|2q (6.23)

In (6.22), we use the fact that diagonal matrices commute. Finally,

∇
�

1

|Λ|2 � α2

� �p|Λ|2 � α2q�2∇p|Λ|2q (6.24)

� �p|Λ|2 � α2q�2
�
2 Re

�
Λ∇Λ

��
(6.25)

� �2
Re

�
Λ∇Λ

��|Λ|2 � α2
�2 . (6.26)

123

6.4 Derivation of (4.74) in Section 4.4

Using the product rule and (6.25), we have

∇
�

Λ

|Λ|2 � α2

(6.27)

� ∇
�

1

|Λ|2 � α2
Λ

(6.28)

� ∇
�

1

|Λ|2 � α2

Λ� 1

|Λ|2 � α2
∇Λ (6.29)

� � �|Λ|2 � α2
��2 �

2 Re
�
Λ∇Λ

��
Λ� �|Λ|2 � α2

��1∇Λ (6.30)

� �|Λ|2 � α2
��2 ��pΛ∇Λ�Λ∇ΛqΛ� �|Λ|2 � α2

�
∇Λ

�
(6.31)

� �|Λ|2 � α2
��2

�
�Λ

2∇Λ� |Λ|2∇Λ� |Λ|2∇Λ� α2∇Λ
	

(6.32)

� �|Λ|2 � α2
��2

�
�Λ

2∇Λ� α2∇Λ
	

(6.33)

� α2∇Λ�Λ
2∇Λ

p|Λ|2 � α2q2 . (6.34)

124

Bibliography

[1] H. Andrews and B. Hunt.

Digital Image Restoration.

Prentice Hall, 1977.

[2] A. Aricò, M. Donatelli, and S. Serra-Capizzano.

Spectral analysis of the anti-reflective algebra.

Linear Algebra and its Applications, vol. 428, pp. 657–675, 2008.

[3] J. Bardsley, S. Knepper, and J. Nagy.

Structured linear algebra problems in adaptive optics imaging.

to appear in Advances in Computational Mathematics, 2010.

[4] J. M. Bardsley and C. R. Vogel.

A nonnegatively constrained convex programming method for image re-

construction.

SIAM Journal on Scientific Computing, vol. 25(4), pp. 1326–1343, 2003.

[5] M. Bertalmio, G. Sapiro, V. Caselles, and C. Ballester.

Image inpainting.

In Proceedings of the 27th Annual Conference on Computer Graphics

and Interactive Techniques, pp. 417–424. ACM Press/Addison-Wesley

Publishing Co. New York, NY, USA, 2000.

[6] Å. Björck and T. Elfving.

125

Accelerated projection methods for computing pseudoinverse solutions

of systems of linear equations.

BIT Numerical Mathematics, vol. 19(2), pp. 145–163, 1979.

[7] D. Calvetti and E. Somersalo.

Bayesian image deblurring and boundary effects.

In Society of Photo-Optical Instrumentation Engineers (SPIE) Confer-

ence Series, vol. 5910, pp. 281–289. 2005.

[8] R. Chan, T. Chan, L. Shen, and Z. Shen.

Wavelet deblurring algorithms for spatially varying blur from high-

resolution image reconstruction.

Linear Algebra and its Applications, vol. 366, pp. 139–155, 2003.

[9] R. H. Chan and X. Q. Jin.

An Introduction to Iterative Toeplitz Solvers.

SIAM, Philadelphia, 2007.

[10] T. Chan and J. Shen.

Image Processing and Analysis: Variational, PDE, Wavelet, and

Stochastic Methods.

SIAM, Philadelphia, PA, USA, 2005.

[11] T. Chan and C. Wong.

Total variation blind deconvolution.

IEEE Transactions on Image Processing, vol. 7(3), pp. 370–375, 1998.

[12] K. Chen.

Matrix Preconditioning Techniques and Applications.

Cambridge Univ Pr, 2005.

[13] J. Chung.

126

Numerical approaches for large-scale ill-posed inverse problems.

Ph.D. thesis, Emory University, 2009.

[14] J. Chung, J. Nagy, and D. O’Leary.

A weighted-GCV method for Lanczos-hybrid regularization.

Electronic Transactions on Numerical Analysis, vol. 28, pp. 149–167,

2008.

[15] J. Cooley and J. Tukey.

An algorithm for the machine calculation of complex Fourier series.

Mathematics of Computation, vol. 19(90), pp. 297–301, 1965.

[16] P. J. Davis.

Circulant Matrices.

Wiley, New York, 1979.

[17] F. Di Benedetto, C. Estatico, and S. Serra-Capizzano.

Superoptimal preconditioned conjugate gradient iteration for image de-

blurring.

SIAM Journal on Scientific Computing, vol. 26(3), pp. 1012–1035, 2005.

[18] M. Donatelli, C. Estatico, A. Martinelli, and S. Serra-Capizzano.

Improved image deblurring with anti-reflective boundary conditions and

re-blurring.

Inverse Problems, vol. 22, pp. 2035–2053, 2006.

[19] M. Donatelli, C. Estatico, J. Nagy, L. Perrone, and S. Serra-Capizzano.

Anti-reflective boundary conditions and fast 2D deblurring models.

In Proceeding to SPIEs 48th Annual Meeting, San Diego, CA USA, F.

Luk Ed, vol. 5205, pp. 380–389. 2003.

[20] J. Dongarra, I. Duff, H. van der Vorst, and D. Sorensen.

127

Numerical Linear Algebra for High-performance Computers.

SIAM, 1998.

[21] D. Donoho.

Nonlinear solution of linear inverse problems by wavelet–vaguelette de-

composition.

Applied and Computational Harmonic Analysis, vol. 2(2), pp. 101–126,

1995.

[22] L. A. Drummond, V. Galiano, V. Migallón, and J. Penadés.

PyACTS: a high-level framework for fast development of high perfor-

mance applications.

In Proceedings from Seventh International Meeting on High Performance

Computing for Computational Science - VECPAR’06, pp. 373–378. Rio

de Janeiro, Brazil, 2006.

[23] A. A. Efros and W. T. Freeman.

Image quilting for texture synthesis and transfer.

In Proceedings of SIGGRAPH 2001, pp. 341–346. Los Angeles, CA,

2001.

[24] A. A. Efros and T. K. Leung.

Texture synthesis by non-parametric sampling.

In International Conference on Computer Vision, pp. 1033–1038. 1999.

[25] H. W. Engl, M. Hanke, and A. Neubauer.

Regularization of Inverse Problems.

Kluwer Academic Publishers, Dordrecht, 2000.

[26] M. Fadili and J. Starck.

Sparse representation-based image deconvolution by iterative threshold-

128

ing.

In Astronomical Data Analysis ADA06, Marseille, France. 2006.

[27] M. Frigo and S. Johnson.

FFTW: an adaptive software architecture for the FFT.

In Proceedings of the 1998 IEEE International Conference on Acoustics,

Speech and Signal Processing, 1998, pp. 1381–1384. 1998.

[28] J. Gardner.

The Definitive Guide to Pylons.

Springer, 2008.

[29] G. Golub, M. Heath, and G. Wahba.

Generalized cross-validation as a method for choosing a good ridge pa-

rameter.

Technometrics, vol. 21(2), pp. 215–223, 1979.

[30] G. Golub and V. Pereyra.

The differentiation of pseudo-inverses and nonlinear least squares prob-

lems whose variables separate.

SIAM Journal on Numerical Analysis, vol. 10(2), pp. 413–432, 1973.

[31] G. Golub and V. Pereyra.

Separable nonlinear least squares: the variable projection method and

its applications.

Inverse Problems, vol. 19, pp. R1–R26, 2003.

[32] R. Gonzalez and R. Woods.

Digital Image Processing.

Prentice-Hall, Englewood Cliffs, NJ, 2002.

[33] C. W. Groetsch.

The Theory of Tikhonov Regularization for Fredholm Integral Equations

129

of the First Kind.

Pitman, Boston, 1984.

[34] M. Hanke.

Conjugate Gradient Type Methods for Ill-posed Problems.

Chapman & Hall/CRC, 1995.

[35] M. Hanke, J. Nagy, and R. Plemmons.

Preconditioned iterative regularization methods for ill-posed problems.

In R. V. L. Reichel, A. Ruttan, editor, Numerical Linear Algebra and

Scientific Computing, pp. 141–163. de Gruyter, Berlin, Germany, 1993.

[36] P. C. Hansen.

Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of

Linear Inversion.

SIAM, Philadelphia, 1998.

[37] P. C. Hansen, J. G. Nagy, and D. P. O’Leary.

Deblurring Images: Matrices, Spectra, and Filtering.

SIAM, Philadelphia, 2006.

[38] S. Haykin.

Adaptive Filter Theory.

Prentice-Hall, Inc. Upper Saddle River, NJ, USA, 1986.

[39] L. Kaufman.

A variable projection method for solving separable nonlinear least

squares problems.

BIT Numerical Mathematics, vol. 15(1), pp. 49–57, 1975.

[40] A. Klöckner, N. Pinto, Y. Lee, B. Catanzaro, P. Ivanov, and A. Fasih.

PyCUDA: GPU Run-Time Code Generation for High-Performance

130

Computing.

Arxiv preprint arXiv:0911.3456, 2009.

[41] A. Klöeckner.

PyCUDA, 2009.

URL http://mathema.tician.de/software/pycuda

[42] R. L. Lagendijk and J. Biemond.

Iterative Identification and Restoration of Images.

Kluwer Academic Publishers, Boston/Dordrecht/London, 1991.

[43] L. B. Lucy.

An iterative technique for the rectification of observed distributions.

The Astronomical Journal, vol. 79(6), pp. 745–754, 1974.

[44] J. Nagy, K. Palmer, and L. Perrone.

Iterative methods for image deblurring: a Matlab object-oriented ap-

proach.

Numerical Algorithms, vol. 36(1), pp. 73–93, 2004.

[45] J. G. Nagy, K. Palmer, and L. Perrone.

RestoreTools: an object oriented Matlab package for image restoration.

URL http://www.mathcs.emory.edu/~nagy

[46] J. G. Nagy and Z. Strakoš.

Enforcing nonnegativity in image reconstruction algorithms.

Mathematical Modeling, Estimation, and Imaging, vol. 4121, pp. 182–

190, 2000.

[47] M. K. Ng.

Iterative Methods for Toeplitz Systems.

Oxford University Press, Oxford, UK, 2004.

http://mathema.tician.de/software/pycuda
http://www.mathcs.emory.edu/~nagy

131

[48] M. K. Ng, R. H. Chan, and W. C. Tang.

A fast algorithm for deblurring models with Neumann boundary condi-

tions.

SIAM Journal on Scientific Computing, vol. 21, pp. 851–866, 1999.

[49] NVIDIA.

NVIDIA CUDA C Programming Best Practices Guide CUDA Toolkit

2.3, 2009.

[50] NVIDIA.

NVIDIA CUDA Programming Guide Version 2.3, 2009.

[51] NVIDIA.

NVIDIA CUDA Reference Manual Version 2.3, 2009.

[52] T. E. Oliphant.

Guide to NumPy, 2006.

[53] M. R. Osborne.

Some special nonlinear least squares problems.

SIAM Journal on Numerical Analysis, vol. 12(4), pp. 571–592, 1975.

[54] M. R. Osborne.

Separable least squares, variable projection, and the Gauss-Newton al-

gorithm.

Electronic Transactions on Numerical Analysis, vol. 28, pp. 1–15, 2007.

[55] C. C. Paige and M. A. Saunders.

Solution of sparse indefinite systems of linear equations.

SIAM Journal on Numerical Analysis, vol. 12(4), pp. 617–629, 1975.

[56] C. C. Paige and M. A. Saunders.

LSQR: an algorithm for sparse linear equations and sparse least squares.

132

ACM Transactions on Mathematical Software (TOMS), vol. 8(1), pp.

43–71, 1982.

[57] F. Pérez and B. E. Granger.

IPython: a system for interactive scientific computing.

Comput. Sci. Eng., vol. 9(3), pp. 21–29, 2007.

URL http://ipython.scipy.org

[58] W. H. Richardson.

Bayesian-based iterative method of image restoration.

Journal of the Optical Society of America, vol. 62, pp. 55–59, 1972.

[59] L. Rudin and S. Osher.

Total variation based image restoration with free local constraints.

In IEEE International Conference Image Processing, 1994. Proceedings.

ICIP-94., vol. 1. 1994.

[60] A. Ruhe and P. A. Wedin.

Algorithms for separable nonlinear least squares problems.

SIAM Review, vol. 22(3), pp. 318–337, 1980.

[61] Y. Saad.

Iterative Methods for Sparse Linear Systems.

SIAM, 2003.

[62] M. Sala, W. F. Spotz, and M. A. Heroux.

PyTrilinos: High-performance distributed-memory solvers for Python.

ACM Transactions on Mathematical Software, vol. 34(2), pp. 7:1–7:33,

2008.

[63] S. Serra-Capizzano.

A note on antireflective boundary conditions and fast deblurring models.

http://ipython.scipy.org

133

SIAM J. Sci. Comput., vol. 25(4), pp. 1307–1325, 2003.

doi:http://dx.doi.org/10.1137/S1064827502410244.

[64] W. A. Stein et al.

Sage Mathematics Software (Version 4.2.1).

The Sage Development Team, 2009.

URL http://www.sagemath.org

[65] The SciPy Community.

Multi-dimensional image processing (scipy.ndimage) — SciPy v0.8.dev

Reference Guide.

URL http://docs.scipy.org/doc/scipy/reference/ndimage.html

[66] C. Thompson and L. Shure.

Matlab image processing toolbox users guide.

The MathWorks, Inc., 1995.

[67] C. F. Van Loan.

Computational Frameworks for the Fast Fourier Transform.

SIAM, Philadelphia, 1992.

[68] C. R. Vogel.

Computational Methods for Inverse Problems.

SIAM, Philadelphia, 2002.

[69] M. Welk, D. Theis, and J. Weickert.

Variational deblurring of images with uncertain and spatially variant

blurs.

Pattern Recognition, pp. 485–492, 2005.

[70] Y.-W. Wen, M. K. Ng, and W.-K. Ching.

Iterative algorithms based on decoupling of deblurring and denoising for

http://www.sagemath.org
http://docs.scipy.org/doc/scipy/reference/ndimage.html

134

image restoration.

SIAM Journal on Scientific Computing, vol. 30(5), pp. 2655–2674, 2008.

[71] P. Wendykier.

High Performance Java Software for Image Processing.

Ph.D. thesis, Emory University, 2009.

[72] Wolfram Research.

Image Processing and Analysis — Wolfram Mathematica 7 Documen-

tation.

URL http://reference.wolfram.com/mathematica/guide/

ImageProcessing.html

http://reference.wolfram.com/mathematica/guide/ImageProcessing.html
http://reference.wolfram.com/mathematica/guide/ImageProcessing.html

	Practical Image Deblurring with Synthetic Boundary Conditions, with GPUs, and with Multiple Frames
	Introduction
	Convolution Model of Image Formation
	Literature Survey
	Overview of this Dissertation
	New Contributions

	Synthetic Boundary Conditions
	Introduction
	Image Deblurring and Boundary Conditions
	One Dimensional Problems
	Two Dimensional Problems
	Synthetic Boundary Conditions

	Preconditioners for Synthetic Boundary Conditions
	Numerical Experiments
	Gaussian Blur
	Diagonal Motion Blur
	Gaussian Blur with Additive Gaussian Noise
	Diagonal Motion Blur with Additive Gaussian Noise
	Preconditioning
	Other Images and Additional Experiments

	Conclusions for this Chapter

	Python and GPU Implementation of Deblurring Algorithms
	Efficient Algorithms for Convolution Matrix Operations
	Deblurring Algorithms
	Direct Methods
	Iterative Methods

	PYRET: The Implementation in Python
	Why Python?
	Implementation Details of PYRET
	Web GUI Interface

	PARRET: Parallel Implementation on GPUs
	Parallelizability of Vector and Matrix Operations in Deblurring Algorithms
	Why GPUs?
	Compute Unified Device Architecture (CUDA)
	Python Wrapper of CUDA (PyCUDA)
	Interfacing CUBLAS and CUFFT with PyCUDA
	Complex Branch of PyCUDA
	Features of PARRET
	Speedup of PARRET

	Conclusions for this Chapter

	Multi-frame Pupil Phase Blind Deconvolution Problem
	Overview of Blind Deconvolution
	Variable Projection Method
	Applying Variable Projection Method to Blind Deconvolution Problems
	Deblurring Using More than One Image
	Pupil Phase Parametrization of Atmospheric Blurs in Astronomical Imaging
	Efficient Computations with diag()

	Experimental Results
	Removing Mild Blurs
	Removing Severe Blurs

	Conclusions for this Chapter

	Conclusions
	Appendix
	Proof of Lemma 4.2 in Section 4.4
	Proof of Lemma 4.3 in Section 4.4
	Derivation of (4.20) in Section 4.3
	Derivation of (4.74) in Section 4.4

	Bibliography

